WorldWideScience

Sample records for highly knotted dna

  1. Production of highly knotted DNA by means of cosmid circularization inside phage capsids

    Directory of Open Access Journals (Sweden)

    Trigueros Sonia

    2007-12-01

    Full Text Available Abstract Background The formation of DNA knots is common during biological transactions. Yet, functional implications of knotted DNA are not fully understood. Moreover, potential applications of DNA molecules condensed by means of knotting remain to be explored. A convenient method to produce abundant highly knotted DNA would be highly valuable for these studies. Results We had previously shown that circularization of the 11.2 kb linear DNA of phage P4 inside its viral capsid generates complex knots by the effect of confinement. We demonstrate here that this mechanism is not restricted to the viral genome. We constructed DNA cosmids as small as 5 kb and introduced them inside P4 capsids. Such cosmids were then recovered as a complex mixture of highly knotted DNA circles. Over 250 μg of knotted cosmid were typically obtained from 1 liter of bacterial culture. Conclusion With this biological system, DNA molecules of varying length and sequence can be shaped into very complex and heterogeneous knotted forms. These molecules can be produced in preparative amounts suitable for systematic studies and applications.

  2. DNA Knots: Theory and Experiments

    Science.gov (United States)

    Sumners, D. W.

    Cellular DNA is a long, thread-like molecule with remarkably complex topology. Enzymes that manipulate the geometry and topology of cellular DNA perform many vital cellular processes (including segregation of daughter chromosomes, gene regulation, DNA repair, and generation of antibody diversity). Some enzymes pass DNA through itself via enzyme-bridged transient breaks in the DNA; other enzymes break the DNA apart and reconnect it to different ends. In the topological approach to enzymology, circular DNA is incubated with an enzyme, producing an enzyme signature in the form of DNA knots and links. By observing the changes in DNA geometry (supercoiling) and topology (knotting and linking) due to enzyme action, the enzyme binding and mechanism can often be characterized. This paper will discuss some personal research history, and the tangle model for the analysis of site-specific recombination experiments on circular DNA.

  3. Statics and dynamics of DNA knotting

    Science.gov (United States)

    Orlandini, Enzo

    2018-02-01

    Knots and entanglement in polymers and biopolymers such as DNA and proteins constitute a timely topic that spans various scientific disciplines ranging from physics to chemistry, biology and mathematics. Although in the past many advancements have been made in understanding the equilibrium knotting probability and knot complexity of long polymer chains in solutions, many questions have been addressed in recent years by both experimental and theoretical means—for instance, how the knotting probability depends on the quality of the solvent, the elastic properties of the molecule and its degree of confinement. How knots form, evolve and eventually disappear in a fluctuating chain. Are the equilibrium and non-equilibrium properties of knotted molecules affected by the knot swelling/shrinking dynamics? Moreover, thanks to the great advance in nanotechnology and micromanipulation techniques, nowadays knots can be ‘manually’ tied in a single DNA molecule, followed during their motion along the chains, forced to pass through nanopores, or stretched by external forces or elongational flows. All these experimental approaches allow access to new information on the interplay of topology and polymer physics, and this has opened new perspectives in the field. Here, we provide an overview of the current knowledge of this topic, stressing the main results obtained, including the recent developments in experimental and computational approaches. Since almost all experiments on knotting involve DNA, the review will be mainly focused on the topological properties of this fascinating and biologically relevant molecule.

  4. Motion of Knots in DNA Stretched by Elongational Fields

    Science.gov (United States)

    Klotz, Alexander R.; Soh, Beatrice W.; Doyle, Patrick S.

    2018-05-01

    Knots in DNA occur in biological systems, serve as a model system for polymer entanglement, and affect the efficacy of modern genomics technologies. We study the motion of complex knots in DNA by stretching molecules with a divergent electric field that provides an elongational force. We demonstrate that the motion of knots is nonisotropic and driven towards the closest end of the molecule. We show for the first time experimentally that knots can go from a mobile to a jammed state by varying an applied strain rate, and that this jamming is reversible. We measure the mobility of knots as a function of strain rate, demonstrating the conditions under which knots can be driven towards the ends of the molecule and untied.

  5. Knotting dynamics of DNA chains of different length confined in nanochannels

    International Nuclear Information System (INIS)

    Suma, Antonio; Micheletti, Cristian; Orlandini, Enzo

    2015-01-01

    Langevin dynamics simulations are used to characterize the typical mechanisms governing the spontaneous tying, untying and the dynamical evolution of knots in coarse-grained models of DNA chains confined in nanochannels. In particular we focus on how these mechanisms depend on the chain contour length, L c , at a fixed channel width D = 56 nm corresponding to the onset of the Odijk scaling regime where chain backfoldings and hence knots are disfavoured but not suppressed altogether. We find that the lifetime of knots grows significantly with L c , while that of unknots varies to a lesser extent. The underlying kinetic mechanisms are clarified by analysing the evolution of the knot position along the chain. At the considered confinement, in fact, knots are typically tied by local backfoldings of the chain termini where they are eventually untied after a stochastic motion along the chain. Consequently, the lifetime of unknots is mostly controlled by backfoldings events at the chain ends, which is largely independent of L c . The lifetime of knots, instead, increases significantly with L c because knots can, on average, travel farther along the chain before being untied. The observed interplay of knots and unknots lifetimes underpins the growth of the equilibrium knotting probability of longer and longer chains at fixed channel confinement. (paper)

  6. Free-energy calculations for semi-flexible macromolecules: Applications to DNA knotting and looping

    International Nuclear Information System (INIS)

    Giovan, Stefan M.; Scharein, Robert G.; Hanke, Andreas; Levene, Stephen D.

    2014-01-01

    We present a method to obtain numerically accurate values of configurational free energies of semiflexible macromolecular systems, based on the technique of thermodynamic integration combined with normal-mode analysis of a reference system subject to harmonic constraints. Compared with previous free-energy calculations that depend on a reference state, our approach introduces two innovations, namely, the use of internal coordinates to constrain the reference states and the ability to freely select these reference states. As a consequence, it is possible to explore systems that undergo substantially larger fluctuations than those considered in previous calculations, including semiflexible biopolymers having arbitrary ratios of contour length L to persistence length P. To validate the method, high accuracy is demonstrated for free energies of prime DNA knots with L/P = 20 and L/P = 40, corresponding to DNA lengths of 3000 and 6000 base pairs, respectively. We then apply the method to study the free-energy landscape for a model of a synaptic nucleoprotein complex containing a pair of looped domains, revealing a bifurcation in the location of optimal synapse (crossover) sites. This transition is relevant to target-site selection by DNA-binding proteins that occupy multiple DNA sites separated by large linear distances along the genome, a problem that arises naturally in gene regulation, DNA recombination, and the action of type-II topoisomerases

  7. Free-energy calculations for semi-flexible macromolecules: Applications to DNA knotting and looping

    Energy Technology Data Exchange (ETDEWEB)

    Giovan, Stefan M. [Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083 (United States); Scharein, Robert G. [Hypnagogic Software, Vancouver, British Columbia V6K 1V6 (Canada); Hanke, Andreas [Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, Texas 78520 (United States); Levene, Stephen D., E-mail: sdlevene@utdallas.edu [Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083 (United States); Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75083 (United States); Department of Physics, University of Texas at Dallas, Richardson, Texas 75083 (United States)

    2014-11-07

    We present a method to obtain numerically accurate values of configurational free energies of semiflexible macromolecular systems, based on the technique of thermodynamic integration combined with normal-mode analysis of a reference system subject to harmonic constraints. Compared with previous free-energy calculations that depend on a reference state, our approach introduces two innovations, namely, the use of internal coordinates to constrain the reference states and the ability to freely select these reference states. As a consequence, it is possible to explore systems that undergo substantially larger fluctuations than those considered in previous calculations, including semiflexible biopolymers having arbitrary ratios of contour length L to persistence length P. To validate the method, high accuracy is demonstrated for free energies of prime DNA knots with L/P = 20 and L/P = 40, corresponding to DNA lengths of 3000 and 6000 base pairs, respectively. We then apply the method to study the free-energy landscape for a model of a synaptic nucleoprotein complex containing a pair of looped domains, revealing a bifurcation in the location of optimal synapse (crossover) sites. This transition is relevant to target-site selection by DNA-binding proteins that occupy multiple DNA sites separated by large linear distances along the genome, a problem that arises naturally in gene regulation, DNA recombination, and the action of type-II topoisomerases.

  8. Knot soliton in DNA and geometric structure of its free-energy density.

    Science.gov (United States)

    Wang, Ying; Shi, Xuguang

    2018-03-01

    In general, the geometric structure of DNA is characterized using an elastic rod model. The Landau model provides us a new theory to study the geometric structure of DNA. By using the decomposition of the arc unit in the helical axis of DNA, we find that the free-energy density of DNA is similar to the free-energy density of a two-condensate superconductor. By using the φ-mapping topological current theory, the torus knot soliton hidden in DNA is demonstrated. We show the relation between the geometric structure and free-energy density of DNA and the Frenet equations in differential geometry theory are considered. Therefore, the free-energy density of DNA can be expressed by the curvature and torsion of the helical axis.

  9. Knots: attractive places with high path tortuosity in mouse open field exploration.

    Directory of Open Access Journals (Sweden)

    Anna Dvorkin

    2010-01-01

    Full Text Available When introduced into a novel environment, mammals establish in it a preferred place marked by the highest number of visits and highest cumulative time spent in it. Examination of exploratory behavior in reference to this "home base" highlights important features of its organization. It might therefore be fruitful to search for other types of marked places in mouse exploratory behavior and examine their influence on overall behavior.Examination of path curvatures of mice exploring a large empty arena revealed the presence of circumscribed locales marked by the performance of tortuous paths full of twists and turns. We term these places knots, and the behavior performed in them-knot-scribbling. There is typically no more than one knot per session; it has distinct boundaries and it is maintained both within and across sessions. Knots are mostly situated in the place of introduction into the arena, here away from walls. Knots are not characterized by the features of a home base, except for a high speed during inbound and a low speed during outbound paths. The establishment of knots is enhanced by injecting the mouse with saline and placing it in an exposed portion of the arena, suggesting that stress and the arousal associated with it consolidate a long-term contingency between a particular locale and knot-scribbling.In an environment devoid of proximal cues mice mark a locale associated with arousal by twisting and turning in it. This creates a self-generated, often centrally located landmark. The tortuosity of the path traced during the behavior implies almost concurrent multiple views of the environment. Knot-scribbling could therefore function as a way to obtain an overview of the entire environment, allowing re-calibration of the mouse's locale map and compass directions. The rich vestibular input generated by scribbling could improve the interpretation of the visual scene.

  10. DNA sequences from two SSRs (CIR316 and MUCS088) linked to root-knot nematode resistance genes from diverse cottons (Gossypium spp).

    Science.gov (United States)

    We investigated DNA sequencing information from alleles (DNA amplified fragments) of two previously reported SSR markers (CIR316 and MUCS088) linked to root-knot nematode (RKN) resistance genes. Markers based on electrophoretic differences, including RFLPs, AFLPs and SSRs can sometimes mask underlyi...

  11. Examining the High-energy Radiation Mechanisms of Knots and Hotspots in Active Galactic Nucleus Jets

    Science.gov (United States)

    Zhang, Jin; Du, Shen-shi; Guo, Sheng-Chu; Zhang, Hai-Ming; Chen, Liang; Liang, En-Wei; Zhang, Shuang-Nan

    2018-05-01

    We compile the radio–optical–X-ray spectral energy distributions (SEDs) of 65 knots and 29 hotspots in 41 active galactic nucleus jets to examine their high-energy radiation mechanisms. Their SEDs can be fitted with the single-zone leptonic models, except for the hotspot of Pictor A and six knots of 3C 273. The X-ray emission of 1 hotspot and 22 knots is well explained as synchrotron radiation under the equipartition condition; they usually have lower X-ray and radio luminosities than the others, which may be due to a lower beaming factor. An inverse Compton (IC) process is involved for explaining the X-ray emission of the other SEDs. Without considering the equipartition condition, their X-ray emission can be attributed to the synchrotron-self-Compton process, but the derived jet powers (P jet) are not correlated with L k and most of them are larger than L k, with more than three orders of magnitude, where L k is the jet kinetic power estimated with their radio emission. Under the equipartition condition, the X-ray emission is well interpreted with the IC process for the cosmic microwave background photons (IC/CMB). In this scenario, the derived P jet of knots and hotspots are correlated with and comparable to L k. These results suggest that the IC/CMB model may be a promising interpretation of the X-ray emission. In addition, a tentative knot–hotspot sequence in the synchrotron peak-energy–peak-luminosity plane is observed, similar to the blazar sequence, which may be attributed to the different cooling mechanisms of electrons.

  12. DNA binding sites recognised in vitro by a knotted class 1 homeodomain protein encoded by the hooded gene, k, in barley (Hordeum vulgare)

    DEFF Research Database (Denmark)

    Krusell, L; Rasmussen, I; Gausing, K

    1997-01-01

    of knotted1 from maize was isolated from barley seedlings and expressed as a maltose binding protein fusion in E. coli. The purified HvH21-fusion protein selected DNA fragments with 1-3 copies of the sequence TGAC. Gel shift experiments showed that the TGAC element was required for binding and the results...

  13. Characteristic length of the knotting probability revisited

    International Nuclear Information System (INIS)

    Uehara, Erica; Deguchi, Tetsuo

    2015-01-01

    We present a self-avoiding polygon (SAP) model for circular DNA in which the radius of impermeable cylindrical segments corresponds to the screening length of double-stranded DNA surrounded by counter ions. For the model we evaluate the probability for a generated SAP with N segments having a given knot K through simulation. We call it the knotting probability of a knot K with N segments for the SAP model. We show that when N is large the most significant factor in the knotting probability is given by the exponentially decaying part exp(−N/N K ), where the estimates of parameter N K are consistent with the same value for all the different knots we investigated. We thus call it the characteristic length of the knotting probability. We give formulae expressing the characteristic length as a function of the cylindrical radius r ex , i.e. the screening length of double-stranded DNA. (paper)

  14. A Midsummer Knot's Dream

    Science.gov (United States)

    Henrich, A.; MacNaughton, N.; Narayan, S.; Pechenik, O.; Silversmith, R.; Townsend, J.

    2011-01-01

    We introduce playing games on the shadows of knots and demonstrate two novel games, namely, "To Knot or Not to Knot" and "Much Ado about Knotting." We discuss winning strategies for these games on certain families of knot shadows and go on to suggest variations of these games for further study.

  15. The Knot Spectrum of Confined Random Equilateral Polygons

    Directory of Open Access Journals (Sweden)

    Diao Y.

    2014-01-01

    Full Text Available It is well known that genomic materials (long DNA chains of living organisms are often packed compactly under extreme confining conditions using macromolecular self-assembly processes but the general DNA packing mechanism remains an unsolved problem. It has been proposed that the topology of the packed DNA may be used to study the DNA packing mechanism. For example, in the case of (mutant bacteriophage P4, DNA molecules packed inside the bacteriophage head are considered to be circular since the two sticky ends of the DNA are close to each other. The DNAs extracted from the capsid without separating the two ends can thus preserve the topology of the (circular DNAs. It turns out that the circular DNAs extracted from bacteriophage P4 are non-trivially knotted with very high probability and with a bias toward chiral knots. In order to study this problem using a systematic approach based on mathematical modeling, one needs to introduce a DNA packing model under extreme volume confinement condition and test whether such a model can produce the kind of knot spectrum observed in the experiments. In this paper we introduce and study a model of equilateral random polygons con_ned in a sphere. This model is not meant to generate polygons that model DNA packed in a virus head directly. Instead, the average topological characteristics of this model may serve as benchmark data for totally randomly packed circular DNAs. The difference between the biologically observed topological characteristics and our benchmark data might reveal the bias of DNA packed in the viral capsids and possibly lead to a better understanding of the DNA packing mechanism, at least for the bacteriophage DNA. The purpose of this paper is to provide information about the knot spectrum of equilateral random polygons under such a spherical confinement with length and confinement ratios in a range comparable to circular DNAs packed inside bacteriophage heads.

  16. Molecular knots in biology and chemistry

    International Nuclear Information System (INIS)

    Lim, Nicole C H; Jackson, Sophie E

    2015-01-01

    Knots and entanglements are ubiquitous. Beyond their aesthetic appeal, these fascinating topological entities can be either useful or cumbersome. In recent decades, the importance and prevalence of molecular knots have been increasingly recognised by scientists from different disciplines. In this review, we provide an overview on the various molecular knots found in naturally occurring biological systems (DNA, RNA and proteins), and those created by synthetic chemists. We discuss the current knowledge in these fields, including recent developments in experimental and, in some cases, computational studies which are beginning to shed light into the complex interplay between the structure, formation and properties of these topologically intricate molecules. (paper)

  17. Handbook of knot theory

    CERN Document Server

    Menasco, William

    2005-01-01

    This book is a survey of current topics in the mathematical theory of knots. For a mathematician, a knot is a closed loop in 3-dimensional space: imagine knotting an extension cord and then closing it up by inserting its plug into its outlet. Knot theory is of central importance in pure and applied mathematics, as it stands at a crossroads of topology, combinatorics, algebra, mathematical physics and biochemistry.* Survey of mathematical knot theory* Articles by leading world authorities* Clear exposition, not over-technical* Accessible to readers with undergraduate background in mathematics

  18. Knots with proprety R+

    OpenAIRE

    Clark, Bradd Evans

    1983-01-01

    If we consider the set of manifolds that can be obtained by surgery on a fixed knot K, then we have an associated set of numbers corresponding to the Heegaard genus of these manifolds. It is known that there is an upper bound to this set of numbers. A knot K is said to have Property R+ if longitudinal surgery yields a manifold of highest possible Heegaard genus among those obtainable by surgery on K. In this paper we show that torus knots, 2-bridge knots, and knots which are the connected ...

  19. Knots and links

    CERN Document Server

    Rolfsen, Dale

    2003-01-01

    Rolfsen's beautiful book on knots and links can be read by anyone, from beginner to expert, who wants to learn about knot theory. Beginners with a basic background find an inviting introduction to the elements of topology, emphasizing the tools needed for understanding knots, the fundamental group and van Kampen's theorem, for example, which are then applied to concrete problems, such as computing knot groups. For experts, Rolfsen explains advanced topics, such as the connections between knot theory and surgery and how they are useful to understanding three-manifolds. Besides providing a guide

  20. Knotting probability of self-avoiding polygons under a topological constraint

    Science.gov (United States)

    Uehara, Erica; Deguchi, Tetsuo

    2017-09-01

    We define the knotting probability of a knot K by the probability for a random polygon or self-avoiding polygon (SAP) of N segments having the knot type K. We show fundamental and generic properties of the knotting probability particularly its dependence on the excluded volume. We investigate them for the SAP consisting of hard cylindrical segments of unit length and radius rex. For various prime and composite knots, we numerically show that a compact formula describes the knotting probabilities for the cylindrical SAP as a function of segment number N and radius rex. It connects the small-N to the large-N behavior and even to lattice knots in the case of large values of radius. As the excluded volume increases, the maximum of the knotting probability decreases for prime knots except for the trefoil knot. If it is large, the trefoil knot and its descendants are dominant among the nontrivial knots in the SAP. From the factorization property of the knotting probability, we derive a sum rule among the estimates of a fitting parameter for all prime knots, which suggests the local knot picture and the dominance of the trefoil knot in the case of large excluded volumes. Here we remark that the cylindrical SAP gives a model of circular DNA which is negatively charged and semiflexible, where radius rex corresponds to the screening length.

  1. Knotting probability of self-avoiding polygons under a topological constraint.

    Science.gov (United States)

    Uehara, Erica; Deguchi, Tetsuo

    2017-09-07

    We define the knotting probability of a knot K by the probability for a random polygon or self-avoiding polygon (SAP) of N segments having the knot type K. We show fundamental and generic properties of the knotting probability particularly its dependence on the excluded volume. We investigate them for the SAP consisting of hard cylindrical segments of unit length and radius r ex . For various prime and composite knots, we numerically show that a compact formula describes the knotting probabilities for the cylindrical SAP as a function of segment number N and radius r ex . It connects the small-N to the large-N behavior and even to lattice knots in the case of large values of radius. As the excluded volume increases, the maximum of the knotting probability decreases for prime knots except for the trefoil knot. If it is large, the trefoil knot and its descendants are dominant among the nontrivial knots in the SAP. From the factorization property of the knotting probability, we derive a sum rule among the estimates of a fitting parameter for all prime knots, which suggests the local knot picture and the dominance of the trefoil knot in the case of large excluded volumes. Here we remark that the cylindrical SAP gives a model of circular DNA which is negatively charged and semiflexible, where radius r ex corresponds to the screening length.

