Sample records for highly loaded lab-scale

  1. Characterization of an Autotrophic Nitrogen-Removing Biofilm from a Highly Loaded Lab-Scale Rotating Biological Contactor (United States)

    Pynaert, Kris; Smets, Barth F.; Wyffels, Stijn; Beheydt, Daan; Siciliano, Steven D.; Verstraete, Willy


    In this study, a lab-scale rotating biological contactor (RBC) treating a synthetic NH4+ wastewater devoid of organic carbon and showing high N losses was examined for several important physiological and microbial characteristics. The RBC biofilm removed 89% ± 5% of the influent N at the highest surface load of approximately 8.3 g of N m−2 day−1, with N2 as the main end product. In batch tests, the RBC biomass showed good aerobic and anoxic ammonium oxidation (147.8 ± 7.6 and 76.5 ± 6.4 mg of NH4+-N g of volatile suspended solids [VSS]−1 day−1, respectively) and almost no nitrite oxidation (< 1 mg of N g of VSS−1 day−1). The diversity of aerobic ammonia-oxidizing bacteria (AAOB) and planctomycetes in the biofilm was characterized by cloning and sequencing of PCR-amplified partial 16S rRNA genes. Phylogenetic analysis of the clones revealed that the AAOB community was fairly homogeneous and was dominated by Nitrosomonas-like species. Close relatives of the known anaerobic ammonia-oxidizing bacterium (AnAOB) Kuenenia stuttgartiensis dominated the planctomycete community and were most probably responsible for anoxic ammonium oxidation in the RBC. Use of a less specific planctomycete primer set, not amplifying the AnAOB, showed a high diversity among other planctomycetes, with representatives of all known groups present in the biofilm. The spatial organization of the biofilm was characterized using fluorescence in situ hybridization (FISH) with confocal scanning laser microscopy (CSLM). The latter showed that AAOB occurred side by side with putative AnAOB (cells hybridizing with probe PLA46 and AMX820/KST1275) throughout the biofilm, while other planctomycetes hybridizing with probe PLA886 (not detecting the known AnAOB) were present as very conspicuous spherical structures. This study reveals that long-term operation of a lab-scale RBC on a synthetic NH4+ wastewater devoid of organic carbon yields a stable biofilm in which two bacterial groups, thought

  2. Analysis of ammonia-oxidizing bacteria dominating in lab-scale bioreactors with high ammonium bicarbonate loading

    NARCIS (Netherlands)

    Vejmelkova, D.; Sorokin, D.Y.; Abbas, B.; Kovaleva, O.L.; Kleerebezem, R.; Kampschreur, M.J.; Muyzer, G.; Van Loosdrecht, M.C.M.


    The ammonia-oxidizing bacterial community (AOB) was investigated in two types of laboratory-scale bioreactors performing partial oxidation of ammonia to nitrite or nitrate at high (80 mM) to extremely high (428 mM) concentrations of ammonium bicarbonate. At all conditions, the dominant AOB was

  3. Analysis of ammonia-oxidizing bacteria dominating in lab-scale bioreactors with high ammonium bicarbonate loading

    NARCIS (Netherlands)

    Vejmelkova, D.; Sorokin, D.Y.; Abbas, B.; Kovaleva, O.L.; Kleerebezem, R.; Kampschreur, M.J.; Muyzer, G.; van Loosdrecht, M.C.M.


    The ammonia-oxidizing bacterial community (AOB) was investigated in two types of laboratory-scale bioreactors performing partial oxidation of ammonia to nitrite or nitrate at high (80 mM) to extremely high (428 mM) concentrations of ammonium bicarbonate. At all conditions, the dominant AOB was

  4. Lab-scale investigation of Middle-Bosnia coals to achieve high-efficient and clean combustion technology

    Directory of Open Access Journals (Sweden)

    Smajevic Izet


    Full Text Available This paper describes full lab-scale investigation of Middle-Bosnia coals launched to support selection an appropriate combustion technology and to support optimization of the boiler design. Tested mix of Middle-Bosnia brown coals is projected coal for new co-generation power plant Kakanj Unit 8 (300-450 MWe, EP B&H electricity utility. The basic coal blend consisting of the coals Kakanj: Breza: Zenica at approximate mass ratio of 70:20:10 is low grade brown coal with very high percentage of ash - over 40%. Testing that coal in circulated fluidized bed combustion technique, performed at Ruhr-University Bohum and Doosan Lentjes GmbH, has shown its inconveniency for fluidized bed combustion technology, primarily due to the agglomeration problems. Tests of these coals in PFC (pulverized fuel combustion technology have been performed in referent laboratory at Faculty of Mechanical Engineering of Sarajevo University, on a lab-scale PFC furnace, to provide reliable data for further analysis. The PFC tests results are fitted well with previously obtained results of the burning similar Bosnian coal blends in the PFC dry bottom furnace technique. Combination of the coals shares, the process temperature and the air combustion distribution for the lowest NOx and SO2 emissions was found in this work, provided that combustion efficiency and CO emissions are within very strict criteria, considering specific settlement of lab-scale furnace. Sustainability assessment based on calculation economic and environmental indicators, in combination with Low Cost Planning method, is used for optimization the power plant design. The results of the full lab-scale investigation will help in selection optimal Boiler design, to achieve sustainable energy system with high-efficient and clean combustion technology applied for given coals.

  5. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach. (United States)

    Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y


    A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Lab-scale hydrogen peroxide data from ECBC (United States)

    U.S. Environmental Protection Agency — Data from small lab scale tests conducted at ECBC. It contains efficacy data as well as data on env conditions such as temperature, RH, and hydrogen peroxide vapor...

  7. Transforming Nanomedicines From Lab Scale Production to Novel Clinical Modality. (United States)

    Landesman-Milo, Dalit; Peer, Dan


    The use of nanoparticles as anticancer drug carriers has been studied for over 50 years. These nanoparticles that can carry drugs are now termed "nanomedicines". Since the approval of the first FDA "nanodrug", DOXIL in 1995, tremendous efforts have been made to develop hundreds of nanomedicines based on different materials. The development of drug nanocarriers (NCs) for cancer therapy is especially challenging and requires multidisciplinary approach. Not only is the translation from a lab scale production of the NCs to clinical scale a challenge, but tumor biology and its unique physiology also possess challenges that need to be overcome with cleverer approaches. Yet, with all the efforts made to develop new strategies to deliver drugs (including small molecules and biologics) for cancer therapy, the number of new NCs that are reaching clinical trials is extremely low. Here we discuss the reasons most of the NCs loaded with anticancer drugs are not likely to reach the clinic and emphasize the importance of understanding tumor physiology and heterogeneity, the use of predictive animal models, and the importance of sharing data as key denominators for potential successful translation of NCs from a bench scale into clinical modality for cancer care.

  8. A lab-scale study of constructed wetlands with sugarcane bagasse and sand media for the treatment of textile wastewater. (United States)

    Saeed, Tanveer; Sun, Guangzhi


    This paper reports the pollutant removal efficiencies of two lab-scale hybrid wetland systems treating a textile wastewater. The two systems had identical configurations, each consisting of a vertical flow (VF) and a horizontal flow (HF) wetland that were filled with organic sugarcane bagasse and sylhet sand as the main media. The systems were operated under high hydraulic loading (HL) (566-5660 mm/d), and inorganic nitrogen (254-508 gN/m(2) d) and organics loadings (9840-19680 g COD/m(2) d and 2154-4307 g BOD(5)/m(2) d). Simultaneous removals of BOD(5) (74-79%) and ammonia (59-66%) were obtained in the first stage VF wetlands, demonstrating the efficiency of the media for oxygen transfer to cope with the high pollutant loads. The organic carbon (C) content of sugarcane bagasse facilitated denitrification in the VF wetlands. Second stage HF wetlands provided efficient color removal under predominantly anaerobic condition. Overall, the wetland systems showed stable removal performances under high, and unsteady, pollutant loadings. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Avaliação do desempenho do reator anaeróbio de manta de lodo (uasb em escala laboratorial na remoção da carga orgânica de águas residuárias da suinocultura Performance evaluation of a lab-scale upflow anaerobic sludge blanket reactor (UASB removing organic loading rate from swine manure

    Directory of Open Access Journals (Sweden)

    Cláudio Milton Montenegro Campos


    Full Text Available Objetivou-se com o presente trabalho avaliar o desempenho do reator anaeróbio de manta de lodo (UASB-Upflow Anaerobic Sludge Blanket construído em escala laboratorial na redução da carga orgânica poluidora dos despejos suinícolas brutos. O sistema completo foi composto de um tanque de acidificação e equalização, reator UASB e lagoa aerada facultativa. O tempo de detenção hidráulica (TDH e temperatura adotada para o reator UASB foram de 30 horas e 30 ºC, respectivamente. Os valores médios afluentes de DQO T, ST e SVT foram de 1806, 1810 e 1240 mg.L-1. As eficiências de remoção de DQO T, ST e SVT foram de 84, 58 e 73%, respectivamente. O sistema se apresentou-se estável, com boas condições de tamponamento, retenção e digestibilidade de sólidos, demonstrando que os critérios adotados foram adequados, principalmente aqueles referentes ao TDH, carga orgânica volumétrica (COV e temperatura.The present work was carried out in order to evaluate the performance of a lab scale Upflow Anaerobic Sludge Blanket reactor (UASB treating liquid effluent from swine manure without solids separation. The treatment system consisted of one acidification tank, which also equalized the substrate, an UASB reactor, and an aerated facultative pound. The hydraulic retention time (HRT and temperature adopted for the UASB reactor were 30h and 30ºC, respectively. The influent average values of Chemical Oxygen Demand (COD, Total Solids (TS and Total Volatile Solids (TVS were 1806, 1810 and 1240 mg.L-1. The removal efficiencies were 84, 58 and 73 %, respectively. The system presented good stability and buffering conditions, and also a good solids digestibility, showing that the research criteria adopted was adequate, mainly those parameters referred to the HRT, Volumetric Organic Loading Rate (VOLR and temperature.

  10. Modeling and Simulation of a lab-scale Fluidised Bed

    Directory of Open Access Journals (Sweden)

    Britt Halvorsen


    Full Text Available The flow behaviour of a lab-scale fluidised bed with a central jet has been simulated. The study has been performed with an in-house computational fluid dynamics (CFD model named FLOTRACS-MP-3D. The CFD model is based on a multi-fluid Eulerian description of the phases, where the kinetic theory for granular flow forms the basis for turbulence modelling of the solid phases. A two-dimensional Cartesian co-ordinate system is used to describe the geometry. This paper discusses whether bubble formation and bed height are influenced by coefficient of restitution, drag model and number of solid phases. Measurements of the same fluidised bed with a digital video camera are performed. Computational results are compared with the experimental results, and the discrepancies are discussed.

  11. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I


    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  12. Polymer brushes under high load.

    Directory of Open Access Journals (Sweden)

    Suzanne M Balko

    Full Text Available Polymer coatings are frequently used to provide repulsive forces between surfaces in solution. After 25 years of design and study, a quantitative model to explain and predict repulsion under strong compression is still lacking. Here, we combine experiments, simulations, and theory to study polymer coatings under high loads and demonstrate a validated model for the repulsive forces, proposing that this universal behavior can be predicted from the polymer solution properties.

  13. Reduction by sonication of excess sludge production in a conventional activated sludge system: continuous flow and lab-scale reactor. (United States)

    Vaxelaire, S; Gonze, E; Merlin, G; Gonthier, Y


    Conventional activated sludge wastewater treatment plants currently produce a large quantity of excess sludge. To reduce this sludge production and to improve sludge characteristics in view of their subsequent elimination, an ultrasonic cell disintegration process was studied. In a lab-scale continuous flow pilot plant, part of the return sludge was sonicated by low-frequency and high-powered ultrasound and then recycled to the aeration tank. Two parallel lines were used: one as a control and the other as an assay with ultrasonic treatment. The reactors were continuously fed with synthetic domestic wastewater with a COD (chemical oxygen demand) of approximately 0.5 g l(-) corresponding to a daily load of 0.35-0.50 kg COD kg(-1) TS d(-1). Removal efficiencies (carbon, particles), excess sludge production and sludge characteristics (particle size distribution, mineralization, respiration rate, biological component) were measured every day during the 56-day experiment. This study showed that whilst organic removal efficiency did not deteriorate, excess sludge production was decreased by about 25-30% by an ultrasonic treatment. Several hypotheses are advanced: (i) the treatment made a part of the organic matter soluble as a consequence of the floc disintegration, and optimised the conversion of the carbonaceous pollutants into carbon dioxide and (ii) the treatment modified the physical characteristics of sludge by a mechanical effect: floc size was reduced, increasing the exchange surface and sludge activity. The originality of this study is that experiments were conducted in a continuous-flow activated sludge reactor rather than in a batch reactor.

  14. APS high heat load monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.K.; Mills, D.


    This document contains the design specifications of the APS high heat load (HHL) monochromator and associated accessories as of February 1993. It should be noted that work is continuing on many parts of the monochromator including the mechanical design, crystal cooling designs, etc. Where appropriate, we have tried to add supporting documentation, references to published papers, and calculations from which we based our decisions. The underlying philosophy behind performance specifications of this monochromator was to fabricate a device that would be useful to as many APS users as possible, that is, the design should be as generic as possible. In other words, we believe that this design will be capable of operating on both bending magnet and ID beamlines (with the appropriate changes to the cooling and crystals) with both flat and inclined crystal geometries and with a variety of coolants. It was strongly felt that this monochromator should have good energy scanning capabilities over the classical energy range of about 4 to 20 keywith Si (111) crystals. For this reason, a design incorporating one rotation stage to drive both the first and second crystals was considered most promising. Separate rotary stages for the first and second crystals can sometimes provide more flexibility in their capacities to carry heavy loads (for heavily cooled first crystals or sagittal benders of second crystals), but their tuning capabilities were considered inferior to the single axis approach.

  15. Lab-Scale Investigations During Combustion of Agricultural Residues and Selected Polish Coals

    Directory of Open Access Journals (Sweden)

    Kordylewski Włodzimierz K.


    Full Text Available Preliminary lab-scale investigations were conducted on slagging abatement in biomass-firing by fuel mixing. Three agriculture biomass fuels and olive cake were used in the experiments. Polish lignites and bituminous coals were examined as anti-sintering additives. The effects of chlorine release, potassium retention and ash sintering were examined by heating samples of biomass fuels and additives in the muffle oven and, next, firing them in the laboratory down-fired furnace at the temperature in the range of 800-1150ºC. The obtained slag samples were analysed on: chlorine and potassium content, sintering tendency and crystalline components. Among the examined coals lignite from Turów mine and bituminous coal from Bolesław Śmiały mine appeared to be the most effective in potassium retention in aluminosilicate and chlorine release from slag. Possibly the major factor of these coals which reduced ash sintering was relatively high content of kaolinite

  16. A preliminary and qualitative study of resource ratio theory to nitrifying lab-scale bioreactors (United States)

    Bellucci, Micol; Ofiţeru, Irina D; Beneduce, Luciano; Graham, David W; Head, Ian M; Curtis, Thomas P


    The incorporation of microbial diversity in design would ideally require predictive theory that would relate operational parameters to the numbers and distribution of taxa. Resource ratio-theory (RRT) might be one such theory. Based on Monod kinetics, it explains diversity in function of resource-ratio and richness. However, to be usable in biological engineered system, the growth parameters of all the bacteria under consideration and the resource supply and diffusion parameters for all the relevant nutrients should be determined. This is challenging, but plausible, at least for low diversity groups with simple resource requirements like the ammonia oxidizing bacteria (AOB). One of the major successes of RRT was its ability to explain the ‘paradox of enrichment’ which states that diversity first increases and then decreases with resource richness. Here, we demonstrate that this pattern can be seen in lab-scale-activated sludge reactors and parallel simulations that incorporate the principles of RRT in a floc-based system. High and low ammonia and oxygen were supplied to continuous flow bioreactors with resource conditions correlating with the composition and diversity of resident AOB communities based on AOB 16S rDNA clone libraries. Neither the experimental work nor the simulations are definitive proof for the application of RRT in this context. However, it is sufficient evidence that such approach might work and justify a more rigorous investigation. PMID:25874592

  17. Sulfur-Iodine Integrated Lab Scale Experiment Development

    Energy Technology Data Exchange (ETDEWEB)

    Russ, Ben


    The sulfur-iodine (SI) cycle was deermined to be the best cycle for coupling to a high temperature reactor (HTR) because of its high efficiency and potential for further improvement. The Japanese Atomic Energy Agency (JAEA) has also selected the SI process for further development and has successfully completed bench-scale demonstrations of the SI process at atmospheric pressure. JEA also plans to proceed with pilot-scale demonstrations of the SI process and eventually plans to couple an SI demonstration plant to its High Temperature Test Reactor (HHTR). As part of an international NERI project, GA, SNL, and the Frech Commissariat L'Energie Atomique performed laboratory-scale demonstrations of the SI process at prototypical temperatures and pressures. This demonstration was performed at GA in San Diego, CA and concluded in April 2009.

  18. Building lab-scale x-ray tube based irradiators (United States)

    The construction of economical x-ray tube based irradiators in a variety of configurations is described using 1000 Watt x-ray tubes. Single tube, double tube, and four tube designs are described, as well as various cabinet construction techniques. Relatively high dose rates were achieved for small s...

  19. Toxicity of nonylphenol diethoxylate in lab-scale anaerobic digesters

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Sanin, F. Dilek


    Nonylphenol compounds have high commercial, industrial and domestic uses owing to their surface active properties. In addition to their toxic, carcinogenic and persistent characteristics; they have drawn the attention of scientists lately due to their endocrine disrupting properties. Their widesp......Nonylphenol compounds have high commercial, industrial and domestic uses owing to their surface active properties. In addition to their toxic, carcinogenic and persistent characteristics; they have drawn the attention of scientists lately due to their endocrine disrupting properties....... Their widespread use and disposal cause them to enter wastewater treatment systems at high concentrations. Since they are highly persistent and hydrophobic, they accumulate mostly on sludge.In this study using Anaerobic Toxicity Assay (ATA) tests, the toxicity of a model nonylphenol compound, nonylphenol...... the fate, the target compounds were extracted from water and sludge and analyzed using GC/MS. The sludge samples used for assembling the reactors were found to contain NP and NP1EO but no NP2EO. After the assay was completed, all the NP2EO spiked into the live reactors was found to disappear. The increase...

  20. Study on a lab-scale hydrogen production by closed cycle thermo-chemical iodine-sulfur process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P.; Chen, S.Z.; Wang, L.J.; Yao, T.Y.; Xu, J.M. [Institute of Nuclear and New Energy Technology, Tsinghua University, P.O. Box 1021, Beijing (China)


    The Iodine-Sulfur (IS) thermo-chemical process for the production of hydrogen is one of the most promising approaches for use of the high temperature process heat supplied by high temperature reactor, which was developed in the Institute of nuclear and new energy technology (INET) of Tsinghua University, China, and INET initiated the fundamental studies on IS cycle since 2005. Based on the experiment results obtained by fundamental researches, a lab-scaled closed cycle loop (IS-10), which featured in electro-electrodialysis (EED) for hydriodic acid (HI) concentration, was designed and built at INET. The loop was composed of three sections, i.e., Bunsen section, HI section and sulfuric acid section. The closed cycle experiment on the loop was successfully carried out recently. In HI section, HI{sub x} produced by Bunsen reaction was continuously purified through reverse Bunsen reaction, concentrated by EED, and then HI solution was obtained by distillation. Finally HI was catalytically decomposed to H{sub 2} and I{sub 2} with the conversion of 20%. In sulfuric acid section, sulfuric acid was continuously purified, concentrated by distillation, and catalytically decomposed to SO{sub 2}, O{sub 2} and H{sub 2}O with the conversion of 75%. In Bunsen section, water, including recycled water, reacted with I{sub 2} and SO{sub 2} recycled from HI section and sulfuric acid section to form two separated acids phases, thus to form a closed cycle. The closed cycle experiment lasted for 7 h with the hydrogen production rate of 10 NL/h, with Pt loaded on activated carbon and copper chromite used as the catalysts for HI and sulfuric acid decomposition, respectively. This paper summarizes the main features of IS-10 and the main results of the closed cycle experiment. So far IS-10 is the second reported facility on which closed experiment was carried out, and the first one with EED embedded to perform a closed cycle operation. (author)

  1. Microalgae based biorefinery: evaluation of oil extraction methods in terms of efficiency, costs, toxicity and energy in lab-scale

    Directory of Open Access Journals (Sweden)

    Ángel Darío González-Delgado


    Full Text Available Several alternatives of microalgal metabolites extraction and transformation are being studied for achieving the total utilization of this energy crop of great interest worldwide. Microalgae oil extraction is a key stage in microalgal biodiesel production chains and their efficiency affects significantly the global process efficiency. In this study, a comparison of five oil extraction methods in lab-scale was made taking as additional parameters, besides extraction efficiency, the costs of method performing, energy requirements, and toxicity of solvents used, in order to elucidate the convenience of their incorporation to a microalgae-based topology of biorefinery. Methods analyzed were Solvent extraction assisted with high speed homogenization (SHE, Continuous reflux solvent extraction (CSE, Hexane based extraction (HBE, Cyclohexane based extraction (CBE and Ethanol-hexane extraction (EHE, for this evaluation were used the microalgae strains Nannochloropsis sp., Guinardia sp., Closterium sp., Amphiprora sp. and Navicula sp., obtained from a Colombian microalgae bioprospecting. In addition, morphological response of strains to oil extraction methods was also evaluated by optic microscopy. Results shows that although there is not a unique oil extraction method which excels in all parameters evaluated, CSE, SHE and HBE appears as promising alternatives, while HBE method is shown as the more convenient for using in lab-scale and potentially scalable for implementation in a microalgae based biorefinery

  2. Experimental and numerical study of MILD combustion in a lab-scale furnace

    NARCIS (Netherlands)

    Huang, X.; Tummers, M.J.; Roekaerts, D.J.E.M.; Scherer, Viktor; Fricker, Neil; Reis, Albino


    Mild combustion in a lab-scale furnace has been experimentally and numerically studied. The furnace was operated with Dutch natural gas (DNG) at 10 kW and at an equivalence ratio of 0.8. OH∗chemiluminescence images were taken to characterize the reaction zone. The chemiluminescence intensity is

  3. Lab-scale thermal analysis of electronic waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong, E-mail:; Yu, Han-Qing


    Highlights: • We provided the experimental evidence that WEEE can be recovered by pyrolysis method. • We explored the thermochemical behaviors of WEEE using online TG–FTIR–MS technology. • The intramolecular oxygen atoms play a pivotal role in the formation of PBDD/Fs. - Abstract: In this work, we experimentally revealed the thermochemical decomposition pathway of Decabromodiphenyl ethane (DBDPE) and tetrabromobisphenol A (TBBPA) containing electronic waste plastics using an online thermogravimetric–fourier transform infrared–mass spectroscopy (TG–FTIR–MS) system, a high resolution gas chromatography/high resolution mass (HRGC–MS) spectroscopy, and a fixed-bed reactor. We found the distribution and species of produced bromides can be easily controlled by adjusting pyrolytic temperature, which is particularly crucial to their recycle. From the analysis of the liquid and solid phase obtained from the fixed-bed reactor, we proposed that the ·Br radicals formed during the pyrolysis process may be captured by organic species derived from the depolymerization of plastics to form brominated compounds or by the inorganic species in the plastics, and that these species remained in the char residue after pyrolysis. Our work for the first time demonstrates intramolecular oxygen atoms play a pivotal role in the formation of PBDD/Fs that pyrolysis of oxygen-free BFRs is PBDD/Fs-free, whereas pyrolysis of oxygen-containing BFRs is PBDD/Fs-reduced.

  4. Lab-scale Lidar Sensing of Diesel Engines Exhausts (United States)

    Borghese, A.


    Combustion technology and its environmental concerns are being considered with increasing attention, not only for global-scale effects, but also for toxicological implications, particularly in the lift conditions of traffic-congested areas and industrial sites. Majority combustion by-products (CO, NO(sub x)) and unburned hydrocarbons (HC), are already subject to increasingly severe regulations; however other, non-regulated minority species, mainly soot and heavy aromatic molecules, involve higher health risks, as they are suspected to be agents of serious pathologies and even mutagenic effects. This is but one of the reasons why much research work is being carried out worldwide on the physical properties of these substances. Correspondingly, the need arises to detect their presence in urban environments, with as high a sensitivity as is required by their low concentrations, proper time- and space-resolutions, and 'real-time' capabilities. Lidar techniques are excellent candidates to this purpose, although severe constraints limit their applicability, eye-safety problems and aerosol Mie scattering uncertainties above all. At CNR's Istituto Motori in Napels, a Lidar-like diagnostic system is being developed, aimed primarily at monitoring the dynamic behavior of internal combustion engines, particularly diesel exhausts, and at exploring the feasibility of a so-called 'Downtown Lidar'.

  5. Removal of heavy metals from synthetic landfill leachate in lab-scale vertical flow constructed wetlands. (United States)

    A, Dan; Oka, Masao; Fujii, Yuta; Soda, Satoshi; Ishigaki, Tomonori; Machimura, Takashi; Ike, Michihiko


    Synthetic landfill leachate was treated using lab-scale vertical flow constructed wetlands (CWs) in sequencing batch modes to assess heavy metal removal efficiencies. The CWs filled with loamy soil and pumice stone were unplanted or planted with common reed (Phragmites australis) (Reed-CW) or common rush (Juncus effusus) (Rush-CW). Synthetic leachate contained acetate, propionate, humate, ammonium, and heavy metals. Common reed grew almost vigorously but common rush partly withered during the 8-month experiment. The CWs reduced the leachate volume effectively by evapotranspiration and removed easily degradable organic matter, color, and ammonium. Furthermore, the CWs demonstrated high removal amounts for heavy metals such as Zn, Cr, Ni, Cd, Fe, and Pb, but not Mn from leachate. The metal removal amounts in the CWs were low for high-strength leachate (influent concentration increased from one time to three times) or under short retention time (batch cycle shortened from 3days to 1day). The Rush-CW showed slightly lower removal amounts for Cr, Ni, Mn, and Cd, although the Reed-CW showed lower Mn removal amounts than the unplanted CW did. However, Cd, Cr, Pb, Ni, and Zn were highly accumulated in the upper soil layer in the planted CW by rhizofiltration with adsorption compared with unplanted CW, indicating that the emergent plants would be helpful for decreasing the dredging soil depth for the final removal of heavy metals. Although the emergent plants were minor sinks in comparison with soil, common rush had higher bioconcentration factors and translocation factors for heavy metals than common reed had. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Microbial community changes with decaying chloramine residuals in a lab-scale system. (United States)

    Bal Krishna, K C; Sathasivan, Arumugam; Ginige, Maneesha P


    When chloramine is used as a disinfectant, managing an acceptable "residual" throughout the water distribution systems particularly once nitrification has set in is challenging. Managing chloramine decay prior to the onset of nitrification through effective control strategies is important and to-date the strategies developed around nitrification has been ineffective. This study aimed at developing a more holistic knowledge on how decaying chloramine and nitrification metabolites impact microbial communities in chloraminated systems. Five lab-scale reactors (connected in series) were operated to simulate a full-scale chloraminated distribution system. Culture independent techniques (cloning and qPCR) were used to characterise and quantify the mixed microbial communities in reactors maintaining a residual of high to low (2.18-0.03 mg/L). The study for the first time associates chloramine residuals and nitrification metabolites to different microbial communities. Bacterial classes Solibacteres, Nitrospira, Sphingobacteria and Betaproteobacteria dominated at low chloramine residuals whereas Actinobacteria and Gammaproteobacteria dominated at higher chloramine residuals. Prior to the onset of nitrification bacterial genera Pseudomonas, Methylobacterium and Sphingomonas were found to be dominant and Sphingomonas in particular increased with the onset of nitrification. Nitrosomonas urea, oligotropha, and two other novel ammonia-oxidizing bacteria were detected once the chloramine residuals had dropped below 0.65 mg/L. Additionally nitrification alone failed to explain chloramine decay rates observed in these reactors. The finding of this study is expected to re-direct the focus from nitrifiers to heterotrophic bacteria, which the authors believe could hold the key towards developing a control strategy that would enable better management of chloramine residuals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Fed-Batch CHO Cell Culture for Lab-Scale Antibody Production. (United States)

    Fan, Yuzhou; Ley, Daniel; Andersen, Mikael Rørdam


    Fed-batch culture is the most commonly used upstream process in industry today for recombinant monoclonal antibody production using Chinese hamster ovary (CHO) cells. Developing and optimizing this process in the lab is crucial for establishing process knowledge, which enables rapid and predictable tech-transfer to manufacturing scale. In this chapter, we describe stepwise how to carry out fed-batch CHO cell culture for lab-scale antibody production.

  8. Lab-Scale Investigations During Combustion of Agricultural Residues and Selected Polish Coals


    Kordylewski Włodzimierz K.; Mościcki Krzysztof J.; Witkowski Karol J.


    Preliminary lab-scale investigations were conducted on slagging abatement in biomass-firing by fuel mixing. Three agriculture biomass fuels and olive cake were used in the experiments. Polish lignites and bituminous coals were examined as anti-sintering additives. The effects of chlorine release, potassium retention and ash sintering were examined by heating samples of biomass fuels and additives in the muffle oven and, next, firing them in the laboratory down-fired furnace at the temperature...

  9. Effects of granular activated carbon on methane removal performance and methanotrophic community of a lab-scale bioreactor. (United States)

    Lee, Eun-Hee; Choi, Sun-Ah; Yi, Taewoo; Kim, Tae Gwan; Lee, Sang-Don; Cho, Kyung-Suk


    Two identical lab-scale bioreactor systems were operated to examine the effects of granular activated carbon (GAC) on methane removal performance and methanotrophic community. Both bioreactor systems removed methane completely at a CH4 loading rate of 71.2 g-CH4·d(-1) for 17 days. However, the methane removal efficiency declined to 88% in the bioreactor without GAC, while the bioreactor amended with GAC showed greater methane removal efficiency of 97% at a CH4 loading rate of 107.5 g-CH4·d(-1). Although quantitative real-time PCR showed that methanotrophic populations were similar levels of 5-10 × 10(8) pmoA gene copy number·VSS(-1) in both systems, GAC addition changed the methanotrophic community composition of the bioreactor systems. Microarray assay revealed that GAC enhanced the type I methanotrophic genera including Methylobacter, Methylomicrobium, and Methylomonas of the system, which suggests that GAC probably provided a favorable environment for type I methanotrophs. These results indicated that GAC is a promising support material in bioreactor systems for CH4 mitigation.

  10. Hybrid Perovskite Thin Film Formation: From Lab Scale Spin Coating to Large Area Blade Coating

    KAUST Repository

    Munir, Rahim


    Our reliance on semiconductors is on the rise with the ever growing use of electronics in our daily life. Organic-inorganic hybrid lead halide perovskites have emerged as a prime alternative to current standard and expensive semiconductors because of its use of abundant elements and the ease of solution processing. This thesis has shed light on the ink-to-solid conversion during the one-step solution process of hybrid perovskite formulations from DMF. We utilize a suite of in situ diagnostic probes including high speed optical microscopy, optical reflectance and absorbance, and grazing incidence wide angle x-ray scattering (GIWAXS), all performed during spin coating, to monitor the solution thinning behavior, changes in optical absorbance, and nucleation and growth of crystalline phases of the precursor and perovskite. The starting formulation experiences solvent-solute interactions within seconds of casting, leading to the formation of a wet gel with nanoscale features visible by in situ GIWAXS. The wet gel subsequently gives way to the formation of ordered precursor solvates (equimolar iodide and chloride solutions) or disordered precursor solvates (equimolar bromide or 3:1 chloride), depending upon the halide and MAI content. The ordered precursor solute phases are stable and retain the solvent for long durations, resulting in consistent conversion behavior to the perovskite phase and solar-cell performance. In this thesis, we develop a firm understanding of the solvent engineering process in which an anti-solvent is used during the coating process through the solvent mixture of GBL and DMSO in different ratios. It has been shown that solvent engineering produce pin hole-free films, justifying its wide adoption across the field. We then translate our learnings from the lab scale spin coating process to the industrial friendly blade coating process. Here we compare the ink solidification and film formation mechanisms of CH3NH3PbI3 in solutions we used to

  11. Factors impacting biotransformation kinetics of trace organic compounds in lab-scale activated sludge systems performing nitrification and denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Su, Lijuan; Aga, Diana [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Chandran, Kartik [Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027 (United States); Khunjar, Wendell O., E-mail: [Hazen and Sawyer P.C., Fairfax, VA 22030 (United States)


    Highlights: • We examined TOrC biotransformation kinetics in nitrifying and denitrifying reators. • TOrC biotransformation was linked to heterotrophic and autotrophic activity. • TOrC biotransformation rates were not sensitive to the initial TOrC concentration. • Readily biodegradable organic matter suppressed TOrC biotransformation rates. - Abstract: To predict TOrC fate in biological activated sludge systems, there is a need to accurately determine TOrC biodegradation kinetics in mixed microbial cultures. Short-term batch tests with salicylic acid, 17α-ethinylestradiol, nonylphenol, trimethoprim and carbamazepine were conducted with lab-scale activated sludge cultures in which the initial TOrC concentration (1 mg/L and 0.0005 mg/L) and readily biodegradable substrate concentrations were varied. The results indicate that pseudo-first order kinetic estimates of TOrC are not sensitive (p > 0.05) to the initial TOrC concentration as long as the initial TOrC concentration (S{sub 0}) to biomass (X{sub 0}) ratio (on COD basis) is below 2 × 10{sup −3}. The presence of readily biodegradable organic matter suppresses TOrC biotransformation rates under nitrifying and denitrifying conditions, and this impact can be adequately described using a reversible non-competitive inhibition equation. These results demonstrate the importance of closely mimicking parent reactor conditions in batch testing because biotransformation parameters are impacted by in-situ carbon loading and redox conditions.

  12. Lab-Scale Study of the Calcium Carbonate Dissolution and Deposition by Marine Cyanobacterium Phormidium subcapitatum (United States)

    Karakis, S. G.; Dragoeva, E. G.; Lavrenyuk, T. I.; Rogochiy, A.; Gerasimenko, L. M.; McKay, D. S.; Brown, I. I.


    Suggestions that calcification in marine organisms changes in response to global variations in seawater chemistry continue to be advanced (Wilkinson, 1979; Degens et al. 1985; Kazmierczak et al. 1986; R. Riding 1992). However, the effect of [Na+] on calcification in marine cyanobacteria has not been discussed in detail although [Na+] fluctuations reflect both temperature and sea-level fluctuations. The goal of these lab-scale studies therefore was to study the effect of environmental pH and [Na+] on CaCO3 deposition and dissolution by marine cyanobacterium Phormidium subcapitatum. Marine cyanobacterium P. subcapitatum has been cultivated in ASN-III medium. [Ca2+] fluctuations were monitored with Ca(2+) probe. Na(+) concentrations were determined by the initial solution chemistry. It was found that the balance between CaCO3 dissolution and precipitation induced by P. subcapitatum grown in neutral ASN III medium is very close to zero. No CaCO3 precipitation induced by cyanobacterial growth occurred. Growth of P. subcapitatum in alkaline ASN III medium, however, was accompanied by significant oscillations in free Ca(2+) concentration within a Na(+) concentration range of 50-400 mM. Calcium carbonate precipitation occurred during the log phase of P. subcapitatum growth while carbonate dissolution was typical for the stationary phase of P. subcapitatum growth. The highest CaCO3 deposition was observed in the range of Na(+) concentrations between 200-400 mM. Alkaline pH also induced the clamping of P. subcapitatum filaments, which appeared to have a strong affinity to envelop particles of chemically deposited CaCO3 followed by enlargement of those particles size. EDS analysis revealed the presence of Mg-rich carbonate (or magnesium calcite) in the solution containing 10-100 mM Na(+); calcite in the solution containing 200 mM Na(+); and aragonite in the solution containing with 400 mM Na(+). Typical present-day seawater contains xxmM Na(+). Early (Archean) seawater was

  13. Multi-offset ground-penetrating radar imaging of a lab-scale infiltration test

    Directory of Open Access Journals (Sweden)

    A. R. Mangel


    Full Text Available A lab scale infiltration experiment was conducted in a sand tank to evaluate the use of time-lapse multi-offset ground-penetrating radar (GPR data for monitoring dynamic hydrologic events in the vadose zone. Sets of 21 GPR traces at offsets between 0.44–0.9 m were recorded every 30 s during a 3 h infiltration experiment to produce a data cube that can be viewed as multi-offset gathers at unique times or common offset images, tracking changes in arrivals through time. Specifically, we investigated whether this data can be used to estimate changes in average soil water content during wetting and drying and to track the migration of the wetting front during an infiltration event. For the first problem we found that normal-moveout (NMO analysis of the GPR reflection from the bottom of the sand layer provided water content estimates ranging between 0.10–0.30 volumetric water content, which underestimated the value determined by depth averaging a vertical array of six moisture probes by 0.03–0.05 volumetric water content. Relative errors in the estimated depth to the bottom of the 0.6 m thick sand layer were typically on the order of 2%, though increased as high as 25% as the wetting front approached the bottom of the tank. NMO analysis of the wetting front reflection during the infiltration event generally underestimated the depth of the front with discrepancies between GPR and moisture probe estimates approaching 0.15 m. The analysis also resulted in underestimates of water content in the wetted zone on the order of 0.06 volumetric water content and a wetting front velocity equal to about half the rate inferred from the probe measurements. In a parallel modeling effort we found that HYDRUS-1D also underestimates the observed average tank water content determined from the probes by approximately 0.01–0.03 volumetric water content, despite the fact that the model was calibrated to the probe data. This error suggests that the assumed conceptual

  14. Model-based strategy for cell culture seed train layout verified at lab scale. (United States)

    Kern, Simon; Platas-Barradas, Oscar; Pörtner, Ralf; Frahm, Björn


    Cell culture seed trains-the generation of a sufficient viable cell number for the inoculation of the production scale bioreactor, starting from incubator scale-are time- and cost-intensive. Accordingly, a seed train offers potential for optimization regarding its layout and the corresponding proceedings. A tool has been developed to determine the optimal points in time for cell passaging from one scale into the next and it has been applied to two different cell lines at lab scale, AGE1.HN AAT and CHO-K1. For evaluation, experimental seed train realization has been evaluated in comparison to its layout. In case of the AGE1.HN AAT cell line, the results have also been compared to the formerly manually designed seed train. The tool provides the same seed train layout based on the data of only two batches.

  15. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production. (United States)

    Sun, Jie; Alper, Hal S


    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  16. Vortex-Concept for Radioactivity Release Prevention at NPP: Development of Computational Model of Lab-Scale Experimental Setup

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Sana; Sung, Yim Man; Park, Jin Soo; Sung Hyung Jin [KAERI, Daejeon (Korea, Republic of)


    The experimental validation of the vortex-like air curtain concept and use of an appropriate CFD modelling approach for analyzing the problem becomes crucial. A lab-scale experimental setup is designed to validate the proposed concept and CFD modeling approach as a part of validation process. In this study, a computational model of this lab-scale experiment setup is developed using open source CFD code OpenFOAM. The computational results will be compared with experimental data for validation purposes in future, when experimental data is available. 1) A computation model of a lab-scale experimental setup, designed to validate the concept of artificial vortex-like airflow generation for application to radioactivity dispersion prevention in the event of severe accident, was developed. 2) The mesh sensitivity study was performed and a mesh of about 2 million cells was found to be sufficient for this setup.

  17. Leaching behaviour of different scrap materials at recovery and recycling companies: full-, pilot- and lab-scale investigation. (United States)

    Blondeel, E; Chys, M; Depuydt, V; Folens, K; Du Laing, G; Verliefde, A; Van Hulle, S W H


    Scrap material recovery and recycling companies are confronted with waste water that has a highly fluctuating flow rate and composition. Common pollutants, such as COD, nutrients and suspended solids, potentially toxic metals, polyaromatic hydrocarbons and poly chlorinated biphenyls can exceed the discharge limits. An analysis of the leaching behaviour of different scrap materials and scrap yard sweepings was performed at full-scale, pilot-scale and lab-scale in order to find possible preventive solutions for this waste water problem. The results of these leaching tests (with concentrations that frequently exceeded the Flemish discharge limits) showed the importance of regular sweeping campaigns at the company, leak proof or covered storage of specific scrap materials and oil/water separation on particular leachates. The particulate versus dissolved fraction was also studied for the pollutants. For example, up to 98% of the polyaromatic hydrocarbons, poly chlorinated biphenyls and some metals were in the particulate form. This confirms the (potential) applicability of sedimentation and filtration techniques for the treatment of the majority of the leachates, and as such the rainwater run-off as a whole. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Use of naturalized coagulants in removing laundry waste surfactant using various unit processes in lab-scale. (United States)

    Mohan, S Mariraj


    This lab-scale experiment is aimed at demonstrating a treatment system for purification and reuse of laundry rinsing water generated from households. The main objective of the study is to compare the efficiencies of various natural coagulants in removing laundry waste surfactants and other major pollutants from the laundry rinsing water. The treatment system consists of Coagulation-Flocculation, Sand filtration and Granular Activated Carbon (GAC) adsorption. Four experiments were conducted in batch process by varying the coagulants (Nirmali seed and Pectin extracted from pith of Orange peel). Coagulants have been selected due to their local availability at affordable cost and technical feasibility. From the study it is concluded that laundry rinsing water polluted with high turbidity and anionic surfactant treated with Nirmali seeds as coagulant at a retention time of 24 h gives the best results. The treatment system where Orange peel pectin is used as coagulant at a retention time of 24 h is found to be the most efficient one based on the weighted factor. Hence the treatment of laundry rinsing water by aforesaid combination results in better water quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. High heat load test of molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, T. (Faculty of Engineering, Osaka Univ., Suita (Japan)); Fujine, M.; Noguchi, H. (Daido Steel Co. Ltd., Nagoya (Japan)); Yagi, Y.; Hirano, Y.; Shimizu, H. (Electrotechnical Lab., Umezono, Tsukuba (Japan)); Akiba, M.; Araki, M. (Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)); Kubota, Y.; Miyahara, A. (National Inst. for Fusion Science, Nagoya (Japan))


    Three different types of molybdenum, powder metallurgical polycrystalline (PM-Mo), and as-forged polycrystalline and single crystalline of highly purified electron-beam-melted Mo (AFEB-Mo and SCEB-Mo), have been subjected to high heat load test with neutral beam injection (NBI) stands at Japan Atomic Energy Research Institute (JAERI) and National Institute for Fusion Science (NIFS). These materials have also been tested as a movable limiter in a reversed field pinch machine (RFP:TPE-1RM15) in Electrotechnical Laboratory (ETL). The results are summarized as follows. The SCEB-Mo shows the least damage with slight local melting after a very high heat load of 260 MW/m[sup 2] for 250 ms with NBI, while for the PM-Mo the whole irradiated area melt with many craters due to impurity gas evaporation under less heat load (200 ms). All movable limiter heads of the RFP are severely damaged with partial melting. The appearance of the SCEB-Mo limiter after melting is not good and shows the crystalline cleavage. However, SEM observation of the microstructure opposes the surface appearance. In the SCEB-Mo, appreciable recrystallization is not observed and hence no crack is seen to go into the bulk except the crystalline cleavage. In the PM-Mo, on the other hand, the resolidification to columnar grains as well as the recrystallization is apparent, and the cracks not only go along the columnar grains but also separate the recrystallized region from the matrix. In the AFEB-Mo, a slight grain growth occurs and several cracks enter deep along the grain boundaries. Thus the SCEB-Mo is a very nice plasma-facing material if used under the critical heat load for melting. (orig.).

  20. High power evaluation of X-band high power loads

    CERN Document Server

    Matsumoto, Shuji; Syratchev, Igor; Riddone, Germana; Wuensch, Walter


    Several types of X-band high power loads developed for several tens of MW range were designed, fabricated and used for high power tests at X-band facility of KEK. Some of them have been used for many years and few units showed possible deterioration of RF performance. Recently revised-design loads were made by CERN and the high power evaluation was performed at KEK. In this paper, the main requirements are recalled, together with the design features. The high power test results are analysed and presented

  1. MDCK and Vero cells for influenza virus vaccine production: a one-to-one comparison up to lab-scale bioreactor cultivation. (United States)

    Genzel, Yvonne; Dietzsch, Christian; Rapp, Erdmann; Schwarzer, Jana; Reichl, Udo


    Over the last decade, adherent MDCK (Madin Darby canine kidney) and Vero cells have attracted considerable attention for production of cell culture-derived influenza vaccines. While numerous publications deal with the design and the optimization of corresponding upstream processes, one-to-one comparisons of these cell lines under comparable cultivation conditions have largely been neglected. Therefore, a direct comparison of influenza virus production with adherent MDCK and Vero cells in T-flasks, roller bottles, and lab-scale bioreactors was performed in this study. First, virus seeds had to be adapted to Vero cells by multiple passages. Glycan analysis of the hemagglutinin (HA) protein showed that for influenza A/PR/8/34 H1N1, three passages were sufficient to achieve a stable new N-glycan fingerprint, higher yields, and a faster increase to maximum HA titers. Compared to MDCK cells, virus production in serum-free medium with Vero cells was highly sensitive to trypsin concentration. Virus stability at 37 degrees C for different virus strains showed differences depending on medium, virus strain, and cell line. After careful adjustment of corresponding parameters, comparable productivity was obtained with both host cell lines in small-scale cultivation systems. However, using these cultivation conditions in lab-scale bioreactors (stirred tank, wave bioreactor) resulted in lower productivities for Vero cells.

  2. Determination of kinetic parameters of a lab-scale upflow anaerobic sludge blanket reator (uasb removing organic loading from swine manure effluents Determinação de parâmetros cinéticos utilizando reator anaeróbio de manta de lodo (uasb em escala laboratorial para remoção da carga orgânica de efluentes de suinocultura

    Directory of Open Access Journals (Sweden)

    Cláudio Milton Montenegro Campos


    Full Text Available The present work aimed at determining and evaluating the kinetic parameters from the UASB reactor treating swine manure effluent in a lab-scale experiment. The research was carried out in the Laboratory of Water Analysis at the Engineering Department (LAADEG at the campus of Federal University of Lavras - UFLA. The system was assembled with an acidification and equalization tank (AET, an UASB reactor and an aerated facultative pond (AFP. The hydraulic retention time (HRT adopted in the UASB reactor were: 55; 39; 34; 24; 17; and 16 hours. The operational average temperature in the UASB reactor was 25 ± 2ºC. The kinetic studies used the following parameters: Chemical Oxygen Demand (COD T, Total Volatile Solids (TVS, Temperature, Flowrate and Total Solids Profile (TVS P, in the reactor, and the number of analyses were: 72; 72; 250; 250; and 30, respectively. The frequency was twice a week for COD T, and TVS, and daily for temperature and flowrate. The kinetic parameters determined were: yield coefficient Y=0.3046 to 0.4231mg COD T mgTVS-1.d-1, decay coefficient Kd=0.0125 to 0.0173d-1, maximum growth rate coefficient ìmax=0.2835 to 0.03938d-1 and limiting substrate concentration coefficient Ks= 51.70 to 71.80mg COD T.L-1. The values found were within the range appointed in the specific literatures and were determined based on linear regression studies, giving in this way, a technical scientific support to the physical chemical operational data collected during the operational research period.Com a presente pesquisa, objetivou-se determinar os parâmetros cinéticos de um reator anaeróbio de manta de lodo (UASB-Upflow Anaerobic Sludge Blanket, em escala laboratorial, empregado para reduzir a carga orgânica poluidora de dejetos de suínos. Os trabalhos foram conduzidos no Laboratório de Análise de Água do Departamento de Engenharia LAADEG localizado no campus da UFLA, utilizando dejetos de suínos coletados da granja de suínos do Departamento

  3. Virus removal retention challenge tests performed at lab scale and pilot scale during operation of membrane units. (United States)

    Humbert, H; Machinal, C; Labaye, Ivan; Schrotter, J C


    The determination of the virus retention capabilities of UF units during operation is essential for the operators of drinking water treatment facilities in order to guarantee an efficient and stable removal of viruses through time. In previous studies, an effective method (MS2-phage challenge tests) was developed by the Water Research Center of Veolia Environnement for the measurement of the virus retention rates (Log Removal Rate, LRV) of commercially available hollow fiber membranes at lab scale. In the present work, the protocol for monitoring membrane performance was transferred from lab scale to pilot scale. Membrane performances were evaluated during pilot trial and compared to the results obtained at lab scale with fibers taken from the pilot plant modules. PFU culture method was compared to RT-PCR method for the calculation of LRV in both cases. Preliminary tests at lab scale showed that both methods can be used interchangeably. For tests conducted on virgin membrane, a good consistency was observed between lab and pilot scale results with the two analytical methods used. This work intends to show that a reliable determination of the membranes performances based on RT-PCR analytical method can be achieved during the operation of the UF units.

  4. External loading of High Voltage Pylons

    Directory of Open Access Journals (Sweden)

    Peter Polák


    Full Text Available This contribution is devoted to issues of long term safe service of high-voltage pylons, which are loaded during service by variable loading with simultaneous acting of external environment. There were proved the procedures ensuring that the limit state will not occur during the period of technical life and the service will be safe for a long time. A draft of diagnostic procedures was elaborated, applied in suitable inspection intervals, following from the analysis of failure risks. The maintenance and repair procedures, assuring the safety of service until next inspection are planned on the basis of application of analytic methods of dynamic fracture mechanics. This procedure of controlled ageing is designed for the new and serviced pylons as well. The controlled ageing at the same time prolongs the technical life of structure with a high measure of safety. Residual life can be determined in each phase of pylon life. Controlled ageing allows saving high economic values at spending considerable lower costs for inspection and maintenance.

  5. Effect of Porosity on Particle Erosion Wear Behavior of Lab. Scale SICF/SIC Composites (United States)

    Suh, Min-Soo; Kohyama, Akira

    The use of silicon-based ceramics and composites as combustor liners and turbine vanes provides the potential of improving next-generation turbine engine performance, through lower emissions and higher cycle efficiency, relative to today's use of super alloy hot-section components. As a series of research for FOD resistant, a particle erosion wear test was carried out for continuous Pre-SiC fiber-reinforced SiC matrix composites with a new concept of lab. scale fabrication by LPS process. The result shows that aperture (some form of porosity) between fiber and interface has a deleterious effect on erosion resistance. Aperture along the fiber interfaces consequently causes a severe wear in the form of fiber detachment. Wear rate increase proportional as contents of open porosity increases. For nearly full dense composite materials of about 0.5 % porosity, are about 200 % more wear-resistant than about 5 % porous composites. Grain growth and consolidate condition of matrix which directly affects to FOD resistant are also discussed.

  6. Orodispersible films: Product transfer from lab-scale to continuous manufacturing. (United States)

    Thabet, Yasmin; Breitkreutz, Joerg


    Orodispersible films have been described as new beneficial dosage forms for special patient populations. Due to various production settings, different requirements on film formulations are required for non- continuous and continuous manufacturing. In this study, a continuous coating machine was qualified in regards of the process conditions for film compositions and their effects on the formed films. To investigate differences between both manufacturing processes, various film formulations of hydrochlorothiazide and hydroxypropylcellulose (HPC) or hydroxypropylmethycellulose (HPMC) as film formers were produced and the resulting films were characterized. The qualification of the continuously operating coating machine reveals no uniform heat distribution during drying. Coating solutions for continuous manufacturing should provide at least a dynamic viscosity of 1 Pa*s (wet film thickness of 500 μm, velocity of 15.9 cm/min). HPC films contain higher residuals of ethanol or acetone in bench-scale than in continuous production mode. Continuous production lead to lower drug content of the films. All continuously produced films disintegrate within less than 30 s. There are observed significant effects of the production process on the film characteristics. When transferring film manufacturing from lab-scale to continuous mode, film compositions, processing conditions and suitable characterization methods have to be carefully selected and adopted. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. CO2 Capture and Crystallization of Ammonia Bicarbonate in a Lab-Scale Scrubber

    Directory of Open Access Journals (Sweden)

    Pao Chi Chen


    Full Text Available A lab-scale bubble-column scrubber is used to capture CO2 gas and produce ammonia bicarbonate (ABC using aqueous ammonia as an absorbent under a constant pH and temperature. The CO2 concentration is adjusted by mixing N2 and CO2 in the range of 15–60 vol % at 55 °C. The process variables are the pH of the solution, temperature, gas-flow rate and the concentration of gas. The effects of the process variables on the removal efficiency (E, absorption rate (RA and overall mass-transfer coefficient (KGa were explored. A multiple-tube mass balance model was used to determine RA and KGa, in which RA and KGa were in the range of 2.14 × 10−4–1.09 × 10−3 mol/(s·L and 0.0136–0.5669 1/s, respectively. Results found that, RA showed an obvious increase with the increase in pH, inlet gas concentration and gas temperature, while KGa decreased with an increase in inlet gas concentration. Using linear regression, an empirical expression for KGa/E was obtained. On the other hand, ammonia bicarbonate crystals could be produced at a pH of 9.5 when the gas concentration was higher than 30% and γ (=Fg/FA, the gas-liquid molar flow rate ratio ≥ 1.5.

  8. Detection of Unexpected High Correlations between Balance Calibration Loads and Load Residuals (United States)

    Ulbrich, N.; Volden, T.


    An algorithm was developed for the assessment of strain-gage balance calibration data that makes it possible to systematically investigate potential sources of unexpected high correlations between calibration load residuals and applied calibration loads. The algorithm investigates correlations on a load series by load series basis. The linear correlation coefficient is used to quantify the correlations. It is computed for all possible pairs of calibration load residuals and applied calibration loads that can be constructed for the given balance calibration data set. An unexpected high correlation between a load residual and a load is detected if three conditions are met: (i) the absolute value of the correlation coefficient of a residual/load pair exceeds 0.95; (ii) the maximum of the absolute values of the residuals of a load series exceeds 0.25 % of the load capacity; (iii) the load component of the load series is intentionally applied. Data from a baseline calibration of a six-component force balance is used to illustrate the application of the detection algorithm to a real-world data set. This analysis also showed that the detection algorithm can identify load alignment errors as long as repeat load series are contained in the balance calibration data set that do not suffer from load alignment problems.

  9. Lab-scale pyrolysis of the Automotive Shredder Residue light fraction and characterization of tar and solid products. (United States)

    Anzano, Manuela; Collina, Elena; Piccinelli, Elsa; Lasagni, Marina


    The general aim of this study is the recovery of Automotive Shredder Residue (ASR). The ASR light fraction, or car fluff, that was collected at an Italian shredding plant was pyrolysed at various temperatures (500-800°C) in a lab-scale reactor. The condensable gases (tar) and solid residue yields increased with decreasing temperature, and these products were characterized to suggest a potential use to reclaim them. The higher heating value (HHV) of tar was 34-37MJ/kg, which is comparable with those of fossil fuels. Furthermore, the ash content was low (0.06-4.98%). Thus, tar can be used as an alternative fuel. With this prospect, the concentrations of polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in tar were determined. The toxicity of tar changes with temperature (1-5ng I-TEQ/g), and the PCDFs significantly contribute to tar toxicity, which was 75-100% with a maximum of 99.6% at 700°C. Regarding the characterization of the solid residue, the low HHV (2.4-3.3MJ/kg) does not make it suitable for energy recovery. Regarding material recovery, we considered its use as a filler in construction materials or a secondary source for metals. It shows a high metal concentration (280,000-395,000mg/kg), which is similar at different pyrolysis temperatures. At 500°C, polycyclic aromatic hydrocarbons (PAHs) were not detected in the solid residue, whereas the maximum total PAH concentration (19.41ng/g, 700°C) was lower than that in fly ash from MSWI. In conclusion, 500°C is a suitable pyrolysis temperature to obtain valuable tar and solid residue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Hydrologic Process Regularization for Improved Geoelectrical Monitoring of a Lab-Scale Saline Tracer Experiment (United States)

    Oware, E. K.; Moysey, S. M.


    Regularization stabilizes the geophysical imaging problem resulting from sparse and noisy measurements that render solutions unstable and non-unique. Conventional regularization constraints are, however, independent of the physics of the underlying process and often produce smoothed-out tomograms with mass underestimation. Cascaded time-lapse (CTL) is a widely used reconstruction technique for monitoring wherein a tomogram obtained from the background dataset is employed as starting model for the inversion of subsequent time-lapse datasets. In contrast, a proper orthogonal decomposition (POD)-constrained inversion framework enforces physics-based regularization based upon prior understanding of the expected evolution of state variables. The physics-based constraints are represented in the form of POD basis vectors. The basis vectors are constructed from numerically generated training images (TIs) that mimic the desired process. The target can be reconstructed from a small number of selected basis vectors, hence, there is a reduction in the number of inversion parameters compared to the full dimensional space. The inversion involves finding the optimal combination of the selected basis vectors conditioned on the geophysical measurements. We apply the algorithm to 2-D lab-scale saline transport experiments with electrical resistivity (ER) monitoring. We consider two transport scenarios with one and two mass injection points evolving into unimodal and bimodal plume morphologies, respectively. The unimodal plume is consistent with the assumptions underlying the generation of the TIs, whereas bimodality in plume morphology was not conceptualized. We compare difference tomograms retrieved from POD with those obtained from CTL. Qualitative comparisons of the difference tomograms with images of their corresponding dye plumes suggest that POD recovered more compact plumes in contrast to those of CTL. While mass recovery generally deteriorated with increasing number of time

  11. High power s-band vacuum load

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Michael [Muons, Inc., Batavia, IL (United States); Dudas, Alan [Muons, Inc., Batavia, IL (United States); Krasnykh, Anatoly [SLAC National Accelerator Lab., Menlo Park, CA (United States)


    Through a combination of experimentation and calculation the components of a novel room temperature dry load were successfully fabricated. These components included lossy ceramic cylinders of various lengths, thicknesses, and percent of silicon carbide (SiC). The cylinders were then assembled into stainless steel compression rings by differential heating of the parts and a special fixture. Post machining of this assembly provided a means for a final weld. The ring assemblies were then measured for S-parameters, individually and in pairs using a low-cost TE10 rectangular to TE01 circular waveguide adapter specially designed to be part of the final load assembly. Matched pairs of rings were measured for assembly into the final load, and a sliding short designed and fabricated to assist in determining the desired short location in the final assembly. The plan for the project was for Muons, Inc. to produce prototype loads for long-term testing at SLAC. The STTR funds for SLAC were to upgrade and operate their test station to ensure that the loads would satisfy their requirements. Phase III was to be the sale to SLAC of loads that Muons, Inc. would manufacture. However, an alternate solution that involved a rebuild of the old loads, reduced SLAC budget projections, and a relaxed time for the replacement of all loads meant that in-house labor will be used to do the upgrade without the need for the loads developed in this project. Consequently, the project was terminated before the long term testing was initiated. However, SLAC can use the upgraded test stand to compare the long-term performance of the ones produced in this project with their rebuilt loads when they are available.

  12. Removal of selected emerging PPCP compounds using greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland. (United States)

    Li, Jianan; Zhou, Qizhi; Campos, Luiza C


    Greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland (CW) was employed for removing four emerging pharmaceuticals and personal care products (PPCPs) (i.e. DEET, paracetamol, caffeine and triclosan). Orthogonal design was used to test the effect of light intensity, aeration, E.coli abundance and plant biomass on the target compounds. Synthetic wastewater contaminated with the target compounds at concentration of 25 μg/L was prepared, and both batch and continuous flow experiments were conducted. Up to 100% removals were achieved for paracetamol (PAR), caffeine (CAF) and tricolsan (TCS) while the highest removal for DEET was 32.2% in batch tests. Based on orthogonal Duncan analysis, high light intensity (240 μmolmm -2 s -1 ), full aeration, high plant biomass (1.00 kg/m 2 ) and high E.coli abundance (1.0 × 10 6  CFU/100 mL) favoured elimination of the PPCPs. Batch verification test achieved removals of 17.1%, 98.8%, 96.4% and 95.4% for DEET, PAR, CAF and TCS respectively. Continuous flow tests with CW only and CW followed by stabilization tank (CW-ST) were carried out. Final removals of the PPCP contaminants were 32.6%, 97.7%, 98.0% and 100% for DEET, PAR, CAF and TCS, respectively, by CW system alone, while 43.3%, 97.5%, 98.2% and 100%, respectively, were achieved by CW-ST system. By adding the ST tank, PPCP concentrations decreased significantly faster (p < 0.05) compared with continuous flow CW alone. In addition, after removing aerators during continuous flow CW experiments, the treatment systems presented good stability for the PPCP removals. CW-ST showed better chemical oxygen demand (COD) and total organic carbon (TOC) removals (89.3%, 91.2%, respectively) than CW only (79.4%, 85.2%, respectively). However, poor DEET removal (<50%) and high E.coli abundance (up to 1.7 log increase) in the final treated water indicated further treatment processes may be required. Statistical analysis showed significant correlations

  13. Fouling control in a lab-scale MBR system: Comparison of several commercially applied coagulants. (United States)

    Gkotsis, P K; Batsari, E L; Peleka, E N; Tolkou, A K; Zouboulis, A I


    The Membrane bioreactors (MBRs) integrate the biological degradation of pollutants with membrane filtration-separation during wastewater treatment. Membrane fouling, which is considered as the main process drawback, stems from the interaction between the membrane material and the (organic or inorganic) foulants, leading to membrane's efficiency deterioration. It is widely recognized that the mixed liquor colloidal and Soluble Microbial Products (SMP) are in principal responsible for this undesirable situation. As a result, the appropriate pretreatment of wastewater feed is often considered as necessary procedure and the coagulation/flocculation (C/F) process is regarded as a relevant viable option for wastewater treatment by MBRs in order to improve the effective removal of suspended solids (SS), of colloidal particles, of natural organic matter (NOM), as well as of other soluble materials. The objective of this study is the application of coagulation/flocculation for fouling control of MBR systems by using several commercially available chemical coagulant/flocculant agents. For this purpose, an appropriate lab-scale continuous-flow, fully automatic MBR system has been assembled and various (inorganic) coagulants (i.e. FeCl3∙6H2O, Fe2(SO4)3·5H2O, FeClSO4, PFS0.3, PAC A9-M, PAC-A16, Al2(SO4)3·18H2O, FO4350SSH, NaAlO2) have been examined. Filterability tests and SMP concentration measurements were also conducted in order to investigate the reversible, as well as the irreversible fouling, respectively. Based upon the obtained results and after selecting the most efficient coagulants (FeCl3·6H2O, Fe2(SO4)3·5H2O, FeClSO4, PAC-A9, PAC-A16), an attempt was subsequently performed to correlate the major fouling indices (i.e. TMP, TTF, SMP concentration) in order to improve the overall process operability by this fouling control method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Production of nitrate-rich compost from the solid fraction of dairy manure by a lab-scale composting system. (United States)

    Sun, Zhao-Yong; Zhang, Jing; Zhong, Xiao-Zhong; Tan, Li; Tang, Yue-Qin; Kida, Kenji


    In the present study, we developed an efficient composting process for the solid fraction of dairy manure (SFDM) using lab-scale systems. We first evaluated the factors affecting the SFDM composting process using different thermophilic phase durations (TPD, 6 or 3days) and aeration rates (AR, 0.4 or 0.2 lmin(-1)kg(-1)-total solid (TS)). Results indicated that a similar volatile total solid (VTS) degradation efficiency (approximately 60%) was achieved with a TPD of 6 or 3days and an AR of 0.4 l min(-1) kg(-1)-TS (hereafter called higher AR), and a TPD of 3days resulted in less N loss caused by ammonia stripping. N loss was least when AR was decreased to 0.2 l min(-1) kg(-1)-TS (hereafter called lower AR) during the SFDM composting process. However, moisture content (MC) in the composting pile increased at the lower AR because of water production by VTS degradation and less water volatilization. Reduced oxygen availability caused by excess water led to lower VTS degradation efficiency and inhibition of nitrification. Adding sawdust to adjust the C/N ratio and decrease the MC improved nitrification during the composing processes; however, the addition of increasing amounts of sawdust decreased NO3(-) concentration in matured compost. When an improved composting reactor with a condensate removal and collection system was used for the SFDM composting process, the MC of the composting pile was significantly reduced, and nitrification was detected 10-14days earlier. This was attributed to the activity of ammonia-oxidizing bacteria (AOB). Highly matured compost could be generated within 40-50days. The VTS degradation efficiency reached 62.0% and the final N content, NO3(-) concentration, and germination index (GI) at the end of the composting process were 3.3%, 15.5×10(3)mg kg(-1)-TS, and 112.1%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Insights into solar photo-Fenton reaction parameters in the oxidation of a sanitary landfill leachate at lab-scale. (United States)

    Silva, Tânia F C V; Ferreira, Rui; Soares, Petrick A; Manenti, Diego R; Fonseca, Amélia; Saraiva, Isabel; Boaventura, Rui A R; Vilar, Vítor J P


    This work evaluates the effect of the main photo-Fenton (PF) reaction variables on the treatment of a sanitary landfill leachate collected at the outlet of a leachate treatment plant, which includes aerated lagooning followed by aerated activated sludge and a final coagulation-flocculation step. The PF experiments were performed in a lab-scale compound parabolic collector (CPC) photoreactor using artificial solar radiation. The photocatalytic reaction rate was determined while varying the total dissolved iron concentration (20-100 mg Fe(2+)/L), solution pH (2.0-3.6), operating temperature (10-50 °C), type of acid used for acidification (H2SO4, HCl and H2SO4 + HCl) and UV irradiance (22-68 W/m(2)). This work also tries to elucidate the role of ferric hydroxides, ferric sulphate and ferric chloride species, by taking advantage of ferric speciation diagrams, in the efficiency of the PF reaction when applied to leachate oxidation. The molar fraction of the most photoactive ferric species, FeOH(2+), was linearly correlated with the PF pseudo-first order kinetic constants obtained at different solution pH and temperature values. Ferric ion speciation diagrams also showed that the presence of high amounts of chloride ions negatively affected the PF reaction, due to the decrease of ferric ions solubility and scavenging of hydroxyl radicals for chlorine radical formation. The increment of the PF reaction rates with temperature was mainly associated with the increase of the molar fraction of FeOH(2+). The optimal parameters for the photo-Fenton reaction were: pH = 2.8 (acidification agent: H2SO4); T = 30 °C; [Fe(2+)] = 60 mg/L and UV irradiance = 44 WUV/m(2), achieving 72% mineralization after 25 kJUV/L of accumulated UV energy and 149 mM of H2O2 consumed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Modeling and simulation of lab-scale anaerobic co-digestion of MEA waste

    Directory of Open Access Journals (Sweden)

    Shuai Wang


    Full Text Available Anaerobic digestion model No.1 (ADM1 was applied and expanded in this study to model and simulate anaerobic digestion (AD of an industrial carbon capture reclaimer MEA (monoethanolamine waste (MEAw together with easily degradable organics. The general structure of ADM1 was not changed except for introducing state variables of MEA and complex organics (CO in the waste and biochemical reactions of MEA uptake and CO hydrolysis in the model ADM1_MEAw. Experimental batch test results were used for calibrating kinetics variables. The obtained kinetics were employed in the ADM1_MEAw to simulate semi-continuously fed experimental test for 486 days at room temperature (22 +/- 2oC. The validation results show that the ADM1_MEAw was able to predict the process performance with reasonable accuracy, including process pH, biogas generation and inorganic nitrogen concentrations, for a wide range of feed scenarios. Free ammonia inhibition, was observed to be the main inhibitory effects on acetoclastic methanogenesis, leading to volatile fatty acids (VFA accumulation at high loads. Inhibition assumed to be caused by potentially toxic constituents of MEAw appears to be much less important than ammonia, suggesting that such constituents were broken down by AD.