  2. Knots in Art

    Directory of Open Access Journals (Sweden)

    Radmila Sazdanović

    2012-06-01

    Full Text Available We analyze applications of knots and links in the Ancient art, beginning from Babylonian, Egyptian, Greek, Byzantine and Celtic art. Construction methods used in art are analyzed on the examples of Celtic art and ethnical art of Tchokwe people from Angola or Tamil art, where knots are constructed as mirror-curves. We propose different methods for generating knots and links based on geometric polyhedra, suitable for applications in architecture and sculpture.

  3. Knots in Art

    OpenAIRE

    Jablan, Slavik; Radović, Ljiljana; Sazdanović, Radmila; Zeković, Ana

    2012-01-01

    We analyze applications of knots and links in the Ancient art, beginning from Babylonian, Egyptian, Greek, Byzantine and Celtic art. Construction methods used in art are analyzed on the examples of Celtic art and ethnical art of Tchokwe people from Angola or Tamil art, where knots are constructed as mirror-curves. We propose different methods for generating knots and links based on geometric polyhedra, suitable for applications in architecture and sculpture.

  4. Trapping a Knot into Tight Conformations by Intra-Chain Repulsions

    Directory of Open Access Journals (Sweden)

    Liang Dai

    2017-02-01

    Full Text Available Knots can occur in biopolymers such as DNA and peptides. In our previous study, we systematically investigated the effects of intra-chain interactions on knots and found that long-range repulsions can surprisingly tighten knots. Here, we use this knowledge to trap a knot into tight conformations in Langevin dynamics simulations. By trapping, we mean that the free energy landscape with respect to the knot size exhibits a potential well around a small knot size in the presence of long-range repulsions, and this potential can well lead to long-lived tight knots when its depth is comparable to or larger than thermal energy. We tune the strength of intra-chain repulsion such that a knot is weakly trapped. Driven by thermal fluctuations, the knot can escape from the trap and is then re-trapped. We find that the knot switches between tight and loose conformations—referred to as “knot breathing”. We use a Yukawa potential to model screened electrostatic interactions to explore the relevance of knot trapping and breathing in charged biopolymers. We determine the minimal screened length and the minimal strength of repulsion for knot trapping. We find that Coulomb-induced knot trapping is possible to occur in single-stranded DNA and peptides for normal ionic strengths.

  5. History and science of knots

    CERN Document Server

    Turner, J C

    1996-01-01

    This book brings together twenty essays on diverse topics in the history and science of knots. It is divided into five parts, which deal respectively with knots in prehistory and antiquity, non-European traditions, working knots, the developing science of knots, and decorative and other aspects of knots.Its authors include archaeologists who write on knots found in digs of ancient sites (one describes the knots used by the recently discovered Ice Man); practical knotters who have studied the history and uses of knots at sea, for fishing and for various life support activities; a historian of l

  6. A Stevedore's protein knot.

    Directory of Open Access Journals (Sweden)

    Daniel Bölinger

    2010-04-01

    Full Text Available Protein knots, mostly regarded as intriguing oddities, are gradually being recognized as significant structural motifs. Seven distinctly knotted folds have already been identified. It is by and large unclear how these exceptional structures actually fold, and only recently, experiments and simulations have begun to shed some light on this issue. In checking the new protein structures submitted to the Protein Data Bank, we encountered the most complex and the smallest knots to date: A recently uncovered alpha-haloacid dehalogenase structure contains a knot with six crossings, a so-called Stevedore knot, in a projection onto a plane. The smallest protein knot is present in an as yet unclassified protein fragment that consists of only 92 amino acids. The topological complexity of the Stevedore knot presents a puzzle as to how it could possibly fold. To unravel this enigma, we performed folding simulations with a structure-based coarse-grained model and uncovered a possible mechanism by which the knot forms in a single loop flip.

  7. Knots in polymers

    Indian Academy of Sciences (India)

    Abstract. Knots and topological entanglements play an important role in the statistical mechanics of polymers. While topological entanglement is a global property, it is possible to study the size of a knotted region both numerically and analytically. It can be shown that long-range repulsive interactions, as well as entropy ...

  8. Knot topology in QCD

    International Nuclear Information System (INIS)

    Zou, L.P.; Zhang, P.M.; Pak, D.G.

    2013-01-01

    We consider topological structure of classical vacuum solutions in quantum chromodynamics. Topologically non-equivalent vacuum configurations are classified by non-trivial second and third homotopy groups for coset of the color group SU(N) (N=2,3) under the action of maximal Abelian stability group. Starting with explicit vacuum knot configurations we study possible exact classical solutions. Exact analytic non-static knot solution in a simple CP 1 model in Euclidean space–time has been obtained. We construct an ansatz based on knot and monopole topological vacuum structure for searching new solutions in SU(2) and SU(3) QCD. We show that singular knot-like solutions in QCD in Minkowski space–time can be naturally obtained from knot solitons in integrable CP 1 models. A family of Skyrme type low energy effective theories of QCD admitting exact analytic solutions with non-vanishing Hopf charge is proposed

  9. Phase behaviour of polyethylene knotted ring chains

    International Nuclear Information System (INIS)

    Wen Xiao-Hui; Xia A-Gen; Chen Hong-Ping; Zhang Lin-Xi

    2011-01-01

    The phase behaviour of polyethylene knotted ring chains is investigated by using molecular dynamics simulations. In this paper, we focus on the collapse of the polyethylene knotted ring chain, and also present the results of linear and ring chains for comparison. At high temperatures, a fully extensive knot structure is observed. The mean-square radius of gyration per bond (S 2 )/(Nb 2 ) and the shape factor (δ*) depend on not only the chain length but also the knot type. With temperature decreasing, chain collapse is observed, and the collapse temperature decreases with the chain length increasing. The actual collapse transition can be determined by the specific heat capacity C v , and the knotted ring chain undergoes gas—liquid—solid-like transition directly. The phase transition of a knotted ring chain is only one-stage collapse, which is different from the polyethylene linear and ring chains. This investigation can provide some insights into the statistical properties of knotted polymer chains. (condensed matter: structural, mechanical, and thermal properties)

  10. Colouring and knot polynomials

    International Nuclear Information System (INIS)

    Welsh, D.J.A.

    1991-01-01

    These lectures will attempt to explain a connection between the recent advances in knot theory using the Jones and related knot polynomials with classical problems in combinatorics and statistical mechanics. The difficulty of some of these problems will be analysed in the context of their computational complexity. In particular we shall discuss colourings and groups valued flows in graphs, knots and the Jones and Kauffman polynomials, the Ising, Potts and percolation problems of statistical physics, computational complexity of the above problems. (author). 20 refs, 9 figs

  11. The Mathematics of Knots

    CERN Document Server

    Banagl, Markus

    2011-01-01

    The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested

  12. Sampling large random knots in a confined space

    International Nuclear Information System (INIS)

    Arsuaga, J; Blackstone, T; Diao, Y; Hinson, K; Karadayi, E; Saito, M

    2007-01-01

    DNA knots formed under extreme conditions of condensation, as in bacteriophage P4, are difficult to analyze experimentally and theoretically. In this paper, we propose to use the uniform random polygon model as a supplementary method to the existing methods for generating random knots in confinement. The uniform random polygon model allows us to sample knots with large crossing numbers and also to generate large diagrammatically prime knot diagrams. We show numerically that uniform random polygons sample knots with large minimum crossing numbers and certain complicated knot invariants (as those observed experimentally). We do this in terms of the knot determinants or colorings. Our numerical results suggest that the average determinant of a uniform random polygon of n vertices grows faster than O(e n 2 )). We also investigate the complexity of prime knot diagrams. We show rigorously that the probability that a randomly selected 2D uniform random polygon of n vertices is almost diagrammatically prime goes to 1 as n goes to infinity. Furthermore, the average number of crossings in such a diagram is at the order of O(n 2 ). Therefore, the two-dimensional uniform random polygons offer an effective way in sampling large (prime) knots, which can be useful in various applications

  13. Sampling large random knots in a confined space

    Science.gov (United States)

    Arsuaga, J.; Blackstone, T.; Diao, Y.; Hinson, K.; Karadayi, E.; Saito, M.

    2007-09-01

    DNA knots formed under extreme conditions of condensation, as in bacteriophage P4, are difficult to analyze experimentally and theoretically. In this paper, we propose to use the uniform random polygon model as a supplementary method to the existing methods for generating random knots in confinement. The uniform random polygon model allows us to sample knots with large crossing numbers and also to generate large diagrammatically prime knot diagrams. We show numerically that uniform random polygons sample knots with large minimum crossing numbers and certain complicated knot invariants (as those observed experimentally). We do this in terms of the knot determinants or colorings. Our numerical results suggest that the average determinant of a uniform random polygon of n vertices grows faster than O(e^{n^2}) . We also investigate the complexity of prime knot diagrams. We show rigorously that the probability that a randomly selected 2D uniform random polygon of n vertices is almost diagrammatically prime goes to 1 as n goes to infinity. Furthermore, the average number of crossings in such a diagram is at the order of O(n2). Therefore, the two-dimensional uniform random polygons offer an effective way in sampling large (prime) knots, which can be useful in various applications.

  14. Sampling large random knots in a confined space

    Energy Technology Data Exchange (ETDEWEB)

    Arsuaga, J [Department of Mathematics, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132 (United States); Blackstone, T [Department of Computer Science, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 94132 (United States); Diao, Y [Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Hinson, K [Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Karadayi, E [Department of Mathematics, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33620 (United States); Saito, M [Department of Mathematics, University of South Florida, 4202 E Fowler Avenue, Tampa, FL 33620 (United States)

    2007-09-28

    DNA knots formed under extreme conditions of condensation, as in bacteriophage P4, are difficult to analyze experimentally and theoretically. In this paper, we propose to use the uniform random polygon model as a supplementary method to the existing methods for generating random knots in confinement. The uniform random polygon model allows us to sample knots with large crossing numbers and also to generate large diagrammatically prime knot diagrams. We show numerically that uniform random polygons sample knots with large minimum crossing numbers and certain complicated knot invariants (as those observed experimentally). We do this in terms of the knot determinants or colorings. Our numerical results suggest that the average determinant of a uniform random polygon of n vertices grows faster than O(e{sup n{sup 2}}). We also investigate the complexity of prime knot diagrams. We show rigorously that the probability that a randomly selected 2D uniform random polygon of n vertices is almost diagrammatically prime goes to 1 as n goes to infinity. Furthermore, the average number of crossings in such a diagram is at the order of O(n{sup 2}). Therefore, the two-dimensional uniform random polygons offer an effective way in sampling large (prime) knots, which can be useful in various applications.

  15. Novel genomes and genome constitutions identified by GISH and 5S rDNA and knotted1 genomic sequences in the genus Setaria.

    Science.gov (United States)

    Zhao, Meicheng; Zhi, Hui; Doust, Andrew N; Li, Wei; Wang, Yongfang; Li, Haiquan; Jia, Guanqing; Wang, Yongqiang; Zhang, Ning; Diao, Xianmin

    2013-04-11

    The Setaria genus is increasingly of interest to researchers, as its two species, S. viridis and S. italica, are being developed as models for understanding C4 photosynthesis and plant functional genomics. The genome constitution of Setaria species has been studied in the diploid species S. viridis, S. adhaerans and S. grisebachii, where three genomes A, B and C were identified respectively. Two allotetraploid species, S. verticillata and S. faberi, were found to have AABB genomes, and one autotetraploid species, S. queenslandica, with an AAAA genome, has also been identified. The genomes and genome constitutions of most other species remain unknown, even though it was thought there are approximately 125 species in the genus distributed world-wide. GISH was performed to detect the genome constitutions of Eurasia species of S. glauca, S. plicata, and S. arenaria, with the known A, B and C genomes as probes. No or very poor hybridization signal was detected indicating that their genomes are different from those already described. GISH was also performed reciprocally between S. glauca, S. plicata, and S. arenaria genomes, but no hybridization signals between each other were found. The two sets of chromosomes of S. lachnea both hybridized strong signals with only the known C genome of S. grisebachii. Chromosomes of Qing 9, an accession formerly considered as S. viridis, hybridized strong signal only to B genome of S. adherans. Phylogenetic trees constructed with 5S rDNA and knotted1 markers, clearly classify the samples in this study into six clusters, matching the GISH results, and suggesting that the F genome of S. arenaria is basal in the genus. Three novel genomes in the Setaria genus were identified and designated as genome D (S. glauca), E (S. plicata) and F (S. arenaria) respectively. The genome constitution of tetraploid S. lachnea is putatively CCC'C'. Qing 9 is a B genome species indigenous to China and is hypothesized to be a newly identified species. The

  16. The mystery of knots

    CERN Document Server

    Aneziris, Charilaos N

    1999-01-01

    One of the most significant unsolved problems in mathematics is the complete classification of knots. The main purpose of this book is to introduce the reader to the use of computer programming to obtain the table of knots. The author presents this problem as clearly and methodically as possible, starting from the very basics. Mathematical ideas and concepts are extensively discussed, and no advanced background is required.

  17. High resolution optical DNA mapping

    Science.gov (United States)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  18. Knotting in stretched polygons

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van; Orlandini, E; Tesi, M C; Whittington, S G

    2008-01-01

    The knotting in a lattice polygon model of ring polymers is examined when a stretching force is applied to the polygon. By examining the incidence of cut-planes in the polygon, we prove a pattern theorem in the stretching regime for large applied forces. This theorem can be used to examine the incidence of entanglements such as knotting and writhing. In particular, we prove that for arbitrarily large positive, but finite, values of the stretching force, the probability that a stretched polygon is knotted approaches 1 as the length of the polygon increases. In the case of writhing, we prove that for stretched polygons of length n, and for every function f(n)=o(√n), the probability that the absolute value of the mean writhe is less than f(n) approaches 0 as n → ∞, for sufficiently large values of the applied stretching force

  19. Knots and Links

    Indian Academy of Sciences (India)

    in a fashion similar to sound waves, whose medium is air. Ether was believed ..... [3] Colin C Adams, The Knot Book, W H Freeman and Company, New. York. ... [5] Kelly S Chichak, Stuart j CantriU, Antony R Pease, Sheng-Hsien. Chiu, Gareth ...

  20. Knot theory in modern chemistry.

    Science.gov (United States)

    Horner, Kate E; Miller, Mark A; Steed, Jonathan W; Sutcliffe, Paul M

    2016-11-21

    Knot theory is a branch of pure mathematics, but it is increasingly being applied in a variety of sciences. Knots appear in chemistry, not only in synthetic molecular design, but also in an array of materials and media, including some not traditionally associated with knots. Mathematics and chemistry can now be used synergistically to identify, characterise and create knots, as well as to understand and predict their physical properties. This tutorial review provides a brief introduction to the mathematics of knots and related topological concepts in the context of the chemical sciences. We then survey the broad range of applications of the theory to contemporary research in the field.

  1. Proteins analysed as virtual knots

    Science.gov (United States)

    Alexander, Keith; Taylor, Alexander J.; Dennis, Mark R.

    2017-02-01

    Long, flexible physical filaments are naturally tangled and knotted, from macroscopic string down to long-chain molecules. The existence of knotting in a filament naturally affects its configuration and properties, and may be very stable or disappear rapidly under manipulation and interaction. Knotting has been previously identified in protein backbone chains, for which these mechanical constraints are of fundamental importance to their molecular functionality, despite their being open curves in which the knots are not mathematically well defined; knotting can only be identified by closing the termini of the chain somehow. We introduce a new method for resolving knotting in open curves using virtual knots, which are a wider class of topological objects that do not require a classical closure and so naturally capture the topological ambiguity inherent in open curves. We describe the results of analysing proteins in the Protein Data Bank by this new scheme, recovering and extending previous knotting results, and identifying topological interest in some new cases. The statistics of virtual knots in protein chains are compared with those of open random walks and Hamiltonian subchains on cubic lattices, identifying a regime of open curves in which the virtual knotting description is likely to be important.

  2. Three-dimensional printed knotted reactors enabling highly sensitive differentiation of silver nanoparticles and ions in aqueous environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Su, Cheng-Kuan, E-mail: chengkuan@ntou.edu.tw [Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan, ROC (China); Hsieh, Meng-Hsuan [Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan, ROC (China); Sun, Yuh-Chang, E-mail: ycsun@mx.nthu.edu.tw [Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan, ROC (China)

    2016-03-31

    Whether silver nanoparticles (AgNPs) persist or release silver ions (Ag{sup +}) when discharged into a natural environment has remained an unresolved issue. In this study, we employed a low-cost stereolithographic three-dimensional printing (3DP) technology to fabricate the angle-defined knotted reactors (KRs) to construct a simple differentiation scheme for quantitative assessment of Ag{sup +} ions and AgNPs in municipal wastewater samples. We chose xanthan/phosphate-buffered saline as a dispersion medium for in situ stabilization of the two silver species, while also facilitating their extraction from complicated wastewater matrices. After method optimization, we measured extraction efficiencies of 54.5 and 32.3% for retaining Ag{sup +} ions and AgNPs, respectively, in the printed KR (768-turn), with detection limits (DLs) of 0.86 and 0.52 ng L{sup −1} when determining Ag{sup +} ions and AgNPs, respectively (sample run at pH 11 without a rinse solution), and 0.86 ng L{sup −1} when determining Ag{sup +} ions alone (sample run at pH 12 with a 1.5-mL rinse solution). The proposed scheme is tolerant of the wastewater matrix and provides more reliable differentiation between Ag{sup +}/AgNPs than does a conventional filtration method. The concept and applicability of adopting 3DP technology to renew traditional KR devices were evidently proven by means of these significantly improved analytical performance. Our analytical data suggested that the concentrations of Ag{sup +} ions and AgNPs in the tested industrial wastewater sample were both higher than those in domestic wastewater, implying that industrial activity might be a main source of environmental silver species, rather than domestic discharge from AgNP-containing products. - Highlights: • 3D printed knotted reactors are utilized to differentiate AgNPs and Ag{sup +} ions. • Xanthan/phosphate-buffered saline is used for stabilizing the two silver species. • Extraction efficiency up to 54.5% is

  3. Three-dimensional printed knotted reactors enabling highly sensitive differentiation of silver nanoparticles and ions in aqueous environmental samples

    International Nuclear Information System (INIS)

    Su, Cheng-Kuan; Hsieh, Meng-Hsuan; Sun, Yuh-Chang

    2016-01-01

    Whether silver nanoparticles (AgNPs) persist or release silver ions (Ag + ) when discharged into a natural environment has remained an unresolved issue. In this study, we employed a low-cost stereolithographic three-dimensional printing (3DP) technology to fabricate the angle-defined knotted reactors (KRs) to construct a simple differentiation scheme for quantitative assessment of Ag + ions and AgNPs in municipal wastewater samples. We chose xanthan/phosphate-buffered saline as a dispersion medium for in situ stabilization of the two silver species, while also facilitating their extraction from complicated wastewater matrices. After method optimization, we measured extraction efficiencies of 54.5 and 32.3% for retaining Ag + ions and AgNPs, respectively, in the printed KR (768-turn), with detection limits (DLs) of 0.86 and 0.52 ng L −1 when determining Ag + ions and AgNPs, respectively (sample run at pH 11 without a rinse solution), and 0.86 ng L −1 when determining Ag + ions alone (sample run at pH 12 with a 1.5-mL rinse solution). The proposed scheme is tolerant of the wastewater matrix and provides more reliable differentiation between Ag + /AgNPs than does a conventional filtration method. The concept and applicability of adopting 3DP technology to renew traditional KR devices were evidently proven by means of these significantly improved analytical performance. Our analytical data suggested that the concentrations of Ag + ions and AgNPs in the tested industrial wastewater sample were both higher than those in domestic wastewater, implying that industrial activity might be a main source of environmental silver species, rather than domestic discharge from AgNP-containing products. - Highlights: • 3D printed knotted reactors are utilized to differentiate AgNPs and Ag + ions. • Xanthan/phosphate-buffered saline is used for stabilizing the two silver species. • Extraction efficiency up to 54.5% is available for retaining Ag + ion species. • The

  4. Knotted vs. unknotted proteins: evidence of knot-promoting loops.

    Directory of Open Access Journals (Sweden)

    Raffaello Potestio

    Full Text Available Knotted proteins, because of their ability to fold reversibly in the same topologically entangled conformation, are the object of an increasing number of experimental and theoretical studies. The aim of the present investigation is to assess, on the basis of presently available structural data, the extent to which knotted proteins are isolated instances in sequence or structure space, and to use comparative schemes to understand whether specific protein segments can be associated to the occurrence of a knot in the native state. A significant sequence homology is found among a sizeable group of knotted and unknotted proteins. In this family, knotted members occupy a primary sub-branch of the phylogenetic tree and differ from unknotted ones only by additional loop segments. These "knot-promoting" loops, whose virtual bridging eliminates the knot, are found in various types of knotted proteins. Valuable insight into how knots form, or are encoded, in proteins could be obtained by targeting these regions in future computational studies or excision experiments.

  5. Braiding knots with topological strings

    International Nuclear Information System (INIS)

    Gu, Jie

    2015-08-01

    For an arbitrary knot in a three-sphere, the Ooguri-Vafa conjecture associates to it a unique stack of branes in type A topological string on the resolved conifold, and relates the colored HOMFLY invariants of the knot to the free energies on the branes. For torus knots, we use a modified version of the topological recursion developed by Eynard and Orantin to compute the free energies on the branes from the Aganagic-Vafa spectral curves of the branes, and find they are consistent with the known colored HOMFLY knot invariants a la the Ooguri-Vafa conjecture. In addition our modified topological recursion can reproduce the correct closed string free energies, which encode the information of the background geometry. We conjecture the modified topological recursion is applicable for branes associated to hyperbolic knots as well, encouraged by the observation that the modified topological recursion yields the correct planar closed string free energy from the Aganagic-Vafa spectral curves of hyperbolic knots. This has implications for the knot theory concerning distinguishing mutant knots with colored HOMFLY invariants. Furthermore, for hyperbolic knots, we present methods to compute colored HOMFLY invariants in nonsymmetric representations of U(N). The key step in this computation is computing quantum 6j-symbols in the quantum group U q (sl N ).

  6. Computational Elastic Knots

    KAUST Repository

    Zhao, Xin

    2013-05-01

    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.

  7. Probe Knots and Hopf Insulators with Ultracold Atoms

    Science.gov (United States)

    Deng, Dong-Ling; Wang, Sheng-Tao; Sun, Kai; Duan, L.-M.

    2018-01-01

    Knots and links are fascinating and intricate topological objects. Their influence spans from DNA and molecular chemistry to vortices in superfluid helium, defects in liquid crystals and cosmic strings in the early universe. Here we find that knotted structures also exist in a peculiar class of three-dimensional topological insulators—the Hopf insulators. In particular, we demonstrate that the momentum-space spin textures of Hopf insulators are twisted in a nontrivial way, which implies the presence of various knot and link structures. We further illustrate that the knots and nontrivial spin textures can be probed via standard time-of-flight images in cold atoms as preimage contours of spin orientations in stereographic coordinates. The extracted Hopf invariants, knots, and links are validated to be robust to typical experimental imperfections. Our work establishes the existence of knotted structures in Hopf insulators, which may have potential applications in spintronics and quantum information processing. D.L.D., S.T.W. and L.M.D. are supported by the ARL, the IARPA LogiQ program, and the AFOSR MURI program, and supported by Tsinghua University for their visits. K.S. acknowledges the support from NSF under Grant No. PHY1402971. D.L.D. is also supported by JQI-NSF-PFC and LPS-MPO-CMTC at the final stage of this paper.

  8. Role of Bending Energy and Knot Chirality in Knot Distribution and Their Effective Interaction along Stretched Semiflexible Polymers

    Directory of Open Access Journals (Sweden)

    Saeed Najafi

    2016-09-01

    Full Text Available Knots appear frequently in semiflexible (biopolymers, including double-stranded DNA, and their presence can affect the polymer’s physical and functional properties. In particular, it is possible and indeed often the case that multiple knots appear on a single chain, with effects which have only come under scrutiny in the last few years. In this manuscript, we study the interaction of two knots on a stretched semiflexible polymer, expanding some recent results on the topic. Specifically, we consider an idealization of a typical optical tweezers experiment and show how the bending rigidity of the chain—And consequently its persistence length—Influences the distribution of the entanglements; possibly more importantly, we observe and report how the relative chirality of the otherwise identical knots substantially modifies their interaction. We analyze the free energy of the chain and extract the effective interactions between embedded knots, rationalizing some of their pertinent features by means of simple effective models. We believe the salient aspect of the knot–knot interactions emerging from our study will be present in a large number of semiflexible polymers under tension, with important consequences for the characterization and manipulation of these systems—Be they artificial or biologica in origin—And for their technological application.

  9. evaluation of tomato genotypes for resistance to root-knot

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Tomato production in Ghana is threatened by plant parasitic nematodes, especially the root knot ... to be highly resistant to Meloidogyne spp. and also recorded the lowest reproductive factors of 0.71 and 0.53, respectively. ..... VII International.

  10. Appendicular knot causing closed-loop obstruction, volvulus and ...

    African Journals Online (AJOL)

    Keywords: appendix, appendicular tie/knot syndrome, intestinal obstruction, volvulus, strangulation .... possible contrast reaction and high cost) and its unavailability in some ... morbidity and mortality rise significantly with delay. In. Fevang's ...

  11. Energy of knots and conformal geometry

    CERN Document Server

    O'Hara, Jun

    2003-01-01

    Energy of knots is a theory that was introduced to create a "canonical configuration" of a knot - a beautiful knot which represents its knot type. This book introduces several kinds of energies, and studies the problem of whether or not there is a "canonical configuration" of a knot in each knot type. It also considers this problems in the context of conformal geometry. The energies presented in the book are defined geometrically. They measure the complexity of embeddings and have applications to physical knotting and unknotting through numerical experiments. Contents: In Search of the "Optima

  12. Torus knots and mirror symmetry

    CERN Document Server

    Brini, Andrea; Marino, Marcos

    2012-01-01

    We propose a spectral curve describing torus knots and links in the B-model. In particular, the application of the topological recursion to this curve generates all their colored HOMFLY invariants. The curve is obtained by exploiting the full Sl(2, Z) symmetry of the spectral curve of the resolved conifold, and should be regarded as the mirror of the topological D-brane associated to torus knots in the large N Gopakumar-Vafa duality. Moreover, we derive the curve as the large N limit of the matrix model computing torus knot invariants.

  13. Intricate knots in proteins: Function and evolution.

    Directory of Open Access Journals (Sweden)

    Peter Virnau

    2006-09-01

    Full Text Available Our investigation of knotted structures in the Protein Data Bank reveals the most complicated knot discovered to date. We suggest that the occurrence of this knot in a human ubiquitin hydrolase might be related to the role of the enzyme in protein degradation. While knots are usually preserved among homologues, we also identify an exception in a transcarbamylase. This allows us to exemplify the function of knots in proteins and to suggest how they may have been created.

  14. Handbook of knotting and splicing

    CERN Document Server

    Hasluck, Paul N

    2005-01-01

    Clearly written and amply illustrated with 208 figures, this classic guide ranges from simple and useful knots to complex varieties. Additional topics include rope splicing, working cordage, hammock making, more.

  15. Recognition algorithms in knot theory

    International Nuclear Information System (INIS)

    Dynnikov, I A

    2003-01-01

    In this paper the problem of constructing algorithms for comparing knots and links is discussed. A survey of existing approaches and basic results in this area is given. In particular, diverse combinatorial methods for representing links are discussed, the Haken algorithm for recognizing a trivial knot (the unknot) and a scheme for constructing a general algorithm (using Haken's ideas) for comparing links are presented, an approach based on representing links by closed braids is described, the known algorithms for solving the word problem and the conjugacy problem for braid groups are described, and the complexity of the algorithms under consideration is discussed. A new method of combinatorial description of knots is given together with a new algorithm (based on this description) for recognizing the unknot by using a procedure for monotone simplification. In the conclusion of the paper several problems are formulated whose solution could help to advance towards the 'algorithmization' of knot theory

  16. Small home ranges and high site fidelity in red knots (Calidris c. canutus) wintering on the Banc d'Arguin, Mauritania

    NARCIS (Netherlands)

    Leyrer, J; Spaans, B; Camara, M; Piersma, T

    Using automated and manual radio-telemetry and resightings of individual colour-ringed birds, we assessed the daily use of space of red knots Calidris canutus canutus at a tropical wintering area along the Sahara coast, the Banc d'Arguin in Mauritania. Confirming earlier suggestions, we found that

  17. Small home ranges and high site fidelity in red knots (Calidris c. canutus) wintering on the Banc d’Arguin, Mauritania

    NARCIS (Netherlands)

    Leyrer, Jutta; Spaans, Bernard; Camara, Mohamed; Piersma, Theunis; Bairlein, F.

    2006-01-01

    Using automated and manual radio-telemetry and resightings of individual colour-ringed birds, we assessed the daily use of space of red knots Calidris canutus canutus at a tropical wintering area along the Sahara coast, the Banc d’Arguin in Mauritania. Confirming earlier suggestions, we found that

  18. Topological effects on the mechanical properties of polymer knots

    Science.gov (United States)

    Zhao, Yani; Ferrari, Franco

    2017-11-01

    The mechanical properties of knotted polymer rings under stretching in a bad or good solvent are investigated by applying a force F to a point of the knot while keeping another point fixed. The Monte Carlo sampling of the polymer conformations is performed on a simple cubic lattice using the Wang-Landau algorithm. The specific energy, specific heat capacity, gyration radius and the force-elongation curves are computed for several knot topologies with lengths up to 120 lattice units. The common features of the mechanical and thermal behavior of stretched short polymer rings forming knots of a given topological type are analyzed as well as the differences arising due to topology and size effects. It is found that these systems admit three different phases depending on the values of the tensile force F and the temperature T. The transitions from one phase to the other are well characterized by the peaks of the specific heat capacity and by the data of the gyration radius and specific energy. At very low temperatures the force-elongation curves show that the stretching of a knot is a stepwise process, which becomes smooth at higher temperatures. Criteria for distinguishing topological and size effects are provided. It turns out from our study that the behavior of short polymer rings is strongly influenced by topological effects. In particular, the swelling and the swelling rate of knots are severely limited by the topological constraints. Several other properties that are affected by topology, like the decay of the specific energy at high tensile forces, are discussed. The fading out of the influences of topological origin with increasing knot lengths has been verified. Some anomalies detected in the plots of the specific heat capacity of very short and complex knots have been explained by the limitations in the number of accessible energy states due to the topological constraints.

  19. Weaving Knotted Vector Fields with Tunable Helicity.

    Science.gov (United States)

    Kedia, Hridesh; Foster, David; Dennis, Mark R; Irvine, William T M

    2016-12-30

    We present a general construction of divergence-free knotted vector fields from complex scalar fields, whose closed field lines encode many kinds of knots and links, including torus knots, their cables, the figure-8 knot, and its generalizations. As finite-energy physical fields, they represent initial states for fields such as the magnetic field in a plasma, or the vorticity field in a fluid. We give a systematic procedure for calculating the vector potential, starting from complex scalar functions with knotted zero filaments, thus enabling an explicit computation of the helicity of these knotted fields. The construction can be used to generate isolated knotted flux tubes, filled by knots encoded in the lines of the vector field. Lastly, we give examples of manifestly knotted vector fields with vanishing helicity. Our results provide building blocks for analytical models and simulations alike.

  20. Optical knots and contact geometry II. From Ranada dyons to transverse and cosmetic knots

    Energy Technology Data Exchange (ETDEWEB)

    Kholodenko, Arkady L., E-mail: string@clemson.edu

    2016-08-15

    Some time ago Ranada (1989) obtained new nontrivial solutions of the Maxwellian gauge fields without sources. These were reinterpreted in Kholodenko (2015) [10] (part I) as particle-like (monopoles, dyons, etc.). They were obtained by the method of Abelian reduction of the non-Abelian Yang–Mills functional. The developed method uses instanton-type calculations normally employed for the non-Abelian gauge fields. By invoking the electric–magnetic duality it then becomes possible to replace all known charges/masses by the particle-like solutions of the source-free Abelian gauge fields. To employ these results in high energy physics, it is essential to extend Ranada’s results by carefully analyzing and classifying all dynamically generated knotted/linked structures in gauge fields, including those discovered by Ranada. This task is completed in this work. The study is facilitated by the recent progress made in solving the Moffatt conjecture. Its essence is stated as follows: in steady incompressible Euler-type fluids the streamlines could have knots/links of all types. By employing the correspondence between the ideal hydrodynamics and electrodynamics discussed in part I and by superimposing it with the already mentioned method of Abelian reduction, it is demonstrated that in the absence of boundaries only the iterated torus knots and links could be dynamically generated. Obtained results allow to develop further particle-knot/link correspondence studied in Kholodenko (2015) [13].

  1. Biomechanical evaluation of the Nice knot

    OpenAIRE

    Hill, Shannon W.; Chapman, Christopher R.; Adeeb, Samer; Duke, Kajsa; Beaupre, Lauren; Bouliane, Martin J.

    2016-01-01

    Background: The Nice knot is a bulky double-stranded knot. Biomechanical data supporting its use as well as the number of half hitches required to ensure knot security is lacking. Materials and Methods: Nice knots with, one, two, or three half-hitches were compared with the surgeon′s and Tennessee slider knots with three half hitches. Each knot was tied 10 times around a fixed diameter using four different sutures: FiberWire (Arthrex, Naples, FL), Ultrabraid (Smith and Nephew, Andover, MA...

  2. Induction effects of torus knots and unknots

    Science.gov (United States)

    Oberti, Chiara; Ricca, Renzo L.

    2017-09-01

    Geometric and topological aspects associated with induction effects of field lines in the shape of torus knots/unknots are examined and discussed in detail. Knots are assumed to lie on a mathematical torus of circular cross-section and are parametrized by standard equations. The induced field is computed by direct integration of the Biot-Savart law. Field line patterns of the induced field are obtained and several properties are examined for a large family of knots/unknots up to 51 crossings. The intensity of the induced field at the origin of the reference system (center of the torus) is found to depend linearly on the number of toroidal coils and reaches maximum values near the boundary of the mathematical torus. New analytical estimates and bounds on energy and helicity are established in terms of winding number and minimum crossing number. These results find useful applications in several contexts when the source field is either vorticity, electric current or magnetic field, from vortex dynamics to astrophysics and plasma physics, where highly braided magnetic fields and currents are present.

  3. Knot invariants derived from quandles and racks

    OpenAIRE

    Kamada, Seiichi

    2002-01-01

    The homology and cohomology of quandles and racks are used in knot theory: given a finite quandle and a cocycle, we can construct a knot invariant. This is a quick introductory survey to the invariants of knots derived from quandles and racks.

  4. How to Twist a Knot

    DEFF Research Database (Denmark)

    Randrup, Thomas; Røgen, Peter

    1997-01-01

    is an invariant of ambient isotopy measuring the topological twist of the closed strip. We classify closed strips in euclidean 3-space by their knots and their twisting number. We prove that this classification exactly divides closed strips into isotopy classes. Using this classification we point out how some...

  5. Mutual attraction of magnetic knots

    International Nuclear Information System (INIS)

    Parker, E.N.

    1978-01-01

    It is observed that the magnetic knots associated with active regions on the Sun have an attraction for each other during the formative period of the active regions, when new magnetic flux is coming to the surface. The attraction disappears when new flux ceases to rise through the surface. Then the magnetic spots and knots tend to come apart, leading to disintegration of the sunspots previously formed. The dissolution of the fields is to be expected, as a consequence of the magnetic repulsion of knots of like polarity and as a consequence of the hydromagnetic exchange instability.The purpose of this paper is to show that the mutual attraction of knots during the formative stages of a sunspot region may be understood as the mutual hydrodynamic attraction of the rising flux tubes. Two rising tubes attract each other, as a consequence of the wake of the leading tube when one is moving behind the other, and as a consequence of the Bernoulli effect when rising side by side

  6. Knot detection in X-ray images of wood planks using dictionary learning

    DEFF Research Database (Denmark)

    Hansson, Nils Mattias; Enescu, Alexandru; Brandt, Sami Sebastian

    2015-01-01

    This paper considers a novel application of x-ray imaging of planks, for the purpose of detecting knots in high quality furniture wood. X-ray imaging allows the detection of knots invisible from the surface to conventional cameras. Our approach is based on texture analysis, or more specifically, ......, discriminative dictionary learning. Experiments show that the knot detection and segmentation can be accurately performed by our approach. This is a promising result and can be directly applied in industrial processing of furniture wood.......This paper considers a novel application of x-ray imaging of planks, for the purpose of detecting knots in high quality furniture wood. X-ray imaging allows the detection of knots invisible from the surface to conventional cameras. Our approach is based on texture analysis, or more specifically...

  7. The mathematics and physics of knots

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, Louis H [Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7045 (United States)

    2005-12-01

    This paper is an introduction to relationships between knot theory and theoretical physics. We give an exposition of the theory of polynomial invariants of knots and links, the Witten functional integral formulation of knot and link invariants, and the beginnings of topological quantum field theory, and show how the theory of knots is related to a number of key issues in mathematical physics, including loop quantum gravity and quantum information theory. Along with the references cited in the text below, we also recommend the following as sources of background information.

  8. The entropic cost to tie a knot

    International Nuclear Information System (INIS)

    Baiesi, M; Orlandini, E; Stella, A L

    2010-01-01

    We estimate by Monte Carlo simulations the configurational entropy of N-step polygons in the cubic lattice with fixed knot type. By collecting rich statistics of configurations with very large values of N we are able to analyse the asymptotic behaviour of the partition function of the problem for different knot types. Our results confirm that, in the large N limit, each prime knot is localized in a small region of the polygon, regardless of the possible presence of other knots. Each prime knot component may slide along the unknotted region contributing to the overall configurational entropy with a term proportional to lnN. Furthermore, we discover that the mere existence of a knot requires a well defined entropic cost that scales exponentially with its minimal length. In the case of polygons with composite knots it turns out that the partition function can be simply factorized in terms that depend only on prime components, with an additional combinatorial factor that takes into account the statistical property that by interchanging two identical prime knot components in the polygon the corresponding set of overall configurations remains unaltered. Finally, the above results allow one to conjecture a sequence of inequalities for the connective constants of polygons whose topology varies within a given family of composite knot types

  9. Integral Suture-Handling Techniques for Arthroscopic Sliding Knots

    OpenAIRE

    Kanchanatawan, Wichan; Kongtharvonskul, Jatupon; Dorjiee, Gem; Suppauksorn, Sunikom; Pornvoranunt, Umpire; Karchana, Pongsakorn

    2016-01-01

    In arthroscopic tissue repair, the final step is achieving adequate tissue approximation with a secure knot. The sliding knot is widely preferred over the nonsliding knot, with numerous publications describing knot configurations. However, in the literature there are few published descriptions of suture-handling techniques, even though they are fundamental to arthroscopic knot tying. We describe integral suture-handling techniques for arthroscopic sliding knots to improve the surgeon's perfor...

  10. Differential and symplectic topology of knots and curves

    CERN Document Server

    Tabachnikov, S

    1999-01-01

    This book presents a collection of papers on two related topics: topology of knots and knot-like objects (such as curves on surfaces) and topology of Legendrian knots and links in 3-dimensional contact manifolds. Featured is the work of international experts in knot theory (""quantum"" knot invariants, knot invariants of finite type), in symplectic and contact topology, and in singularity theory. The interplay of diverse methods from these fields makes this volume unique in the study of Legendrian knots and knot-like objects such as wave fronts. A particularly enticing feature of the volume is

  11. Ileosigmoid knot: A case report

    International Nuclear Information System (INIS)

    Baheti, Akshay D; Patel, Darshana; Hira, Priya; Babu, Donald

    2011-01-01

    The ileosigmoid knot is an uncommon but life-threatening cause of closed loop intestinal obstruction. Its treatment is different from a simple volvulus in that it has to be operated upon immediately. Preoperative CT scan diagnosis and prompt treatment can lead to a good outcome. Findings of simultaneous ileal and sigmoid ischemia with non-ischemic colon interposed in between should, in an appropriate clinical setting, indicate this condition. The presence of the whirl sign, medially deviated distal descending colon and cecum, and mesenteric vascular structures from the superior mesenteric vessels that converge toward the sigmoid colon on CT scan help clinch the diagnosis

  12. extraction of high quality dna from polysaccharides-secreting ...

    African Journals Online (AJOL)

    cistvr

    A DNA extraction method using CTAB was used for the isolation of genomic DNA from ten. Xanthomonas campestris pathovars, ten isolates of Xanthomonas albilineans and one isolate of. Pseudomonas rubrisubalbicans. High quality DNA was obtained that was ideal for molecular analy- ses. Extracellular polysaccharides ...

  13. On two-generator satellite knots

    OpenAIRE

    Bleiler, Steven A.; Jones, Amelia C.

    1997-01-01

    Techniques are introduced which determine the geometric structure of non-simple two-generator $3$-manifolds from purely algebraic data. As an application, the satellite knots in the $3$-sphere with a two-generator presentation in which at least one generator is represented by a meridian for the knot are classified.

  14. Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks.