  17. Behavior of TiO₂ nanoparticles during incineration of solid paint waste: a lab-scale test. (United States)

    Massari, Andrea; Beggio, Marta; Hreglich, Sandro; Marin, Riccardo; Zuin, Stefano


    In order to assess the potential impacts posed by products containing engineered nanoparticles, it is essential to generate more data about the release of these particles from products' life cycle. Although first studies were performed to investigate the release of nanoparticles from use phase, very few data are available on the potential release from recycling or disposal of nano-enhanced products. In this work, we investigated the behavior of TiO2 nanoparticles from incineration of solid paint waste containing these particles. Solid paint debris with and without TiO2 nanoparticles were treated in a lab scale incineration plant at 950°C (combustion temperature) and in oxidizing atmosphere. The obtained ashes were also vitrified with additives and the release of Ti was finally evaluated by leaching test. From our incineration lab-scale experiment, we did not observe a release of TiO2 nanoparticles into the atmosphere, and Ti was attached to the surface of obtained solid residues (i.e. ashes). The characterization of ashes showed that TiO2 nanoparticles reacted during the incineration to give calcium titanate. Finally, a very low release of Ti was measured, less 1 mg/kg, during the leaching test of ashes vitrified with glass cullet and feldspathic inert. Our work suggests that TiO2 nanoparticles added in paints may undergo to physicochemical transformation during the incineration, and that Ti found in ashes may be strongly immobilized in glass matrix. Since this conclusion is based on lab-scale experiment, further research is required to identify which nanoparticles will be emitted to the environment from a real-word-incineration system of household hazardous waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. CO2 Energy Reactor - Integrated Mineral Carbonation: Perspectives on Lab-Scale Investigation and Products Valorization

    Directory of Open Access Journals (Sweden)

    Rafael M Santos


    Full Text Available To overcome the challenges of mineral CO2 sequestration, Innovation Concepts B.V. is developing a unique proprietary Gravity Pressure Vessel (GPV reactor technology, and has focussed on generating reaction products of high economic value. The GPV provides intense process conditions through hydrostatic pressurization and heat exchange integration that harvests exothermic reaction energy, thereby reducing energy demand of conventional reactor designs, in addition to offering other benefits. In this paper, a perspective on the status of this technology and outlook for the future is provided. To date, laboratory-scale tests of the envisioned process have been performed in a tubular rocking autoclave reactor. The mineral of choice has been olivine (~Mg1.6Fe2+0.4(SiO4 + ppm Ni/Cr, although asbestos, steel slags and oil shale residues are also under investigation. The effect of several process parameters on reaction extent and product properties have been tested: CO2 pressure, temperature, residence time, additives (buffers, lixiviants, chelators, oxidizers, solids loading, and mixing rate. The products (carbonates, amorphous silica and chromite have been physically separated (based on size, density and magnetic properties, characterized (for chemistry, mineralogy and morphology and tested in intended applications (as pozzolanic carbon-negative building material. Economically, it is found that product value is the main driver for mineral carbonation, rather than, or in addition to, the sequestered CO2. The approach of using a GPV and focusing on valuable reaction products could thus make CO2 mineralization a feasible and sustainable industrial process.

  19. In Situ Carbon Dioxide Sequestration via Mineral Carbonation: New Insights from Lab-scale Flow-through Experiments (Invited) (United States)

    Gouze, P.; Luquot, L.; Andreani, M.; Godard, M.; Peuble, S.


    Because carbonates are stable over geological time periods, in situ mineral carbonation is, in theory, a safe technique to trap CO2. It implies however the dissolution of Mg, Ca, and Fe-rich silicates. Therefore, it is mainly restricted to geological formations rich in divalent cations such as ultramafic rocks (peridotite, serpentinite), basalts and zeolite-rich sandstones. CO2 underground storage is an industrial technology that requires predictive modeling tools for assessing feasibility and risks. It means that controlling mechanisms and effective parameters (i.e. used at Darcy scale) as well as uncertainties must be identified. However, dissolution-precipitation processes involve complex coupled mechanisms, strongly controlled by the hydrodynamical and chemical variability of the system at all scales. Specifically, the upscaling from pore scale to Darcy scale is challenging, not only because of the hydrodynamical and mineralogical heterogeneities, but also because of the strong thermodynamic disequilibrium and the relatively high flow rate expected in the vicinity of the CO2 injection. Therefore, reproducing such processes at lab scale, where conditions are fully controlled, is the only way to fully investigate mass transfers, develop pertinent transport-reaction models and measure effective parameters. We present three set of lab experiments during which CO2-saturated brine is injected into (i) peridotites, (ii) olivine-rich basalts and (iii) zeolite-rich sandstones. These experiments show that mass transfers are heterogeneous at pore- and sample-scale: (i) in peridotites, Ca-magnesite and talc precipitate in low flow zones while Si-rich layer develop at olivine surface in higher flow zones, thus providing a mechanism maintaining constant permeability; (ii) in olivine/basaltic matrix, porosity increases upstream due to efficient dissolution of basaltic glass (+/- olivine); precipitation of ankerite is localized in the high porosity zone while serpentine

  20. Low reflectance high power RF load

    Energy Technology Data Exchange (ETDEWEB)

    Ives, R. Lawrence; Mizuhara, Yosuke M.


    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.


    Directory of Open Access Journals (Sweden)

    T. I. Aliev


    Full Text Available The article presents research results of random number generators (RNG influence on simulation accuracy of high-loaded queuing systems in the GPSS World simulation system. It is shown that for certain combinations of RNGs, called problem generators, the inaccuracy of the simulation results of highly loaded systems may reach tens of percent. The analysis of problem combinations revealed factors causing high level of inaccuracy in simulation results.

  2. High drug-loading nanomedicines: progress, current status, and prospects. (United States)

    Shen, Shihong; Wu, Youshen; Liu, Yongchun; Wu, Daocheng


    Drug molecules transformed into nanoparticles or endowed with nanostructures with or without the aid of carrier materials are referred to as "nanomedicines" and can overcome some inherent drawbacks of free drugs, such as poor water solubility, high drug dosage, and short drug half-life in vivo. However, most of the existing nanomedicines possess the drawback of low drug-loading (generally less than 10%) associated with more carrier materials. For intravenous administration, the extensive use of carrier materials might cause systemic toxicity and impose an extra burden of degradation, metabolism, and excretion of the materials for patients. Therefore, on the premise of guaranteeing therapeutic effect and function, reducing or avoiding the use of carrier materials is a promising alternative approach to solve these problems. Recently, high drug-loading nanomedicines, which have a drug-loading content higher than 10%, are attracting increasing interest. According to the fabrication strategies of nanomedicines, high drug-loading nanomedicines are divided into four main classes: nanomedicines with inert porous material as carrier, nanomedicines with drug as part of carrier, carrier-free nanomedicines, and nanomedicines following niche and complex strategies. To date, most of the existing high drug-loading nanomedicines belong to the first class, and few research studies have focused on other classes. In this review, we investigate the research status of high drug-loading nanomedicines and discuss the features of their fabrication strategies and optimum proposal in detail. We also point out deficiencies and developing direction of high drug-loading nanomedicines. We envision that high drug-loading nanomedicines will occupy an important position in the field of drug-delivery systems, and hope that novel perspectives will be proposed for the development of high drug-loading nanomedicines.

  3. Overview of High Power Vacuum Dry RF Load Designs

    Energy Technology Data Exchange (ETDEWEB)

    Krasnykh, Anatoly [SLAC National Accelerator Lab., Menlo Park, CA (United States)


    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  4. Energy efficiency indicators for high electric-load buildings

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic


    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  5. Effects of loading sequence for notched specimens under high-low two-step fatigue loading (United States)

    Crews, J. H., Jr.


    The effects of loading sequence on crack-initiation period were investigated for notched aluminum-alloy specimens under high-low two-step loading with special emphasis on local cyclic stresses and strains at the notch root. Local stress and strain were determined by a procedure based on an equation proposed by Neuber which relates elastoplastic stress and strain at a notch. Local stress and strain were also measured experimentally to verify the Neuber equation. The effects of initial high load on the crack-initiation periods were demonstrated with notched specimens and were simulated in unnotched specimens fatigue tested with local stress sequences. An analysis of the results indicated that sequence effects were not caused solely by local residual stresses, as is usually assumed; the existence of a damaging effect, resulting from the high local strain cycles, was demonstrated. The sequence effects observed with notched specimens were interpreted as the combined result of residual stresses and high local strain cycles.

  6. Biotic transformation of anticoccidials in soil using a lab-scale bio-reactor as a precursor-tool. (United States)

    Hansen, Martin; Björklund, Erland; Krogh, Kristine A; Brandt, Asbjørn; Halling-Sørensen, Bent


    Two anticoccidial agents, salinomycin and robenidine, heavily used in the worldwide veterinary meat production, were investigated for their potential biotic degradation by cultured soil bacteria. The degradation-study was performed in lab-scale bio-reactors under aerobic and anaerobic conditions incubated for 200 h with a mixed culture of soil bacteria. Samples were analyzed by LC-MS/MS and potential transformation products were tentatively identified. Salinomycin was degraded under aerobic conditions and traces could be found after 200 h, however, seems more persistent under anaerobic conditions. Four transformation products of salinomycin were discovered. Robenidine was degraded under aerobic and anaerobic conditions, however, traces of robenidine were observed after 200 h. Five biotic transformation products of robenidine were discovered. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Biotic transformation of anticoccidials in soil using a lab-scale bio-reactor as a precursor-tool

    DEFF Research Database (Denmark)

    Hansen, Martin; Björklund, Erland; Krogh, Kristine A


    incubated for 200 h with a mixed culture of soil bacteria. Samples were analyzed by LC-MS/MS and potential transformation products were tentatively identified. Salinomycin was degraded under aerobic conditions and traces could be found after 200 h, however, seems more persistent under anaerobic conditions......Two anticoccidial agents, salinomycin and robenidine, heavily used in the worldwide veterinary meat production, were investigated for their potential biotic degradation by cultured soil bacteria. The degradation-study was performed in lab-scale bio-reactors under aerobic and anaerobic conditions....... Four transformation products of salinomycin were discovered. Robenidine was degraded under aerobic and anaerobic conditions, however, traces of robenidine were observed after 200 h. Five biotic transformation products of robenidine were discovered....

  8. Development and Lab-Scale Testing of a Gas Generator Hybrid Fuel in Support of the Hydrogen Peroxide Hybrid Upper Stage Program (United States)

    Lund, Gary K.; Starrett, William David; Jensen, Kent C.; McNeal, Curtis (Technical Monitor)


    As part of a NASA funded contract to develop and demonstrate a gas generator cycle hybrid rocket motor for upper stage space motor applications, the development and demonstration of a low sensitivity, high performance fuel composition was undertaken. The ultimate goal of the development program was to demonstrate successful hybrid operation (start, stop, throttling) of the fuel with high concentration (90+%) hydrogen peroxide. The formulation development and lab-scale testing of a simple DOT Class 1.4c gas generator propellant is described. Both forward injected center perforated and aft injected end burner hybrid combustion behavior were evaluated with gaseous oxygen and catalytically decomposed 90% hydrogen peroxide. Cross flow and static environments were found to yield profoundly different combustion behaviors, which were further governed by binder type, oxidizer level and, significantly, oxidizer particle size. Primary extinguishment was accomplished via manipulation of PDL behavior and oxidizer turndown, which is enhanced with the hydrogen peroxide system. Laboratory scale combustor results compared very well with 11-inch and 24-inch sub-scale test results with 90% hydrogen peroxide.

  9. Synthesis of mesoporous bismuth-impregnated aluminum oxide for arsenic removal: Adsorption mechanism study and application to a lab-scale column. (United States)

    Zhu, Ningyuan; Qiao, Jun; Ye, Yanfang; Yan, Tingmei


    High mobility and toxicity of arsenic [As (III)] limit its removal from an aquatic environment and pose a threat to human health. In this work, batch adsorption experiments were conducted to investigate the adsorption capacity of bismuth-impregnated aluminum oxide (BiAl). Continuous application of As (III) removal was achieved via a lab-scale column reactor. Bismuth impregnation decreased the specific surface area of aluminum oxide and affected its pore size distribution. However, because of its abundant and well-proportioned mesoporous character, it also enhanced its adsorption capacity through the surface complexation of As (III). Batch adsorption experiments demonstrated a suitable Freundlich model and a fitted pseudo-second-kinetic model for As (III) adsorption. The main mechanism was chemisorption with both bismuth and aluminum atoms; however, physisorption also contributed to arsenic adsorption at the initial stage of the reaction. The Adams-Bohart model better described the breakthrough curves than the Thomas model. BiAl exhibited efficient As (III) adsorption over a wide pH range and could be applied to As (III) removal from wastewater. A high As (III) removal efficiency (91.6%) was obtained at an initial As (III) concentration of 5 mg L -1 at a flow rate of 1 mL min -1 . This study indicates the potential for the practical application of BiAl in As (III) removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Power balance in highly loaded fluorescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    Lister, G G [Osram Sylvania, 71 Cherry Hill Drive, Beverly, MA 01915 (United States); Curry, J J [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8422 (United States); Lawler, J E [Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, WI 53706 (United States)


    Discrepancies reported in the literature between numerical predictions and experimental measurements in low-pressure Hg discharges at high current densities are considered. Elements of a one-dimensional fluid model and recent spectroscopic and Langmuir probe measurements are combined in a semi-empirical way to individually examine components of the positive column power balance and the discharge conductivity. At a Hg vapour pressure of 0.81 Pa (6.1 mTorr) and a current density of 300 mA cm{sup -2}, previous discrepancies in the power balance and discharge conductivity are simultaneously resolved by assuming a higher electron density than that obtained from the Langmuir probe measurements. This conclusion is supported by independent measurements of ion density reported in a companion paper. The importance of radial cataphoresis under these conditions, particularly with regard to radiation transport, is highlighted. This work is of particular interest for the design of fluorescent lamps operating at high current densities.

  11. Effect of step-feeding on the performance of lab-scale columns simulating vertical flow-horizontal flow constructed wetlands. (United States)

    Torrijos, Verónica; Ruiz, Isabel; Soto, Manuel


    The effect of step-feeding (untreated wastewater by-pass) on the performance of lab-scale columns simulating a hybrid vertical flow (VF)-horizontal flow (HF) constructed wetland (CW) system was studied. Step-feeding strategies have been adopted in several kinds of CW, but this is the first report about the use of step-feeding in VF + HF hybrid systems treating domestic wastewater. Applied loading rates were 7-11 g BOD 5 /m 2  day and 2.1-3.4 g TN/m 2  day (overall system). Removal efficiency reached 98% TSS and COD and 99% BOD 5 on average, whilst a 50% by-pass improved TN removal from 31 to 50%. Maximum surface nitrification rate (5.5 g N/m 2  day) was obtained in VF unit, whilst maximum denitrification rate (1.8 g N/m 2  day) was observed in HF unit. Referred to the overall system, maximum surface nitrification and denitrification rates were 2.2 and 1.6 g N/m 2  day, respectively. However, potential nitrifying and denitrifying activities (batch assays) were 15.0 and 58.9 g N/m 2  day, respectively. Even at 50% by-pass, operational conditions in HF unit (dissolved oxygen, redox, COD/TN ratio) were not suitable enough for denitrification. However, methane emissions were not observed and nitrous oxide emissions were relatively low.

  12. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. (United States)

    Lee, Chang Soo; Lee, Sang-Ah; Ko, So-Ra; Oh, Hee-Mock; Ahn, Chi-Yong


    Effects of photoperiod were investigated in lab-scale photobioreactors containing algal-bacterial consortia to reduce organic nutrients from municipal wastewater. Under three photoperiod conditions (12 h:12 h, 36 h:12 h, and 60 h:12 h dark–light cycles), nutrient removals and biomass productions were measured along with monitoring microbial population dynamics. After a batch operation for 12 days, 59–80% carbon, 35–88% nitrogen, and 43–89% phosphorus were removed from influents, respectively. In this study, carbon removal was related positively to the length of dark cycles, while nitrogen and phosphorus removals inversely. On the contrast, the highest microbial biomass in terms of chlorophyll a, dry cell weight, and algal/bacterial rRNA gene markers was produced under the 12 h:12 h dark–light cycle among the three photoperiods. The results showed 1) simultaneous growths between algae and bacteria in the microbial consortia and 2) efficient nitrogen and phosphorus removals along with high microbial biomass production under prolonged light conditions. Statistical analyses indicated that carbon removal was significantly related to the ratio of bacteria to algae in the microbial consortia along with prolonged dark conditions (p wastewater treatment.

  13. Lab-scale co-digestion of kitchen waste and brown water for a preliminary performance evaluation of a decentralized waste and wastewater management. (United States)

    Lavagnolo, Maria Cristina; Girotto, Francesca; Hirata, Osamu; Cossu, Raffaello


    An overall interaction is manifested between wastewater and solid waste management schemes. At the Laboratory of Environmental Engineering (LISA) of the University of Padova, Italy, the scientific and technical implications of putting into practice a decentralized waste and wastewater treatment based on the separation of grey water, brown water (BW - faecal matter) and yellow water (YW - urine) are currently undergoing investigation in the Aquanova Project. An additional aim of this concept is the source segregation of kitchen waste (KW) for subsequent anaerobic co-digestion with BW. To determine an optimal mixing ratio and temperature for use in the treatment of KW, BW, and eventually YW, by means of anaerobic digestion, a series of lab-scale batch tests were performed. Organic mixtures of KW and BW performed much better (max. 520mlCH 4 /gVS) in terms of methane yields than the individual substrates alone (max. 220mlCH 4 /gVS). A small concentration of urine proved to have a positive effect on anaerobic digestion performance, possibly due to the presence of micronutrients in YW. When considering high YW concentrations in the anaerobically digested mixtures, no ammonia inhibition was observed until a 30% and 10% YW content was added under mesophilic and thermophilic conditions, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Long-term dynamic and pseudo-state modeling of complete partial nitrification process at high nitrogen loading rates in a sequential batch reactor (SBR). (United States)

    Soliman, Moomen; Eldyasti, Ahmed


    Recently, partial nitrification has been adopted widely either for the nitrite shunt process or intermediate nitrite generation step for the Anammox process. However, partial nitrification has been hindered by the complexity of maintaining stable nitrite accumulation at high nitrogen loading rates (NLR) which affect the feasibility of the process for high nitrogen content wastewater. Thus, the operational data of a lab scale SBR performing complete partial nitrification as a first step of nitrite shunt process at NLRs of 0.3-1.2kg/(m3d) have been used to calibrate and validate a process model developed using BioWin® in order to describe the long-term dynamic behavior of the SBR. Moreover, an identifiability analysis step has been introduced to the calibration protocol to eliminate the needs of the respirometric analysis for SBR models. The calibrated model was able to predict accurately the daily effluent ammonia, nitrate, nitrite, alkalinity concentrations and pH during all different operational conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Activities of everyday life with high spinal loads.

    Directory of Open Access Journals (Sweden)

    Antonius Rohlmann

    Full Text Available Activities with high spinal loads should be avoided by patients with back problems. Awareness about these activities and knowledge of the associated loads are important for the proper design and pre-clinical testing of spinal implants. The loads on an instrumented vertebral body replacement have been telemetrically measured for approximately 1000 combinations of activities and parameters in 5 patients over a period up to 65 months postoperatively. A database containing, among others, extreme values for load components in more than 13,500 datasets was searched for 10 activities that cause the highest resultant force, bending moment, torsional moment, or shear force in an anatomical direction. The following activities caused high resultant forces: lifting a weight from the ground, forward elevation of straight arms with a weight in hands, moving a weight laterally in front of the body with hanging arms, changing the body position, staircase walking, tying shoes, and upper body flexion. All activities have in common that the center of mass of the upper body was moved anteriorly. Forces up to 1650 N were measured for these activities of daily life. However, there was a large intra- and inter-individual variation in the implant loads for the various activities depending on how exercises were performed. Measured shear forces were usually higher in the posterior direction than in the anterior direction. Activities with high resultant forces usually caused high values of other load components.

  16. Lab-scale feasibility tests for sediment treatment using different physico-chemical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Andreottola, Gianni; Ferrarese, Elisa [Dipt. di Ingegneria Civile e Ambientale, Univ. di Trento (Italy); Bonomo, Luca; Saponaro, Sabrina [Dipt. di Ingegneria Idraulica, Ambientale, Rilevamento, Infrastrutture Viarie, Sezione Ambientale, Politecnico di Milano (Italy); De Gioannis, Giorgia; Muntoni, Aldo [Dipt. di Geoingegneria e Tecnologie Ambientali, Univ. di Cagliari (Italy); Polettini, Alessandra; Pomi, Raffaella [Dipt. di Idraulica, Trasporti e Strade, Univ. degli Studi di Roma ' La Sapienza' (Italy)


    The sediment used in this study was similar in composition and contaminant loading to many sediments around the world. It was dredged from the northern canal of the Porto Marghera industrial area (Venice, Italy) and it was homogenized and characterized for the physical properties and chemical composition. The treatments investigated produced a variety of effects in terms of removal of heavy metals and PAHs. For total PAHs, the best results were obtained using H{sub 2}O{sub 2} only as the oxidizing agent (45% removal), and chemically+thermally activated persulfate (up to 72% removal). The kinetics of these chemical oxidation processes was rapid and almost complete in a few hours. Electrooxidation produced up to 44% of total PAHs degradation, whereas no appreciable PAH removal was attained by the electrokinetic treatment. Metal extraction by means of electrokinetics was the highest when both the anodic and the cathodic chambers were conditioned with the complexing agent ethylenediamine tetraacetic acid (EDTA). The following removal yields were obtained: 81% for As, 69% for Cr, 40% for Cu, 33% for Pb, and 22% for Zn. (orig.)

  17. Lightweight, high-opacity Bible paper by fiber loading (United States)

    Klaus Doelle; Oliver Heise; John H. Klungness; Said M. AbuBakr


    This paper has been prepared in order to discuss Fiber Loading™ for lightweight, high-opacity bible paper. Incorporating fillers within pulp fibers has been subject to research since 1960 (Green et al. 1962, Scallan et al. 1985, Allen et al. 1992). Fiber Loading™ is a method for manufacturing precipitated calcium carbonate (PCC) directly within the pulp processing...

  18. Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor. (United States)

    Zamalloa, Carlos; De Vrieze, Jo; Boon, Nico; Verstraete, Willy


    The biomass of industrially grown Phaeodactylum tricornutum was subjected in a novel way to bio-methanation at 33°C, i.e., in an anaerobic membrane bioreactor (AnMBR) at a hydraulic retention time of 2.5 days, at solid retention times of 20 to 10 days and at loading rates in the range of 2.6-5.9 g biomass-COD L(-1) day(-1) with membrane fluxes ranging from 1 to 0.8 L m(-2) h(-1). The total COD recovered as biogas was in the order of 52%. The input suspension was converted to a clear effluent rich in total ammonium nitrogen (546 mg TAN L(-1)) and phosphate (141 mg PO(4)-P L(-1)) usable as liquid fertilizer. The microbial community richness, dynamics, and organization in the reactor were interpreted using the microbial resource management approach. The AnMBR communities were found to be moderate in species richness and low in dynamics and community organization relative to UASB and conventional CSTR sludges. Quantitative polymerase chain reaction analysis revealed that Methanosaeta sp. was the dominant acetoclastic methanogen species followed by Methanosarcina sp. This work demonstrated that the use of AnMBR for the digestion of algal biomass is possible. The fact that some 50% of the organic matter is not liquefied means that the algal particulates in the digestate constitute a considerable fraction which should be valorized properly, for instance as slow release organic fertilizer. Overall, 1 kg of algae dry matter (DM) could be valorized in the form of biogas ( euro 2.07), N and P in the effluent (euro 0.02) and N and P in the digestate (euro 0.04), thus totaling about euro 2.13 per kilogram algae DM.

  19. Lab scale testing of novel natural analog in situ stabilization agents

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, P. [Lockheed Martin Idaho Technology Co., Idaho Falls, ID (United States)


    This report summarizes the laboratory-scale test results on several novel in situ treatment and stabilization agents for buried hazardous and radioactive waste. Paraffin, hematite and phosphate materials were examined when combined with soil and other wastes representative of what might be present at buried waste DOE sites. Hematite was made from the reaction of agricultural iron and lime slurries to form gypsum and iron oxide/hydroxide. Common household paraffin was melted, both with and without a zeolitic additive, waste added and then cooled. Magnesium phosphate was made from the reaction of magnesium oxide and phosphoric acid or potassium biphosphate to form, magnesium phosphate. All were tested with soil and some with additional waste sumulants such as ash, machine oil and nitrate salts. The following laboratory-generated data indicate that all waste encapsulation materials tested are appropriate materials, for field in situ testing. Compressive strengths of treated Idaho National Engineering and Environment Laboratory (INEEL) soil and the waste encapsulation material were sufficient to prevent collapse of the void space in waste, i.e., greater than the NRC 60 psi minimum. The mineralogy and microstructure of hematite was amorphous but should progress to an interlocking crystalline solid. Phosphate was crystalline with characteristics of higher temperature ceramics. Paraffin is non crystalline but encapsulates even very fine grained INEEL soils. Each agent appears to be chemically and physically inert to possible waste materials such as, nitrates and machine cutting oil. Two of the agents hematite and phosphate react favorably with ash increasing the metals retention at higher waste loadings than Portland cement. Hematite, phosphate and zeolite decrease leaching of most hazardous metals from waste when compared to untreated waste and soil. Solution pH, time for reaction initiation, and viscosity values are conducive to jet-grouting application.

  20. Highly Loaded Carbon Black Supported Platinum Catalysts for Fuel Batteries


    Kaluža, Luděk


    Carbon supported Pt represents conventional catalyst in polymer electrolyte membrane fuel battery (PEM fuel cell). The aim of this work was to elucidate on the methods of Pt deposition on carbon black to achieve high loadings of Pt of about 60 wt.% in highly dispersed form.

  1. Multifunctional High Drug Loading Nanocarriers for Cancer Drug Delivery (United States)

    Jin, Erlei


    Most anticancer drugs have poor water-solubility, rapid blood clearance, low tumor-selectivity and severe systemic toxicity to healthy tissues. Thus, polymeric nanocarriers have been widely explored for anticancer drugs to solve these problems. However, polymer nanocarriers developed to date still suffer drawbacks including low drug loading contents, premature drug release, slow cellular internalization, slow intracellular drug release and thereby low therapeutic efficiency in cancer thermotherapy. Accordingly, in this dissertation, functional nanocapsules and nanoparticles including high drug loading liposome-like nanocapsules, high drug loading phospholipid-mimic nanocapsules with fast intracellular drug release, high drug loading charge-reversal nanocapsules, TAT based long blood circulation nanoparticles and charge-reversal nuclear targeted nanoparticles are designed and synthesized. These functional carriers have advantages such as high drug loading contents without premature drug release, fast cellular internalization and intracellular drug release, nuclear targeted delivery and long blood circulation. As a result, all these drug carriers show much higher in vitro and in vivo anti-cancer activities.

  2. Characterization of Membrane Foulants in Full-scale and Lab-scale Membrane Bioreactors for Wastewater Treatment and Reuse

    KAUST Repository

    Matar, Gerald


    Membrane bioreactors (MBRs) offer promising solution for wastewater treatment and reuse to address the problem of water scarcity. Nevertheless, this technology is still facing challenges associated with membrane biofouling. This phenomenon has been mainly investigated in lab-scale MBRs with little or no insight on biofouling in full-scale MBR plants. Furthermore, the temporal dynamics of biofouling microbial communities and their extracellular polymeric substances (EPS) are less studied. Herein, a multidisciplinary approach was adopted to address the above knowledge gaps in lab- and full-scale MBRs. In the full-scale MBR study, 16S rRNA gene pyrosequencing with multivariate statistical analysis revealed that the early and mature biofilm communities from five full-scale MBRs differed significantly from the source community (i.e. activated sludge), and random immigration of species from the source community was unlikely to shape the community structure of biofilms. Also, a core biofouling community was shared between the five MBR plants sampled despite differences in their operating conditions. In the lab-scale MBR studies, temporal dynamics of microbial communities and their EPS products were monitored on different hydrophobic and hydrophilic membranes during 30 days. At the early stages of filtration (1 d), the same early colonizers belonging to the class Betaproteobacteria were identified on all the membranes. However, their relative abundance decreased on day 20 and 30, and sequence reads belonging to the phylum Firmicutes and Chlorobi became dominant on all the membranes on day 20 and 30. In addition, the intrinsic membrane characteristic did not select any specific EPS fractions at the initial stages of filtration and the same EPS foulants developed with time on the hydrophobic and hydrophilic membranes. Our results indicated that the membrane surface characteristics did not select for specific biofouling communities or EPS foulants, and the same early

  3. Analysis of microbial community composition in a lab-scale membrane distillation bioreactor (United States)

    Zhang, Q; Shuwen, G; Zhang, J; Fane, AG; Kjelleberg, S; Rice, SA; McDougald, D


    Aims Membrane distillation bioreactors (MDBR) have potential for industrial applications where wastewater is hot or waste heat is available, but the role of micro-organisms in MDBRs has never been determined, and thus was the purpose of this study. Methods and Results Microbial communities were characterized by bacterial and archaeal 16S and eukaryotic 18S rRNA gene tag-encoded pyrosequencing of DNA obtained from sludge. Taxonomy-independent analysis revealed that bacterial communities had a relatively low richness and diversity, and community composition strongly correlated with conductivity, total nitrogen and bound extracellular polymeric substances (EPS). Taxonomy-dependent analysis revealed that Rubrobacter and Caldalkalibacillus were abundant members of the bacterial community, but no archaea were detected. Eukaryotic communities had a relatively high richness and diversity, and both changes in community composition and abundance of the dominant genus, Candida, correlated with bound EPS. Conclusions Thermophilic MDBR communities were comprised of a low diversity bacterial community and a highly diverse eukaryotic community with no archea detected. Communities exhibited low resilience to changes in operational parameters. Specifically, retenatate nutrient composition and concentration was strongly correlated with the dominant species. Significance and Impact of the Study This study provides an understanding of microbial community diversity in an MDBR, which is fundamental to the optimization of reactor performance. PMID:25604265

  4. Analysis of microbial community composition in a lab-scale membrane distillation bioreactor. (United States)

    Zhang, Q; Shuwen, G; Zhang, J; Fane, A G; Kjelleberg, S; Rice, S A; McDougald, D


    Membrane distillation bioreactors (MDBR) have potential for industrial applications where wastewater is hot or waste heat is available, but the role of micro-organisms in MDBRs has never been determined, and thus was the purpose of this study. Microbial communities were characterized by bacterial and archaeal 16S and eukaryotic 18S rRNA gene tag-encoded pyrosequencing of DNA obtained from sludge. Taxonomy-independent analysis revealed that bacterial communities had a relatively low richness and diversity, and community composition strongly correlated with conductivity, total nitrogen and bound extracellular polymeric substances (EPS). Taxonomy-dependent analysis revealed that Rubrobacter and Caldalkalibacillus were abundant members of the bacterial community, but no archaea were detected. Eukaryotic communities had a relatively high richness and diversity, and both changes in community composition and abundance of the dominant genus, Candida, correlated with bound EPS. Thermophilic MDBR communities were comprised of a low diversity bacterial community and a highly diverse eukaryotic community with no archea detected. Communities exhibited low resilience to changes in operational parameters. Specifically, retenatate nutrient composition and concentration was strongly correlated with the dominant species. This study provides an understanding of microbial community diversity in an MDBR, which is fundamental to the optimization of reactor performance. © 2015 The Authors published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.

  5. Assessment of swirl spray interaction in lab scale combustor using time-resolved measurements (United States)

    Rajamanickam, Kuppuraj; Jain, Manish; Basu, Saptarshi


    Liquid fuel injection in highly turbulent swirling flows becomes common practice in gas turbine combustors to improve the flame stabilization. It is well known that the vortex bubble breakdown (VBB) phenomenon in strong swirling jets exhibits complicated flow structures in the spatial domain. In this study, the interaction of hollow cone liquid sheet with such coaxial swirling flow field has been studied experimentally using time-resolved measurements. In particular, much attention is focused towards the near field breakup mechanism (i.e. primary atomization) of liquid sheet. The detailed swirling gas flow field characterization is carried out using time-resolved PIV ( 3.5 kHz). Furthermore, the complicated breakup mechanisms and interaction of the liquid sheet are imaged with the help of high-speed shadow imaging system. Subsequently, proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) is implemented over the instantaneous data sets to retrieve the modal information associated with the interaction dynamics. This helps to delineate more quantitative nature of interaction process between the liquid sheet and swirling gas phase flow field.

  6. Highly loaded behavior of kinesins increases the robustness of transport under high resisting loads.

    Directory of Open Access Journals (Sweden)

    Woochul Nam


    Full Text Available Kinesins are nano-sized biological motors which walk by repeating a mechanochemical cycle. A single kinesin molecule is able to transport its cargo about 1 μm in the absence of external loads. However, kinesins perform much longer range transport in cells by working collectively. This long range of transport by a team of kinesins is surprising because the motion of the cargo in cells can be hindered by other particles. To reveal how the kinesins are able to accomplish their tasks of transport in harsh intracellular circumstances, stochastic studies on the kinesin motion are performed by considering the binding and unbinding of kinesins to microtubules and their dependence on the force acting on kinesin molecules. The unbinding probabilities corresponding to each mechanochemical state of kinesin are modeled. The statistical characterization of the instants and locations of binding are captured by computing the probability of unbound kinesin being at given locations. It is predicted that a group of kinesins has a more efficient transport than a single kinesin from the perspective of velocity and run length. Particularly, when large loads are applied, the leading kinesin remains bound to the microtubule for long time which increases the chances of the other kinesins to bind to the microtubule. To predict effects of this behavior of the leading kinesin under large loads on the collective transport, the motion of the cargo is studied when the cargo confronts obstacles. The result suggests that the behavior of kinesins under large loads prevents the early termination of the transport which can be caused by the interference with the static or moving obstacles.

  7. Highly loaded behavior of kinesins increases the robustness of transport under high resisting loads. (United States)

    Nam, Woochul; Epureanu, Bogdan I


    Kinesins are nano-sized biological motors which walk by repeating a mechanochemical cycle. A single kinesin molecule is able to transport its cargo about 1 μm in the absence of external loads. However, kinesins perform much longer range transport in cells by working collectively. This long range of transport by a team of kinesins is surprising because the motion of the cargo in cells can be hindered by other particles. To reveal how the kinesins are able to accomplish their tasks of transport in harsh intracellular circumstances, stochastic studies on the kinesin motion are performed by considering the binding and unbinding of kinesins to microtubules and their dependence on the force acting on kinesin molecules. The unbinding probabilities corresponding to each mechanochemical state of kinesin are modeled. The statistical characterization of the instants and locations of binding are captured by computing the probability of unbound kinesin being at given locations. It is predicted that a group of kinesins has a more efficient transport than a single kinesin from the perspective of velocity and run length. Particularly, when large loads are applied, the leading kinesin remains bound to the microtubule for long time which increases the chances of the other kinesins to bind to the microtubule. To predict effects of this behavior of the leading kinesin under large loads on the collective transport, the motion of the cargo is studied when the cargo confronts obstacles. The result suggests that the behavior of kinesins under large loads prevents the early termination of the transport which can be caused by the interference with the static or moving obstacles.

  8. Gasification and pyrolysis of different biomasses in lab scale system: A comparative study

    Directory of Open Access Journals (Sweden)

    Gądek W.


    Full Text Available Gasification and pyrolysis are very promising technologies for clean energy production especially from low rank fuels. Biomass and wastes with high chlorine, alkali and even heavy metals content are fuels preferential for thermal utilization. However, several problems during combustion in conventional steam boilers occurs e.g. slagging, fouling, chlorine corrosion, boiler efficiency deterioration. New efficient and cost effective technologies are needed, even in small-scale applications. The main objective of this work was to compare the thermochemical behaviour and process parameters effects of different biomass under air gasification and pyrolysis conditions. Three important fuels for European power industry were selected: woody biomass and two residual biomass, such as oat straw and dried citrus wastes. In order to evaluate the possibility to use different feedstocks or to combine and/or integrate them in thermochemical processes, a comparison among typical and untypical feedstocks is needed. Tests performed on small scale fixed bed reactor show the gas yield, its composition and LHV parameter. The results were performed in Royal Institute of Technology (KTH in Sweden during BRISK program (Biofuels Research Infrastructure for Sharing Knowledge.

  9. Thermophilic degradation of phenolic compounds in lab scale hybrid up flow anaerobic sludge blanket reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sreekanth, D.; Sivaramakrishna, D. [Center for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500085, Andhra Pradesh (India); Himabindu, V., E-mail: [Center for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500085, Andhra Pradesh (India); Anjaneyulu, Y. [TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)


    This Study describes the feasibility of anaerobic degradation of United States Environmental Protection Agency (USEPA) listed 4-chloro-2-nitrophenol (4C-2-NP), 2-chloro-4-nitrophenol (2C-4-NP), 2-chloro-5-methylphenol (2C-5-MP) from a simulated wastewater using four identical 7L bench scale hybrid up flow anaerobic sludge blankets (HUASBs) at five different hydraulic retention times (HRTs) under thermophilic condition (55 {+-} 3 deg. C). The substrate to co-substrate ratios were maintained between 1:33.3 and 1:166.6. Continuous monitoring of parameters like pH, volatile fatty acids (VFAs) accumulation, oxidation reduction potential, chemical oxygen demand (COD), alkalinity, gas productions, methane percentages were carried out along with compound reduction to asses the efficiency of biodegradation. The compound reduction was estimated by using spectrophotometric methods and further validated with high-performance liquid chromatography (HPLC). Optimum HRT values were observed at 24 h. Optimum ratio of substrate (phenolic compounds) to co-substrate (glucose) was 1:100. Scanning electron micrographs show that the granules were composed of thermophilic Methanobrevibacter and thermophilic Methanothrix like bacteria.

  10. Evaporation suppression from water reservoirs using floating covers: Lab scale observations and model predictions (United States)

    Or, D.; Lehmann, P.; Aminzadeh, M.; Sommer, M.; Wey, H.; Wunderli, H.; Breitenstein, D.


    The competition over dwindling fresh water resources is expected to intensify with projected increase in human population in arid regions, expansion of irrigated land and changes in climate and drought patterns. The volume of water stored in reservoirs would also increase to mitigate seasonal shortages due to rainfall variability and to meet irrigation water needs. By some estimates up to half of the stored water is lost to evaporation thereby exacerbating the water scarcity problem. Recently, there is an upsurge in the use of self-assembling floating covers to suppress evaporation, yet the design, and implementation remain largely empirical. Studies have shown that evaporation suppression is highly nonlinear, as also known from a century of research on gas exchange from plant leaves (that often evaporate as free water surfaces through stomata that are only 1% of leaf area). We report a systematic evaluation of different cover types and external drivers (radiation, wind, wind+radiation) on evaporation suppression and energy balance of a 1.4 m2 basin placed in a wind-tunnel. Surprisingly, evaporation suppression by black and white floating covers (balls and plates) were similar despite significantly different energy balance regimes over the cover surfaces. Moreover, the evaporation suppression efficiency was a simple function of the uncovered area (square root of the uncovered fraction) with linear relations with the covered area in some cases. The thermally decoupled floating covers offer an efficient solution to the evaporation suppression with limited influence of the surface energy balance (water temperature for black and white covers was similar and remained nearly constant). The results will be linked with a predictive evaporation-energy balance model and issues of spatial scales and long exposure times will be studied.

  11. Quantifying Aeolian Flow-Landform Interactions Using Novel Lab-Scale Experimental Approaches (United States)

    Christensen, K. T.; Bristow, N.; Hamed, A. M.; Kim, T.; Blois, G.; Best, J.


    Aeolian transport processes are driven by coupled interactions of flow with complex and dynamic topography. The complexity of this coupling inhibits predictions of sediment transport, landscape morphodynamics and concomitant biophysical and geochemical processes. Many of these flows occur in conditions and/or at scales that limit or completely impede access via modern flow diagnostics due to geometry and/or coexistence of multiple phases. Given the broad range of scales of such flows, modeling at small scales is required to enable predictive simulations. It is at these scales where experiments can inform model development that accurately reflect the physics of such processes to yield reliable system-scale predictions. This lecture will highlight specific two laboratory studies: turbulent flow associated with interacting barchan dunes and the flow overlying a model crater representative of that observed on Mars. The evolution of and dynamics associated with barchan dunes involve a strong degree of coupling between sediment transport, morphological change, and flow, the last of which represents the weakest link in our understanding of barchan morphodynamics. Newly available morphological data from high-resolution images from orbiting NASA spacecraft, complemented by on-site observations, is supporting the paleoscientific reconstruction of Mars environmental conditions. Central to this goal is understanding the geomorphology of Mars craters, including morphological processes that control their evolution for those that host a central mound. The 3D nature of both landforms presents challenges for measuring the full flow field. We therefore utilize a novel refractive index matching (RIM) approach coupled with particle-image velocimetry (PIV) methods to fully interrogate the flow around fixed barchan dune models in tandem and a crater model formed from a DEM of Gale Crater. The barchan and crater models were fabricated from acrylic whose refractive index matches the

  12. Successful hydraulic strategies to start up OLAND sequencing batch reactors at lab scale (United States)

    Schaubroeck, Thomas; Bagchi, Samik; De Clippeleir, Haydée; Carballa, Marta; Verstraete, Willy; Vlaeminck, Siegfried E.


    Summary Oxygen‐limited autotrophic nitrification/denitrification (OLAND) is a one‐stage combination of partial nitritation and anammox, which can have a challenging process start‐up. In this study, start‐up strategies were tested for sequencing batch reactors (SBR), varying hydraulic parameters, i.e. volumetric exchange ratio (VER) and feeding regime, and salinity. Two sequential tests with two parallel SBR were performed, and stable removal rates > 0.4 g N l−1 day−1 with minimal nitrite and nitrate accumulation were considered a successful start‐up. SBR A and B were operated at 50% VER with 3 g NaCl l−1 in the influent, and the influent was fed over 8% and 82% of the cycle time respectively. SBR B started up in 24 days, but SBR A achieved no start‐up in 39 days. SBR C and D were fed over 65% of the cycle time at 25% VER, and salt was added only to the influent of SBR D (5 g NaCl l−1). Start‐up of both SBR C and D was successful in 9 and 32 days respectively. Reactor D developed a higher proportion of small aggregates (0.10–0.25 mm), with a high nitritation to anammox rate ratio, likely the cause of the observed nitrite accumulation. The latter was overcome by temporarily including an anoxic period at the end of the reaction phase. All systems achieved granulation and similar biomass‐specific nitrogen removal rates (141–220 mg N g−1 VSS day−1). FISH revealed a close juxtapositioning of aerobic and anoxic ammonium‐oxidizing bacteria (AerAOB and AnAOB), also in small aggregates. DGGE showed that AerAOB communities had a lower evenness than Planctomycetes communities. A higher richness of the latter seemed to be correlated with better reactor performance. Overall, the fast start‐up of SBR B, C and D suggests that stable hydraulic conditions are beneficial for OLAND while increased salinity at the tested levels is not needed for good reactor performance. PMID:22236147

  13. Effect of dissolved oxygen changes on activated sludge fungal bulking during lab-scale treatment of acidic industrial wastewater. (United States)

    Zheng, Shaokui; Sun, Jingyan; Han, Hui


    The cloning and sequencing of fungal 18S rRNA genes followed by the identification of filamentous fungal species by fluorescent in situ hybridization (FISH) and the enumeration of filamentous fungal cells by flow cytometry-FISH (FC-FISH) were used to investigate the effect of dissolved oxygen (DO) changes on activated sludge (AS) fungal bulking during a lab-scale treatment of acidic industrial wastewater. By increasing DO levels from 2 mg L⁻¹, bulking started to occur due to the outbreak of fungal filaments, whereas the chemical oxygen demand (COD) removals sharply increased from 70%. Clone library analyses revealed that all clonal fungal sequences were of yeast origin, and that only one and four yeast species were individually detected in AS at two DO levels. Subsequent FISH identification of filamentous yeast species within bulking sludge using self-designed oligonucleotide probes suggested that all probe-reactive cells of Trichosporon asahii had a filamentous morphology and were the dominating filamentous microorganism in the AS. The FC-FISH analyses of bacteria and two main yeast species showed that the DO shift resulted in a sharp increase of T. asahii, by a factor of 48-60, which caused filamentous yeast bulking. Subsequently, the restoration of DO levels to <0.5 mg L⁻¹ effectively restored the sludge settlement and yeast community, as well as unacceptable COD removals.

  14. Evolution of seismic signals and slip patterns along subduction zones: insights from a friction lab scale experiment

    CERN Document Server

    Voisin, Christophe; Larose, Eric; Renard, François


    Continuous GPS and broadband seismic monitoring have revealed a variety of disparate slip patterns especially in shallow dipping subduction zones, among which regular earthquakes, slow slip events and silent quakes1,2. Slow slip events are sometimes accompanied by Non Volcanic Tremors (NVT), which origin remains unclear3, either related to fluid migration or to friction. The present understanding of the whole menagerie of slip patterns is based upon numerical simulations imposing ad hoc values of the rate and state parameters a and b4-6 derived from the temperature dependence of a and b of a wet granite gouge7. Here we investigate the influence of the cumulative slip on the frictional and acoustic patterns of a lab scale subduction zone. Shallow loud earthquakes (stick-slip events), medium depth slow, deeper silent quakes (smooth sliding oscillations) and deepest steady-state creep (continuous sliding) are reproduced by the ageing of contact interface with cumulative displacement8. The Acoustic Emission evolv...

  15. Kinetics of lipid production at lab scale fermenters by a new isolate of Yarrowia lipolytica SKY7. (United States)

    Mathiazhakan, Kuttiraja; Ayed, Dhouha; Tyagi, Rajeshwar Dayal


    The objective of this work was to study the kinetics of lipid production at lab scale fermenters by a new isolate of Yarrowia lipolytica SKY7. The model terms glycerol concentration inoculum and C/N ratio with inoculum were found to be significant for lipid production. Lipid production was found to be higher in glycerol 82.5g/L, C/N ratio 75 and inoculum volume 6.25%. Optimized culture conditions were tested at 15L bench scale reactor. The biomass concentration and lipid content obtained was 29.5g/L and 50% (w/w), respectively. The yield coefficients were calculated and found to be 0.332g/g (g biomass/g of glycerol) of biomass and 0.179g/g (g lipid/g glycerol consumed) for lipid. Observed rates of lipid production show lipid production from 30h of fermentation. Out of the total glycerol consumed, 41.1% glycerol was converted into biomass, lipid, and citric acid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effect of lake water on algal biomass and microbial community structure in municipal wastewater-based lab-scale photobioreactors. (United States)

    Krustok, I; Truu, J; Odlare, M; Truu, M; Ligi, T; Tiirik, K; Nehrenheim, E


    Photobioreactors are a novel environmental technology that can produce biofuels with the simultaneous removal of nutrients and pollutants from wastewaters. The aim of this study was to evaluate the effect of lake water inoculation on the production of algal biomass and phylogenetic and functional structure of the algal and bacterial communities in municipal wastewater-treating lab-scale photobioreactors. Inoculating the reactors with lake water had a significant benefit to the overall algal biomass growth and nutrient reduction in the reactors with wastewater and lake water (ratio 70/30 v/v). The metagenome-based survey showed that the most abundant algal phylum in these reactors was Chlorophyta with Scenedesmus being the most prominent genus. The most abundant bacterial phyla were Proteobacteria and Bacteroidetes with most dominant families being Sphingobacteriaceae, Cytophagaceae, Flavobacteriaceae, Comamonadaceae, Planctomycetaceae, Nocardiaceae and Nostocaceae. These photobioreactors were also effective in reducing the overall amount of pathogens in wastewater compared to reactors with wastewater/tap water mixture. Functional analysis of the photobioreactor metagenomes revealed an increase in relative abundance genes related to photosynthesis, synthesis of vitamins important for auxotrophic algae and decrease in virulence and nitrogen metabolism subsystems in lake water reactors. The results of the study indicate that adding lake water to the wastewater-based photobioreactor leads to an altered bacterial community phylogenetic and functional structure that could be linked to higher algal biomass production, as well as to enhanced nutrient and pathogen reduction in these reactors.

  17. Retention of Silica Nanoparticles in a Lab-Scale Membrane Bioreactor: Implications for Process Performance and Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Mark Larracas Sibag


    Full Text Available In conventional activated sludge (CAS involving aerobic biological processes, the retention of silica nanoparticles (SiO2 NPs has no detrimental effect on chemical oxygen demand (COD and ammonia nitrogen (NH3–N removal. However, for the membrane bioreactor (MBR system, which is also based on the activated sludge process in addition to the membrane separation process, it has implications not only on the process performance but also on membrane fouling. To investigate these two implications in lab-scale experiments, we continuously operated a control MBR and two experimental MBRs, in which the 28 nm SiO2 NPs and 144 nm SiO2 NPs were added separately to the influent at a final concentration of 100 mg/L. Although the retention of SiO2 NPs in the MBR, as confirmed by dynamic light scattering (DLS analysis, did not compromise the COD and NH3–N removal, it resulted in substantial increases in the transmembrane pressure (TMP suggesting the onset of membrane fouling. Analyses by batch-dead end filtration revealed the same fouling trend as observed during the continuous MBR experiments; membrane fouling is aggravated in the presence of SiO2 NPs. This was evident from permeate flux decline of between 30% and 74% at very low TMP (5 kPa and the further increases in the total resistance.


    Directory of Open Access Journals (Sweden)



    Full Text Available This paper investigates the characteristics of fouling deposits obtained from chilli sauce pasteurization. A lab-scale concentric tube-pasteurizer was used to pasteurize the chilli sauce at 0.712 kg/min and 90±5°C. It was operated for 3 hours. Temperature changes were recorded during pasteurization and the data was used to plot the heat transfer profile and the fouling resistance profile. The thickness of the fouling deposit was also measured and the image was taken for every hour. The fouling deposit was collected at every hour to test its stickiness, hardness and flow behaviour. Proximate analysis was also performed and it shows that the fouling deposit from the chilli sauce is categorized as carbohydrate-based fouling deposits. Activation energy of chilli sauce is 7049.4 J.mole-1 which shows a greater effect of temperature on the viscosity. The hardness, stickiness of fouling deposit and the heat resistance increases as the chilli sauce continuously flows inside the heat exchanger.

  19. Numerical modelling of a 100-Wh lab-scale thermochemical heat storage system for concentrating solar power plants (United States)

    de Miguel, Sandra Álvarez; Bellan, Selvan; de María, J. M. García; González-Aguilar, José; Romero, Manuel


    Dispatchable electricity generation on demand is a fundamental issue for commercial deployment of Concentrated Solar Power (CSP) plants. One of the promising routes to overcome the intermittence of the solar resource is the use of thermochemical energy storage systems based on redox reactions of metal oxides. Different metal oxides might potential candidates as storing material depending on the foreseen working temperature range. In the framework of the FP7 European project TCSPower, a particle-based reactor is used to analyze this type of materials. The lab-scale thermochemical reactor is initially tested using an inert material (alumina particles) instead of reactants in order to study its thermal performance. Thermocouples installed inside the system at various positions monitor the experiments. A three dimensional numerical model is developed to investigate the flow and heat transfer in the reactor. The governing equations - mass, momentum and energy conservation - are solved by the finite element method in the commercial software COMSOL Multiphysics. Simulations are performed for the experimental conditions. Experimentally measured and numerically predicted temperature profiles at various locations inside the system are compared and presented in this paper.

  20. The effect of high load training on psychomotor speed

    NARCIS (Netherlands)

    Nederhof, E.; Lemmink, K.; Zwerver, J.; Mulder, T.

    The purpose of the present study was to investigate whether overreached athletes show psychomotor slowness after a period of high load training. Fourteen well-trained cyclists (10 male, 4 female, mean age 25.3 [SD = 4.1] years, mean maximal oxygen consumption 65.5 [SD=8.1] ml/ kg-min) performed a

  1. High functional load inhibits phonological contrast loss: a corpus study. (United States)

    Wedel, Andrew; Kaplan, Abby; Jackson, Scott


    For nearly a century, linguists have suggested that diachronic merger is less likely between phonemes with a high functional load--that is, phonemes that distinguish many words in the language in question. However, limitations in data and computational power have made assessing this hypothesis difficult. Here we present the first larger-scale study of the functional load hypothesis, using data from sound changes in a diverse set of languages. Our results support the functional load hypothesis: phoneme pairs undergoing merger distinguish significantly fewer minimal pairs in the lexicon than unmerged phoneme pairs. Furthermore, we show that higher phoneme probability is positively correlated with merger, but that this effect is stronger for phonemes that distinguish no minimal pairs. Finally, within our dataset we find that minimal pair count and phoneme probability better predict merger than change in system entropy at the lexical or phoneme level. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Transparent bulk-size nanocomposites with high inorganic loading

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shi [CREOL, College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Gaume, Romain, E-mail: [CREOL, College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816 (United States); NanoScience Technology Center, University of Central Florida, Orlando, Florida 32816 (United States)


    With relatively high nanoparticle loading in polymer matrices, hybrid nanocomposites made by colloidal dispersion routes suffer from severe inhomogeneous agglomeration, a phenomenon that deteriorates light transmission even when the refractive indices of the inorganic and organic phases are closely matched. The dispersion of particles in a matrix is of paramount importance to obtain composites of high optical quality. Here, we describe an innovative, yet straightforward method to fabricate monolithic transparent hybrid nanocomposites with very high particle loading and high refractive index mismatch tolerance between the inorganic and organic constituents. We demonstrate 77% transmission at 800 nm in a 2 mm-thick acrylate polymer nanocomposite containing 61 vol. % CaF{sub 2} nanoparticles. Modeling shows that similar performance could easily be obtained with various inorganic phases relevant to a number of photonic applications.

  3. Transparent bulk-size nanocomposites with high inorganic loading (United States)

    Chen, Shi; Gaume, Romain


    With relatively high nanoparticle loading in polymer matrices, hybrid nanocomposites made by colloidal dispersion routes suffer from severe inhomogeneous agglomeration, a phenomenon that deteriorates light transmission even when the refractive indices of the inorganic and organic phases are closely matched. The dispersion of particles in a matrix is of paramount importance to obtain composites of high optical quality. Here, we describe an innovative, yet straightforward method to fabricate monolithic transparent hybrid nanocomposites with very high particle loading and high refractive index mismatch tolerance between the inorganic and organic constituents. We demonstrate 77% transmission at 800 nm in a 2 mm-thick acrylate polymer nanocomposite containing 61 vol. % CaF2 nanoparticles. Modeling shows that similar performance could easily be obtained with various inorganic phases relevant to a number of photonic applications.

  4. High Selectivity Wideband Bandpass Filter Using Stub Loaded Resonator (United States)

    Ma, Xing-Bing; Jiang, Ting


    This article presents a high selectivity wideband bandpass filter (BPF) adopting stub loaded resonator. Hereinto, aim passband is determined by BPF without stub embedded, which is only composed of four half-wavelength open-loop resonators. Based on typical tapped-line coupling, two same stubs are located at physical middle points of two resonators connected with I/O feed lines, respectively. Due to embedded point at middle of loaded resonator, the stub with two open-end branches has no influence on original half-wavelength resonant frequency, and aim passband keeps unchanged. Because of different even-mode resonant frequencies between loaded and unloaded resonators, no new passband is constructed. With the help of embedded stubs, original transmission zero (TZ) near low-edge of aim passband is shifted towards passband, and a new TZ is introduced near high-edge. High selectivity and good passband characteristics are obtained optimizing sizes of stubs, I/O tapped position and top open-end length of loaded resonator.

  5. Low modulus biomimetic microgel particles with high loading of hemoglobin. (United States)

    Chen, Kai; Merkel, Timothy J; Pandya, Ashish; Napier, Mary E; Luft, J Christopher; Daniel, Will; Sheiko, Sergei; DeSimone, Joseph M


    We synthesized extremely deformable red blood cell-like microgel particles and loaded them with bovine hemoglobin (Hb) to potentiate oxygen transport. With similar shape and size as red blood cells (RBCs), the particles were fabricated using the PRINT (particle replication in nonwetting templates) technique. Low cross-linking of the hydrogel resulted in very low mesh density for these particles, allowing passive diffusion of hemoglobin throughout the particles. Hb was secured in the particles through covalent conjugation of the lysine groups of Hb to carboxyl groups in the particles via EDC/NHS coupling. Confocal microscopy of particles bound to fluorescent dye-labeled Hb confirmed the uniform distribution of Hb throughout the particle interior, as opposed to the surface conjugation only. High loading ratios, up to 5 times the amount of Hb to polymer by weight, were obtained without a significant effect on particle stability and shape, though particle diameter decreased slightly with Hb conjugation. Analysis of the protein by circular dichroism (CD) spectroscopy showed that the secondary structure of Hb was unperturbed by conjugation to the particles. Methemoglobin in the particles could be maintained at a low level and the loaded Hb could still bind oxygen, as studied by UV-vis spectroscopy. Hb-loaded particles with moderate loading ratios demonstrated excellent deformability in microfluidic devices, easily deforming to pass through restricted pores half as wide as the diameter of the particles. The suspension of concentrated particles with a Hb concentration of 5.2 g/dL showed comparable viscosity to that of mouse blood, and the particles remained intact even after being sheared at a constant high rate (1000 1/s) for 10 min. Armed with the ability to control size, shape, deformability, and loading of Hb into RBC mimics, we will discuss the implications for artificial blood.

  6. High Hydrogen Loading of Thin Palladium Wires Through

    CERN Document Server

    Celani, F; Marini, P; Di Stefano, V; Nakamura, M; Pace, S; Vecchione, A; Mancini, A; Tripodi, P; Di Gioacchino, D


    A new protocol for the electrolytic loading of hydrogen (H) in thin palladium (Pd) wires has been developed. In order to increase the cathodic overvoltage, which is known to be the main parameter capable to enhance the electrolytic $9 H loading of Pd, the catalytic action of the Pd surface versus H-H recombination has been strongly reduced by precipitation of a thin layer of alkaline-earth carbonates on the cathode. A set of electrolytes has been employed, $9 containing small amounts of hydrochloric or sulphuric acid and strontium or calcium ions. The H loading has been continuously evaluated through ac measurements of the Pd wire resistance. Uncommonly low resistivity values, leading to $9 an estimate of exceptionally high H loading, have been observed. Evidence of the existence of a new phase in the very high H content region of the Pd-H system has been inferred on the basis of the determination of the temperature $9 coefficient of the electrical resistivity. For this purpose a thin layer of Hg was galvanic...

  7. Influence of growth manner on nitrifying bacterial communities and nitrification kinetics in three lab-scale bioreactors. (United States)

    Wang, Feng; Liu, Yi; Wang, Jinghan; Zhang, Yalei; Yang, Haizhen


    The effects of growth type, including attached growth, suspended growth, and combined growth, on the characteristics of communities of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were studied in three lab-scale Anaerobic/Anoxic(m)-Oxic(n) (AmOn) systems. These systems amplified activated sludge, biofilms, and a mixture of activated sludge and biofilm (AS-BF). Identical inocula were adopted to analyze the selective effects of mixed growth patterns on nitrifying bacteria. Fluctuations in the concentration of nitrifying bacteria over the 120 days of system operation were analyzed, as was the composition of nitrifying bacterial community in the stabilized stage. Analysis was conducted using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR. According to the DGGE patterns, the primary AOB lineages were Nitrosomonas europaea (six sequences), Nitrosomonas oligotropha (two sequences), and Nitrosospira (one sequence). The primary subclass of NOB community was Nitrospira, in which all identified sequences belonged to Nitrospira moscoviensis (14 sequences). Nitrobacter consisted of two lineages, namely Nitrobacter vulgaris (three sequences) and Nitrobacter alkalicus (two sequences). Under identical operating conditions, the composition of nitrifying bacterial communities in the AS-BF system demonstrated significant differences from those in the activated sludge system and those in the biofilm system. Major varieties included several new, dominant bacterial sequences in the AS-BF system, such as N. europaea and Nitrosospira and a higher concentration of AOB relative to the activated sludge system. However, no similar differences were discovered for the concentration of the NOB population. A kinetic study of nitrification demonstrated a higher maximum specific growth rate of mixed sludge and a lower half-saturation constant of mixed biofilm, indicating that the AS-BF system maintained relatively good

  8. Treatment of radioactive liquid effluents by reverse osmosis membranes: From lab-scale to pilot-scale. (United States)

    Combernoux, Nicolas; Schrive, Luc; Labed, Véronique; Wyart, Yvan; Carretier, Emilie; Moulin, Philippe


    The recent use of the reverse osmosis (RO) process at the damaged Fukushima-Daiichi nuclear power plant generated a growing interest in the application of this process for decontamination purposes. This study focused on the development of a robust RO process for decontamination of two kinds of liquid effluents: a contaminated groundwater after a nuclear disaster and a contaminated seawater during a nuclear accident. The SW30 HR membrane was selected among other in this study due to higher retentions (96% for Cs and 98% for Sr) in a true groundwater. Significant fouling and scaling phenomenon, attributed to calcium and strontium precipitation, were evidenced in this work: this underscored the importance of the lab scale experiment in the process. Validation of the separation performances on trace radionuclides concentration was performed with similar retention around 96% between surrogates Cs (inactive) and 137 Cs (radioactive). The scale up to a 2.6 m 2 spiral wound membrane led to equivalent retentions (around 96% for Cs and 99% for Sr) but lower flux values: this underlined that the hydrodynamic parameters (flowrate/cross-flow velocity) should be optimized. This methodology was also applied on the reconstituted seawater effluent: retentions were slightly lower than for the groundwater and the same hydrodynamic effects were observed on the pilot scale. Then, ageing of the membrane through irradiation experiments were performed. Results showed that the membrane active layer composition influenced the membrane resistance towards γ irradiation: the SW30 HR membrane performances (retention and permeability) were better than the Osmonics SE at 1 MGy. Finally, to supplement the scale up approach, the irradiation of a spiral wound membrane revealed a limited effect on the permeability and retention. This indicated that irradiation conditions need to be controlled for a further development of the process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Evaluation of Factors Influencing Lab-Scale Studies to Determine Heavy Metal Removal by Six Sorbents for Stormwater Treatment

    Directory of Open Access Journals (Sweden)

    Maximilian Huber


    Full Text Available For the development of decentralized treatment systems for road runoff, the determination of pollutant removal capacities is essential. The aim of this study was to evaluate the impact of boundary conditions on the simultaneous removal of copper, nickel, and zinc by six sorbents used for urban stormwater treatment (i.e., granular activated alumina, anthracite, granular reactivated carbon, granular ferric hydroxide, calcium carbonate, and granular activated lignite. For batch experiments, capacities were determined at initial concentrations within the range of 2.5–180 mg/L with a rotary shaker. Further influences were investigated: the use of a horizontal shaker for concentrations of up to 1080 mg/L, a variation of the initial pH value (5 and 7, and the presence of a buffer. Furthermore, the influences of the filtration process on the capacities were studied. Kinetic experiments were conducted for contact times between 5 min and 120 min. Lab-scale column experiments with inflow concentrations of 2.5 mg/L (copper and nickel and 5.0 mg/L (zinc at an initial pH of 5 and a contact time of 11 min were performed for comparison. Selected experiments were subsequently carried out with changes in initial concentrations and contact time. One result is that it is essential to conduct batch experiments with the metals of interest. The capacities determined by column experiments deviated from batch experiments. Batch experiments under well-defined conditions can be used to evaluate different production batches. Column experiments give a more faithful capacity by considering realistic boundary conditions and should be preferred to determine efficiencies and service lives.

  10. Simulation of plasma loading of high-pressure RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Kwangmin [Brookhaven; Samulyak, Roman [SUNY, Stony Brook; Yonehara, Katsuya [Fermilab; Freemire, Ben [Northern Illinois U.


    Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have been performed in the range of parameters typical for practical muon cooling channels.

  11. Fabrication of interconnected microporous biomaterials with high hydroxyapatite nanoparticle loading

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei; Yao Donggang [School of Polymer Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, GA (United States); Zhang Qingwei; Lelkes, Peter I [School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104 (United States); Zhou, Jack G, E-mail: yao@gatech.ed [Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104 (United States)


    Hydroxyapatite (HA) is known to promote osteogenicity and enhance the mechanical properties of biopolymers. However, incorporating a large amount of HA into a porous biopolymer still remains a challenge. In the present work, a new method was developed to produce interconnected microporous poly(glycolic-co-lactic acid) (PLGA) with high HA nanoparticle loading. First, a ternary blend comprising PLGA/PS (polystyrene)/HA (40/40/20 wt%) was prepared by melt blending under conditions for formation of a co-continuous phase structure. Next, a dynamic annealing stage under small-strain oscillation was applied to the blend to facilitate nanoparticle redistribution. Finally, the PS phase was sacrificially extracted, leaving a porous matrix. The results from different characterizations suggested that the applied small-strain oscillation substantially accelerated the migration of HA nanoparticles during annealing from the PS phase to the PLGA phase; nearly all HA particles were uniformly presented in the PLGA phase after a short period of annealing. After dissolution of the PS phase, a PLGA material with interconnected microporous structure was successfully produced, with a high HA loading above 30 wt%. The mechanisms beneath the experimental observations, particularly on the enhanced particle migration process, were discussed, and strategies for producing highly particle loaded biopolymers with interconnected microporous structures were proposed.

  12. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant

    Energy Technology Data Exchange (ETDEWEB)

    Helsen, Lieve [Katholieke Universiteit Leuven, Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion, Celestijnenlaan 300A, B-3001 Leuven (Heverlee) (Belgium)]. E-mail:; Hacala, Amelie [Company Thermya, 1 rue Nicolas Appert, 33140 Villenave d' Ornon (France)]. E-mail:


    This paper compares the results obtained by scanning electron microscopy coupled to X-ray analysis (SEM-EDXA) of the solid product after carbonisation of treated wood waste in a lab scale and in an industrial installation. These setups (lab scale and industrial) are characterized by different operating conditions of the carbonisation process. Moreover, the wood waste input to the processes differs significantly. From this study, it is clear that some similarities but also some differences exist between the lab scale study and the study with the industrial Chartherm plant. In both reactors, a metal (and mineral) agglomeration process takes place, even in the case of untreated wood. The agglomerates initially present in the wood input may serve as a seed for the metal agglomeration process during 'chartherisation'. The industrial setup leads to a broader range of agglomerates' size (0.1-50 {mu}m) and composition (all possible combinations of Cu, Cr, As and wood minerals). Some agglomerates contain the three metals but the major part is a combination of wood minerals and one or two of the three preservative metals, while all agglomerates analysed in the lab scale product contain the three metals. The separate influence of wood input characteristics and process conditions cannot be derived from these experiments, but the observations suggest that the higher the CCA retention in the wood input is, the easier is the metal agglomeration process during chartherisation of CCA treated wood waste. From the analyses performed in this study it seems that copper behaves differently in the sense that it agglomerates easily, but the resulting particles are small (<1 {mu}m)

  13. Startup analysis for a high temperature gas loaded heat pipe (United States)

    Sockol, P. M.


    A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.

  14. Quantifying Electromigration Processes in Sn-0.7Cu Solder with Lab-Scale X-Ray Computed Micro-Tomography (United States)

    Mertens, James Charles Edwin

    For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey indicates that x-ray computed micro-tomography (muXCT) is an emerging, novel means for characterizing the microstructures' role in governing electromigration failures. This work details the design and construction of a lab-scale muXCT system to characterize electromigration in the Sn-0.7Cu lead-free solder system by leveraging in situ imaging. In order to enhance the attenuation contrast observed in multi-phase material systems, a modeling approach has been developed to predict settings for the controllable imaging parameters which yield relatively high detection rates over the range of x-ray energies for which maximum attenuation contrast is expected in the polychromatic x-ray imaging system. In order to develop this predictive tool, a model has been constructed for the Bremsstrahlung spectrum of an x-ray tube, and calculations for the detector's efficiency over the relevant range of x-ray energies have been made, and the product of emitted and detected spectra has been used to calculate the effective x-ray imaging spectrum. An approach has also been established for filtering 'zinger' noise in x-ray radiographs, which has proven problematic at high x-ray energies used for solder imaging. The performance of this filter has been compared with a known existing method and the results indicate a significant increase in the accuracy of zinger filtered radiographs. The obtained results indicate the conception of a powerful means for the study of failure causing processes in solder systems used as interconnects in microelectronic packaging devices. These results include the

  15. Glycol-Substitute for High Power RF Water Loads

    CERN Document Server

    Ebert, Michael


    In water loads for high power rf applications, power is dissipated directly into the coolant. Loads for frequencies below approx. 1GHz are ordinarily using an ethylene glycol-water mixture as coolant. The rf systems at DESY utilize about 100 glycol water loads with powers ranging up to 600kW. Due to the increased ecological awareness, the use of glycol is now considered to be problematic. In EU it is forbidden to discharge glycol into the waste water system. In case of cooling system leakages one has to make sure that no glycol is lost. Since it is nearly impossible to avoid any glycol loss in large rf systems, a glycol-substitute was searched for and found. The found sodium-molybdate based substitute is actually a additive for corrosion protection in water systems. Sodium-molybdate is ecologically harmless; for instance, it is also used as fertilizer in agriculture. A homoeopathic dose of 0.4% mixed into deionised water gives better rf absorption characteristics than a 30% glycol mixture. The rf coolant feat...