    Science.gov (United States)

    Vitelli, Valerio; Galbiati, Alessandro; Iannelli, Fabio; Pessina, Fabio; Sharma, Sheetal; d'Adda di Fagagna, Fabrizio

    2017-08-31

    Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.

  15. Asymptotic laws for random knot diagrams

    Science.gov (United States)

    Chapman, Harrison

    2017-06-01

    We study random knotting by considering knot and link diagrams as decorated, (rooted) topological maps on spheres and pulling them uniformly from among sets of a given number of vertices n, as first established in recent work with Cantarella and Mastin. The knot diagram model is an exciting new model which captures both the random geometry of space curve models of knotting as well as the ease of computing invariants from diagrams. We prove that unknot diagrams are asymptotically exponentially rare, an analogue of Sumners and Whittington’s landmark result for self-avoiding polygons. Our proof uses the same key idea: we first show that knot diagrams obey a pattern theorem, which describes their fractal structure. We examine how quickly this behavior occurs in practice. As a consequence, almost all diagrams are asymmetric, simplifying sampling from this model. We conclude with experimental data on knotting in this model. This model of random knotting is similar to those studied by Diao et al, and Dunfield et al.

  16. Legendrian and transverse cables of positive torus knots

    DEFF Research Database (Denmark)

    B. Etnyre, John; la Fountain, Douglas James; Tosun, Bulent

    In this paper we classify Legendrian and transverse knots in the knot types obtained from positive torus knots by cabling. This classification allows us to demonstrate several new phenomena. Specifically, we show there are knot types that have non-destabilizable Legendrian representatives whose T...

  17. Open knot-tying skills: residents skills assessed

    NARCIS (Netherlands)

    van Empel, P.J.; Verdam, M.G.E.; Huirne, J.A.; Bonjer, H.J.; Meijerink, W.J.; Scheele, F.

    2013-01-01

    Aim: Open knot-tying and suturing skills are fundamental surgical skills, founding many alternative knot-tying techniques. It is therefore mandatory for residents to possess adequate basic open knot-tying skills. The aim of this study was to compare an objective assessment of open knot-tying skills

  18. Are There Knots in Chromosomes?

    Directory of Open Access Journals (Sweden)

    Jonathan T. Siebert

    2017-08-01

    Full Text Available Recent developments have for the first time allowed the determination of three-dimensional structures of individual chromosomes and genomes in nuclei of single haploid mouse embryonic stem (ES cells based on Hi–C chromosome conformation contact data. Although these first structures have a relatively low resolution, they provide the first experimental data that can be used to study chromosome and intact genome folding. Here we further analyze these structures and provide the first evidence that G1 phase chromosomes are knotted, consistent with the fact that plots of contact probability vs sequence separation show a power law dependence that is intermediate between that of a fractal globule and an equilibrium structure.

  19. Grid homology for knots and links

    CERN Document Server

    Ozsváth, Peter S; Szabó, Zoltán

    2015-01-01

    Knot theory is a classical area of low-dimensional topology, directly connected with the theory of three-manifolds and smooth four-manifold topology. In recent years, the subject has undergone transformative changes thanks to its connections with a number of other mathematical disciplines, including gauge theory; representation theory and categorification; contact geometry; and the theory of pseudo-holomorphic curves. Starting from the combinatorial point of view on knots using their grid diagrams, this book serves as an introduction to knot theory, specifically as it relates to some of the ab

  20. In Search of Functional Advantages of Knots in Proteins.

    Science.gov (United States)

    Dabrowski-Tumanski, Pawel; Stasiak, Andrzej; Sulkowska, Joanna I

    2016-01-01

    We analysed the structure of deeply knotted proteins representing three unrelated families of knotted proteins. We looked at the correlation between positions of knotted cores in these proteins and such local structural characteristics as the number of intra-chain contacts, structural stability and solvent accessibility. We observed that the knotted cores and especially their borders showed strong enrichment in the number of contacts. These regions showed also increased thermal stability, whereas their solvent accessibility was decreased. Interestingly, the active sites within these knotted proteins preferentially located in the regions with increased number of contacts that also have increased thermal stability and decreased solvent accessibility. Our results suggest that knotting of polypeptide chains provides a favourable environment for the active sites observed in knotted proteins. Some knotted proteins have homologues without a knot. Interestingly, these unknotted homologues form local entanglements that retain structural characteristics of the knotted cores.

  1. Freely Expanding Knots of X-Ray-emitting Ejecta in Kepler’s Supernova Remnant

    Science.gov (United States)

    Sato, Toshiki; Hughes, John P.

    2017-08-01

    We report measurements of proper motion, radial velocity, and elemental composition for 14 compact X-ray-bright knots in Kepler’s supernova remnant (SNR) using archival Chandra data. The knots with the highest speed show both large proper motions (μ ˜ 0.″11-0.″14 yr-1) and high radial velocities (v ˜ 8700-10,020 km s-1). For these knots the estimated space velocities (9100 km s-1 ≲ v 3D ≲ 10,400 km s-1) are similar to the typical Si velocity seen in supernovae (SNe) Ia near maximum light. High-speed ejecta knots appear only in specific locations and are morphologically and kinematically distinct from the rest of the ejecta. The proper motions of five knots extrapolate back over the age of Kepler’s SNR to a consistent central position. This new kinematic center agrees well with previous determinations, but is less subject to systematic errors and denotes a location about which several prominent structures in the remnant display a high degree of symmetry. These five knots are expanding at close to the free expansion rate (expansion indices of 0.75 ≲ m ≲ 1.0), which we argue indicates either that they were formed in the explosion with a high density contrast (more than 100 times the ambient density) or that they have propagated through regions of relatively low density (n H ruled out.

  2. Studying uniform thickness II: Transversely nonsimple iterated torus knots

    DEFF Research Database (Denmark)

    LaFountain, Douglas

    2011-01-01

    We prove that an iterated torus knot type in the standard contact 3-sphere fails the uniform thickness property (UTP) if and only if it is formed from repeated positive cablings, which is precisely when an iterated torus knot supports the standard contact structure. This is the first complete UTP...... classification for a large class of knots. We also show that all iterated torus knots that fail the UTP support cabling knot types that are transversely non-simple....

  3. A DECADE-BASELINE STUDY OF THE PLASMA STATES OF EJECTA KNOTS IN CASSIOPEIA A

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, John; Dewey, Daniel; Figueroa-Feliciano, Enectali; Heine, Sarah N. T.; Canizares, C. R.; Bastien, Fabienne A.; Sato, Kosuke, E-mail: enectali@mit.edu, E-mail: jmrv@mit.edu [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-05-20

    We present the analysis of 21 bright X-ray knots in the Cassiopeia A supernova remnant from observations spanning 10 yr. We performed a comprehensive set of measurements to reveal the kinematic and thermal state of the plasma in each knot, using a combined analysis of two high energy resolution High Energy Transmission Grating (HETG) and four medium energy resolution Advanced CCD Imaging Spectrometer (ACIS) sets of spectra. The ACIS electron temperature estimates agree with the HETG-derived values for approximately half of the knots studied, yielding one of the first comparisons between high resolution temperature estimates and ACIS-derived temperatures. We did not observe the expected spectral evolution-predicted from the ionization age and density estimates for each knot-in all but three of the knots studied. The incompatibility of these measurements with our assumptions has led us to propose a dissociated ejecta model, with the metals unmixed inside the knots, which could place strong constraints on supernova mixing models.

  4. Molecular Dynamics Simulation of High Density DNA Arrays

    Directory of Open Access Journals (Sweden)

    Rudolf Podgornik

    2018-01-01

    Full Text Available Densely packed DNA arrays exhibit hexagonal and orthorhombic local packings, as well as a weakly first order transition between them. While we have some understanding of the interactions between DNA molecules in aqueous ionic solutions, the structural details of its ordered phases and the mechanism governing the respective phase transitions between them remains less well understood. Since at high DNA densities, i.e., small interaxial spacings, one can neither neglect the atomic details of the interacting macromolecular surfaces nor the atomic details of the intervening ionic solution, the atomistic resolution is a sine qua non to properly describe and analyze the interactions between DNA molecules. In fact, in order to properly understand the details of the observed osmotic equation of state, one needs to implement multiple levels of organization, spanning the range from the molecular order of DNA itself, the possible ordering of counterions, and then all the way to the induced molecular ordering of the aqueous solvent, all coupled together by electrostatic, steric, thermal and direct hydrogen-bonding interactions. Multiscale simulations therefore appear as singularly suited to connect the microscopic details of this system with its macroscopic thermodynamic behavior. We review the details of the simulation of dense atomistically resolved DNA arrays with different packing symmetries and the ensuing osmotic equation of state obtained by enclosing a DNA array in a monovalent salt and multivalent (spermidine counterions within a solvent permeable membrane, mimicking the behavior of DNA arrays subjected to external osmotic stress. By varying the DNA density, the local packing symmetry, and the counterion type, we are able to analyze the osmotic equation of state together with the full structural characterization of the DNA subphase, the counterion distribution and the solvent structural order in terms of its different order parameters and

  5. Bounds for the minimum step number of knots confined to slabs in the simple cubic lattice

    International Nuclear Information System (INIS)

    Ishihara, K; Shimokawa, K; Scharein, R; Arsuaga, J; Vazquez, M; Diao, Y

    2012-01-01

    Volume confinement is a key determinant of the topology and geometry of a polymer. However, the direct relationship between the two is not fully understood. For instance, recent experimental studies have constructed P4 cosmids, i.e. P4 bacteriophages whose genome sequence and length have been artificially engineered and have shown that upon extraction their DNA knot distribution differs from that of wild-type bacteriophage P4. In particular, it was observed that the complexity of the knots decreases sharply with the length of the packed genome. This problem is the motivation of this paper. Here, a polymer is modeled as a self-avoiding polygon on the simple cubic lattice and the confining condition is such that the polygon is bounded between two parallel planes (i.e. bounded within a slab). We estimate the minimum length required for such a polygon to realize a knot type. Our numerical simulations show that in order to realize a prime knot (with up to ten crossings) in a 1-slab (i.e. a slab of height 1), one needs a polygon of length strictly longer than the minimum length needed to realize the same knot when there is no confining condition. In the case of the trefoil knot, we can in fact establish this result analytically by proving that the minimum length required to tie a trefoil in the 1-slab is 26, which is greater than 24, the known minimum length required to tie a trefoil without a confinement condition. Additionally, we find that in the 1-slab not all geometrical realizations of a given knot type are equivalent under BFACF moves. This suggests that in certain confined volumes, knowing the topology of a polymer is not enough to describe all its states. (paper)

  6. Lattices gauge theories in terms of knots

    International Nuclear Information System (INIS)

    Vecernyes, P.

    1989-01-01

    Cluster expansion is developed in lattice gauge theories with finite gauge groups in d≥3 dimensions where the clusters are connected (d - 2)-dimensional surfaces which can branch along (d - 3)-cells. The interaction between them has a knot theoretical interpretation. It can be many body linking or knotting self-interaction. For small enough gauge coupling g the authors prove analyticity of the correlation functions in the variable exp(-1/g 2

  7. On the universality of knot probability ratios

    Energy Technology Data Exchange (ETDEWEB)

    Janse van Rensburg, E J [Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3 (Canada); Rechnitzer, A, E-mail: rensburg@yorku.ca, E-mail: andrewr@math.ubc.ca [Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T 1Z2 (Canada)

    2011-04-22

    Let p{sub n} denote the number of self-avoiding polygons of length n on a regular three-dimensional lattice, and let p{sub n}(K) be the number which have knot type K. The probability that a random polygon of length n has knot type K is p{sub n}(K)/p{sub n} and is known to decay exponentially with length (Sumners and Whittington 1988 J. Phys. A: Math. Gen. 21 1689-94, Pippenger 1989 Discrete Appl. Math. 25 273-8). Little is known rigorously about the asymptotics of p{sub n}(K), but there is substantial numerical evidence. It is believed that the entropic exponent, {alpha}, is universal, while the exponential growth rate is independent of the knot type but varies with the lattice. The amplitude, C{sub K}, depends on both the lattice and the knot type. The above asymptotic form implies that the relative probability of a random polygon of length n having prime knot type K over prime knot type L. In the thermodynamic limit this probability ratio becomes an amplitude ratio; it should be universal and depend only on the knot types K and L. In this communication we examine the universality of these probability ratios for polygons in the simple cubic, face-centred cubic and body-centred cubic lattices. Our results support the hypothesis that these are universal quantities. For example, we estimate that a long random polygon is approximately 28 times more likely to be a trefoil than be a figure-eight, independent of the underlying lattice, giving an estimate of the intrinsic entropy associated with knot types in closed curves. (fast track communication)

  8. High efficiency hydrodynamic DNA fragmentation in a bubbling system

    NARCIS (Netherlands)

    Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; Van Den Berg, Albert; Eijkel, Jan C.T.; Shui, Lingling

    2017-01-01

    DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling

  9. Highly efficient DNA extraction method from skeletal remains

    Directory of Open Access Journals (Sweden)

    Irena Zupanič Pajnič

    2011-03-01

    Full Text Available Background: This paper precisely describes the method of DNA extraction developed to acquire high quality DNA from the Second World War skeletal remains. The same method is also used for molecular genetic identification of unknown decomposed bodies in routine forensic casework where only bones and teeth are suitable for DNA typing. We analysed 109 bones and two teeth from WWII mass graves in Slovenia. Methods: We cleaned the bones and teeth, removed surface contaminants and ground the bones into powder, using liquid nitrogen . Prior to isolating the DNA in parallel using the BioRobot EZ1 (Qiagen, the powder was decalcified for three days. The nuclear DNA of the samples were quantified by real-time PCR method. We acquired autosomal genetic profiles and Y-chromosome haplotypes of the bones and teeth with PCR amplification of microsatellites, and mtDNA haplotypes 99. For the purpose of traceability in the event of contamination, we prepared elimination data bases including genetic profiles of the nuclear and mtDNA of all persons who have been in touch with the skeletal remains in any way. Results: We extracted up to 55 ng DNA/g of the teeth, up to 100 ng DNA/g of the femurs, up to 30 ng DNA/g of the tibias and up to 0.5 ng DNA/g of the humerus. The typing of autosomal and YSTR loci was successful in all of the teeth, in 98 % dekalof the femurs, and in 75 % to 81 % of the tibias and humerus. The typing of mtDNA was successful in all of the teeth, and in 96 % to 98 % of the bones. Conclusions: We managed to obtain nuclear DNA for successful STR typing from skeletal remains that were over 60 years old . The method of DNA extraction described here has proved to be highly efficient. We obtained 0.8 to 100 ng DNA/g of teeth or bones and complete genetic profiles of autosomal DNA, Y-STR haplotypes, and mtDNA haplotypes from only 0.5g bone and teeth samples.

  10. DNA oligonucleotide conformations: high resolution NMR studies

    International Nuclear Information System (INIS)

    Mellema, J.-R.

    1984-01-01

    The present work describes a DNA double-helix model, which is well comparable with the models derived from fibre-diffraction studies. The model has a mononucleotide repeat with torsion angles in accordance with average geometries as derived from 1 H NMR studies. Special attention was paid to reduce the number of short H-H nonbonding contacts, which are abundantly present in the 'classical' fibre-diffraction models. Chapter 3 describes the first complete assignment of a 1 H NMR spectrum of a DNA tetramer, d(TAAT). Preliminary conformational data derived from the spectral parameters recorded at 27 0 C are given. A more detailed analysis employing temperature-dependence studies is given in Chapter 4. (Auth.)

  11. High-speed detection of DNA translocation in nanopipettes

    Science.gov (United States)

    Fraccari, Raquel L.; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim

    2016-03-01

    We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface. Electronic supplementary information (ESI) available: Gel electrophoresis confirming lengths and purity of DNA samples, comparison between Axopatch 200B and custom-built setup, comprehensive low-noise amplifier characterization, representative I-V curves of nanopipettes used, typical scatter plots of τ vs. peak amplitude for the four LDNA's used, table of most probable τ values, a comparison between different fitting models for the DNA translocation time distribution, further details on the stochastic numerical simulation of the scaling statistics and the derivation of the extended

  12. Confirming the nature of the knot near the pulsar B1951+32

    Science.gov (United States)

    Zyuzin, D. A.; Shibanov, Yu A.; Pavlov, G. G.; Danilenko, A. A.

    2017-12-01

    The energetic and fast-moving radio and γ-ray pulsar B1951+32 is associated with the supernova remnant CTB 80. It powers a complex pulsar wind nebula detected in the radio, Hα and X-rays (Moon et al 2004 ApJ 610 L33). A puzzling optical knot was detected about 0″.5 from the pulsar in the optical and near-IR (Moon et al 2004 ApJ 610 L33; Hester 2000 Bulletin of the AAS 32 1542). It is reminiscent of the unique “inner optical knot” located 0″.6 from the Crab pulsar. Until now there has been no evidence that B1951+32 knot is indeed associated with the pulsar. We observed the pulsar field with the Gemini-North telescope in 2016 to check the association. We performed first near-IR high spatial resolution imaging in the K s band using the NIRI+Altair instrument and deep optical imaging in the gr bands using the GMOS instrument. Our observations showed that the current knot position is shifted by ≈ 0″.6 from the position measured with the HST in 1997. This is consistent with the known pulsar proper motion and is direct evidence of the pulsar-knot connection. We compared the spectral energy distribution of the knot emission with that of the Crab knot. Possible implications of the results are discussed.

  13. The dynamic interplay between DNA topoisomerases and DNA topology.

    Science.gov (United States)

    Seol, Yeonee; Neuman, Keir C

    2016-11-01

    Topological properties of DNA influence its structure and biochemical interactions. Within the cell, DNA topology is constantly in flux. Transcription and other essential processes, including DNA replication and repair, not only alter the topology of the genome but also introduce additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that has established the fundamental mechanistic basis of topoisomerase activity, scientists have begun to explore the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases. In this review we survey established and emerging DNA topology-dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.

  14. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing

    Directory of Open Access Journals (Sweden)

    Zdepski Anna

    2011-05-01

    Full Text Available Abstract Background High throughput sequencing (HTS technologies have revolutionized the field of genomics by drastically reducing the cost of sequencing, making it feasible for individual labs to sequence or resequence plant genomes. Obtaining high quality, high molecular weight DNA from plants poses significant challenges due to the high copy number of chloroplast and mitochondrial DNA, as well as high levels of phenolic compounds and polysaccharides. Multiple methods have been used to isolate DNA from plants; the CTAB method is commonly used to isolate total cellular DNA from plants that contain nuclear DNA, as well as chloroplast and mitochondrial DNA. Alternatively, DNA can be isolated from nuclei to minimize chloroplast and mitochondrial DNA contamination. Results We describe optimized protocols for isolation of nuclear DNA from eight different plant species encompassing both monocot and eudicot species. These protocols use nuclei isolation to minimize chloroplast and mitochondrial DNA contamination. We also developed a protocol to determine the number of chloroplast and mitochondrial DNA copies relative to the nuclear DNA using quantitative real time PCR (qPCR. We compared DNA isolated from nuclei to total cellular DNA isolated with the CTAB method. As expected, DNA isolated from nuclei consistently yielded nuclear DNA with fewer chloroplast and mitochondrial DNA copies, as compared to the total cellular DNA prepared with the CTAB method. This protocol will allow for analysis of the quality and quantity of nuclear DNA before starting a plant whole genome sequencing or resequencing experiment. Conclusions Extracting high quality, high molecular weight nuclear DNA in plants has the potential to be a bottleneck in the era of whole genome sequencing and resequencing. The methods that are described here provide a framework for researchers to extract and quantify nuclear DNA in multiple types of plants.

  15. Legendrian and transverse cables of positive torus knots

    DEFF Research Database (Denmark)

    Etnyre, John; LaFountain, Douglas; Tosun, Bülent

    2012-01-01

    Thurston-Bennequin invariant is arbitrarily far from maximal. We also exhibit Legendrian knots requiring arbitrarily many stabilizations before they become Legendrian isotopic. Similar new phenomena are observed for transverse knots. To achieve these results we define and study "partially thickenable" tori......In this paper we classify Legendrian and transverse knots in the knot types obtained from positive torus knots by cabling. This classification allows us to demonstrate several new phenomena. Specifically, we show there are knot types that have non-destabilizable Legendrian representatives whose...

  16. Theory of high-force DNA stretching and overstretching.

    Science.gov (United States)

    Storm, C; Nelson, P C

    2003-05-01

    Single-molecule experiments on single- and double-stranded DNA have sparked a renewed interest in the force versus extension of polymers. The extensible freely jointed chain (FJC) model is frequently invoked to explain the observed behavior of single-stranded DNA, but this model does not satisfactorily describe recent high-force stretching data. We instead propose a model (the discrete persistent chain) that borrows features from both the FJC and the wormlike chain, and show that it resembles the data more closely. We find that most of the high-force behavior previously attributed to stretch elasticity is really a feature of the corrected entropic elasticity; the true stretch compliance of single-stranded DNA is several times smaller than that found by previous authors. Next we elaborate our model to allow coexistence of two conformational states of DNA, each with its own stretch and bend elastic constants. Our model is computationally simple and gives an excellent fit through the entire overstretching transition of nicked, double-stranded DNA. The fit gives the first value for the bend stiffness of the overstretched state. In particular, we find the effective bend stiffness for DNA in this state to be about 12 nm k(B)T, a value quite different from either the B-form or single-stranded DNA.

  17. In Search of Functional Advantages of Knots in Proteins.

    OpenAIRE

    Dabrowski-Tumanski, P.; Stasiak, A.; Sulkowska, J.I.

    2016-01-01

    We analysed the structure of deeply knotted proteins representing three unrelated families of knotted proteins. We looked at the correlation between positions of knotted cores in these proteins and such local structural characteristics as the number of intra-chain contacts, structural stability and solvent accessibility. We observed that the knotted cores and especially their borders showed strong enrichment in the number of contacts. These regions showed also increased thermal stability, whe...

  18. On the concordance genus of topologically slice knots

    OpenAIRE

    Hom, Jennifer

    2012-01-01

    The concordance genus of a knot K is the minimum Seifert genus of all knots smoothly concordant to K. Concordance genus is bounded below by the 4-ball genus and above by the Seifert genus. We give a lower bound for the concordance genus of K coming from the knot Floer complex of K. As an application, we prove that there are topologically slice knots with 4-ball genus equal to one and arbitrarily large concordance genus.

  19. High-Throughput Block Optical DNA Sequence Identification.

    Science.gov (United States)

    Sagar, Dodderi Manjunatha; Korshoj, Lee Erik; Hanson, Katrina Bethany; Chowdhury, Partha Pratim; Otoupal, Peter Britton; Chatterjee, Anushree; Nagpal, Prashant

    2018-01-01

    Optical techniques for molecular diagnostics or DNA sequencing generally rely on small molecule fluorescent labels, which utilize light with a wavelength of several hundred nanometers for detection. Developing a label-free optical DNA sequencing technique will require nanoscale focusing of light, a high-throughput and multiplexed identification method, and a data compression technique to rapidly identify sequences and analyze genomic heterogeneity for big datasets. Such a method should identify characteristic molecular vibrations using optical spectroscopy, especially in the "fingerprinting region" from ≈400-1400 cm -1 . Here, surface-enhanced Raman spectroscopy is used to demonstrate label-free identification of DNA nucleobases with multiplexed 3D plasmonic nanofocusing. While nanometer-scale mode volumes prevent identification of single nucleobases within a DNA sequence, the block optical technique can identify A, T, G, and C content in DNA k-mers. The content of each nucleotide in a DNA block can be a unique and high-throughput method for identifying sequences, genes, and other biomarkers as an alternative to single-letter sequencing. Additionally, coupling two complementary vibrational spectroscopy techniques (infrared and Raman) can improve block characterization. These results pave the way for developing a novel, high-throughput block optical sequencing method with lossy genomic data compression using k-mer identification from multiplexed optical data acquisition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High-Throughput DNA sequencing of ancient wood.

    Science.gov (United States)

    Wagner, Stefanie; Lagane, Frédéric; Seguin-Orlando, Andaine; Schubert, Mikkel; Leroy, Thibault; Guichoux, Erwan; Chancerel, Emilie; Bech-Hebelstrup, Inger; Bernard, Vincent; Billard, Cyrille; Billaud, Yves; Bolliger, Matthias; Croutsch, Christophe; Čufar, Katarina; Eynaud, Frédérique; Heussner, Karl Uwe; Köninger, Joachim; Langenegger, Fabien; Leroy, Frédéric; Lima, Christine; Martinelli, Nicoletta; Momber, Garry; Billamboz, André; Nelle, Oliver; Palomo, Antoni; Piqué, Raquel; Ramstein, Marianne; Schweichel, Roswitha; Stäuble, Harald; Tegel, Willy; Terradas, Xavier; Verdin, Florence; Plomion, Christophe; Kremer, Antoine; Orlando, Ludovic

    2018-03-01

    Reconstructing the colonization and demographic dynamics that gave rise to extant forests is essential to forecasts of forest responses to environmental changes. Classical approaches to map how population of trees changed through space and time largely rely on pollen distribution patterns, with only a limited number of studies exploiting DNA molecules preserved in wooden tree archaeological and subfossil remains. Here, we advance such analyses by applying high-throughput (HTS) DNA sequencing to wood archaeological and subfossil material for the first time, using a comprehensive sample of 167 European white oak waterlogged remains spanning a large temporal (from 550 to 9,800 years) and geographical range across Europe. The successful characterization of the endogenous DNA and exogenous microbial DNA of 140 (~83%) samples helped the identification of environmental conditions favouring long-term DNA preservation in wood remains, and started to unveil the first trends in the DNA decay process in wood material. Additionally, the maternally inherited chloroplast haplotypes of 21 samples from three periods of forest human-induced use (Neolithic, Bronze Age and Middle Ages) were found to be consistent with those of modern populations growing in the same geographic areas. Our work paves the way for further studies aiming at using ancient DNA preserved in wood to reconstruct the micro-evolutionary response of trees to climate change and human forest management. © 2018 John Wiley & Sons Ltd.

  1. Knotcraft the practical and entertaining art of tying knots

    CERN Document Server

    Macfarlan, Allan and Paulette

    1983-01-01

    Comprehensive reference work explains how to tie hundreds of practical (and decorative) knots in clear illustrations and precisely worded written instructions. Ideal for boaters and campers. Also covers knots in history, knot mystery and magic, and games, stunts and tricks with rope. Introduction. Index. 166 black-and-white illustrations.

  2. Freely Expanding Knots of X-Ray-emitting Ejecta in Kepler’s Supernova Remnant

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toshiki [Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Hughes, John P., E-mail: toshiki@astro.isas.jaxa.jp, E-mail: jph@physics.rutgers.edu [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States)

    2017-08-20

    We report measurements of proper motion, radial velocity, and elemental composition for 14 compact X-ray-bright knots in Kepler’s supernova remnant (SNR) using archival Chandra data. The knots with the highest speed show both large proper motions ( μ ∼ 0.″11–0.″14 yr{sup −1}) and high radial velocities ( v ∼ 8700–10,020 km s{sup −1}). For these knots the estimated space velocities (9100 km s{sup −1} ≲ v {sub 3D} ≲ 10,400 km s{sup −1}) are similar to the typical Si velocity seen in supernovae (SNe) Ia near maximum light. High-speed ejecta knots appear only in specific locations and are morphologically and kinematically distinct from the rest of the ejecta. The proper motions of five knots extrapolate back over the age of Kepler’s SNR to a consistent central position. This new kinematic center agrees well with previous determinations, but is less subject to systematic errors and denotes a location about which several prominent structures in the remnant display a high degree of symmetry. These five knots are expanding at close to the free expansion rate (expansion indices of 0.75 ≲ m ≲ 1.0), which we argue indicates either that they were formed in the explosion with a high density contrast (more than 100 times the ambient density) or that they have propagated through regions of relatively low density ( n {sub H} < 0.1 cm{sup −3}) in the ambient medium. X-ray spectral analysis shows that the undecelerated knots have high Si and S abundances, a lower Fe abundance, and very low O abundance, pointing to an origin in the partial Si-burning zone, which occurs in the outer layer of the exploding white dwarf for models of SNe Ia. Other knots show lower speeds and expansion indices consistent with decelerated ejecta knots or features in the ambient medium overrun by the forward shock. Our new accurate location for the explosion site has well-defined positional uncertainties, allowing for a great reduction in the area to be searched for faint

  3. Knotting probabilities after a local strand passage in unknotted self-avoiding polygons

    International Nuclear Information System (INIS)

    Szafron, M L; Soteros, C E

    2011-01-01

    We investigate, both theoretically and numerically, the knotting probabilities after a local strand passage is performed in an unknotted self-avoiding polygon (SAP) on the simple cubic lattice. In the polygons studied, it is assumed that two polygon segments have already been brought close together for the purpose of performing a strand passage. This restricts the polygons considered to those that contain a specific pattern called Θ at a fixed location; an unknotted polygon containing Θ is called a Θ-SAP. It is proved that the number of n-edge Θ-SAPs grows exponentially (with n) at the same rate as the total number of n-edge unknotted SAPs (those with no prespecified strand passage structure). Furthermore, it is proved that the same holds for subsets of n-edge Θ-SAPs that yield a specific after-strand-passage knot-type. Thus, the probability of a given after-strand-passage knot-type does not grow (or decay) exponentially with n. Instead, it is conjectured that these after-strand-passage knot probabilities approach, as n goes to infinity, knot-type dependent amplitude ratios lying strictly between 0 and 1. This conjecture is supported by numerical evidence from Monte Carlo data generated using a composite (aka multiple) Markov chain Monte Carlo BFACF algorithm developed to study Θ-SAPs. A new maximum likelihood method is used to estimate the critical exponents relevant to this conjecture. We also obtain strong numerical evidence that the after-strand-passage knotting probability depends on the local structure around the strand-passage site. If the local structure and the crossing sign at the strand-passage site are considered, then we observe that the more 'compact' the local structure, the less likely the after-strand-passage polygon is to be knotted. This trend for compactness versus knotting probability is consistent with results obtained for other strand-passage models; however, we are the first to note the influence of the crossing-sign information. We

  4. Four-manifolds, geometries and knots

    CERN Document Server

    Hillman, Jonathan A

    2007-01-01

    The goal of this book is to characterize algebraically the closed 4-manifolds that fibre nontrivially or admit geometries in the sense of Thurston, or which are obtained by surgery on 2-knots, and to provide a reference for the topology of such manifolds and knots. The first chapter is purely algebraic. The rest of the book may be divided into three parts: general results on homotopy and surgery (Chapters 2-6), geometries and geometric decompositions (Chapters 7-13), and 2-knots (Chapters 14-18). In many cases the Euler characteristic, fundamental group and Stiefel-Whitney classes together form a complete system of invariants for the homotopy type of such manifolds, and the possible values of the invariants can be described explicitly. The strongest results are characterizations of manifolds which fibre homotopically over S^1 or an aspherical surface (up to homotopy equivalence) and infrasolvmanifolds (up to homeomorphism). As a consequence 2-knots whose groups are poly-Z are determined up to Gluck reconstruc...

  5. The Ileosigmoid Knot: A Case Report

    African Journals Online (AJOL)

    because the clinical signs are difficult to define and the ... describe a case of ileosigmoid knotting in a 40 year old male and .... Prompt relief of obstruction by an emergency laparatomy is a ... the bowel leading to perforation, fecal peritonitis and.

  6. Refined large N duality for knots

    DEFF Research Database (Denmark)

    Kameyama, Masaya; Nawata, Satoshi

    We formulate large N duality of U(N) refined Chern-Simons theory with a torus knot/link in S³. By studying refined BPS states in M-theory, we provide the explicit form of low-energy effective actions of Type IIA string theory with D4-branes on the Ω-background. This form enables us to relate...

  7. Minimal knotted polygons in cubic lattices

    International Nuclear Information System (INIS)

    Van Rensburg, E J Janse; Rechnitzer, A

    2011-01-01

    In this paper we examine numerically the properties of minimal length knotted lattice polygons in the simple cubic, face-centered cubic, and body-centered cubic lattices by sieving minimal length polygons from a data stream of a Monte Carlo algorithm, implemented as described in Aragão de Carvalho and Caracciolo (1983 Phys. Rev. B 27 1635), Aragão de Carvalho et al (1983 Nucl. Phys. B 215 209) and Berg and Foester (1981 Phys. Lett. B 106 323). The entropy, mean writhe, and mean curvature of minimal length polygons are computed (in some cases exactly). While the minimal length and mean curvature are found to be lattice dependent, the mean writhe is found to be only weakly dependent on the lattice type. Comparison of our results to numerical results for the writhe obtained elsewhere (see Janse van Rensburg et al 1999 Contributed to Ideal Knots (Series on Knots and Everything vol 19) ed Stasiak, Katritch and Kauffman (Singapore: World Scientific), Portillo et al 2011 J. Phys. A: Math. Theor. 44 275004) shows that the mean writhe is also insensitive to the length of a knotted polygon. Thus, while these results for the mean writhe and mean absolute writhe at minimal length are not universal, our results demonstrate that these values are quite close the those of long polygons regardless of the underlying lattice and length

  8. A high throughput DNA extraction method with high yield and quality

    Directory of Open Access Journals (Sweden)

    Xin Zhanguo

    2012-07-01

    Full Text Available Abstract Background Preparation of large quantity and high quality genomic DNA from a large number of plant samples is a major bottleneck for most genetic and genomic analyses, such as, genetic mapping, TILLING (Targeting Induced Local Lesion IN Genome, and next-generation sequencing directly from sheared genomic DNA. A variety of DNA preparation methods and commercial kits are available. However, they are either low throughput, low yield, or costly. Here, we describe a method for high throughput genomic DNA isolation from sorghum [Sorghum bicolor (L. Moench] leaves and dry seeds with high yield, high quality, and affordable cost. Results We developed a high throughput DNA isolation method by combining a high yield CTAB extraction method with an improved cleanup procedure based on MagAttract kit. The method yielded large quantity and high quality DNA from both lyophilized sorghum leaves and dry seeds. The DNA yield was improved by nearly 30 fold with 4 times less consumption of MagAttract beads. The method can also be used in other plant species, including cotton leaves and pine needles. Conclusion A high throughput system for DNA extraction from sorghum leaves and seeds was developed and validated. The main advantages of the method are low cost, high yield, high quality, and high throughput. One person can process two 96-well plates in a working day at a cost of $0.10 per sample of magnetic beads plus other consumables that other methods will also need.

  9. Virtual knotting in proteins and other open curves

    Science.gov (United States)

    Alexander, Keith; Taylor, Alexander; Dennis, Mark

    Long filaments naturally knot, from string to long-chain molecules. Knotting in a filament affects its properties, and may be very stable or disappear under slight manipulation. Knotting has been identified in protein backbones for which these mechanical constraints are of fundamental importance to their function, although they are open curves in which knots are not mathematically well defined; knotting can only be identified by closing the ends of the chain. We introduce a new method for resolving knotting in open curves using virtual knots, a wider class of topological objects that do not use a classical closure, capturing the topological ambiguity of open curves. Having analysed all proteins in the Protein Data Bank by this new scheme, we recover and extend previous knotting results, and identify topological interest in some new cases. The statistics of virtual knots in proteins are compared with those of Hamiltonian subchains on cubic lattices, identifying a regime of open curves in which the virtual knotting description is likely to be important. This work was supported by the Leverhulme Trust Programme Grant ``Scientific Properties of Complex Knots'' and the EPSRC.

  10. Avian influenza virus antibodies in Pacific Coast Red Knots (Calidris canutus rufa)

    Science.gov (United States)

    Johnson, James A.; DeCicco, Lucas H.; Ruthrauff, Daniel R.; Krauss, Scott; Hall, Jeffrey S.

    2014-01-01

    Prevalence of avian influenza virus (AIV) antibodies in the western Atlantic subspecies of Red Knot (Calidris canutus rufa) is among the highest for any shorebird. To assess whether the frequency of detection of AIV antibodies is high for the species in general or restricted only to C. c. rufa, we sampled the northeastern Pacific Coast subspecies of Red Knot (Calidris canutus roselaari) breeding in northwestern Alaska. Antibodies were detected in 90% of adults and none of the chicks sampled. Viral shedding was not detected in adults or chicks. These results suggest a predisposition of Red Knots to AIV infection. High antibody titers to subtypes H3 and H4 were detected, whereas low to intermediate antibody levels were found for subtypes H10 and H11. These four subtypes have previously been detected in shorebirds at Delaware Bay (at the border of New Jersey and Delaware) and in waterfowl along the Pacific Coast of North America.

  11. Root-knot nematodes in golf course greens of the western United States

    Science.gov (United States)

    A survey of 238 golf courses in ten of the Western U.S. found root-knot nematodes (Meloidogyne spp.) in 60 % of the putting greens sampled. Sequence and phylogenetic analyses of 18S rRNA, D2-D3 of 28S rRNA, ITS-rRNA and mtDNA gene sequences were used to identify specimens from 110 golf courses. The...

  12. Intra-vesical knot of bladder catheter in an extremely low birthweight neonate: A case report

    Directory of Open Access Journals (Sweden)

    Paula M.Y. Tang

    2015-07-01

    Full Text Available Premature and extremely low birth weight (ELBW neonates are at high risk of developing multiple co-morbidities and often require urinary catheterization for various medical indications. Intra-vesical knotting of bladder catheter is a known but uncommon complication of this procedure. We report a case of an ELBW baby boy with a knotted bladder catheter requiring surgical retrieval. After an elective operation for the closure of patent ductus arteriosus, a 4 French urinary catheter was inserted into an ELBW baby boy for urine output monitoring and left in-situ. Resistance was encountered in attempt to remove the urinary catheter. Abdominal X Ray confirmed intra-vesical knotting of the tube. Knot unravelling by interventional radiology was attempted but was unsuccessful. Open extra-peritoneal bladder exploration was performed for the retrieval of the tightly knotted catheter. A 6 French transurethral Foley catheter was inserted for bladder drainage. Upon removal of the Foley's catheter on day 5 post op, the baby was able to void spontaneously. With literature review, we postulated the potential risk factors resulting in this potentially avoidable iatrogenic unusual complication. Recommendations were suggested to avoid further incidences.

  13. Rapid isolation of high molecular weight DNA from single dried ...

    African Journals Online (AJOL)

    ANAND

    For studying genetic diversity in populations of predatory coccinellid, Cryptolaemus montrouzieri. Mulsant (Coccinellidae: Coleoptera), our attempts to isolate high quality DNA from individual adult beetle using several previously reported protocols and even modifications were quite unsuccessful as the insect size was small ...

  14. High Performance Systolic Array Core Architecture Design for DNA Sequencer

    Directory of Open Access Journals (Sweden)

    Saiful Nurdin Dayana

    2018-01-01

    Full Text Available This paper presents a high performance systolic array (SA core architecture design for Deoxyribonucleic Acid (DNA sequencer. The core implements the affine gap penalty score Smith-Waterman (SW algorithm. This time-consuming local alignment algorithm guarantees optimal alignment between DNA sequences, but it requires quadratic computation time when performed on standard desktop computers. The use of linear SA decreases the time complexity from quadratic to linear. In addition, with the exponential growth of DNA databases, the SA architecture is used to overcome the timing issue. In this work, the SW algorithm has been captured using Verilog Hardware Description Language (HDL and simulated using Xilinx ISIM simulator. The proposed design has been implemented in Xilinx Virtex -6 Field Programmable Gate Array (FPGA and improved in the core area by 90% reduction.

  15. Highly multiplexed targeted DNA sequencing from single nuclei.

    Science.gov (United States)

    Leung, Marco L; Wang, Yong; Kim, Charissa; Gao, Ruli; Jiang, Jerry; Sei, Emi; Navin, Nicholas E

    2016-02-01

    Single-cell DNA sequencing methods are challenged by poor physical coverage, high technical error rates and low throughput. To address these issues, we developed a single-cell DNA sequencing protocol that combines flow-sorting of single nuclei, time-limited multiple-displacement amplification (MDA), low-input library preparation, DNA barcoding, targeted capture and next-generation sequencing (NGS). This approach represents a major improvement over our previous single nucleus sequencing (SNS) Nature Protocols paper in terms of generating higher-coverage data (>90%), thereby enabling the detection of genome-wide variants in single mammalian cells at base-pair resolution. Furthermore, by pooling 48-96 single-cell libraries together for targeted capture, this approach can be used to sequence many single-cell libraries in parallel in a single reaction. This protocol greatly reduces the cost of single-cell DNA sequencing, and it can be completed in 5-6 d by advanced users. This single-cell DNA sequencing protocol has broad applications for studying rare cells and complex populations in diverse fields of biological research and medicine.