  16. Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system: application on Pichia pastoris producing Rhizopus oryzae lipase (United States)


    . pastoris Mut+ phenotype. The use of fed-batch strategies using mixed substrate feeds resulted in increased biomass and lipolytic activity. The automated processing of fed-batch strategies by the RoboLector considerably facilitates the operation of fermentation processes, while reducing error-prone clone selection by increasing product titers. The scale-up from microbioreactor to lab scale stirred tank bioreactor showed an excellent correlation, validating the use of microbioreactor as a powerful tool for evaluating fed-batch operational strategies. PMID:24606982

  17. Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    This paper extends a model-to-test validation effort to examine the effect of different constant rotor torque and moment conditions and intentional generator misalignment on the gearbox motion and high-speed-shaft loads. Fully validating gearbox motion and high-speed-shaft loads across a range of test conditions is a critical precursor to examining the bearing loads, as the gearbox motion and high-speed-shaft loads are the drivers of these bearing loads.

  18. A Comparison of Increases in Volume Load Over 8 Weeks of Low-Versus High-Load Resistance Training. (United States)

    Schoenfeld, Brad J; Ogborn, Dan; Contreras, Bret; Cappaert, Tom; Silva Ribeiro, Alex; Alvar, Brent A; Vigotsky, Andrew D


    It has been hypothesized that the ability to increase volume load (VL) via a progressive increase in the magnitude of load for a given exercise within a given repetition range could enhance the adaptive response to resistance training. The purpose of this study was to compare changes in volume load (VL) over eight weeks of resistance training (RT) in high-versus low-load protocols. Eighteen well-trained men were matched according to baseline strength were randomly assigned to either a low-load RT (LOW, n = 9) where 25 - 35 repetitions were performed per exercise, or a high-load RT (HIGH, n = 9) where 8 - 12 repetitions were performed per exercise. Both groups performed three sets of seven exercises for all major muscles three times per week on non-consecutive days. After adjusting for the pre-test scores, there was a significant difference between the two intervention groups on post-intervention total VL with a very large effect size (F (1, 15) = 16.598, P = .001, ηp(2) = .525). There was a significant relationship between pre-intervention and post-intervention total VL (F (1, 15) = 32.048, P < .0001, ηp(2) = .681) in which the pre-test scores explained 68% of the variance in the post-test scores. This study indicates that low-load RT results in greater accumulations in VL compared to high-load RT over the course of 8 weeks of training.

  19. Workshop on high heat load x-ray optics

    Energy Technology Data Exchange (ETDEWEB)


    A workshop on High Heat Load X-Ray Optics'' was held at Argonne National Laboratory on August 3--5, 1989. The object of this workshop was to discuss recent advances in the art of cooling x-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams in future synchrotron experiments. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed finite element'' and finite difference'' calculations comparing experiment with theory and extending theory to optimize performance.

  20. Lab-Scale production of Bacillus atrophaeus' spores by solid state fermentation in fifferent types of bioreactors

    Directory of Open Access Journals (Sweden)

    Sandra Regina Barroso Ruiz Sella


    Full Text Available Studies were conducted to evaluate Bacillus atrophaeus spores' production by solid-state fermentation (SSF using sugarcane bagasse as support and soybean molasses as substrate at lab-scale in column bioreactors (forced aeration, plastic bags and Erlenmeyer flasks (aeration by diffusion. Different moisture contents (84%, 86% and 88%; 89%, 91% and 93% and aeration rates (30mL/min, 45mL/min, 60mL/min and 90mL/min were studied. The best condition for spore production (3.3x10(10 CFU.g-¹dry matter in column bioreactor was 80% of initial humidity and no aeration. In Erlenmeyer flasks and plastic bags the best sporulation production reached 1.7 up to 4.7x10(10 CFU.g-1dry matter with 88-93% of initial moisture. The aeration rate had no significant effect on the spore yield. The initial moisture had a significant effect depending on the bioreactor type. Sporulation kinetic's assay was carried out and it showed the possibility to reduce the time of spore formation in two days.Estudos foram conduzidos para avaliar a produção de esporos de Bacillus atrophaeus, em escala laboratorial, por fermentação em estado sólido (FES em biorreatores de coluna (aeração forçada, sacos plásticos e frascos tipo Erlenmeyer (aeração por difusão, usando bagaço de cana como suporte e melaço de soja como substrato. Diferentes teores de umidade (84%, 86% e 88%, 89%, 91% e 93% e taxas de aeração (30mL/min, 45mL/min, 60mL/min e 90mL/min foram estudados. A melhor condição para a produção de esporos no biorreator de coluna (3.3 x 10(10 CFU.g-1 matéria seca foi 80% de umidade inicial, sem aeração. Em frascos Erlenmeyer e sacos de plástico a melhor esporulação foi na faixa de 1.7 a 4.7 x 10(10 CFU.g-1 matéria seca, com 88-93% de umidade inicial. A taxa de aeração não teve efeito significativo sobre o rendimento da esporulação. A umidade inicial apresentou efeito significativo relacionado ao tipo do biorreator. O estudo da cinética da esporula

  1. A new UHV micro positioning system for high load

    Energy Technology Data Exchange (ETDEWEB)

    Colldelram, Carles, E-mail:; Nicolas, Josep, E-mail:; Nikitina, Liudmila, E-mail: [ALBA Synchrotron, Carretera BP 1413, de Cerdanyola del Vallès a Sant Cugat del Vallès, Km. 3,3, 08290 Cerdanyola del Vallès, Barcelona (Spain)


    In this work we report the design and performance of a novel compact in-vacuum actuator, designed to be compatible with all the motions required for the scissor-type ESRF mirror bender. These mirror benders include several linear actuators, which drive the mirror bending torques, as well as the main alignment motions such as pitch and translation along the normal to the mirror surface. The motions are provided by compact linear actuators, which consist of motor, reduction, spindle and nut, encapsulated on a closed air volume to provide vacuum compatibility. The actuator includes a hydroformed bellows to transmit the force to the actuator tip, and an electrical feedthrough for the motor cables. The design boundaries for these actuators are quite tight, as they must be integrated in a narrow volume, must be UHV compatible and must provide high resolution, for a relatively high load. As a result, they have limited mechanical performance, and in some cases poor reliability. To overcome these problems, we designed and implemented a different concept. In the proposed concept, the motor rotation is converted onto a linear motion by means of a cam instead of a spindle and a nut. This allows for much shorter and stiffer transmission system, with similar dimensions. The vacuum compatibility is intrinsic for this solution, since the whole mechanism of the actuator is UHV compatible. All motions are preloaded and guided by vacuum compatible (hybrid metal-ceramics) ball bearings. This allows the system reaching a repeatability and backlash well within the micron. The absence of friction allows for a high reliability and releases the maintenance needs of the system. The transmission is intrinsically irreversible, and the system can hold a load of 250 N within a few nanometers without any holding current on the motors. This allows the system to move reliably also in micro-stepping mode, providing a resolution well below the half-step nominal resolution of 100 nm. Performances

  2. Progressive high-load strength training compared with general low-load exercises in patients with rotator cuff tendinopathy

    DEFF Research Database (Denmark)

    Ingwersen, Kim G; Christensen, Robin; Sørensen, Lilli


    tendinopathy. Exercise is often considered the primary treatment option for rotator cuff tendinopathy, but there is no consensus on which exercise strategy is the most effective. As eccentric and high-load strength training have been shown to have a positive effect on patella and Achilles tendinopathy, the aim...... cuff tendinopathy will be recruited from three outpatient shoulder departments in Denmark, and randomised to either 12 weeks of progressive high-load strength training or to general low-load exercises. Patients will receive six individually guided exercise sessions with a physiotherapist and perform...

  3. Biological treatment of anaerobically digested palm oil mill effluent (POME) using a Lab-Scale Sequencing Batch Reactor (SBR). (United States)

    Chan, Yi Jing; Chong, Mei Fong; Law, Chung Lim


    The production of highly polluting palm oil mill effluent (POME) has resulted in serious environmental hazards. While anaerobic digestion is widely accepted as an effective method for the treatment of POME, anaerobic treatment of POME alone has difficulty meeting discharge limits due to the high organic strength of POME. Hence, subsequent post-treatment following aerobic treatment is vital to meet the discharge limits. The objective of the present study is to investigate the aerobic treatment of anaerobically digested POME by using a sequencing batch reactor (SBR). The SBR performance was assessed by measuring Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) removal as well as Sludge Volume Index (SVI). The operating pH and dissolved oxygen concentrations were found to be 8.25-9.14 and 1.5-6.4 mg/L, respectively, throughout the experiment. The experimental results demonstrate that MLVSS, OLR and sludge loading rate (SLR) play a significant role in the organic removal efficiency of SBR systems and therefore, further investigation on these parameters was conducted to attain optimum SBR performance. Maximum COD (95-96%), BOD (97-98%) and TSS (98-99%) removal efficiencies were achieved at optimum OLR, SLR and MLVSS concentration ranges of 1.8-4.2 kg COD/m(3)day, 2.5-4.6 kg TSS/m(3)day and 22,000-25,000 mg/L, respectively. The effluent quality remained stable and complied with the discharge limit. At the same time, the sludge showed good settling properties with average SVI of 65. It is envisaged that the SBR process could complement the anaerobic treatment to produce final treated effluent which meets the discharge limit. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Sedimentation Effects of Adding Flocculants to Leached Slurries at Lab Scale in the “Comandante Ernesto Che Guevara” plant in Cuba

    Directory of Open Access Journals (Sweden)

    Eluberto Espinosa-Espinosa


    Full Text Available The objective of this investigation was to evaluate the effects of adding PICIZ 7010, AN 910SH and Quimifloc N-30 flocculants to leached and magnetized slurries at lab scale. The evaluation was completed through the comparative method in accordance to the NRBI-579 Standard: Sedimentation Tests which use Talmage and Fitch method. The addition of Quimifloc N-30 flocculants to 6 g/t of reduced ore increased slurry density by 5,9 %, improved liquor clarification as result of a reduction of up to 75 % in suspended solids and slightly reduced the required unit area.

  5. Experimental study of lithium target under high power load

    Energy Technology Data Exchange (ETDEWEB)

    Khripunov, B.I. E-mail:; Petrov, V.B.; Shapkin, V.V.; Pleshakov, A.S.; Rupyshev, A.S.; Antonov, N.V.; Litnovsky, A.M.; Romanov, P.V.; Shpansky, Yu.S.; Evtikhin, V.A.; Lyublinsky, I.E.; Vertkov, A.V


    This paper presents experimental research on simulation of a free liquid lithium surface under high heat flux impact for divertor application. Capillary porous structure (CPS) was taken to form the free liquid metal surface imitating divertor target plate. Experiments were performed in the SPRUT-4 linear plasma device with electron beam as power source. Lithium-filled targets were investigated at 1-50 MW/m{sup 2} heat loads in steady state. Lithium evaporation, energy and mass balance, surface temperature, vapor ionization, lithium plasma parameters and radiation were studied. Detailed thermal analysis was made to study heat flows in the target and their correspondence with experimental observations. Durable operation of the setup was possible in the range 1-20 MW/m{sup 2} without damage of the structure. The relevance of the experimental performance to divertor condition is analyzed.

  6. Microwave-assisted synthesis of high-loading, highly dispersed Pt ...

    Indian Academy of Sciences (India)

    assisted synthesis of high-loading, highly dispersed Pt/carbon aerogel catalyst for direct methanol fuel cell. Zhijun Guo Hong Zhu Xinwei Zhang Fanghui Wang Yubao Guo Yongsheng Wei. Volume 34 Issue 3 June 2011 pp 577-581 ...

  7. Lab-scale periphyton-based system for fish culture Sistema laboratorial baseado em perifíton para piscicultura

    Directory of Open Access Journals (Sweden)

    Davi de Holanda Cavalcante


    Full Text Available The present research aimed to assess a lab-scale model to study periphyton-based systems for fish culture. Twenty-five liters plastic aquaria were stocked with three Nile tilapia, Oreochromis niloticus, juveniles (0.77±0.09g; 12 fish m-2 for 6 weeks in a 2x2 factorial design. Small plastic bottles were placed in some aquaria for periphyton development. Two feeding regimes were employed: "full-fed" (standard feeding rates were fully adopted and "half-fed" (50% of standard feeding rates. Growth performance and limnological variables were observed in each aquarium. There werefive replicates per treatment. Fish have fed actively on periphyton, especially in the half-fed aquaria. The placement of periphyton bottles had no significant effects on the water quality variables, except by the gross primary productivity which became lower. Half-fed aquaria presented lower concentrations of ammonia (0.28-0.29mg L-1, nitrite (0.33-0.37mg L-1 and phosphorus (0.42-0.43mg L-1 than full-fed aquaria (0.57-0.60mg L-1; 0.75-0.77mg L-1; 0.67-0.70mg L-1, respectively. The final body weight of fish in half-fed aquaria with periphyton bottles (6.22±0.64g was significantly higher than in aquaria without bottles (4.65±0.36g. Although the growth rate of fish was lower in the half-fed aquaria (4.27-4.72 vs. 5.29-5.61% BW day-1, survival was significantly higher when compared to the full-fed aquaria (93.3-100.0 vs. 80.0-83.4%. Only in the aquaria with periphyton the feed conversation ratio was improved by the feeding restriction regime.O presente trabalho teve como objetivo avaliar um modelo laboratorial para estudo de sistemas de cultivo de peixes baseados em perifíton. Aquários de 25L foram estocados com três juvenis de tilápia do Nilo, Oreochromis niloticus (0,77±0,09g; 12 peixes m-2 por seis semanas, em arranjo fatorial 2x2. Pequenas garrafas plásticas foram colocadas em determinados aquários para o desenvolvimento de perifíton. Dois regimes alimentares foram

  8. Megahertz high voltage pulse generator suitable for capacitive load (United States)

    Xu, Yu; Chen, Wei; Liang, Hao; Li, Yu-Huai; Liang, Fu-Tian; Shen, Qi; Liao, Sheng-Kai; Peng, Cheng-Zhi


    A high voltage pulse generator is presented to drive Pockels cell. The Pockels cell behaves like a capacitor which slows the rise/fall time of the pulse and restrains the repetition rate of the generator. To drive the Pockels cell applied in quantum communication system, it requires about 1 MHz repetition rate with the rise/fall time of the pulse less than 50 ns, adjustable amplitude up to 800 V and an adjustable duration. With the assistance of self-designed transformers, the circuits is simplified that a pair of high current radio frequency (RF) MOSFET drivers are employed to switch the power MOSFETs at a high speed, and the power MOSFETs shape the final output pulse with the requirements. From the tests, the generator can produce 800 V square pulses continously at 1 MHz rate with 46 ns in risetime and 31 ns in falltime when driving a 51 pF capacitive load. And the generator is now used to drive Pockels cell for encoding the polarization of photons.

  9. Megahertz high voltage pulse generator suitable for capacitive load

    Directory of Open Access Journals (Sweden)

    Yu Xu


    Full Text Available A high voltage pulse generator is presented to drive Pockels cell. The Pockels cell behaves like a capacitor which slows the rise/fall time of the pulse and restrains the repetition rate of the generator. To drive the Pockels cell applied in quantum communication system, it requires about 1 MHz repetition rate with the rise/fall time of the pulse less than 50 ns, adjustable amplitude up to 800 V and an adjustable duration. With the assistance of self-designed transformers, the circuits is simplified that a pair of high current radio frequency (RF MOSFET drivers are employed to switch the power MOSFETs at a high speed, and the power MOSFETs shape the final output pulse with the requirements. From the tests, the generator can produce 800 V square pulses continously at 1 MHz rate with 46 ns in risetime and 31 ns in falltime when driving a 51 pF capacitive load. And the generator is now used to drive Pockels cell for encoding the polarization of photons.

  10. A Comparison of Increases in Volume Load Over 8 Weeks of Low-Versus High-Load Resistance Training (United States)

    Schoenfeld, Brad J.; Ogborn, Dan; Contreras, Bret; Cappaert, Tom; Silva Ribeiro, Alex; Alvar, Brent A.; Vigotsky, Andrew D.


    Background It has been hypothesized that the ability to increase volume load (VL) via a progressive increase in the magnitude of load for a given exercise within a given repetition range could enhance the adaptive response to resistance training. Objectives The purpose of this study was to compare changes in volume load (VL) over eight weeks of resistance training (RT) in high-versus low-load protocols. Materials and Methods Eighteen well-trained men were matched according to baseline strength were randomly assigned to either a low-load RT (LOW, n = 9) where 25 - 35 repetitions were performed per exercise, or a high-load RT (HIGH, n = 9) where 8 - 12 repetitions were performed per exercise. Both groups performed three sets of seven exercises for all major muscles three times per week on non-consecutive days. Results After adjusting for the pre-test scores, there was a significant difference between the two intervention groups on post-intervention total VL with a very large effect size (F (1, 15) = 16.598, P = .001, ηp2 = .525). There was a significant relationship between pre-intervention and post-intervention total VL (F (1, 15) = 32.048, P < .0001, ηp2 = .681) in which the pre-test scores explained 68% of the variance in the post-test scores. Conclusions This study indicates that low-load RT results in greater accumulations in VL compared to high-load RT over the course of 8 weeks of training. PMID:27625750

  11. Role of the reactor configuration in the biological detoxification of a dump site-polychlorobiphenyl-contaminated soil in lab-scale slurry phase conditions. (United States)

    Fava, F; Di Gioia, D; Marchetti, L


    The biotreatability of a xenobiotic contaminated soil is frequently determined through a bioslurry treatment usually performed in lab-scale shaken baffled flasks. In this study, a 3-1 unconventional stirred tank reactor was developed and tested in the slurry-phase treatment of a soil heavily contaminated by polychlorobiphenyls (PCBs) derived from an Italian dump site, in the absence and in the presence of biphenyl and of the exogenous PCB aerobically dechlorinating co-culture ECO3. The data obtained were compared with those obtained on the same soil in experiments performed in parallel in 3-1 baffled shaken flask reactors. Considerably higher PCB removal and soil detoxification yields (determined through the Lepidium sativum germination test and the Collembola mortality test) were attained in the stirred tank reactors, which generally displayed a higher slurry-phase homogeneity and a higher availability of biphenyl- and chlorobenzoic acid-degrading bacteria compared to the corresponding shaken flask reactors. Moreover, enhanced soil PCB biodegradation and detoxification yields were observed when the developed reactor was supplemented with biphenyl and the exogenous ECO3 bacteria. In conclusion, the results of the soil biotreatability experiments commonly performed in bioslurry lab-scale reactors are significantly influenced by the reactor configuration; the use of the unconventional stirred tank reactor system developed in this work is recommended.

  12. Role of the reactor configuration in the biological detoxification of a dump site-polychlorobiphenyl-contaminated soil in lab-scale slurry phase conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fava, F.; Di Gioia, D.; Marchetti, L. [Bologna Univ. (Italy). Dipt. di Chimica Applicata e Scienza dei Materiali


    The biotreatability of a xenobiotic contaminated soil is frequently determined through a bioslurry treatment usually performed in lab-scale shaken baffled flasks. In this study, a 3-1 unconventional stirred tank reactor was developed and tested in the slurry-phase treatment of a soil heavily contaminated by polychlorobiphenyls (PCBs) derived from an Italian dump site, in the absence and in the presence of biphenyl and of the exogenous PCB aerobically dechlorinating co-culture ECO3. The data obtained were compared with those obtained on the same soil in experiments performed in parallel in 3-l baffled shaken flask reactors. Considerably higher PCB removal and soil detoxification yields (determined through the Lepidium sativum germination test and the Collembola mortality test) were attained in the stirred tank reactors, which generally displayed a higher slurry-phase homogeneity and a higher availability of biphenyl- and chlorobenzoic acid-degarding bacteria compared to the corresponding shaken flask reactors. Moreover, enhanced soil PCB biodegradation and detoxification yields were observed when the developed reactor was supplemented with biphenyl and the exogenous ECO3 bacteria. In conclusion, the results of the soil biotreatability experiments commonly performed in bioslurry lab-scale reactors are significantly influenced by the reactor configuration; the use of the unconventional stirred tank reactor system developed in this work is recommended. (orig.)

  13. Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab-scale and on a pilot-scale. (United States)

    Djelal, Hayet; Amrane, Abdeltif


    A fungal consortium including Aspergillus niger, Mucor hiemalis and Galactomyces geotrichum was tested for the treatment of dairy wastewater. The bio-augmentation method was tested at lab-scale (4 L), at pilot scale (110 L) and at an industrial scale in Wastewater Treatment Plants (WWTP). The positive impact of fungal addition was confirmed when fungi was beforehand accelerated by pre-culture on whey (5 g/L lactose) or on the dairy effluent. Indeed, chemical oxygen demand (COD) removal yields increased from 55% to 75% for model medium, diluted milk. While after inoculation of an industrial biological tank from a dairy factory with the fungal consortium accelerated by pre-cultivation in a 1000 L pilot plant, the outlet COD values decreased from values above the standard one (100 mg/L) to values in the range of 50-70 mg/L. In addition, there was a clear impact of fungal addition on the 'hard' or non-biodegradable COD owing to the significant reduction of the increase of the COD on BOD5 ratio between the inlet and the outlet of the biological tank of WWTP. It was in the range of 451%-1111% before adding fungal consortium, and in the range of 257%-153% after bio-augmentation with fungi. An inoculated bioreactor with fungal consortium was developed at lab-scale and demonstrated successfully at pilot scale in

  14. Investigation of accessibility and reactivity of cellulose pretreated by ionic liquid at high loading. (United States)

    Endo, Takatsugu; Aung, Ei Mon; Fujii, Shunsuke; Hosomi, Shota; Kimizu, Mitsugu; Ninomiya, Kazuaki; Takahashi, Kenji


    High loading of cellulose in ionic liquid (IL) pretreatment is potentially a key technique for cellulose conversion to glucose in biorefining. In this work, to expand the potential use of this high loading technique, the accessibility of microcrystalline cellulose pretreated with an IL across a wide cellulose loading range (5-50mol%) and its relationship with the hydrolytic reactivity were comprehensively investigated. The results show that the estimated cellulose accessibility based on the crystallinity and specific surface area was notably higher in 25mol% loading than that for a conventional loading of 5mol%. Consistently, acid-catalyzed glucose conversion was faster at this high loading, showing that a higher cellulose loading improves the pretreatment efficiency. In contrast, enzymatic hydrolysis was not enhanced by a high cellulose loading. A key difference between the activities in these two hydrolytic reactions is the catalyst size. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. High-Speed Resistance Training Modifies Load-Velocity and Load-Power Relationships in Parkinson's Disease. (United States)

    Ni, Meng; Signorile, Joseph F


    Muscle power is a major neuromuscular factor affecting motor function and independence in patients with Parkinson's disease (PD), and it is commonly targeted using high-speed exercise. This study examined the changes in velocities (Vpp) and percent loads (%1RMpp) at peak power and load-velocity (L-V) and load-power (L-P) relationships, resulting from resistance training because of exercise choice and loading in older patients with PD. Fourteen older adults with mild to moderate PD participated in a 12-week randomized controlled power training trial. Changes in L-V and L-P relationships for the biceps curl, chest press, leg press, hip abduction, and seated calf were assessed using pneumatic resistance machines at loads ranging from 30 through 90% of subjects' 1 repetition maximum for each exercise. Significant increases in Vpp were seen for biceps curl, leg press, hip abduction, and seated calf and decreases in %1RMpp were noted for biceps curl and hip abduction. Additionally, unique patterns of change were seen in these relationships across exercises, with biceps curl, chest press, and leg press showing the greatest shifts at the lower load end of the loading spectrum, and hip abduction and seated calf showing greatest responses at the higher end. The patterns of change in L-V and L-P relationships provide evidence for the unique responses of the specific muscle groups and joints to the exercises evaluated and offer a framework for more exacting exercise prescriptions in patients with PD.

  16. Lab-scale impact test to investigate the pipe-soil interaction and comparative study to evaluate structural responses

    Directory of Open Access Journals (Sweden)

    Dong-Man Ryu


    Full Text Available This study examined the dynamic response of a subsea pipeline under an impact load to determine the effect of the seabed soil. A laboratory-scale soil-based pipeline impact test was carried out to investigate the pipeline deformation/strain as well as the interaction with the soil-pipeline. In addition, an impact test was simulated using the finite element technique, and the calculated strain was compared with the experimental results. During the simulation, the pipeline was described based on an elasto-plastic analysis, and the soil was modeled using the Mohr-Coulomb fail-ure criterion. The results obtained were compared with ASME D31.8, and the differences between the analysis results and the rules were specifically investigated. Modified ASME formulae were proposed to calculate the precise structural behavior of a subsea pipeline under an impact load when considering sand- and clay-based seabed soils.

  17. Participation of Flexible Loads in Load Frequency Control to Support High Wind Penetration

    DEFF Research Database (Denmark)

    Uslu, Umur; Zhang, Boyang; Pillai, Jayakrishnan Radhakrishna


    operation of the grid. Therefore, new solutions for power balancing reserves have to be explored and utilized by the grid utilities. To meet these challenges, large sizable loads like alkaline electrolysers, heat pumps and electric vehicles which are gaining popularity can provide system support to the grid...


    Directory of Open Access Journals (Sweden)

    Pavel Schoř


    Full Text Available In this article, a method for calculation of air loads of an aircraft with an elastic wing is presented. The method can predict a redistribution of air loads when the elastic wing deforms. Unlike the traditional Euler or Navier-Stokes CFD to FEM coupling, the method uses 3D panel method as a source of aerodynamic data. This makes the calculation feasible on a typical recent workstation. Due to a short computational time and low hardware demands this method is suitable for both the preliminary design stage and the load evaluation stage. A case study is presented. The study compares a glider wing performing a pull maneuver at both rigid and and elastic state. The study indicates a significant redistribution of air load at the elastic case.

  19. Pushing high-heat-load optics to the limit

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P. B.


    A cryogenically cooled silicon monochromator and a water-cooled diamond monochromator have been tested under twice the standard power load conditions at the Advanced Photon Source. Both monochromators performed satisfactorily under these extreme power loads (several hundred watts of incident power and up to 300 W/mm{sup 2} of incident normal peak power density). The experimental data and the parameters derived to predict the performance limits of the cryogenic silicon monochromator are presented.

  20. Radial current high power dummy load for characterizing the high power laser triggered transformer-type accelerator. (United States)

    Yin, Yi; Zhong, Hui-Huang; Liu, Jin-Liang; Ren, He-Ming; Yang, Jian-Hua; Zhang, Xiao-Ping; Hong, Zhi-qiang


    A radial-current aqueous resistive solution load was applied to characterize a laser triggered transformer-type accelerator. The current direction in the dummy load is radial and is different from the traditional load in the axial. Therefore, this type of dummy load has smaller inductance and fast response characteristic. The load was designed to accommodate both the resistance requirement of accelerator and to allow optical access for the laser. Theoretical and numerical calculations of the load's inductance and capacitance are given. The equivalent circuit of the dummy load is calculated in theory and analyzed with a PSPICE code. The simulation results agree well with the theoretical analysis. At last, experiments of the dummy load applied to the high power spiral pulse forming line were performed; a quasisquare pulse voltage is obtained at the dummy load.

  1. Engineering analysis of lightweight high-opacity newsprint production by fiber loading (United States)

    John H. Klungness; Matthew L. Stroika; Marguerite S. Sykes; Said M. Abubakr; Werner. Witek; Oliver U. Heise


    We estimated the capital effectiveness of fiber loading in regard to producing lightweight high-opacity newsprint. Fiber loading enhances fiber bonding at increased precipitated calcium carbonate levels without significant loss in Canadian standard freeness or additional use of energy. We investigated the return on investment (ROI) for fiber loading precipitated...

  2. Structural response of full-scale concrete bridges subjected to high load magnitudes

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Schmidt, Jacob Wittrup; Jensen, Thomas Westergaard

    efficiently could be used for in-situ measurements. The load was applied semi-deformation controlled by a combination of dead load and hydraulic jacks. The novel high magnitude loading-rig worked well. It was also possible to achieve good readings from the monitoring equipment in combination with the applied...

  3. Lab-Scale Electrodeposition Behaviors of Pr(III) with Use of Quartz Cell in Molten LiCl-KCl Eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Young Taek; Yun, Jong-Il [KAIST, Daejeon (Korea, Republic of)


    As electrorefining is proceeded, all actinides and lanthanides in metallic form are electrochemically oxidized and dissolved into the salt, while UCl{sub 3} in the salt is reduced and forms U-metal at solid cathodes. Since this unit process includes diverse actinides and recovers most of uranium, information on stream of nuclear materials and electrochemical condition inside of electrorefiner must continuously be notified not only for its performance assessment and process prediction but also for its safeguards. Currently, there are several computational models for electrorefiner (REFIN, ERAD, and etc.). However, the absence of model which reflects the change in surface area of cathode due to electrodeposition of UCl{sub 3} critically disturbs the precision of simulation. The change in surface area leads the change in current density, diffusion layer, potential and current gradient, and thus changes the entire electrochemical conditions in electrorefiner. In this paper, as a beginning step of investigating electrodeposition behavior of lanthanides and actinides, lab-scale electrodeposition experiments and methodological evaluation on the use of quartz cell are performed. In the lab-scale electrodeposition, sizes of quartz cell and deposited material became crucial factors for precise analysis of experiments. In a typical stabilized electrodeposition, CA diagram showed large plateau with reasonably increased magnitude of current due to the increase in surface area of working electrode. The amount of charge transferred (-61.55 C) can be utilized for concentration balance. According to ICP-OES, the decreased amount of bulk was 0.301 wt. % which was close to the expected decrease from the information of charge flow (0.29 wt. %). However, deposited material in contact with quartz wall in molten LiCl-KCl eutectic led a spontaneous reaction between each other. As an indicator of this undesired reaction, the cell became black, and enormous amount of charge was consumed. In

  4. Extending fiber resources : fiber loading recycled fiber and mechanical pulps for lightweight, high opacity paper (United States)

    Marguerite Sykes; John Klungness; Freya Tan; Mathew Stroika; Said Abubakr


    Production of a lightweight, high opacity printing paper is a common goal of papermakers using virgin or recycled fibers. Fiber loading is an innovative, commercially viable process that can substantially upgrade and extend most types of wood fibers. Fiber loading, a process carried out at high consistency and high alkalinity, precipitates calcium carbonate (PCC) in...

  5. SOLARIS 3-axis high load, low profile, high precision motorized positioner

    Energy Technology Data Exchange (ETDEWEB)

    Acome, Eric; Van Every, Eric; Deyhim, Alex, E-mail: [ADC USA Inc. 126 Ridge Road Lansing NY, 14882 (United States); Zajac, Marcin [National Synchrotron Radiation Centre Solaris Jagiellonian University ul. Czerwone Maki 98/p.3.03 0-392 Krakow (Poland)


    A 3-axis optical table, shown in Figure 1, was designed, fabricated, and assembled for the SOLARIS synchrotron facility at the Jagiellonian University in Krakow, Poland. To accommodate the facility, the table was designed to be very low profile, as seen in Figure 2, and bear a high load. The platform has degrees of freedom in the vertical (Z) direction as well as horizontal transversal (X and Y) directions. The table is intended to sustain loads as large as 1500 kg which will be sufficient to support a variety of equipment to measure and facilitate synchrotron radiation. After assembly, the table was tested and calibrated to find its position error in the vertical direction. ADC has extensive experience designing and building custom complex high precision motion systems [1,2].

  6. Adhesives: Test Method, Group Assignment, and Categorization Guide for High-Loading-Rate Applications (United States)


    Apparent Shear Strength of Single- Lap -Joint Adhesively Bonded Metal Specimens by Tension Loading [Metal- to-Metal]).5 Samples are to be stored in a...the Army, Washington, DC, 2 October 2007. 5. ASTM Standard D1002-10 "Standard Test Method for Apparent Shear Strength of Single- Lap -Joint Adhesively ... adhesives for high-loading-rate applications relevant to U.S. Army needs. 15. SUBJECT TERMS adhesive , testing, single lap joint, high loading rate

  7. High-Frequency Axial Fatigue Test Procedures for Spectrum Loading (United States)


    closed-loop digital test frame controller with a command feedback compensation scheme was used to minimize controller error during testing. 15...controller response during variable amplitude loading, and a closed-loop digital test frame controller with a command feedback compensation scheme was...failures beyond 10 7 cycles can be caused by several competing failure mechanisms and may result in a transition from surface dominated crack

  8. Preparation and Characterisation of Highly Loaded Fluorescent Chitosan Nanoparticles


    Chan Mui Wen; Haliza Katas


    Chitosan (CS) nanoparticles have been developed as a versatile drug delivery system to transport drugs, genes, proteins, and peptides into target sites. Demands on fluorescent nanoparticles have increased recently due to various applications in medical and stem-cell-based researches. In this study, fluorescent CS nanoparticles were prepared by a mild method, namely, complex coacervation. Entrapment efficiency of sulforhodamine (SR101) loaded into CS nanoparticles was investigated to evaluate ...

  9. Enhancement of implant osseointegration by high-frequency low-magnitude loading.

    Directory of Open Access Journals (Sweden)

    Xiaolei Zhang

    Full Text Available BACKGROUND: Mechanical loading is known to play an important role in bone remodelling. This study aimed to evaluate the effect of high- and low-frequency axial loading, applied directly to the implant, on peri-implant bone healing and implant osseointegration. METHODOLOGY: Titanium implants were bilaterally installed in rat tibiae. For every animal, one implant was loaded (test while the other one was not (control. The test implants were randomly divided into 8 groups according to 4 loading regimes and 2 experimental periods (1 and 4 weeks. The loaded implants were subject to an axial displacement. Within the high- (HF, 40 Hz or low-frequency (LF, 8 Hz loading category, the displacements varied 2-fold and were ranked as low- or high-magnitude (LM, HM, respectively. The strain rate amplitudes were kept constant between the two frequency groups. This resulted in the following 4 loading regimes: 1 HF-LM, 40 Hz-8 µm; 2 HF-HM, 40 Hz-16 µm; 3 LF-LM, 8 Hz-41 µm; 4 LF-HM, 8 Hz-82 µm. The tissue samples were processed for resin embedding and subjected to histological and histomorphometrical analyses. Data were analyzed statistically with the significance set at p<0.05. PRINCIPAL FINDINGS: After loading for 4 weeks, HF-LM loading (40 Hz-8 µm induced more bone-to-implant contact (BIC at the level of the cortex compared to its unloaded control. No significant effect of the four loading regimes on the peri-implant bone fraction (BF was found in the 2 experimental periods. CONCLUSIONS: The stimulatory effect of immediate implant loading on bone-to-implant contact was only observed in case of high-frequency (40 Hz low-magnitude (8 µm loading. The applied load regimes failed to influence the peri-implant bone mass.

  10. High load sensitivity in wideband infrared dual-Vivaldi nanoantennas. (United States)

    Yifat, Yuval; Iluz, Zeev; Bar-Lev, Doron; Eitan, Michal; Hanein, Yael; Boag, Amir; Scheuer, Jacob


    Dual-Vivaldi nanoantenna (DVA) arrays were designed, fabricated, and optically characterized in the infrared (IR) and visible regimes. The antenna arrays were characterized by measuring the scattered light at IR (1450-1640 nm) and visible (780 nm) spectral ranges. The radiation efficiency and the spectral response of the antennas were found to be in good agreement with numerical simulations. The results presented here demonstrate the extremely wideband nature of the DVAs and the strong impact of load at the antenna terminals on its scattering response. These properties, as well as their many degrees of freedom for design, render the DVAs excellent candidates for optical sensing applications.

  11. Stimulus recognition occurs under high perceptual load: Evidence from correlated flankers. (United States)

    Cosman, Joshua D; Mordkoff, J Toby; Vecera, Shaun P


    A dominant account of selective attention, perceptual load theory, proposes that when attentional resources are exhausted, task-irrelevant information receives little attention and goes unrecognized. However, the flanker effect-typically used to assay stimulus identification-requires an arbitrary mapping between a stimulus and a response. We looked for failures of flanker identification by using a more-sensitive measure that does not require arbitrary stimulus-response mappings: the correlated flankers effect. We found that flanking items that were task-irrelevant but that correlated with target identity produced a correlated flanker effect. Participants were faster on trials in which the irrelevant flanker had previously correlated with the target than when it did not. Of importance, this correlated flanker effect appeared regardless of perceptual load, occurring even in high-load displays that should have abolished flanker identification. Findings from a standard flanker task replicated the basic perceptual load effect, with flankers not affecting response times under high perceptual load. Our results indicate that task-irrelevant information can be processed to a high level (identification), even under high perceptual load. This challenges a strong account of high perceptual load effects that hypothesizes complete failures of stimulus identification under high perceptual load. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Methane conversion efficiency as a simple control parameter for an anaerobic digester at high loading rates. (United States)

    Charles, W; Carnaje, N P; Cord-Ruwisch, R


    The anaerobic digestion process is globally applied to the treatment of highly concentrated wastes such as industrial and rural effluents, and sewage sludge. However, it is known to be relatively unstable. When loaded with high concentrations of organic material, unwanted volatile fatty acids (VFA) are often produced rather than methane (CH4) gas which can lead to digester acidification and failure. This study investigated digester behaviour under high loading rates, testing the usefulness of stoichiometric methane conversion efficiency as a digester control parameter at high loading rates. Our results show that, in general, the CH4 production rate was proportional to the feed rate (loading rate). However, at very high loading rates, the CH4 production rate was not proportional to the increase in the feeding rate. Consequently, VFA accumulated and the H2 partial pressure increased. The proportionality of the loading rate and gas production rate is stoichiometrically expressed as the conversion efficiency. We found that conversion efficiency was a useful indicator as an early warning of digester imbalance. The digester remained stable at conversion efficiencies above 75%. Dropping below 70% signified the onset of digester failure. As loading rate and methane production data are readily available on-line in most anaerobic digestion plants, the conversion efficiency can be monitored on-line and used as an efficient control technique to maintain safe operation of anaerobic digesters at high loading rates.

  13. Gearbox Reliability Collaborative Investigation of High-Speed-Shaft Bearing Loads

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    The loads and contact stresses in the bearings of the high speed shaft section of the Gearbox Reliability Collaborative gearbox are examined in this paper. The loads were measured though strain gauges installed on the bearing outer races during dynamometer testing of the gearbox. Loads and stresses were also predicted with a simple analytical model and higher-fidelity commercial models. The experimental data compared favorably to each model, and bearing stresses were below thresholds for contact fatigue and axial cracking.

  14. Effect of highly reflective roofing sheet on building thermal loads for a school in Osaka

    Directory of Open Access Journals (Sweden)

    Yuan Jihui


    Full Text Available Currently, urban heat island (UHI phenomenon and building energy consumptions are becoming serious. Strategies to mitigate UHI and reduce building energy consumptions are implemented worldwide. In Japan, as an effective means of mitigating UHI and saving energy of buildings, highly reflective (HR and green roofs are increasingly used. In order to evaluate the effect of roofs with high reflection and thermal insulation on the energy conservation of buildings, we investigated the roof solar reflectivity of the subject school in Osaka, in which the HR roofing sheet was installed on the roof from 2010. Thermal loads, including cooling and heating loads of the top floor of school, were calculated using the thermal load calculation software, New HASP/ACLD-β. Comparing the thermal loads after HR roofing sheet installation to previous, the annual thermal load decreased about 25 MJ/m2-year and the cooling load decreased about 112 MJ/m2-year. However, the heating load increased about 87 MJ/m2-year in winter. To minimize the annual thermal load, thermal insulation of the roof was also considered be used together with HR roofing sheet in this study. The results showed that the combination of HR roofing sheet and high thermal insulation is more effective to reduce the annual thermal load.

  15. Evaluation of the applicability of an energy method to calculate the damping in a lab-scale structure: 10th International Conference on Structural Dynamics, EURODYN 2017. 10 September 2017 through 13 September 2017

    NARCIS (Netherlands)

    Gómez, S.S.; Metrekine, A.


    The aim of this paper is to identify the local energy dissipation in a lab-scale structure by means of the energy flow analysis. In most of the existing approaches the damping is identified either in terms of the modal damping factors or at the material scale. In this paper, an alternative method to

  16. Atmospheric spatial atomic-layer-deposition of Zn(O, S) buffer layer for flexible Cu(In, Ga)Se2 solar cells: From lab-scale to large area roll to roll processing

    NARCIS (Netherlands)

    Frijters, C.H.; Bolt, P.J.; Poodt, P.W.G.; Knaapen, R.; Brink, J. van den; Ruth, M.; Bremaud, D.; Illiberi, A.


    In this manuscript we present the first successful application of a spatial atomic-layer-deposition process to thin film solar cells. Zn(O,S) has been grown by spatial atomic layer deposition (S-ALD) at atmospheric pressure and applied as buffer layer in rigid and flexible CIGS cells by a lab-scale

  17. Effect of increasing salinity on biogas production in waste landfills with leachate recirculation: A lab-scale model study

    Directory of Open Access Journals (Sweden)

    Yuka Ogata


    Full Text Available The effects of salinity on anaerobic waste degradation and microbial communities were investigated, in order to propose an appropriate leachate recirculation process in a waste landfill in a tropical region. A salt concentration of 21 mS cm−1 of electrical conductivity (EC did not affect waste degradation, but a salt concentration of 35 mS cm−1 of EC inhibited CH4 generation. A higher salt concentration of 80 mS cm−1 of EC inhibited not only CH4 and CO2 generation, but also degradation of organic compounds. The bacterial and archaeal community compositions were affected by high salinity. High salinity can exert selective pressure on bacterial communities, resulting in a change in bacterial community structure. Ammonium caused strong, dominant inhibition of biogas production in the salt concentration range of this study. Quality control, especially of ammonium levels, will be essential for the promotion of waste biodegradation in landfills with leachate recirculation.

  18. Effect of plant species compositions on performance of lab-scale constructed wetland through investigating photosynthesis and microbial communities. (United States)

    Zhu, Shishu; Huang, Xiaochen; Ho, Shih-Hsin; Wang, Li; Yang, Jixian


    This study focused on the effects of plant compositions on removal rates of pollutants in microcosms through investigating rhizosphere microbial populations, photosynthetic efficiency and growth characteristics. Mixed-culture groups improved the removal efficiency of TN and TP significantly but exhibited lower COD removal rates. Total plant biomasses were improved as the species richness increased, but the N/P content in the plants was mainly affected by the type of species. The mixed-culture groups showed lower photosynthesis rates and oxygen supply generated from roots under high irradiation. Microbial communities of the cultured groups in the rhizosphere exhibited significant differences. According to principal component analysis (PCA), the fungi were the typical microbes of SPA, SPAB, and SPABC, resulted in improvement in nutrient accumulation. These results demonstrated that a mixed culture strategy can represent the overyielding of biomass, promote the photo-protection mechanism, and will further increase the removal rates of pollutants in a constructed wetland. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. High Heritability Is Compatible with the Broad Distribution of Set Point Viral Load in HIV Carriers (United States)

    Bonhoeffer, Sebastian; Fraser, Christophe; Leventhal, Gabriel E.


    Set point viral load in HIV patients ranges over several orders of magnitude and is a key determinant of disease progression in HIV. A number of recent studies have reported high heritability of set point viral load implying that viral genetic factors contribute substantially to the overall variation in viral load. The high heritability is surprising given the diversity of host factors associated with controlling viral infection. Here we develop an analytical model that describes the temporal changes of the distribution of set point viral load as a function of heritability. This model shows that high heritability is the most parsimonious explanation for the observed variance of set point viral load. Our results thus not only reinforce the credibility of previous estimates of heritability but also shed new light onto mechanisms of viral pathogenesis. PMID:25658741

  20. High heritability is compatible with the broad distribution of set point viral load in HIV carriers.

    Directory of Open Access Journals (Sweden)

    Sebastian Bonhoeffer


    Full Text Available Set point viral load in HIV patients ranges over several orders of magnitude and is a key determinant of disease progression in HIV. A number of recent studies have reported high heritability of set point viral load implying that viral genetic factors contribute substantially to the overall variation in viral load. The high heritability is surprising given the diversity of host factors associated with controlling viral infection. Here we develop an analytical model that describes the temporal changes of the distribution of set point viral load as a function of heritability. This model shows that high heritability is the most parsimonious explanation for the observed variance of set point viral load. Our results thus not only reinforce the credibility of previous estimates of heritability but also shed new light onto mechanisms of viral pathogenesis.

  1. Reduction of greenhouse gases by fiber-loaded lightweight, high-opacity newsprint production (United States)

    John H. Klungness; Matthew L. Stroika; Said M. Abubakr


    We estimated the effectiveness of fiber loading in reducing greenhouse gas emissions for producing lightweight high-opacity newsprint. Fiber loading enhances fiber bonding at increased precipitated calcium carbonate levels without significant loss in Canadian Standard Freeness or additional energy use. We investigated the reduction of greenhouse gas emissions for a...

  2. Do Match-Related Contextual Variables Influence Training Load in Highly Trained Soccer Players? (United States)

    Brito, Joao; Hertzog, Maxime; Nassis, George P


    This study analyzed training loads of youth soccer players and examined the influence of match-related contextual variables in internal training load and fatigue. A secondary aim was to investigate the variability of these parameters throughout the season. Thirteen highly trained under-19 players (18.6 ± 0.5 years) were followed during one season. Training load (daily) and fatigue scores (weekly) were assessed using rate of perceived exertion and a short questionnaire, respectively. Higher weekly training loads were reported after a defeat or draw compared to a win (2,342 ± 987 and 2,395 ± 613 vs. 1,877 ± 392 AU; p ≤ 0.05; d = 0.30-0.45). Weekly training loads were higher after playing an away match than after a home match (2,493 ± 821 vs. 2,153 ± 577 AU; p ≤ 0.05; d = 0.23). Within training sessions, the coefficients of variation for internal training load ranged from 5 to 72%. Throughout the season, the coefficients of variation for weekly training loads and fatigue scores ranged from 29 to 49% and 18 to 44%, respectively. Weekly training load decreased as the season progressed (p training load within a session and its sensitivity to initial and subsequent match conditions underline the need for a more individualized approach. These findings and the stability of the fatigue scores throughout the season may indicate that highly trained players modulate their pace during training.

  3. Comparative Analysis of Decoupling Control Methodologies and H∞ Multivariable Robust Control for Variable-Speed, Variable-Pitch Wind Turbines: Application to a Lab-Scale Wind Turbine

    Directory of Open Access Journals (Sweden)

    Sergio Fragoso


    Full Text Available This work is focused on the improvement of variable-speed variable-pitch wind turbine performance by means of its control structure. This kind of systems can be considered as multivariable nonlinear processes subjected to undesired interactions between variables and presenting different dynamics at different operational zones. This interaction level and the dynamics uncertainties complicate the control system design. The aim of this work is developing multivariable controllers that cope with such problems. The study shows the applicability of different decoupling methodologies and provides a comparison with a H∞ controller, which is an appropriate strategy to cope with uncertainties. The methodologies have been tested in simulation and verified experimentally in a lab-scale wind turbine. It is demonstrated that the wind turbine presents more interaction at the transition zone. Then, this operational point is used as the nominal one for the controller designs. At this point, decoupling controllers obtain perfect decoupling while the H∞ control presents important interaction in the generated power loop. On the other hand, they are slightly surpassed by the robust design at other points, where perfect decoupling is not achieved. However, decoupling controllers are easier to design and implement, and specifically dynamic simplified decoupling achieve the best global response. Then, it is concluded that the proposed methodologies can be considered for implantation in industrial wind turbines to improve their performance.

  4. Boosting Nannochloropsis oculata growth and lipid accumulation in a lab-scale open raceway pond characterized by improved light distributions employing built-in planar waveguide modules. (United States)

    Sun, Yahui; Huang, Yun; Liao, Qiang; Xia, Ao; Fu, Qian; Zhu, Xun; Fu, Jingwei


    Aiming at alleviating the adverse effect of poor light penetrability on microalgae growth, planar waveguide modules functioned as diluting and redistributing the intense incident light within microalgae culture more homogeneously were introduced into a lab-scale open raceway pond (ORP) for Nannochloropsis oculata cultivation. As compared to the conventional ORP, the illumination surface area to volume ratio and effective illuminated volume percentage in the proposed ORP were respectively improved by 5.53 times and 19.68-172.72%. Consequently, the superior light distribution characteristics in the proposed ORP contributed to 193.33% and 443.71% increase in biomass concentration and lipid yield relative to those obtained in conventional ORP, respectively. Subsequently, the maximum biomass concentration (2.31 g L-1) and lipid yield (1258.65 mg L-1) was obtained when the interval between adjacent planar waveguide modules was 18 mm. The biodiesel produced in PWM-ORPs showed better properties than conventional ORP due to higher MUFA and C18:1 components proportions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Mycelium differentiation and development of Streptomyces coelicolor in lab-scale bioreactors: programmed cell death, differentiation, and lysis are closely linked to undecylprodigiosin and actinorhodin production. (United States)

    Rioseras, Beatriz; López-García, María Teresa; Yagüe, Paula; Sánchez, Jesús; Manteca, Angel


    Streptomycetes are mycelium-forming bacteria that produce two thirds of clinically relevant secondary metabolites. Secondary metabolite production is activated at specific developmental stages of Streptomyces life cycle. Despite this, Streptomyces differentiation in industrial bioreactors tends to be underestimated and the most important parameters managed are only indirectly related to differentiation: modifications to the culture media, optimization of productive strains by random or directed mutagenesis, analysis of biophysical parameters, etc. In this work the relationship between differentiation and antibiotic production in lab-scale bioreactors was defined. Streptomyces coelicolor was used as a model strain. Morphological differentiation was comparable to that occurring during pre-sporulation stages in solid cultures: an initial compartmentalized mycelium suffers a programmed cell death, and remaining viable segments then differentiate to a second multinucleated antibiotic-producing mycelium. Differentiation was demonstrated to be one of the keys to interpreting biophysical fermentation parameters and to rationalizing the optimization of secondary metabolite production in bioreactors. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. Instantaneous rate of loading during manual high-velocity, low-amplitude spinal manipulations. (United States)

    Gudavalli, Maruti Ram


    The objective of this study was to determine the instantaneous rate of loading during manual high-velocity, low-amplitude spinal manipulations (HVLA SMs) in the lumbar and thoracic regions and compare to the average rates of loading. Force-time profiles were recorded using a hand force transducer placed between the hand of a doctor of chiropractic and the subject's back during 14 HVLA SM thrusts on asymptomatic volunteers while 3 doctors of chiropractic delivered the spinal manipulations. Doctors also delivered 36 posterior to anterior thoracic manipulations on a mannequin. Data were collected at a sampling rate of 1000 Hz using Motion Monitor software. Force-time profile data were differentiated to obtain instantaneous rates of loading. The data were reduced using a custom-written MathCad program and analyzed descriptively. The instantaneous rates of loading were 1.7 to 1.8 times higher than average rates of loading, and instantaneous rates of unloading were 2.1 to 2.6 times the average rates of unloading during HVLA SMs. Maximum instantaneous rates of loading occurred 102 to 111 milliseconds prior to peak load. Maximum instantaneous rates of unloading occurred 121 to 154 milliseconds after the peak load. These data may be useful for further understanding of HVLA SMs. The instantaneous rates of loading and where they occurred may be useful data for understanding and describing HVLA SMs. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  7. Stability study and lyophilization of vitamin E-loaded nanocapsules prepared by membrane contactor. (United States)

    Khayata, N; Abdelwahed, W; Chehna, M F; Charcosset, C; Fessi, H


    In this research, we studied the accelerated stability of vitamin E-loaded nanocapsules (NCs) prepared by the nanoprecipitation method. Vitamin E-loaded NCs were optimized firstly at the laboratory scale and then scaled up using the membrane contactor technique. The optimum conditions of the membrane contactor preparation (pilot scale) produced vitamin E-loaded NCs with an average size of 253 nm, polydispersity index 0.19 and a zeta potential -16 mV. The average size, polydispersity index and zeta potential values were 185 nm, 0.12 and -15 mV, respectively for the NCs prepared at laboratory scale. No significant changes were noticed in these values after 3 and 6 months of storage at high temperature (40±2 °C) and relative humidity (75±5%) in spite of vitamin E sensitivity to light, heat and oxygen. The entrapment efficiency of NCs prepared at pilot scale was 97% at the beginning of the stability study, and became (95%, 59%) after 3 and 6 months of storage, respectively. These values at lab-scale were (98%, 96%, and 89%) at time zero and after 3 and 6 months of storage, respectively. This confirms the ability of vitamin E encapsulation to preserve its stability, which is one major goal of our work. Lyophilization of the optimized formula at lab-scale was also performed. Four types of cryoprotectants were tested (poly(vinyl pyrrolidone), sucrose, mannitol, and glucose). Freeze-dried NCs prepared with sucrose were found acceptable. The other lyophilized NCs obtained at different conditions presented large aggregates. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. High-speed T-38A landing gear extension loads (United States)

    Schmitt, A. L.


    Testing of T-38A landing gear extension at high speed and high altitude is described. The mechanisms are shown together with peak hydraulic pressure data during landing gear deployment with active and inactive strut door flaps. Results of strain gage measurements of stress on various structural members are included.

  9. Freeform Extrusion of High Solids Loading Ceramic Slurries. Part 2. Extrusion Process Control (Preprint)

    National Research Council Canada - National Science Library

    Mason, Michael S; Huang, Tieshu; Landers, Robert G; Leu, Ming C; Hilmas, Gregory E


    Part I of this paper provided a detailed description of a novel fabrication machine for high solids loading ceramic slurry extrusion processes and presented an empirical model of the ceramic extrusion...

  10. Miniaturized MEMS-Based Gas Chromatograph for High Inertial Loads Associated with Planetary Missions Project (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a rugged, miniaturized, low power MEMS-based gas chromatograph (GC) capable of handling the high inertial loads...

  11. Nutrition Coupled with High-Load Traditional or Low-Load Blood Flow Restricted Exercise During Human Limb Suspension (United States)

    Hackney, K. J.; Everett, M.; Ploutz-Snyder, L. L.


    High-load resistance exercise (HRE) and low-load blood flow restricted (BFR) exercise have demonstrated efficacy for attenuating unloading related muscle atrophy and dysfunction. In recreational exercisers, protein consumption immediately before and/or after exercise has been shown to increase the skeletal muscle anabolic response to resistance training. PURPOSE: To compare the skeletal muscle adaptations when chocolate milk intake was coupled with HRE or low-load BFR exercise [3 d/wk] during simulated lower limb weightlessness. METHODS: Eleven subjects were counterbalanced [based on age and gender] to HRE (31 +/- 14 yr, 170 +/- 13 cm, 71 +/- 18 kg, 2M/3W) or low-load BFR exercise (31 +/- 12 yr, 169 +/- 13 cm, 66 +/- 14 kg, 2M/4W) during 30 days of unilateral lower limb suspension (ULLS). Both HRE and BFR completed 3 sets of single leg press and calf raise exercise during ULLS. BFR exercise intensity was 20% of repetition maximum (1RM) with a cuff inflation pressure of 1.3 systolic blood pressure (143 4 mmHg). Cuff pressure was maintained during all 3 sets including rest intervals (90s). HRE intensity was 75% 1RM and was performed without cuff inflation. Immediately (<10 min) before and after exercise 8 fl oz of chocolate milk (150 kcal, 2.5g total fat, 22g total carbohydrate, 8g protein) was consumed to optimize acute exercise responses in favor of muscle anabolism. ULLS analog compliance was assessed from leg skin temperature recordings and plantar accelerometry. Muscle cross-sectional area (CSA) for knee extensor and plantar flexor muscle groups were determined from analysis of magnetic resonance images using ImageJ software. 1RM strength for leg press and calf raise was assessed on the Agaton exercise system. Muscular endurance during leg press and calf raise was evaluated from the maximal number of repetitions performed to volitional fatigue using 40% of pre-ULLS 1RM. RESULTS: Steps detected by plantar acceleometry declined by 98.9% during ULLS relative to an

  12. Closeout of Advanced Boron and Metal Loaded High Porosity Carbons.

    Energy Technology Data Exchange (ETDEWEB)

    Peter C. Eklund (deceased); T. C. Mike Chung; Henry C. Foley; Vincent H. Crespi


    The Penn State effort explored the development of new high-surface-area materials for hydrogen storage, materials that could offer enhancement in the hydrogen binding energy through a direct chemical modification of the framework in high specific-surface-area platforms. The team chemically substituted boron into the hexagonal sp2 carbon framework, dispersed metal atoms bound to the boro-carbon structure, and generated the theory of novel nanoscale geometries that can enhance storage through chemical frustration, sheet curvature, electron deficiency, large local fields and mixed hybridization states. New boro-carbon materials were synthesized by high temperature plasma, pyrolysis of boron-carbon precursor molecules, and post-synthesis modification of carbons. Hydrogen uptake has been assessed, and several promising leads have been identified, with the requirement to simultaneously optimize total surface area while maintaining the enhanced hydrogen binding energies already demonstrated.

  13. Part-load performance of a high temperature Kalina cycle

    DEFF Research Database (Denmark)

    Modi, Anish; Andreasen, Jesper Graa; Kærn, Martin Ryhl


    The Kalina cycle has recently seen increased interest as an alternative to the conventional steam Rankine cycle. The cycle has been studied for use with both low and high temperature applications such as geothermal power plants, ocean thermal energy conversion, waste heat recovery, gas turbine...

  14. Behaviour of uranium alloys at high loading rates

    Energy Technology Data Exchange (ETDEWEB)

    Rolc, S.; Pechacek, J.; Krejci, J. (Ceskoslovenska Akademie Ved, Brno (CS). Ustav Fyzikalni Metalurgie); Buchar, J.


    The mechanical behaviour of depleted uranium, uranium with molybdenum, niobium, titanium and rhenium was investigated under high strain rates. The Hopkinson split pressure bar was used. The spallation of these materials was also studied. The correlation of the spall strength, {sigma}{sub c}, with flow properties was found. 11 refs., 4 figs., 1 tab..

  15. Effect of dilution and operating parameters on ammonia removal from scheduled waste landfill leachate in a lab-scale ammonia stripping reactor (United States)

    Hanira, N. M. L.; Hasfalina, C. M.; Rashid, M.; Luqman, C. A.; Abdullah, A. M.


    A lab-scale ammonia stripping reactor was used to treat raw and diluted (1:1) scheduled waste landfill (SWL) leachate containing ammonia-nitrogen (NH3-N). Operating parameters such as air-liquid ratio, hydrated lime [Ca(OH)2] dosage, types of packing materials and packing heights were investigated with central composite design (CCD) of response surface methodology (RSM) was used to optimize the parameters affecting NH3-N removal from the leachate. The percentage removal on turbidity, colour and phosphate were also evaluated in this study. It was observed that the optimal conditions obtained from desirable response (NH3-N removal) for raw leachate were predicted at air-liquid ratio of 70, Ca(OH)2 dosage of 5 gL-1, packing height of 60 cm and types of packing material was number 3 (non-woven polyester) while for diluted leachate these were 70, 6 gL-1, 60 cm and Type 3 (non-woven polyester), respectively. Quadratic RSM predicted the maximum NH3-N removal to be 78% for raw leachate and 81% for diluted leachate at these optimal conditions concurred with the experiment which successfully removed 76% and 80% of NH3-N, respectively. However, higher removal efficiencies of turbidity (97%), colour (88%) and phosphate (93%) was observed in the treatment with diluted leachate compared to raw leachate merely up to 55%, 34% and 49%, respectively. The finding showed that the difference in the removal of NH3-N in diluted and raw SWL leachate was insignificant. However, turbidity, colour and phosphate showed a significant reduction in the diluted leachate during the treatment. The study suggests that the dilution of SWL leachate does not present a significant effect on the removal of ammonia in the stripping reactor.

  16. Recovery of Iron from Pyrolusite Leaching Slag by a Lab-Scale Circulation Process of Oxalic Acid Leaching and Ultraviolet Irradiation

    Directory of Open Access Journals (Sweden)

    Biao Deng


    Full Text Available Pyrolusite leaching slag is a Fe-containing slag generated from pyrolusite leaching process with SO2. Recovery of iron from the slag not only has economic benefit, but also prevents the secondary pollution to the environment. A novel lab-scale cyclic process for recovering iron from pyrolusite leaching slag was introduced. The process contains two steps: (1 iron was leached with oxalic acid and [Fe(C2O4n](3−2n+ solution was generated; (2 the [Fe(C2O4n](3−2n+ solution was irradiated by ultraviolet and ferrous oxalate precipitation were obtained. The effect of operation parameter on leaching and irradiation process were studied separately. In the leaching process, the optimal solid/liquid ratio, oxalic acid concentration, leaching temperature, stirring rate, and leaching time are 1:50, 0.40 mol/L, 95 °C, 300 r/min, and 3 h, respectively. In the irradiation process, the best irradiation wavelength, Fe/oxalic acid molar ratio and irradiation time are 254 nm, 1:4, and 30 min. Besides, a test of 9 continuous cycles was carried out and the performance and material balance of the combined process were investigated. The results showed that the cyclic process is entirely feasible and prove to be stable producing, and ferrous oxalate of 99.32% purity. Material balance indicated that 95.17% of iron was recovered in the form of FeC2O4·2H2O, and the recovery efficiency of oxalic acid was 58.52%.

  17. Enhancing recovery of recombinant hepatitis B surface antigen in lab-scale and large-scale anion-exchange chromatography by optimizing the conductivity of buffers. (United States)

    Mojarrad Moghanloo, Gol Mohammad; Khatami, Maryam; Javidanbardan, Amin; Hosseini, Seyed Nezamedin


    In biopharmaceutical science, ion-exchange chromatography (IEC) is a well-known purification technique to separate the impurities such as host cell proteins from recombinant proteins. However, IEC is one of the limiting steps in the purification process of recombinant hepatitis B surface antigen (rHBsAg), due to its low recovery rate (buffers are easy-to-control parameters which can play a major role in optimizing the process and increasing the recovery. Thus, we investigated the effects of ionic strengths of buffers on rHBsAg recovery via adjusting Tris-HCl and NaCl concentrations. Increasing the conductivity of equilibration (Eq.), washing (Wash.) and elution (Elut.) buffers from their initial values of 1.6 mS/cm, 1.6 mS/cm, and 7.0 mS/cm to 1.6 mS/cm, 7 mS/cm and 50 mS/cm, respectively yielded an average recovery rate of 82% in both lab-scale and large-scale weak anion-exchange chromatography without any harsh effect on the purity percentage of rHBsAg. The recovery enhancement via increasing the conductivity of Eq. and Wash. buffers can be explained by their roles in reducing the binding strength and aggregation of retained particles in the column. Moreover, further increase in the salt concentration of Elut. Buffer could substantially promote the ion exchange process and the elution of retained rHBsAg. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Hybrid Superconducting Magnetic Bearing (HSMB) for high load devices (United States)

    Mcmichael, C. K.; Ma, K. B.; Lamb, M. A.; Lin, M. W.; Chow, L.; Meng, R. L.; Hor, P. H.; Chu, W. K.


    Lifting capacities greater than 41 N/cm(exp 2) (60 psi) at 77 K have been achieved with a new type of levitation (hybrid) using a combination of permanent magnets and high quality melt-mixtured YBa2Cu3O(7-delta) (YBCO). The key concept of the hybrid superconducting magnetic bearing (HSMB) is the use of strong magnetic repulsion and attraction from permanent magnets for high levitation or suspension forces in conjunction with a superconductor's flux pinning characteristics to counteract the inherent instabilities in a system consisting of magnets only. To illustrate this concept, radial and axial forces between magnet/superconductor, magnet/magnet, and magnet/superconductor/magnet, were measured and compared for the thrust bearing configuration

  19. Mesoscale modeling of metal-loaded high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Bdzil, John Bohdan [Los Alamos National Laboratory; Lieberthal, Brandon [UNIV OF ILLINOIS; Srewart, Donald S [UNIV OF ILLINOIS


    We describe a 3D approach to modeling multi-phase blast explosive, which is primarily condensed explosive by volume with inert embedded particles. These embedded particles are uniform in size and placed on the array of a regular lattice. The asymptotic theory of detonation shock dynamics governs the detonation shock propagation in the explosive. Mesoscale hydrodynamic simulations are used to show how the particles are compressed, deformed, and accelerated by the high-speed detonation products flow.

  20. High-load preconditioning of human soft tissue hamstring grafts: An in vitro biomechanical analysis. (United States)

    Lockwood, W Charles; Marchetti, Daniel Cole; Dahl, Kimi D; Mikula, Jacob D; Williams, Brady T; Kheir, Matthew M; Turnbull, Travis Lee; LaPrade, Robert F


    In order to minimize viscoelastic elongation of ACL reconstruction grafts, preconditioning protocols have been employed in clinical practice prior to final graft fixation. The purpose of this study was to evaluate two separate high-load static preconditioning protocols of double-looped semitendinosus-gracilis grafts and compare these results to both a current clinical protocol and a control group with no preconditioning protocol applied. It was hypothesized that a high-load, static preconditioning protocol would minimize graft elongation during a simulated progressive early rehabilitation compared to both the "89 N" clinical protocol and control groups. Grafts were randomly allocated into four preconditioning study groups: (1) control (no preconditioning), (2) clinical protocol (89 N for 15 min), (3) high-load, short duration (600 N for 20 s), and (4) high-load, long duration (600 N for 15 min). After preconditioning, grafts were cyclically loaded between 10 and 400 N at 0.5 Hz for 450 cycles to simulate early postoperative rehabilitation. Graft displacement (elongation) was recorded during both preconditioning and cyclic loading. Increased preconditioning load magnitude and duration significantly reduced graft elongation during cyclic loading (p < 0.05) which corresponded to an inverse relationship with increased elongation during preconditioning. The "600 N for 15 min" protocol resulted in significantly less elongation during simulated early rehabilitation than both the control group and the "89 N for 15 min" protocol (p < 0.001, p < 0.05). Graft elongation during simulated early rehabilitation was significantly reduced by a high-load preconditioning protocol applied for an extended period of time compared to a current common clinical protocol and grafts that were not preconditioned. In addition, the amount of elongation during simulated early rehabilitation was similar between grafts preconditioned using the current clinical practice protocol

  1. On the Response of a Nonlinear Structure to High Kurtosis Non-Gaussian Random Loadings (United States)

    Rizzi, Stephen A.; Przekop, Adam; Turner, Travis L.


    This paper is a follow-on to recent work by the authors in which the response and high-cycle fatigue of a nonlinear structure subject to non-Gaussian loadings was found to vary markedly depending on the nature of the loading. There it was found that a non-Gaussian loading having a steady rate of short-duration, high-excursion peaks produced essentially the same response as would have been incurred by a Gaussian loading. In contrast, a non-Gaussian loading having the same kurtosis, but with bursts of high-excursion peaks was found to elicit a much greater response. This work is meant to answer the question of when consideration of a loading probability distribution other than Gaussian is important. The approach entailed nonlinear numerical simulation of a beam structure under Gaussian and non-Gaussian random excitations. Whether the structure responded in a Gaussian or non-Gaussian manner was determined by adherence to, or violations of, the Central Limit Theorem. Over a practical range of damping, it was found that the linear response to a non-Gaussian loading was Gaussian when the period of the system impulse response is much greater than the rate of peaks in the loading. Lower damping reduced the kurtosis, but only when the linear response was non-Gaussian. In the nonlinear regime, the response was found to be non-Gaussian for all loadings. The effect of a spring-hardening type of nonlinearity was found to limit extreme values and thereby lower the kurtosis relative to the linear response regime. In this case, lower damping gave rise to greater nonlinearity, resulting in lower kurtosis than a higher level of damping.

  2. High Nutrient Load Increases Biostabilization of Sediment by Biofilms (United States)

    Valentine, K.; Mariotti, G.