  16. High Efficiency Hydrodynamic DNA Fragmentation in a Bubbling System.

    Science.gov (United States)

    Li, Lanhui; Jin, Mingliang; Sun, Chenglong; Wang, Xiaoxue; Xie, Shuting; Zhou, Guofu; van den Berg, Albert; Eijkel, Jan C T; Shui, Lingling

    2017-01-18

    DNA fragmentation down to a precise fragment size is important for biomedical applications, disease determination, gene therapy and shotgun sequencing. In this work, a cheap, easy to operate and high efficiency DNA fragmentation method is demonstrated based on hydrodynamic shearing in a bubbling system. We expect that hydrodynamic forces generated during the bubbling process shear the DNA molecules, extending and breaking them at the points where shearing forces are larger than the strength of the phosphate backbone. Factors of applied pressure, bubbling time and temperature have been investigated. Genomic DNA could be fragmented down to controllable 1-10 Kbp fragment lengths with a yield of 75.30-91.60%. We demonstrate that the ends of the genomic DNAs generated from hydrodynamic shearing can be ligated by T4 ligase and the fragmented DNAs can be used as templates for polymerase chain reaction. Therefore, in the bubbling system, DNAs could be hydrodynamically sheared to achieve smaller pieces in dsDNAs available for further processes. It could potentially serve as a DNA sample pretreatment technique in the future.

  17. Surface-knots in 4-space an introduction

    CERN Document Server

    Kamada, Seiichi

    2017-01-01

    This introductory volume provides the basics of surface-knots and related topics, not only for researchers in these areas but also for graduate students and researchers who are not familiar with the field. Knot theory is one of the most active research fields in modern mathematics. Knots and links are closed curves (one-dimensional manifolds) in Euclidean 3-space, and they are related to braids and 3-manifolds. These notions are generalized into higher dimensions. Surface-knots or surface-links are closed surfaces (two-dimensional manifolds) in Euclidean 4-space, which are related to two-dimensional braids and 4-manifolds. Surface-knot theory treats not only closed surfaces but also surfaces with boundaries in 4-manifolds. For example, knot concordance and knot cobordism, which are also important objects in knot theory, are surfaces in the product space of the 3-sphere and the interval. Included in this book are basics of surface-knots and the related topics of classical knots, the motion picture method, surf...

  18. Knot invariants and higher representation theory

    CERN Document Server

    Webster, Ben

    2018-01-01

    The author constructs knot invariants categorifying the quantum knot variants for all representations of quantum groups. He shows that these invariants coincide with previous invariants defined by Khovanov for \\mathfrak{sl}_2 and \\mathfrak{sl}_3 and by Mazorchuk-Stroppel and Sussan for \\mathfrak{sl}_n. The author's technique is to study 2-representations of 2-quantum groups (in the sense of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible representations. These are the representation categories of certain finite dimensional algebras with an explicit diagrammatic presentation, generalizing the cyclotomic quotient of the KLR algebra. When the Lie algebra under consideration is \\mathfrak{sl}_n, the author shows that these categories agree with certain subcategories of parabolic category \\mathcal{O} for \\mathfrak{gl}_k.

  19. Towards effective topological field theory for knots

    Directory of Open Access Journals (Sweden)

    A. Mironov

    2015-10-01

    Full Text Available Construction of (colored knot polynomials for double-fat graphs is further generalized to the case when “fingers” and “propagators” are substituting R-matrices in arbitrary closed braids with m-strands. Original version of [25] corresponds to the case m=2, and our generalization sheds additional light on the structure of those mysterious formulas. Explicit expressions are now combined from Racah matrices of the type R⊗R⊗R¯⟶R¯ and mixing matrices in the sectors R⊗3⟶Q. Further extension is provided by composition rules, allowing to glue two blocks, connected by an m-strand braid (they generalize the product formula for ordinary composite knots with m=1.

  20. A state enumeration of the foil knot

    OpenAIRE

    Ramaharo, Franck; Rakotondrajao, Fanja

    2017-01-01

    We split the crossings of the foil knot and enumerate the resulting states with a generating polynomial. Unexpectedly, the number of such states which consist of two components are given by the lazy caterer's sequence. This sequence describes the maximum number of planar regions that is obtained with a given number of straight lines. We then establish a bijection between this partition of the plane and the concerned foil splits sequence.

  1. Computation of Hyperbolic Structures in Knot Theory

    OpenAIRE

    Weeks, Jeffrey R.

    2003-01-01

    This chapter from the upcoming Handbook of Knot Theory (eds. Menasco and Thistlethwaite) shows how to construct hyperbolic structures on link complements and perform hyperbolic Dehn filling. Along with a new elementary exposition of the standard ideas from Thurston's work, the article includes never-before-published explanations of SnapPea's algorithms for triangulating a link complement efficiently and for converging quickly to the hyperbolic structure while avoiding singularities in the par...

  2. Directed PCR-free engineering of highly repetitive DNA sequences

    Directory of Open Access Journals (Sweden)

    Preissler Steffen

    2011-09-01

    Full Text Available Abstract Background Highly repetitive nucleotide sequences are commonly found in nature e.g. in telomeres, microsatellite DNA, polyadenine (poly(A tails of eukaryotic messenger RNA as well as in several inherited human disorders linked to trinucleotide repeat expansions in the genome. Therefore, studying repetitive sequences is of biological, biotechnological and medical relevance. However, cloning of such repetitive DNA sequences is challenging because specific PCR-based amplification is hampered by the lack of unique primer binding sites resulting in unspecific products. Results For the PCR-free generation of repetitive DNA sequences we used antiparallel oligonucleotides flanked by restriction sites of Type IIS endonucleases. The arrangement of recognition sites allowed for stepwise and seamless elongation of repetitive sequences. This facilitated the assembly of repetitive DNA segments and open reading frames encoding polypeptides with periodic amino acid sequences of any desired length. By this strategy we cloned a series of polyglutamine encoding sequences as well as highly repetitive polyadenine tracts. Such repetitive sequences can be used for diverse biotechnological applications. As an example, the polyglutamine sequences were expressed as His6-SUMO fusion proteins in Escherichia coli cells to study their aggregation behavior in vitro. The His6-SUMO moiety enabled affinity purification of the polyglutamine proteins, increased their solubility, and allowed controlled induction of the aggregation process. We successfully purified the fusions proteins and provide an example for their applicability in filter retardation assays. Conclusion Our seamless cloning strategy is PCR-free and allows the directed and efficient generation of highly repetitive DNA sequences of defined lengths by simple standard cloning procedures.

  3. Modeling the Effects of Knots in Structural Timber

    DEFF Research Database (Denmark)

    Foley, Christina

    The main purpose of the pursued research presented in this thesis is to increase knowledge of the effects of knots in structural timber so that characteristics of weaker timber may be determined and applied to improve current grading techniques. In the process, a three-dimensional fiber paradigm...... are given to Shigo's knot formation theory, and thus predicts two separate patterns of fiber direction within annual growth layers related to live knots. In order to determine the possibility to practically and non destructively predict local material directions in structural timber with the three...... was established, which describes variations of radial growth direction and fiber orientation related to knots in timber. The adaptability of the paradigm allows practically any softwood knot and its effect on surrounding wood material to be modeled with an accuracy that is limited only by input data. The knot...

  4. High Efficiency Acetylcholinesterase Immobilization on DNA Aptamer Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Orada Chumphukam

    2014-04-01

    Full Text Available We report here the in vitro selection of DNA aptamers for electric eel acetylcholinesterase (AChE. One selected aptamer sequence (R15/19 has a high affinity towards the enzyme (Kd = 157 ± 42 pM. Characterization of the aptamer showed its binding is not affected by low ionic strength (~20 mM, however significant reduction in affinity occurred at high ionic strength (~1.2 M. In addition, this aptamer does not inhibit the catalytic activity of AChE that we exploit through immobilization of the DNA on a streptavidin-coated surface. Subsequent immobilization of AChE by the aptamer results in a 4-fold higher catalytic activity when compared to adsorption directly on to plastic.

  5. Dissecting host plant manipulation by cyst and root-knot nematodes

    NARCIS (Netherlands)

    Karczmarek, A.

    2006-01-01

    Cyst ( Globodera spp. and Heterodera spp.) and root-knot nematodes ( Meloidogyne spp.), one of the most damaging crop pests, are a perfect example of highly adapted, sophisticated root parasites. These nematodes induces specialized feeding structures (cyst

  6. Evaluation of tomato genotypes for resistance to root-knot nematodes

    African Journals Online (AJOL)

    Tomato (Solanum lycopersicum) is one of the most popular vegetable crops worldwide, owing to its high nutritive value and diversified use. Tomato production in Ghana is threatened by plant parasitic nematodes, especially the root knot nematodes (Meloidogyne spp.), which are responsible for huge economic yield losses.

  7. Switchable DNA interfaces for the highly sensitive detection of label-free DNA targets.

    Science.gov (United States)

    Rant, Ulrich; Arinaga, Kenji; Scherer, Simon; Pringsheim, Erika; Fujita, Shozo; Yokoyama, Naoki; Tornow, Marc; Abstreiter, Gerhard

    2007-10-30

    We report a method to detect label-free oligonucleotide targets. The conformation of surface-tethered probe nucleic acids is modulated by alternating electric fields, which cause the molecules to extend away from or fold onto the biased surface. Binding (hybridization) of targets to the single-stranded probes results in a pronounced enhancement of the layer-height modulation amplitude, monitored optically in real time. The method features an exceptional detection limit of <3 x 10(8) bound targets per cm(2) sensor area. Single base-pair mismatches in the sequences of DNA complements may readily be identified; moreover, binding kinetics and binding affinities can be determined with high accuracy. When driving the DNA to oscillate at frequencies in the kHz regime, distinct switching kinetics are revealed for single- and double-stranded DNA. Molecular dynamics are used to identify the binding state of molecules according to their characteristic kinetic fingerprints by using a chip-compatible detection format.

  8. Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces

    Directory of Open Access Journals (Sweden)

    Eveson J Paige

    2006-08-01

    Full Text Available Abstract Background Poorly preserved biological tissues have become an important source of DNA for a wide range of zoological studies. Measuring the quality of DNA obtained from these samples is often desired; however, there are no widely used techniques available for quantifying damage in highly degraded DNA samples. We present a general method that can be used to determine the frequency of polymerase blocking DNA damage in specific gene-regions in such samples. The approach uses quantitative PCR to measure the amount of DNA present at several fragment sizes within a sample. According to a model of random degradation the amount of available template will decline exponentially with increasing fragment size in damaged samples, and the frequency of DNA damage (λ can be estimated by determining the rate of decline. Results The method is illustrated through the analysis of DNA extracted from sea lion faecal samples. Faeces contain a complex mixture of DNA from several sources and different components are expected to be differentially degraded. We estimated the frequency of DNA damage in both predator and prey DNA within individual faecal samples. The distribution of fragment lengths for each target fit well with the assumption of a random degradation process and, in keeping with our expectations, the estimated frequency of damage was always less in predator DNA than in prey DNA within the same sample (mean λpredator = 0.0106 per nucleotide; mean λprey = 0.0176 per nucleotide. This study is the first to explicitly define the amount of template damage in any DNA extracted from faeces and the first to quantify the amount of predator and prey DNA present within individual faecal samples. Conclusion We present an approach for characterizing mixed, highly degraded PCR templates such as those often encountered in ecological studies using non-invasive samples as a source of DNA, wildlife forensics investigations and ancient DNA research. This method will

  9. Rather than by direct acquisition via lateral gene transfer, GHF5 cellulases were passed on from early Pratylenchidae to root-knot and cyst nematodes.

    Science.gov (United States)

    Rybarczyk-Mydłowska, Katarzyna; Maboreke, Hazel Ruvimbo; van Megen, Hanny; van den Elsen, Sven; Mooyman, Paul; Smant, Geert; Bakker, Jaap; Helder, Johannes

    2012-11-21

    Plant parasitic nematodes are unusual Metazoans as they are equipped with genes that allow for symbiont-independent degradation of plant cell walls. Among the cell wall-degrading enzymes, glycoside hydrolase family 5 (GHF5) cellulases are relatively well characterized, especially for high impact parasites such as root-knot and cyst nematodes. Interestingly, ancestors of extant nematodes most likely acquired these GHF5 cellulases from a prokaryote donor by one or multiple lateral gene transfer events. To obtain insight into the origin of GHF5 cellulases among evolutionary advanced members of the order Tylenchida, cellulase biodiversity data from less distal family members were collected and analyzed. Single nematodes were used to obtain (partial) genomic sequences of cellulases from representatives of the genera Meloidogyne, Pratylenchus, Hirschmanniella and Globodera. Combined Bayesian analysis of ≈ 100 cellulase sequences revealed three types of catalytic domains (A, B, and C). Represented by 84 sequences, type B is numerically dominant, and the overall topology of the catalytic domain type shows remarkable resemblance with trees based on neutral (= pathogenicity-unrelated) small subunit ribosomal DNA sequences. Bayesian analysis further suggested a sister relationship between the lesion nematode Pratylenchus thornei and all type B cellulases from root-knot nematodes. Yet, the relationship between the three catalytic domain types remained unclear. Superposition of intron data onto the cellulase tree suggests that types B and C are related, and together distinct from type A that is characterized by two unique introns. All Tylenchida members investigated here harbored one or multiple GHF5 cellulases. Three types of catalytic domains are distinguished, and the presence of at least two types is relatively common among plant parasitic Tylenchida. Analysis of coding sequences of cellulases suggests that root-knot and cyst nematodes did not acquire this gene directly

  10. Rather than by direct acquisition via lateral gene transfer, GHF5 cellulases were passed on from early Pratylenchidae to root-knot and cyst nematodes

    Directory of Open Access Journals (Sweden)

    Rybarczyk-Mydłowska Katarzyna

    2012-11-01

    Full Text Available Abstract Background Plant parasitic nematodes are unusual Metazoans as they are equipped with genes that allow for symbiont-independent degradation of plant cell walls. Among the cell wall-degrading enzymes, glycoside hydrolase family 5 (GHF5 cellulases are relatively well characterized, especially for high impact parasites such as root-knot and cyst nematodes. Interestingly, ancestors of extant nematodes most likely acquired these GHF5 cellulases from a prokaryote donor by one or multiple lateral gene transfer events. To obtain insight into the origin of GHF5 cellulases among evolutionary advanced members of the order Tylenchida, cellulase biodiversity data from less distal family members were collected and analyzed. Results Single nematodes were used to obtain (partial genomic sequences of cellulases from representatives of the genera Meloidogyne, Pratylenchus, Hirschmanniella and Globodera. Combined Bayesian analysis of ≈ 100 cellulase sequences revealed three types of catalytic domains (A, B, and C. Represented by 84 sequences, type B is numerically dominant, and the overall topology of the catalytic domain type shows remarkable resemblance with trees based on neutral (= pathogenicity-unrelated small subunit ribosomal DNA sequences. Bayesian analysis further suggested a sister relationship between the lesion nematode Pratylenchus thornei and all type B cellulases from root-knot nematodes. Yet, the relationship between the three catalytic domain types remained unclear. Superposition of intron data onto the cellulase tree suggests that types B and C are related, and together distinct from type A that is characterized by two unique introns. Conclusions All Tylenchida members investigated here harbored one or multiple GHF5 cellulases. Three types of catalytic domains are distinguished, and the presence of at least two types is relatively common among plant parasitic Tylenchida. Analysis of coding sequences of cellulases suggests that root-knot

  11. Detection of two fungal biocontrol agents against root-knot nematodes by RAPD markers.

    Science.gov (United States)

    Zhu, Ming Liang; Mo, Ming He; Xia, Zhen Yuan; Li, Yun Hua; Yang, Shu Jun; Li, Tian Fei; Zhang, Ke Qin

    2006-05-01

    The strain ZK7 of Pochonia chlamydosporia var. chlamydosporia and IPC of Paecilomyces lilacinus are highly effective in the biological control against root-knot nematodes infecting tobacco. When applied, they require a specific monitoring method to evaluate the colonization and dispersal in soil. In this work, the randomly amplified polymorphic DNA (RAPD) technique was used to differentiate between the two individual strains and 95 other isolates, including isolates of the same species and common soil fungi. This approach allowed the selection of specific fragments of 1.2 kb (Vc1200) and 2.0 kb (Vc2000) specific for ZK7, 1.4 kb (P1400) and 0.85 kb (P850) specific for IPC, using the random Primers OPL-02, OPD-05, OPD-05 and OPC-11, respectively. These fragments were cloned, sequenced, and used to design sequence-characterized amplification region (SCAR) primers specific for the two strains. In classical polymerase chain reaction (PCR), with serial dilution of ZK7 and IPC pure culture DNAs template, the detection limits of these oligonucleotide SCAR-PCR primers were found to be 10, 1000, 500, 100 pg, respectively. In the dot blotting, digoxigenin (DIG)-labeled amplicons from these four primers specifically recognized the corresponding fragments in the DNAs template of these two strains. The detection limit of these amplicons were 0.2, 0.2, 0.5, 0.5 mug, respectively.

  12. Colloidal silica films for high-capacity DNA arrays

    Science.gov (United States)

    Glazer, Marc Irving

    The human genome project has greatly expanded the amount of genetic information available to researchers, but before this vast new source of data can be fully utilized, techniques for rapid, large-scale analysis of DNA and RNA must continue to develop. DNA arrays have emerged as a powerful new technology for analyzing genomic samples in a highly parallel format. The detection sensitivity of these arrays is dependent on the quantity and density of immobilized probe molecules. We have investigated substrates with a porous, "three-dimensional" surface layer as a means of increasing the surface area available for the synthesis of oligonucleotide probes, thereby increasing the number of available probes and the amount of detectable bound target. Porous colloidal silica films were created by two techniques. In the first approach, films were deposited by spin-coating silica colloid suspensions onto flat glass substrates, with the pores being formed by the natural voids between the solid particles (typically 23nm pores, 35% porosity). In the second approach, latex particles were co-deposited with the silica and then pyrolyzed, creating films with larger pores (36 nm), higher porosity (65%), and higher surface area. For 0.3 mum films, enhancements of eight to ten-fold and 12- to 14-fold were achieved with the pure silica films and the films "templated" with polymer latex, respectively. In gene expression assays for up to 7,000 genes using complex biological samples, the high-capacity films provided enhanced signals and performed equivalently or better than planar glass on all other functional measures, confirming that colloidal silica films are a promising platform for high-capacity DNA arrays. We have also investigated the kinetics of hybridization on planar glass and high-capacity substrates. Adsorption on planar arrays is similar to ideal Langmuir-type adsorption, although with an "overshoot" at high solution concentration. Hybridization on high-capacity films is

  13. Polypyrrole–gold nanoparticle composites for highly sensitive DNA detection

    International Nuclear Information System (INIS)

    Spain, Elaine; Keyes, Tia E.; Forster, Robert J.

    2013-01-01

    DNA capture surfaces represent a powerful approach to developing highly sensitive sensors for identifying the cause of infection. Electrochemically deposited polypyrrole, PPy, films have been functionalized with electrodeposited gold nanoparticles to give a nanocomposite material, PPy–AuNP. Thiolated capture strand DNA, that is complementary to the sequence from the pathogen Staphylococcus aureus that causes mammary gland inflammation, was then immobilized onto the gold nanoparticles and any of the underlying gold electrode that is exposed. A probe strand, labelled with horse radish peroxidase, HRP, was then hybridized to the target. The concentration of the target was determined by measuring the current generated by reducing benzoquinone produced by the HRP label. Semi-log plots of the pathogen DNA concentration vs. faradaic current are linear from 150 pM to 1 μM and pM concentrations can be detected without the need for molecular, e.g., PCR or NASBA, amplification. The nanocomposite also exhibits excellent selectivity and single base mismatches in a 30 mer sequence can be detected

  14. Critical factors for assembling a high volume of DNA barcodes

    Science.gov (United States)

    Hajibabaei, Mehrdad; deWaard, Jeremy R; Ivanova, Natalia V; Ratnasingham, Sujeevan; Dooh, Robert T; Kirk, Stephanie L; Mackie, Paula M; Hebert, Paul D.N

    2005-01-01

    Large-scale DNA barcoding projects are now moving toward activation while the creation of a comprehensive barcode library for eukaryotes will ultimately require the acquisition of some 100 million barcodes. To satisfy this need, analytical facilities must adopt protocols that can support the rapid, cost-effective assembly of barcodes. In this paper we discuss the prospects for establishing high volume DNA barcoding facilities by evaluating key steps in the analytical chain from specimens to barcodes. Alliances with members of the taxonomic community represent the most effective strategy for provisioning the analytical chain with specimens. The optimal protocols for DNA extraction and subsequent PCR amplification of the barcode region depend strongly on their condition, but production targets of 100K barcode records per year are now feasible for facilities working with compliant specimens. The analysis of museum collections is currently challenging, but PCR cocktails that combine polymerases with repair enzyme(s) promise future success. Barcode analysis is already a cost-effective option for species identification in some situations and this will increasingly be the case as reference libraries are assembled and analytical protocols are simplified. PMID:16214753

  15. Highly parallel translation of DNA sequences into small molecules.

    Directory of Open Access Journals (Sweden)

    Rebecca M Weisinger

    Full Text Available A large body of in vitro evolution work establishes the utility of biopolymer libraries comprising 10(10 to 10(15 distinct molecules for the discovery of nanomolar-affinity ligands to proteins. Small-molecule libraries of comparable complexity will likely provide nanomolar-affinity small-molecule ligands. Unlike biopolymers, small molecules can offer the advantages of cell permeability, low immunogenicity, metabolic stability, rapid diffusion and inexpensive mass production. It is thought that such desirable in vivo behavior is correlated with the physical properties of small molecules, specifically a limited number of hydrogen bond donors and acceptors, a defined range of hydrophobicity, and most importantly, molecular weights less than 500 Daltons. Creating a collection of 10(10 to 10(15 small molecules that meet these criteria requires the use of hundreds to thousands of diversity elements per step in a combinatorial synthesis of three to five steps. With this goal in mind, we have reported a set of mesofluidic devices that enable DNA-programmed combinatorial chemistry in a highly parallel 384-well plate format. Here, we demonstrate that these devices can translate DNA genes encoding 384 diversity elements per coding position into corresponding small-molecule gene products. This robust and efficient procedure yields small molecule-DNA conjugates suitable for in vitro evolution experiments.