    Benthic biofilms, matrixes of microbial cells and their secretions, have been shown to stabilize sediment in coastal environments. While there have been numerous studies on the effects of nutrients on the ability of vascular plants to stabilize sediment, few studies have investigated how nutrients affect biofilm growth and their ability to stabilize sediment. Diatom-based biofilms were grown in laboratory experiments on a settled bed of bentonite clay, under a saline water column with varying amounts of nutrients. Erodibility at different stages of biofilm growth was measured using a Gust Erosion Microcosm System, which applied shear stresses from 0.05 to 0.6 Pa. Biofilms more than one week old decreased the erodibility of the sediments in all nutrient treatments compared to abiotic experiments. With high nutrients, the biofilm grew the fastest; the erodibility decreased within two weeks of biofilm growth and remained low for all applied shear stresses. After four weeks of biofilm growth, no erosion of sediment occurred even at the highest applied shear stress (0.6 Pa). With low nutrients the erodibility decreased within three weeks. With no nutrients the biofilms grew similarly to those with low nutrients; the erodibility decreased within three weeks under shear stresses 0.05-0.45 Pa, but the sediments were eroded under high shear stresses. Under low to moderate shear stresses (0.05-0.45 Pa), the total mass eroded by all experiments with biofilms was similar, suggesting that any amount of biofilm decreases erodibility at low shear stresses. In summary, high nutrients allow for faster biostabilization and for resistance to extreme shear stresses. These results suggest that eutrophication would not decrease the biofilm ability to stabilize muddy sediments in coastal environment.

  3. Dual clearance squeeze film damper for high load conditions (United States)

    Fleming, D. P.


    Squeeze film dampers are widely used to control vibrations in aircraft turbine engines and other rotating machinery. However, if shaft unbalance rises appreciably above the design value (e.g., due to a turbine blade loss), a conventional squeeze film becomes overloaded, and is no longer effective in controlling vibration amplitudes and bearing forces. A damper concept characterized by two oil films is described. Under normal conditions, only one low-clearance film is active, allowing precise location of the shaft centerline. Under high unbalance conditions, both films are active, controlling shaft vibration in a near-optimum manner, and allowing continued operation until a safe shutdown can be made.

  4. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Betzler, Ben [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Hirtz, Gregory John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Sunny, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division


    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se production capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.

  5. Low-load resistance training with low relative pressure produces muscular changes similar to high-load resistance training. (United States)

    Kim, Daeyeol; Loenneke, Jeremy P; Ye, Xin; Bemben, Debra A; Beck, Travis W; Larson, Rebecca D; Bemben, Michael G


    This study compares the acute and chronic response of high-load resistance training (HL) to low-load resistance training with low blood flow restriction (LL-BFR) pressure. Participants completed elbow flexion with either HL or LL-BFR or nonexercise. In the chronic study, participants in the HL and LL-BFR groups were trained for 8 weeks to determine differences in muscle size and strength. The acute study examined the changes in pretesting/posttesting (Pre/Post) torque, muscle swelling, and blood lactate. In the chronic study, similar changes in muscle size and strength were observed for both HL and LL-BFR. In the acute study, Pre/Post changes in the torque, muscle swelling, and blood lactate were similar between HL and LL-BFR. Our findings indicate that pressure as low as 50% arterial occlusion can produce similar changes in muscle mass and strength compared with traditional HL. Muscle Nerve 56: E126-E133, 2017. © 2017 Wiley Periodicals, Inc.

  6. A method for calculation of finite fatigue life under multiaxial loading in high-cycle domain

    Directory of Open Access Journals (Sweden)

    M. Malnati


    Full Text Available A method for fatigue life assessment in high-cycle domain under multiaxial loading is presented in this paper. This approach allows fatigue assessment under any kind of load history, without limitations. The methodology lies on the construction - at a macroscopic level - of an “indicator” in the form of a set of cycles, representing plasticity that can arise at mesoscopic level throughout fatigue process. During the advancement of the loading history new cycles are created and a continuous evaluation of the damage is made.

  7. In situ determination of pore sizes of high density polyester woven fabrics under biaxial loading (United States)

    Türkay Kocaman, Recep; Malik, Samander Ali; Aibibu, Dilbar; Cherif, Chokri


    In this study an in situ pore size measurement method was developed to determine the pore size changes of high density polyester woven fabrics under biaxial loading. This unique method allows the non-destructive testing of the pore sizes under biaxial loading. Changes in the pore size distributions of samples were in situ determined with the newly developed method. The results show that the developed measurement method is very promising to define the pore size changes of barrier textiles in situ under loading.

  8. Novel Polymers with a High Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren


    ABSTRACT: Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4...... of the pendant groups in the derivatized polymers and the glass-transition temperature has emerged: the aromatic carboxylic acids give high glass-transition temperatures (90—120 DC), and the aliphatic carboxylic acids give lower glass-transition temperatures (50—65 DC).......-hydroxybenzene, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conucted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly (4-hydroxystyrene...

  9. Bed load size distribution and flow conditions in a high mountain catchment of Central Pyrenees


    Martínez Castroviejo, Ricardo


    The bed load size distribution caused by different types of flow are compared in a high mountain catchment located in the upper Gallego river basin (Central Spanish’ Pyrenees). Three kinds of hydrologic events could be defined: those triggered by heavy autumn rainfalls, those originated by isolated summer rainstorms and those promoted by snowmelting. Each one is characterized by a peculiar bed load size distribution. Thus, it could be demonstrated that the coarser fractions, above 30 mm in di...

  10. Experimental Investigation and FE Analysis on Constitutive Relationship of High Strength Aluminum Alloy under Cyclic Loading


    Yuanqing Wang; Zhongxing Wang


    Experiments of 17 high strength aluminum alloy (7A04) specimens were conducted to investigate the constitutive relationship under cyclic loading. The monotonic behavior and hysteretic behavior were focused on and the fracture surface was observed by scanning electron microscope (SEM) to investigate the microfailure modes. Based on Ramberg-Osgood model, stress-strain skeleton curves under cyclic loading were fitted. Parameters of combined hardening model including isotropic hardening and kinem...

  11. [Investigation on HPV viral load and high risk HPV types infection among patients with infertility]. (United States)

    Zhang, Li-dong; Zhang, Hui-min; Pei, Jing; He, Gui-rong; Sun, Xiao-fang; Li, Bing


    High risk human papilomavirus (HPV) infection is often related to cervical cancer. This study investigated the infection of high risk HPV in cervical epithelia among infertile patients. Relative quantification and absolute quantification were applied for determination of "real" HPV viral load in the clinical setting. Adopting multi-channels real time PCR to genotype and quantify eight high risk HPV (HPV16, 18, 45, 31; intermediate risk types: HPV33, 52, 58, 67) DNA in cervical epithelia of the 130 infertile patients and the 150 controls. This study applied housekeeping gene (beta-globin) for the DNA quantification on secretions samples for clinical diagnosis. The infection rate of the infertility group was 25.38 percent (33/130) and that of the control group was 11.33 percent (17/150), the difference was statistically significant. Among the 33 positive cases in the infertility group, 24 cases showed a viral load no less than 106; in 9 of them, the viral load was less than 106. Among the 17 positive cases in the control group, 4 cases had a viral load no less than 106; in 13 of them, the viral load was less than 106. There is a statistically significant difference in viral load between the infertility group and the control group. The HPV infection rate of the infertility group was higher than that of the control group.

  12. Plasma volume reduction and hematological fluctuations in high-level athletes after an increased training load. (United States)

    Bejder, J; Andersen, A B; Goetze, J P; Aachmann-Andersen, N J; Nordsborg, N B


    The time course of plasma volume (PV) reduction following an increased training load period is unknown and was investigated. The accompanying fluctuations in [Hb] and OFF-hr score were analyzed in the Athlete Biological Passport. Further, whether fluctuations in plasma albumin, soluble transferrin receptors (sTfR), and pro-atrial natriuretic peptide (proANP) concentrations correlate with PV fluctuations was investigated. Eleven high-level competitive cyclists were investigated for 3 weeks. After initial measurements in week 1, training load was increased ~250% in week 2 followed by a reversion to baseline training load in week 3. PV and hematological variables were determined frequently during all weeks. The higher training load in week 2 increased (Ptraining load period were reverted within 2 and 4 days after returning to baseline training load, respectively, while OFF-hr remained altered for 6 days. Furthermore, some atypical blood profiles were induced during and subsequent to the increased training load, demonstrating the importance of knowledge on naturally occurring hematological fluctuations. Finally, concentrations of albumin, sTfR, and proANP could not explain PV fluctuations. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Fatigue in Welded High-Strength Steel Plate Elements under Stochastic Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez


    The present project is a part of an investigation on fatigue in offshore structures in high-strength steel. The fatigue life of plate elements with welded attachments is studied. The material used has a yield stress of ~ 810-840 MPa, and high weldability and toughness properties. Fatigue test...... series with constant amplitude loading and with various types of stochastic loading have been carried through on test specimens in high-strength steel, and - for a comparison - on test specimens in conventional offshore structural steel with a yield stress of ~ 400-410 MPa.A comparison between constant...... amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those...

  14. Lab-scale simulation of the fate and transport of nano zero-valent iron in subsurface environments: aggregation, sedimentation, and contaminant desorption. (United States)

    Yin, Ke; Lo, Irene M C; Dong, Haoran; Rao, Pinhua; Mak, Mark S H


    Heavy metal removal using nano zero-valent iron (NZVI) has drawn growing attention due to the ease of application and high removal efficiency. However, uncertainties regarding its fate and transport in subsurface environments have raised concerns that require further exploration. In this study, aggregation, sedimentation, and Cr/As desorption of three types of NZVIs were investigated under various conditions. It was found that the aggregation behavior of the NZVIs differed from one another in regard to reaction time and ionic strength, associated with the respective critical size for sedimentation. Sedimentation of NZVIs was positively related to the concentrations and average particle sizes. The sedimentation kinetics of NZVI followed two concomitant processes, i.e., (1) direct sedimentation of larger particles, and (2) initial aggregation and then sedimentation of smaller particles. When loaded with Cr/As, NZVIs tended to deposit faster, possibly due to the precipitation of Cr/As onto the nanoparticle surfaces resulting in larger particle sizes. Moreover, desorption of Cr/As from Cr/As loaded NZVIs was detected in the presence of typical groundwater ions, as well as natural organic matter, and poses a potential risk to the subsurface environment. The desorption of Cr was linearly related to the release of iron ions, while As desorption was mitigated when the immobilization of Cr increased. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Investigation of high-speed shaft bearing loads in wind turbine gearboxes through dynamometer testing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. [National Wind Technology Center, National Renewable Energy Laboratory, Golden Colorado USA; Keller, J. [National Wind Technology Center, National Renewable Energy Laboratory, Golden Colorado USA


    Many wind turbine gearboxes require repair or replacement well before reaching the end of their design life. The most common failure is bearing axial cracks, commonly called white etching cracks (WECs), which typically occur in the inner raceways of the high-speed parallel-stage rolling element bearings. Although the root causes of WECs are debated, one theory is that they are related to routine dynamic operating conditions and occasional transient events prevalent in wind turbines that can result in high bearing stress and sliding of the rolling elements. This paper examined wind turbine gearbox high-speed shaft bearing loads and stresses through modeling and full-scale dynamometer testing. Bearing outer race loads were directly measured and predicted using a variety of modeling tools in normal operations, misaligned conditions, and transient events particularly prone to bearing sliding. Test data and models of bearing loads were well correlated. Neither operational misalignment due to rotor moments nor static generator misalignment affected the bearing loads when compared with pure-torque conditions. Thus, it is not likely that generator misalignment is a causal factor of WECs. In contrast, during transient events, the bearings experienced alternating periods of high stress, torque reversals, and loads under the minimum requisite at high rotating speeds while showing indications of sliding, all of which could be related to the formation of WECs.

  16. In-situ investigations of structural changes during cyclic loading by high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Diederichs, Annika M.; Thiel, Felix; Lienert, Ulrich


    dislocation structures can be identified using advanced electron microscopy and synchrotron techniques. A detailed characterization of the microstructure during cyclic loading by in-situ monitoring the internal structure within individual grains with high energy x-rays can help to understand and predict...... the materials behavior during cyclic deformation and to improve the material design. While monitoring macroscopic stress and strain during cyclic loading, reciprocal space maps of diffraction peaks from single grains are obtained with high resolution. High Resolution Reciprocal Space Mapping was applied...

  17. An in vitro scratch tendon tissue injury model: effects of high frequency low magnitude loading. (United States)

    Adekanmbi, Isaiah; Zargar, Nasim; Hulley, Philippa


    The healing process of ruptured tendons is suboptimal, taking months to achieve tissue with inferior properties to healthy tendon. Mechanical loading has been shown to positively influence tendon healing. However, high frequency low magnitude (HFLM) loads, which have shown promise in maintaining healthy tendon properties, have not been studied with in vitro injury models. Here, we present and validate an in vitro scratch tendon tissue injury model to investigate effects of HFLM loading on the properties of injured rat tail tendon fascicles (RTTFs). A longitudinal tendon tear was simulated using a needle aseptically to scratch a defined length along individual RTTFs. Tissue viability, biomechanical, and biochemical parameters were investigated before and 7 days after culture . The effects of static, HFLM (20 Hz), and low frequency (1 Hz) cyclic loading or no load were also investigated. Tendon viability was confirmed in damaged RTTFs after 7 days of culture, and the effects of a 0.77 ± 0.06 cm scratch on the mechanical property (tangent modulus) and tissue metabolism in damaged tendons were consistent, showing significant damage severity compared with intact tendons. Damaged tendon fascicles receiving HFLM (20 Hz) loads displayed significantly higher mean tangent modulus than unloaded damaged tendons (212.7 ± 14.94 v 92.7 ± 15.59 MPa), and damaged tendons receiving static loading (117.9 ± 10.65 MPa). HFLM stimulation maintained metabolic activity in 7-day cultured damaged tendons at similar levels to fresh tendons immediately following damage. Only damaged tendons receiving HFLM loads showed significantly higher metabolism than unloaded damaged tendons (relative fluorescence units -7021 ± 635.9 v 3745.1 ± 641.7). These validation data support the use of the custom-made in vitro injury model for investigating the potential of HFLM loading interventions in treating damaged tendons.

  18. Beyond perception: testing for implicit conceptual traces in high-load tasks. (United States)

    Ruz, María; Fuentes, Luis J


    The present commentary addresses the main results obtained in the Butler and Klein [Butler, B. C., & Klein, R. (2009). Inattentional blindness for ignored words: Comparison of explicit and implicit memory tasks. Consciousness and Cognition, 18, 811-819.] study and discusses them in relation to the Perceptual Load Theory of Lavie [Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 451-68.]. The authors claim that the use of implicit indexes of conceptual distractor processing in high-load situations would be an important addition to the load literature, which would benefit the research field regardless of their positive or negative findings.

  19. Mechanical material behaviour in highly dynamic load conditions. Mechanisches Werkstoffverhalten unter hochdynamischen Belastungsbedingugen

    Energy Technology Data Exchange (ETDEWEB)

    Behler, F.J. (Fraunhofer-Inst., IFAM, Bremen (Germany))


    The numerical simulation of complex component stresses and structure deformations make it possible to estimate or describe the component behaviour during the design phase in many cases. The quality of the simulation calculation is determined by the possibility of access to suitably well-designed material databanks. Characterisation of the material in nearly realistic load conditions forms the basis of every databank of this kind. Numerical simulation, characterisation of the material and component behaviour supplement one another in the description and interpretation of deformation processes in partly extreme external load conditions. The load conditions have a direct effect on the mechanical material behaviour. The effect of the speed of stressing on the deformation and strength behaviour was shown from two examples from differed groups of materials (deep drawn sheet St 14 and CFK). It is true for both examined materials that they reach higher strengths under high dynamic loads, without any sacrifice of the deformation ability. (orig.).

  20. High Powered Tests of Dielectric Loaded High Pressure RF Cavities for Use in Muon Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    Freemire, Ben [IIT, Chicago; Bowring, Daniel [Fermilab; Kochemirovskiy, Alexey [Chicago U.; Moretti, Alfred [Fermilab; Peterson, David [Fermilab; Tollestrup, Alvin [Fermilab; Torun, Yagmur [IIT, Chicago; Yonehara, Katsuya [Fermilab


    Bright muon sources require six dimensional cooling to achieve acceptable luminosities. Ionization cooling is the only known method able to do so within the muon lifetime. One proposed cooling channel, the Helical Cooling Channel, utilizes gas filled radio frequency cavities to both mitigate RF breakdown in the presence of strong, external magnetic fields, and provide the cooling medium. Engineering constraints on the diameter of the magnets within which these cavities operate dictate the radius of the cavities be decreased at their nominal operating frequency. To accomplish this, one may load the cavities with a larger dielectric material. Alumina of purities ranging from 96 to 99.8% was tested in a high pressure RF test cell at the MuCool Test Area at Fermilab. The results of breakdown studies with pure nitrogen gas, and oxygen-doped nitrogen gas indicate the peak surface electric field on the alumina ranges between 10 and 15 MV/m. How these results affect the design of a prototype cooling channel cavity will be discussed.

  1. On-load Tap Changer Diagnosis on High-Voltage Power Transformers using Dynamic Resistance Measurements

    NARCIS (Netherlands)

    Erbrink, J.J.


    High-voltage transformers have tap changers to regulate the voltage in the high-voltage network when the load changes. Those tap changers are subject to different degradation mechanisms and need regular maintenance. Various defects, like contact degradation, often remain undetected and the

  2. Computational modeling of dynamic mechanical properties of pure polycrystalline magnesium under high loading strain rates

    Directory of Open Access Journals (Sweden)

    Li Qizhen


    Full Text Available Computational simulations were performed to investigate the dynamic mechanical behavior of pure polycrystalline magnesium under different high loading strain rates with the values of 800, 1000, 2000, and 3600 s−1. The Johnson-Cook model was utilized in the simulations based on finite element modeling. The results showed that the simulations provided well-matched predictions of the material behavior such as the strain rate-time history, the stress-strain curve, and the temperature increase. Under high loading strain rates, the tested material experienced linear strain hardening at the early stage of plastic deformation, increased strain hardening at the intermediate plastic deformation region, and decreased strain hardening at the region before fracture. The strain hardening rates for the studied high loading strain rate cases do not vary much with the change of strain rates.

  3. Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Llorens, Elena; Calderón, Silvia [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Valle, Luis J. del, E-mail: [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, Jordi [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Center for Research in Nano-Engineering (CrNE), Universitat Politècnica de Catalunya, Edifici C, C/Pasqual i Vila s/n, Barcelona E-08028 (Spain)


    Polyhexamethylenebiguanide hydrochloride (PHMB), a low molecular weight polymer related to chlorohexidine (CHX), is a well-known antibacterial agent. In this study, polylactide (PLA) nanofibers loaded with PHMB were produced by electrospinning to obtain 3D biodegradable scaffolds with antibacterial properties. PLA fibers loaded with CHX were used as control. The electrospun fibers were studied and analyzed by SEM, FTIR, DSC and contact angle measurements. PHMB and CHX release from loaded scaffolds was evaluated, as well as their antibacterial activity and biocompatibility. The results showed that the nanofibers became smoother and their diameter smaller with increasing the amount of loaded PHMB. This feature led to an increase of both surface roughness and hydrophobicity of the scaffold. PHMB release was highly dependent on the hydrophilicity of the medium and differed from that determined for CHX. Lastly, PHMB-loaded PLA scaffolds showed antibacterial properties since they inhibited adhesion and bacterial growth, and exhibited biocompatible characteristics for the adhesion and proliferation of both fibroblast and epithelial cell lines. - Highlights: • Nanofibers of PLA-PHMB (antibacterial polymer) were prepared by electrospinning. • PHMB has hydrophilic character but the PLA-PHMB scaffolds were highly hydrophobic. • The high-hydrophobicity of the new scaffolds conditioned the release of PHMB. • The controlled release of PHMB inhibited the growth and bacterial adhesion. • PLA-PHMB scaffolds have biocompatibility with fibroblast and epithelial cells.

  4. High-loading Fe2O3/SWNT composite films for lithium-ion battery applications (United States)

    Wang, Ying; Guo, Jiahui; Li, Li; Ge, Yali; Li, Baojun; Zhang, Yingjiu; Shang, Yuanyuan; Cao, Anyuan


    Single-walled carbon nanotube (SWNT) films are a potential candidate as porous conductive electrodes for energy conversion and storage; tailoring the loading and distribution of active materials grafted on SWNTs is critical for achieving maximum performance. Here, we show that as-synthesized SWNT samples containing residual Fe catalyst can be directly converted to Fe2O3/SWNT composite films by thermal annealing in air. The mass loading of Fe2O3 nanoparticles is tunable from 63 wt% up to 96 wt%, depending on the annealing temperature (from 450 °C to 600 °C), while maintaining the porous network structure. Interconnected SWNT networks containing high-loading active oxides lead to synergistic effect as an anode material for lithium ion batteries. The performance is improved consistently with increasing Fe2O3 loading. As a result, our Fe2O3/SWNT composite films exhibit a high reversible capacity (1007.1 mA h g-1 at a current density of 200 mA g-1), excellent rate capability (384.9 mA h g-1 at 5 A g-1) and stable cycling performance with the discharge capacity up to 567.1 mA h g-1 after 600 cycles at 2 A g-1. The high-loading Fe2O3/SWNT composite films have potential applications as nanostructured electrodes for various energy devices such as supercapacitors and Li-ion batteries.

  5. Better target detection in the presence of collinear flankers under high working memory load

    Directory of Open Access Journals (Sweden)

    Jan W. De Fockert


    Full Text Available There are multiple ways in which working memory can influence selective attention. Aside from the content-specific effects of working memory on selective attention, whereby attention is more likely to be directed towards information that matches the contents of working memory, the mere level of load on working memory has also been shown to have an effect on selective attention. Specifically, high load on working memory is associated with increased processing of irrelevant information. In most demonstrations of the effect to-date, this has led to impaired target performance, leaving open the possibility that the effect partly reflects an increase in general task difficulty under high load. Here we show that working memory load can result in a performance gain when processing of distracting information aids target performance. The facilitation in the detection of a low-contrast Gabor stimulus in the presence of collinear flanking Gabors was greater when load on a concurrent working memory task was high, compared to low. This finding suggests that working memory can interact with selective attention at an early stage in visual processing.

  6. Damage & fracture of high-explosive mock subject to cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng [Los Alamos National Laboratory; Rae, Philip J [Los Alamos National Laboratory; Cady, Carl M [Los Alamos National Laboratory; Lovato, Manuel L [Los Alamos National Laboratory


    We use four-point bend specimen with a single shallow edge notch to study the fracture process in Mock 900-21, a PBX 9501 high explosive simulant mock. Subject to monotonic loading we determine quantitatively the threshold load for macroscopic crack initiation from the notch tip. The four-point bend specimen is then subject to cyclic loading in such a way that during the first cycle, the applied force approaches but does not exceed the threshold load determined from the monotonic loading test and in the subsequent cycles, the overall maximum deformation is maintained to be equal to that of the first cycle. It is expected and is also confirmed that no macroscopic damage and cracking occur during the first cycle. However, we observe that sizable macroscopic crack is generated and enlarged during the subsequent cycles, even though the applied force never exceeds the threshold load. Details of the process of damage fonnation, accumulation, and crack extension are presented and the mechanical mechanism responsible for such failure process is postulated and discussed.

  7. Psychosocial stress impairs working memory at high loads: an association with cortisol levels and memory retrieval. (United States)

    Oei, N Y L; Everaerd, W T A M; Elzinga, B M; van Well, S; Bermond, B


    Stress and cortisol are known to impair memory retrieval of well-consolidated declarative material. The effects of cortisol on memory retrieval may in particular be due to glucocorticoid (GC) receptors in the hippocampus and prefrontal cortex (PFC). Therefore, effects of stress and cortisol should be observable on both hippocampal-dependent declarative memory retrieval and PFC-dependent working memory (WM). In the present study, it was tested whether psychosocial stress would impair both WM and memory retrieval in 20 young healthy men. In addition, the association between cortisol levels and cognitive performance was assessed. It was found that stress impaired WM at high loads, but not at low loads in a Sternberg paradigm. High cortisol levels at the time of testing were associated with slow WM performance at high loads, and with impaired recall of moderately emotional, but not of highly emotional paragraphs. Furthermore, performance at high WM loads was associated with memory retrieval. These data extend previous results of pharmacological studies in finding WM impairments after acute stress at high workloads and cortisol-related retrieval impairments.

  8. Molecular Analysis of Ganciclovir-Resistant Cytomegalovirus in Renal Transplant Recipients with High Viral Load. (United States)

    Sohrabi, Majid; Behzadian, Farida; Hosseini, Seied Mohammad Javad; Lashini, Hadi


    Gancyclovir-resistant (GanR) cytomegalovirus (CMV) remains an issue, especially in solid organ transplant (SOT) recipients. Some mutations in UL54 and UL97 confer this resistance. Long-lasting high-dose drug exposure, high viral load, together with lack of sufficient compliance with treatment may account for these mutations. The aim of this study was to detect UL97 and UL54 putative mutations conferring ganciclovir-resistance in renal organ transplant recipients with high CMV load. In this cross-sectional study, 58 serum samples were collected from renal transplant recipients who had referred to three hospitals in Tehran from January 2014 to June 2015. Specific criteria such as CMV syndrome, presence of CMV in blood and organ dysfunction were considered. Then, they were tested for viral load in their early fourth month of intravenous ganciclovir treatment. Fifty cases revealing more than 200 copies/mL were analyzed for mutations. Two fragments of UL54 and Ul97 genes were amplified and sequenced bidirectionally. Sequence alignment and statistical analysis were performed by Mutation Surveyor software and t-test respectively. A significant difference was observed in viral load between seronegative and seropositive recipients (P = 0.036). The most frequent mutation was related to D605E in UL97 gene with the rate of 25%. Regardless of viral load, neither putative mutation nor simultaneous mutation was detected in either UL97 and UL54 regions. In spite of high viral load and persistence of symptoms, our population study did not reveal putative mutations. Hence, the direct relationship between the presence of high quantity of CMV and the occurrence of putative mutation cannot be considered. Non-putative gancyclovir resistant mutations and prolonged drug exposure may have a role in these manifestations.

  9. High dose compressive loads attenuate bone mineral loss in humans with spinal cord injury (United States)

    Dudley-Javoroski, S.; Saha, P. K.; Liang, G.; Li, C.; Gao, Z.


    Summary People with spinal cord injury (SCI) lose bone and muscle integrity after their injury. Early doses of stress, applied through electrically induced muscle contractions, preserved bone density at high-risk sites. Appropriately prescribed stress early after the injury may be an important consideration to prevent bone loss after SCI. Introduction Skeletal muscle force can deliver high compressive loads to bones of people with spinal cord injury (SCI). The effective osteogenic dose of load for the distal femur, a chief site of fracture, is unknown. The purpose of this study is to compare three doses of bone compressive loads at the distal femur in individuals with complete SCI who receive a novel stand training intervention. Methods Seven participants performed unilateral quadriceps stimulation in supported stance [150% body weight (BW) compressive load—“High Dose” while opposite leg received 40% BW—“Low Dose”]. Five participants stood passively without applying quadriceps electrical stimulation to either leg (40% BW load—“Low Dose”). Fifteen participants performed no standing (0% BW load—“Untrained”) and 14 individuals without SCI provided normative data. Participants underwent bone mineral density (BMD) assessment between one and six times over a 3-year training protocol. Results BMD for the High Dose group significantly exceeded BMD for both the Low Dose and the Untrained groups (p0.05), indicating that BMD for participants performing passive stance did not differ from individuals who performed no standing. High-resolution CT imaging of one High Dose participant revealed 86% higher BMD and 67% higher trabecular width in the High Dose limb. Conclusion Over 3 years of training, 150% BW compressive load in upright stance significantly attenuated BMD decline when compared to passive standing or to no standing. High-resolution CT indicated that trabecular architecture was preserved by the 150% BW dose of load. PMID:22187008

  10. Power quality improvement in highly varying loads using thyristor-switched capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Poshtan, M. [Petroleum Inst., Abu Dhabi (United Arab Emirates). Dept. of Electrical Engineering; Mokhtari, H.; Esmaeili, A. [Sharif Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Electrical Engineering


    Ordinary contactor-based-capacitor (CBC) banks may not be able to response quickly enough in highly varying electrical loads such as welding machines or arc furnace loads. Thyristor-switched capacitor (TSC) banks are therefore used to compensate for reactive power of highly varying loads. In this paper, the performance of a TSC was compared to CBC banks. The 2 systems, were also compared in terms of energy saving in transmission systems. Simulations carried out using PSCAD/EMTDC software showed that there was a considerable difference in the performance of the 2 systems. The shortcomings of existing CBC systems include slow response of mechanical switching systems; problem of switching more than one bank into the system; and, voltage/current transients during on-off switching. 3 refs., 6 tabs., 14 figs.

  11. Dietary carbohydrates, glycemic load and serum high-density lipoprotein cholesterol concentrations among South Indian adults. (United States)

    Radhika, G; Ganesan, A; Sathya, R M; Sudha, V; Mohan, V


    To examine the relationship between dietary carbohydrates, glycemic load and high-density lipoprotein cholesterol (HDL-C) concentrations in Asian Indians, a high-risk group for diabetes and premature coronary artery disease. The study population comprised of 2043 individuals aged >/=20 years randomly selected from Chennai Urban Rural Epidemiological Study (CURES), an ongoing population-based study on a representative population of Chennai (formerly Madras) city in southern India. Participants with self-reported history of diabetes or heart disease or on drug therapy for dyslipidemia were excluded from the study. Dietary carbohydrates, glycemic index and glycemic load were assessed using a validated interviewer administered semiquantitative Food Frequency Questionnaire (FFQ). Both dietary glycemic load (Pcarbohydrate intake (Pglycemic load, the multivariate-adjusted mean HDL-C values were 44.1 mg per 100 ml and 41.2 mg per 100 ml (6.6% difference, P for trendcarbohydrate it was less (5% difference, P for trend=0.016). The pattern of decrease in HDL-C for the lowest to highest quintile of glycemic load was more pronounced among men (1st vs 5th quintile: adjusted HDL-C: 4.3 mg per 100 ml decrease (10.3%)) than women (1st vs 5th quintile: adjusted HDL-C: 3.2 mg per 100 ml decrease (6.9%)). Our findings indicate that both total carbohydrates and dietary glycemic load intake are inversely associated with plasma HDL-C concentrations among Asian Indians, with dietary glycemic load having a stronger association.

  12. Brittle materials at high-loading rates: an open area of research (United States)

    Forquin, Pascal


    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  13. Material Compressing Test of the High Polymer Part Used in Draft Gear of Heavy Load Locomotive

    Directory of Open Access Journals (Sweden)

    Wei Yangang


    Full Text Available According to the actual load cases of heavy load locomotive, the material compressing tests of the high polymer parts used in the locomotive are researched. The relationship between stress and strain during the material compressing are acquired by means of comparing the many results of the material compressing tests under different test condition. The relationship between stress and strain during the material compressing is nonlinear in large range of strain, but the relationship is approximately linear in small range of strain. The material of the high polymer made in China and the material of the high polymer imported are compared through the tests. The results show that the compressing property of the material of the high polymer made in China and the material of the high polymer imported are almost same. The research offers the foundation to study the structure elasticity of the draft gear.

  14. High HPV 16 viral load is associated with increased cervical dysplasia in Honduran women.

    NARCIS (Netherlands)

    Tabora, N.; Ferrera, A.; Bakkers, J.M.J.E.; Massuger, L.F.A.G.; Melchers, W.J.G.


    Cervical cancer is believed to have a co-factorial etiology in which high-risk human papillomavirus (HPV) infections are considered an essential factor and other elements play an ancillary role. Besides the importance of specific HPV genotypes, other viral cofactors as viral load may influence the

  15. Residual stress in a M3:2 PM high speed steel; effect of mechanical loading

    DEFF Research Database (Denmark)

    Højerslev, Christian; Odén, Magnus; Carstensen, Jesper V.


    X-ray lattice strains were investigated in an AISI M3:2 PM high-speed steel in the as heat treated condition and after exposure to alternating mechanical load. The volume changes during heat treatment were monitored with dilatometry. Hardened and tempered AISI M3:2 steel consists of tempered lath...

  16. Fat oxidation before and after a high fat load in the obese insulin-resistant state

    NARCIS (Netherlands)

    Blaak, E.E.; Hul, G.; Verdich, C.; Stich, V.; Martinez, A.; Petersen, M.; Feskens, E.J.M.; Patel, K.; Oppert, J.M.; Barbe, P.; Toubro, S.; Anderson, I.; Polak, J.; Astrup, A.; Macdonald, I.A.; Holst, C.; Sørensen, T.I.; Saris, W.H.


    Background: Obesity may be associated with a lowered use of fat as a fuel, which may contribute to the enlarged adipose tissue stores. Aim: The aim of the present study was to study fatty acid use in the fasting state and in response to a high fat load in a large cohort of obese subjects (n = 701)

  17. Towards Cognitive-Aware Multimodal Presentation: The Modality Effects in High-Load HCI

    NARCIS (Netherlands)

    Cao, Y.; Theune, Mariet; Nijholt, Antinus; Harris, D.


    In this study, we argue that multimodal presentations should be created in a cognitive-aware manner, especially in a high-load HCI situation where the user task challenges the full capacity of the human cognition. An experiment was conducted to investigate the cognitive effects of modalities, using

  18. A high-rate shape memory alloy actuator for aerodynamic load control on wind turbines

    NARCIS (Netherlands)

    Lara-Quintanilla, A.; Hulskamp, A.W.; Bersee, H.E.N.


    This paper discusses the development of a high rate shape memory alloy (SMA) driven actuator. The concept of the actuator was developed to act as aerodynamic load control surface on wind turbines. It was designed as a plate or beam-like structure with prestrained SMA wires embedded off its neutral

  19. The influence of cavitation damage upon high temperature creep under stationary and non-stationary loading conditions. Part III: Creep at steady increasing load and true stress (United States)

    Boček, M.; Hoffmann, M.


    In this paper for ideally plastic materials the influence of high temperature cavitation damage upon creep at steady increasing loads is investigated. The damage function A(t) enters a constitutive equation for plastíc flow through an effective stress σ e. For given loading conditions the latter is derived from the solution of Hart's tensile test equation. In the present paper the case of time linear increase in load ( F = constant) and in true stress ( /.s = constant) is investigated. The creep equations for cavitating as well as for non-cavitating materials are derived and the volume change during creep at /.F = constant are calculated.

  20. Numerical analysis of high strain rate failure of electro-magnetically loaded steel sheets

    Directory of Open Access Journals (Sweden)

    Erice Borja


    Full Text Available Electro-magnetic forces provide a potentially power full means in designing dynamic experiments with active control of the loading conditions. This article deals with the development of computational models to simulate the thermo-mechanical response of electro-magnetically loaded metallic structures. The model assumes linear electromagnetic constitutive equations and time-independent electric induction to estimate the Joule heating and the Lorentz forces. The latter are then taken into account when evaluating stress equilibrium. A thermo-visco-plastic model with Johnson-Cook type of temperature and strain rate dependence and combined Swift-Voce hardening is used to evaluate the material's thermo-mechanical response. As a first application, the model is used to analyse the effect of electro-magnetic loading on the ductility of advanced high strength steels.

  1. Assessment of Gearbox Operational Loads and Reliability under High Mean Wind Speeds

    DEFF Research Database (Denmark)

    Dabrowski, Dariusz; Natarajan, Anand


    This paper investigates the dynamic loads occurring in the drivetrain of wind turbines with a focus on offshore applications. Herein a model of the gearbox of the 5 MW wind turbine is presented. The model is developed in a multi-body framework using commercial software MSC ADAMS. Validation...... of the model was based on the experimental data provided by NREL for 750 kW prototype gearbox. Failures of gearboxes caused by high dynamic loads have a significant influence on the cost of operation of wind farms. For these reasons in the study, the probability of failure of the gearbox working in an offshore...... operating gust, normal turbulence model and extreme turbulence model. In the paper, loads in the planetary gear are quantified as well as the torsional moments in the main shaft. On the basis of simulation results the annual probability of failure of the gearbox in a wind turbine with soft storm controller...

  2. Low Substrate Loading Limits Methanogenesis and Leads to High Coulombic Efficiency in Bioelectrochemical Systems

    Directory of Open Access Journals (Sweden)

    Tom H. J. A. Sleutels


    Full Text Available A crucial aspect for the application of bioelectrochemical systems (BESs as a wastewater treatment technology is the efficient oxidation of complex substrates by the bioanode, which is reflected in high Coulombic efficiency (CE. To achieve high CE, it is essential to give a competitive advantage to electrogens over methanogens. Factors that affect CE in bioanodes are, amongst others, the type of wastewater, anode potential, substrate concentration and pH. In this paper, we focus on acetate as a substrate and analyze the competition between methanogens and electrogens from a thermodynamic and kinetic point of view. We reviewed experimental data from earlier studies and propose that low substrate loading in combination with a sufficiently high anode overpotential plays a key-role in achieving high CE. Low substrate loading is a proven strategy against methanogenic activity in large-scale reactors for sulfate reduction. The combination of low substrate loading with sufficiently high overpotential is essential because it results in favorable growth kinetics of electrogens compared to methanogens. To achieve high current density in combination with low substrate concentrations, it is essential to have a high specific anode surface area. New reactor designs with these features are essential for BESs to be successful in wastewater treatment in the future.

  3. Study on the subgrade deformation under high-speed train loading and water-soil interaction (United States)

    Han, Jian; Zhao, Guo-Tang; Sheng, Xiao-Zhen; Jin, Xue-Song


    It is important to study the subgrade characteristics of high-speed railways in consideration of the water-soil coupling dynamic problem, especially when high-speed trains operate in rainy regions. This study develops a nonlinear water-soil interaction dynamic model of slab track coupling with subgrade under high-speed train loading based on vehicle-track coupling dynamics. By using this model, the basic dynamic characteristics, including water-soil interaction and without water induced by the high-speed train loading, are studied. The main factors-the permeability coefficient and the porosity-influencing the subgrade deformation are investigated. The developed model can characterize the soil dynamic behaviour more realistically, especially when considering the influence of water-rich soil.

  4. Stochastic clustering of material surface under high-heat plasma load (United States)

    Budaev, Viacheslav P.


    The results of a study of a surface formed by high-temperature plasma loads on various materials such as tungsten, carbon and stainless steel are presented. High-temperature plasma irradiation leads to an inhomogeneous stochastic clustering of the surface with self-similar granularity - fractality on the scale from nanoscale to macroscales. Cauliflower-like structure of tungsten and carbon materials are formed under high heat plasma load in fusion devices. The statistical characteristics of hierarchical granularity and scale invariance are estimated. They differ qualitatively from the roughness of the ordinary Brownian surface, which is possibly due to the universal mechanisms of stochastic clustering of material surface under the influence of high-temperature plasma.

  5. Experimental Investigation and FE Analysis on Constitutive Relationship of High Strength Aluminum Alloy under Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Yuanqing Wang


    Full Text Available Experiments of 17 high strength aluminum alloy (7A04 specimens were conducted to investigate the constitutive relationship under cyclic loading. The monotonic behavior and hysteretic behavior were focused on and the fracture surface was observed by scanning electron microscope (SEM to investigate the microfailure modes. Based on Ramberg-Osgood model, stress-strain skeleton curves under cyclic loading were fitted. Parameters of combined hardening model including isotropic hardening and kinematic hardening were calibrated from test data according to Chaboche model. The cyclic tests were simulated in finite element software ABAQUS. The test results show that 7A04 aluminum alloy has obvious nonlinearity and ultra-high strength which is over 600 MPa, however, with relatively poor ductility. In the cyclic loading tests, 7A04 aluminum alloy showed cyclic hardening behavior and when the compressive strain was larger than 1%, the stiffness degradation and strength degradation occurred. The simulated curves derived by FE model fitted well with experimental curves which indicates that the parameters of this combined model can be used in accurate calculation of 7A04 high strength aluminum structures under cyclic loading.

  6. Can blood flow restriction augment muscle activation during high-load training? (United States)

    Dankel, Scott J; Buckner, Samuel L; Jessee, Matthew B; Mattocks, Kevin T; Mouser, J Grant; Counts, Brittany R; Laurentino, Gilberto C; Loenneke, Jeremy P


    Blood flow restriction has been shown to augment muscle activation and increase muscle size when combined with low-load training; however, much less is known on whether blood flow restriction can augment muscle activation during high-load exercise. To determine whether applying blood flow restriction can augment muscle activation with traditional high-load resistance exercise. Ten individuals completed two sets of elbow flexion exercise to volitional fatigue. The control arm rested for 3 min between sets while the experimental arm had blood flow restriction applied for 3 min. The blood flow restricted arm completed significantly fewer repetitions in set 2 in comparison with set 1 [set 1: 9 (1), set 2: 4 (1); P<0·001], whereas no meaningful differences were observed in the control arm [set 1: 8 (1), set 2: 7 (1); P = 0·057]. There was no interaction for muscle activation (P = 0·851) with both conditions significantly lower at the start of set 2 [87 (26)%] in comparison with the end of set 1 [106 (40)%] or end of set 2 [103 (33)%]. The application of blood flow restriction does not augment muscle activation present with high-load exercise and would seem unlikely to induce greater muscle hypertrophy. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  7. Active Source Management to Maintain High Efficiency in Resonant Conversion over Wide  Load Range


    Danilovic, Milisav


    High-frequency and large amplitude current is a driving requirement for applications such as induction heating, wireless power transfer, power amplifier for magnetic resonant imaging, electronic ballasts, and ozone generators. Voltage-fed resonant inverters are normally employed, however, current-fed (CF) resonant inverters are a competitive alternative when the quality factor of the load is significantly high. The input current of a CF resonant inverter is considerably smaller than the outpu...

  8. Correlation analysis of high-risk human papillomavirus viral load and cervical lesions

    Directory of Open Access Journals (Sweden)

    Xiao-xing MA


    Full Text Available Objective  To explore the association between high-risk human papillomavirus (HR-HPV viral load and pathological grades of cervical intraepithelial neoplasia (CIN and cervical cancer. Methods  A total of 1248 patients from General Hospital of PLA, who underwent colposcopy and surgery due to cervical lesions between Jan. 2006 and Aug. 2011 were enrolled in this study, and they were divided five groups: cervicitis, CIN Ⅰ, CIN Ⅱ-Ⅲ, stage Ⅰ cervical cancer and stage Ⅱ cervical cancer. HR-HPV viral load (RLU/CO was determined by the Hybrid Capture Ⅱ (HCⅡ system, and they were categorized into five groups: 0-0.99, 1.00-9.99, 10.00-99.99, 100.00-999.99, ≥1000.00. The mean value and standard deviation of different HR-HPV viral load in the patients with cervicitis or with CIN Ⅰ, CINⅡ-Ⅲ, stage Ⅰ cervical cancer or stage Ⅱ cervical cancer were compared, and the correlation of HR-HPV viral load and pathogenesis of cervical lesions was analyzed. Results  HPV viral loads were significantly higher in CINⅠ(842.1±983.9, CINⅡ-Ⅲ (690.1±795.0, stage Ⅰ cervical cancer (893.1±974.2 and stage Ⅱ cervical cancer (699.5±908.3 patients than in cervicitis patients (274.2±613.6, P < 0.05, and the HPV viral loads in CINⅠ(842.1±983.9 and stage Ⅰ cervical cancer patients were higher than those in CINⅡ-Ⅲ patients (P < 0.05. When HR-HPV viral load was ≥100RLU/CO, the risk of CIN and cervical cancer increased with the increase in viral load, but there was no correlation between the viral load and pathological grades of cervical lesions. In the patients with stage ⅠB-Ⅱ cervical squamous cell carcinoma, when the HR-HPV viral load was ≥100RLU/CO, the risk of lymph node metastasis increased (P < 0.05, and the number of patients with maximum diameter of the cervical tumor ≥4cm also increased (P < 0.05. However, the HR-HPV viral load was not correlated with patient age, pathological type of the lesion, depth of cancer

  9. High-precision solution to the moving load problem using an improved spectral element method (United States)

    Wen, Shu-Rui; Wu, Zhi-Jing; Lu, Nian-Li


    In this paper, the spectral element method (SEM) is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem. In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases. Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.

  10. Identifying high risk loading conditions for in-season injury in elite Australian football players. (United States)

    Stares, Jordan; Dawson, Brian; Peeling, Peter; Heasman, Jarryd; Rogalski, Brent; Drew, Michael; Colby, Marcus; Dupont, Gregory; Lester, Leanne


    To examine different timeframes for calculating acute to chronic workload ratio (ACWR) and whether this variable is associated with intrinsic injury risk in elite Australian football players. Prospective cohort study. Internal (session rating of perceived exertion: sRPE) and external (GPS distance and sprint distance) workload and injury data were collected from 70 players from one AFL club over 4 seasons. Various acute (1-2 weeks) and chronic (3-8 weeks) timeframes were used to calculate ACWRs: these and chronic load categories were then analysed to determine the injury risk in the subsequent month. Poisson regression with robust errors within a generalised estimating equation were utilised to determine incidence rate ratios (IRR). Altering acute and/or chronic timeframes did not improve the ability to detect high injury risk conditions above the commonly used 1:4 week ACWR. Twenty-seven ACWR/chronic load combinations were found to be "high risk conditions" (IRR>1, pload was low or very low and ACWR was either low (1.5). Once a high injury risk condition was entered, the elevated risk persisted for up to 28 days. Injury risk was greatest when chronic load was low and ACWR was either low or high. This heightened risk remained for up to 4 weeks. There was no improvement in the ability to identify high injury risk situations by altering acute or chronic time periods from 1:4 weeks. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. High Atopobium vaginae and Gardnerella vaginalis vaginal loads are associated with preterm birth. (United States)

    Bretelle, Florence; Rozenberg, Patrick; Pascal, Alain; Favre, Romain; Bohec, Caroline; Loundou, Anderson; Senat, Marie-Victoire; Aissi, Germain; Lesavre, Nathalie; Brunet, Julie; Heckenroth, Hélène; Luton, Dominique; Raoult, Didier; Fenollar, Florence


    Bacterial vaginosis is a risk factor for preterm birth. The various conventional methods for its diagnosis are laborious and not easily reproducible. Molecular quantification methods have been reported recently, but the specific risk factors they might identify remain unclear. A prospective multicenter national study included pregnant women at risk of preterm birth. A quantitative molecular tool using a specific real-time polymerase chain reaction assay and serial dilutions of a plasmid suspension quantified Atopobium vaginae, Gardnerella vaginalis, lactobacilli, Mycoplasma hominis, and the human albumin gene (for quality control). In 813 pregnancies, high vaginal loads of either or both of A. vaginae and G. vaginalis were associated with preterm birth (hazard ratio [HR], 3.9; 95% confidence interval {CI}, 1.1-14.1; P = .031). A high vaginal load of A. vaginae was significantly associated with shortened time to delivery and therefore pregnancy length. These times were, respectively, 152.2 and 188.2 days (HR, 5.6; 95% CI, 1.5-21.3; P vaginalis are associated with late miscarriage and prematurity in high-risk pregnancies. A high vaginal load of A. vaginae (DNA level ≥10(8) copies/mL) identifies a population at high risk of preterm birth. Further studies that both screen for and then treat A. vaginae are needed. NCT00484653. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail:

  12. Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings

    Directory of Open Access Journals (Sweden)

    Dibble Clare J


    Full Text Available Abstract Background Screening new lignocellulosic biomass pretreatments and advanced enzyme systems at process relevant conditions is a key factor in the development of economically viable lignocellulosic ethanol. Shake flasks, the reaction vessel commonly used for screening enzymatic saccharifications of cellulosic biomass, do not provide adequate mixing at high-solids concentrations when shaking is not supplemented with hand mixing. Results We identified roller bottle reactors (RBRs as laboratory-scale reaction vessels that can provide adequate mixing for enzymatic saccharifications at high-solids biomass loadings without any additional hand mixing. Using the RBRs, we developed a method for screening both pretreated biomass and enzyme systems at process-relevant conditions. RBRs were shown to be scalable between 125 mL and 2 L. Results from enzymatic saccharifications of five biomass pretreatments of different severities and two enzyme preparations suggest that this system will work well for a variety of biomass substrates and enzyme systems. A study of intermittent mixing regimes suggests that mass transfer limitations of enzymatic saccharifications at high-solids loadings are significant but can be mitigated with a relatively low amount of mixing input. Conclusion Effective initial mixing to promote good enzyme distribution and continued, but not necessarily continuous, mixing is necessary in order to facilitate high biomass conversion rates. The simplicity and robustness of the bench-scale RBR system, combined with its ability to accommodate numerous reaction vessels, will be useful in screening new biomass pretreatments and advanced enzyme systems at high-solids loadings.

  13. The role of volume-load in strength and absolute endurance adaptations in adolescent's performing high- or low-load resistance training. (United States)

    Steele, James; Fisher, James P; Assunção, Ari R; Bottaro, Martim; Gentil, Paulo


    This study compared high- (HL) and low-load (LL) resistance training (RT) on strength, absolute endurance, volume-load, and their relationships in untrained adolescents. Thirty-three untrained adolescents of both sexes (males, n = 17; females, n = 16; 14 ± 1 years) were randomly assigned into either (i) HL (n = 17): performing 3 sets of 4-6 repetitions to momentary concentric failure; or (ii) LL (n = 16): performing 2 sets of 12-15 repetitions to momentary concentric failure. RT was performed for 2×/week for 9 weeks. Change in maximum strength (1 repetition maximum) and absolute muscular endurance for barbell bench press was assessed. Weekly volume-load was calculated as sets (n) × repetitions (n) × load (kg). Ninety-five percent confidence intervals (CIs) revealed that both groups significantly increased in strength and absolute endurance with large effect sizes (d = 1.51-1.66). There were no between-group differences for change in strength or absolute endurance. Ninety-five percent CIs revealed that both groups significantly increased in weekly volume-load with large effect sizes (HL = 1.66, LL = 1.02). There were no between-group differences for change in volume-load though average weekly volume-load was significantly greater for LL (p load and both strength (r = 0.650, p = 0.005) and absolute endurance (r = 0.552, p = 0.022) increases. Strength and absolute endurance increases do not differ between HL and LL conditions in adolescents when performed to momentary concentric failure. Under HL conditions greater weekly volume-load is associated with greater strength and absolute endurance increases.

  14. Direct FEM-computation of load carrying capacity of highly loaded passive components; Direkte FEM - Berechnung der Tragfaehigkeit hochbeanspruchter passiver Komponenten

    Energy Technology Data Exchange (ETDEWEB)

    Staat, M.; Heitzer, M. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Sicherheitsforschung und Reaktortechnik


    Detailed, inelastic FEM analyses yield accurate information about the stresses and deformations in passive components. The local loading conditions, however, cannot be directly compared with a limit load in terms of structural mechanics. Concentration on the load carrying capacity is an approach simplifying the analysis. Based on the plasticity theory, limit and shakedown analyses calculate the load carrying capacities directly and exactly. The paper explains the implementation of the limit and shakedown data sets in a general FEM program and the direct calculation of the load carrying capacities of passive components. The concepts used are explained with respect to common structural analysis. Examples assuming high local stresses illustrate the application of FEM-based limit and shakedown analyses. The calculated interaction diagrams present a good insight into the applicable operational loads of individual passive components. The load carrying analysis also opens up a structure mechanics-based approach to assessing the load-to-collapse of cracked components made of highly ductile fracture-resistant material. (orig./CB) [Deutsch] Genaue Kenntnis der Spannungen und Verformungen in passiven Komponenten gewinnt man mit detailierten inelastischen FEM Analysen. Die lokale Beanspruchung laesst sich aber nicht direkt mit einer Beanspruchbarkeit im strukturmechanischen Sinne vergleichen. Konzentriert man sich auf die Frage nach der Tragfaehigkeit, dann vereinfacht sich die Analyse. Im Rahmen der Plastizitaetstheorie berechnen Traglast- und Einspielanalyse die tragbaren Lasten direkt und exakt. In diesem Beitrag wird eine Implementierung der Traglast- und Einspielsaetze in ein allgemeines FEM Programm vorgestellt, mit der die Tragfaehigkeit passiver Komponenten direkt berechnet wird. Die benutzten Konzepte werden in Bezug auf die uebliche Strukturanalyse erlaeutert. Beispiele mit lokal hoher Beanspruchung verdeutlichen die Anwendung der FEM basierten Traglast- und

  15. Sex difference in the heat shock response to high external load resistance training in older humans. (United States)

    Njemini, Rose; Forti, Louis Nuvagah; Mets, Tony; Van Roie, Evelien; Coudyzer, Walter; Beyer, Ingo; Delecluse, Christophe; Bautmans, Ivan


    Literature reports on the effects of resistance training on heat shock protein70 (Hsp70) adaptation in older subjects are scarce. Moreover, the optimum training load required to obtain a beneficial adaptation profile is lacking. Therefore, the aim of this study was to determine the effects of resistance training at various external loads on extracellular Hsp70 (eHsp70) resting levels in older humans. Fifty-six community-dwelling older (68±5years) volunteers were randomized to 12weeks of resistance training (3×/week) at either high-resistance (HIGH, 8 males, 10 females, 2×10-15 repetitions at 80% 1RM), low resistance (LOW, 9 Males, 10 Females, 1×80-100 repetitions at 20% 1RM), or mixed low resistance (LOW+, 9 Males, 10 Females, 1×60 repetitions at 20% 1RM followed by 1×10-20 repetitions at 40% 1RM). Serum was available from 48 out of the 56 participants at baseline and after 12weeks for determination of eHsp70. Mid-thigh muscle volume (computed tomography), muscle strength (1RM & Biodex dynamometer) and physical functioning (including 6min walk distance [6MWD]) were assessed. There was a sex-related dichotomy in the heat shock response to high external load training. We observed a significant decrease in eHsp70 concentration in the HIGH group for female, but not male, subjects. At baseline, men had a larger muscle volume, leg press and leg extension 1RM compared to women (all ptraining at high external load decreases the resting levels of eHsp70 in older females. Whether this reflects a better health status requires further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Low load, high repetition resistance training program increases bone mineral density in untrained adults. (United States)

    Petersen, Bailey A; Hastings, Bryce; Gottschall, Jinger S


    High load, low repetition resistance training increases BMD in untrained adults; however, many older and untrained adults cannot maintain this type of strenuous program. Our goal was to evaluate whether a low load, high repetition resistance training program would increase BMD in untrained adults. Twenty sedentary, but otherwise healthy, adults (6 men and 14 women, age 28-63 yrs) completed a 27-week group exercise program. The participants were randomly assigned to one of two strength groups: one group completed full body, low load, high repetition weight training classes (S-WEIGHT), while the other group completed core focused fusion classes (S-CORE). Both groups also completed indoor cycling classes for cardiovascular conditioning. After a 3-week familiarization period, all participants completed a 12-week block of 5 fitness classes per week (3 cycling + 2 strength) and concluded with another 12-week block of 6 classes per week (3 cycling + 3 strength). We completed iDXA scans at baseline (week 3) and final (week 28). Compared to baseline, BMD significantly increased for S-WEIGHT in the arms (+4%, Pload, high repetition resistance training program may be an effective method to improve bone mass in adults.

  17. Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men.

    Directory of Open Access Journals (Sweden)

    Nicholas A Burd

    Full Text Available BACKGROUND: We aimed to determine the effect of resistance exercise intensity (%1 repetition maximum-1RM and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Fifteen men (21+/-1 years; BMI=24.1+/-0.8 kg/m2 performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM until volitional failure (90FAIL, 30% 1RM work-matched to 90%FAIL (30WM, or 30% 1RM performed until volitional failure (30FAIL. Infusion of [ring-13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX, myofibrillar (MYO, and sarcoplasmic (SARC protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121% and MYO (87% protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199% above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P=0.023 and mTORSer2448 phosphorylation at 4 h post-exercise (P=0.025. Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05 only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237% and 30FAIL (312% conditions. Pax7 mRNA expression increased at 24 h post-exercise (P=0.02 regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition. CONCLUSIONS/SIGNIFICANCE: These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes.

  18. Molecular dynamics simulation of functionalized graphene surface for high efficient loading of doxorubicin (United States)

    Mirhosseini, Mohammad Masoud; Rahmati, Mahmoud; Zargarian, Seyed Shahrooz; Khordad, Reza


    Molecular dynamics simulations are performed to study the design and optimization of nanocarriers with high drug loading capacity. Functionalized graphene is considered as the nominated high capacity drug carrier and Dox as the drug model. The graphene surface functionalized with hydroxyl (- OH), carboxyl (- COOH), methyl (- CH3) and amine (- NH2) groups and their associated properties are investigated. The simulation results are illustrated that G - COOH surface absorbs Dox more effectively in comparison to other functionalized graphene surfaces due to the higher binding energy of carboxylic groups and the model drug. The effect of hydrogen bonding, temperature and surface porosity are also evaluated. The results show that binding energy and the solubility parameter are temperature-dependent. The simulation results in this present work reveal the underlying mechanisms of Dox loading on neat and functionalized graphene surfaces may be employed to design better graphene-based nanocarriers for the Dox delivery applications.

  19. New load cycling strategy for enhanced durability of high temperature proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Thomas, Sobi; Jeppesen, Christian; Steenberg, Thomas


    The objective of this paper is to develop a new operational strategy to increase the lifetime of a high temperature proton exchange membrane (HT-PEMFCs) fuel cell system by using load cycling patterns to reduce the phosphoric acid loss from the fuel cell. Four single cells were operated under...... different current cycling profile, while one cell was operated at constant current density for comparison. Polarization curves and electrochemical impedance spectroscopy measurements were recorded during the course of the tests and analysed. Two different current densities, 0.2 Acm-2 for the lower end and 0.......8 Acm-2 for the higher end, were selected for the load cycling operation. The relaxation time, which is the period of time spent at low current density operation, is varied to understand how the performance over prolonged period behaves. The duration of the high current density operation is selected...

  20. Beam Test of a Dielectric Loaded High Pressure RF Cavity for Use in Muon Cooling Channels

    Energy Technology Data Exchange (ETDEWEB)

    Freemire, Ben [IIT, Chicago; Bowring, Daniel [Fermilab; Kochemirovskiy, Alexey [Chicago U.; Moretti, Alfred [Fermilab; Peterson, David [Fermilab; Tollestrup, Alvin [Fermilab; Torun, Yagmur [IIT, Chicago; Yonehara, Katsuya [Fermilab


    Bright muon sources require six dimensional cooling to achieve acceptable luminosities. Ionization cooling is the only known method able to do so within the muon lifetime. One proposed cooling channel, the Helical Cooling Channel, utilizes gas filled radio frequency cavities to both mitigate RF breakdown in the presence of strong, external magnetic fields, and provide the cooling medium. Engineering constraints on the diameter of the magnets within which these cavities operate dictate the radius of the cavities be decreased at their nominal operating frequency. To accomplish this, one may load the cavities with a larger dielectric material. A 99.5% alumina ring was inserted in a high pressure RF test cell and subjected to an intense proton beam at the MuCool Test Area at Fermilab. The results of the performance of this dielectric loaded high pressure RF cavity will be presented.

  1. Crystallization Kinetics of Indomethacin/Polyethylene Glycol Dispersions Containing High Drug Loadings. (United States)

    Duong, Tu Van; Van Humbeeck, Jan; Van den Mooter, Guy


    The reproducibility and consistency of physicochemical properties and pharmaceutical performance are major concerns during preparation of solid dispersions. The crystallization kinetics of drug/polyethylene glycol solid dispersions, an important factor that is governed by the properties of both drug and polymer has not been adequately explored, especially in systems containing high drug loadings. In this paper, by using standard and modulated differential scanning calorimetry and X-ray powder diffraction, we describe the influence of drug loading on crystallization behavior of dispersions made up of indomethacin and polyethylene glycol 6000. Higher drug loading increases the amorphicity of the polymer and inhibits the crystallization of PEG. At 52% drug loading, polyethylene glycol was completely transformed to the amorphous state. To the best of our knowledge, this is the first detailed investigation of the solubilization effect of a low molecular weight drug on a semicrystalline polymer in their dispersions. In mixtures containing up to 55% indomethacin, the dispersions exhibited distinct glass transition events resulting from amorphous-amorphous phase separation which generates polymer-rich and drug-rich domains upon the solidification of supercooled polyethylene glycol, whereas samples containing at least 60% drug showed a single amorphous phase during the period in which crystallization normally occurs. The current study demonstrates a wide range in physicochemical properties of drug/polyethylene glycol solid dispersions as a result of the complex nature in crystallization of this system, which should be taken into account during preparation and storage.

  2. High Loading of Pd Nanoparticles by Interior Functionalization of MOFs for Heterogeneous Catalysis. (United States)

    Gole, Bappaditya; Sanyal, Udishnu; Banerjee, Rahul; Mukherjee, Partha Sarathi


    In this report, the issue related to nanoparticle (NP) agglomeration upon increasing their loading amount into metal-organic frameworks (MOFs) has been addressed by functionalization of MOFs with alkyne groups. The alkynophilicity of the Pd(2+) (or other noble metals) ions has been utilized successfully for significant loading of Pd NPs into alkyne functionalized MOFs. It has been shown here that the size and loading amount of Pd NPs are highly dependent on the surface area and pore width of the MOFs. The loading amount of Pd NPs was increased monotonically without altering their size distribution on a particular MOF. Importantly, the distinct role of alkyne groups for Pd(2+) stabilization has also been demonstrated by performing a control experiment considering a MOF without an alkyne moiety. The preparation of NPs involved two distinct steps viz. adsorption of metal ions inside MOFs and reduction of metal ions. Both of these steps were monitored by microscopic techniques. This report also demonstrates the applicability of Pd@MOF NPs as extremely efficient heterogeneous catalysts for Heck-coupling and hydrogenation reactions of aryl bromides or iodides and alkenes, respectively.

  3. Dynamic Evaluation of Acrylonitrile Butadiene Styrene Subjected to High-Strain-Rate Compressive Loads (United States)


    Conclusions 10 5. References 11 Distribution List 13 iv List of Figures Figure 1. ASTM D 638-03 dog bone...1. ASTM D 638-03 dog bone. When designing the specimen for tensile testing, it is important that the tensile specimen be built such that the...2006, 45 (1), 18–24. 8. Lee, W. S.; Lin, C. F. Plastic Deformation and Fracture Behaviour of Ti–6Al–4V Alloy Loaded With High Strain Rate Under

  4. Microbial activities in a vertical-flow wetland system treating sewage sludge with high organic loads

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R. Y.; Perissol, C.; Baldy, V.; Bonin, G.; Korboulewsky, N.


    The rhizosphere is the most active zone in treatment wetlands where take place physicochemical and biological processes between the substrate, plants, microorganisms, and contaminants. Microorganisms play the key role in the mineralisation of organic matter. substrate respiration and phosphatase activities (acid and alkaline) were chosen as indicators of microbial activities, and studied in a vertical-flow wetland system receiving sewage sludge with high organic loads under the Mediterranean climate. (Author)

  5. Fluid structure interaction in high performance catamaran C-foils under load


    Marimon Giovannetti, Laura; Banks, Joseph; Boyd, Stephen; Turnock, Stephen


    An experimental technique to accurately quantify the deformation and the bend-twist coupling of high performance composite foils under fluid loading is presented. The experimental results are reproduced in a Computational Fluid Dynamic (CFD) environment to assess the impact of board deflection and changes in pitch angle on vertical force generated in the C-foils while sailing under increased hydrodynamic pressure.A three dimensional Digital Image Correlation (DIC) methodology suitable for use...

  6. Advanced thermoplastic composites: An attractive new material for usage in highly loaded vehicle components

    Energy Technology Data Exchange (ETDEWEB)

    Mehn, R.; Seidl, F.; Peis, R.; Heinzmann, D.; Frei, P. [BMW AG Muenchen (Germany)


    Beside the lightweight potential and further well known advantages of advanced composite materials, continuous fiber reinforced thermoplastics employed in vehicle structural parts especially offer short manufacturing cycle times and an additional economically viable manufacturing process. Presenting a frame structure concept for two highly loaded vehicle parts, a safety seat and a side door, numerous features concerning the choice of suitable composite materials, design aspects, investigations to develop a thermoforming technique, mature for a series production of vehicle parts, are discussed.

  7. 3D extrusion printing of high drug loading immediate release paracetamol tablets. (United States)

    Khaled, Shaban A; Alexander, Morgan R; Wildman, Ricky D; Wallace, Martin J; Sharpe, Sonja; Yoo, Jae; Roberts, Clive J


    The manufacture of immediate release high drug loading paracetamol oral tablets was achieved using an extrusion based 3D printer from a premixed water based paste formulation. The 3D printed tablets demonstrate that a very high drug (paracetamol) loading formulation (80% w/w) can be printed as an acceptable tablet using a method suitable for personalisation and distributed manufacture. Paracetamol is an example of a drug whose physical form can present challenges to traditional powder compression tableting. Printing avoids these issues and facilitates the relatively high drug loading. The 3D printed tablets were evaluated for physical and mechanical properties including weight variation, friability, breaking force, disintegration time, and dimensions and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). X-ray Powder Diffraction (XRPD) was used to identify the physical form of the active. Additionally, XRPD, Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC) were used to assess possible drug-excipient interactions. The 3D printed tablets were evaluated for drug release using a USP dissolution testing type I apparatus. The tablets showed a profile characteristic of the immediate release profile as intended based upon the active/excipient ratio used with disintegration in less than 60 s and release of most of the drug within 5 min. The results demonstrate the capability of 3D extrusion based printing to produce acceptable high-drug loading tablets from approved materials that comply with current USP standards. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Pro-inflammatory cytokines expression increases following low- and high-magnitude cyclic loading of lumbar ligaments (United States)

    D’Ambrosia, Peter; King, Karen; Davidson, Bradley; Zhou, Bing He; Lu, Yun


    Repetitive or overuse disorders of the lumbar spine affect the lives of workers and athletes. We hypothesize that repetitive anterior lumbar flexion–extension under low or high load will result in significantly elevated pro-inflammatory cytokines expression several hours post-activity. High loads will exhibit significantly higher expression than low loads. Lumbar spine of in vivo feline was subjected to cyclic loading at 0.25 Hz for six 10-min periods with 10 min of rest in between. One group was subjected to a low peak load of 20 N, whereas the second group to a high peak load of 60 N. Following a 7-h post-loading rest, the supraspinous ligaments of L-3/4, L-4/5 and L-5/6 and the unstimulated T-10/11 were excised for mRNA analysis and IL-1β, IL-6, IL-8, TNFα and TGFβ1 pro-inflammatory cytokines expression. Creep (laxity) developed in the lumbar spine during the loading and the subsequent 7 h of rest was calculated. A two-way mixed model ANOVA was used to assess difference in each cytokines expression between the two groups and control. Tukey HSD post hoc analysis delineated specific significant effects. Significance was set at 0.05. Low and high-load groups exhibited development of creep throughout the cyclic loading period and gradual recovery throughout the 7-h rest period. Residual creep of 24.8 and 30.2% were present in the low and high-load groups, respectively, 7-h post-loading. Significant increases in expression of all cytokines measured relative to control were obtained for supraspinous ligaments from both low and high-load magnitudes. IL-6, IL-8 and TGFβ1 expression in the high-load group were significantly higher relative to the low-load group. Significant increases in cytokines expression indicating tissue inflammation are observed several hours post-repetitive lumbar flexion–extension regardless of the load magnitude applied. Repetitive occupational and athletic activity, regardless of the load applied, may be associated with the

  9. Theoretical research and experimental validation of elastic dynamic load spectra on bogie frame of high-speed train (United States)

    Zhu, Ning; Sun, Shouguang; Li, Qiang; Zou, Hua


    When a train runs at high speeds, the external exciting frequencies approach the natural frequencies of bogie critical components, thereby inducing strong elastic vibrations. The present international reliability test evaluation standard and design criteria of bogie frames are all based on the quasi-static deformation hypothesis. Structural fatigue damage generated by structural elastic vibrations has not yet been included. In this paper, theoretical research and experimental validation are done on elastic dynamic load spectra on bogie frame of high-speed train. The construction of the load series that correspond to elastic dynamic deformation modes is studied. The simplified form of the load series is obtained. A theory of simplified dynamic load-time histories is then deduced. Measured data from the Beijing-Shanghai Dedicated Passenger Line are introduced to derive the simplified dynamic load-time histories. The simplified dynamic discrete load spectra of bogie frame are established. Based on the damage consistency criterion and a genetic algorithm, damage consistency calibration of the simplified dynamic load spectra is finally performed. The computed result proves that the simplified load series is reasonable. The calibrated damage that corresponds to the elastic dynamic discrete load spectra can cover the actual damage at the operating conditions. The calibrated damage satisfies the safety requirement of damage consistency criterion for bogie frame. This research is helpful for investigating the standardized load spectra of bogie frame of high-speed train.