  16. Analysis of the tractive force pattern on a knot by force measurement during laparoscopic knot tying.

    Science.gov (United States)

    Takayasu, Kenta; Yoshida, Kenji; Kinoshita, Hidefumi; Yoshimoto, Syunsuke; Oshiro, Osamu; Matsuda, Tadashi

    2017-07-19

    Quantifying surgical skills assists novice surgeons when learning operative techniques. We measured the interaction force at a ligation point and clarified the features of the force pattern among surgeons with different skill levels during laparoscopic knot tying. Forty-four surgeons were divided into three groups based on experience: 13 novice (0-5 years), 16 intermediate (6-15 years), and 15 expert (16-30 years). To assess the tractive force direction and volume during knot tying, we used a sensor that measures six force-torque values (x-axis: Fx, y-axis: Fy, z-axis: Fz, and xy-axis: Fxy) attached to a slit Penrose drain. All participants completed one double knot and five single knot sequences. We recorded completion time, force volume (FV), maximum force (MF), time over 1.5 N, duration of non-zero force, and percentage time when vertical force exceeded horizontal force (PTz). There was a significant difference between groups for completion time (p = 0.007); FV (total: p = 0.002; Fx: p = 0.004, Fy: p = 0.007, Fxy: p = 0.004, Fz: p force (p = 0.029); and PTz (p force pattern at the ligation point during suturing by surgeons with three levels of experience using a force measurement system. We revealed that both force volume and force direction differed depending on surgeons' skill level during knot tying. Copyright © 2017. Published by Elsevier Inc.

  17. Great Knot Calidris tenuirostris at Lutembe Bay, Uganda

    African Journals Online (AJOL)

    Unfortunately it became nervous and flew to another island and we were unable to pursue it before darkness fell. I was, however, able to take some record shots. I circulated the best of four poor photographs to a few birding colleagues for their opinion, and the general consensus favoured Red Knot rather than Great Knot.

  18. Ileosigmoid knotting in pregnancy: A case report from Zimbabwe ...

    African Journals Online (AJOL)

    Ileosigmoid knotting (ISK), also known as compound volvulus, is a rare cause of intestinal obstruction wherein the ileum wraps around the base of the sigmoid colon and forms a knot with rapid progression to gangrene. The worldwide incidence of ISK ranges from 1 in 1500 to 1 in 66,431. ISK is particularly rare in pregnancy ...

  19. Relative symplectic caps, 4-genus and fibered knots

    Indian Academy of Sciences (India)

    We prove relative versions of the symplectic capping theorem and sufficiency of Giroux's criterion for Stein fillability and use these to study the 4-genus of knots. More precisely, suppose we have a symplectic 4-manifold with convex boundary and a symplectic surface in such that is a transverse knot in .

  20. Factorization of differential expansion for antiparallel double-braid knots

    Science.gov (United States)

    Morozov, A.

    2016-09-01

    Continuing the quest for exclusive Racah matrices, which are needed for evaluation of colored arborescent-knot polynomials in Chern-Simons theory, we suggest to extract them from a new kind of a double-evolution — that of the antiparallel double-braids, which is a simple two-parametric family of two-bridge knots, generalizing the one-parametric family of twist knots. In the case of rectangular representations R = [ r s ] we found an evidence that the corresponding differential expansion miraculously factorizes and can be obtained from that for the twist knots. This reduces the problem of rectangular exclusive Racah to constructing the answers for just a few twist knots. We develop a recent conjecture on the structure of differential expansion for the simplest members of this family (the trefoil and the figure-eight knot) and provide the exhaustive answer for the first unknown case of R = [33]. The answer includes HOMFLY of arbitrary twist and double-braid knots and Racah matrices overline{S} and S — what allows to calculate [33]-colored polynomials for arbitrary arborescent (double-fat) knots. For generic rectangular representations fully described are only the contributions of the single-floor pyramids. One step still remains to be done.

  1. True Umbilical Cord Knot Leading to Fetal Demise | Ikechebelu ...

    African Journals Online (AJOL)

    The incidence of true knot of the umbilical cord is not only very low but it is often undiagnosed antenatally when present despite the availability of prenatal ultrasonography. When the true knot remains tight, it may impede the circulation of the fetus and may result to fetal death in utero especially in labor. We report a very ...

  2. Borromean Triangles and Prime Knots in an Ancient Temple

    Indian Academy of Sciences (India)

    a computer mouse with cable which forms the logo of the Topo- logical Quantum .... theory of knots stayed on and was developed into a beautiful. Figure 3. A prime knot ... ematics to build bridges with the inner worlds that these temples seek to ...

  3. Hydrodynamic characteristics of knotted and knotless purse seine netting panels as determined in a flume tank.

    Science.gov (United States)

    Tang, Hao; Xu, Liuxiong; Hu, Fuxiang

    2018-01-01

    Nylon (PA) netting is widely used in purse seines and other fishing gears due to its high strength and good sinking performance. However, hydrodynamic properties of nylon netting of different characteristics are poorly understood. This study investigated hydrodynamic characteristics of nylon netting of different knot types and solidity ratios under different attack angles and flow velocities. It was found that the hydrodynamic coefficient of netting panels was related to Reynolds number, solidity ratio, attack angle, knot type and twine construction. The solidity ratio was found to positively correlate with drag coefficient when the netting was normal to the flow (CD90), but not the case when the netting was parallel to the flow (CD0). For netting panels inclined to the flow, the inclined drag coefficient had a negative relationship with the solidity ratio for attack angles between 0° and 50°, but a positive relationship for attack angles between 50° and 90°. The lift coefficient increased with the attack angle, reaching the culminating point at an attack angle of 50°, before subsequent decline. We found that the drag generated by knot accounted for 15-25% of total drag, and the knotted netting with higher solidity ratio exhibited a greater CD0, but it was not the case for the knotless netting. Compared to knotless polyethylene (PE) netting, the drag coefficients of knotless PA netting were dominant at higher Reynolds number (Re>2200).

  4. Hydrodynamic characteristics of knotted and knotless purse seine netting panels as determined in a flume tank.

    Directory of Open Access Journals (Sweden)

    Hao Tang

    Full Text Available Nylon (PA netting is widely used in purse seines and other fishing gears due to its high strength and good sinking performance. However, hydrodynamic properties of nylon netting of different characteristics are poorly understood. This study investigated hydrodynamic characteristics of nylon netting of different knot types and solidity ratios under different attack angles and flow velocities. It was found that the hydrodynamic coefficient of netting panels was related to Reynolds number, solidity ratio, attack angle, knot type and twine construction. The solidity ratio was found to positively correlate with drag coefficient when the netting was normal to the flow (CD90, but not the case when the netting was parallel to the flow (CD0. For netting panels inclined to the flow, the inclined drag coefficient had a negative relationship with the solidity ratio for attack angles between 0° and 50°, but a positive relationship for attack angles between 50° and 90°. The lift coefficient increased with the attack angle, reaching the culminating point at an attack angle of 50°, before subsequent decline. We found that the drag generated by knot accounted for 15-25% of total drag, and the knotted netting with higher solidity ratio exhibited a greater CD0, but it was not the case for the knotless netting. Compared to knotless polyethylene (PE netting, the drag coefficients of knotless PA netting were dominant at higher Reynolds number (Re>2200.

  5. High-throughput screening of suppression subtractive hybridization cDNA libraries using DNA microarray analysis

    CSIR Research Space (South Africa)

    Van den Berg, N

    2004-11-01

    Full Text Available Efficient construction of cDNA libraries enriched for differentially expressed transcripts is an important first step in many biological investigations. We present a quantitative procedure for screening cDNA libraries constructed by suppression...

  6. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure.

    OpenAIRE

    Felgner, P L; Gadek, T R; Holm, M; Roman, R; Chan, H W; Wenz, M; Northrop, J P; Ringold, G M; Danielsen, M

    1987-01-01

    A DNA-transfection protocol has been developed that makes use of a synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA). Small unilamellar liposomes containing DOTMA interact spontaneously with DNA to form lipid-DNA complexes with 100% entrapment of the DNA, DOTMA facilitates fusion of the complex with the plasma membrane of tissue culture cells, resulting in both uptake and expression of the DNA. The technique is simple, highly reproducible, and eff...

  7. Atmospheres of polygons and knotted polygons

    International Nuclear Information System (INIS)

    Janse Rensburg, E J Janse; Rechnitzer, A

    2008-01-01

    In this paper we define two statistics a + (ω) and a - (ω), the positive and negative atmospheres of a lattice polygon ω of fixed length n. These statistics have the property that (a + (ω))/(a - (ω)) = p n+2 /p n , where p n is the number of polygons of length n, counted modulo translations. We use the pivot algorithm to sample polygons and to compute the corresponding average atmospheres. Using these data, we directly estimate the growth constants of polygons in two and three dimensions. We find that μ=2.63805±0.00012 in two dimensions and μ=4.683980±0.000042±0.000067 in three dimensions, where the error bars are 67% confidence intervals, and the second error bar in the three-dimensional estimate of μ is an estimated systematic error. We also compute atmospheres of polygons of fixed knot type K sampled by the BFACF algorithm. We discuss the implications of our results and show that different knot types have atmospheres which behave dramatically differently at small values of n

  8. The mean squared writhe of alternating random knot diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Y; Hinson, K [Department of Mathematics and Statistics University of North Carolina at Charlotte, NC 28223 (United States); Ernst, C; Ziegler, U, E-mail: ydiao@uncc.ed [Department of Mathematics and Computer Science, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2010-12-10

    The writhe of a knot diagram is a simple geometric measure of the complexity of the knot diagram. It plays an important role not only in knot theory itself, but also in various applications of knot theory to fields such as molecular biology and polymer physics. The mean squared writhe of any sample of knot diagrams with n crossings is n when for each diagram at each crossing one of the two strands is chosen as the overpass at random with probability one-half. However, such a diagram is usually not minimal. If we restrict ourselves to a minimal knot diagram, then the choice of which strand is the over- or under-strand at each crossing is no longer independent of the neighboring crossings and a larger mean squared writhe is expected for minimal diagrams. This paper explores the effect on the correlation between the mean squared writhe and the diagrams imposed by the condition that diagrams are minimal by studying the writhe of classes of reduced, alternating knot diagrams. We demonstrate that the behavior of the mean squared writhe heavily depends on the underlying space of diagram templates. In particular this is true when the sample space contains only diagrams of a special structure. When the sample space is large enough to contain not only diagrams of a special type, then the mean squared writhe for n crossing diagrams tends to grow linearly with n, but at a faster rate than n, indicating an intrinsic property of alternating knot diagrams. Studying the mean squared writhe of alternating random knot diagrams also provides some insight into the properties of the diagram generating methods used, which is an important area of study in the applications of random knot theory.

  9. Pseudomonas savastanoi pv. savastanoi: some like it knot.

    Science.gov (United States)

    Ramos, Cayo; Matas, Isabel M; Bardaji, Leire; Aragón, Isabel M; Murillo, Jesús

    2012-12-01

    Pseudomonas savastanoi pv. savastanoi is the causal agent of olive (Olea europaea) knot disease and an unorthodox member of the P. syringae complex, causing aerial tumours instead of the foliar necroses and cankers characteristic of most members of this complex. Olive knot is present wherever olive is grown; although losses are difficult to assess, it is assumed that olive knot is one of the most important diseases of the olive crop. The last century witnessed a large number of scientific articles describing the biology, epidemiology and control of this pathogen. However, most P. savastanoi pv. savastanoi strains are highly recalcitrant to genetic manipulation, which has effectively prevented the pathogen from benefitting from the scientific progress in molecular biology that has elevated the foliar pathogens of the P. syringae complex to supermodels. A number of studies in recent years have made significant advances in the biology, ecology and genetics of P. savastanoi pv. savastanoi, paving the way for the molecular dissection of its interaction with other nonpathogenic bacteria and their woody hosts. The selection of a genetically pliable model strain was soon followed by the development of rapid methods for virulence assessment with micropropagated olive plants and the analysis of cellular interactions with the plant host. The generation of a draft genome of strain NCPPB 3335 and the closed sequence of its three native plasmids has allowed for functional and comparative genomic analyses for the identification of its pathogenicity gene complement. This includes 34 putative type III effector genes and genomic regions, shared with other pathogens of woody hosts, which encode metabolic pathways associated with the degradation of lignin-derived compounds. Now, the time is right to explore the molecular basis of the P. savastanoi pv. savastanoi-olive interaction and to obtain insights into why some pathovars like it necrotic and why some like it knot

  10. Management of High-Throughput DNA Sequencing Projects: Alpheus.

    Science.gov (United States)

    Miller, Neil A; Kingsmore, Stephen F; Farmer, Andrew; Langley, Raymond J; Mudge, Joann; Crow, John A; Gonzalez, Alvaro J; Schilkey, Faye D; Kim, Ryan J; van Velkinburgh, Jennifer; May, Gregory D; Black, C Forrest; Myers, M Kathy; Utsey, John P; Frost, Nicholas S; Sugarbaker, David J; Bueno, Raphael; Gullans, Stephen R; Baxter, Susan M; Day, Steve W; Retzel, Ernest F

    2008-12-26

    High-throughput DNA sequencing has enabled systems biology to begin to address areas in health, agricultural and basic biological research. Concomitant with the opportunities is an absolute necessity to manage significant volumes of high-dimensional and inter-related data and analysis. Alpheus is an analysis pipeline, database and visualization software for use with massively parallel DNA sequencing technologies that feature multi-gigabase throughput characterized by relatively short reads, such as Illumina-Solexa (sequencing-by-synthesis), Roche-454 (pyrosequencing) and Applied Biosystem's SOLiD (sequencing-by-ligation). Alpheus enables alignment to reference sequence(s), detection of variants and enumeration of sequence abundance, including expression levels in transcriptome sequence. Alpheus is able to detect several types of variants, including non-synonymous and synonymous single nucleotide polymorphisms (SNPs), insertions/deletions (indels), premature stop codons, and splice isoforms. Variant detection is aided by the ability to filter variant calls based on consistency, expected allele frequency, sequence quality, coverage, and variant type in order to minimize false positives while maximizing the identification of true positives. Alpheus also enables comparisons of genes with variants between cases and controls or bulk segregant pools. Sequence-based differential expression comparisons can be developed, with data export to SAS JMP Genomics for statistical analysis.

  11. Bacterial natural transformation by highly fragmented and damaged DNA

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic Antoine Alexandre

    2013-01-01

    for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake......DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often DNA is recognized as nutrient source...... of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations...

  12. High LET radiation and mechanism of DNA damage repair

    International Nuclear Information System (INIS)

    Furusawa, Yoshiya

    2004-01-01

    Clarifying the mechanism of repair from radiation damage gives most important information on radiation effects on cells. Approximately 10% of biological experiments groups in Heavy Ion Medical Accelerator in Chiba (HIMAC) cooperative research group has performed the subject. They gave a lot of new findings on the mechanism, and solved some open questions. The reason to show the peak of relative biological effectiveness RBE at around 100-200 keV/μm causes miss-repair of DNA damage. Sub-lethal damage generated by high linear energy transfer (LET) radiation can be repaired fully. Potentially lethal damages by high-LET radiation also repaired, but the efficiency decreased with the LET, and so on. (author)

  13. Multimedia article. The keys to the new laparoscopic world Thumbs up! knot and Tornado knot.

    Science.gov (United States)

    Uchida, K; Haruta, N; Okajima, M; Matsuda, M; Yamamoto, M

    2005-06-01

    Most laparoscopic surgeons feel some anxiety when performing intracorporeal knotting with conventional techniques [1, 2]. Two factors contribute to this anxiety. The first is the necessity of recognizing three dimensions on a two-dimensional monitor. The conventional intracorporeal knotting techniques make loops by twisting the thread with a second pair of forceps. This necessitates cooperative movement of both hands, with the added difficulties of depth perception. Regular touch confirmations reduce problems with depth perception. However, touch confirmation is more complicated in laparoscopic surgery than in laparotomy. The second problem is that tied loops can come loose and escape the instruments, especially with hard thread. This is not only stressful but also increases operation time.

  14. Damage of plasmid DNA by high energy ions

    International Nuclear Information System (INIS)

    Michaelidesova, A.; Pachnerova Brabcova, K.; Davidkova, M.

    2018-01-01

    The aim of the study was to determine the degree of direct DNA damage by high-energy ions, which are one of the components of cosmic rays, and therefore the knowledge of the biological effects of these ions is key to long-term space missions with human crew. The pBR322 plasmid containing 4361 base pairs was used in this study. The aqueous solution of plasmid pBR322 was transferred on ice to Japan to the Heavy Ion Medical Accelerator in Chiba, the Research Center for Charged Particle Therapy. Just before the experiment, the droplets of solution of known concentration were applied to the slides and the water was allowed to evaporate to produce dry DNA samples. Half of the slides were irradiated with 290 MeV/u of carbon ions and a dose rate of 20 Gy/min. The other half of the slides were irradiated with helium nuclei of 150 MeV/hr and a dose rate of 12.6 Gy/min. Both sets of slides were irradiated with doses of 0-1,400 Gy with a 200 Gy step. After irradiation, the samples were re-dissolved in distilled water, frozen and transported on ice to the Czech Republic for processing. Samples were analyzed by agarose gel electrophoresis. The plasmid was evaluated separately to determine the degree of radiation induced lesions and further to incubation with enzymes recognizing basal damage. (authors)

  15. On the groundstate energy spectrum of magnetic knots and links

    International Nuclear Information System (INIS)

    Ricca, Renzo L; Maggioni, Francesca

    2014-01-01

    By using analytical results for the constrained minimum energy of magnetic knots we determine the influence of internal twist on the minimum magnetic energy levels of knots and links, and by using ropelength data from the RIDGERUNNER tightening algorithm (Ashton et al 2011 Exp. Math. 20 57–90) we obtain the groundstate energy spectra of the first 250 prime knots and 130 prime links. The two spectra are found to follow an almost identical logarithmic law. By assuming that the number of knot types grows exponentially with the topological crossing number, we show that this generic behavior can be justified by a general relationship between ropelength and crossing number, which is in good agreement with former analytical estimates (Buck and Simon 1999 Topol. Appl. 91 245–57, Diao 2003 J. Knot Theory Ramifications 12 1–16). Moreover, by considering the ropelength averaged over a given knot family, we establish a new connection between the averaged ropelength and the topological crossing number of magnetic knots. (paper)

  16. DNA Origami Reorganizes upon Interaction with Graphite: Implications for High-Resolution DNA Directed Protein Patterning

    Directory of Open Access Journals (Sweden)

    Masudur Rahman

    2016-10-01

    Full Text Available Although there is a long history of the study of the interaction of DNA with carbon surfaces, limited information exists regarding the interaction of complex DNA-based nanostructures with the important material graphite, which is closely related to graphene. In view of the capacity of DNA to direct the assembly of proteins and optical and electronic nanoparticles, the potential for combining DNA-based materials with graphite, which is an ultra-flat, conductive carbon substrate, requires evaluation. A series of imaging studies utilizing Atomic Force Microscopy has been applied in order to provide a unified picture of this important interaction of structured DNA and graphite. For the test structure examined, we observe a rapid destabilization of the complex DNA origami structure, consistent with a strong interaction of single-stranded DNA with the carbon surface. This destabilizing interaction can be obscured by an intentional or unintentional primary intervening layer of single-stranded DNA. Because the interaction of origami with graphite is not completely dissociative, and because the frustrated, expanded structure is relatively stable over time in solution, it is demonstrated that organized structures of pairs of the model protein streptavidin can be produced on carbon surfaces using DNA origami as the directing material.