    Energy Technology Data Exchange (ETDEWEB)



    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat

  11. Ceramic Near-Net Shaped Processing Using Highly-Loaded Aqueous Suspensions (United States)

    Rueschhoff, Lisa

    Ceramic materials offer great advantages over their metal counterparts, due to their lower density, higher hardness and wear resistance, and higher melting temperatures. However, the use of ceramics in applications where their properties would offer tremendous advantages are often limited due to the difficulty of forming them into complex and near-net shaped parts. Methods that have been developed to injection-mold or cast ceramics into more complicated shapes often use significant volume fractions of a carrier (often greater than 35 vol.% polymer), elevated temperature processing, or less-than-environmentally friendly chemicals where a complex chemical synthesis reaction must be timed perfectly for the approach to work. Furthermore, the continuing maturation of additive manufacturing methods requires a new approach for flowing/placing ceramic powders into useful designs. This thesis addresses the limitations of the current ceramic forming approaches by developing highly-stabilized and therefore high solids loading ceramic suspensions, with the requisite rheology for a variety of complex and near-net shaped forming techniques. Silicon nitride was chosen as a material of focus due to its high fracture toughness compared to other ceramic materials. Designing ceramic suspensions that are flowable at room temperature greatly simplifies processing as neither heating nor cooling are required during forming. Highly-loaded suspensions (>40 vol.%) are desired because all formed ceramic bodies have to be sintered to remove pores. Finally, using aqueous-based suspensions reduces any detrimental effect on the environment and tooling. The preparation of highly-loaded suspensions requires the development of a suitable dispersant through which particle-particle interactions are controlled. However, silicon nitride is difficult to stabilize in water due to complex surface and solution chemistry. In this study, aqueous silicon nitride suspensions up to 45 vol.% solids loading were

  12. Measurement of circumsolar ratio in high dust loading regions using a photographic method (United States)

    Al-Ansary, Hany; Shafiq, Talha; Rizvi, Arslan; El-Leathy, Abdelrahman


    Performance of concentrating solar power (CSP) plants is highly affected by direct normal irradiance (DNI). However, it is also important to consider circumsolar radiation in any simulation of a CSP plant, especially in desert regions where dust loading in the atmosphere is expected. There are a number of methods to measure circumsolar radiation. However, most of them require expensive instrumentation. This work introduces a simple method to estimate circumsolar radiation. It involves taking high-resolution photographs of the sun and processing them using a computer code that identifies the sun's disk. The code then uses pixel intensities to obtain the solar intensity distribution across the sun's disk and in the aureole region. The solar intensity distribution is then used to obtain the circumsolar ratio (CSR) which represents the shape of the sun. To test this method, numerous photos of the sun were taken during the month of April and September 2016 at King Saud University in Riyadh, Saudi Arabia. Riyadh is a region that is well known for high dust-loading, especially during the summer. Two days of different atmospheric conditions were selected in September for comparative analysis. Results show that this method produces repeatable results, and that the CSR can increase significantly due to high dust loading and passing clouds. The CSR is found to be a strong function of DNI, ranging from about 4.5% at DNI values above 800 W/m2 and increasing to as much as 8.5% when DNI drops to about 400 W/m2, due to passing clouds. Furthermore, the results show that circumsolar ratio tends to be high in the early morning and late afternoon due to the high air mass, while its values tend to be lowest around solar noon when the air mass is lowest.

  13. Direct Numerical Simulations of Microstructure Effects During High-Rate Loading of Additively Manufactured Metals (United States)

    Battaile, Corbett; Owen, Steven; Moore, Nathan


    The properties of most engineering materials depend on the characteristics of internal microstructures and defects. In additively manufactured (AM) metals, these can include polycrystalline grains, impurities, phases, and significant porosity that qualitatively differ from conventional engineering materials. The microscopic details of the interactions between these internal defects, and the propagation of applied loads through the body, act in concert to dictate macro-observable properties like strength and compressibility. In this work, we used Sandia's ALEGRA finite element software to simulate the high-strain-rate loading of AM metals from laser engineered net shaping (LENS) and thermal spraying. The microstructural details of the material were represented explicitly, such that internal features like second phases and pores are captured and meshed as individual entities in the computational domain. We will discuss the dependence of the high-strain-rate mechanical properties on microstructural characteristics such as the shapes, sizes, and volume fractions of second phases and pores. In addition, we will examine how the details of the microstructural representation affect the microscopic material response to dynamic loads, and the effects of using ``stair-step'' versus conformal interfaces smoothed via the SCULPT tool in Sandia's CUBIT software. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE NNSA under contract DE-AC04-94AL85000.

  14. Wearable woven supercapacitor fabrics with high energy density and load-bearing capability. (United States)

    Shen, Caiwei; Xie, Yingxi; Zhu, Bingquan; Sanghadasa, Mohan; Tang, Yong; Lin, Liwei


    Flexible power sources with load bearing capability are attractive for modern wearable electronics. Here, free-standing supercapacitor fabrics that can store high electrical energy and sustain large mechanical loads are directly woven to be compatible with flexible systems. The prototype with reduced package weight/volume provides an impressive energy density of 2.58 mWh g-1 or 3.6 mWh cm-3, high tensile strength of over 1000 MPa, and bearable pressure of over 100 MPa. The nanoporous thread electrodes are prepared by the activation of commercial carbon fibers to have three-orders of magnitude increase in the specific surface area and 86% retention of the original strength. The novel device configuration woven by solid electrolyte-coated threads shows excellent flexibility and stability during repeated mechanical bending tests. A supercapacitor watchstrap is used to power a liquid crystal display as an example of load-bearing power sources with various form-factor designs for wearable electronics.

  15. Long-duration heat load measurement approach by novel apparatus design and highly efficient algorithm (United States)

    Zhu, Yanwei; Yi, Fajun; Meng, Songhe; Zhuo, Lijun; Pan, Weizhen


    Improving the surface heat load measurement technique for vehicles in aerodynamic heating environments is imperative, regarding aspects of both the apparatus design and identification efficiency. A simple novel apparatus is designed for heat load identification, taking into account the lessons learned from several aerodynamic heating measurement devices. An inverse finite difference scheme (invFDM) for the apparatus is studied to identify its surface heat flux from the interior temperature measurements with high efficiency. A weighted piecewise regression filter is also proposed for temperature measurement prefiltering. Preliminary verification of the invFDM scheme and the filter is accomplished via numerical simulation experiments. Three specific pieces of apparatus have been concretely designed and fabricated using different sensing materials. The aerodynamic heating process is simulated by an inductively coupled plasma wind tunnel facility. The identification of surface temperature and heat flux from the temperature measurements is performed by invFDM. The results validate the high efficiency, reliability and feasibility of heat load measurements with different heat flux levels utilizing the designed apparatus and proposed method.

  16. Numerical Simulation and Validation of a High Head Model Francis Turbine at Part Load Operating Condition (United States)

    Goyal, Rahul; Trivedi, Chirag; Kumar Gandhi, Bhupendra; Cervantes, Michel J.


    Hydraulic turbines are operated over an extended operating range to meet the real time electricity demand. Turbines operated at part load have flow parameters not matching the designed ones. This results in unstable flow conditions in the runner and draft tube developing low frequency and high amplitude pressure pulsations. The unsteady pressure pulsations affect the dynamic stability of the turbine and cause additional fatigue. The work presented in this paper discusses the flow field investigation of a high head model Francis turbine at part load: 50% of the rated load. Numerical simulation of the complete turbine has been performed. Unsteady pressure pulsations in the vaneless space, runner, and draft tube are investigated and validated with available experimental data. Detailed analysis of the rotor stator interaction and draft tube flow field are performed and discussed. The analysis shows the presence of a rotating vortex rope in the draft tube at the frequency of 0.3 times of the runner rotational frequency. The frequency of the vortex rope precession, which causes severe fluctuations and vibrations in the draft tube, is predicted within 3.9% of the experimental measured value. The vortex rope results pressure pulsations propagating in the system whose frequency is also perceive in the runner and upstream the runner.

  17. Success and high predictability of intraorally welded titanium bar in the immediate loading implants. (United States)

    Fogli, Vaniel; Camerini, Michele; Lauritano, Dorina; Carinci, Francesco


    The implants failure may be caused by micromotion and stress exerted on implants during the phase of bone healing. This concept is especially true in case of implants placed in atrophic ridges. So the primary stabilization and fixation of implants are an important goal that can also allow immediate loading and oral rehabilitation on the same day of surgery. This goal may be achieved thanks to the technique of welding titanium bars on implant abutments. In fact, the procedure can be performed directly in the mouth eliminating possibility of errors or distortions due to impression. This paper describes a case report and the most recent data about long-term success and high predictability of intraorally welded titanium bar in immediate loading implants.

  18. Success and High Predictability of Intraorally Welded Titanium Bar in the Immediate Loading Implants

    Directory of Open Access Journals (Sweden)

    Vaniel Fogli


    Full Text Available The implants failure may be caused by micromotion and stress exerted on implants during the phase of bone healing. This concept is especially true in case of implants placed in atrophic ridges. So the primary stabilization and fixation of implants are an important goal that can also allow immediate loading and oral rehabilitation on the same day of surgery. This goal may be achieved thanks to the technique of welding titanium bars on implant abutments. In fact, the procedure can be performed directly in the mouth eliminating possibility of errors or distortions due to impression. This paper describes a case report and the most recent data about long-term success and high predictability of intraorally welded titanium bar in immediate loading implants.

  19. Influence of different SSF conditions on ethanol production from corn stover at high solids loadings

    DEFF Research Database (Denmark)

    Gladis, Arne; Bondesson, Pia-Maria; Galbe, Mats


    In this study, three different kinds of simultaneous saccharification and fermentation (SSF) of washed pretreated corn stover with water-insoluble solids (WIS) content of 20% were investigated to find which one resulted in highest ethanol yield at high-solids loadings. The different methods were...... batch SSF, prehydrolysis followed by batch SSF and fed-batch SSF. Batch-SSF resulted in an ethanol yield of 75-76% and an ethanol concentration of 53 g/L. Prehydrolysis prior to batch SSF did not improve the ethanol yield compared with batch SSF. Fedbatch SSF, on the other hand, increased the yield...... was seen in batch mode with and without prehydrolysis (73%). This resulted in similar ethanol yields in all methods. However, the residence time to achieve the final ethanol yield was shorter using fed-batch. This shows that fed-batch can be a better alternative also at a lower enzyme loading....

  20. High-Velocity Impact Behaviour of Prestressed Composite Plates under Bird Strike Loading

    Directory of Open Access Journals (Sweden)

    Sebastian Heimbs


    Full Text Available An experimental and numerical analysis of the response of laminated composite plates under high-velocity impact loads of soft body gelatine projectiles (artificial birds is presented. The plates are exposed to tensile and compressive preloads before impact in order to cover realistic loading conditions of representative aeronautic structures under foreign object impact. The modelling methodology for the composite material, delamination interfaces, impact projectile, and preload using the commercial finite element code Abaqus are presented in detail. Finally, the influence of prestress and of different delamination modelling approaches on the impact response is discussed and a comparison to experimental test data is given. Tensile and compressive preloading was found to have an influence on the damage pattern. Although this general behaviour could be predicted well by the simulations, further numerical challenges for improved bird strike simulation accuracy are highlighted.

  1. Automated load balancing in the ATLAS high-performance storage software

    CERN Document Server

    Le Goff, Fabrice; The ATLAS collaboration


    The ATLAS experiment collects proton-proton collision events delivered by the LHC accelerator at CERN. The ATLAS Trigger and Data Acquisition (TDAQ) system selects, transports and eventually records event data from the detector at several gigabytes per second. The data are recorded on transient storage before being delivered to permanent storage. The transient storage consists of high-performance direct-attached storage servers accounting for about 500 hard drives. The transient storage operates dedicated software in the form of a distributed multi-threaded application. The workload includes both CPU-demanding and IO-oriented tasks. This paper presents the original application threading model for this particular workload, discussing the load-sharing strategy among the available CPU cores. The limitations of this strategy were reached in 2016 due to changes in the trigger configuration involving a new data distribution pattern. We then describe a novel data-driven load-sharing strategy, designed to automatical...

  2. Research on Power Calculation Method of High Speed Rotary Device under Wind Loads Crystals (United States)

    Ji, M. S.; Xue, Y.; Wu, N.


    The wind load has a great influence on the power of large rotary devices working outdoors. In the power calculation formula of the rotary devices, the static air pressure is often used as the wind resistance of the whole device. But in fact, the rotating device bears the dynamic wind pressure during the rotation. This method of calculation will lead to large deviation. Based on this, this paper emphatically studied the dynamic wind load of the rotating device under rotation, and gave a more accurate formula for the calculation of the rotating power. This formula solves the problem of power calculation of the rotating device in high speed rotation. It can be widely used in all kinds of rotating devices.

  3. Numerical Study of Active Flow Control for a Transitional Highly-Loaded Low-Pressure Turbine (United States)


    high- altitude cruise, such low-pressure turbines may encounter Reynolds numbers, based upon blade axial chord and inlet conditions, below 25,000. In this...numerically for subsonic flow through a highly-loaded low-pressure turbine. At a nominal Reynolds number of 25,000 based upon axial chord and inlet conditions...Okiishi, T. H., Walker, G. J., Hodson, H. P., and Shin, H. W., “Boundary Layer Development in Axial Compressors and Turbines Part 1 of 4: Composite

  4. Frequent detection of high human papillomavirus DNA loads in oral potentially malignant disorders. (United States)

    Pierangeli, A; Cannella, F; Scagnolari, C; Gentile, M; Sciandra, I; Antonelli, G; Ciolfi, C; Russo, C; Palaia, G; Romeo, U; Polimeni, A


    Human papillomavirus (HPV) is estimated to be the cause of 40--80% of the squamous cell carcinoma of the oropharynx but only of a small fraction of the oral cavity cancers. The prevalence of oral HPV infection has significantly increased in the last decade, raising concerns about the role of HPV in progression of oral potentially malignant disorders (OPMD) toward squamous cell carcinomas. We sought to study HPV infection in patients with oral lesions, and in control individuals, using non-invasive and site-specific oral brushing and sensitive molecular methods. HPV DNA positivity and viral loads were evaluated in relation to patient data and clinical diagnosis. We enrolled 116 individuals attending Dental Clinics: 62 patients with benign oral lesions (e.g. fibromas, papillomatosis, ulcers) or OPMD (e.g. lichen, leukoplakia) and 54 controls. Oral cells were collected with Cytobrush and HPV-DNA was detected with quantitative real-time PCR for the more common high-risk (HR) and low-risk (LR) genotypes. HPV detection rate, percentage of HR HPVs and HPV-DNA loads (namely HPV16 and in particular, HPV18) were significantly higher in patients than in controls. Lichen planus cases had the highest HPV-positive rate (75.0%), hairy leukoplakia the lowest (33.3%). This study detected unexpectedly high rates of HPV infection in cells of the oral mucosa. The elevated HR HPV loads found in OPMD suggest the effectiveness of quantitative PCR in testing oral lesions. Prospective studies are needed to establish whether elevated viral loads represent a clinically useful marker of the risk of malignant progression. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  5. Electrospinning of silver nanoparticles loaded highly porous cellulose acetate nanofibrous membrane for treatment of dye wastewater (United States)

    Wang, Ke; Ma, Qian; Wang, Shu-Dong; Liu, Hua; Zhang, Sheng-Zhong; Bao, Wei; Zhang, Ke-Qin; Ling, Liang-Zhong


    In this paper, silver nanoparticles (NPs) were reduced form silver nitrate. Morphology and distribution of the synthesized silver NPs were characterized. In order to obtain cellulose acetate (CA), nanofibrous membrane with high effective adsorption performance to carry silver NPs for treatment of dye wastewater, different solvent systems were used to fabricate CA nanofibrous membranes with different morphologies and porous structures via electrospinning. Morphologies and structures of the obtained CA nanofibrous membranes were compared by scanning electron microscopy (SEM), which showed that CA nanofibrous membrane obtained from acetone/dichloromethane (1/2, v/v) was with the highly porous structure. SEM, energy-dispersive spectrometry and Fourier transform infrared spectrometry showed that the silver NPs were effectively incorporated in the CA nanofibrous membrane and the addition of silver NPs did not damage the porous structure of the CA nanofibrous membrane. Adsorption of dye solution (rhodamine B aqueous solution) revealed that the highly porous CA nanofibrous membrane exhibited effective adsorption performance and the addition of silver NPs did not affect the adsorption of the dye. Antibacterial property of the CA nanofibrous membrane showed that the silver-loaded highly porous CA nanofibrous membrane had remarkable antibacterial property when compared to the CA nanofibrous membrane without silver NPs. The silver-loaded highly porous CA nanofibrous membrane could be considered as an ideal candidate for treatment of the dye wastewater.

  6. Effect of shock and mixed loading on the performance of SND based sequencing batch reactors (SBR) degrading nitrophenols. (United States)

    Kulkarni, P M


    The effect of nitrophenolic shock loads on the performance of three lab scale SBRs was studied using a synthetic feed. Nitrophenols were biotransformed by Simultaneous heterotrophic Nitrification and aerobic Denitrification (SND) using a specially designed single sludge biomass containing Thiosphaera pantotropha. Reactors R1, R2 and R3 were fed with 200mg/L concentration of 4-nitrophenol (4-NP), 2,4-dinitrophenol (2,4-DNP), and 2,4,6-trinitrophenol (2,4,6-TNP) whereas reactor R was used as a background control. Three nitrophenolic shock loadings of 400, 600 and 800 mg/Ld were administrated by increasing the influent nitrophenolic concentration while keeping the hydraulic retention time as 48 h. The shocks were given continuously for a period of 4 days before switching back to normal nitrophenolic loading (200mg/Ld). The reactors were allowed to recover to normal performance level before administrating the next nitrophenolic shock load. The study showed that a nitrophenolic shock load, as high as 600 mg/Ld was completely degraded by the 4-NP & 2,4-DNP bioreactors while almost half degraded by the 2,4,6-TNP bioreactor without affecting the reactor's performance irreversibly. After resuming the normal nitrophenolic loading, it took almost 8-10 days for the reactors to recover from the shock effect. The study was further extended to evaluate the maximum possible mixed nitrophenolic loading (4-NP:2,4-DNP:2,4,6-TNP 1:1:1) to which a reactor (R3) containing 2,4,6-TNP acclimated single sludge biomass can be exposed without hampering the reactor performance irreversibly. The reactor was able to achieve pseudo-steady-state at a mixed nitrophenolic loading of 300 mg/Ld with more than 90% removal of all the three nitrophenols, but could remove half of the mixed nitrophenolic loading of 600 mg/Ld. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. High voltage pulses for high impedance loads using explosive formed fuses

    Energy Technology Data Exchange (ETDEWEB)

    Degnan, J.H.; Kiuttu, G.F.; Turchi, P.J. [Air Force Research Labs., Kirtland AFB, NM (United States). Phillips Research Site; Goforth, J.H.; Lopez, E.A.; Oona, H.; Tasker, D.G. [Los Alamos National Lab., NM (United States); Graham, J.D.


    Explosive formed fuses (EFF`s) use conducting elements that are deformed by explosive pressure (typically, against dielectric dies). This causes the fuse geometry to change, so that the conducting element cross section decreases. This enables a higher ratio of current conduction to current interrupt time than for normal fuses, and it enables more control of when current interruption occurs. In combination with a suitable output closing switch, EFF`s can be used to obtain several hundred kilovolt voltage pulses from inductive stores to drive several ohm loads. With proper choices of inductive store, EFF geometry and material, and output closing switch features, such a voltage pulse can be approximately flat topped for microsecond duration and have a small fraction of microsecond risetime. The authors present theoretical analysis and circuit simulations which illustrate this, using scaled empirical EFF parameters for inductive stores in the 1 weber flux, several hundred nanohenry range. The circuit simulations were done using MicroCap-IV, with user defined elements. These simulations were done with static inductive stores and with explosive magnetic flux compression generators driving inductive stores.

  8. Design of a high-power load for millimetre-wave Gaussian beams (United States)

    Bruschi, A.; Cirant, S.; Gandini, F.; Granucci, G.; Mellera, V.; Muzzini, V.; Nardone, A.; Simonetto, A.; Sozzi, C.; Spinicchia, N.


    The design of a compact matched load for high-power measurements and testing of gyrotrons and transmission lines in ECRH plants for fusion research applications is currently in an advanced phase. The aim is to provide more than 95% absorption and precise calorimetric measurement of the input power in CW. This work is based on the results of tests at high power and short pulse length (140 GHz, 0.5 MW, 0.5 s) on loads installed on the ECRH plant of the FTU Tokamak in Frascati. The loads consist basically of hollow spheres of copper with the inner wall covered by plasma-sprayed lossy ceramics. Tests at higher power and longer pulses on the ASDEX-Upgrade ECRH plant showed, after a number of successful pulses, progressive damage on the absorbing layer, marked by the appearance of electrical arcs. The absorber degradation, showing specific damage patterns, due to exposure to high-power millimetre waves, has been analysed in detail and strategies are proposed, in order to improve the power-handling capabilities and the energy extraction rate. New measurements of millimetric absorption and thermal conductivity have been performed on samples of different ceramics, for choosing the best absorbing layer. A modified expander mirror surface with a better deposition profile, numerically computed with a multi-reflection model of the sphere, is designed to avoid radiation accumulation close to the entrance port. Improved cooling channels, which in principle can exploit the increased heat transfer rate due to surface boiling, as used in high-performance cooling circuits such as plasma-facing components, will provide 1-MW CW power capability. In this paper, some technical solutions for the construction and the constraints on the allowable deformation during pulses are given.

  9. Compact and high-performance bandpass filter and diplexer based on SCMRC-loaded SIR (United States)

    Xu, Jin; Ji, Yu-Xue; Chen, Chun-Hong; Wu, Wen


    Bandpass filter (BPF) and diplexer, which are required to be compact size and high performance, are widely used in modern wireless communication systems. In this article, novel BPF and diplexer are designed using the proposed resonator called spiral compact microstrip resonator cell (SCMRC)-loaded stepped-impedance resonator (SIR). The SCMRC-loaded SIR is proposed using the slow-wave structure SCMRC to replace the low-impedance section of the conventional SIR. Compared with the conventional SIR, the new SCMRC-loaded SIR has a compacter size and can generate a transmission zero above its fundamental resonant frequency. As examples, a BPF with the central frequency at f 0 = 1 GHz and a diplexer operating at 0.9/1.57 GHz are designed and fabricated. The fabricated BPF occupies a compact size of 0.07 λ 0 × 0.035 λ 0 and has a -60 dB rejection level wide stopband from 1.2 f 0 to 3.8 f 0. The fabricated diplexer occupies a compact size of 0.076 λ 0 × 0.128 λ 0 and has an up to -50 dB output isolation. Good agreement can be observed between the simulations and the measurements.

  10. The control of dead space with antibiotic loaded cement beads and nails in high energy trauma

    Directory of Open Access Journals (Sweden)

    A. Al-Sadek


    Full Text Available Purpose: To treat delayed present (more than 24h and Gustilo type III fractures in a better way than external fixation which before was a routine in our hospital. Methods: We have applied advanced trauma life support control (ATLS. After proper debridement of the wound, irrigation with saline and antibiotic cover, we reduced the fracture with the Sign IM nail, which is a solid nail without internal dead space, and then we added antibiotic loaded cement with 3g of Amikacin and 4g of Vancomycin. Results: Out of 38 delayed present fractures, we have observed serous discharge in 3 cases which have been controlled by changing the antibiotic loaded cement. While the other cases remained uninfected. Conclusion: The best way to deal with infection is to prevent it, while other factors as obesity, diabetes, and other co-morbidities increase the risk of infection. In our method, we also provided local high concentration of antibiotic with the use of cement loaded antibiotic, and the control of dead space with bone defect and tissue loss. If we do not put cement or other solid material, then blood will definitely take space and that would be a media for infection.

  11. Charge-Reversal APTES-Modified Mesoporous Silica Nanoparticles with High Drug Loading and Release Controllability. (United States)

    Wang, Yifeng; Sun, Yi; Wang, Jine; Yang, Yang; Li, Yulin; Yuan, Yuan; Liu, Changsheng


    In this study, we demonstrate a facile strategy (DL-SF) for developing MSN-based nanosystems through drug loading (DL, using doxorubicin as a model drug) followed by surface functionalization (SF) of mesoporous silica nanoparticles (MSNs) via aqueous (3-aminopropyl)triethoxysilane (APTES) silylation. For comparison, a reverse functionalization process (i.e., SF-DL) was also studied. The pre-DL process allows for an efficient encapsulation (encapsulation efficiency of ∼75%) of an anticancer drug [doxorubicin (DOX)] inside MSNs, and post-SF allows in situ formation of an APTES outer layer to restrict DOX leakage under physiological conditions. This method makes it possible to tune the DOX release rate by increasing the APTES decoration density through variation of the APTES concentration. However, the SF-DL approach results in a rapid decrease in drug loading capacity with an increase in APTES concentration because of the formation of the APTES outer layer hampers the inner permeability of the DOX drug, resulting in a burst release similar to that of undecorated MSNs. The resulting DOX-loaded DL-SF MSNs present a slightly negatively charged surface under physiological conditions and become positively charged in and extracellular microenvironment of solid tumor due to the protonation effect under acidic conditions. These merits aid their maintenance of long-term stability in blood circulation, high cellular uptake by a kind of skin carcinoma cells, and an enhanced intracellular drug release behavior, showing their potential in the delivery of many drugs beyond anticancer chemotherapeutics.

  12. Dynamics and Control of High-Rise Buildings under Multidirectional Wind Loads

    Directory of Open Access Journals (Sweden)

    Aly Mousaad Aly


    Full Text Available This paper presents a procedure for the response prediction and reduction in high-rise buildings under multidirectional wind loads. The procedure is applied to a very slender tall building that is instructive. The structure is exposed to both cross-wind and along-wind loads obtained from pressure measurements on a rigid model (scaled 1 : 100 that was tested in a wind tunnel with two different configurations of the surroundings. In the theoretical formulation, dynamic equations of the structure are introduced by finite element and 3D lumped mass modeling. The lateral responses of the building in the two directions are controlled at the same time using tuned mass dampers (TMDs and active tuned mass dampers (ATMDs commanded by LQR and fuzzy logic controllers, while the effects of the uncontrolled torsional response of the structure are simultaneously considered. Besides their simplicity, fuzzy logic controllers showed similar trend as LQR controllers under multidirectional wind loads. Nevertheless, the procedure presented in this study can help decision makers, involved in the design process, to choose among innovative solutions like structural control, different damping techniques, modifying geometry, or even changing materials.

  13. Magnetic carbon nanotubes with particle-free surfaces and high drug loading capacity

    Energy Technology Data Exchange (ETDEWEB)

    Vermisoglou, Eleni C; Pilatos, George; Romanos, George E; Kanellopoulos, Nick K; Karanikolos, Georgios N [Institute of Physical Chemistry, Demokritos National Research Center, Athens 153 10 (Greece); Devlin, Eamon, E-mail: [Institute of Materials Science, Demokritos National Research Center, Athens 153 10 (Greece)


    Open-ended, multi-wall carbon nanotubes (CNTs) with magnetic nanoparticles encapsulated within their graphitic walls (magCNTs) were fabricated by a combined action of templated growth and a ferrofluid catalyst/carbon precursor, and tested as drug hosts. The hybrid nanotubes are stable under extreme pH conditions due to particle protection provided by the graphitic shell. The magCNTs are promising for high capacity drug loading given that the magnetic functionalization did not block any of the active sites available for drug attachment, either from the CNT internal void or on the internal and external surfaces. This is in contrast to typical approaches of loading CNTs with particles that proceed through surface attachment or capillary filling of the tube interior. Additionally, the CNTs exhibit enhanced hydrophilic character, as shown by water adsorption measurements, which make them suitable for biological applications. The morphological and structural characteristics of the hybrid CNTs are evaluated in conjunction to their magnetic properties and ability for drug loading (diaminophenothiazine). The fact that the magnetic functionality is provided from 'inside the walls' can allow for multimode functionalization of the graphitic surfaces and makes the magCNTs promising for targeted therapeutic applications.

  14. Flight Loads Prediction of High Aspect Ratio Wing Aircraft Using Multibody Dynamics

    Directory of Open Access Journals (Sweden)

    Michele Castellani


    Full Text Available A framework based on multibody dynamics has been developed for the static and dynamic aeroelastic analyses of flexible high aspect ratio wing aircraft subject to structural geometric nonlinearities. Multibody dynamics allows kinematic nonlinearities and nonlinear relationships in the forces definition and is an efficient and promising methodology to model high aspect ratio wings, which are known to be prone to structural nonlinear effects because of the high deflections in flight. The multibody dynamics framework developed employs quasi-steady aerodynamics strip theory and discretizes the wing as a series of rigid bodies interconnected by beam elements, representative of the stiffness distribution, which can undergo arbitrarily large displacements and rotations. The method is applied to a flexible high aspect ratio wing commercial aircraft and both trim and gust response analyses are performed in order to calculate flight loads. These results are then compared to those obtained with the standard linear aeroelastic approach provided by the Finite Element Solver Nastran. Nonlinear effects come into play mainly because of the need of taking into account the large deflections of the wing for flight loads computation and of considering the aerodynamic forces as follower forces.

  15. Electrocortical and ocular indices of attention to fearful and neutral faces presented under high and low working memory load. (United States)

    MacNamara, Annmarie; Schmidt, Joseph; Zelinsky, Gregory J; Hajcak, Greg


    Working memory load reduces the late positive potential (LPP), consistent with the notion that functional activation of the DLPFC attenuates neural indices of sustained attention. Visual attention also modulates the LPP. In the present study, we sought to determine whether working memory load might exert its influence on ERPs by reducing fixations to arousing picture regions. We simultaneously recorded eye-tracking and EEG while participants performed a working memory task interspersed with the presentation of task-irrelevant fearful and neutral faces. As expected, fearful compared to neutral faces elicited larger N170 and LPP amplitudes; in addition, working memory load reduced the N170 and the LPP. Participants made more fixations to arousing regions of neutral faces and faces presented under high working memory load. Therefore, working memory load did not induce avoidance of arousing picture regions and visual attention cannot explain load effects on the N170 and LPP. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Material Surface Damage under High Pulse Loads Typical for ELM Bursts and Disruptions in ITER (United States)

    Landman, I. S.; Pestchanyi, S. E.; Safronov, V. M.; Bazylev, B. N.; Garkusha, I. E.

    The divertor armour material for the tokamak ITER will probably be carbon manufactured as fibre composites (CFC) and tungsten as either brush-like structures or thin plates. Disruptive pulse loads where the heat deposition Q may reach 102 MJ/m 2 on a time scale Ïä of 3 ms, or operation in the ELMy H-mode at repetitive loads with Q âe 1/4 3 MJ/m2 and Ïä âe 1/4 0.3 ms, deteriorate armour performance. This work surveys recent numerical and experimental investigations of erosion mechanisms at these off-normal regimes carried out at FZK, TRINITI, and IPP-Kharkov. The modelling uses the anisotropic thermomechanics code PEGASUS-3D for the simulation of CFC brittle destruction, the surface melt motion code MEMOS-1.5D for tungsten targets, and the radiation-magnetohydrodynamics code FOREV-2D for calculating the plasma impact and simulating the heat loads for the ITER regime. Experiments aimed at validating these codes are being carried out at the plasma gun facilities MK-200UG, QSPA-T, and QSPA-Kh50 which produce powerful streams of hydrogen plasma with Q = 10–30 MJ/m2 and Ïä = 0.03–0.5 ms. Essential results are, for CFC targets, the experiments at high heat loads and the development of a local overheating model incorporated in PEGASUS-3D, and for the tungsten targets the analysis of evaporation- and melt motion erosion on the base of MEMOS-1.5D calculations for repetitive ELMs.

  17. High pressures and asymmetrical stresses in the scoliotic disc in the absence of muscle loading

    Directory of Open Access Journals (Sweden)

    Fairbank Jeremy CT


    Full Text Available Abstract Background Loads acting on scoliotic spines are thought to be asymmetric and involved in progression of the scoliotic deformity; abnormal loading patterns lead to changes in bone and disc cell activity and hence to vertebral body and disc wedging. At present however there are no direct measurements of intradiscal stresses or pressures in scoliotic spines. The aim of this study was to obtain quantitative measurements of the intradiscal stress environment in scoliotic intervertebral discs and to determine if loads acting across the scoliotic spine are asymmetric. We performed in vivo measurements of stresses across the intervertebral disc in patients with scoliosis, both parallel (termed horizontal and perpendicular (termed vertical to the end plate, using a side mounted pressure transducer (stress profilometry Methods Stress profilometry was used to measure horizontal and vertical stresses at 5 mm intervals across 25 intervertebral discs of 7 scoliotic patients during anterior reconstructive surgery. A state of hydrostatic pressure was defined by identical horizontal and vertical stresses for at least two consecutive readings. Results were compared with similar stress profiles measured during surgery across 10 discs of 4 spines with no lateral curvature and with data from the literature. Results Profiles across scoliotic discs were very different from those of normal, young, healthy discs of equivalent age previously presented in the literature. Hydrostatic pressure regions were only seen in 14/25 discs, extended only over a short distance. Non-scoliotic discs of equivalent age would be expected to show large centrally placed hydrostatic nuclear regions in all discs. Mean pressures were significantly greater (0.25 MPa than those measured in other anaesthetised patients ( Conclusion Intradiscal pressures and stresses in scoliotic discs are abnormal, asymmetrical and high in magnitude even in the absence of significant applied muscle

  18. Release of Inattentional Blindness by High Working Memory Load: Elucidating the Relationship between Working Memory and Selective Attention (United States)

    de Fockert, Jan W.; Bremner, Andrew J.


    An unexpected stimulus often remains unnoticed if attention is focused elsewhere. This inattentional blindness has been shown to be increased under conditions of high memory load. Here we show that increasing working memory load can also have the opposite effect of reducing inattentional blindness (i.e., improving stimulus detection) if stimulus…

  19. Development of new test set-up for dynamic tensile tests on concrete at high loading rates. Instrumented spalling tests

    NARCIS (Netherlands)

    Weerheijm, J.; Doormaal, J.C.A.M. van


    For the numerical prediction of the response of concrete structures under extreme dynamic loading, like missile impact and internal explosions, reliable material data and material models are essential. But knowledge of the response of concrete at high loading rates is still very limited. At request

  20. Foldable and High Sulfur Loading 3D Carbon Electrode for High-performance Li-S Battery Application (United States)

    He, Na; Zhong, Lei; Xiao, Min; Wang, Shuanjin; Han, Dongmei; Meng, Yuezhong


    Sulfur is a promising cathode material with a high theoretical capacity of 1672 mAh g-1, however, the practical energy density of Li-S battery is far away from such promising due to its low active material utilization and low sulfur loading. Moreover, the challenges of the low electrical conductivity of sulfur and the high solubility of polysulfide intermediates still hinder its practical application. Here, we report a kind of free-standing and foldable cathodes consisting of 3D activated carbon fiber matrix and sulfur cathode. The 3D activated carbon fiber matrix (ACFC) has continuous conductive framework and sufficient internal space to provide a long-distance and continuous high-speed electron pathway. It also gives a very larger internal space and tortuous cathode region to ACFC accommodate a highly sulfur loading and keeps polysulfide within the cathode. The unique structured 3D foldable sulfur cathode using a foldable ACFC as matrix delivers a reversible capacity of about 979 mAh g-1 at 0.2C, a capacity retention of 98% after 100 cycles, and 0.02% capacity attenuation per cycle. Even at an areal capacity of 6 mAh cm-2, which is 2 times higher than the values of Li-ion battery, it still maintains an excellent rate capability and cycling performance.

  1. High temperature creep of steel 09G2S under non-stationary loading (United States)

    Iyavoynen, S. V.; Banshchikova, I. A.; Lubashevskaya, I. V.; Legan, M. A.


    Experimental analysis of deformation of steel 09G2S under creep conditions has been carried out to determine the optimal modes of high temperature forming of steel shells. The efficient temperature range in terms of saving of the plasticity resource was defined. The material parameters including scalar damage parameters have been determined by taking into account the description of the deformation of a material under non-stationary loading conditions. A satisfactory description of the unsteady creep processes of the material 09G2S in the temperature range from 700 to 800°C has been received.

  2. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents.

    Energy Technology Data Exchange (ETDEWEB)

    Greene, J. P.; Gabor, R.; Neubauer, J.


    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or wobbled beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material.

  3. CO2–CH4 permeation in high zeolite 4A loading mixed matrix membranes

    KAUST Repository

    Adams, Ryan T.


    Mixed matrix membranes (MMMs) with low particle loadings have been shown to improve the properties of pure polymers for many gas separations. Comparatively few reports have been made for high particle loading (≥50vol.%) MMMs. In this work, CO2-CH4 feeds were used to study the potential of 50vol.% zeolite 4A-poly(vinyl acetate) (PVAc) MMMs for natural gas separations. A low CO2 partial pressure mixed feed probed MMM performance below the plasticization pressure of PVAc and a high CO2 partial pressure mixed feed probed MMM performance at industrially relevant conditions above the plasticization pressure.Under both mixed feed conditions at 35°C, substantial improvements in overall separation performance were observed. At low CO2 partial pressures, CO2 permeability roughly doubled with a nearly 50% increase in selectivity versus pure PVAc under the same conditions. For the high CO2 partial pressure feed, CO2 permeability remained effectively unchanged with a 63% increase in selectivity versus pure PVAc. Surprisingly, the performance of these PVAc based MMMs approached the properties of current " upper bound" polymers. Overall, this work shows that significantly improved performance MMMs can be made with traditional techniques from a low cost, low performance polymer without costly adhesion promoters. © 2010.

  4. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading (United States)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.


    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  5. On the performance of circular concrete-filled high strength steel columns under axial loading

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmoud El-Heweity


    Full Text Available This work presents a numerical study to investigate the performance of circular high-strength steel tubes filled with concrete (CFT under monotonic axial loading. A model is developed to implement the material constitutive relationships and non-linearity. Calibration against previous experimental data shows good agreement. A parametric study is then conducted using the model and compared with codes provisions. Strength and ductility of confined concrete are of primary concern. Variables considered are yield stress of steel tube and column diameter. The assessment of column performance is based on axial load carrying capacities and enhancements of both strength and ductility due to confinement. Two parameters namely strength enhancement factor (Kf and ductility index (μ are clearly defined and introduced for assessment. Results indicate that both concrete strength and ductility of CFT columns are enhanced but to different extents. The ductile behaviors are significantly evident. The increase in yield stress of steel tube has a minimal effect on concrete strength but pronounced effect on concrete ductility. However, reduction in ductility is associated with using high-tensile steel of Grade 70. The overall findings indicate that the use of high-strength tube in CFT columns is not promising. This finding may seriously be considered in seismic design.

  6. Fast development of high intra-abdominal pressure when a trained participant is exposed to heavy, sudden trunk loads. (United States)

    Essendrop, Morten; Trojel Hye-Knudsen, Christian; Skotte, Jørgen; Faber Hansen, Anne; Schibye, Bente


    This study focused on intra-abdominal pressure (IAP) during sudden trunk loads. Ten participants were exposed to heavy, sudden trunk loads as they might occur during patient handling. The aim was to study the development of intra-abdominal pressure when well-trained participants cope with heavy, sudden trunk loads. It is hypothesized that high IAP develops sufficiently fast to be present when the large torques act on the low-back structures. Well-trained sportsmen expose themselves to heavy sudden loads of the trunk without getting injured, but it is unknown how they cope with these loads. Do they use IAP? IAP is believed to play a significant role in spine stability, but this has only been documented in experimental studies with light trunk loads. Ten well-trained judo and jujitsu fighters were exposed to heavy sudden trunk loads through imitated patient handling situations in which the patient fell, and the fighters were to hold the patient and prevent the fall. IAP was measured with a catheter in the stomach. Along with the IAP measurement, the load on the low back during the patient falls was quantified by a three-dimensional dynamic biomechanical calculation of the torques and the compression at the L4/L5 joint. High IAP developed quickly and timed in relation to the external torque when the fighters were exposed to a sudden patient fall. When the trunk load was heavy and sudden, IAP was developed to be present at the time when low-back structures had to cope with the large load. High IAP was developed sufficiently fast to be present when the low-back structures had to cope with the large torques released from the sudden trunk loading.

  7. Persistently high Epstein-Barr virus (EBV) loads in peripheral blood lymphocytes from patients with chronic active EBV infection. (United States)

    Maeda, A; Wakiguchi, H; Yokoyama, W; Hisakawa, H; Tomoda, T; Kurashige, T


    Chronic active Epstein-Barr virus infection (CAEBV) is a severe illness with unusual EBV activation that persists for years, and its pathogenesis is largely unknown. After the creation of an accurate and reproducible polymerase chain reaction system to quantify EBV DNA, virus loads in peripheral blood lymphocytes (PBL) were determined in 54 children: 15 with CAEBV, 16 with infectious mononucleosis (IM), and 23 healthy children. Children with CAEBV and those with IM had high virus loads. Lower loads were detected in 47% of seropositive healthy donors. There were two distinct differences between children with CAEBV and those with IM: The former had greater viral replication (10(3)-10(7) copies/2.5x10(5) PBL) than those with IM, and viral replication declined in children with IM whereas active replication persisted for years in subjects with CAEBV. Persisting high virus loads are a possible diagnostic criterion for CAEBV. EBV loads may enable classification and prognosis of EBV infections.

  8. Mechanical Properties of Transgenic Silkworm Silk Under High Strain Rate Tensile Loading (United States)

    Chu, J.-M.; Claus, B.; Chen, W.


    Studies have shown that transgenic silkworm silk may be capable of having similar properties of spider silk while being mass-producible. In this research, the tensile stress-strain response of transgenic silkworm silk fiber is systematically characterized using a quasi-static load frame and a tension Kolsky bar over a range of strain-rates between 10^{-3} and 700/s. The results show that transgenic silkworm silk tends to have higher overall ultimate stress and failure strain at high strain rate (700/s) compared to quasi-static strain rates, indicating rate sensitivity of the material. The failure strain at the high strain rate is higher than that of spider silk. However, the stress levels are significantly below that of spider silk, and far below that of high-performance fiber. Failure surfaces are examined via scanning electron microscopy and reveal that the failure modes are similar to those of spider silk.

  9. Mechanical Properties of Transgenic Silkworm Silk Under High Strain Rate Tensile Loading (United States)

    Chu, J.-M.; Claus, B.; Chen, W.


    Studies have shown that transgenic silkworm silk may be capable of having similar properties of spider silk while being mass-producible. In this research, the tensile stress-strain response of transgenic silkworm silk fiber is systematically characterized using a quasi-static load frame and a tension Kolsky bar over a range of strain-rates between 10^{-3} and 700/s. The results show that transgenic silkworm silk tends to have higher overall ultimate stress and failure strain at high strain rate (700/s) compared to quasi-static strain rates, indicating rate sensitivity of the material. The failure strain at the high strain rate is higher than that of spider silk. However, the stress levels are significantly below that of spider silk, and far below that of high-performance fiber. Failure surfaces are examined via scanning electron microscopy and reveal that the failure modes are similar to those of spider silk.

  10. Training Load and Player Monitoring in High-Level Football: Current Practice and Perceptions. (United States)

    Akenhead, Richard; Nassis, George P


    Training load (TL) is monitored with the aim of making evidence-based decisions on appropriate loading schemes to reduce injuries and enhance team performance. However, little is known in detail about the variables of load and methods of analysis used in high-level football. Therefore, the aim of this study was to provide information on the practices and practitioners' perceptions of monitoring in professional clubs. Eighty-two high-level football clubs from Europe, the United States, and Australia were invited to answer questions relating to how TL is quantified, how players' responses are monitored, and their perceptions of the effectiveness of monitoring. Forty-one responses were received. All teams used GPS and heart-rate monitors during all training sessions, and 28 used rating of perceived exertion. The top-5-ranking TL variables were acceleration (various thresholds), total distance, distance covered above 5.5 m/s, estimated metabolic power, and heart-rate exertion. Players' responses to training are monitored using questionnaires (68% of clubs) and submaximal exercise protocols (41%). Differences in expected vs actual effectiveness of monitoring were 23% and 20% for injury prevention and performance enhancement, respectively (P < .001 d = 1.0-1.4). Of the perceived barriers to effectiveness, limited human resources scored highest, followed by coach buy-in. The discrepancy between expected and actual effectiveness appears to be due to suboptimal integration with coaches, insufficient human resources, and concerns over the reliability of assessment tools. Future approaches should critically evaluate the usefulness of current monitoring tools and explore methods of reducing the identified barriers to effectiveness.

  11. Parametric studies on containment thermal hydraulic loads during high pressure melt ejection in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Silde, A.; Lindholm, I. [VTT Energy, Espoo (Finland)


    The containment thermal hydraulic loads during high pressure melt ejection in a Nordic BWR are studied parametrically with the CONTAIN and the MELCOR codes. The work is part of the Nordic RAK-2 project. The containment analyses were divided into two categories according to composition of the discharged debris: metallic and oxidic debris cases. In the base case with highly metallic debris, all sources from the reactor coolant system to the containment were based on the MELCOR/BH calculation. In the base case with the oxidic debris, the source data was specified assuming that {approx} 15% of the whole core material inventory and 34,000 kg of saturated water was discharged from the reactor pressure vessel (RPV) during 30 seconds. In this case, the debris consisted mostly of oxides. The highest predicted containment pressure peaks were about 8.5 bar. In the scenarios with highly metallic debris source, very high gas temperature of about 1900 K was predicted in the pedestal, and about 1400 K in the upper drywell. The calculations with metallic debris were sensititive to model parameters, like the particle size and the parameters, which control the chemical reaction kinetics. In the scenarios with oxidic debris source, the predicted pressure peaks were comparable to the cases with the metallic debris source. The maximum gas temperatures (about 450-500 K) in the containment were, however, significantly lower than in the respective metallic debris case. The temperatures were also insensitive to parametric variations. In addition, one analysis was performed with the MELCOR code for benchmarking of the MELCOR capabilities against the more detailed CONTAIN code. The calculations showed that leak tightness of the containment penetrations could be jeopardized due to high temperature loads, if a high pressure melt ejection occurred during a severe accident. Another consequence would be an early containment venting. (au). 28 refs.


    Directory of Open Access Journals (Sweden)



    Full Text Available Detoxification of a chlorinated phenolic compound, 2,4,6- trichlorophenol through treatment with laccase enzyme produced by a white rot fungus, Trametes versicolor was investigated. Enzymaticdechlorination experiments by using free and immobilized laccase have been performed in a lab scale bioreactor. Chlorine ion and dissolved oxygen electrodes mounted to the bioreactor were used continuouslyto detect the profiles of chlorine ions and oxygen consumption, respectively, in reaction medium. The maximum dechlorination activity of laccase for free and immobilized form was determined as 160 μM of substrate concentration at pH 5.0, 25 °C, and 30 min of incubation time. Also, GC/MS analyses of enzymatic degradation products indicated that chlorine removal was a result of degradation of 2,4,6- trichlorophenol by the laccase under the determined optimum conditions.

  13. Core-shell nanocarriers with high paclitaxel loading for passive and active targeting (United States)

    Jin, Zhu; Lv, Yaqi; Cao, Hui; Yao, Jing; Zhou, Jianping; He, Wei; Yin, Lifang


    Rapid blood clearance and premature burst release are inherent drawbacks of conventional nanoparticles, resulting in poor tumor selectivity. iRGD peptide is widely recognized as an efficient cell membrane penetration peptide homing to αVβ3 integrins. Herein, core-shell nanocapsules (NCs) and iRGD-modified NCs (iRGD-NCs) with high drug payload for paclitaxel (PTX) were prepared to enhance the antitumor activities of chemotherapy agents with poor water solubility. Improved in vitro and in vivo tumor targeting and penetration were observed with NCs and iRGD-NCs; the latter exhibited better antitumor activity because iRGD enhanced the accumulation and penetration of NCs in tumors. The NCs were cytocompatible, histocompatible, and non-toxic to other healthy tissues. The endocytosis of NCs was mediated by lipid rafts in an energy-dependent manner, leading to better cytotoxicity of PTX against cancer cells. In contrast with commercial product, PTX-loaded NCs (PTX-NCs) increased area under concentration-time curve (AUC) by about 4-fold, prolonged mean resident time (MRT) by more than 8-fold and reduced the elimination rate constant by greater than 68-fold. In conclusion, the present nanocarriers with high drug-loading capacity represent an efficient tumor-targeting drug delivery system with promising potential for cancer therapy.

  14. Helminths and human ancestral immune ecology: What is the evidence for high helminth loads among foragers? (United States)

    London, Douglas; Hruschka, Daniel


    Recent theories of human immune ecology have invoked high helminth loads as an important selection factor among early humans. However, few studies have assessed this assumption among extant human foragers. We review the current evidence for high helminth loads in documented forager populations and present new data from members of a Kawymeno Waorani forager group in Amazonian Ecuador (n = 16) compared with neighboring Kichwa subsistence farmers (n = 63). Stool samples indicated a near absence of helminths among the Kawymeno foraging group (6.25% with Ascaris lumbricoides and 0% with Ancylostoma duodenale or Trichuris trichiura). In contrast neighboring, isolated Kichwa subsistence farmers in a similar ecosystem had abundant helminth infestations (76.1% with Ascaris lumbricoides, 11.1% with Ancylostoma duodenale, and 1.5% with Trichuris trichiura). The presence of helminths among the Waorani and Kichwa was triangulated across multiple data sources, including presence in stool samples, medical exams, and 3 years of participant observation. These findings, coupled with the modern forager literature, raise questions as to whether helminths were prevalent enough in Paleolithic humans to be a unique evolutionary selective force in human physiology. Copyright © 2014 Wiley Periodicals, Inc.

  15. Eradication of high viable loads of Listeria monocytogenes contaminating food-contact surfaces

    Directory of Open Access Journals (Sweden)

    Silvia ede Candia


    Full Text Available This study demonstrates the efficacy of cold gaseous ozone treatments at low concentrations in the eradication of high Listeria monocytogenes viable cell loads from glass, polypropylene, stainless steel and expanded polystyrene food-contact surfaces. Using a step by step approach, involving the selection of the most resistant strain-surface combinations, 11 Listeria spp. strains resulted inactivated by a continuous ozone flow at 1.07 mg m-3 after 24 or 48 h of cold incubation, depending on both strain and surface evaluated. Increasing the inoculum level to 9 log CFU coupon-1, the best inactivation rate was obtained after 48h of treatment at 3.21 mg m-3 ozone concentration when cells were deposited onto stainless steel and expanded polystyrene coupons, resulted the most resistant food-contact surfaces in the previous assays.The addition of naturally microbiologically contaminated meat extract to a high load of L. monocytogenes LMG 23775 cells, the most resistant strain out of the 11 assayed Listeria spp. strains, led to its complete inactivation after four days of treatment.To the best of our knowledge, this is the first report describing the survival of L. monocytogenes and the effect of ozone treatment under cold storage conditions on expanded polystyrene, a commonly-used material in food packaging. These results could be useful for reducing pathogen cross-contamination phenomena during cold food storage.

  16. Low-load high-velocity resistance exercises improve strength and functional capacity in diabetic patients

    Directory of Open Access Journals (Sweden)

    Rodrigo Celes


    Full Text Available This study investigated the effects of low-load high-velocity resistance exercises on neuromuscular and functional outcomes in patients with Type 2 diabetes (T2D during the early-phase of resistance training. Thirty participants with T2D performed 18 training sessions (6 weeks – 3x week in one of two groups: low-load high-velocity exercises (LLHV, n=15, 62.1±10.5 years or recreational activities (RA, n=15 56.7 ± 19.4 years. LLHV performed resistance exercises with 3x 8reps as fast as possible with 50-60% 1RM. RA performed light activities. Strength, power, and functional tests were assessed. There was significant increasing in the knee extension peak-torque at 60º/s (7.6% and 180º/s (12.2%, rate of force development in the LLHV group (P<0.05, whereas there were no changes in the RA group. Significant increases in functional test were observed in the LLHV group (P<0.01 with no changes in the RA group. In conclusion, the LLHV induced marked improvements in neuromuscular parameters, as well as in the functional capacity of participants with T2D.

  17. Formulation and Optimization of Multiparticulate Drug Delivery System Approach for High Drug Loading. (United States)

    Shah, Neha; Mehta, Tejal; Gohel, Mukesh


    The aim of the present work was to develop and optimize multiparticulate formulation viz. pellets of naproxen by employing QbD and risk assessment approach. Mixture design with extreme vertices was applied to the formulation with high loading of drug (about 90%) and extrusion-spheronization as a process for manufacturing pellets. Independent variables chosen were level of microcrystalline cellulose (MCC)-X 1 , polyvinylpyrrolidone K-90 (PVP K-90)-X 2 , croscarmellose sodium (CCS)-X 3 , and polacrilin potassium (PP)-X 4 . Dependent variables considered were disintegration time (DT)-Y 1 , sphericity-Y 2 , and percent drug release-Y 3 . The formulation was optimized based on the batches generated by MiniTab 17 software. The batch with maximum composite desirability (0.98) proved to be optimum. From the evaluation of design batches, it was observed that, even in low variation, the excipients affect the pelletization property of the blend and also the final drug release. In conclusion, pellets with high drug loading can be effectively manufactured and optimized systematically using QbD approach.

  18. Development of Houttuynia cordata Extract-Loaded Solid Lipid Nanoparticles for Oral Delivery: High Drug Loading Efficiency and Controlled Release

    Directory of Open Access Journals (Sweden)

    Ju-Heon Kim


    Full Text Available Houttuynia cordata (H. cordata has been used for diuresis and detoxification in folk medicine as well as a herbal medicine with antiviral and antibacterial activities. H. cordata extract-loaded solid lipid nanoparticles (H-SLNs were prepared with various concentration of poloxamer 188 or poloxamer 407 by a hot homogenization and ultrasonication method. H-SLNs dispersion was freeze-dried with or without trehalose as a cryoprotectant. The physicochemical characteristics of H-SLNs were evaluated by dynamic laser scattering (DLS, differential scanning calorimetry (DSC, Fourier transform infrared spectroscopy (FT-IR, and scanning electron microscopy (SEM. Additionally, the in vitro release and in vitro cytotoxicity of H-SLNs were measured. Encapsulation efficiencies of H-SLNs (as quercitrin were 92.9–95.9%. The SEM images of H-SLNs showed that H-SLNs have a spherical morphology. DSC and FT-IR showed that there were no interactions between ingredients. The increased extent of particle size of freeze-dried H-SLNs with trehalose was significantly lower than that of H-SLNs without trehalose. H-SLNs provided sustained release of quercitrin from H. cordata extracts. Cell viability of Caco-2 cells was over 70% according to the concentration of various formulation. Therefore, it was suggested that SLNs could be good carrier for administering H. cordata extracts.

  19. Highly efficient release of simvastatin from simvastatin-loaded calcium sulphate scaffolds enhances segmental bone regeneration in rabbits (United States)



    A number of clinical and experimental studies have investigated the effect of simvastatin on bone regeneration. In the present study, the release of simvastatin from simvastatin-loaded calcium sulphate (CS) scaffolds and the effect of these scaffolds on osteogenic differentiation of bone marrow-derived mesenchymal stem cells (MSCs) in vitro and the effect of simvastatin locally applied from CS scaffolds on bone regeneration were investigated. A total of 26 complete 1.2-cm bone defects were created in the ulna of rabbits, which were treated with CS, simvastatin-loaded CS or recombinant human bone morphogenetic protein 2 (rhBMP)-2-loaded CS. Simvastatin was highly efficiently released from simvastatin-loaded CS at the onset and stable release was maintained. Alkaline phosphatase was highly expressed in the MSCs co-cultured with simvastatin/CS scaffolds for 7 and 14 days. The defects treated with rhBMP-2-loaded CS and simvastatin-loaded CS showed significantly higher X-ray analysis scores and a larger amount of bone formation as determined by histology compared with the CS group (Psimvastatin-loaded CS (P>0.05). Simvastatin is capable of promoting osteogenic differentiation of MSCs in vitro and stimulating bone regeneration when locally released from CS scaffolds into bone defects. The beneficial effect of simvastatin was similar to that of rhBMP-2. In conclusion, the present study suggested that the simvastatin-loaded CS scaffolds may have great potential in bone tissue engineering. PMID:24691672

  20. Hybrid Robust Control Law with Disturbance Observer for High-Frequency Response Electro-Hydraulic Servo Loading System

    Directory of Open Access Journals (Sweden)

    Zhiqing Sheng


    Full Text Available Addressing the simulating issue of the helicopter-manipulating booster aerodynamic load with high-frequency dynamic load superimposed on a large static load, this paper studies the design of the robust controller for the electro-hydraulic loading system to realize the simulation of this kind of load. Firstly, the equivalent linear model of the electro-hydraulic loading system under assumed parameter uncertainty is established. Then, a hybrid control scheme is proposed for the loading system. This control scheme consists of a constant velocity feed-forward compensator, a robust inner loop compensator based on disturbance observer and a robust outer loop feedback controller. The constant velocity compensator eliminates most of the extraneous force at first, and then the double-loop cascade composition control strategy is employed to design the compensated system. The disturbance observer–based inner loop compensator further restrains the disturbances including the remaining extraneous force, and makes the actual plant tracking a nominal model approximately in a certain frequency range. The robust outer loop controller achieves the desired force-tracking performance, and guarantees system robustness in the high frequency region. The optimized low-pass filter Q(s is designed by using the H∞ mixed sensitivity optimization method. The simulation results show that the proposed hybrid control scheme and controller can effectively suppress the extraneous force and improve the robustness of the electro-hydraulic loading system.

  1. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. (United States)

    Schoenfeld, Brad J; Grgic, Jozo; Ogborn, Dan; Krieger, James W


    Schoenfeld, BJ, Grgic, J, Ogborn, D, and Krieger, JW. Strength and hypertrophy adaptations between low- vs. high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res 31(12): 3508-3523, 2017-The purpose of this article was to conduct a systematic review of the current body of literature and a meta-analysis to compare changes in strength and hypertrophy between low- vs. high-load resistance training protocols. Searches of PubMed/MEDLINE, Cochrane Library, and Scopus were conducted for studies that met the following criteria: (a) an experimental trial involving both low-load training [≤60% 1 repetition maximum (1RM)] and high-load training (>60% 1RM); (b) with all sets in the training protocols being performed to momentary muscular failure; (c) at least one method of estimating changes in muscle mass or dynamic, isometric, or isokinetic strength was used; (d) the training protocol lasted for a minimum of 6 weeks; (e) the study involved participants with no known medical conditions or injuries impairing training capacity. A total of 21 studies were ultimately included for analysis. Gains in 1RM strength were significantly greater in favor of high- vs. low-load training, whereas no significant differences were found for isometric strength between conditions. Changes in measures of muscle hypertrophy were similar between conditions. The findings indicate that maximal strength benefits are obtained from the use of heavy loads while muscle hypertrophy can be equally achieved across a spectrum of loading ranges.

  2. Performance of W/Cu FGM based plasma facing components under high heat load test (United States)

    Zhou, Zhang-Jian; Song, Shu-Xiang; Du, Juan; Zhong, Zhi-Hong; Ge, Chang-Chun


    Three different methods, plasma spraying, infiltration-welding method and resistance sintering under ultra-high pressure, have been developed to fabricate W/Cu FGM based plasma facing components. SEM analysis showed that good grading composition of all FGM samples had been obtained. Water quenching and electron, or laser beam test facilities have been utilized to investigate and compare thermal shock behavior and performance under high heat load. It is found that the grading at the interface between W and Cu is very effective for the reduction of thermal stress. W/Cu FGM fabricated by infiltration-welding method has the best thermal shock resistance among these three kinds of W/Cu FGM.

  3. Self-castellation of tungsten monoblock under high heat flux loading and impact of material properties

    Directory of Open Access Journals (Sweden)

    S. Panayotis


    Full Text Available In the full-tungsten divertor qualification program at ITER Organization, macro-cracks, so called self-castellation were found in a fraction of tungsten monoblocks during cyclic high heat flux loading at 20MW/m2. The number of monoblocks with macro-cracks varied with the tungsten products used as armour material. In order to understand correlation between the macro-crack appearance and W properties, an activity to characterize W monoblock materials was launched at the IO. The outcome highlighted that the higher the recrystallization resistance, the lower the number of cracks detected during high heat flux tests. Thermo-mechanical finite element modelling demonstrated that the maximum surface temperature ranges from 1800 °C to 2200 °C and in this range recrystallization of tungsten occurred. Furthermore, it indicated that loss of strength due to recrystallization is responsible for the development of macro-cracks in the tungsten monoblock.

  4. Continuous melt granulation to develop high drug loaded sustained release tablet of Metformin HCl

    Directory of Open Access Journals (Sweden)

    Pradnya Vaingankar


    The developed matrix tablet (75% drug loading resulted in 670 mg of weight for 500 mg dose strength and showed sustained drug release over 10 h. When compared, with conventional granulation techniques, it was observed that, under identical compression force, the tablet prepared by MG exhibited superior compactibility along with tablet hardness and optimal drug release profile. FTIR suggested nonexistence of chemical interaction between the drug and the other excipients while XRD and DSC analysis revealed the crystalline state of the drug. Furthermore, the results obtained from Raman spectroscopy proved the uniform distribution of the Metformin HCl and polymer in the final dosage form. This technology leads to the manufacture of sustained release matrix formulation with reduced tablet size of a high dose, highly water soluble drug otherwise difficult to process using standard batch-granulation.

  5. Cost optimization of load carrying thin-walled precast high performance concrete sandwich panels

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hansen, Sanne; Hulin, Thomas


    The paper describes a procedure to find the structurally and thermally efficient design of load-carrying thin-walled precast High Performance Concrete Sandwich Panels (HPCSP) with an optimal economical solution. A systematic optimization approach is based on the selection of material’s performances...... and HPCSP’s geometrical parameters as well as on material cost function in the HPCSP design. Cost functions are presented for High Performance Concrete (HPC), insulation layer, reinforcement and include labour-related costs. The present study reports the economic data corresponding to specific manufacturing....... The solution of the optimization problem is performed in the computer package software Matlab® with SQPlab package and integrates the processes of HPCSP design, quantity take-off and cost estimation. The proposed optimization process outcomes in complex HPCSP design proposals to achieve minimum cost of HPCSP....

  6. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers. (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de


    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25-1 effective depth of the section column. Furthermore, the axial load-strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load-strain curves were carried out.

  7. High Pt Loading on Polydopamine Functionalized Graphene as a High Performance Cathode Electrocatalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Monireh Faraji


    Full Text Available Morphology and size of platinum nanoparticles are a crucial factor in improving their catalytic activity and stability. Here, we firstly report the synthesis of high loading Pt nanoparticles on polydopamine reduced Graphene. The loading concentration of Pt (nanoparticles NPs on Graphene can be adjusted in the range of 60-70%.With the insertion of polydopamine between Graphene oxide sheets, stacking of Graphene can be effectively prevented, promoting diffusion of oxygen molecules through the Graphene sheets and enhancing the oxygen reduction reaction electrocatalytic activity. Compared to commercial catalysts (i.e., state-of-the-art Pt/C catalyst the as synthesized Pt supported polydopamine grafted reduced graphite oxide (Pt@PDA-rGO hybrid displays very high oxygen reduction reaction catalytic activities. We propose a unique 2D profile of the polydopamine-rGO role as a barrier preventing leaching of Pt into the electrolyte. The fabricated electrodes were evaluated with electrochemical techniques for oxygen reduction reaction and the obtained results were further verified by the transmission electron microscopy micrographs on the microstructure of the integrated pt@PDA-rGO structures. It has been revealed that the electrochemical impedance spectroscopy technique can provide more explicit information than polarization curves on the performance dependence on charge-transfer and mass transport processes at different overpotential regions.

  8. Influence of high glycemic index and glycemic load diets on blood pressure during adolescence. (United States)

    Gopinath, Bamini; Flood, Victoria M; Rochtchina, Elena; Baur, Louise A; Smith, Wayne; Mitchell, Paul


    We aimed to prospectively examine the association between the glycemic index and glycemic load of foods consumed and the dietary intakes of carbohydrates, sugars, fiber, and principal carbohydrate-containing food groups (eg, breads, cereals, and sugary drinks) with changes in blood pressure during adolescence. A total of 858 students aged 12 years at baseline (422 girls and 436 boys) were examined from 2004-2005 to 2009-2011. Dietary data were assessed from validated semiquantitative food frequency questionnaires. Blood pressure was measured using a standard protocol. In girls, after adjusting for age, ethnicity, parental education, parental history of hypertension, baseline height, baseline blood pressure, change in body mass index, and time spent in physical and sedentary activities, each 1-SD (1-SD = 7.10 g/d) increase in baseline dietary intake of total fiber was associated with a 0.96-, 0.62-, and 0.75-mmHg decrease in mean systolic (P = 0.02), diastolic (P = 0.01), and arterial blood pressures (P = 0.002), respectively, 5 years later. In girls, each 1-SD increase in dietary glycemic index, glycemic load, carbohydrate, and fructose was concurrently related to increases of 1.81 (P = 0.001), 4.02 (P = 0.01), 4.74 (P = 0.01), and 1.80 mm Hg (P = 0.03) in systolic blood pressure, respectively, >5 years. Significant associations between carbohydrate nutrition variables and blood pressure were not observed among boys. Excessive dietary intake of carbohydrates, specifically from high glycemic index/glycemic load foods, could adversely influence blood pressure, particularly in girls, whereas fiber-rich diets may be protective against elevated blood pressure during adolescence.

  9. Loading and transport of high-active waste (HAW) with the TN85 flask in 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rys, Michael; Horn, Thomas; Graf, Wilhelm [GNS Gesellschaft fuer Nuklear-Service mbH (Germany); Bonface, Jean-Michael [TN International, Montigny-le-Bretonneux (France)


    As a part of the operation of nuclear power plants, it is essential to safely manage the radioactive waste. With new developments in science and technology, it is a dynamic process to adapt procedures, equipment and flasks to be used in the future. This is a task for specialists - a task for GNS Gesellschaft fuer Nuklear-Service mbH and for TN International. Until 1994 reprocessing of spent fuel from German nuclear power plants was mandatory for the Utilities (EVU) in Germany. Basis for the reprocessing was the German Atomic Act. The German Utilities concluded contracts on reprocessing with Compagnie Generale des Matieres Nucleaires (COGEMA, now AREVA NC) in France and British Nuclear Fuels plc (BNFL, now INS) in England. The total amount to be reprocessed comes to 5309 t HM contracted to AREVA NC and 768 t HM contracted to INS. The waste generated from reprocessing - or an equivalent amount of radioactive material - has to be returned to the country of origin. In 1979 already an exchange of notes took place between the German and the French government with the obligation of both sides to enable and support the return of reprocessing residues or equivalents. The return of high-active waste (HAW) from France has started in 1996 with the first attribution of 28 glass canisters (one flask) to German Utilities by AREVA NC. Until 2007, 75 flasks loaded with vitrified residue (VR) canisters have been transported to Gorleben. For these transports CASTOR {sup registered} HAW 20/28 CG flasks have been used. This presentation will give some background information about the last HAW transport in 2008 with the new flask generation of the type TN85. It will also describe the assembly of the new flask, the preparation of the flask for the loading campaign as well as the loading procedure. (orig.)

  10. High Working Memory Load Increases Intracortical Inhibition in Primary Motor Cortex and Diminishes the Motor Affordance Effect. (United States)

    Freeman, Scott M; Itthipuripat, Sirawaj; Aron, Adam R


    Motor affordances occur when the visual properties of an object elicit behaviorally relevant motor representations. Typically, motor affordances only produce subtle effects on response time or on motor activity indexed by neuroimaging/neuroelectrophysiology, but sometimes they can trigger action itself. This is apparent in "utilization behavior," where individuals with frontal cortex damage inappropriately grasp affording objects. This raises the possibility that, in healthy-functioning individuals, frontal cortex helps ensure that irrelevant affordance provocations remain below the threshold for actual movement. In Experiment 1, we tested this "frontal control" hypothesis by "loading" the frontal cortex with an effortful working memory (WM) task (which ostensibly consumes frontal resources) and examined whether this increased EEG measures of motor affordances to irrelevant affording objects. Under low WM load, there were typical motor affordance signatures: an event-related desynchronization in the mu frequency and an increased P300 amplitude for affording (vs nonaffording) objects over centroparietal electrodes. Contrary to our prediction, however, these affordance measures were diminished under high WM load. In Experiment 2, we tested competing mechanisms responsible for the diminished affordance in Experiment 1. We used paired-pulse transcranial magnetic stimulation over primary motor cortex to measure long-interval cortical inhibition. We found greater long-interval cortical inhibition for high versus low load both before and after the affording object, suggesting that a tonic inhibition state in primary motor cortex could prevent the affordance from provoking the motor system. Overall, our results suggest that a high WM load "sets" the motor system into a suppressed state that mitigates motor affordances. Is an irrelevant motor affordance more likely to be triggered when you are under low or high cognitive load? We examined this using physiological measures

  11. Influence of process parameters of high-pressure emulsification method on the properties of pilocarpine-loaded nanoparticles. (United States)

    Yoncheva, K; Vandervoort, J; Ludwig, A


    Poly(lactide-co-glycolide) nanoparticles loaded with pilocarpine hydrochloride were prepared by the high-pressure emulsification-solvent evaporation method. The nanoparticles were produced using polyvinylalcohol (PVA), carbomer (Carbopol 980) or poloxamer (Lutrol F-68) as stabilizers during emulsification. The influence of pressure and number of cycles on the nanoparticle properties was investigated. For comparison, nanoparicles without high-pressure treatment of the emulsion were made. The nanoparticle size, drug loading and release properties depended strongly on the homogenization pressure and number of cycles applied. Nanoparticles obtained without high pressure homogenization showed larger size and high values of polydispersity index, especially when carbopol and poloxamer were used as emulsifiers. Drug loading and encapsulation efficiency of all samples also decreased with pressure. The low drug loading could be due to two reasons. First, the high pressure promoted drug diffusion out of protoparticles during emulsification either by size reduction or shear forces. Secondly, the characteristics of the outer water phase of the emulsion also influenced the nanoparticle drug loading. This was proven by the different drug loadings measured when nanoparticles were made with PVA, carbopol or poloxamer at equal pressures applied. The main factor influencing the release properties of nanoparticles was the pressure used during emulsification. Faster drug release was observed from nanoparticles obtained after high-pressure emulsification compared to those prepared without homogenization of the emulsion.

  12. Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage (United States)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping


    In a previous study, vane-rotor shock interactions and heat transfer on the rotor blade of a highly loaded transonic turbine stage were simulated. The geometry consists of a high pressure turbine vane and downstream rotor blade. This study focuses on the physics of flow and heat transfer in the rotor tip, casing and hub regions. The simulation was performed using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) code MSU-TURBO. A low Reynolds number k-epsilon model was utilized to model turbulence. The rotor blade in question has a tip gap height of 2.1 percent of the blade height. The Reynolds number of the flow is approximately 3x10(exp 6) per meter. Unsteadiness was observed at the tip surface that results in intermittent "hot spots". It is demonstrated that unsteadiness in the tip gap is governed by inviscid effects due to high speed flow and is not strongly dependent on pressure ratio across the tip gap contrary to published observations that have primarily dealt with subsonic tip flows. The high relative Mach numbers in the tip gap lead to a choking of the leakage flow that translates to a relative attenuation of losses at higher loading. The efficacy of new tip geometry is discussed to minimize heat flux at the tip while maintaining choked conditions. In addition, an explanation is provided that shows the mechanism behind the rise in stagnation temperature on the casing to values above the absolute total temperature at the inlet. It is concluded that even in steady mode, work transfer to the near tip fluid occurs due to relative shearing by the casing. This is believed to be the first such explanation of the work transfer phenomenon in the open literature. The difference in pattern between steady and time-averaged heat flux at the hub is also explained.

  13. Polyamidoamine dendrimer-based binders for high-loading lithium–sulfur battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Priyanka; Nandasiri, Manjula I.; Lv, Dongping; Schwarz, Ashleigh M.; Darsell, Jens T.; Henderson, Wesley A.; Tomalia, Donald A.; Liu, Jun; Zhang, Ji-Guang; Xiao, Jie


    Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage systems because of their ultra high theoretical specific energy. To realize the practical application of Li-S batteries, however, a high S active material loading is essential (>70 wt% in the carbon-sulfur (C-S) composite cathode and >2 mg cm-2 in the electrode). A critical challenge to achieving this high capacity in practical electrodes is the dissolution of the longer lithium polysulfide reaction intermediates in the electrolyte (resulting in loss of active material from the cathode and contamination of the anode due to the polysulfide shuttle mechanism). The binder material used for the cathode is therefore crucial as this is a key determinant of the bonding interactions between the active material (S) and electronic conducting support (C), as well as the maintenance of intimate contact between the electrode materials and current collector. The battery performance can thus be directly correlated with the choice of binder, but this has received only minimal attention in the relevant Li-S battery published literature. Here, we investigated the application of polyamidoamine (PAMAM) dendrimers as functional binders in Li-S batteries—a class of materials which has been unexplored for electrode design. By using dendrimers, it is demonstrated that high S loadings (>4 mg cm-2) can be easily achieved using "standard" (not specifically tailored) materials and simple processing methods. An exceptional electrochemical cycling performance was obtained (as compared to cathodes with conventional linear polymeric binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR)) with >100 cycles and 85-98% capacity retention, thus demonstrating the significant utility of this new binder architecture which exhibits critical physicochemical properties and flexible nanoscale design parameters (CNDP's).

  14. Preparation of HCPT-Loaded Nanoneedles with Pointed Ends for Highly Efficient Cancer Chemotherapy (United States)

    Wu, Shichao; Yang, Xiangrui; Li, Yang; Wu, Hongjie; Huang, Yu; Xie, Liya; Zhang, Ying; Hou, Zhenqing; Liu, Xiangyang


    The high-aspect-ratio nanoparticles were proved to be internalized much more rapidly and efficiently by cancer cells than the nanoparticles with an equal aspect ratio. Herein, a kind of high-aspect ratio, pointed-end nanoneedles (NDs) with a high drug loading (15.04 %) and the prolonged drug release profile were fabricated with an anti-tumor drug—10-hydroxycamptothecin (HCPT)—via an ultrasound-assisted emulsion crystallization technique. It is surprising to see that the cellular internalization of NDs with an average length of 5 μm and an aspect ratio of about 12:1 was even much faster and higher than that of nanorods with the same size and the nanospheres with a much smaller size of 150 nm. The results further validated that cellular internalization of the nanoparticles exhibited a strong shape-dependent effect, and cellular uptake may favor the particles with sharp ends as well as a high-aspect ratio instead of particle size. The NDs with enhanced cytotoxicity would lead to a promising sustained local drug delivery system for highly efficient anticancer therapy. More importantly, the fabrication of NDs opens a door to design new formulations of nanoneedle drug delivery systems for highly efficient cancer.

  15. High-intensity tasks with external load in military applications: a review. (United States)

    O'Neal, Eric K; Hornsby, Jared H; Kelleran, Kyle J


    This article provides a synopsis of the limited investigations examining the impact of external load (EL) on performance of high-intensity tasks under load (HITL), EL training intervention effects on HITL performance, and injuries from EL training. Repetitive lifting tasks and initiation of locomotion, such as rapidly moving from a prone position to sprinting appear to be more hindered by EL than maximal sprinting velocity and may explain why training with EL does not improve obstacle course or prolonged (200-300 yard shuttle) drills. EL training appears to offer very little if any benefit for HITL in lesser trained populations. This contrast results of multiple studies incorporating ≥ 3 weeks of prolonged hypergravity interventions (wearing EL during daily activities) in elite anaerobic athletes, indicating EL training stimulus is likely only beneficial to well-trained soldiers. Women and lesser trained individuals appear to be more susceptible to increased injury with EL training. A significant limitation concerning current HITL knowledge is the lack of studies incorporating trained soldiers. Future investigations concerning the effects of HITL on marksmanship, repetitive lifting biomechanics, efficacy of hypergravity training for military personnel, and kinematics of sprinting from tactical positions with various EL displacements and technique training are warranted. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  16. Impact of influent characteristics on a partial nitritation SBR treating high nitrogen loaded wastewater. (United States)

    Ganigué, R; Volcke, E I P; Puig, S; Balaguer, M D; Colprim, J


    The Anammox process allows a sustainable treatment of wastewater with high nitrogen content. Partial oxidation of ammonium to nitrite is a previous and crucial step. Given the variability on wastewater composition, the operation of sequencing batch reactors (SBR) for partial nitritation (PN) is very challenging. This work assessed the combined influence of influent characteristics and process loading rate. Simulation results showed that wastewater composition - Total nitrogen as ammonia (TNH) and total inorganic carbon (TIC) - as well as nitrogen loading rate (NLR) govern the outcomes of the reactor. A suitable effluent can be produced when treating wastewater with different ammonia levels, as long as the TIC:TNH influent molar ratio is around 1:1 and extreme NLR are avoided. The influent pH has a key impact on nitrite conversion by governing the CO(2)-bicarbonate-carbonate equilibrium. Finally, results showed that oxidation of biodegradable organic matter produces CO(2), which acidifies the media and limits process conversion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Detection of high biliary and fecal viral loads in patients with chronic hepatitis C virus infection. (United States)

    Monrroy, Hugo; Angulo, Jenniffer; Pino, Karla; Labbé, Pilar; Miquel, Juan Francisco; López-Lastra, Marcelo; Soza, Alejandro


    The life cycle of the hepatitis C virus (HCV) is closely associated with lipid metabolism. Recently, NPC1L1 (a cholesterol transporter) has been reported to function as an HCV receptor. This receptor is expressed in the hepatocyte canalicular membrane and in the intestine; serving as a key transporter for the cholesterol enterohepatic cycle. We hypothesized that HCV might have a similar cycle, so we aimed to study the presence of HCV in bile and stools of infected patients. Blood, feces, and duodenal bile samples were collected from patients infected with HCV. The biliary viral load was normalized to the bile salt concentration of each sample and the presence of HCV core protein was also evaluated. A total of 12 patients were recruited. HCV RNA was detected in the bile from ten patients. The mean viral load was 2.5log10IU/60mg bile salt. In the stool samples, HCV RNA was detected in ten patients (mean concentration 2.7log10IU/g of feces). HCV RNA is readily detectable and is present at relatively high concentrations in the bile and stool samples of infected patients. This may be relevant as a source of infection in men who have sex with men. Biliary HCV secretion may perhaps play a role in the persistence of viral infection via an enterohepatic cycle of the virus or intrahepatic spread. Copyright © 2017 Elsevier España, S.L.U., AEEH y AEG. All rights reserved.

  18. Atomic-Layer-Deposition Functionalized Carbonized Mesoporous Wood Fiber for High Sulfur Loading Lithium Sulfur Batteries. (United States)

    Luo, Chao; Zhu, Hongli; Luo, Wei; Shen, Fei; Fan, Xiulin; Dai, Jiaqi; Liang, Yujia; Wang, Chunsheng; Hu, Liangbing


    Lithium-sulfur battery (LSB) as one of the most promising energy storage devices suffers from poor conductivity of sulfur and fast capacity decay triggered by the dissolution of polysulfides. In this work, functionalized carbonized mesoporous wood fiber (f-CMWF) is employed as a host to accommodate sulfur for the first time. Natural wood microfiber has unique hierarchical and mesoporous structure, which is well-maintained after carbonization. With such a hierarchical mesoporous structure, a high sulfur loading of 76 wt % is achieved in CMWF electrodes. The pore size of CMWF is tunable by atomic layer deposition (ALD) of a 5 nm Al 2 O 3 coating to form the f-CMWF. Such a thin layer slightly decreases the sulfur loading to 70%, but it remarkably promotes the cyclic stability of sulfur cathode, which delivers an initial capacity of 1115 mAh g -1 , and maintains a reversible capacity of 859 mAh g -1 for 450 cycles, corresponding to a slow capacity decay rate of 0.046% per cycle. More importantly, natural wood microfiber is first used as a raw material for sulfur encapsulating. This work is also critical for using low cost and mesoporous biomass carbon as bifunctional scaffold for LSB.

  19. Simplified formulations with high drug loads for continuous twin-screw granulation. (United States)

    Meier, R; Thommes, M; Rasenack, N; Krumme, M; Moll, K-P; Kleinebudde, P


    As different batches of the same excipients will be intermixed during continuous processes, the traceability of batches is complicated. Simplified formulations may help to reduce problems related to batch intermixing and traceability. Twin-screw granulation with subsequent tableting was used to produce granules and tablets, containing drug, disintegrant and binder (binary and ternary mixtures), only. Drug loads up to 90% were achieved and five different disintegrants were screened for keeping their disintegration suitability after wetting. Granule size distributions were consistently mono-modal and narrow. Granule strength reached higher values, using ternary mixtures. Tablets containing croscarmellose-Na as disintegrant displayed tensile strengths up to 3.1MPa and disintegration times from 400 to 466s, resulting in the most robust disintegrant. Dissolution was overall complete and above 96% within 30 min. Na-starch glycolate offers tensile strengths up to 2.8MPa at disintegration times from 25s to 1031s, providing the broadest application window, as it corresponds in some parts to different definitions of orodispersible tablets. Tablets containing micronized crospovidone are not suitable for immediate release, but showed possibilities to produce highly drug loaded, prolonged release tablets. Tablets and granules from simplified formulations offer great opportunities to improve continuous processes, present performances comparable to more complicated formulations and are able to correspond to requirements of the authorities. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Heat transfer issues in high-heat-load synchrotron x-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Khounsary, A.M.; Mills, D.M.


    In this paper, a short description of the synchrotron radiation x-ray sources and the associated power loads is given, followed by a brief description of typical synchrotron components and their heat load. It is emphasized that the design goals for most of these components is to limit (a) temperature, (b) stresses, or (c) strains in the system. Each design calls for a different geometry, material selection, and cooling scheme. Cooling schemes that have been utilized so far are primarily single phase and include simple macrochannel cooling, microchannel cooling, contact cooling, pin-post cooling, porous-flow cooling, jet cooling, etc. Water, liquid metals, and various cryogenic coolants have been used. Because the trend in x-ray beam development is towards brighter (i.e., more powerful) beams and assuming that no radical changes in the design of x-ray generating machines occurs in the next few years, it is fair to state that the utilization of various effective cooling schemes and, in particular, two-phase flow (e.g., subcooled boiling) warrants further investigation. This, however, requires a thorough examination of stability and reliability of two-phase flows for high-heat-flux components operating in ultrahigh vacuum with stringent reliability requirements.


    Directory of Open Access Journals (Sweden)



    Full Text Available With the aim to increase allowable blade loadings and enlarge stable operating range in highly loaded compressor, this work is carried out in order to explore the potential of passive control via slotted bladings in linear cascade configurations under both design and stall conditions. Through an extensive 2D-numerical study, the effects of location, width and slope of slots were analysed and the best configuration was identified. Based on the optimal slot, the 3D aerodynamic performances of cascade were studied and the influence of slotted blading to control endwall flow was investigated. Both 2D and 3D calculations are performed on steady RANS solver with standard k-epsilon turbulence model and low Mach number regime. The total loss coefficient, turning angle and flow visualizations on the blade and end-wall surfaces are adopted to describe the different configurations. The obtained results show, for 2D situation, that a maximum of 28.3% reduction in loss coefficient had been reached and the flow turning was increased with approximately 5°. Concerning 3D flow fields the slots marked their benefit at large incoming flow angles which delays the separation on both end wall and blade suction surface at mid span. However, at design conditions, the slotted blades are not able to control secondary flows near the wall and so, lose their potential.

  2. Single detection of human bocavirus 1 with a high viral load in severe respiratory tract infections in previously healthy children. (United States)

    Zhou, Lili; Zheng, Shouyan; Xiao, Qiuyan; Ren, Luo; Xie, Xiaohong; Luo, Jian; Wang, Lijia; Huang, Ailong; Liu, Wei; Liu, Enmei


    Human bocavirus is a newly discovered parvovirus. Multiple studies have confirmed the presence of human bocavirus1 (HBoV1) in respiratory tract samples of children. The viral load, presentation of single detection and its role as a causative agent of severe respiratory tract infections have not been thoroughly elucidated. We investigated the presence of HBoV1 by quantitative polymerase chain reaction (PCR) of nasopharyngeal aspirate specimens from 1229 children hospitalized for respiratory tract infections. The samples were analyzed for 15 respiratory viruses by PCR and 7 respiratory viruses by viral culture. At least one virus was detected in 652 (53.1%) of 1229 children, and two or more viruses were detected in 266 (21.6%) children. HBoV1 was detected in 127 children (10.3%), in which 66/127 (52%) of the cases were the only HBoV1 virus detected. Seasonal variation was observed with a high HBoV1 infection rate in summer. A cutoff value of 107 copies/mL was used to distinguish high and low HBoV1 viral loads in the nasopharyngeal aspirates. High viral loads of HBoV1 were noted predominantly in the absence of other viral agents (28/39, 71.8%) whereas there was primarily co-detection in cases of low HBoV1 viral loads (50/88, 56.8%). There were no differences in the clinical symptoms and severity between HBoV1 single detection and co-detection. In cases of HBoV1 single detection, the high viral load group was more prevalent among children with dyspnea and wheezing than was the low viral load group (42.9% vs. 23.7%, P = 0.036; 60.7% vs. 31.6%, P = 0.018). In clinical severity, a significant difference was recorded (25.0% vs. 5.3%, P = 0.003) between high viral load and low viral load groups. Of the HBoV1 positive patients associated with severe respiratory tract infections, 10/18 (55.6%) patients belonged to the HBoV1 high viral load group, and 7/10 (70%) patients had cases of HBoV1 single detection. HBoV1 at a high viral load is not frequently found in co

  3. Influence of track surface on the equine superficial digital flexor tendon loading in two horses at high speed trot. (United States)

    Crevier-Denoix, N; Pourcelot, P; Ravary, B; Robin, D; Falala, S; Uzel, S; Grison, A C; Valette, J P; Denoix, J M; Chateau, H


    Although track surfaces are a risk factor of tendon injuries, their effects on tendon loading at high speed are unknown. Using a noninvasive ultrasonic technique, it is now possible to evaluate the forces in the superficial digital flexor tendon (SDFT) in exercise conditions. To compare the effects of an all-weather waxed track (W) vs. a crushed sand track (S), on the SDFT loading in the trotter horse at high speed. Two trotter horses were equipped with the ultrasonic device (1 MHz ultrasonic probe, fixed on the palmar metacarpal area of the right forelimb). For each trial, data acquisition was made at 400 Hz and 10 consecutive strides were analysed. In each session, the 2 track surfaces were tested in a straight line. The speed was imposed at 10 m/s and recorded. The right forelimb was also equipped with a dynamometric horseshoe and skin markers. The horse was filmed with a high-speed camera (600 Hz); all recordings were synchronised. Statistical differences were tested using the GLM procedure (SAS; P fetlock angle-time chart. For high tendon forces, the tendon maximal loading rate was significantly lower on W than on S. CONCLUSIONS AND POTENTIAL CLINICAL RELEVANCE: The all-weather waxed track appears to induce a lesser and more gradual SDFT loading than crushed sand. The SDFT loading pattern at high speed trot suggests proximal interphalangeal joint movements during limb loading.

  4. Unmixing stream water chemistry: nutrient load pathways assessed from high resolution data (United States)

    Mellander, P.-E.; Melland, A. R.; Jordan, P.; Murphy, P. N. C.; Wall, D.; Shortle, G.


    In order to mitigate anthropogenic nutrient transfers to surface waters there is a need to identify and quantify the transfer pathways and their influence on delivery to streams. The Agricultural Catchments Programme (ACP) aims to provide scientific evidence needed to support Irish agriculture in meeting the requirements of the Water Framework Directive (WFD). In this paper we combine yearly averaged and site specific pathway analysis (End Member Mixing Analysis, EMMA) with high temporal resolution catchment-integrated monitoring data to characterise nitrogen (N) and phosphorus (P) transfer pathways in six Irish agricultural river catchments with different land management, soil drainage and geology. A Loadograph Recession Analysis (LRA) method is introduced, to unmix end-of-catchment stream nutrient loads into specific delivery pathways (overland flow, near-surface interflow and a range of deep subsurface pathways) and quantify their contributions of total oxidised nitrogen (TON), total reactive phosphorus (TRP) and total phosphorus (TP). The method uses high temporal resolution N and P load data at river outlets coupled with time-averaged data of N and P concentrations from multilevel monitoring wells. Nitrogen and P pathways in the catchments are characterised and possible implications for mitigation strategies and policies are explored. Results suggest that, in catchments with permeable soils and geology, subsurface pathways will need to be considered for mitigation strategies for both diffuse N and P delivery and measures that target surface transfer pathways such as riparian buffer strips may be ineffective. In such catchments, long chemical recessions from storm events may prolong impacts on the ecological status of receiving rivers. While EMMA gave an idea of the proportions of N and P transfer pathways during baseflow conditions over a year, and has potential to improve understanding of upland conditions, the LRA has the added benefit of being able to

  5. Greater Neural Adaptations following High- vs. Low-Load Resistance Training. (United States)

    Jenkins, Nathaniel D M; Miramonti, Amelia A; Hill, Ethan C; Smith, Cory M; Cochrane-Snyman, Kristen C; Housh, Terry J; Cramer, Joel T


    We examined the neuromuscular adaptations following 3 and 6 weeks of 80 vs. 30% one repetition maximum (1RM) resistance training to failure in the leg extensors. Twenty-six men (age = 23.1 ± 4.7 years) were randomly assigned to a high- (80% 1RM; n = 13) or low-load (30% 1RM; n = 13) resistance training group and completed leg extension resistance training to failure 3 times per week for 6 weeks. Testing was completed at baseline, 3, and 6 weeks of training. During each testing session, ultrasound muscle thickness and echo intensity, 1RM strength, maximal voluntary isometric contraction (MVIC) strength, and contractile properties of the quadriceps femoris were measured. Percent voluntary activation (VA) and electromyographic (EMG) amplitude were measured during MVIC, and during randomly ordered isometric step muscle actions at 10-100% of baseline MVIC. There were similar increases in muscle thickness from Baseline to Week 3 and 6 in the 80 and 30% 1RM groups. However, both 1RM and MVIC strength increased from Baseline to Week 3 and 6 to a greater degree in the 80% than 30% 1RM group. VA during MVIC was also greater in the 80 vs. 30% 1RM group at Week 6, and only training at 80% 1RM elicited a significant increase in EMG amplitude during MVIC. The peak twitch torque to MVIC ratio was also significantly reduced in the 80%, but not 30% 1RM group, at Week 3 and 6. Finally, VA and EMG amplitude were reduced during submaximal torque production as a result of training at 80% 1RM, but not 30% 1RM. Despite eliciting similar hypertrophy, 80% 1RM improved muscle strength more than 30% 1RM, and was accompanied by increases in VA and EMG amplitude during maximal force production. Furthermore, training at 80% 1RM resulted in a decreased neural cost to produce the same relative submaximal torques after training, whereas training at 30% 1RM did not. Therefore, our data suggest that high-load training results in greater neural adaptations that may explain the disparate increases in


    Directory of Open Access Journals (Sweden)

    D. M. Kurhan


    Full Text Available Purpose. Increase the train speeds movements requires not only the appropriate technical solutions, but also methodological-calculated. Most of the models and methodologies used for solving problems of stress-strain state of the railroad tracks, are based on assumptions and hypotheses adequate only for certain speeds. In the framework of this work will be discussed theoretical background of the changing nature of perceptual load elements of the railway track at high speeds and investigated the numeric parameters of the processes by means of mathematical modeling. As a practical purposes is expected to provide the levels of train speed, the boundaries of which can reasonably exclude the possibility of occurrence of the considered effects. Methodology. To achieve these objectives was used principal new model of railway track based on wave propagation theory stresses in the elastic system to study the impact of the movable load, take into account that the deflection in a particular section of the road starts even while the wheels at some distance, and moving the wheels farther from the selected section of the wave front elastic strain continues to spread. According to the results of simulations explores the changing shape of the wave front voltages in time for the foundation under the rail. If the train speeds substantially less than the velocity propagation of elastic waves, the wheel remains in the area implemented deformations. Findings. Alternative calculations for various parameters of the railway track (especially for different soil conditions determined the levels of train speed, the boundaries of which can reasonably exclude the possibility of occurrence of the considered effects. Originality. The proposed theoretical study and implementation in the form of mathematical models for processes that occur in the perception of load elements of the railway track at high speeds. Practical value. According to simulation results obtained levels of

  7. Greater Neural Adaptations following High- vs. Low-Load Resistance Training

    Directory of Open Access Journals (Sweden)

    Nathaniel D. M. Jenkins


    Full Text Available We examined the neuromuscular adaptations following 3 and 6 weeks of 80 vs. 30% one repetition maximum (1RM resistance training to failure in the leg extensors. Twenty-six men (age = 23.1 ± 4.7 years were randomly assigned to a high- (80% 1RM; n = 13 or low-load (30% 1RM; n = 13 resistance training group and completed leg extension resistance training to failure 3 times per week for 6 weeks. Testing was completed at baseline, 3, and 6 weeks of training. During each testing session, ultrasound muscle thickness and echo intensity, 1RM strength, maximal voluntary isometric contraction (MVIC strength, and contractile properties of the quadriceps femoris were measured. Percent voluntary activation (VA and electromyographic (EMG amplitude were measured during MVIC, and during randomly ordered isometric step muscle actions at 10–100% of baseline MVIC. There were similar increases in muscle thickness from Baseline to Week 3 and 6 in the 80 and 30% 1RM groups. However, both 1RM and MVIC strength increased from Baseline to Week 3 and 6 to a greater degree in the 80% than 30% 1RM group. VA during MVIC was also greater in the 80 vs. 30% 1RM group at Week 6, and only training at 80% 1RM elicited a significant increase in EMG amplitude during MVIC. The peak twitch torque to MVIC ratio was also significantly reduced in the 80%, but not 30% 1RM group, at Week 3 and 6. Finally, VA and EMG amplitude were reduced during submaximal torque production as a result of training at 80% 1RM, but not 30% 1RM. Despite eliciting similar hypertrophy, 80% 1RM improved muscle strength more than 30% 1RM, and was accompanied by increases in VA and EMG amplitude during maximal force production. Furthermore, training at 80% 1RM resulted in a decreased neural cost to produce the same relative submaximal torques after training, whereas training at 30% 1RM did not. Therefore, our data suggest that high-load training results in greater neural adaptations that may explain the

  8. Shorter telomeres with high telomerase activity are associated with raised allostatic load and impoverished psychosocial resources. (United States)

    Zalli, Argita; Carvalho, Livia A; Lin, Jue; Hamer, Mark; Erusalimsky, Jorge D; Blackburn, Elizabeth H; Steptoe, Andrew


    Recent work has linked psychological stress with premature cellular aging as indexed by reduced leukocyte telomere length. The combination of shorter telomeres with high telomerase activity (TA) may be indicative of active cell stress. We hypothesized that older individuals characterized by shorter telomeres with high TA in unstimulated leukocytes would show signs of high allostatic load and low levels of protective psychosocial resources. We studied 333 healthy men and women aged 54-76 y who underwent laboratory testing in which we measured cardiovascular, neuroendocrine, and inflammatory responses to standardized mental stress tasks. The tasks elicited prompt increases in blood pressure (BP), heart rate, cortisol, and mediators of inflammation and reductions in heart rate variability, returning toward baseline levels following stress. However, men having shorter telomeres with high TA showed blunted poststress recovery in systolic BP, heart rate variability, and monocyte chemoattractant protein-1, together with reduced responsivity in diastolic BP, heart rate, and cortisol, in comparison to men with longer telomeres or men with shorter telomeres and low TA. Shorter telomeres with high TA were also associated with reduced social support, lower optimism, higher hostility, and greater early life adversity. These effects were independent of age, socioeconomic status, and body mass index. We did not observe differences among older women. Our findings suggest that active cell stress is associated with impaired physiological stress responses and impoverished psychosocial resources, reflecting an integration of cellular, systemic, and psychological stress processes potentially relevant to health in older men.

  9. A Short-Term and High-Resolution System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaiguang [National Renewable Energy Laboratory (NREL), Golden, CO (United States)


    This work proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of the hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system.

  10. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets

    Directory of Open Access Journals (Sweden)

    Cariou Bertrand


    Full Text Available Abstract Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9 is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2 and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D patients that are more prone to develop insulin resistance, including: i acute post-prandial hyperlipidemic challenge (n=10, ii 4 days of high-fat (HF or high-fat/high-protein (HFHP (n=10, iii 7 (HFruc1, n=16 or 6 (HFruc2, n=9 days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05 in healthy volunteers and by 34% (p=0.001 in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p Conclusions Plasma PCSK9 concentrations vary

  11. Effects of Low-Load Motor Control Exercises and a High-Load Lifting Exercise on Lumbar Multifidus Thickness: A Randomized Controlled Trial. (United States)

    Berglund, Lars; Aasa, Björn; Michaelson, Peter; Aasa, Ulrika


    Randomized controlled trial. The aim of this study was to compare the effects of low-load motor control (LMC) exercises and a high-load lifting (HLL) exercise, on lumbar multifidus (LM) thickness on either side of the spine and whether the effects were affected by pain intensity or change in pain intensity. There is evidence that patients with low back pain (LBP) may have a decreased size of the LM muscles with an asymmetry between sides in the lower back. It has also been shown that LMC training can affect this asymmetry. It is, however, not known whether a high-load exercise has the same effect. Sixty-five participants diagnosed with nociceptive mechanical LBP were included and randomized into LMC exercises or a HLL exercise, the deadlift. The LM thickness was measured using rehabilitative ultrasound imaging (RUSI), at baseline and after a 2-month training period. There were no differences between interventions regarding effect on LM muscle thickness. However, the analysis showed a significant effect for asymmetry. The thickness of the LM muscle on the small side increased significantly compared with the large side in both intervention groups, without influence of pain at baseline, or change in pain intensity. At baseline, there was a difference in thickness of the LM muscles between sides. It seems that exercises focusing on spinal alignment may increase the thickness of the LM muscles on the small side, irrespective of exercise load. The increase in LM thickness does not appear to be mediated by either current pain intensity or the magnitude of change in pain intensity. 2.

  12. Lab-scale fermentation tests of microchip with integrated electrochemical sensors for pH, temperature, dissolved oxygen and viable biomass concentration

    NARCIS (Netherlands)

    Krommenhoek, E.E.; van Leeuwen, Michiel; Gardeniers, Johannes G.E.; van Gulik, Walter M.; van den Berg, Albert; Li, X.; Li, Xiaonan; Ottens, Marcel; van der Wielen, Luuk A.M.; Heijnen, Joseph J.


    Miniaturization and automation are highly important issues for the development of high-throughput processes. The area of micro total analysis systems (mu TAS) is growing rapidly and the design of new schemes which are suitable for miniaturized analytical devices is of great importance. In this paper

  13. A Two-mode Buck Converter toward High Efficiency for the Entire Load Range for Low Power Applications


    Gao, Zhao


    In order to extend the battery life of smart cameras, it is essential to increase the efficiency of power converters, especially at light load. This thesis research investigated a power converter to supply power for the microprocessor of a smart camera. The input voltage of the converter is 5 V, and the output voltage is 1.2 V with the load ranging from 10 mA (12 mW) to 1200 mA (1440 mW). The conventional buck converter is typically optimized for high efficiency at maximum load at the cost of...

  14. The prototype of high stiffness load cell for Rockwell hardness testing machine calibration according to ISO 6508-2:2015 (United States)

    Pakkratoke, M.; Sanponpute, T.


    The penetrated depth of the Rockwell hardness testing machine is normally not more than 0.260 mm. Using commercial load cell cannot achieve the proposed force calibration according to ISO 6508-2[1]. For these reason, the high stiffness load cell (HSL) was fabricated. Its obvious advantage is deformation less than 0.020 mm at 150 kgf maximum load applied. The HSL prototype was designed in concept of direct compression and then confirmed with finite element analysis, FEA. The results showed that the maximum deformation was lower than 0.012 mm at capacity.

  15. Changes in the properties of soils of Moscow forest parks under the impact of high recreation loads (United States)

    Kuznetsov, V. A.; Ryzhova, I. M.; Stoma, G. V.


    The impact of off-road recreation loads with free moving of visitors across the area of forest parks is considered. This type of recreation loads exerts the most pronounced negative impact in soils. Quantitative estimates of changes in the morphological, physical, chemical, and biological properties of soils in Moscow parks Bitsevskii and Losinyi Ostrov under the impact of high recreation loads are given. Among the studied soil properties, the most significant changes take place in the soil structure, penetration resistance, and electrical conductivity. Quantitative data on the decrease in the number, biomass, and species diversity of soil mesofauna are also given.

  16. Protective Effectiveness of Porous Shields Under the Influence of High-Speed Impact Loading

    Directory of Open Access Journals (Sweden)

    Kramshonkov E.N.


    Full Text Available The results of numerical simulations of a compact steel impactor with the aluminum porous shields under high-speed shock loading are presented. The porosity of barrier varies in wide range provided that its mass stays the same, but the impactor has always equal (identical mass. Here presented the final assessment of the barrier perforation speed depending on its porosity and initial shock speed. The range of initial impact speed varies from 1 to 10 km/s. Physical phenomena such as: destruction, melting, vaporization of a interacting objects are taken into account. The analysis of a shield porosity estimation disclosed that the protection effectiveness of porous shield reveals at the initial impact speed grater then 1.5 km/s, and it increases when initial impact speed growth.

  17. Heavily loaded ferrite-polymer composites to produce high refractive index materials at centimetre wavelengths

    Directory of Open Access Journals (Sweden)

    L. Parke


    Full Text Available A cold-pressing technique has been developed for fabricating composites composed of a polytetrafluoroethylene-polymer matrix and a wide range of volume-fractions of MnZn-ferrite filler (0%–80%. The electromagnetic properties at centimetre wavelengths of all prepared composites exhibited good reproducibility, with the most heavily loaded composites possessing simultaneously high permittivity (180 ± 10 and permeability (23 ± 2. The natural logarithm of both the relative complex permittivity and permeability shows an approximately linear dependence with the volume fraction of ferrite. Thus, this simple method allows for the manufacture of bespoke materials required in the design and construction of devices based on the principles of transformation optics.

  18. Modeling of highly loaded 0-3 piezoelectric composites using a matrix method. (United States)

    Levassort, F; Lethiecq, M; Millar, C; Pourcelot, L


    A model previously developed for pure 0-3 connectivity piezocomposites has been extended to 3-3 connectivity. This matrix method allows the prediction of the effective electroelastic moduli of a piezocomposite according to its connectivity. It is used to optimize composite performance by choosing the optimal constituents for each phase. A simple combination of the results for 0-3 and 3-3 connectivities allows the effective proportion of 3-3 connectivity to be defined in highly loaded 0-3 piezocomposites. This theoretical analysis has been used to evaluate effective proportions of 3-3 connectivity in five composite samples. The values obtained are shown to be a function of the ceramic volume fraction and fabrication process. The results of this study were used to optimize the fabrication process.

  19. Exposure of CFC-materials to high transient heat loads in the TEXTOR tokamak (United States)

    Scholz, T.; Boedo, J.; Bolt, H.; Duwe, R.; Finken, K. H.; Gray, D.; Hassanein, A.


    Transient high heat flux events like ELMs, vertical displacement events and disruptions can cause the thermal ablation of plasma facing material. Until now experimental work in this field had been carried out by exposing material specimens to heat loads by electron or laser beam or by tests in pulsed plasma accelerators. In the present work carbon specimens were directly exposed to intense plasma fluxes in the TEXTOR tokamak. The exposure was performed with a fast probe allowing the insertion of the material over a distance of 9 cm into the edge plasma for a duration of 80 ms. The results of in-situ diagnostic measurements and of the post-experiment examination of the specimens are compared with a reference experiment by electron beam and with numerical analyses. Results indicated that the heat flux to the probe surfaces and the probe erosion is much lower than expected.

  20. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    DEFF Research Database (Denmark)

    Preindl, Matthias; Schaltz, Erik


    the use of a current controller which takes into account the discrete states of the inverter, e.g. DTC or a more modern approach: Model Predictive Direct Current Control (MPDCC). Moreover overshoots and oscillations in the speed are not desired in many applications, since they lead to mechanical stress......In drive systems the most used control structure is the cascade control with an inner torque, i.e. current and an outer speed control loop. The fairly small converter switching frequency in high power applications, e.g. wind turbines lead to modest speed control performance. An improvement bring...... behaviour. It compensates the load torque influence on the speed control setting a feed forward torque value, i.e. current reference value. The benefits are twice. The speed controller reaches immediately the speed reference value avoiding offsets which must be compensated by the weak integrator. Moreover...

  1. Improved glucose tolerance after high-load strength training in patients undergoing dialysis

    DEFF Research Database (Denmark)

    Mølsted, Stig; Harrison, Adrian Paul; Eidemak, Inge


    Background/Aims: The aim of this controlled study was to investigate the effect of high-load strength training on glucose tolerance in patients undergoing dialysis. Methods: 23 patients treated by dialysis underwent a 16-week control period followed by 16 weeks of strength training three times....... After strength training the relative area of type 2X fibers was decreased. Muscle fiber size and capillary density remained unchanged. After the strength training, insulin concentrations were significantly lower in patients with impaired glucose tolerance or type 2 diabetes (n = 14) (fasting insulin...... glucose tolerance (n = 9). Conclusion: The conducted strength training was associated with a significant improvement in glucose tolerance in patients with impaired glucose tolerance or type 2 diabetes undergoing dialysis. The effect was apparently not associated with muscle hypertrophy, whereas the muscle...

  2. Experimental investigation of fibre reinforced plastics with hybrid layups under high-velocity impact loads

    Directory of Open Access Journals (Sweden)

    Marco Romano


    Full Text Available This paper deals with experimental investigations concerning energy dissipation capacity of different kinds of reinforcement fibres in monolithic and hybrid layups under high-velocity impact loads. The investigated kinds of fibres are carbon, glass and basalt fibres. Therefore test panels, using the same thermoset resin, were built up and cured by autoclave processing. The fibre volume content of the test panels has been determined. Furthermore the influence of a separating layer at selected positions in the hybrid stacked panels was investigated. The results show the influence and the energy dissipation capacity of each single kind of fibre and the enhanced properties for the hybrid layups by hybrid stacking sequences and the use of a separating core material.

  3. C-band disk-loaded-type accelerating structure for a high acceleration gradient and high-repetition-rate operation

    Directory of Open Access Journals (Sweden)

    T. Sakurai


    Full Text Available A high-acceleration-gradient linear accelerator (LINAC for an x-ray free electron laser (XFEL offers the advantages of a short accelerator length and low construction costs. In addition, the high pulse repetition rate of the LINAC, which can drive multiple x-ray beam lines, provides additional user opportunities for experiments involving XFEL. A C-band disk-loaded-type accelerating structure was developed to achieve a high acceleration gradient of >50  MV/m and an rf-pulse repetition rate of 120 pps, which is twice as high as that of the XFEL facility, SACLA (60 pps. The structure has a quasiconstant gradient and a traveling wave type with an accelerating mode of TM01−2π/3. To reduce the surface electric fields, we employed a cross section with an ellipsoidal curvature around an iris aperture. The accelerating structure was manufactured for SACLA. High-power rf conditioning was conducted to investigate its performance. Owing to the conditioning, the acceleration gradient reached a value of more than 50.1  MV/m. The structure was operated without any serious issues at a repetition rate of 120 pps. The accelerating structures were installed in the dedicated accelerator for EUV-FEL at SACLA beam line-1. Finally, we obtained accelerated electron beams with the structures operated at an acceleration gradient of 41.4  MV/m.

  4. C -band disk-loaded-type accelerating structure for a high acceleration gradient and high-repetition-rate operation (United States)

    Sakurai, T.; Ego, H.; Inagaki, T.; Asaka, T.; Suzuki, D.; Miura, S.; Otake, Y.


    A high-acceleration-gradient linear accelerator (LINAC) for an x-ray free electron laser (XFEL) offers the advantages of a short accelerator length and low construction costs. In addition, the high pulse repetition rate of the LINAC, which can drive multiple x-ray beam lines, provides additional user opportunities for experiments involving XFEL. A C -band disk-loaded-type accelerating structure was developed to achieve a high acceleration gradient of >50 MV /m and an rf-pulse repetition rate of 120 pps, which is twice as high as that of the XFEL facility, SACLA (60 pps). The structure has a quasiconstant gradient and a traveling wave type with an accelerating mode of TM 01 -2 π /3 . To reduce the surface electric fields, we employed a cross section with an ellipsoidal curvature around an iris aperture. The accelerating structure was manufactured for SACLA. High-power rf conditioning was conducted to investigate its performance. Owing to the conditioning, the acceleration gradient reached a value of more than 50.1 MV /m . The structure was operated without any serious issues at a repetition rate of 120 pps. The accelerating structures were installed in the dedicated accelerator for EUV-FEL at SACLA beam line-1. Finally, we obtained accelerated electron beams with the structures operated at an acceleration gradient of 41.4 MV /m .

  5. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading (United States)

    Forman, R. G.; Zanganeh, M.


    This paper describes the results of a research program conducted to improve the understanding of fatigue crack growth rate behavior in the threshold growth rate region and to answer a question on the validity of threshold region test data. The validity question relates to the view held by some experimentalists that using the ASTM load shedding test method does not produce valid threshold test results and material properties. The question involves the fanning behavior observed in threshold region of da/dN plots for some materials in which the low R-ratio data fans out from the high R-ratio data. This fanning behavior or elevation of threshold values in the low R-ratio tests is generally assumed to be caused by an increase in crack closure in the low R-ratio tests. Also, the increase in crack closure is assumed by some experimentalists to result from using the ASTM load shedding test procedure. The belief is that this procedure induces load history effects which cause remote closure from plasticity and/or roughness changes in the surface morphology. However, experimental studies performed by the authors have shown that the increase in crack closure is a result of extensive crack tip bifurcations that can occur in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the fanning behavior which occurs in aluminum alloys is a function of intrinsic dislocation property of the alloy, and therefore, the fanned data does represent the true threshold properties of the material. However, for the corrosion sensitive steel alloys tested in laboratory air, the occurrence of fanning results from fretting corrosion at the crack tips, and these results should not be considered to be representative of valid threshold properties because the fanning is

  6. Removal of high organic loads from winery wastewater by aquatic plants. (United States)

    Zimmels, Y; Kirzhner, F; Schreiber, J


    Laboratory- and field-scale purification tests of raw and diluted winery wastewater (WWW) were carried out using aquatic plants at high organic loads. The laboratory tests were performed using artificial light at 1800 to 1900 lux. The objective of the current study was to define the potential of floating and emergent aquatic macrophytes and the microorganisms attached to their roots, to reduce high organic loads that characterize WWW, thereby providing, for these effluents, an effective treatment and management system. These microorganisms are believed to have a major role in the treatment process. In this context, the potential of floating and emergent macrophytes to improve the water quality of raw compared with diluted WWW was evaluated. In raw WWW (chemical oxygen demand [COD] 5.6 g/L),growth inhibition of both water hyacinth (Eichhornia crassipes) and water pennywort (Hydrocotyle umbellata) was observed. A 1:1 dilution of WWW with fresh (tap) water facilitated growth of these plants. At this dilution level, growth of pennywort was limited, while that of water hyacinth was robust. In terms of reductions in biochemical oxygen demand, COD, and total suspended solids, both water hyacinth and pennywort performed better in diluted compared with raw WWW. At 1:1 and 1:3 dilution, 95.9 to 97% of the COD was removed after 23 days, in the presence of Hydrocotyle and Eichhornia plants and aeration. The capacity of new emergent plants to remove high organic loads from WWW, at enhanced kinetics, was demonstrated. This unique property was tested and compared with the role of the gravel media that support growth of the high-capacity emergent plants. In the presence of reed and salt marsh plants, 83 to 99% of the COD was removed within a period of 24 to 29 days, at 1.5:1 dilution. The new emergent plants proved to be effective, even at record high levels of COD. At an initial level of 16,460 mg/L, the COD was brought down to 2870 mg/L after 24 days (82.6% removal), while 12

  7. Main chamber wall plasma loads in JET-ITER-like wall at high radiated fraction

    Directory of Open Access Journals (Sweden)

    C. Guillemaut


    Full Text Available Future tokamak reactors of conventional design will require high levels of exhaust power dissipation (more than 90% of the input power if power densities at the divertor targets are to remain compatible with active cooling. Impurity seeded H-mode discharges in JET-ITER-like Wall (ILW have reached a maximum radiative fraction (Frad of ∼75%. Divertor Langmuir probe (LP measurements in these discharges indicate, however, that less than ∼3% of the thermal plasma power reaches the targets, suggesting a missing channel for power loss. This paper presents experimental evidence from limiter LP for enhanced cross-field particle fluxes on the main chamber walls at high Frad. In H-mode nitrogen-seeded discharges with Frad increasing from ∼30% to up to ∼75%, the main chamber wall particle fluence rises by a factor ∼3 while the divertor plasma fluence drops by one order of magnitude. Contribution of main chamber wall particle losses to detachment, as suggested by EDGE2D-EIRENE modeling, is not sufficient to explain the magnitude of the observed divertor fluence reduction. An intermediate detached case obtained at Frad ∼ 60% with neon seeding is also presented. Heat loads were measured using the main chamber wall thermocouples. Comparison between thermocouple and bolometry measurements shows that the fraction of the input power transported to the main chamber wall remains below ∼5%, whatever the divertor detachment state is. Main chamber sputtering of beryllium by deuterium is reduced in detached conditions only on the low field side. If the fraction of power exhaust dissipated to the main chamber wall by cross-field transport in future reactors is similar to the JET-ILW levels, wall plasma power loading should not be an issue. However, other contributions such as charge exchange may be a problem.

  8. Multi-Mission Capable, High g Load mW RPS

    Energy Technology Data Exchange (ETDEWEB)

    John C. Bass; Nathan Hiller; Velimir Jovanovic; Norbert B. Elsner


    Over the past few years Hi-Z has been developing a wide range of mW generators and life testing thermoelectric modules for the Department of Energy (DOE) to fulfill requirements by NASA Ames and other agencies. The purpose of this report is to determine the capabilities of a wide range of mW generators for various missions. In the 1st quarterly report the power output of various mW generators was determined via thermal and mechanical modeling. The variable attributes of each generator modeled were: the number of RHUs (1-8), generator outer diameter (1.25-4 in.), and G-load (10, 500, or 2,000). The resultant power output was as high as 180 mW for the largest generator with the lowest Gload. Specifically, we looked at the design of a generator for high G loading that is insulated with Xenon gas and multifoil solid insulation. Because the design of this new generator varied considerably from the previous generator design, it was necessary to show in detail how it is to be assembled, calculate them as of the generator and determine the heat loss from the system. A new method of assembling the RHU was also included as part of the design. As a side issue we redesigned the test stations to provide better control of the cold sink temperature. This will help in reducing the test data by eliminating the need to 'normalize' the data to a specific temperature. In addition these new stations can be used to simulate the low ambient temperatures associated with Mars and other planets.

  9. Cost benefit analysis of high surge impedance loading (HSIL) HVAC transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Dariani, A.; Kumar, K. [SNC Lavalin Transmission and Distribution, Calgary, AB (Canada)


    The amount of power that a given extra high voltage alternating current transmission line can safely carry depends on different thermal and stability/surge impedance loading (SIL) limits. In the case of long lines, the capacity is limited by its SIL level only, which is much below its thermal capacity due to large inductance. Decrease in line inductance and surge impedance increases the SIL and transmission capacity. However, ever increasing demand for electrical energy along with stringent environmental constraints and deregulation of electricity market, have forced the utility companies to consider using compact and high throughput transmission lines in a narrower corridors. Compact transmission lines have lower surge impedance and higher power transfer capability but suffer from higher tower cost, as well as system operational constraints. This paper examined the sensitivity of incremental transmission line cost to the degree of tower compacting and attainable power transfer capability, considering the operational constraints, and other environmental issues such as electromagnetic field effects at the edge of the associated right of way. A set of 31 single and double circuit 500KV tower outlines were considered for analysis. A normalized line surge impedance loading and associated costs were considered for each case. The costs included land easement, foundation, hardware, conductors, engineering and installation. The paper described the methodology for optimizing each configuration based on the functionality, maintainability, capital cost and other parameters for tower selection. It was concluded that the analysis should be extended to include other techniques for increasing power transfer capacity. 5 refs., 1 tab., 4 figs.

  10. Evaluation of Dynamic Load Factors for a High-Speed Railway Truss Arch Bridge

    Directory of Open Access Journals (Sweden)

    Ding Youliang


    Full Text Available Studies on dynamic impact of high-speed trains on long-span bridges are important for the design and evaluation of high-speed railway bridges. The use of the dynamic load factor (DLF to account for the impact effect has been widely accepted in bridge engineering. Although the field monitoring studies are the most dependable way to study the actual DLF of the bridge, according to previous studies there are few field monitoring data on high-speed railway truss arch bridges. This paper presents an evaluation of DLF based on field monitoring and finite element simulation of Nanjing DaShengGuan Bridge, which is a high-speed railway truss arch bridge with the longest span throughout the world. The DLFs in different members of steel truss arch are measured using monitoring data and simulated using finite element model, respectively. The effects of lane position, number of train carriages, and speed of trains on DLF are further investigated. By using the accumulative probability function of the Generalized Extreme Value Distribution, the probability distribution model of DLF is proposed, based on which the standard value of DLF within 50-year return period is evaluated and compared with different bridge design codes.

  11. SEMICONDUCTOR INTEGRATED CIRCUITS: DCM, FSM, dead time and width controllers for a high frequency high efficiency buck DC-DC converter over a wide load range (United States)

    Changming, Pi; Wei, Yan; Ke, Zhang; Wenhong, Li


    This paper presents a width controller, a dead time controller, a discontinuous current mode (DCM) controller and a frequency skipping modulation (FSM) controller for a high frequency high efficiency buck DC-DC converter. To improve the efficiency over a wide load range, especially at high switching frequency, the dead time controller and width controller are applied to enhance the high load efficiency, while the DCM controller and FSM controller are proposed to increase the light load efficiency. The proposed DC-DC converter controllers have been designed and fabricated in the Chartered 0.35 μm CMOS process, and the measured results show that the efficiency of the buck DC-DC converter is above 80% over a wide load current range from 8 to 570 mA, and the peak efficiency is 86% at 10 MHz switching frequency.

  12. DCM, FSM, dead time and width controllers for a high frequency high efficiency buck DC-DC converter over a wide load range

    Energy Technology Data Exchange (ETDEWEB)

    Pi Changming; Yan Wei; Zhang Ke; Li Wenhong, E-mail: [State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 201203 (China)


    This paper presents a width controller, a dead time controller, a discontinuous current mode (DCM) controller and a frequency skipping modulation (FSM) controller for a high frequency high efficiency buck DC-DC converter. To improve the efficiency over a wide load range, especially at high switching frequency, the dead time controller and width controller are applied to enhance the high load efficiency, while the DCM controller and FSM controller are proposed to increase the light load efficiency. The proposed DC-DC converter controllers have been designed and fabricated in the Chartered 0.35 {mu}m CMOS process, and the measured results show that the efficiency of the buck DC-DC converter is above 80% over a wide load current range from 8 to 570 mA, and the peak efficiency is 86% at 10 MHz switching frequency. (semiconductor integrated circuits)

  13. Fermentative high-titer ethanol production from Douglas-fir forest residue without detoxification using SPORL: high SO2 loading at low temperature (United States)

    Feng Gu; William Gilles; Roland Gleisner; J.Y. Zhu


    This study evaluated high sulfur dioxide (SO2) loading in applying Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL) to Douglas-fir forest residue (FS-10) for ethanol production through yeast fermentation. Three pretreatments were conducted at 140

  14. PNL vitrification technology development project high-waste loaded high-level waste glasses for high-temperature melter: Letter report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.; Hrma, P.R.


    For vitrification of high-level wastes (HLW) at the Hanford Site, a Joule-heated overflow type melter with bottom draining capability and capable of operating at temperatures up to 1500{degrees}C is being developed. The original proposed Hanford Waste Vitrification Plant (HWVP) melter used a 1150{degrees}C processing temperature and was tested using glasses with up to 28 wt% waste oxide loading for NCAW (Neutralized Current Acid Waste). The goal of the high-temperature melter (HTM) is the volume reduction of the final product and increase of the waste processing rate by processing high-waste loaded glasses at higher temperatures. This would dramatically decrease waste disposal and processing costs. The aim of glass development for the HTM is to determine compositions and melting temperatures for processible and acceptable glasses with a high waste loading. Glass property/composition models for viscosity and liquidus temperature developed in the Glass Envelope Definition (GED) study were used. The results of glass formulation and experimental testing are presented for NCAW and DST/SST (Double-Shell Tank/Single-Shell Tank) Blend waste. Although the purpose of this report was to summarize the glass development study with Blend waste only, the results with NCAW were needed because glass development with Blend waste was based on the results from the glass development study with NCAW.

  15. Mitigation of divertor heat loads by strike point sweeping in high power JET discharges (United States)

    Silburn, S. A.; Matthews, G. F.; Challis, C. D.; Frigione, D.; Graves, J. P.; Mantsinen, M. J.; Belonohy, E.; Hobirk, J.; Iglesias, D.; Keeling, D. L.; King, D.; Kirov, K.; Lennholm, M.; Lomas, P. J.; Moradi, S.; Sips, A. C. C.; Tsalas, M.; Contributors, JET


    Deliberate periodic movement (sweeping) of the high heat flux divertor strike lines in tokamak plasmas can be used to manage the heat fluxes experienced by exhaust handling plasma facing components, by spreading the heat loads over a larger surface area. Sweeping has recently been adopted as a routine part of the main high performance plasma configurations used on JET, and has enabled pulses with 30 MW plasma heating power and 10 MW radiation to run for 5 s without overheating the divertor tiles. We present analysis of the effectiveness of sweeping for divertor temperature control on JET, using infrared camera data and comparison with a simple 2D heat diffusion model. Around 50% reduction in tile temperature rise is obtained with 5.4 cm sweeping compared to the un-swept case, and the temperature reduction is found to scale slower than linearly with sweeping amplitude in both experiments and modelling. Compatibility of sweeping with high fusion performance is demonstrated, and effects of sweeping on the edge-localised mode behaviour of the plasma are reported and discussed. The prospects of using sweeping in future JET experiments with up to 40 MW heating power are investigated using a model validated against existing experimental data.

  16. Influence of DOC on the inactivation efficacy of ozonation assessed with Clostridium perfringens and a lab-scale continuous flow system

    NARCIS (Netherlands)

    Hijnen, W.A.M.; Medema, Gerriet Jan; Baars, E.; Bosklopper, T.G.J.; Veer, A.J. van der; Meijers, R.T.


    Routine quality monitoring for fecal indicators after ozonation at the river-lake waterworks Weesperkarspel of Amsterdam Water Supply (AWS) show large variation in inactivation. The influence of the high DOC in the water on the inactivation efficiency was investigated. Results showed a higher

  17. Metasurface Reflector (MSR Loading for High Performance Small Microstrip Antenna Design.

    Directory of Open Access Journals (Sweden)

    Md Rezwanul Ahsan

    Full Text Available A meander stripline feed multiband microstrip antenna loaded with metasurface reflector (MSR structure has been designed, analyzed and constructed that offers the wireless communication services for UHF/microwave RFID and WLAN/WiMAX applications. The proposed MSR assimilated antenna comprises planar straight forward design of circular shaped radiator with horizontal slots on it and 2D metasurface formed by the periodic square metallic element that resembles the behavior of metamaterials. A custom made high dielectric bio-plastic substrate (εr = 15 is used for fabricating the prototype of the MSR embedded planar monopole antenna. The details of the design progress through numerical simulations and experimental results are presented and discussed accordingly. The measured impedance bandwidth, radiation patterns and gain of the proposed MSR integrated antenna are compared with the obtained results from numerical simulation, and a good compliance can be observed between them. The investigation shows that utilization of MSR structure has significantly broadened the -10 dB impedance bandwidth than the conventional patch antenna: from 540 to 632 MHz (17%, 467 to 606 MHz (29% and 758 MHz to 1062 MHz (40% for three distinct operating bands centered at 0.9, 3.5 and 5.5 GHz. Additionally, due to the assimilation of MSR, the overall realized gains have been upgraded to a higher value of 3.62 dBi, 6.09 dBi and 8.6 dBi for lower, middle and upper frequency band respectively. The measured radiation patterns, impedance bandwidths (S11<-10 dB and gains from the MSR loaded antenna prototype exhibit reasonable characteristics that can satisfy the requirements of UHF/microwave (5.8 GHz RFID, WiMAX (3.5/5.5 GHz and WLAN (5.2/5.8 GHz applications.

  18. Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique (United States)

    Su, Huaneng; Jao, Ting-Chu; Barron, Olivia; Pollet, Bruno G.; Pasupathi, Sivakumar


    This paper reports use of an ultrasonic-spray for producing low Pt loadings membrane electrode assemblies (MEAs) with the catalyst coated substrate (CCS) fabrication technique. The main MEA sub-components (catalyst, membrane and gas diffusion layer (GDL)) are supplied from commercial manufacturers. In this study, high temperature (HT) MEAs with phosphoric acid (PA)-doped poly(2,5-benzimidazole) (AB-PBI) membrane are fabricated and tested under 160 °C, hydrogen and air feed 100 and 250 cc min-1 and ambient pressure conditions. Four different Pt loadings (from 0.138 to 1.208 mg cm-2) are investigated in this study. The experiment data are determined by in-situ electrochemical methods such as polarization curve, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The high Pt loading MEA exhibits higher performance at high voltage operating conditions but lower performances at peak power due to the poor mass transfer. The Pt loading 0.350 mg cm-2 GDE performs the peak power density and peak cathode mass power to 0.339 W cm-2 and 0.967 W mgPt-1, respectively. This work presents impressive cathode mass power and high fuel cell performance for high temperature proton exchange membrane fuel cells (HT-PEMFCs) with low Pt loadings.

  19. Viral DNA load of high-risk human papilloma virus is closely associated with the grade of cervical lesions


    Shen, Guqun; Cheng, Jingxin; Wang, Yan; Zhou, Ping; Zhang, Guoqing


    This study is to explore the correlation between the viral load of high-risk human papilloma virus (HPV) and the degree of cervical lesions, as well as the follow-up monitoring role of high-risk HPV measurements in the treatment of patients with cervical lesions. Hybrid capture-2 method was used to measure the amount of high-risk HPV load of 361 patients who were enrolled from January 2009 to December 2010 at the Affiliated Tumor Hospital of Xinjiang Medical University, including 76 cases of ...

  20. Boron Carbide: Stabilization of Highly-Loaded Aqueous Suspensions, Pressureless Sintering, and Room Temperature Injection Molding (United States)

    Diaz-Cano, Andres

    Boron carbide (B4C) is the third hardest material after diamond and cubic boron nitride. It's unique combination of properties makes B4C a highly valuable material. With hardness values around 35 MPa, a high melting point, 2450°C, density of 2.52 g/cm3, and high chemical inertness, boron carbide is used in severe wear components, like cutting tools and sandblasting nozzles, nuclear reactors' control rots, and finally and most common application, armor. Production of complex-shaped ceramic component is complex and represents many challenges. Present research presents a new and novel approach to produce complex-shaped B4C components. Proposed approach allows forming to be done at room temperatures and under very low forming pressures. Additives and binder concentrations are kept as low as possible, around 5Vol%, while ceramics loadings are maximized above 50Vol%. Given that proposed approach uses water as the main solvent, pieces drying is simple and environmentally safe. Optimized formulation allows rheological properties to be tailored and adjust to multiple processing approaches, including, injection molding, casting, and additive manufacturing. Boron carbide samples then were pressureless sintered. Due to the high covalent character of boron carbide, multiples sintering aids and techniques have been proposed in order to achieve high levels of densification. However, is not possible to define a clear sintering methodology based on literature. Thus, present research developed a comprehensive study on the effect of multiple sintering aids on the densification of boron carbide when pressureless sintered. Relative densities above 90% were achieved with values above 30MPa in hardness. Current research allows extending the uses and application of boron carbide, and other ceramic systems, by providing a new approach to produce complex-shaped components with competitive properties.

  1. Effects of Radiation and a High Iron Load on Bone Mineral Density (United States)

    Yuen, E.; Morgan, J. L. L.; Zwart, S. R.; Gonzales, E.; Camp, K.; Smith, S. M.; Bloomfield, S. A.


    Astronauts on long duration space flight missions to the moon or mars are exposed to radiation and have increase iron (Fe) stores, both of which can independently induce oxidative stress and may exacerbate bone mass loss and strength. We hypothesize a high Fe diet and a fractionated gamma radiation exposure would increase oxidative stress and lower bone mass. Three mo-old, SD rats (n=32) were randomized to receive an adequate Fe diet (45 mg Fe/kg diet) or a high Fe diet (650 mg Fe/kg diet) for 4 wks and either a cumulative 3 Gy dose (fractionated 8 x 0.375 Gy) of gamma radiation (Cs-137) or sham exposure starting on day 14. Elisa kit assessed serum catalase, clinical analyzer assessed serum Fe status and ex vivo pQCT scans measured bone parameters in the proximal/midshaft tibia and femoral neck. Mechanical strength was assessed by 3-pt bending and femoral neck test. There is a significant decrease in trabecular bone mineral density (BMD) from radiation (p less than 0.05) and a trend in diet (p=0.05) at the proximal tibia. There is a significant interaction in cortical BMD from the combined treatments at the midshaft tibia (p less than 0.05). There is a trending decrease in total BMD from diet (p=0.07) at the femoral neck. In addition, high serum Fe was correlated to low trabecular BMD (p less than 0.05) and high serum catalase was correlated to low BMD at all 3 bone sites (p less than 0.05). There was no difference in the max load of the tibia or femoral neck. Radiation and a high iron diet increases iron status and catalase in the serum and decreases BMD.

  2. High-risk human papillomavirus viral load and persistence among heterosexual HIV-negative and HIV-positive men. (United States)

    Grabowski, Mary K; Gray, Ronald H; Serwadda, David; Kigozi, Godfrey; Gravitt, Patti E; Nalugoda, Fred; Reynolds, Steven J; Wawer, Maria J; Watya, Stephen; Quinn, Thomas C; Tobian, Aaron A R


    High-risk human papillomavirus (HR-HPV) viral load is associated with HR-HPV transmission and HR-HPV persistence in women. It is unknown whether HR-HPV viral load is associated with persistence in HIV-negative or HIV-positive men. HR-HPV viral load and persistence were evaluated among 703 HIV-negative and 233 HIV-positive heterosexual men who participated in a male circumcision trial in Rakai, Uganda. Penile swabs were tested at baseline and 6, 12 and 24 months for HR-HPV using the Roche HPV Linear Array, which provides a semiquantitative measure of HPV shedding by hybridisation band intensity (graded: 1-4). Prevalence risk ratios (PRR) were used to estimate the association between HR-HPV viral load and persistent detection of HR-HPV. HR-HPV genotypes with high viral load (grade:3-4) at baseline were more likely to persist than HR-HPV genotypes with low viral load (grade: 1-2) among HIV-negative men (month 6: adjPRR=1.83, 95% CI 1.32 to 2.52; month 12: adjPRR=2.01, 95% CI 1.42 to 3.11), and HIV-positive men (month 6: adjPRR=1.33, 95% CI 1.06 to 1.67; month 12: adjPRR=1.73, 95% CI 1.18 to 2.54). Long-term persistence of HR-HPV was more frequent among HIV-positive men compared with HIV-negative men (month 24: adjPRR=2.27, 95% CI 1.47 to 3.51). Persistence of newly detected HR-HPV at the 6-month and 12-month visits with high viral load were also more likely to persist to 24 months than HR-HPV with low viral load among HIV-negative men (adjPRR=1.67, 95% CI 0.88 to 3.16). HR-HPV genotypes with high viral load are more likely to persist among HIV-negative and HIV-positive men, though persistence was more common among HIV-positive men overall. The results may explain the association between high HR-HPV viral load and HR-HPV transmission. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  3. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature (United States)

    The United States of America as represented by the United States Department of Energy


    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  4. Low level perceptual, not attentional, processes modulate distractor interference in high perceptual Load displays: evidence from neglect/extinction

    Directory of Open Access Journals (Sweden)

    Carmel eMevorach


    Full Text Available According to perceptual load theory (Lavie, 2005 distractor interference is determined by the availability of attentional resources. If target processing does not exhaust resources (with low perceptual load distractor processing will take place resulting in interference with a primary task; however when target processing uses-up attentional capacity (with high perceptual load interference can be avoided. An alternative account (Tsal & Benoni, 2010 suggests that perceptual load effects can be based on distractor dilution by the mere presence of additional neutral items in high load displays so that the effect is not driven by the amount of attention resources required for target processing. Here we tested whether patients with unilateral neglect or extinction would show dilution effects from neutral items in their contralesional (neglected/extinguished field, even though these items do not impose increased perceptual load on the target and at the same time attract reduced attentional resources compared to stimuli in the ipsilesional field. Thus, such items do not affect the amount of attention resources available for distractor processing. We found that contralesional neutral elements can eliminate distractor interference as strongly as centrally presented ones in neglect/extinction patients, despite contralesional items being less well attended. The data are consistent with an account in terms of perceptual dilution of distracters rather than available resources for distractor processing. We conclude that distractor dilution can underlie the elimination of distractor interference in visual displays.

  5. Force dependent internalization of magnetic nanoparticles results in highly loaded endothelial cells for use as potential therapy delivery vectors. (United States)

    MacDonald, Cristin; Barbee, Kenneth; Polyak, Boris


    To investigate the kinetics, mechanism and extent of MNP loading into endothelial cells and the effect of this loading on cell function. MNP uptake was examined under field on/off conditions, utilizing varying magnetite concentration MNPs. MNP-loaded cell viability and functional integrity was assessed using metabolic respiration, cell proliferation and migration assays. MNP uptake in endothelial cells significantly increased under the influence of a magnetic field versus non-magnetic conditions. Larger magnetite density of the MNPs led to a higher MNP internalization by cells under application of a magnetic field without compromising cellular respiration activity. Two-dimensional migration assays at no field showed that higher magnetite loading resulted in greater cell migration rates. In a three-dimensional migration assay under magnetic field, the migration rate of MNP-loaded cells was more than twice that of unloaded cells and was comparable to migration stimulated by a serum gradient. Our results suggest that endothelial cell uptake of MNPs is a force dependent process. The in vitro assays determined that cell health is not adversely affected by high MNP loadings, allowing these highly magnetically responsive cells to be potentially beneficial therapy (gene, drug or cell) delivery systems.

  6. The characterization of secondary lithium-ion battery degradation when operating complex, ultra-high power pulsed loads (United States)

    Wong, Derek N.

    The US Navy is actively developing all electric fleets, raising serious questions about what is required of onboard power supplies in order to properly power the ship's electrical systems. This is especially relevant when choosing a viable power source to drive high power propulsion and electric weapon systems in addition to the conventional loads deployed aboard these types of vessels. Especially when high pulsed power loads are supplied, the issue of maintaining power quality becomes important and increasingly complex. Conventionally, a vessel's electrical power is generated using gas turbine or diesel driven motor-generator sets that are very inefficient when they are used outside of their most efficient load condition. What this means is that if the generator is not being utilized continuously at its most efficient load capacity, the quality of the output power may also be effected and fall outside of the acceptable power quality limits imposed through military standards. As a solution to this potential problem, the Navy has proposed using electrochemical storage devices since they are able to buffer conventional generators when the load is operating below the generator's most efficient power level or able to efficiently augment a generator when the load is operating in excess of the generator's most efficient power rating. Specifically, the US Navy is interested in using commercial off-the-shelf (COTS) lithium-ion batteries within an intelligently controlled energy storage module that could act as either a prime power supply for on-board pulsed power systems or as a backup generator to other shipboard power systems. Due to the unique load profile of high-rate pulsed power systems, the implementation of lithium-ion batteries within these complex systems requires them to be operated at very high rates and the effects these things have on cell degradation has been an area of focus. There is very little published research into the effects that high power transient

  7. Bed load size distribution and flow conditions in a high mountain catchment of Central Pyrenees

    Directory of Open Access Journals (Sweden)

    Martínez-Castroviejo, Ricardo


    Full Text Available The bed load size distribution caused by different types of flow are compared in a high mountain catchment located in the upper Gallego river basin (Central Spanish’ Pyrenees. Three kinds of hydrologic events could be defined: those triggered by heavy autumn rainfalls, those originated by isolated summer rainstorms and those promoted by snowmelting. Each one is characterized by a peculiar bed load size distribution. Thus, it could be demonstrated that the coarser fractions, above 30 mm in diameter, are up to six times more abundant, in percentage of total weight, in transports caused by heavy rainfalls than in the material collected after snowmelt flows. In its turn, bed load mobilized by snowmelt flows is mainly composed by medium and fine gravel, from 2 to 8 mm. These may amount up to 60 % of total weight of bed load. The reasons for these so different size distributions are discussed.

    [es] En una cuenca de alta montaña localizada en el alto valle del río Gallego (Pirineo central se comparan las distribuciones por tamaños de los acarreos movilizados por diferentes tipos de caudal. Tres tipos de eventos hidrológicos han podido ser caracterizados: los ocasionados por intensas lluvias de otoño, los originados por tormentas estivales aisladas y los producidos por la fusión de la nieve acumulada durante el invierno. Se concluye que cada uno de ellos lleva asociada una distribución por tamaños típica de la carga de fondo. Así, se ha comprobado que las fracciones más gruesas consideradas -superiores a los 30 mm de diámetro- son hasta seis veces más abundantes -en porcentaje sobre el peso total- en las exportaciones causadas por lluvias de gran intensidad que en las generadas por caudales de fusión. A su vez, las descargas ocasionadas por la fusión arrastran principalmente gravas de calibre medio y fino -entre 2y8 mm- que llegan a suponer el 60 % en peso del volumen movilizado. Este artículo discute las razones que provocan

  8. Thigh-calf contact: Does it affect the loading of the knee in the high-flexion range?

    NARCIS (Netherlands)

    Zelle, J.; Barink, M.; De Waal Malefijt, M.; Verdonschot, Nicolaas Jacobus Joseph


    Recently, high-flexion knee implants have been developed to provide for a large range of motion (ROM>120°) after total knee arthroplasty (TKA). Since knee forces typically increase with larger flexion angles, it is commonly assumed that high-flexion knee implants are subjected to larger loads than

  9. Massive reduction of tumour load and normalisation of hyperprolactinaemia after high dose cabergoline in metastasised prolactinoma causing thoracic syringomyelia (United States)

    van Uum, S H M; van Alfen, N; Wesseling, P; van Lindert, E; Pieters, G; Nooijen, P; Hermus, A


    On administration of high dose cabergoline, 0.5 mg twice a day orally, the plasma prolactin levels decreased within one month and then normalised within 26 months. Tumour load reduced considerably but unfortunately, her signs and symptoms did not improve. This case illustrates that a high dose dopamine agonist might be an important therapeutic option in patients with a metastasised prolactinoma. PMID:15377706

  10. Comparative studies on Synthesis of Protease and Bioconversion of Cr+6 to Cr+3 by Bioleaching technique using Isolated Microbial consortia in Lab scale Batch experiment

    Directory of Open Access Journals (Sweden)

    A Nath


    Full Text Available Presence of heavy metal like hexavalent chromium and high biological and chemical oxygen demands (BOD and COD due to presence of animal flesh, skin etc. in the tannery effluent cause threat to the environment. Bacillus sp. (JUCHE2, Micrococcus sp (JUCHE3 and Micrococcus sp (JUCHE4 isolated from tannery waste, were used in a comparative study on synthesis of protease and bioconversion of Cr+6 to Cr+3 by bioleaching technique. The isolated microbial consortia could tolerate high metal concentration and hostile environmental conditions with respect to temperature and pH. It was observed that among three types of bacterial growth media, namely, Nutrient broth, Soyabean Casein Digest Medium and Luria broth, bacterial growth was maximum at Casein Digest Medium and laboratory scale batch experiments were performed in Soyabean Casein Digest medium at 100 ppm chromium concentration at aerobic conditions. Growth characteristics such as maximum specific growth rate (u, max, Monod Constant (ks, synthesis of protease, bioconversion of Cr+6 to C+3 by bioleaching technique, utilization of substrates, namely, carbohydrate and protein were measured at different time intervals in bacterial growth media. For Bacillus sp. (JUCHE2 optimum values of pH, temperature and agitation speed were found to be 7.0, 37 oC and 100 rpm, respectively and those for both Micrococcus sp (JUCHE3 and Micrococcus sp (JUCHE4 were observed to be 6.0, 30 oC and 100 rpm, respectively. It was observed that among three types of microbial consortia growth of Bacillus sp. (JUCHE2 was very high compared to other microbial consortia and followed Monod type model. Protease synthesis was strongly associated with microbial growth whereas bioconversion of heavy metals was not associated with microbial growth. Maximum protease activities were notified after 30 hour incubation of microbial culture and protease was characterized with respect to optimum pH, temperature and enzyme kinetics. Reduction of

  11. Cherenkov-cyclotron instability in a metamaterial loaded waveguide for high power generation (United States)

    Lu, Xueying; Shapiro, Michael; Temkin, Richard


    This work presents the analytical theory for an S-band high power microwave experiment at MIT utilizing a metamaterial (MTM) structure. A 490 kV, 84 A electron beam travels through a rectangular waveguide loaded with two MTM plates in a DC magnetic field B0. The excited waveguide mode is deflecting with a transverse E field on beam axis. Microsecond long megawatt level microwave pulses were generated under a low B0 in the Cherenkov-cyclotron type of interaction. A linear theory has been developed to explain the high power generation due to the Cherenkov-cyclotron instability. The simplified model is a planar waveguide filled with a double negative dispersive medium, and in the mode being studied, the longitudinal E field has an antisymmetric pattern in the direction perpendicular to the MTM plates. We have proved that the Cherenkov-cyclotron instability can happen with a zero initial transverse beam velocity when B0 is below a threshold. Also this instability is a unique feature of the left-handed MTM, since it requires a propagating mode below the cut-off frequency. The minimum beam current to start the instability is calculated, and the scaling law different from that of the traditional backward wave oscillators operated by longitudinal bunching will be discussed. This research was supported by the Air Force Office of Scientific Research within the Multidisciplinary University Research Initiative under Grant No. FA9550-12-1-0489 through the University of New Mexico.

  12. Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load (United States)

    Xie, Weihua; Meng, Songhe; Jin, Hua; Du, Chong; Wang, Libin; Peng, Tao; Scarpa, Fabrizio; Xu, Chenghai


    This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are equipped with chemical composition gratings sensors (CCGs). The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C. PMID:27754356

  13. Protein deimmunization via structure-based design enables efficient epitope deletion at high mutational loads (United States)

    Salvat, Regina S.; Choi, Yoonjoo; Bishop, Alexandra; Bailey-Kellogg, Chris; Griswold, Karl E.


    Anti-drug immune responses are a unique risk factor for biotherapeutics, and undesired immunogenicity can alter pharmacokinetics, compromise drug efficacy, and in some cases even threaten patient safety. To fully capitalize on the promise of biotherapeutics, more efficient and generally applicable protein deimmunization tools are needed. Mutagenic deletion of a protein’s T cell epitopes is one powerful strategy to engineer immunotolerance, but deimmunizing mutations must maintain protein structure and function. Here, EpiSweep, a structure-based protein design and deimmunization algorithm, has been used to produce a panel of seven beta-lactamase drug candidates having 27–47% reductions in predicted epitope content. Despite bearing eight mutations each, all seven engineered enzymes maintained good stability and activity. At the same time, the variants exhibited dramatically reduced interaction with human class II major histocompatibility complex proteins, key regulators of anti-drug immune responses. When compared to 8-mutation designs generated with a sequence-based deimmunization algorithm, the structure-based designs retained greater thermostability and possessed fewer high affinity epitopes, the dominant drivers of anti-biotherapeutic immune responses. These experimental results validate the first structure-based deimmunization algorithm capable of mapping optimal biotherapeutic design space. By designing optimal mutations that reduce immunogenic potential while imparting favorable intramolecular interactions, broadly distributed epitopes may be simultaneously targeted using high mutational loads. PMID:25655032

  14. Microstructural and Chemical Characterization of the Tribolayer Formation in Highly Loaded Cylindrical Roller Thrust Bearings

    Directory of Open Access Journals (Sweden)

    Carsten Gachot


    Full Text Available Zinc dithiophosphates (ZDDP have been widely applied in automobile industry for over 70 years as a lubricant additive for wear protection. Tribolayers have been described as blue- and brown-colored layers on surfaces observed by microscopical observation or even bare eye presumably as a consequence of layer thickness or chemical composition. However, the reaction pathways of ZDDP tribolayers are still not yet fully understood. In the present study, the difference between the blue- and brown-colored tribolayers has been revealed by high resolution methods in cylindrical roller thrust bearings at relatively high contact pressures of around 1.92 GPa. After running a FE8 standard bearing test with a normal load of 80 kN and a temperature of 60 °C, said tribolayers could be identified on the bearing surfaces. By using Raman spectroscopy, it could be shown that the blue-colored layers are enriched by FeS and ZnS whereas the brown-colored layers show a significant amount of Fe3O4. This is an interesting finding as it clearly shows a correlation between the color appearance of the films and the chemical composition besides potential film thickness variations. Finally, transmission electron microscopy verified the amorphous nature of the formed tribolayer which is in a good agreement with literature.

  15. Demonstration of sulfur solubility determinations in high waste loading, low-activity waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    A method recommended by Pacific Northwest National Laboratory (PNNL) for sulfate solubility determinations in simulated low-activity waste glasses was demonstrated using three compositions from a recent Hanford high waste loading glass study. Sodium and sulfate concentrations in the glasses increased after each re-melting step. Visual observations of the glasses during the re-melting process reflected the changes in composition. The measured compositions showed that the glasses met the targeted values. The amount of SO3 retained in the glasses after washing was relatively high, ranging from 1.6 to 2.6 weight percent (wt %). Measured SnO2 concentrations were notably low in all of the study glasses. The composition of the wash solutions should be measured in future work to determine whether SnO2 is present with the excess sulfate washed from the glass. Increases in batch size and the amount of sodium sulfate added did not have a measureable impact on the amount of sulfate retained in the glass, although this was tested for only a single glass composition. A batch size of 250 g and a sodium sulfate addition targeting 7 wt %, as recommended by PNNL, will be used in future experiments.

  16. Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load

    Directory of Open Access Journals (Sweden)

    Weihua Xie


    Full Text Available This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs, which are equipped with chemical composition gratings sensors (CCGs. The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C.

  17. Deformation and spallation of a magnesium alloy under high strain rate loading

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.; Lu, L.; Li, C.; Xiao, X. H.; Zhou, X. M.; Zhu, J.; Luo, S. N.


    We investigate deformation and damage of a magnesium alloy, AZ91, under high strain rate (similar to 10(5) s(-1)) loading via planar impact. The soft-recovered specimens are examined with electron back-scatter diffraction (EBSD). EBSD analysis reveals three types of twinning: {1012} extension, {10 (1) over bar1} contraction, and {10 (1) over bar1}-{10 (1) over bar2) double twinning, and their number density increases with increasing impact velocity. The extension twins dominate contraction and double twins in size and number. Dislocation densities of the recovered specimens are evaluated with x-ray diffraction, and increase with increasing impact velocity. X-ray tomography is used to resolve three-dimensional microstructure of shock-recovered samples. The EBSD and tomography results demonstrate that the second phase, Mg17Al12, plays an important role in both deformation twinning and tensile cracking. Deformation twinning appears to be a common mechanism in deformation of magnesium alloys at low, medium and high strain rates, in addition to dislocation motion. (C) 2016 Elsevier B.V. All rights reserved.

  18. Francis-99: Transient CFD simulation of load changes and turbine shutdown in a model sized high-head Francis turbine (United States)

    Mössinger, Peter; Jester-Zürker, Roland; Jung, Alexander


    With increasing requirements for hydropower plant operation due to intermittent renewable energy sources like wind and solar, numerical simulations of transient operations in hydraulic turbo machines become more important. As a continuation of the work performed for the first workshop which covered three steady operating conditions, in the present paper load changes and a shutdown procedure are investigated. The findings of previous studies are used to create a 360° model and compare measurements with simulation results for the operating points part load, high load and best efficiency. A mesh motion procedure is introduced, allowing to represent moving guide vanes for load changes from best efficiency to part load and high load. Additionally an automated re-mesh procedure is added for turbine shutdown to ensure reliable mesh quality during guide vane closing. All three transient operations are compared to PIV velocity measurements in the draft tube and pressure signals in the vaneless space. Simulation results of axial velocity distributions for all three steady operation points, during both load changes and for the shutdown correlated well with the measurement. An offset at vaneless space pressure is found to be a result of guide vane corrections for the simulation to ensure similar velocity fields. Short-time Fourier transformation indicating increasing amplitudes and frequencies at speed-no load conditions. Further studies will discuss the already measured start-up procedure and investigate the necessity to consider the hydraulic system dynamics upstream of the turbine by means of a 1D3D coupling between the 3D flow field and a 1D system model.

  19. High dietary acid load is associated with increased prevalence of hypertension: the Furukawa Nutrition and Health Study. (United States)

    Akter, Shamima; Eguchi, Masafumi; Kurotani, Kayo; Kochi, Takeshi; Pham, Ngoc Minh; Ito, Rie; Kuwahara, Keisuke; Tsuruoka, Hiroko; Mizoue, Tetsuya; Kabe, Isamu; Nanri, Akiko


    Acid-base status has been suggested to influence blood pressure, but there is a paucity of epidemiologic evidence linking dietary acid load to hypertension. We examined cross-sectionally the association between dietary acid load and hypertension in a Japanese working population. Data were derived from health surveys from 2028 employees, ages 18 to 70 y, in two workplaces in Japan. A validated brief diet history questionnaire was used to assess diet. Two measures were used to characterize dietary acid load: potential renal acid load and estimated net endogenous acid production, which were derived from nutrient intakes. Multilevel logistic regression was used to examine the association between dietary acid load and hypertension with adjustment of potential confounding variables. High dietary acid load was suggestively associated with increased prevalence of hypertension. The multivariable adjusted odds ratios (95% confidence interval) of hypertension for the lowest through highest tertiles of net endogenous acid production were 1.00 (reference), 1.07 (0.80-1.42), and 1.33 (0.998-1.78), respectively (P for trend = 0.053). This positive association was statistically significant among normal-weight (body mass index <23 kg/m(2); P for trend = 0.03) and non-shift workers (P for trend = 0.04). Similar positive associations were observed between potential renal acid load and hypertension. The present findings suggest that high dietary acid load may be associated with increased prevalence of hypertension among those who were normal weight and non-shift workers. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Viral DNA load of high-risk human papilloma virus is closely associated with the grade of cervical lesions. (United States)

    Shen, Guqun; Cheng, Jingxin; Wang, Yan; Zhou, Ping; Zhang, Guoqing


    This study is to explore the correlation between the viral load of high-risk human papilloma virus (HPV) and the degree of cervical lesions, as well as the follow-up monitoring role of high-risk HPV measurements in the treatment of patients with cervical lesions. Hybrid capture-2 method was used to measure the amount of high-risk HPV load of 361 patients who were enrolled from January 2009 to December 2010 at the Affiliated Tumor Hospital of Xinjiang Medical University, including 76 cases of cervical squamous carcinoma, 119 cases of cervical intraepithelial neoplasia and 166 cases of cervicitis. The correlation between the viral load of high-risk HPV and the degree of cervical lesions was analyzed using correlation analysis. Patients with cervical intraepithelial neoplasia (CIN) and cervical squamous carcinoma were followed up until December 2013, with the follow-up time being 37-60 months. Statistically significant differences in the high-risk HPV load existed between cervicitis group, CIN group and cervical squamous carcinoma group (P = 0.000). In addition, the viral load was increased with the increase of the severity of cervical lesions, showing a positive correlation (r = 0.436, P = 0.000). During the follow-up, 6 cases of vaginal intraepithelial neoplasia, 3 cases of recurrence CIN and 1 case of vaginal squamous cell carcinoma of the vulva were found, which were shown to relate with the continuing high-risk HPV infection in vagina. Viral load of high-risk HPV were positively correlated with the severity of cervical lesions, playing an important role in the monitoring of patients with cervical lesions after treatment.

  1. High-risk oral human papillomavirus load in the US population, National Health and Nutrition Examination Survey 2009-2010. (United States)

    Chaturvedi, Anil K; Graubard, Barry I; Pickard, Robert K L; Xiao, Weihong; Gillison, Maura L


    We investigated the association of demographic and behavioral factors with oral human papillomavirus (HPV) load for 18 high-risk types among 211 individuals with prevalent high-risk HPV within the National Health and Nutrition Examination Survey 2009-2010. Factors independently associated with HPV load above the median included older age (odds ratio, 1.04 per year increase [95% confidence interval, 1.01-1.07]; P = .004) and intensity of current smoking (P for trend men than women had an HPV load above the median (55.7% vs 32.8%; P = .069), and HPV load increased marginally with increasing alcohol use (P for trend = .062). In conclusion, older age and current smoking are associated with a high oral load of high-risk HPV types among individuals with a prevalent infection. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  2. High sensitive FBG load cell for icing of overhead transmission lines (United States)

    Mao, Naiqiang; Ma, Guoming; Li, Chengrong; Li, Yabo; Shi, Cheng; Du, Yue


    Heavy ice coating of overhead transmission lines created the serious threat on the safe operation of power grid. The measurement of conductor icing had been an effective and reliable methods to prevent potential risks, such as conductor breakage, insulator flashover and tower collapse. Because of the advantages of immunity to electromagnetic interference and no demand for power supply in site, the optical load cell has been widely applied in monitoring the ice coating of overhead transmission lines. In this paper, we have adopted the shearing structure with additional grooves as elastic element of load cell to detect the eccentric load. Then, two welding package fiber Bragg gratings (FBGs) were mounted onto the grooves of elastic element with a direction deviation of 90° to eliminate temperature effects on strain measurement without extra FBG. After that, to avoid the occurrence of load cell breakage in heavy load measurement, the protection part has been proposed and added to the elastic element. The results of tension experiments indicate that the resolution of the load cell is 7.78 N in the conventional measuring range (0-10 kN). And in addition, the load cell proposed in this paper also has a good performance in actual experiment in which the load and temperature change simultaneously.

  3. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    DEFF Research Database (Denmark)

    Preindl, Matthias; Schaltz, Erik


    Direct Current Control (MPDCC) leads to an increase of torque control performance taking into account the discrete nature of inverters but temporary offsets and poor responses to load torque variations are still issues in speed control. A load torque estimator is proposed in this paper in order...

  4. Plasma volume reduction and hematological fluctuations in high-level athletes after an increased training load

    DEFF Research Database (Denmark)

    Bejder, Jacob; Andersen, Andreas Breenfeldt; Goetze, J P


    to baseline training load in week 3. PV and hematological variables were determined frequently during all weeks. The higher training load in week 2 increased (P..., demonstrating the importance of knowledge on naturally occurring hematological fluctuations. Finally, concentrations of albumin, sTfR, and proANP could not explain PV fluctuations....

  5. The impact of high commercial fishery load on biological indices of the roach (Rutilus rutilus

    Directory of Open Access Journals (Sweden)

    G. O. Kotovska


    Full Text Available Age composition, length and weight indices of the roach populations (Rutilus rutilus L. were analyzed and compared in water bodies with the different commercial fishery loading levels. Presence of fast-growing and slow-growing forms is inherent to cyprinid fish. In Dnieper reservoirs these forms are mixed and it is difficult to separate any one of them. It is assumed that selective elimination of fast-growing forms by commercial fishing may cause accumulation of slow-growing forms in populations. On that ground, water bodies with different levels of commercial fishery pressure have been chosen to test this hypothesis. For instance, Kremenchuk Reservoir was selected as a water body with high level of commercial fishery load because it forms more than a half of roach commercial catching in Ukraine. On the contrary, “Dniprovsko-Orilskiy” Natural Reserve was taken as a water body where human impact is minimum. Subsequently, comparing of the basic biological features of the roach from water bodies with different commercial fishery load illustrated the value of the study. It is found that the roach age range in Kremenchuk Reservoir is much higher than in subordinate waters of the Natural Reserve fund. Namely, the roach population in Kremenchuk Reservoir consisted of seventeen age groups while in “Dniprovsko-Orilskiy” Natural Reserve it comprised ten age groups only. However, size-weight features of species under study across the age groups 6+ –10+ in water bodies with the intensive commercial fishery were statistically lower than in protected waters of the Nature Reserve. Namely, length of these age groups in Kremenchuk Reservoir was equal to 24.6–33.5 cm, compared with 25.0–37.0 cm in the National Reserve. Naturally, that weight was equal to 334–957 and 340–1320 g, respectively. In general, this result does not fit into the traditional concept that the fast-growing roach should inhabit the lacustrine biocenosis of the Dnieper

  6. Do physical fitness measures influence internal training load responses in high-level futsal players? (United States)

    Miloski, B; Moreira, A; Andrade, F C; Freitas, V H; Peçanha, T; Nogueira, R A; Bara-Filho, M


    The aim of the present study was to verify whether aerobic fitness and ability to perform repeated high-intensity efforts influence the internal training load (ITL), which consists of the actual stress imposed in the athletes' organisms, in professional futsal players. Twelve high-level futsal players (age: 26.3±4.9 years, body mass: 73.5±7.5 kg) participated in the study. The investigated athletes took part in a 5-week pre-season period. The ITL was quantified by means of the session-Rating of Perceived Exertion method. The athletes performed the Yo-yo Intermittent Recovery Test level 2 (YYIR2) in order to assess the ability to perform repeated high-intensity actions, and the multistage shuttle-run test (MSRT) in order to evaluate aerobic fitness, before (T0) and after (T1) the pre-season period. Maximal oxygen uptake (VO2max.), oxygen uptake at Respiratory compensation point (VO2-RCP) and maximal aerobic speed (MAS) obtained in MSRT were retained for analyses. The results from Pearson's correlation test showed significant and a very large correlation between ITL and YYIR2 performance (r=-0.75). Moreover, a significant and large correlation between ITL and VO2max. (r=-0.62), ITL and MAS (r=-0.67), and ITL and VO2-RCP (r=-0.58) were also observed. It can be concluded that aerobic fitness and ability to perform repeated high-intensity actions may influence ITL responses in professional futsal players.

  7. Manufacture of highly loaded silica-supported cobalt Fischer-Tropsch catalysts from a metal organic framework. (United States)

    Sun, Xiaohui; Suarez, Alma I Olivos; Meijerink, Mark; van Deelen, Tom; Ould-Chikh, Samy; Zečević, Jovana; de Jong, Krijn P; Kapteijn, Freek; Gascon, Jorge


    The development of synthetic protocols for the preparation of highly loaded metal nanoparticle-supported catalysts has received a great deal of attention over the last few decades. Independently controlling metal loading, nanoparticle size, distribution, and accessibility has proven challenging because of the clear interdependence between these crucial performance parameters. Here we present a stepwise methodology that, making use of a cobalt-containing metal organic framework as hard template (ZIF-67), allows addressing this long-standing challenge. Condensation of silica in the Co-metal organic framework pore space followed by pyrolysis and subsequent calcination of these composites renders highly loaded cobalt nanocomposites (~ 50 wt.% Co), with cobalt oxide reducibility in the order of 80% and a good particle dispersion, that exhibit high activity, C5 + selectivity and stability in Fischer-Tropsch synthesis.

  8. Manufacture of highly loaded silica-supported cobalt Fischer–Tropsch catalysts from a metal organic framework

    KAUST Repository

    Sun, Xiaohui


    The development of synthetic protocols for the preparation of highly loaded metal nanoparticle-supported catalysts has received a great deal of attention over the last few decades. Independently controlling metal loading, nanoparticle size, distribution, and accessibility has proven challenging because of the clear interdependence between these crucial performance parameters. Here we present a stepwise methodology that, making use of a cobalt-containing metal organic framework as hard template (ZIF-67), allows addressing this long-standing challenge. Condensation of silica in the Co-metal organic framework pore space followed by pyrolysis and subsequent calcination of these composites renders highly loaded cobalt nanocomposites (~ 50 wt.% Co), with cobalt oxide reducibility in the order of 80% and a good particle dispersion, that exhibit high activity, C5 + selectivity and stability in Fischer-Tropsch synthesis.

  9. Bioremediation of PAHs contaminated river sediment by an integrated approach with sequential injection of co-substrate and electron acceptor: Lab-scale study. (United States)

    Liu, Tongzhou; Zhang, Zhen; Dong, Wenyi; Wu, Xiaojing; Wang, Hongjie


    In this study, the feasibility of employing an integrated bioremediation approach in contaminated river sediment was evaluated. Sequential addition of co-substrate (acetate) and electron acceptor (NO3-) in a two-phase treatment was capable of effectively removing polycyclic aromatic hydrocarbons (PAHs) in river sediment. The residual concentration of total PAHs decreased to far below effect range low (ERL) value within 91 days of incubation, at which concentration it could rarely pose biological impairment. The biodegradation of high molecular weight PAHs were found to be mainly occurred in the sediment treated with co-substrates (i.e. acetate or methanol), in which acetate was found to be more suitable for PAHs degradation. The role of co-substrates in influencing PAHs biodegradation was tentatively discussed herein. Additionally, the sediment odorous problem and blackish appearance were intensively addressed by NO3- injection. The results of this study demonstrated that integrating two or more approaches/processes would be a helpful option in sediment remediation. It can lead to a more effective remediation performance, handle multiple contamination issues, as well as mitigate environmental risks caused by one of the single methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Disseminated HIV-Associated Kaposi’s Sarcoma With High CD4 Cell Count And Low Viral Load

    Directory of Open Access Journals (Sweden)

    Diana Pereira Anjos


    Full Text Available Kaposi’s sarcoma is considered an acquired immunodeficiency syndrome-defining illness and is caused by human herpesvirus 8. It has been associated with patients infected with human immunodeficiency virus (HIV who have CD4 T lymphocytes <200 cells/uL and high viral loads. We report a case of a 23-year old woman infected with HIV-1 and receiving antiretroviral treatment since diagnosis, with high CD4 cell count and low viral load that presented with disseminated Kaposi’s sarcoma. Clinicians should be aware of the occurrence of Kaposi’s sarcoma despite robust CD4 cell counts.

  11. Two-Stage Crystallizer Design for High Loading of Poorly Water-Soluble Pharmaceuticals in Porous Silica Matrices

    Directory of Open Access Journals (Sweden)

    Leia Dwyer


    Full Text Available While porous silica supports have been previously studied as carriers for nanocrystalline forms of poorly water-soluble active pharmaceutical ingredients (APIs, increasing the loading of API in these matrices is of great importance if these carriers are to be used in drug formulations. A dual-stage mixed-suspension, mixed-product removal (MSMPR crystallizer was designed in which the poorly soluble API fenofibrate was loaded into the porous matrices of pore sizes 35 nm–300 nm in the first stage, and then fed to a second stage in which the crystals were further grown in the pores. This resulted in high loadings of over 50 wt % while still producing nanocrystals confined to the pores without the formation of bulk-sized crystals on the surface of the porous silica. The principle was extended to another highly insoluble API, griseofulvin, to improve its loading in porous silica in a benchtop procedure. This work demonstrates a multi-step crystallization principle API in porous silica matrices with loadings high enough to produce final dosage forms of these poorly water-soluble APIs.

  12. Dry coating of micronized API powders for improved dissolution of directly compacted tablets with high drug loading. (United States)

    Han, Xi; Ghoroi, Chinmay; Davé, Rajesh


    Motivated by our recent study showing improved flow and dissolution rate of the active pharmaceutical ingredient (API) powders (20 μm) produced via simultaneous micronization and surface modification through continuous fluid energy milling (FEM) process, the performance of blends and direct compacted tablets with high drug loading is examined. Performance of 50 μm API powders dry coated without micronization is also considered for comparison. Blends of micronized, non-micronized, dry coated or uncoated API powders at 30, 60 and 70% drug loading, are examined. The results show that the blends containing dry coated API powders, even micronized ones, have excellent flowability and high bulk density compared to the blends containing uncoated API, which are required for direct compaction. As the drug loading increases, the difference between dry coated and uncoated blends is more pronounced, as seen in the proposed bulk density-FFC phase map. Dry coating led to improved tablet compactibility profiles, corresponding with the improvements in blend compressibility. The most significant advantage is in tablet dissolution where for all drug loadings, the t(80) for the tablets with dry coated APIs was well under 5 min, indicating that this approach can produce nearly instant release direct compacted tablets at high drug loadings. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Conceptual and feasibility study on lab-scale series power generation by carbon-air and conventional solid oxide fuel cells (United States)

    Duan, Nan-Qi; Cao, Yong; Chi, Bo; Pu, Jian; Li, Jian


    To take the advantage chemical-looping combustion (CLC) process for CO2 sequestration, carbon-air fuel cell (CAFC) and conventional solid oxide fuel cell (SOFC) are prepared for high-efficiency series power generation. The tubular CAFC (Cell-I) consisting of Sb anode, (Y2O3)0.08(ZrO2)0.92 (YSZ) electrolyte and La0.6Sr0.4Co0.2Fe0.8O3-δ-Gd0.1Ce0.9O3-δ (LSCF-GDC) cathode has achieved peak power densities of 117, 186 and 295 mW cm-2 at 700, 750 and 800 °C, respectively. Fueled by repeatedly added 3 g of coconut-derived activated charcoal, Cell-I has operated stably at 800 °C for 21 h under the condition of 0.4 A cm-2 and 0.502 V, with an electrical efficiency of 30.8%. The tubular conventional SOFC (Cell-II) is designed with Ni-YSZ as anode, YSZ electrolyte as electrolyte and (La0.8Sr0.2)0.95MnO3-δ-YSZ (LSM-YSZ) as cathode. The anode exhaust gas of Cell-I, which is operated at temperatures from 750 to 850 °C, contains CO and CO2. Using this exhaust gas as fuel, Cell-II has demonstrated peak power densities between 87 and 133 mW cm-2 at 750 °C, and performed stably for 6 h at 0.1 A cm-2 and 0.720 V during which 69.6% of CO in the exhaust gas is consumed. Cell-II has achieved an extra electrical efficiency of 11.0%, giving a total electrical efficiency of 41.8% for the series power generation.

  14. Lab scale study on electrocoagulation defluoridation process optimization along with aluminium leaching in the process and comparison with full scale plant operation. (United States)

    Gwala, Poonam; Andey, Subhash; Mhaisalkar, Vasant; Labhasetwar, Pawan; Pimpalkar, Sarika; Kshirsagar, Chetan


    An excess or lack of fluoride in drinking water is harmful to human health. Desirable and permissible standards of fluoride in drinking water are 1.0 and 1.5 mg/L, respectively, as per Indian drinking water quality standards i.e., BIS 10500, 1991. In this paper, the performance of an electro-coagulation defluoridation batch process with aluminium electrodes was investigated. Different operational conditions such as fluoride concentration in water, pH and current density were varied and performance of the process was examined. Influence of operational conditions on (i) electrode polarization phenomena, (ii) pH evolution during electrolysis and (iii) the amount of aluminium released (coagulant) was investigated. Removal by electrodes is primarily responsible for the high defluoridation efficiency and the adsorption by hydroxide aluminium floc provides secondary effect. Experimental data obtained at optimum conditions that favored simultaneous mixing and flotation confirmed that concentrations lower than 1 mg/L could be achieved when initial concentrations were between 2 and 20 mg/L. pH value was found to be an important parameter that affected fluoride removal significantly. The optimal initial pH range is between 6 and 7 at which effective defluoridation and removal efficiencies over 98% were achieved. Furthermore, experimental results prominently displayed that an increase in current density substantially reduces the treatment duration, but with increased residual aluminium level. The paper focuses on pilot scale defluoridation process optimization along with aluminium leaching and experimental results were compared with a full-scale plant having capacity of 600 liter per batch.

  15. Role of three different plants on simultaneous salt and nutrient reduction from saline synthetic wastewater in lab-scale constructed wetlands. (United States)

    Jesus, João M; Cassoni, A C; Danko, Anthony S; Fiúza, António; Borges, Maria-Teresa


    Constructed Wetlands (CWs) can be a valuable technology to treat high salinity wastewaters but it is not known their potential for removal of both nutrients and salt, and the type of plants to use. This study evaluated the effect of three plants on salt reduction and simultaneous nutrient removal in CWs microcosms with expanded clay and in hydroponic conditions. Initial values of the synthetic wastewater tested were EC=15dSm-1, SAR=151; NH4+-N=24mgL-1; PO43--P=30mgL-1 and NO3--N=34mgL-1. With expanded clay CW removal efficiency for NH4+-N was 21, 88 and 85%, while for NO3--N, it was 4, 56 and 68% for Spartina maritima, Juncus maritimus and Arundo donax, respectively. PO43--P was adsorbed completely in the expanded clay. However, in hydroponic system, removal efficiencies for NH4+-N were 53 and 50%, while PO43--P removal was 89 and -14% for Spartina maritima and Juncus maritimus, respectively. Nutrient removal in planted microcosms was statistically higher than unplanted controls for NH4+-N and PO43--P. However, salt removal was apparent in the hydroponic system only after 23days of HRT, despite clear salt excretion visible in both Spartina maritima and Juncus maritimus. This study demonstrates the potential of two halophytic plants for saline wastewater treatment. However, salt removal in such a scenario could not be well documented and might prove to be impractical in future work. Copyright © 2016 Elsevier B.V. All rights reserved.


    Directory of Open Access Journals (Sweden)

    T. Chiba


    Full Text Available The purpose of this study was to examine the relationship between hyperventilation and increase in blood lactate during high-intensity constant-load exercise in heat and normal conditions. Seven male volunteers exercised for 10 min on a cycle ergometer at 80%·VO2max in heat (40ºC, 50%relative humidity: HT and normal conditions (20ºC, 50% relative humidity: CON. Oxygen uptake, carbon dioxide output, ventilation, blood lactate and blood electrolytes (K , Na , Cl− were measured in HT and CON. We found that ventilation was significantly higher during exercise in HT compared with CON (p<0.05 and RER tends to be higher in HT than in CON. Blood lactate was significantly higher at 3 min during exercise in HT compared with CON (5.96 ± 0.57 mEq·l-1 5.00 ± 0.28 mEq·l-1, p<0.05. Change in strong ion difference [∆SID = (∆K ∆Na − (∆Cl− ∆La−], which affects ∆HCO3− in blood significantly, was lower at 5 min during exercise in HT compared with in CON (p<0.05. These results suggest that hyperventilation during exercise in heat would induce lower HCO3− in blood and consequently would result in an increase in blood lactate at an earlier time during high-intensity exercise in heat. It was concluded that hyperventilation during short-term high-intensity exercise in heat is temporarily associated with an increase in blood lactate.

  17. Lateral Load-Resisting System Using Mass Timber Panel for High-Rise Buildings

    Directory of Open Access Journals (Sweden)

    Zhiyong Chen


    Full Text Available As global interest in using engineered wood products in tall buildings intensifies due to the “green” credential of wood, it is expected that more tall wood buildings will be designed and constructed in the coming years. This, however, brings new challenges to the designers. One of the major challenges is how to design lateral load-resisting systems (LLRSs with sufficient stiffness, strength, and ductility to resist strong wind and earthquakes. In this study, an LLRS using mass timber panel on a stiff podium was developed for high-rise buildings in accordance with capacity-based design principle. The LLRS comprises eight shear walls with a core in the center of the building, which was constructed with structural composite lumber and connected with dowel-type connections and wood–steel composite system. The main energy dissipating mechanism of the LLRS was detailed to be located at the panel-to-panel interface. This LLRS was implemented in the design of a hypothetical 20-storey building. A finite element (FE model of the building was developed using general-purpose FE software, ABAQUS. The wind-induced and seismic response of the building model was investigated by performing linear static and non-linear dynamic analyses. The analysis results showed that the proposed LLRS using mass timber was suitable for high-rise buildings. This study provided a valuable insight into the structural performance of LLRS constructed with mass timber panels as a viable option to steel and concrete for high-rise buildings.

  18. Evaluation of drug loading capabilities of γ-cyclodextrin-metal organic frameworks by high performance liquid chromatography. (United States)

    Xu, Xiaonan; Wang, Caifen; Li, Haiyan; Li, Xue; Liu, Botao; Singh, Vikramjeet; Wang, Shuxia; Sun, Lixin; Gref, Ruxandra; Zhang, Jiwen


    Drug loading into γ-cyclodextrin-metal organic frameworks (γ-CD-MOFs) using the impregnation approach is a laborious process. In this study, a γ-CD-MOF construct (2-5μm particle diameter) was used as the stationary phase under HPLC conditions with the aim to correlate retention properties and drug loading capability of the CD-based structure. Ketoprofen, fenbufen and diazepam were chosen as model drugs with m-xylene as a control analyte to investigate the correlation of drug loading and their chromatographic behaviour in the γ-CD-MOF column. Furthermore, γ-CD itself was also prepared as the stationary phase by coupling with silica in the column to illustrate the enhanced interaction between drugs and γ-CD-MOF as a reference. The retention and loading efficiency of the drugs were determined with different ratios of hexane and ethanol (10:90, 20:80, 50:50, 80:20, 90:10, v/v) at temperatures of 20, 25, 30 and 37°C. With the increment in hexane content, the loading efficiency of ketoprofen and fenbufen increased from 2.39±0.06% to 4.38±0.04% and from 5.82±0.94% to 6.37±0.29%, respectively. The retention time and loading efficiency of ketoprofen and diazepam were the lowest at 30°C while those of fenbufen had the different tendency. The excellent relation between the retention and loading efficiency onto γ-CD-MOF could be clearly observed through mobile phase and temperature investigation. In conclusion, a highly efficient chromatographic method has been established to evaluate the drug loading capability of γ-CD-MOF. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [Glycemic, insulinemic index, glycemic load of soy beverage with low and high content of carbohydrates]. (United States)

    Torres y Torres, Nimbe; Palacios-González, Berenice; Noriega-López, Lilia; Tovar-Palacio, Armando R


    Consumption of soy has increased in Western countries due to the benefits on health and the attitude of the people to consume natural products as alternative to the use of pharmacological therapies. However, there is no evidence whether the consumption of 25 g of soy protein as recommended by the Food and Drug Administration has some effect on glucose absorption and consequently on insulin secretion. The aim of the present study was to determine glycemic index (GI), insulinemic index (InIn), and glycemic load (GL) of several soy beverages containing low or high concentration of carbohydrates, and compare them with other foods such as peanuts, whole milk, soluble fiber and a mixed meal on GI and InIn. The results showed that soy beverages had low or moderate GI, depending of the presence of other compounds like carbohydrates and fiber. Consumption of soy beverages with low concentration of carbohydrates produced the lowest insulin secretion. Therefore, these products can be recommended in obese and diabetic patients. Finally soy beverages should contain low maltodextrins concentration and be added of soluble fiber.

  20. Blood flow restriction increases metabolic stress but decreases muscle activation during high-load resistance exercise. (United States)

    Teixeira, Emerson L; Barroso, Renato; Silva-Batista, Carla; Laurentino, Gilberto C; Loenneke, Jeremy P; Roschel, Hamilton; Ugrinowitsch, Carlos; Tricoli, Valmor


    We investigated differences in metabolic stress (lactate) and muscle activation (electromyography; EMG) when high-load resistance exercise (HL) is compared with a condition in which blood flow restriction (BFR) is applied during the exercise or during the rest interval. Twelve participants performed HL with BFR during the intervals (BFR-I), during the set (BFR-S), and without BFR. Each condition consisted of 3 sets of 8 repetitions with knee extension at 70% of 1-repetition maximum. Lactate and root mean square (RMS) from the surface EMG of the vastus lateralis were calculated. Lactate increased in all protocols but was higher with BFR-I than with BFR-S and HL. RMS decreased under all conditions, with a larger effect size in BFR-I (1.47) than in BFR-S (0.66) and HL (0.59). BFR-I increases lactate, possibly as a result of reduced restoration of ATP. Muscle activation seems to be impacted by mechanical stress but may be reduced by metabolic stress. Muscle Nerve 57: 107-111, 2018. © 2017 Wiley Periodicals, Inc.

  1. Recombinant Klebsiella oxytoca strains with improved efficiency in removal of high nitrate loads

    Energy Technology Data Exchange (ETDEWEB)

    Pinar, G.; Ramos, J.L. [Estacion Experimental del Zaidin--Consejo Superior de Investigaciones Cientificas, Granada (Spain). Dept. of Biochemistry and Molecular and Cellular Biology of Plants


    Klebsiella oxytoca CECT 4460 removes high nitrate loads from industrial wastewaters without accumulation of nitrite under optimal culture conditions; however, under nonoptimal conditions nitrite accumulates. This situation reflects an in vivo-limited functioning of nitrite reductase in this strain. As a way to overcome this limitation, an increase in the nitrite reductase gene dose in K. oxytoca CECT 4460 was considered. To achieve this, the authors cloned and transferred into this strain the Klebsiella pneumoniae nasB gene, which encodes assimilatory nitrite reductase. The delivery vector was either the wide-host-range plasmid pUPE2, in which the nasB gene is expressed from the Escherichia coli P{sub lac} promoter, or a mini-Tn5-Km vector, which upon random insertion in the host chromosome allowed expression of the nasB gene from an unidentified chromosomal host promoter. The effect of the increase in the dose of the nasB gene in K. oxytoca CECT 4460 on the accumulation of nitrite in the culture medium was tested in two recombinant strains. The results obtained showed that K. oxytoca CECT 4460 bearing pUPE2 accumulated 88% less nitrite than the wild-type strain, while the recombinant strain bearing the K. pneumoniae nasB gene in the host chromosome showed a 25% lower level of nitrite accumulation in the culture medium than that of the wild type.

  2. Removal and retention of phosphorus by periphyton from wastewater with high organic load. (United States)

    Cao, Jinxiang; Hong, Xiaoxing; Pei, Guofeng


    The total phosphorus (TP) removal efficiency from organic wastewater (pig farm and distillery wastewater) were estimated by using filamentous green algae (FGA) and benthic algal mats (BAM) treatment systems under laboratory conditions, and the contents of periphyton phosphorus fractions were determined by using a sequential extraction. The removal rates of TP reached 59-78% within the first 8 days of all treatment systems and could achieve average 80% during 30 day period, and the phosphorus removal rates by using BAM was higher than that of FGA. The ability of retention TP of periphyton enhanced gradually, the BAM TP contents were higher than that of FGA, the highest TP concentrations of BAM and FGA were 26.24 and 10.52 mg P g(-1)·dry weight. Inorganic phosphorus (IP) always exceeded 67.5% of TP, but the organic phosphorus fraction only made up less than 20% of TP. The calcium-binding phosphorus (Ca-P) was the dominant fraction and its relative contribution to TP was more than 40%. The TP was also strongly and positively correlated with the IP and Ca-P (p wastewater with high load phosphorus.

  3. Optimization of {beta}-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, Michael D., E-mail: triplettm@battelle.or [Battelle Memorial Institute, Health and Life Sciences Global Business (United States); Rathman, James F. [The Ohio State University, Department of Chemical and Biomolecular Engineering (United States)


    Using statistical experimental design methodologies, the solid lipid nanoparticle design space was found to be more robust than previously shown in literature. Formulation and high shear homogenization process effects on solid lipid nanoparticle size distribution, stability, drug loading, and drug release have been investigated. Experimentation indicated stearic acid as the optimal lipid, sodium taurocholate as the optimal cosurfactant, an optimum lecithin to sodium taurocholate ratio of 3:1, and an inverse relationship between mixing time and speed and nanoparticle size and polydispersity. Having defined the base solid lipid nanoparticle system, {beta}-carotene was incorporated into stearic acid nanoparticles to investigate the effects of introducing a drug into the base solid lipid nanoparticle system. The presence of {beta}-carotene produced a significant effect on the optimal formulation and process conditions, but the design space was found to be robust enough to accommodate the drug. {beta}-Carotene entrapment efficiency averaged 40%. {beta}-Carotene was retained in the nanoparticles for 1 month. As demonstrated herein, solid lipid nanoparticle technology can be sufficiently robust from a design standpoint to become commercially viable.

  4. Tungsten joining with copper alloy and its high heat load performance (United States)

    Liu, Xiang; Lian, Youyun; Chen, Lei; Cheng, Zengkui; Chen, Jiming; Duan, Xuru; Song, Jioupeng; Yu, Yang


    W-CuCrZr joining technology by using low activation Cu-Mn filler metal was developed at Southwestern Institute of Physics (SWIP) for the manufacturing of divertor components of fusion experiment devices. In addition, a fast W coating technology by chemical vapor deposition (CVD) was also developed and CVD-W/CuCrZr and CVD-W/C mockups with a W coating thickness of 2 mm were prepared. In order to assess their high heat flux (HHF) performances, a 60 kW Electron-beam Material testing Scenario (EMS-60) equipped with a 150 keV electron beam welding gun was constructed at SWIP. Experimental results indicated that brazed W/CuCrZr mockups can withstand 8 MW/m2 heat flux for 1000 cycles without visible damages and CVD-W/CuCrZr mockups with W-Cu gradient interface can survive 1000 cycles under 11 MW/m2 heat flux. An ultrasonic inspection method for non-destructive tests (NDT) of brazed W/CuCrZr mockups was established and 2 mm defect can be detected. Infinite element analysis and heat load tests indicated that 5 mm defect had less noticeable influence on the heat transfer.

  5. Distributed Parallel Processing and Dynamic Load Balancing Techniques for Multidisciplinary High Speed Aircraft Design (United States)

    Krasteva, Denitza T.


    Multidisciplinary design optimization (MDO) for large-scale engineering problems poses many challenges (e.g., the design of an efficient concurrent paradigm for global optimization based on disciplinary analyses, expensive computations over vast data sets, etc.) This work focuses on the application of distributed schemes for massively parallel architectures to MDO problems, as a tool for reducing computation time and solving larger problems. The specific problem considered here is configuration optimization of a high speed civil transport (HSCT), and the efficient parallelization of the embedded paradigm for reasonable design space identification. Two distributed dynamic load balancing techniques (random polling and global round robin with message combining) and two necessary termination detection schemes (global task count and token passing) were implemented and evaluated in terms of effectiveness and scalability to large problem sizes and a thousand processors. The effect of certain parameters on execution time was also inspected. Empirical results demonstrated stable performance and effectiveness for all schemes, and the parametric study showed that the selected algorithmic parameters have a negligible effect on performance.

  6. Friction between human finger flexor tendons and pulleys at high loads. (United States)

    Schweizer, A; Frank, O; Ochsner, P E; Jacob, H A C


    A method was developed to indirectly measure friction between the flexor tendons and pulleys of the middle and ring finger in vivo. An isokinetic movement device to determine maximum force of wrist flexion, interphalangeal joint flexion (rolling in and out) and isolated proximal interphalangeal (PIP) joint flexion was built. Eccentric and concentric maximum force of these three different movements where gliding of the flexor tendon sheath was involved differently (least in wrist flexion) was measured and compared. Fifty-one hands in 26 male subjects were evaluated. The greatest difference between eccentric and concentric maximum force (29.9%) was found in flexion of the PIP joint. Differences in the rolling in and out movement (26.8%) and in wrist flexion (14.5%) were significantly smaller. The force of friction between flexor tendons and pulleys can be determined by the greater difference between eccentric and concentric maximum force provided by the same muscles in overcoming an external force during flexion of the interphalangeal joints and suggests the presence of a non-muscular force, such as friction. It constitutes of 9% of the eccentric flexion force in the PIP joint and therefore questions the low friction hypothesis at high loads. Copyright 2002 Elsevier Science Ltd.

  7. Biosyngas Fischer. Tropsch conversion by high Fe loaded supported catalysts prepared with ultrasound and microwave

    Energy Technology Data Exchange (ETDEWEB)

    Pirola, C.; Di Fronzo, A.; Boffito, D.C.; Bianchi, C. [Milano Univ. (Italy). Dipt. di Chimica; Di Michele, A. [Perugia Univ. (Italy). Dipt. di Fisica


    Catalysts with iron high loading of 30 wt%, promoted with K (2.0 wt%) and Cu (3.75 wt%), have been synthesized according to three different methods: (1) the traditional impregnation method (TR); (2) Ultrasound (US) assisted TR method; (3) Microwave (MW) assisted TR method. All the samples have been fully characterized by BET, ICP/OES, XRPD, TG-DTA, FT-IR, TPR, SEM and TEM and tested in a laboratory pilot plant for Fischer-Tropsch synthesis working at 220 C and 20 bar. The results of the catalysts characterization indicated that the morphology of the samples strongly depends on the method of preparation. The best FTS results in term of C{sub 2+} yield (41%) has been obtained using MW with a good value of the selectivity towards heavy hydrocarbons, while in term of CO conversion (58%), using US. The samples prepared with non-traditional methods show FTS better results, probably due to a more wide and uniform distribution of Fe in the medium during the synthesis phase. (orig.)

  8. Analytical Switching Cycle Modeling of Bidirectional High Voltage Flyback Converter for Capacitive Load Considering Core Loss Effect

    DEFF Research Database (Denmark)

    Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.


    With the advancement of material science, various smart materials with intrinsic capacitive property are emerging. The high voltage (HV) power electronics converters with bidirectional energy flow functionality for supplying the capacitive load are highly demanded. A switching cycle based...... of configuration and working principle. Considering the parasitic elements as well as the core loss effect, the converter is modeled with analytical formulas for one switching cycle. The comparison between the model based calculation results and prototype experiments based measurement results are used to validate...... analytical model of HV bidirectional converter driving capacitive load is beneficial in thoroughly understanding the operational behavior, investigating the energy efficiency and optimizing the design. In this paper, a HV bidirectional flyback converter for capacitive load is generally discussed in terms...

  9. License Application Design Selection Enhanced Design Alternative V: Very High Thermal Loading

    Energy Technology Data Exchange (ETDEWEB)

    C. L. Linden


    The major goals of Enhanced Design Alternative (EDA) V are to keep the temperature of the cladding on the spent nuclear fuel (SNF) within the waste package below 350 C (Section 4.2.3), the temperature of the emplacement drift walls below 225 C (Section 4.2.3), and to keep the emplacement drifts dry for several thousand years. In addition, the design would produce relatively consistent heat output from waste package to waste package and ensure that waste package thermal outputs are spread more evenly across the repository. The design would also provide defense in depth (Section 5.3). The goals of this design would be achieved by the combination of design features described below. This EDA would have an areal mass loading (AML) of 150 metric tons of uranium equivalent (MTU) per acre (Section 4.1.16) as opposed to the 85 MTU/acre in the Viability Assessment (VA) reference design. To achieve this loading and the elements necessary to the EDA's overall goals, the design would require approximately 420 acres of emplacement area, within the lower repository block (Appendix A, Section A.2). A conceptual layout was developed for EDA V (Section 5.4.3). The layout, as shown in Figure 2, contains openings that are sized and arranged in a similar configuration as the VA reference design. A total of 54 emplacement drifts will be required for emplacement of the 70,000 MTU of spent nuclear fuel and high level waste packages. A total of four ventilation shafts, one intake and three exhausts are anticipated for the layout in order to provide sufficient air quantities to the emplacement drifts. Two exhaust mains will be located below the level of the emplacement drifts to provide exhaust from the emplacement drifts. In addition, the evaluation has confirmed that the decision to close the repository is possible 50 years after start of emplacement (Section 5.7.5). The licensing and preclosure period encompassed by the Mined Geologic Repository (MGR) extends from the year 2002

  10. Synthesis, bifunctionalization, and remarkable adsorption performance of benzene-bridged periodic mesoporous organosilicas functionalized with high loadings of carboxylic acids. (United States)

    Wu, Hao-Yiang; Shieh, Fa-Kuen; Kao, Hsien-Ming; Chen, Yi-Wen; Deka, Juti Rani; Liao, Shih-Hsiang; Wu, Kevin C-W


    Highly ordered benzene-bridged periodic mesoporous organosilicas (PMOs) that were functionalized with exceptionally high loadings of carboxylic acid groups (COOH), up to 80 mol % based on silica, have been synthesized and their use as adsorbents for the adsorption of methylene blue (MB), a basic dye pollutant, and for the loading and release of doxorubicin (DOX), an anticancer drug, is demonstrated. These COOH-functionalized benzene-silicas were synthesized by the co-condensation of 1,4-bis(triethoxysilyl) benzene (BTEB) and carboxyethylsilanetriol sodium salt (CES), an organosilane that contained a carboxylic acid group, in the presence of non-ionic oligomeric surfactant Brij 76 in acidic medium. The materials thus obtained were characterized by a variety of techniques, including powder X-ray diffraction (XRD), nitrogen-adsorption/desorption isotherms, TEM, and (13)C and (29)Si solid-state NMR spectroscopy. Owing to the exceptionally high loadings of COOH groups, their high surface areas, and possible π-π-stacking interactions, these adsorbents have very high adsorption capacities and extremely rapid adsorption rates for MB removal and for the controlled loading/release of DOX, thus manifesting their great potential for environmental and biomedical applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading. (United States)

    Holwerda, Evert K; Thorne, Philip G; Olson, Daniel G; Amador-Noguez, Daniel; Engle, Nancy L; Tschaplinski, Timothy J; van Dijken, Johannes P; Lynd, Lee R


    Clostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. Using a defined medium, batch cultures of C. thermocellum achieved 93% conversion of cellulose (Avicel) initially present at 100 g/L. The maximum rate of substrate utilization increased with increasing substrate loading. During fermentation of 100 g/L cellulose, growth ceased when about half of the substrate had been solubilized. However, fermentation continued in an uncoupled mode until substrate utilization was almost complete. In addition to commonly reported fermentation products, amino acids - predominantly L-valine and L-alanine - were secreted at concentrations up to 7.5 g/L. Uncoupled metabolism was also accompanied by products not documented previously for C. thermocellum, including isobutanol, meso- and RR/SS-2,3-butanediol and trace amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and 1-propanol. We hypothesize that C. thermocellum uses overflow metabolism to balance its metabolism around the pyruvate node in glycolysis. C. thermocellum is able to utilize industrially relevant concentrations of cellulose, up to 93 g/L. We report here one of the highest degrees of crystalline cellulose utilization observed thus far for a pure culture of C. thermocellum, the highest maximum substrate utilization rate and the highest amount of isobutanol produced by a wild-type organism.

  12. High glycemic index and glycemic load are associated with moderately increased cancer risk. (United States)

    Turati, Federica; Galeone, Carlotta; Gandini, Sara; Augustin, Livia S; Jenkins, David J A; Pelucchi, Claudio; La Vecchia, Carlo


    To obtain an up-to-date quantification of the association between dietary glycemic index (GI) and glycemic load (GL) and the risk of cancer. We conducted a systematic review and meta-analysis of observational studies updated to January 2015. Summary relative risks (RRs) were derived using random effects models. Seventy-five reports were evaluated in the systematic review (147,090 cases), and 72 were included in the meta-analyses by cancer site. Considering hormone-related cancers, summary RRs comparing the highest versus the lowest GI and GL intake were, respectively, 1.05 and 1.07 for breast, 1.13 and 1.17 for endometrial, 1.11 and 1.19 for ovarian, and 1.06 and 1.04 for prostate cancers. Considering digestive-tract cancers, summary RRs for GI and GL were, respectively, 1.46 and 1.25 for esophageal (squamous cell carcinoma), 1.17 and 1.10 for stomach, 1.16 (significant) and 1.10 for colorectal, 1.11 and 1.14 for liver, and 1.10 and 1.01 for pancreatic cancers. In most of these meta-analyses, significant heterogeneity among studies was observed. In subgroup analyses, case-control studies and studies from Europe tended to estimate higher RRs. High-GI and high-GL diets are related to moderately increased risk of cancer at several common sites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Haematological, inflammatory, and immunological responses in elite judo athletes maintaining high training loads during Ramadan. (United States)

    Chaouachi, Anis; Coutts, Aaron J; Wong, Del P; Roky, Rachida; Mbazaa, Abderraouf; Amri, Mohamed; Chamari, Karim


    During Ramadan, Muslims abstain from food and fluid intake from dawn to sunset for 1 month. These behavioural changes that accompany Ramadan may impact upon Muslim athletes who continue to train intensely. The aim of the present study was to evaluate the effect of Ramadan intermittent fasting (RIF) on the haematological, inflammatory, and immunological measures in elite judo athletes maintaining their usual high training loads. Haematological markers of inflammation, hormones, and immune status were studied in 15 elite male judo athletes before, during, and after Ramadan. The RIF produced small but significant changes in inflammatory, hormonal, and immunological profiles in judo athletes. Serum C-reactive protein increased from 2.93 +/- 0.26 mg.L-1 pre-Ramadan to 4.60 +/- 0.51 mg.L-1 at the end of Ramadan. Haptoglobin and antitrypsin also significantly increased at different phases during Ramadan, whereas homocysteine and prealbumin remained relatively unchanged. Albumin decreased slightly by mid-Ramadan, then recovered. Immunoglobulin Aincreased from 1.87 +/- 0.56 g.L-1 before Ramadan to 2.49 +/- 0.75 g.L-1 at the end, and remained high 3 weeks after. There were no changes in the leucocyte cell counts throughout the study. The mean blood level of thyroid-stimulating hormone and free thyroxine increased significantly during RIF. Most of these changes were within the normal ranges. These results suggest that athletes who continue to train intensely during Ramadan are liable to experience a myriad of small fluctuations in hormones, immunoglobulins, antioxidants, and inflammatory responses.

  14. High Loading of Polygenic Risk for ADHD in Children With Comorbid Aggression

    National Research Council Canada - National Science Library

    Hamshere, Marian L; Langley, Kate; Martin, Joanna; Agha, Sharifah Shameem; Stergiakouli, Evangelia; Anney, Richard J.L; Buitelaar, Jan; Faraone, Stephen V; Lesch, Klaus-Peter; Neale, Benjamin M; Franke, Barbara; Sonuga-Barke, Edmund; Asherson, Philip; Merwood, Andrew; Kuntsi, Jonna; Medland, Sarah E; Ripke, Stephan; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J; Romanos, Marcel; Romanos, Jasmin; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Roeyers, Herbert; Biederman, Joseph; Doyle, Alysa E; Hakonarson, Hakon; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D; McGough, James J; Kent, Lindsey; Williams, Nigel; Owen, Michael J; Holmans, Peter; O’Donovan, Michael C; Thapar, Anita


    ...) have not yet identified any common genetic variants that contribute to risk. There is evidence that aggression or conduct disorder in children with ADHD indexes higher genetic loading and clinical severity...

  15. Thermo-Micromechanical Damage Models of Airfield Concrete Pavement Under High Temperature Loading

    National Research Council Canada - National Science Library

    Ju, J


    ...) or auxiliary Power Unit (APU). The APU is a low-power has turbine that provides compressed air, from a load driven compressor, for starting the main engines and for operating auxiliary systems during ground maintenance...

  16. Wireless power charging using point of load controlled high frequency power converters (United States)

    Miller, John M.; Campbell, Steven L.; Chambon, Paul H.; Seiber, Larry E.; White, Clifford P.


    An apparatus for wirelessly charging a battery of an electric vehicle is provided with a point of load control. The apparatus includes a base unit for generating a direct current (DC) voltage. The base unit is regulated by a power level controller. One or more point of load converters can be connected to the base unit by a conductor, with each point of load converter comprising a control signal generator that transmits a signal to the power level controller. The output power level of the DC voltage provided by the base unit is controlled by power level controller such that the power level is sufficient to power all active load converters when commanded to do so by any of the active controllers, without generating excessive power that may be otherwise wasted.

  17. Success and High Predictability of Intraorally Welded Titanium Bar in the Immediate Loading Implants

    National Research Council Canada - National Science Library

    Fogli, Vaniel; Camerini, Michele; Lauritano, Dorina; Carinci, Francesco


    .... This concept is especially true in case of implants placed in atrophic ridges. So the primary stabilization and fixation of implants are an important goal that can also allow immediate loading and oral rehabilitation on the same day of surgery...

  18. Success and high predictability of intraorally welded titanium bar in the immediate loading implants

    National Research Council Canada - National Science Library

    Fogli, Vaniel; Camerini, Michele; Lauritano, Dorina; Carinci, Francesco


    .... This concept is especially true in case of implants placed in atrophic ridges. So the primary stabilization and fixation of implants are an important goal that can also allow immediate loading and oral rehabilitation on the same day of surgery...

  19. High-Performance Kinetic Plasma Simulations with GPUs and load balancing (United States)

    Germaschewski, Kai; Ahmadi, Narges; Abbott, Stephen; Lin, Liwei; Wang, Liang; Bhattacharjee, Amitava; Fox, Will


    We will describe the Plasma Simulation Code (PSC), a modern particle-in-cell code with GPU support and dynamic load balancing capabilities. For 2-d problems, we achieve a speed-up of up to 6 × on the Cray XK7 ``Titan'' using its GPUs over the well-known VPIC code, which has been optimized for conventional CPUs with SIMD support. Our load-balancing algorithm employs a space-filling Hilbert-Peano curve to maintain locality and has shown to keep the load balanced within approximately 10% in production runs which otherwise slow down up to 5 × with only static load balancing. PSC is based on the libmrc computational framework, which also supports explicit and implicit time integration of fluid plasma models. Applications include magnetic reconnection in HED plasmas, particle acceleration in space plasmas and the nonlinear evolution of anisotropy-based kinetic instabilities like the mirror mode.

  20. Three-Dimensional Dynamic Analyses of Track-Embankment-Ground System Subjected to High Speed Train Loads (United States)


    A three-dimensional finite element model was developed to investigate dynamic response of track-embankment-ground system subjected to moving loads caused by high speed trains. The track-embankment-ground systems such as the sleepers, the ballast, the embankment, and the ground are represented by 8-noded solid elements. The infinite elements are used to represent the infinite boundary condition to absorb vibration waves induced by the passing of train load at the boundary. The loads were applied on the rails directly to simulate the real moving loads of trains. The effects of train speed on dynamic response of the system are considered. The effect of material parameters, especially the modulus changes of ballast and embankment, is taken into account to demonstrate the effectiveness of strengthening the ballast, embankment, and ground for mitigating system vibration in detail. The numerical results show that the model is reliable for predicting the amplitude of vibrations produced in the track-embankment-ground system by high-speed trains. Stiffening of fill under the embankment can reduce the vibration level, on the other hand, it can be realized by installing a concrete slab under the embankment. The influence of axle load on the vibration of the system is obviously lower than that of train speed. PMID:24723838

  1. Three-dimensional dynamic analyses of track-embankment-ground system subjected to high speed train loads. (United States)

    Fu, Qiang; Zheng, Changjie


    A three-dimensional finite element model was developed to investigate dynamic response of track-embankment-ground system subjected to moving loads caused by high speed trains. The track-embankment-ground systems such as the sleepers, the ballast, the embankment, and the ground are represented by 8-noded solid elements. The infinite elements are used to represent the infinite boundary condition to absorb vibration waves induced by the passing of train load at the boundary. The loads were applied on the rails directly to simulate the real moving loads of trains. The effects of train speed on dynamic response of the system are considered. The effect of material parameters, especially the modulus changes of ballast and embankment, is taken into account to demonstrate the effectiveness of strengthening the ballast, embankment, and ground for mitigating system vibration in detail. The numerical results show that the model is reliable for predicting the amplitude of vibrations produced in the track-embankment-ground system by high-speed trains. Stiffening of fill under the embankment can reduce the vibration level, on the other hand, it can be realized by installing a concrete slab under the embankment. The influence of axle load on the vibration of the system is obviously lower than that of train speed.

  2. Three-Dimensional Dynamic Analyses of Track-Embankment-Ground System Subjected to High Speed Train Loads

    Directory of Open Access Journals (Sweden)

    Qiang Fu


    Full Text Available A three-dimensional finite element model was developed to investigate dynamic response of track-embankment-ground system subjected to moving loads caused by high speed trains. The track-embankment-ground systems such as the sleepers, the ballast, the embankment, and the ground are represented by 8-noded solid elements. The infinite elements are used to represent the infinite boundary condition to absorb vibration waves induced by the passing of train load at the boundary. The loads were applied on the rails directly to simulate the real moving loads of trains. The effects of train speed on dynamic response of the system are considered. The effect of material parameters, especially the modulus changes of ballast and embankment, is taken into account to demonstrate the effectiveness of strengthening the ballast, embankment, and ground for mitigating system vibration in detail. The numerical results show that the model is reliable for predicting the amplitude of vibrations produced in the track-embankment-ground system by high-speed trains. Stiffening of fill under the embankment can reduce the vibration level, on the other hand, it can be realized by installing a concrete slab under the embankment. The influence of axle load on the vibration of the system is obviously lower than that of train speed.

  3. High bacterial load in negative pressure wound therapy (NPWT) foams used in the treatment of chronic wounds. (United States)

    Yusuf, Erlangga; Jordan, Xavier; Clauss, Martin; Borens, Olivier; Mäder, Mark; Trampuz, Andrej


    No earlier study has investigated the microbiology of negative pressure wound therapy (NPWT) foam using a standardized manner. The purpose of this study is to investigate the bacterial load and microbiological dynamics in NPWT foam removed from chronic wounds (>3 months). To determine the bacterial load, a standardized size of the removed NPWT foam was sonicated. The resulting sonication fluid was cultured, and the colony-forming units (CFU) of each species were enumerated. Sixty-eight foams from 17 patients (mean age 63 years, 71% males) were investigated. In 65 (97%) foams, ≥ 1 and in 37 (54%) ≥ 2 bacterial types were found. The bacterial load remained high during NPWT treatment, ranging from 10(4) to 10(6) CFU/ml. In three patients (27%), additional type of bacteria was found in subsequent foam cultures. The mean bacterial count ± standard deviation was higher in polyvinyl alcohol foam (6.1 ± 0.5 CFU/ml) than in polyurethane (5.5 ± 0.8 CFU/ml) (p = 0.02). The mean of log of sum of CFU/ml in foam from 125 mmHg (5.5 ± 0.8) was lower than in foam from 100 mmHg pressure (5.9 ± 0.5) (p = 0.01). Concluding, bacterial load remains high in NPWT foam, and routine changing does not reduce the load. © 2013 by the Wound Healing Society.

  4. Significant progression of load on the musculoskeletal system with extremely high loads, with rapid weekly weight gains, using the Anatoly Gravitational System, in a 10-week training period

    Directory of Open Access Journals (Sweden)

    Burke DT


    Full Text Available David T Burke,1 David Tran,1 Di Cui,1 Daniel P Burke,2 Samir Al-Adawi,3 Atsu SS Dorvlo41Emory University Medical School, Atlanta, GA, USA; 2Georgia College and State University, GA, USA; 3Department of Behavioral Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman; 4Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, Muscat, OmanAbstract: In an age of increasing numbers of lifestyle diseases and plasticity of longevity, exercise and weight training have been increasingly recognized as both preventing and mitigating the severity of many illnesses. This study was designed to determine whether significant weight-lifting gains could be realized through the Anatoly Gravitational System. Specifically, this study sought to determine whether this once-weekly weight-training system could result in significant weekly strength gains during a 10-week training period. A total of 50 participants, ranging in age from 17 to 67 years, completed at least 10 weekly 30-minute training sessions. The results suggest participants could, on average, double their weight-lifting capacity within 10 sessions. This preliminary study, which would require further scrutiny, suggests the Anatoly Gravitational System provides a rather unique opportunity to load the musculoskeletal system with extremely high loads, with rapid weekly weight gains, using only short weekly training sessions. More studies are warranted to scrutinize these findings.Keywords: Anatoly Gravitational System, weight training, musculoskeletal system

  5. Synergistic effect of viral load and alcohol consumption on the risk of persistent high-risk human papillomavirus infection.

    Directory of Open Access Journals (Sweden)

    Hea Young Oh

    Full Text Available PURPOSE: This prospective study aimed to examine the combined effect of viral load and alcohol consumption on the risk of persistent high-risk (HR human papillomavirus (HPV infection. METHODS: Among women undergoing health screening between 2002 and 2011 at the National Cancer Center, 284 and 122 women with HR-HPV infection and cytological findings of low-grade squamous intraepithelial or lower-grade lesions were followed up for 1 and 2 years, respectively. Multivariate logistic regression analysis was performed, and the relative excess risk due to interaction (RERI and synergy index (S were calculated. RESULTS: Among drinkers, the risks of 1-year (odds ratio [OR] 4.09, 95% confidence interval [CI] 2.05-8.18 and 2-year persistence (OR 8.08, CI 2.36-27.6 were significantly higher for high HPV loads than for low HPV loads; this association was not seen for non-drinkers. The risks for 1-year (OR 4.14, CI 1.89-9.05 and 2-year persistence (OR 6.61, CI 2.09-20.9 were significantly higher in subjects with a high HPV load who were also drinkers than in those who were non-drinkers. A high HPV load together with a longer drinking duration or higher alcohol consumption was associated with increased risks of 1-year (OR 3.07, CI 1.40-6.75 or OR 2.05, CI 0.87-4.83 and 2-year persistence (OR 6.40, CI 1.72-23.8 or OR 4.14, CI 1.18-14.6. The synergistic effect of alcohol consumption and HR-HPV load was stronger on the risk of 2-year persistence (RERI = 3.26, S = 2.38 than on the risk of 1-year persistence (RERI = 1.21, S = 1.63. CONCLUSIONS: The synergistic effect of HR-HPV load and alcohol consumption was associated with the risk of HR-HPV persistence and was stronger for longer-term HR-HPV infection. Limiting alcohol consumption might be an important measure to prevent the development of cervical cancer in women with a high HR-HPV load.

  6. Consumption of a high glycemic load but not a high glycemic index diet is marginally associated with oxidative stress in young women. (United States)

    Arikawa, Andrea Y; Jakits, Holly E; Flood, Andrew; Thomas, William; Gross, Myron; Schmitz, Kathryn H; Kurzer, Mindy S


    Research studies have suggested that chronic consumption of high glycemic index foods may lead to chronically high oxidative stress. This is important because oxidative stress is suspected to be an early event in the etiology of many disease processes. We hypothesized that dietary glycemic index and glycemic load were positively associated with oxidative stress assessed by plasma F2-isoprostanes in healthy, premenopausal women (body mass index [BMI] = 24.7 ± 4.8 kg/m(2) and age 25.3 ± 3.5 years, mean ± SD). We measured plasma F2-isoprostanes in 306 healthy premenopausal women at the baseline visit for the Women In Steady Exercise Research study, using gas chromatography-mass spectrometry. Dietary glycemic index and load were calculated from the National Cancer Institute Diet History Questionnaire, and participants were divided into quartiles of dietary glycemic index and of glycemic load. Plasma F2-isoprostanes were compared across quartile groups of dietary glycemic index and glycemic load using linear regression models. Plasma F2-isoprostanes (pg/mL) increased with quartile of glycemic load (test for linear trend, P = .033), and also increased with quartile of glycemic index in participants with BMI ≥ 25 (P = .035) but not in those with BMI glycemic index and P = .065 for quartiles of glycemic load). Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf


    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer...

  8. Characterization of the bacterial community involved in the bioflocculation process of wastewater organic matter in high loaded MBRs

    NARCIS (Netherlands)

    Faust, L.; Szendy, M.; Plugge, C.M.; Brink, van den P.F.; Temmink, H.; Rijnaarts, H.H.M.


    High-loaded membrane bioreactors (HL-MBRs), i.e., bioreactors equipped with a membrane for biomass retention and operated at extremely short sludge and hydraulic retention times, can concentrate sewage organic matter to facilitate subsequent energy and chemical recovery from these organics.

  9. Spray-dried nanocrystals for a highly hydrophobic drug: Increased drug loading, enhanced redispersity, and improved oral bioavailability. (United States)

    Hou, Yanxian; Shao, Jingbo; Fu, Qiang; Li, Jingru; Sun, Jin; He, Zhonggui


    For a highly hydrophobic and drug, it is difficult to formulate and solidify its nanocrystals with high drug loading and good redispersity. In this study, Allisartan Isoproxil was used as a model drug, and SDS was tested in combination with sugar alcohols to improve the drug loading and redispersity for its spray-dried nanocrystals, simultaneously. These spray-dried nanocrystals had high drug loading of 61.7% and good redispersity, which was mainly attributed to the addition of SDS. In addition, the nanocrystals were characterized by scanning electron microscopy, differential scanning calorimetry, X-ray power diffraction analysis, Fourier transform infrared spectroscopy and Raman spectroscopy. The results showed that Allisartan Isoproxil was unchanged in chemical structure, but was partially amorphous. Regarding the in vitro dissolution, the optimism formulation shown an increased dissolution compared with the bulk drug and aggregated nanocrystals. Importantly, the optimum formulation increased the oral bioavailability of crude ALS-3 for 4.73 times. In conclusion, we developed a method to solidify aqueous nanocrystals with increased drug loading, good redispersity and improved bioavailability for high hydrophobic drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Increased rate of force development and neuromuscular activity after high-load resistance training in patients undergoing dialysis

    DEFF Research Database (Denmark)

    Molsted, Stig; Andersen, Jesper L.; Eidemak, Inge


    AimThe aim of this study was to investigate the effects of high-load resistance training on the rate of force development and neuromuscular function in patients undergoing dialysis. MethodsTwenty-nine patients were tested before and after 16 weeks of resistance training. The rate of force develop...

  11. Relation between Breast Cancer and High Glycemic Index or Glycemic Load: A Meta-analysis of Prospective Cohort Studies. (United States)

    Mullie, Patrick; Koechlin, Alice; Boniol, Mathieu; Autier, Philippe; Boyle, Peter


    Breast cancer is the commonest form of cancer in women worldwide. It has been suggested that chronic hyperinsulinemia associated with insulin resistance plays a role in breast cancer etiology. To test the hyperinsulinemia hypothesis, a dietary pattern associated with a high glycemic index and glycemic load, both proxies for chronic hyperinsulinemia, should be associated with an increased risk of breast cancer. A meta-analysis restricted to prospective cohort studies was undertaken using a random effects model with tests for statistical significance, publication bias and heterogeneity. The metric for analysis was the risk of breast cancer in the highest relative to the lowest glycemic index and glycemic load dietary pattern. A dietary pattern with a high glycemic index was associated with a summary relative risk (SRR) of 1.05 (95% CI: 1.00, 1.11), and a high glycemic load with a SRR of 1.06 (95% CI: 1.00, 1.13). Adjustments for body mass index [BMI], physical activity and other lifestyle factors did not influence the SRR, nor did menopausal status and estrogen receptor status of the tumor. In conclusion, the current evidence supports a modest association between a dietary pattern with high glycemic index or glycemic load and the risk of breast cancer.

  12. Power Sharing Control between Load-Side Inverters in DC Microgrid for Super High Quality Electric Power Distribution System (United States)

    Kakigano, Hiroaki; Nada, Kaho; Miura, Yushi; Ise, Toshifumi; Uchida, Ryohei

    DC microgrid is a novel power system using dc distribution in order to provide a super high quality electric power. The dc distribution system is suitable for dc output type distributed generations such as photovoltaic and fuel cells, and energy storages such as batteries and electric double layer capacitors. Power is distributed through dc distribution line and converted to required ac or dc voltage by converters placed near loads. Load-side single phase inverters are connected through transformers in order to share active and reactive power. In this paper, a power sharing control scheme was proposed, and the power sharing characteristics were demonstrated by experimental results.

  13. Fluctuation of microbial activities after influent load variations in a full-scale SBR. Recovery of the biomass after starvation

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas, Angela; Draper, Patricia; Etchebehere, Claudia [Universidad de la Republica, Montevideo (Uruguay). Catedra de Microbiologia, Facultad de Quimica y Facultad de Ciencias


    Due to variations in the production levels, a full-scale sequencing batch reactor (SBR) for post-treatment of tannery wastewater was exposed to low and high ammonia load periods. In order to study how these changes affected the N-removal capacity, the microbiology of the reactor was studied by a diverse set of techniques including molecular tools, activity tests, and microbial counts in samples taken along 3 years. The recover capacity of the biomass was also studied in a lab-scale reactor operated with intermittent aeration without feeding for 36 days. The results showed that changes in the feeding negatively affected the nitrifying community, but the nitrogen removal efficiencies could be restored after the concentration stress. Species substitution was observed within the nitrifying bacteria, Nitrosomonas europaea and Nitrobacter predominated initially, and after an ammonia overload period, Nitrosomonas nitrosa and Nitrospira became dominant. Some denitrifiers, with nirS related to Alicycliphilus, Azospirillum, and Marinobacter nirS, persisted during long-term reactor operation, but the community fluctuated both in composition and in abundance. This fluctuating community may better resist the continuous changes in the feeding regime. Our results showed that a nitrifying-denitrifying SBR could be operated with low loads or even without feeding during production shut down periods. (orig.)

  14. Effect of high hydrostatic pressure processing on the background microbial loads and quality of cantaloupe puree. (United States)

    Mukhopadhyay, Sudarsan; Sokorai, Kimberly; Ukuku, Dike; Fan, Xuetong; Juneja, Vijay


    The objective of this study was to investigate and evaluate the effects of high hydrostatic pressure (HHP) applied to cantaloupe puree (CP) on microbial loads and product quality during storage for 10days at 4°C. Freshly prepared, double sealed and double bagged CP (ca. 5g) was pressure treated at 300, 400 and 500MPa at 8°C and 15°C for 5min. Microflora populations, soluble solid content, pH, color, antioxidant activity, appearance and aroma were measured at 1, 6, and 10d of storage. Results showed that high pressure treatment of 300MPa (8°C and 15°C) resulted in reduction of total aerobic plate count from 3.3 to 1.8logCFU/g. The treatment reduced the populations of native aerobic plate count to non-detectable levels (detection limit 1logCFU/g) at 400MPa and 500MPa pressures at 15°C. Pressure treatment completely inactivated mold and yeast in puree below the limits of detection at day 1 and no regrowth was observed during 10days of storage at 4°C while mold and yeast in untreated puree survived during the storage. High pressure treatment did not show any adverse impact on physical properties as soluble solid content (SSC, 11.2°Brix) and acidity (pH, 6.9). The instrumental color parameters (L*, a*, b*) were affected due to HHP treatment creating a slightly lighter product, compared to control, as indicated by higher L.* and lower a* values. However the change was not detected by the sensory panel while evaluating appearance scores. Pressure treatment did not affect the antioxidant capacity of puree product compared to control. Visual appearance and sniffing aroma test by panel revealed no adverse changes in the sensory parameters as a result of HHP treatment. HHP method described in this study appears to be a promising way to inactivate spoilage microorganisms in the cantaloupe puree and maintain quality. This study provides a viable option for preservation and marketing this product. Published by Elsevier Ltd.

  15. Bracing of the Reconstructed and Osteoarthritic Knee during High Dynamic Load Tasks. (United States)

    Hart, Harvi F; Crossley, Kay M; Collins, Natalie J; Ackland, David C


    Lateral compartment osteoarthritis accompanied by abnormal knee biomechanics is frequently reported in individuals with knee osteoarthritis after anterior cruciate ligament reconstruction (ACLR). The aim of this study was to evaluate changes in knee biomechanics produced by an adjusted and unadjusted varus knee brace during high dynamic loading activities in individuals with lateral knee osteoarthritis after ACLR and valgus malalignment. Nineteen participants who had undergone ACLR 5 to 20 yr previously and had symptomatic and radiographic lateral knee osteoarthritis with valgus malalignment were assessed. Quantitative motion analysis experiments were conducted during hopping, stair ascent, and descent under three test conditions: (i) no brace, (ii) unadjusted brace with sagittal plane support and neutral frontal plane alignment, and (iii) adjusted brace with sagittal plane support and varus realignment (valgus to neutral). Sagittal, frontal, and transverse plane knee kinematics, external joint moment, and angular impulse data were calculated. Relative to an unbraced knee, braced conditions significantly increased knee flexion and adduction angles during hopping (P = 0.003 and P = 0.005; respectively), stair ascent (P = 0.003 and P brace conditions increased knee flexion (P knee stiffness (P knee adduction moments during stair ascent (P = 0.008) and flexion moments during stair descent (P = 0.006). There were no significant differences between the adjusted and the unadjusted brace conditions (P > 0.05). A knee brace, with or without varus alignment, can modulate knee kinematics and external joint moments during hopping, stairs ascent, and descent in individuals with predominant lateral knee osteoarthritis after ACLR. Longer-term use of a brace may have implications in slowing osteoarthritis progression.

  16. High Loading of Polygenic Risk for ADHD in Children With Comorbid Aggression (United States)

    Hamshere, Marian L.; Langley, Kate; Martin, Joanna; Agha, Sharifah Shameem; Stergiakouli, Evangelia; Anney, Richard J.L.; Buitelaar, Jan; Faraone, Stephen V.; Lesch, Klaus-Peter; Neale, Benjamin M.; Franke, Barbara; Sonuga-Barke, Edmund; Asherson, Philip; Merwood, Andrew; Kuntsi, Jonna; Medland, Sarah E.; Ripke, Stephan; Steinhausen, Hans-Christoph; Freitag, Christine; Reif, Andreas; Renner, Tobias J.; Romanos, Marcel; Romanos, Jasmin; Warnke, Andreas; Meyer, Jobst; Palmason, Haukur; Vasquez, Alejandro Arias; Lambregts-Rommelse, Nanda; Roeyers, Herbert; Biederman, Joseph; Doyle, Alysa E.; Hakonarson, Hakon; Rothenberger, Aribert; Banaschewski, Tobias; Oades, Robert D.; McGough, James J.; Kent, Lindsey; Williams, Nigel; Owen, Michael J.; Holmans, Peter


    Objective Although attention deficit hyperactivity disorder (ADHD) is highly heritable, genome-wide association studies (GWAS) have not yet identified any common genetic variants that contribute to risk. There is evidence that aggression or conduct disorder in children with ADHD indexes higher genetic loading and clinical severity. The authors examine whether common genetic variants considered en masse as polygenic scores for ADHD are especially enriched in children with comorbid conduct disorder. Method Polygenic scores derived from an ADHD GWAS meta-analysis were calculated in an independent ADHD sample (452 case subjects, 5,081 comparison subjects). Multivariate logistic regression analyses were employed to compare polygenic scores in the ADHD and comparison groups and test for higher scores in ADHD case subjects with comorbid conduct disorder relative to comparison subjects and relative to those without comorbid conduct disorder. Association with symptom scores was tested using linear regression. Results Polygenic risk for ADHD, derived from the meta-analysis, was higher in the independent ADHD group than in the comparison group. Polygenic score was significantly higher in ADHD case subjects with conduct disorder relative to ADHD case subjects without conduct disorder. ADHD polygenic score showed significant association with comorbid conduct disorder symptoms. This relationship was explained by the aggression items. Conclusions Common genetic variation is relevant to ADHD, especially in individuals with comorbid aggression. The findings suggest that the previously published ADHD GWAS meta-analysis contains weak but true associations with common variants, support for which falls below genome-wide significance levels. The findings also highlight the fact that aggression in ADHD indexes genetic as well as clinical severity. PMID:23599091

  17. Retention of granular sludge at high hydraulic loading rates in an anaerobic membrane bioreactor with immersed filtration. (United States)

    Hernández, A E; Belalcazar, L C; Rodríguez, M S; Giraldo, E


    This study shows the results of an Anaerobic Membrane Bioreactor with immersed filtration cartridges for granular biomass retention working at high hydraulic loading rates. Biomass retention capabilities, granular biomass structure and activity, filtration cartridges flux and organic material degradation performance were evaluated. Four reactors with a volume of 0.005 m3 were tested. Two different filtration cartridges were used (10 and 100 microm) with effective surface area of 0.05 m2. The filtration cartridges were submerged in the reactors for suction type filtration. Three organic loading rates were tested in the first two reactors and seven in the other two. Selective biomass washout and an increment in the biomass methanogenic activity was observed in the reactors at hydraulic loading rates between 1.2 and 4.5 m/h. Analyses of biomass granulometry showed an increase of larger size granular biomass. The immersed membrane anaerobic bioreactor maintain most of the advantages without biomass activity loss.

  18. High heat loading properties of vacuum plasma spray tungsten coatings on reduced activation ferritic/martensitic steel (United States)

    Tokunaga, K.; Hotta, T.; Araki, K.; Miyamoto, Y.; Fujiwara, T.; Hasegawa, M.; Nakamura, K.; Ezato, K.; Suzuki, S.; Enoeda, M.; Akiba, M.; Nagasaka, T.; Kasada, R.; Kimura, A.


    High density W coatings on reduced activation ferritic martensitic steel (RAF/M) have been produced by Vacuum Plasma Spraying technique (VPS) and heat flux experiments on them have been carried out to evaluate their possibility as a plasma-facing armor in a fusion device. In addition, quantitative analyses of temperature profile and thermal stress have been carried out using the finite element analysis (FEA) to evaluate its thermal properties. No cracks or exfoliation has been formed by steady state and cyclic heat loading experiments under heat loading at 700 °C of surface temperature. In addition, stress distribution and maximum stress between interface of VPS-W and RAF/M have been obtained by FEA. On the other hand, exfoliation has occurred at interlayer of VPS-W coatings near the interface between VPS-W and RAF/M at 1300 °C of surface temperature by cyclic heat loading.

  19. Yolk @ cage-Shell Hollow Mesoporous Monodispersion Nanospheres of Amorphous Calcium Phosphate for Drug Delivery with High Loading Capacity. (United States)

    Huang, Suping; Li, Chunxia; Xiao, Qi


    In this paper, yolk-shell hollow nanospheres of amorphous calcium phosphate (ACP) are prepared, and its loading capacity is investigated by comparing with that of solid-shell hollow structure ACP and cage-shell hollow structure ACP. Results show that the products are yolk @ cage-shell of ACP with large shell's pores size (15-40 nm) and large cavity volume. Adsorption results show that the loading capacity of yolk @ cage-shell hollow spherical ACP is very high, which is more than twice that of hollow ACP and 1.5 times of cage-like ACP. The main reasons are that the big shell's pore size contributes the large molecular doxorubicin hydrochloride (DOX · HCl) to enter the inner of hollow spheres easier, and the yolk-shell structure provides larger interior space and more adsorption sites for loading drugs.

  20. Experimental and Numerical Investigation on The Punching Behavior of High Strength R.C Flat Slab Under Repeated Load

    Directory of Open Access Journals (Sweden)

    Nameer Abdul-Ameer Alwash


    Full Text Available In this paper, the punching behavior of square simply supported reinforced concrete flat slabs was experimentally and numerically investigated. Four models of reinforced concrete flat slabs were constructed and tested. The test variables were type of concrete and load (four models: High Strength Concrete flat slabs under monotonicload or repeated load (two models and Normal Strength Concreteflat slabs under monotonicload or repeatedload (two models. The results showed that the punching shear strength of flat slabmodels increased up to 60% with the use of HSC. While, repeated load reduces the punching shear strength of flat slabmodels by about (34.4%-10%; it depends on the level of loading, number of cycles and type of concrete. Three-dimensional (3D nonlinear finite element (NFE analysis has been carried out to conduct the numerical investigation of the general behavior of HSC and NSC flat slab models. The ABAQUS model succeeded to an acceptable degree in predicting the structural behavior of the analyzed flat slabswith average of differences of about 5% between the predicted and experimental ultimate load

  1. Implementation and Assessment of a Decentralized Load Frequency Control: Application to Power Systems with High Wind Energy Penetration

    Directory of Open Access Journals (Sweden)

    Irene Muñoz-Benavente


    Full Text Available This paper describes and assesses a decentralized solution based on a wireless sensor-actuator network to provide primary frequency control from demand response in power systems with high wind energy penetration and, subsequently, with relevant frequency excursions. The proposed system is able to modify the electrical power demand of a variety of thermostatically-controlled loads, maintaining minimum comfort levels and minimizing both infrastructure requirements and primary reserves from the supply side. This low-cost hardware solution avoids any additional wiring, extending the wireless sensor-actuator network technology towards small customers, which account for over a 30% share of the current power demand. Frequency excursions are collected by each individual load controller, considering not only the magnitude of the frequency deviation, but also their evolution over time. Based on these time-frequency excursion characteristics, controllers are capable of modifying the power consumption of thermostatically-controlled loads by switching them off and on, thus contributing to primary frequency control in power systems with higher generation unit oscillations as a consequence of relevant wind power integration. Field tests have been carried out in a laboratory environment to assess the load controller performance, as well as to evaluate the electrical and thermal response of individual loads under frequency deviations. These frequency deviations are estimated from power systems with a high penetration of wind energy, which are more sensitive to frequency oscillations and where demand response can significantly contribute to mitigate these frequency excursions. The results, also included in the paper, evaluate the suitability of the proposed load controllers and their suitability to decrease frequency excursions from the demand side in a decentralized manner.

  2. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits

    KAUST Repository

    Saxena, Samveg


    Low temperature combustion (LTC) engines are an emerging engine technology that offers an alternative to spark-ignited and diesel engines. One type of LTC engine, the homogeneous charge compression ignition (HCCI) engine, uses a well-mixed fuel–air charge like spark-ignited engines and relies on compression ignition like diesel engines. Similar to diesel engines, the use of high compression ratios and removal of the throttling valve in HCCI allow for high efficiency operation, thereby allowing lower CO2 emissions per unit of work delivered by the engine. The use of a highly diluted well-mixed fuel–air charge allows for low emissions of nitrogen oxides, soot and particulate matters, and the use of oxidation catalysts can allow low emissions of unburned hydrocarbons and carbon monoxide. As a result, HCCI offers the ability to achieve high efficiencies comparable with diesel while also allowing clean emissions while using relatively inexpensive aftertreatment technologies. HCCI is not, however, without its challenges. Traditionally, two important problems prohibiting market penetration of HCCI are 1) inability to achieve high load, and 2) difficulty in controlling combustion timing. Recent research has significantly mitigated these challenges, and thus HCCI has a promising future for automotive and power generation applications. This article begins by providing a comprehensive review of the physical phenomena governing HCCI operation, with particular emphasis on high load conditions. Emissions characteristics are then discussed, with suggestions on how to inexpensively enable low emissions of all regulated emissions. The operating limits that govern the high load conditions are discussed in detail, and finally a review of recent research which expands the high load limits of HCCI is discussed. Although this article focuses on the fundamental phenomena governing HCCI operation, it is also useful for understanding the fundamental phenomena in reactivity controlled

  3. Validation of high performance liquid chromatography method for determination of meloxicam loaded PEGylated nanocapsules

    Directory of Open Access Journals (Sweden)

    Francine Rodrigues Ianiski


    Full Text Available abstract A method to ensure that an analytical method will produce reliable and interpretable information about the sample must first be validated, making sure that the results can be trusted and traced. In this study, we propose to validate an analytical high performance liquid chromatography (HPLC method for the quantitation of meloxicam loaded PEGylated nanocapsules(M-PEGNC. We performed a validation study, evaluated parameters including specificity, linearity, quantification limit, detection limit, accuracy, precision and robustness. PEGylated nanocapsules were prepared by interfacial deposition of preformed polymer, and the particle size, polydispersity index, zeta potential, pH value and encapsulation efficiency were characterized. The proposed HPLC method provides selective, linear results in the range of 1.0-40.0 μg/mL; quantification and detection limits were 1.78 μg/mL and 0.59 μg/mL, respectively; relative standard deviation for repeatability was 1.35% and intermediate precision was 0.41% and 0.61% for analyst 1 and analyst 2, respectively; accuracy between 99.23 and 101.79%; robustness between 97.13 and 98.45% for the quantification of M-PEGNC. Mean particle diameters were 261 ± 13 nm and 249 ± 20 nm, polydispersity index was 0.15 ± 0.07 and 0.17 ± 0.06, pH values were 5.0 ± 0.2 and 5.2 ± 0.1, and zeta-potential values were -37.9 ± 3.2 mV e -31.8 ± 2.8 mV for M-PEGNC and placebo(B-PEGNC, respectively. In conclusion, the proposed analytical method is suitable for the quality control of M-PEGNC. Moreover, suspensions showed monomodal size distributions and low polydispersity index indicating high homogeneity of formulations with narrow size distributions, and appropriate pH and zeta potential. The extraction process was efficient for release of meloxicam from nanostructured systems.

  4. Decentralized Coordination of Load Shedding and Plant Protection Considering High Share of RESs

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar; Silva, Filipe Miguel Faria da; Bak, Claus Leth


    This paper estimates the average Rate of Change of Frequency (ROCOF) following islanding and/or cascading event/s using inflection points of frequency profile. Moreover, a frequency collapse barrier scheme is set up by tuning the frequency set points of Load Shedding (LS) relays as a dynamic...... variable using voltage drop data coordinated with plant protection scheme. A frequency anti stalling scheme is developed to interrupt more load feeders in case of frequency stall between consecutive set points. This time-based approach adjusts the time delay of the relay stages to disconnect the feeders...

  5. Possibilities of utilization high velocity oxygen fuel (HVOF coatings in conditions of thermal cyclic loading

    Directory of Open Access Journals (Sweden)

    J. Brezinová


    Full Text Available The item deals with the possibilities of utilization HVOF coatings in thermal cyclic loading conditions. There were evaluated three types of coatings based on WC-Co, WC-Co-Cr and Cr3C2-25NiCr. The quality of coatings was evaluated in terms of their adhesion as sprayed and also during the cyclic thermal loading, EDX analysis and evaluation of microhardness. Construction and structure of coatings were studied using optical and electron microscopy. There was also evaluated resistance of the coatings against erosive wear.

  6. Influence of steel fibers on the shear and flexural performance of high-strength concrete beams tested under blast loads (United States)

    Algassem, O.; Li, Y.; Aoude, H.


    This paper presents the results of a study examining the effect of steel fibres on the blast behaviour of high-strength concrete beams. As part of the study, a series of three large-scale beams built with high-strength concrete and steel fibres are tested under simulated blast loading using the shock-tube testing facility at the University of Ottawa. The specimens include two beams built with conventional high-strength concrete (HSC) and one beam built with high-strength concrete and steel fibres (HSFRC). The effect of steel fibres on the blast behaviour is examined by comparing the failure mode, mid-span displacements and, overall blast resistance of the specimens. The results show that the addition of steel fibres in high-strength concrete beams can prevent shear failure and substitute for shear reinforcement if added in sufficient quantity. Moreover, the use of steel fibres improves flexural response under blast loading by reducing displacements and increasing blast capacity. Finally, the provision of steel fibres is found to improve the fragmentation resistance of high-strength concrete under blast loads.

  7. Ceria loaded nanoreactors: a nontoxic superantioxidant system with high stability and efficacy (United States)

    Spulber, M.; Baumann, P.; Liu, J.; Palivan, C. G.


    NP, it is necessary to find new solutions, which simultaneously reduce their inherent toxicity while preserving their unique catalytic regenerative qualities. Here we introduce a straightforward strategy based on CeNP encapsulation in polymer vesicles which reduces their toxicity, but preserves their superantioxidant character. We have engineered antioxidant nanoreactors, which serve the dual purpose of: (i) separation of CeNP, which inhibits aggregate formation, and (ii) protection of CeNP from hydrogen peroxide, thus eliminating the Fenton-like reaction which induces cytotoxicity. Nanoreactors containing CeNP possess a higher scavenging activity than free CeNP for both hydroxyl and superoxide radicals, as indicated by spin trapping EPR. Due to the regenerative redox chemistry of ceria, the nanoreactors are active for long periods of time, without requiring additional reducing agents. Upon uptake by cells, the nanoreactors show almost no toxicity compared with the free CeNP after a long term exposure, thus proving their high efficacy as ROS scavengers. Our strategy of engineering CeNP-containing nanoreactors represents a versatile, simple and economical solution to reduce CeNP toxicity, while preserving their functionality; thus nanoreactors are the ideal candidates for fighting oxidative stress in a large variety of medical situations. Electronic supplementary information (ESI) available: Additional information including TEM images of the CeNP aggregation in time, the stability of nanoreactors loaded with CeNP and the toxicity of the PDMS-PNVP copolymers. See DOI: 10.1039/c4nr02748e

  8. A High-Efficiency 4x45W Car Audio Power Amplifier using Load Current Sharing

    NARCIS (Netherlands)

    Mensink, C.H.J.; Mensink, C.; van Tuijl, Adrianus Johannes Maria; Gierkink, Sander L.J.; Mostert, F.; van der Zee, Ronan A.R.


    A 4x45W (EIAJ) monolithic car audio power amplifier is presented that achieves a power dissipation decrease of nearly 2x over standard class AB operation by sharing load currents between loudspeakers. Output signals are conditioned using a common-mode control loop to allow switch placement between

  9. Load management in elite German distance runners during 3-weeks of high-altitude training. (United States)

    Sperlich, Billy; Achtzehn, Silvia; de Marées, Markus; von Papen, Henning; Mester, Joachim


    There is a debate on the optimal way of monitoring training loads in elite endurance athletes especially during altitude training camps. In this case report, including nine members of the German national middle distance running team, we describe a practical approach to monitor the psychobiological stress markers during 21 days of altitude training (~2100 m above sea-level) to estimate the training load and to control muscle damage, fatigue, and/or chronic overreaching. Daily examination included: oxygen saturation of hemoglobin, resting heart rate, body mass, body and sleep perception, capillary blood concentration of creatine kinase. Every other day, venous serum concentration of blood urea nitrogen, venous blood concentration of hemoglobin, hematocrit, red and white blood cell were measured. If two or more of the above-mentioned stress markers were beyond or beneath the athlete's normal individual range, the training load of the subsequent training session was reduced. Running speed at 3 mmol L(-1) blood lactate (V3) improved and no athlete showed any signs of underperformance, chronic muscle damage, decrease body and sleep perception as well as activated inflammatory process during the 21 days. The dense screening of biomarkers in the present case study may stimulate further research to identify candidate markers for load monitoring in elite middle- and long-distance runners during a training camp at altitude. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  10. Enantiomer profiling of high loads of amphetamine and MDMA in communal sewage: a Dutch perspective

    NARCIS (Netherlands)

    Emke, E.; Evans, S; Kasprzyk-Hordern, B.; de Voogt, P.


    Analysis of wastewater with an aim of community-wide estimation of drug use is a new and very promising approach. Until now it was very difficult to determine if mass loads of studied drugs were actually originating from consumption, or disposal of unused drugs or production waste. This uncertainty

  11. Thermal shock behaviour of tungsten after high flux H-plasma loading

    NARCIS (Netherlands)

    Wirtz, M.; Linke, J.; Pintsuk, G.; De Temmerman, G.; Wright, G. M.


    Previous studies have shown that transient thermal shock loads induce crack networks on tungsten samples especially at low base temperatures. To achieve test conditions which are more relevant for the performance of tungsten-armoured plasma facing components in next step thermonuclear fusion devices

  12. Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films (United States)

    Jeffrey Luo; Huibin Chang; Amir A. Bakhtiary Davijani; H. Clive Liu; Po-Hsiang Wang; Robert J. Moon; Satish Kumar


    Polyacrylonitrile-co-methacrylic acid (PAN-co-MAA) and cellulose nanocrystal (CNC) composite films were produced with up to 40 wt% CNC loading through the solution casting method. The rheological properties of the solution/suspensions and the structural, optical, thermal, and mechanical properties of the resulting films were investigated. The viscosity of the composite...

  13. The influence of schizotypal traits on attention under high perceptual load. (United States)

    Stotesbury, Hanne; Gaigg, Sebastian B; Kirhan, Saim; Haenschel, Corinna


    Schizophrenia Spectrum Disorders (SSD) are known to be characterised by abnormalities in attentional processes, but there are inconsistencies in the literature that remain unresolved. This article considers whether perceptual resource limitations play a role in moderating attentional abnormalities in SSD. According to perceptual load theory, perceptual resource limitations can lead to attenuated or superior performance on dual-task paradigms depending on whether participants are required to process, or attempt to ignore, secondary stimuli. If SSD is associated with perceptual resource limitations, and if it represents the extreme end of an otherwise normally distributed neuropsychological phenotype, schizotypal traits in the general population should lead to disproportionate performance costs on dual-task paradigms as a function of the perceptual task demands. To test this prediction, schizotypal traits were quantified via the Schizotypal Personality Questionnaire (SPQ) in 74 healthy volunteers, who also completed a dual-task signal detection paradigm that required participants to detect central and peripheral stimuli across conditions that varied in the overall number of stimuli presented. The results confirmed decreasing performance as the perceptual load of the task increased. More importantly, significant correlations between SPQ scores and task performance confirmed that increased schizotypal traits, particularly in the cognitive-perceptual domain, are associated with greater performance decrements under increasing perceptual load. These results confirm that attentional difficulties associated with SSD extend sub-clinically into the general population and suggest that cognitive-perceptual schizotypal traits may represent a risk factor for difficulties in the regulation of attention under increasing perceptual load.

  14. Association between high nasopharyngeal viral load and disease severity in children with human metapneumovirus infection

    NARCIS (Netherlands)

    Bosis, Samantha; Esposito, Susanna; Osterhaus, Albert D. M. E.; Tremolati, Elena; Begliatti, Enrica; Tagliabue, Claudia; Corti, Fabiola; Principi, Nicola; Niesters, Hubert G. M.

    Background: Previous studies have shown that viral genotype and viral load may play a significant role in the pathogenesis of viral infections. Objectives: The aim of this study was to evaluate these aspects of hMPV infections in children and their household contacts. Study design: Between I

  15. Response of Compacted Bentonites to Thermal and Thermo-Hydraulic Loadings at High Temperatures

    Directory of Open Access Journals (Sweden)

    Snehasis Tripathy


    Full Text Available The final disposal of high-level nuclear waste in many countries is preferred to be in deep geological repositories. Compacted bentonites are proposed for use as the buffer surrounding the waste canisters which may be subjected to both thermal and hydraulic loadings. A significant increase in the temperature is anticipated within the buffer, particularly during the early phase of the repository lifetime. In this study, several non-isothermal and non-isothermal hydraulic tests were carried on compacted MX80 bentonite. Compacted bentonite specimens (water content = 15.2%, dry density = 1.65 Mg/m3 were subjected to a temperature of either 85 or 150 °C at one end, whereas the temperature at the opposite end was maintained at 25 °C. During the non-isothermal hydraulic tests, water was supplied from the opposite end of the heat source. The temperature and relative humidity were monitored along predetermined depths of the specimens. The profiles of water content, dry density, and degree of saturation were established after termination of the tests. The test results showed that thermal gradients caused redistribution of the water content, whereas thermo-hydraulic gradients caused both redistribution and an increase in the water content within compacted bentonites, both leading to development of axial stress of various magnitudes. The applied water injection pressures (5 and 600 kPa and temperature gradients appeared to have very minimal impact on the magnitude of axial stress developed. The thickness of thermal insulation layer surrounding the testing devices was found to influence the temperature and relative humidity profiles thereby impacting the redistribution of water content within compacted bentonites. Under the influence of both the applied thermal and thermo-hydraulic gradients, the dry density of the bentonite specimens increased near the heat source, whereas it decreased at the opposite end. The test results emphasized the influence of

  16. Qualification and post-mortem characterization of tungsten mock-ups exposed to cyclic high heat flux loading

    Energy Technology Data Exchange (ETDEWEB)

    Pintsuk, G., E-mail: [Forschungszentrum Jülich GmbH, Euratom Association, D-52425 Jülich (Germany); Bobin-Vastra, I.; Constans, S. [AREVA NP PTCMI-F, Centre Technique, Fusion, F-71200 Le Creusot (France); Gavila, P. [Fusion for Energy, E-08019 Barcelona (Spain); Rödig, M. [Forschungszentrum Jülich GmbH, Euratom Association, D-52425 Jülich (Germany); Riccardi, B. [Fusion for Energy, E-08019 Barcelona (Spain)


    Highlights: • We characterize tungsten mono-block components after exposure to ITER relevant heat loads. • We qualify the manufacturing technology, i.e., hot isostatic pressing and hot radial pressing, and repair technologies. • We determine the microstructural influences, i.e., rod vs. plate material, on the damage evolution. • Needle like microstructures increase the risk of deep crack formation due to a limited fracture strength. -- Abstract: In order to evaluate the option to start the ITER operation with a full tungsten (W) divertor, high heat flux tests were performed in the electron beam facility FE200, Le Creusot, France. Thereby, in total eight small-scale and three medium-scale monoblock mock-ups produced with different manufacturing technologies and different tungsten grades were exposed to cyclic steady state heat loads. The applied power density ranges from 10 to 20 MW/m{sup 2} with a maximum of 1000 cycles at each particular loading step. Finally, on a reduced number of tiles, critical heat flux tests in the range of 30 MW/m{sup 2} were performed. Besides macroscopic and microscopic images of the loaded surface areas, detailed metallographic analyses were performed in order to characterize the occurring damages, i.e., crack formation, recrystallization, and melting. Thereby, the different joining technologies, i.e., hot radial pressing (HRP) vs. hot isostatic pressing (HIP) of tungsten to the Cu-based cooling tube, were qualified showing a higher stability and reproducibility of the HIP technology also as repair technology. Finally, the material response at the loaded top surface was found to be depending on the material grade, microstructural orientation, and recrystallization state of the material. These damages might be triggered by the application of thermal shock loads during electron beam surface scanning and not by the steady state heat load only. However, the superposition of thermal fatigue loads and thermal shocks as also expected

  17. Efficient Activation of High-Loading Sulfur by Small CNTs Confined Inside a Large CNT for High-Capacity and High-Rate Lithium-Sulfur Batteries. (United States)

    Jin, Feiying; Xiao, Suo; Lu, Lijie; Wang, Yong


    Sulfur with a high specific capacity of 1673 mAh g(-1) is yet to be used as commercial cathode for lithium batteries because of its low utilization rate and poor cycle stability. In this work, a tube-in-tube carbon structure is demonstrated to relieve the critical problems with sulfur cathode: poor electrical conductivity, dissolution of lithium polysulfides, and large volume change during cycling. A number of small carbon nanotubes (∼20 nm in diameter) and a high loading amount of 85.2 wt % sulfur are both filled completely inside a large amorphous carbon nanotube (∼200 nm in diameter). Owing to the presence of these electrically conductive, highly flexible and structurally robust small CNTs and a large CNT overlayer, sulfur material exhibits a high utilization rate and delivers a large discharge capacity of 1633 mAh g(-1) (based on the mass of sulfur) at 0.1 C, approaching its theoretical capacity (1673 mAh g(-1)). The obtained S-CNTs@CNT electrode demonstrates superior high-rate cycling performances. Large discharge capacities of ∼1146, 1121, and 954 mAh g(-1) are observed after 150 cycles at large current rates of 1, 2, and 5 C, respectively.

  18. Zirconia toughened metal matrix composites for high load lightweight structures; Zirkonoxid-verstaerkte Metall-Matrix-Verbundwerkstoffe fuer hochbelastbare Leichtbaustrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Weigelt, Christian; Aneziris, C.G.; Wenzel, C.; Berek, H.; Hasterok, M. [TU Bergakademie Freiberg (TUBAF) (DE). Inst. fuer Keramik, Glas- und Baustofftechnik (IKGB)


    The research on lightweight structures as applied for crash absorber components is associated with high requirements regarding material and processing parameters. An innovative material concept deals with the combination of austenitic stainless TRIP-steel with magnesia partially stabilised zirconia. Both, the martensitic phase transformation in metal and ceramic phase enables composite materials with advanced mechanical properties. By applying well-established ceramic processes to new powder metallurgical materials the shaping of high load but lightweight cellular structures can be developed. Filigree structures, e.g. square cell honeycombs and open cell foams have been processed. The particle reinforced materials are characterised by advanced stress, strain and energy absorption properties on compressive load. (orig.)

  19. Poly(Ethylene Glycol-Based Backbones with High Peptide Loading Capacities

    Directory of Open Access Journals (Sweden)

    Aoife O'Connor


    Full Text Available Polymer-peptide conjugates are a promising class of compounds, where polymers can be used to overcome some of the limitations associated with peptides intended for therapeutic and/or diagnostic applications. Linear polymers such as poly(ethylene glycol can be conjugated through terminal moieties and have therefore limited loading capacities. In this research, functionalised linear poly(ethylene glycols are utilised for peptide conjugation, to increase their potential loading capacities. These poly(ethylene glycol derivatives are conjugated to peptide sequences containing representative side-chain functionalised amino acids, using different conjugation chemistries, including copper-catalysed azide-alkyne cycloaddition, amide coupling and thiol-ene reactions. Conjugation of a sequence containing the RGD motif to poly(allyl glycidyl ether by the thiol-ene reaction, provided a conjugate which could be used in platelet adhesion studies.

  20. The Effect of a Non-Gaussian Random Loading on High-Cycle Fatigue of a Thermally Post-Buckled Structure (United States)

    Rizzi, Stephen A.; Behnke, marlana N.; Przekop, Adam


    High-cycle fatigue of an elastic-plastic beam structure under the combined action of thermal and high-intensity non-Gaussian acoustic loadings is considered. Such loadings can be highly damaging when snap-through motion occurs between thermally post-buckled equilibria. The simulated non-Gaussian loadings investigated have a range of skewness and kurtosis typical of turbulent boundary layer pressure fluctuations in the vicinity of forward facing steps. Further, the duration and steadiness of high excursion peaks is comparable to that found in such turbulent boundary layer data. Response and fatigue life estimates are found to be insensitive to the loading distribution, with the minor exception of cases involving plastic deformation. In contrast, the fatigue life estimate was found to be highly affected by a different type of non-Gaussian loading having bursts of high excursion peaks.

  1. Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. (United States)

    Liu, Zhi-Hua; Chen, Hong-Zhang


    Simultaneous saccharification and co-fermentation (SSCF) of steam exploded corn stover (SECS) was investigated at 5-25% solid loadings compared with other conversion processes. SECS was washed with a 15-fold excess of deionized water to remove inhibitors of hydrolysis and fermentation. The concentration, yield, and productivity of ethanol was 34.3g/L, 90.0%, 2.61g/L/h in the co-fermentation of 60g/L glucose and 10g/L xylose by Saccharomyces cerevisiae IPE003. Ethanol concentration and productivity increased with increasing solid loading while ethanol yield decreased in all conversion processes of SECS. Glucan and xylan conversion was 82.0% and 82.1% in SSCF at 20% solid loading, respectively, while the concentration, yield and productivity of ethanol was 60.8g/L, 75.3% and 0.63g/L/h. The feeding strategy of SECS addition within 24h improved the SSCF performance. Therefore, SSCF increased ethanol productivity and was an effective conversion process for ethanol production at high solid loading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2084568; Baglin, Vincent; Schaefers, Franz


    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic...

  3. Analysis of dayside magnetosphere of Mars: High mass loading case as observed on MAVEN spacecraft (United States)

    Vaisberg, O. L.; Ermakov, V. N.; Shuvalov, S. D.; Zelenyi, L. M.; Znobishchev, A. S.; Dubinin, E. M.


    MAVEN spacecraft provides new opportunities for analysis of Martian environment and physical process in near-Mars space. One of interesting regions of near-Mars space is the Martian magnetosphere that is formed from mass-loaded magnetic flux tubes. There is quite detailed knowledge of the night-side magnetosphere of Mars, however the number of publications on the dayside magnetosphere are quite limited. We analyze the plasma and magnetic structure and properties of Martian magnetosphere at strong mass-loading conditions as observed on MAVEN at Mars at the solar-zenith angle of ∼80° on January 4, 2015. This strong mass loading of upstream flow was apparently associated with plume ions ejected from upper part of Martian magnetosphere by the solar wind motional electric field. The magnetosphere is defined by two current layers separating it from the magnetosheath at higher altitudes and from ionosphere plasma at lower altitudes. It is characterized by dominance of planetary ions which number density increases by two orders of magnitude from upper boundary to lower one. There is approximate equipartition between magnetic, ion thermal and kinetic energies through magnetosphere. The data suggest that the boundary of the magnetosphere is in pressure equilibrium with magnetosheath flow. The total energy of ion flow above (in the magnetosheath) and below (in the region of accelerated ionospheric ions) magnetosphere exceeds the magnetic energy. The upper boundary of magnetosphere was located at the place where the ratio of heavy ions and protons number densities reached ∼0.4. Within magnetosphere this ratio continued to rise and increased by about 2 orders of magnitude at the inner boundary of magnetosphere. The heavy ion number density profile within magnetosphere suggests that it was formed by the solar wind magnetic flux tubes that reached Mars in a narrow region near the subsolar point, and then drifted around Mars to the terminator region, mass-loaded by UV

  4. Initial Investigation of Wave Impact Load Transfer Through Shock Isolation Seats in High Speed Craft (United States)


    NSWCCD-83-TM-2013/35 14 inch non-flotation foam cushion (i.e., unlike those used in the airline industry) was used in the test. Figures 12...can occur [9, 10, 11, 12, 15, and 16]. Relative motions can be minimized by increased foam density and/or reduced foam thickness [17]. Different...layers of viscoelastic and loading-rate-sensitive materials can be used to achieve these goals [12, 13]. Dynamic analyses and/or testing should be

  5. Success and High Predictability of Intraorally Welded Titanium Bar in the Immediate Loading Implants


    Vaniel Fogli; Michele Camerini; Dorina Lauritano; Francesco Carinci


    The implants failure may be caused by micromotion and stress exerted on implants during the phase of bone healing. This concept is especially true in case of implants placed in atrophic ridges. So the primary stabilization and fixation of implants are an important goal that can also allow immediate loading and oral rehabilitation on the same day of surgery. This goal may be achieved thanks to the technique of welding titanium bars on implant abutments. In fact, the procedure can be performed ...

  6. Hierarchically porous carbon derived from banana peel for lithium sulfur battery with high areal and gravimetric sulfur loading (United States)

    Li, Fanqun; Qin, Furong; Zhang, Kai; Fang, Jing; Lai, Yanqing; Li, Jie


    Facile and sustainable route is developed to convert biomass into hierarchically porous carbon matrix cooperating with highly conductive graphene. By tailoring the porosity of the carbon matrix to promote fast mass transfer and cooperating highly conductive interconnected graphene frameworks to accelerate the electron transport, the carbon sulfur cathodes simultaneously achieve high areal and gravimetric sulfur loading/content (6 mg cm-2/67 wt%) and deliver outstanding electrochemical performance. After 100 cyclic discharge-charge test at the current density of 0.2 C, the reversible capacity maintains at 707 mA h g-1.

  7. Human genetic studies in areas of high natural radiation. VIII. Genetic load not related to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Freire-Maia, A.; Krieger, H. (Faculdade de Ciencias Medicas e Biologicas, Botucatu, Sao Paulo (Brazil))


    The genetic load disclosed by inbreeding has been analyzed in a multiple regression model for a population involving several localities in the state of Espirito Santo, Brazil. The inbreeding load has been estimated for number of pregnancies, abortions, stillbirths, children born alive, anomalies in general, sex ratio, infant mortality, post-infant mortality, and sterility and infertility of the couple. There was no evidence of either maternal or paternal inbreeding effects on the variables analyzed. The effect of inbreeding of the zygote was significant only for anomalies in general (B = 2.29 +/- 0.45) and infant mortality (B = 3.19 +/- 1.39). The latter result must be accepted with caution because of the many environmental causes affecting infant mortality. The B/A ratio suggested a predominantly mutational load for anomalies in general (B/A = 25), but with respect to infant mortality (B/A = 6), the ratio is regarded as an underestimate because of the environmental contribution to A and therefore not supportive of the segregational interpretation.

  8. Estimation of aerosol mass scattering efficiencies under high mass loading: case study for the megacity of Shanghai, China. (United States)

    Cheng, Zhen; Jiang, Jingkun; Chen, Changhong; Gao, Jian; Wang, Shuxiao; Watson, John G; Wang, Hongli; Deng, Jianguo; Wang, Buying; Zhou, Min; Chow, Judith C; Pitchford, Marc L; Hao, Jiming


    Aerosol mass scattering efficiency (MSE), used for the scattering coefficient apportionment of aerosol species, is often studied under the condition of low aerosol mass loading in developed countries. Severe pollution episodes with high particle concentration frequently happened in eastern urban China in recent years. Based on synchronous measurement of aerosol physical, chemical, and optical properties at the megacity of Shanghai for two months during autumn 2012, we studied MSE characteristics at high aerosol mass loading. Their relationships with mass concentrations and size distributions were examined. It was found that MSE values from the original US IMPROVE algorithm could not represent the actual aerosol characteristics in eastern China. It results in an underestimation of the measured ambient scattering coefficient by 36%. MSE values in Shanghai were estimated to be 3.5 ± 0.55 m(2)/g for ammonia sulfate, 4.3 ± 0.63 m(2)/g for ammonia nitrate, and 4.5 ± 0.73 m(2)/g for organic matter, respectively. MSEs for three components increased rapidly with increasing mass concentration in low aerosol mass loading, then kept at a stable level after a threshold mass concentration of 12–24 μg/m(3). During severe pollution episodes, particle growth from an initial peak diameter of 200–300 nm to a peak diameter of 500–600 nm accounts for the rapid increase in MSEs at high aerosol mass loading, that is, particle diameter becomes closer to the wavelength of visible lights. This study provides insights of aerosol scattering properties at high aerosol concentrations and implies the necessity of MSE localization for extinction apportionment, especially for the polluted regions.

  9. Preliminary study on heat load using calorimetric measurement during long-pulse high-performance discharges on EAST (United States)

    Liu, Y. K.; Hamada, N.; Hanada, K.; Gao, X.; Liu, H. Q.; Yu, Y. W.; Qian, J. P.; Yang, L.; Xu, T. J.; Jie, Y. X.; Yao, Y.; Wang, S. S.; Xu, J. C.; Yang, Z. D.; Li, G. S.; EAST Team


    Experimental Advanced Superconducting Tokamak (EAST) aims to demonstrate steady-state advanced high-performance H-mode plasmas with an ITER-like configuration, plasma control and heating schemes. The plasma-facing components in EAST are actively cooled, providing good conditions for researching long-pulse and high-energy discharges. A long-pulse high-performance plasma discharge (#59892 discharge) of up to 103 s with a core electron temperature of up to 4.5 keV was sustained with an injected energy exceeding 0.22 GJ in the 2015-2016 experimental campaign. A calorimetric measurement utilizing the temperature increment of cooling water is carried out to calculate the heat load on the strike point region of the lower divertor during long-pulse discharges in EAST. For the long-pulse and high-energy discharges, the comparison of the measurement results for the heat load measured by divertor Langmuir probes and the calorimetry diagnostic indicates that most of the heat load is delivered to the divertor panels as plasma, not radiation, and charge exchange neutrals. The ratio of the heat load on the strike point region of the lower divertor to the total injected energy is on average 42.5% per discharge with the lower single null divertor configuration. If the radiated energy loss measured by the fast bolometer diagnostic is taken into consideration, the ratio is found to be 61.6%. The experimental results and the analysis of the physics involved in these discharges are reported and discussed.

  10. The production of high load coal-water mixtures on the base of Kansk-Achinsk Coal Basin

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, Y.; Bruer, G.; Kolesnikova, S. [Research and Design Institute for Problems of Development of Kansk-Achinsk Coal Basin (KATEKNilugol), Krasnoyarsk (Russian Federation)


    The results of the {open_quotes}KATEKNIIugol{close_quotes} work on the problems of high load coal-water mixtures are given in this article. General principles of the mixture production, short characteristics of Kansk-Achinsk coals, the experimental results of the coal mixture production on a test-industrial scale, the suspension preparation on the base of coal mixtures, technical-economical indexes of tested coal pipeline variants based on Kansk-Achinsk coals are described.

  11. The determination of equivalent bearing loading for the BSMT that simulate SSME high pressure oxidizer turbopump conditions using the SHABERTH/SINDA computer programs (United States)

    Mcdonald, Gary H.


    The MSFC bearing seal material tester (BSMT) can be used to evaluate the SSME high pressure oxygen turbopump (HPOTP) bearing performance. The four HPOTP bearings have both an imposed radial and axial load. These radial and axial loads are caused by the HPOTP's shaft, main impeller, preburner impeller, turbine and by the LOX coolant flow through the bearings, respectively. These loads coupled with bearing geometry and operating speed can define bearing contact angle, contact Hertz stress, and heat generation rates. The BSMT has the capability of operating at HPOTP shaft speeds, provide proper coolant flowrates but can only apply an axial load. Due to the inability to operate the bearings in the BSMT with an applied radial load, it is important to develop an equivalency between the applied axial loads and the actual HPOTP loadings. A shaft-bearing-thermal computer code (SHABERTH/SINDA) is used to simulate the BSMT bearing-shaft geometry and thermal-fluid operating conditions.

  12. By-passing acidification limitations during the biofiltration of high formaldehyde loads via the application of ozone pulses

    Energy Technology Data Exchange (ETDEWEB)

    García-Pérez, Teresa [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico); Aizpuru, Aitor [Universidad del Mar, Puerto Ángel, Distrito de San Pedro Pochutla, Oaxaca, México C.P. 70902 (Mexico); Arriaga, Sonia, E-mail: [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP 78216 (Mexico)


    Highlights: • Ozone addition permits to treat higher formaldehyde loads than ever reported. • Ozone addition acts as an indirect in situ pH regulator, minimizing the accumulation of acid byproducts. • Mineralization of formaldehyde occurs, which has never been reported. • Low ozone levels have no negative effects on biological degradation activity. • The use of hybrid processes allows overcoming biofiltration limitations. -- Abstract: A formaldehyde airstream was treated in a biofilter for an extended period of time. During the first 133 days, the reactor was operated without ozone, whereas over the following 82 days ozone was intermittently implemented. The maximum stable elimination capacity obtained without ozone was around 57 g m{sup −3} h{sup −1}. A greater load could not be treated under these conditions, and no significant formaldehyde removal was maintained for inlet loads greater than 65 g m{sup −3} h{sup −1}; the activity of microorganisms was then inhibited by the presence of acidic byproducts, and the media acidified (pH < 4). The implementation of ozone pulses allowed a stable elimination capacity to be obtained, even at greater loads (74 g m{sup −3} h{sup −1}). The effect of ozone on the extra cellular polymeric substances detachment from the biofilm could not be confirmed due to the too low biofilter biomass content. Thus, the results suggest that ozone acted as an in situ pH regulator, preventing acidic byproducts accumulation, and allowing the treatment of high loads of formaldehyde.

  13. Hydrogen induced cracking tests of high strength steels and nickel-iron base alloys using the bolt-loaded specimen

    Energy Technology Data Exchange (ETDEWEB)

    Vigilante, G.N.; Underwood, J.H.; Crayon, D.; Tauscher, S.; Sage, T.; Troiano, E. [Army Armament RD and E Center, Watervliet, NY (United States). Benet Labs.


    Hydrogen induced cracking tests were conducted on high strength steels and nickel-iron base alloys using the constant displacement bolt-loaded compact specimen. The bolt-loaded specimen was subjected to both acid and electrochemical cell environments in order to produce hydrogen. The materials tested were A723, Maraging 200, PH 13-8 Mo, Alloy 718, Alloy 706, and A286, and ranged in yield strength from 760--1400 MPa. The effects of chemical composition, refinement, heat treatment, and strength on hydrogen induced crack growth rates and thresholds were examined. In general, all high strength steels tested exhibited similar crack growth rates and thresholds were examined. In general, all high strength steels tested exhibited similar crack growth rates and threshold levels. In comparison, the nickel-iron base alloys tested exhibited up to three orders of magnitude lower crack growth rates than the high strength steels tested. It is widely known that high strength steels and nickel base alloys exhibit different crack growth rates, in part, because of their different crystal cell structure. In the high strength steels tested, refinement and heat treatment had some effect on hydrogen induced cracking, though strength was the predominant factor influencing susceptibility to cracking. When the yield strength of one of the high strength steels tested was increased moderately, from 1130 MPa to 1275 MPa, the incubation times decreased by over two orders of magnitude, the crack growth rates increased by an order of magnitude, and the threshold stress intensity was slightly lower.

  14. An Efficient Algorithm for Congestion Control in Highly Loaded DiffServ/MPLS Networks

    Directory of Open Access Journals (Sweden)

    Srecko Krile


    Full Text Available The optimal QoS path provisioning of coexisted and aggregated traffic in networks is still demanding problem. All traffic flows in a domain are distributed among LSPs (Label Switching Path related to N service classes, but the congestion problem of concurrent flows can appear. As we know the IGP (Interior Getaway Protocol uses simple on-line routing algorithms (e.g. OSPFS, IS-IS based on shortest path methodology. In QoS end-to-end provisioning where some links may be reserved for certain traffic classes (for particular set of users it becomes insufficient technique. On other hand, constraint based explicit routing (CR based on IGP metric ensures traffic engineering (TE capabilities. The algorithm proposed in this paper may find a longer but lightly loaded path, better than the heavily loaded shortest path. LSP can be pre-computed much earlier, possibly during SLA (Service Level Agreement negotiation process.  As we need firm correlation with bandwidth management and traffic engineering (TE the initial (pro-active routing can be pre-computed in the context of all priority traffic flows (former contracted SLAs traversing the network simultaneously. It could be a very good solution for congestion avoidance and for better load-balancing purpose where links are running close to capacity. Also, such technique could be useful in inter-domain end-to-end provisioning, where bandwidth reservation has to be negotiated with neighbor ASes (Autonomous System. To be acceptable for real applications such complicated routing algorithm can be significantly improved. Algorithm was tested on the network of M core routers on the path (between edge routers and results are given for N=3 service classes. Further improvements through heuristic approach are made and results are discussed.

  15. Reactive power compensation considering high harmonics generation from internal and external nonlinear load (United States)

    Skamyin, A. N.; Belsky, A. A.


    The paper deals with reactive power compensation by means of condenser batteries with harmonic distortions in voltage and current, resulting from internal and external nonlinear load regarding the connection point shared by consumers. The paper presents the dependencies of the capacitor’s overloading factor from the required reactive power for compensating. These relations can help to determine in which capacity area of the capacitor banks its operation is ensured without overload. The paper also presents algorithm for selecting parameters of condenser batteries which leads to minimization of the capacitors overload and maximization of the network power factor.

  16. Carbohydrate Loading. (United States)

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  17. Riboflavin-containing telodendrimer nanocarriers for efficient doxorubicin delivery: High loading capacity, increased stability, and improved anticancer efficacy. (United States)

    Guo, Dandan; Shi, Changying; Wang, Xu; Wang, Lili; Zhang, Shengle; Luo, Juntao


    We have developed two linear-dendritic telodendrimers (TDs) with rational design using amphiphilic riboflavin (Rf) as building blocks for efficient doxorubicin (DOX) delivery. Micellar TD nanoparticles (NPs) are composed of a hydrophilic polyethylene glycol (PEG) shell and a Rf-containing affinitive core for DOX encapsulation. Strong DOX-Rf interactions and amphiphilic Rf structure render these nanocarriers with an ultra-high DOX loading capacity (>1/1, DOX/TD, w/w), ∼100% loading efficiency, the sustained drug release and the optimal particle sizes (20-40 nm) for efficient tumor-targeted drug delivery. These nanoformulations significantly prolonged DOX circulation time in the blood without the accelerated clearance observed after multiple injections. DOX-TDs target several types of tumors efficiently in vivo, e.g. Raji lymphoma, MDA-MB-231 breast cancer, and SKOV-3 ovarian cancer. In vivo maximum tolerated dose (MTD) of DOX was increased by 2-2.5 folds for the nanoformulations in mice relative to those of free DOX and Doxil(®). These nanoformulations significantly inhibited tumor growth and prolonged survival of mice bearing SKOV-3 ovarian cancer xenografts. In summary, Rf-containing nanoformulations with high DOX loading capacity, improved stability and efficient tumor targeting lead to superior antitumor efficacy, which merit the further development for clinical application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Results of high heat flux tests of tungsten divertor targets under plasma heat loads expected in ITER and tokamaks (review)

    Energy Technology Data Exchange (ETDEWEB)

    Budaev, V. P., E-mail: [National Research Centre Kurchatov Institute (Russian Federation)


    Heat loads on the tungsten divertor targets in the ITER and the tokamak power reactors reach ~10MW m{sup −2} in the steady state of DT discharges, increasing to ~0.6–3.5 GW m{sup −2} under disruptions and ELMs. The results of high heat flux tests (HHFTs) of tungsten under such transient plasma heat loads are reviewed in the paper. The main attention is paid to description of the surface microstructure, recrystallization, and the morphology of the cracks on the target. Effects of melting, cracking of tungsten, drop erosion of the surface, and formation of corrugated and porous layers are observed. Production of submicron-sized tungsten dust and the effects of the inhomogeneous surface of tungsten on the plasma–wall interaction are discussed. In conclusion, the necessity of further HHFTs and investigations of the durability of tungsten under high pulsed plasma loads on the ITER divertor plates, including disruptions and ELMs, is stressed.

  19. Influences of incidence angle on 2D-flow and secondary flow structure in ultra-highly loaded turbine cascade (United States)

    Tsujita, Hoshio; Yamamoto, Atsumasa


    An increase of turbine blade loading can reduce the numbers of blade and stage of gas turbines. However, an increase of blade loading makes the secondary flow much stronger because of the steep pitch-wise pressure gradient in the cascade passage, and consequently deteriorates the turbine efficiency. In this study, the computations were performed for the flow in an ultra-highly loaded turbine cascade with high turning angle in order to clarify the effects of the incidence angle on the two dimensional flow and the secondary flow in the cascade passage, which cause the profile loss and the secondary loss, respectively. The computed results showed good agreement with the experimental surface oil flow visualizations and the blade surface static pressure at mid-span of the blade. The profile loss was strongly increased by the increase of incidence angle especially in the positive range. Moreover, the positive incidences not only strengthened the horseshoe vortex and the passage vortex but also induced a new vortex on the end-wall. Moreover, the newly formed vortex influenced the formation of the pressure side leg of horseshoe vortex.

  20. A study on the strength of an armour-grade aluminum under high strain-rate loading (United States)

    Appleby-Thomas, G. J.; Hazell, P. J.


    The aluminum alloy 5083 in tempers such as H32 and H131 is an established light-weight armour material. While its dynamic response under high strain-rates has been investigated elsewhere, little account of the effect of material orientation has been made. In addition, little information on its strength under such loadings is available in the literature. Here, both the longitudinal and lateral components of stress have been measured using embedded manganin stress gauges during plate-impact experiments on samples with the rolling direction aligned both orthogonal and parallel to the impact axis. The Hugoniot elastic limit, spall, and shear strengths were investigated for incident pressures in the range 1-8 GPa, providing an insight into the response of this alloy under shock loading. Further, the time dependence of lateral stress behind the shock front was investigated to give an indication of material response.

  1. High pressure, energy, and impulse loading of the wall in a 1-GJ Laboratory Microfusion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Harrach, R.J.


    A proposed Laboratory Microfusion Facility (LMF) must be able to withstand repeated, low-repetition-rate fusion explosions at the 1-GJ (one-quarter ton) yield level. The energy release will occur at the center of a chamber only a few meters in radius, subjecting the interior or first wall to severe levels of temperature, pressure, and impulse. We show by theory and computation that the wall loading can be ameliorated by interposing a spherical shell of low-Z material between the fuel and the wall. This sacrificial shield converts the source energy components that are most damaging to the wall (soft x-rays and fast ions) to more benign plasma kinetic energy from the vaporized shield, and stretches the time duration over which this energy is delivered to the wall from nanoseconds to microseconds. Numerical calculations emphasize thin, volleyball-sized plastic shields, and much thicker ones of frozen nitrogen. Wall shielding criteria of small (or no) amount of surface ablation, low impulse and pressure loading, minimal shrapnel danger, small expense, and convenience in handling all favor the thin plastic shields. 7 refs., 4 figs.

  2. High-fidelity simulations of blast loadings in urban environments using an overset meshing strategy (United States)

    Wang, X.; Remotigue, M.; Arnoldus, Q.; Janus, M.; Luke, E.; Thompson, D.; Weed, R.; Bessette, G.


    Detailed blast propagation and evolution through multiple structures representing an urban environment were simulated using the code Loci/BLAST, which employs an overset meshing strategy. The use of overset meshes simplifies mesh generation by allowing meshes for individual component geometries to be generated independently. Detailed blast propagation and evolution through multiple structures, wave reflection and interaction between structures, and blast loadings on structures were simulated and analyzed. Predicted results showed good agreement with experimental data generated by the US Army Engineer Research and Development Center. Loci/BLAST results were also found to compare favorably to simulations obtained using the Second-Order Hydrodynamic Automatic Mesh Refinement Code (SHAMRC). The results obtained demonstrated that blast reflections in an urban setting significantly increased the blast loads on adjacent buildings. Correlations of computational results with experimental data yielded valuable insights into the physics of blast propagation, reflection, and interaction under an urban setting and verified the use of Loci/BLAST as a viable tool for urban blast analysis.

  3. Effectiveness of eugenol sedation to reduce the metabolic rates of cool and warm water fish at high loading densities (United States)

    Cupp, Aaron R.; Hartleb, Christopher F.; Fredricks, Kim T.; Gaikowski, Mark P.


    Effects of eugenol (AQUI-S®20E, 10% active eugenol) sedation on cool water, yellow perch Perca flavescens (Mitchill), and warm water, Nile tilapia Oreochromis niloticus L. fish metabolic rates were assessed. Both species were exposed to 0, 10, 20 and 30 mg L−1 eugenol using static respirometry. In 17°C water and loading densities of 60, 120 and 240 g L−1, yellow perch controls (0 mg L−1 eugenol) had metabolic rates of 329.6–400.0 mg O2 kg−1 h−1, while yellow perch exposed to 20 and 30 mg L−1 eugenol had significantly reduced metabolic rates of 258.4–325.6 and 189.1–271.0 mg O2 kg−1 h−1 respectively. Nile tilapia exposed to 30 mg L−1 eugenol had a significantly reduced metabolic rate (424.5 ± 42.3 mg O2 kg−1 h−1) relative to the 0 mg L−1 eugenol control (546.6 ± 53.5 mg O2 kg−1 h−1) at a loading density of 120 g L−1 in 22°C water. No significant differences in metabolic rates for Nile tilapia were found at 240 or 360 g L−1 loading densities when exposed to eugenol. Results suggest that eugenol sedation may benefit yellow perch welfare at high densities (e.g. live transport) due to a reduction in metabolic rates, while further research is needed to assess the benefits of eugenol sedation on Nile tilapia at high loading densities.

  4. Effects of High-Humidity Aging on Platinum, Palladium, and Gold Loaded Tin Oxide—Volatile Organic Compound Sensors

    Directory of Open Access Journals (Sweden)

    Maiko Nishibori


    Full Text Available This study is an investigation of high-humidity aging effects on the total volatile organic compound (T–VOC gas-sensing properties of platinum, palladium, and gold-loaded tin oxide (Pt,Pd,Au/SnO2 thick films. The sensor responses of the high-humidity aged Pt,Pd,Au/SnO2, a non-aged Pt,Pd,Au/SnO2, and a high-humidity aged Pt/SnO2 to T–VOC test gas have been measured. The high-humidity aging is an effective treatment for resistance to humidity change for the Pt,Pd,Au/SnO2 but not effective for the Pt/SnO2. The mechanism of the high-humidity aging effects is discussed based on the change of surface state of the SnO2 particles.

  5. Inhibition of microbial fuel cell operation for municipal wastewater treatment by impact loads of free ammonia in bench- and 45L-scale. (United States)

    Hiegemann, Heinz; Lübken, Manfred; Schulte, Patrick; Schmelz, Karl-Georg; Gredigk-Hoffmann, Sylvia; Wichern, Marc


    A 45-liter microbial fuel cell (MFC) system was integrated into a full-scale wastewater treatment plant (WWTP). The system was operated under practical conditions with supernatant of a pre-thickener for 50days in order to identify, whether higher power output and energy recovery is possible compared to the use of primary clarifier effluent, as used in a previous study. The higher COD (chemical oxygen demand) loading rates of supernatant neither increased power densities, nor energy recovery, but impact loads of total ammonia nitrogen (TAN) in concentrations >800mg/L (free ammonia nitrogen (FAN)>40mg/L) led to an instant collapse of power output and nutrient removal, which was reversed when ammonia concentrations decreased. Investigations in lab-scale under defined conditions verified that the inhibition of the exoelectrogenic biofilm is in fact caused by high levels of FAN. Here, COD removal, power output and energy recovery constantly decreased, when FAN-concentrations were increased above 64mg/L. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. High-power closed-cycle 4He cryostat with top-loading sample exchange (United States)

    Piegsa, F. M.; van den Brandt, B.; Kirch, K.


    We report on the development of a versatile cryogen-free laboratory cryostat based upon a commercial pulse tube cryocooler. It provides enough cooling power for continuous recondensation of circulating 4He gas at a condensation pressure of approximately 250 mbar. Moreover, the cryostat allows for exchange of different cryostat-inserts as well as fast and easy ;wet; top-loading of samples directly into the 1 K pot with a turn-over time of less than 75 min. Starting from room temperature and using a 4He cryostat-insert, a base temperature of 1.0 K is reached within approximately seven hours and a cooling power of 250 mW is established at 1.24 K.

  7. Fabry-Perot cavity based on air bubble for high sensitivity lateral load and strain measurements (United States)

    Novais, Susana; Ferreira, Marta S.; Pinto, João. L.


    A Fabry-Perot air bubble microcavity fabricated between a section of single mode fiber and a multimode fiber is proposed. The study of the microcavities growth with the number of applied arcs is performed. The sensors are tested for lateral load and strain, where sensitivities of 0.32 nm/N and 2.11 nm/N and of 4.49 pm/μɛ and 9.12 pm/μɛ are obtained for the 47 μm and 161 μm long cavities, respectively. The way of manufacturing using a standard fusion splicer and given that no oils or etching solutions are involved, emerges as an alternative to the previou