  17. DNA Origami Reorganizes upon Interaction with Graphite: Implications for High-Resolution DNA Directed Protein Patterning

    Science.gov (United States)

    Rahman, Masudur; Neff, David; Green, Nathaniel; Norton, Michael L.

    2016-01-01

    Although there is a long history of the study of the interaction of DNA with carbon surfaces, limited information exists regarding the interaction of complex DNA-based nanostructures with the important material graphite, which is closely related to graphene. In view of the capacity of DNA to direct the assembly of proteins and optical and electronic nanoparticles, the potential for combining DNA-based materials with graphite, which is an ultra-flat, conductive carbon substrate, requires evaluation. A series of imaging studies utilizing Atomic Force Microscopy has been applied in order to provide a unified picture of this important interaction of structured DNA and graphite. For the test structure examined, we observe a rapid destabilization of the complex DNA origami structure, consistent with a strong interaction of single-stranded DNA with the carbon surface. This destabilizing interaction can be obscured by an intentional or unintentional primary intervening layer of single-stranded DNA. Because the interaction of origami with graphite is not completely dissociative, and because the frustrated, expanded structure is relatively stable over time in solution, it is demonstrated that organized structures of pairs of the model protein streptavidin can be produced on carbon surfaces using DNA origami as the directing material. PMID:28335324

  18. Rapid identification of cyst (Heterodera spp., Globodera spp.) and root-knot (Meloidogyne spp.) nematodes on the basis of ITS2 sequence variation detected by PCR-single-strand conformational polymorphism (PCR-SSCP) in cultures and field samples

    NARCIS (Netherlands)

    Clapp, J.P.; Van der Stoel, C.D.; Van der Putten, W.H.

    2000-01-01

    Cyst and root-knot nematodes show high levels of gross morphological similarity. This presents difficulties for the study of their ecology in natural ecosystems. In this study, cyst and root-knot nematode species, as well as some ectoparasitic nematode species, were identified using the second

  19. Intracorporeal knotting of a femoral nerve catheter

    Directory of Open Access Journals (Sweden)

    Ghanem, Mohamed

    2015-01-01

    Full Text Available Peripheral nerve catheters are effective and well-established tools to provide postoperative analgesia to patients undergoing orthopedic surgery. The performance of these techniques is usually considered safe. However, placement of nerve catheters may be associated with a considerable number of side effects and major complications have repeatedly been published. In this work, we report on a patient who underwent total knee replacement with spinal anesthesia and preoperative insertion of femoral and sciatic nerve catheters for postoperative analgesia. During insertion of the femoral catheter, significant resistance was encountered upon retracting the catheter. This occurred due to knotting of the catheter. The catheter had to be removed by operative intervention which has to be considered a major complication. The postoperative course was uneventful. The principles for removal of entrapped peripheral catheters are not well established, may differ from those for neuroaxial catheters, and range from cautious manipulation up to surgical intervention.

  20. Motion of charged particles in a knotted electromagnetic field

    International Nuclear Information System (INIS)

    Arrayas, M; Trueba, J L

    2010-01-01

    In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.

  1. Motion of charged particles in a knotted electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, M; Trueba, J L, E-mail: joseluis.trueba@urjc.e [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)

    2010-06-11

    In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.

  2. Pinus pinaster Knot: A Source of Polyphenols against Plasmopara viticola.

    Science.gov (United States)

    Gabaston, Julien; Richard, Tristan; Cluzet, Stéphanie; Palos Pinto, Antonio; Dufour, Marie-Cécile; Corio-Costet, Marie-France; Mérillon, Jean-Michel

    2017-10-11

    Pine knot extract from Pinus pinaster byproducts was characterized by UHPLC-DAD-MS and NMR. Fourteen polyphenols divided into four classes were identified as follows: lignans (nortrachelogenin, pinoresinol, matairesinol, isolariciresinol, secoisolariciresinol), flavonoids (pinocembrin, pinobanksin, dihydrokaempferol, taxifolin), stilbenes (pinosylvin, pinosylvin monomethyl ether, pterostilbene), and phenolic acids (caffeic acid, ferulic acid). The antifungal potential of pine knot extract, as well as the main compounds, was tested in vitro against Plasmopara viticola. The ethanolic extract showed a strong antimildew activity. In addition, pinosylvins and pinocembrin demonstrated significant inhibition of zoospore mobility and mildew development. These findings strongly suggest that pine knot is a potential biomass that could be used as a natural antifungal product.

  3. Teaching and Learning of Knot Theory in School Mathematics

    CERN Document Server

    Kawauchi, Akio

    2012-01-01

    This book is the result of a joint venture between Professor Akio Kawauchi, Osaka City University, well-known for his research in knot theory, and the Osaka study group of mathematics education, founded by Professor Hirokazu Okamori and now chaired by his successor Professor Tomoko Yanagimoto, Osaka Kyoiku University. The seven chapters address the teaching and learning of knot theory from several perspectives. Readers will find an extremely clear and concise introduction to the fundamentals of knot theory, an overview of curricular developments in Japan, and in particular a series of teaching

  4. Quandles an introduction to the algebra of knots

    CERN Document Server

    Elhamdadi, Mohamed

    2015-01-01

    From prehistory to the present, knots have been used for purposes both artistic and practical. The modern science of Knot Theory has ramifications for biochemistry and mathematical physics and is a rich source of research projects for undergraduate and graduate students and professionals alike. Quandles are essentially knots translated into algebra. This book provides an accessible introduction to quandle theory for readers with a background in linear algebra. Important concepts from topology and abstract algebra motivated by quandle theory are introduced along the way. With elementary self-co

  5. Two high-mobility group box domains act together to underwind and kink DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Giraldo, R.; Acosta-Reyes, F. J. [Universitat Politecnica de Catalunya, 08028 Barcelona (Spain); Malarkey, C. S. [University of Colorado School of Medicine, Aurora, CO 80045 (United States); Saperas, N. [Universitat Politecnica de Catalunya, 08028 Barcelona (Spain); Churchill, M. E. A., E-mail: mair.churchill@ucdenver.edu [University of Colorado School of Medicine, Aurora, CO 80045 (United States); Campos, J. L., E-mail: mair.churchill@ucdenver.edu [Universitat Politecnica de Catalunya, 08028 Barcelona (Spain)

    2015-06-30

    The crystal structure of HMGB1 box A bound to an unmodified AT-rich DNA fragment is reported at a resolution of 2 Å. A new mode of DNA recognition for HMG box proteins is found in which two box A domains bind in an unusual configuration generating a highly kinked DNA structure. High-mobility group protein 1 (HMGB1) is an essential and ubiquitous DNA architectural factor that influences a myriad of cellular processes. HMGB1 contains two DNA-binding domains, box A and box B, which have little sequence specificity but have remarkable abilities to underwind and bend DNA. Although HMGB1 box A is thought to be responsible for the majority of HMGB1–DNA interactions with pre-bent or kinked DNA, little is known about how it recognizes unmodified DNA. Here, the crystal structure of HMGB1 box A bound to an AT-rich DNA fragment is reported at a resolution of 2 Å. Two box A domains of HMGB1 collaborate in an unusual configuration in which the Phe37 residues of both domains stack together and intercalate the same CG base pair, generating highly kinked DNA. This represents a novel mode of DNA recognition for HMGB proteins and reveals a mechanism by which structure-specific HMG boxes kink linear DNA.

  6. Two high-mobility group box domains act together to underwind and kink DNA

    International Nuclear Information System (INIS)

    Sánchez-Giraldo, R.; Acosta-Reyes, F. J.; Malarkey, C. S.; Saperas, N.; Churchill, M. E. A.; Campos, J. L.

    2015-01-01

    The crystal structure of HMGB1 box A bound to an unmodified AT-rich DNA fragment is reported at a resolution of 2 Å. A new mode of DNA recognition for HMG box proteins is found in which two box A domains bind in an unusual configuration generating a highly kinked DNA structure. High-mobility group protein 1 (HMGB1) is an essential and ubiquitous DNA architectural factor that influences a myriad of cellular processes. HMGB1 contains two DNA-binding domains, box A and box B, which have little sequence specificity but have remarkable abilities to underwind and bend DNA. Although HMGB1 box A is thought to be responsible for the majority of HMGB1–DNA interactions with pre-bent or kinked DNA, little is known about how it recognizes unmodified DNA. Here, the crystal structure of HMGB1 box A bound to an AT-rich DNA fragment is reported at a resolution of 2 Å. Two box A domains of HMGB1 collaborate in an unusual configuration in which the Phe37 residues of both domains stack together and intercalate the same CG base pair, generating highly kinked DNA. This represents a novel mode of DNA recognition for HMGB proteins and reveals a mechanism by which structure-specific HMG boxes kink linear DNA

  7. Highly sensitive polymerase chain reaction-free quantum dot-based quantification of forensic genomic DNA

    International Nuclear Information System (INIS)

    Tak, Yu Kyung; Kim, Won Young; Kim, Min Jung; Han, Eunyoung; Han, Myun Soo; Kim, Jong Jin; Kim, Wook; Lee, Jong Eun; Song, Joon Myong

    2012-01-01

    Highlights: ► Genomic DNA quantification were performed using a quantum dot-labeled Alu sequence. ► This probe provided PCR-free determination of human genomic DNA. ► Qdot-labeled Alu probe-hybridized genomic DNAs had a 2.5-femtogram detection limit. ► Qdot-labeled Alu sequence was used to assess DNA samples for human identification. - Abstract: Forensic DNA samples can degrade easily due to exposure to light and moisture at the crime scene. In addition, the amount of DNA acquired at a criminal site is inherently limited. This limited amount of human DNA has to be quantified accurately after the process of DNA extraction. The accurately quantified extracted genomic DNA is then used as a DNA template in polymerase chain reaction (PCR) amplification for short tandem repeat (STR) human identification. Accordingly, highly sensitive and human-specific quantification of forensic DNA samples is an essential issue in forensic study. In this work, a quantum dot (Qdot)-labeled Alu sequence was developed as a probe to simultaneously satisfy both the high sensitivity and human genome selectivity for quantification of forensic DNA samples. This probe provided PCR-free determination of human genomic DNA and had a 2.5-femtogram detection limit due to the strong emission and photostability of the Qdot. The Qdot-labeled Alu sequence has been used successfully to assess 18 different forensic DNA samples for STR human identification.

  8. Visualization of DNA in highly processed botanical materials.

    Science.gov (United States)

    Lu, Zhengfei; Rubinsky, Maria; Babajanian, Silva; Zhang, Yanjun; Chang, Peter; Swanson, Gary

    2018-04-15

    DNA-based methods have been gaining recognition as a tool for botanical authentication in herbal medicine; however, their application in processed botanical materials is challenging due to the low quality and quantity of DNA left after extensive manufacturing processes. The low amount of DNA recovered from processed materials, especially extracts, is "invisible" by current technology, which has casted doubt on the presence of amplifiable botanical DNA. A method using adapter-ligation and PCR amplification was successfully applied to visualize the "invisible" DNA in botanical extracts. The size of the "invisible" DNA fragments in botanical extracts was around 20-220 bp compared to fragments of around 600 bp for the more easily visualized DNA in botanical powders. This technique is the first to allow characterization and visualization of small fragments of DNA in processed botanical materials and will provide key information to guide the development of appropriate DNA-based botanical authentication methods in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Highly sensitive DNA sensors based on cerium oxide nanorods

    Science.gov (United States)

    Nguyet, Nguyen Thi; Hai Yen, Le Thi; Van Thu, Vu; lan, Hoang; Trung, Tran; Vuong, Pham Hung; Tam, Phuong Dinh

    2018-04-01

    In this work, a CeO2 nanorod (NR)-based electrochemical DNA sensor was developed to identify Salmonella that causes food-borne infections. CeO2 NRs were synthesized without templates via a simple and unexpensive hydrothermal approach at 170 °C for 12 h by using CeO(NO3)3·6H2O as a Ce source. The DNA probe was immobilized onto the CeO2 NR-modified electrode through covalent attachment. The characteristics of the hybridized DNA were analyzed through electrochemical impedance spectroscopy (EIS) with [Fe(CN)6]3-/4- as a redox probe. Experimental results showed that electron transfer resistance (Ret) increased after the DNA probe was attached to the electrode surface and increased further after the DNA probe hybridized with its complementary sequence. A linear response of Ret to the target DNA concentration was found from 0.01 μM to 2 μM. The detection limit and sensitivity of the DNA sensor were 0.01 μM and 3362.1 Ω μM-1 cm-2, respectively. Various parameters, such as pH value, ionic strength, DNA probe concentration, and hybridization time, influencing DNA sensor responses were also investigated.

  10. Scanning fluorescence detector for high-throughput DNA genotyping

    Science.gov (United States)

    Rusch, Terry L.; Petsinger, Jeremy; Christensen, Carl; Vaske, David A.; Brumley, Robert L., Jr.; Luckey, John A.; Weber, James L.

    1996-04-01

    A new scanning fluorescence detector (SCAFUD) was developed for high-throughput genotyping of short tandem repeat polymorphisms (STRPs). Fluorescent dyes are incorporated into relatively short DNA fragments via polymerase chain reaction (PCR) and are separated by electrophoresis in short, wide polyacrylamide gels (144 lanes with well to read distances of 14 cm). Excitation light from an argon laser with primary lines at 488 and 514 nm is introduced into the gel through a fiber optic cable, dichroic mirror, and 40X microscope objective. Emitted fluorescent light is collected confocally through a second fiber. The confocal head is translated across the bottom of the gel at 0.5 Hz. The detection unit utilizes dichroic mirrors and band pass filters to direct light with 10 - 20 nm bandwidths to four photomultiplier tubes (PMTs). PMT signals are independently amplified with variable gain and then sampled at a rate of 2500 points per scan using a computer based A/D board. LabView software (National Instruments) is used for instrument operation. Currently, three fluorescent dyes (Fam, Hex and Rox) are simultaneously detected with peak detection wavelengths of 543, 567, and 613 nm, respectively. The detection limit for fluorescein-labeled primers is about 100 attomoles. Planned SCAFUD upgrades include rearrangement of laser head geometry, use of additional excitation lasers for simultaneous detection of more dyes, and the use of detector arrays instead of individual PMTs. Extensive software has been written for automatic analysis of SCAFUD images. The software enables background subtraction, band identification, multiple- dye signal resolution, lane finding, band sizing and allele calling. Whole genome screens are currently underway to search for loci influencing such complex diseases as diabetes, asthma, and hypertension. Seven production SCAFUDs are currently in operation. Genotyping output for the coming year is projected to be about one million total genotypes (DNA

  11. Effects of knot type in the folding of topologically complex lattice proteins

    Science.gov (United States)

    Soler, Miguel A.; Nunes, Ana; Faísca, Patrícia F. N.

    2014-07-01

    The folding properties of a protein whose native structure contains a 52 knot are investigated by means of extensive Monte Carlo simulations of a simple lattice model and compared with those of a 31 knot. A 52 knot embedded in the native structure enhances the kinetic stability of the carrier lattice protein in a way that is clearly more pronounced than in the case of the 31 knot. However, this happens at the expense of a severe loss in folding efficiency, an observation that is consistent with the relative abundance of 31 and 52 knots in the Protein Data Bank. The folding mechanism of the 52 knot shares with that of the 31 knot the occurrence of a threading movement of the chain terminus that lays closer to the knotted core. However, co-concomitant knotting and folding in the 52 knot occurs with negligible probability, in sharp contrast to what is observed for the 31 knot. The study of several single point mutations highlights the importance in the folding of knotted proteins of the so-called structural mutations (i.e., energetic perturbations of native interactions between residues that are critical for knotting but not for folding). On the other hand, the present study predicts that mutations that perturb the folding transition state may significantly enhance the kinetic stability of knotted proteins provided they involve residues located within the knotted core.

  12. Knot theory and a physical state of quantum gravity

    International Nuclear Information System (INIS)

    Liko, Tomas; Kauffman, Louis H

    2006-01-01

    We discuss the theory of knots, and describe how knot invariants arise naturally in gravitational physics. The focus of this review is to delineate the relationship between knot theory and the loop representation of non-perturbative canonical quantum general relativity (loop quantum gravity). This leads naturally to a discussion of the Kodama wavefunction, a state which is conjectured to be the ground state of the gravitational field with positive cosmological constant. This review can serve as a self-contained introduction to loop quantum gravity and related areas. Our intent is to make the paper accessible to a wider audience that may include topologists, knot theorists, and other persons innocent of the physical background to this approach to quantum gravity. (topical review)

  13. Integrated management of root-knot nematode (Meloidogyne ...

    African Journals Online (AJOL)

    Integrated management of root-knot nematode (Meloidogyne incognita) for tomato production and productivity. Bayuh Belay1* ... important food and cash crop of the farmers and is ...... some part of the research budget without any reservation.

  14. Knots, splices and rope-work an illustrated handbook

    CERN Document Server

    Verrill, A Hyatt

    2006-01-01

    This treasury of practical and ornamental knots ranges from easy half-hitches and bow-lines to intricate rope-work projects, such as rope buckles and cask slings. Detailed instructions accompany the 148 drawings.

  15. Khovanov homology for virtual knots with arbitrary coefficients

    International Nuclear Information System (INIS)

    Manturov, Vassily O

    2007-01-01

    The Khovanov homology theory over an arbitrary coefficient ring is extended to the case of virtual knots. We introduce a complex which is well-defined in the virtual case and is homotopy equivalent to the original Khovanov complex in the classical case. Unlike Khovanov's original construction, our definition of the complex does not use any additional prescription of signs to the edges of a cube. Moreover, our method enables us to construct a Khovanov homology theory for 'twisted virtual knots' in the sense of Bourgoin and Viro (including knots in three-dimensional projective space). We generalize a number of results of Khovanov homology theory (the Wehrli complex, minimality problems, Frobenius extensions) to virtual knots with non-orientable atoms

  16. Seasonality in basal metabolic rate and thermal conductance in a long-distance migrant shorebird, the knot (Calidris canutus)

    NARCIS (Netherlands)

    Piersma, T.; Cadée, N.; Daan, S.

    Knots Calidris canutus live highly seasonal lives, breeding solitarily on high arctic tundra and spending the non-breeding season in large social flocks in temperate to tropical estuaries. Their reproductive activities and physiological preparations for long flights are reflected in pronounced

  17. Hybrid Threat Center of Gravity Analysis: Cutting the Gordian Knot

    Science.gov (United States)

    2016-04-04

    19b. TELEPHONE NUMBER (Include area code) 04/04/2016 Master’s Thesis 22-7-2015 to 04-04-2016 HYBRID THREAT CENTER OF GRAVITY ANALYSIS: CUTTING THE...CENTER OF GRAVITY ANALYSIS: CUTTING THE GORDIAN KNOT By Michael D. Reilly LtCol, USMC Intentionally left blank...HYBRID THREAT CENTER OF GRAVITY ANALYSIS: CUTTING THE GORDIAN KNOT By Michael D. Reilly LtCol, USMC A paper submitted to the Faculty of the Joint Advanced

  18. Knack knots you need step-by-step instructions for more than 100 of the best sailing, fishing, climbing, camping and decorative knots

    CERN Document Server

    Tilton, Buck

    2008-01-01

    Untie the mystery of knot-making with this clever and handy guide. This new compendium presents all the knots you need to know, with brightly colored photographs enabling you to easily follow the instructions. In addition, the book includes copious information on using knots in most popular activities. With its clear step-by-step instructions and friendly tone, this is the one volume you can count on to guide you toward quick success in knot-making.

  19. Theory of high-force DNA stretching and overstretching

    NARCIS (Netherlands)

    Storm, C.; Nelson, P.

    2003-01-01

    Single-molecule experiments on single- and double-stranded DNA have sparked a renewed interest in the force versus extension of polymers. The extensible freely jointed chain (FJC) model is frequently invoked to explain the observed behavior of single-stranded DNA, but this model does not

  20. Determination of a Screening Metric for High Diversity DNA Libraries.

    Science.gov (United States)

    Guido, Nicholas J; Handerson, Steven; Joseph, Elaine M; Leake, Devin; Kung, Li A

    2016-01-01

    The fields of antibody engineering, enzyme optimization and pathway construction rely increasingly on screening complex variant DNA libraries. These highly diverse libraries allow researchers to sample a maximized sequence space; and therefore, more rapidly identify proteins with significantly improved activity. The current state of the art in synthetic biology allows for libraries with billions of variants, pushing the limits of researchers' ability to qualify libraries for screening by measuring the traditional quality metrics of fidelity and diversity of variants. Instead, when screening variant libraries, researchers typically use a generic, and often insufficient, oversampling rate based on a common rule-of-thumb. We have developed methods to calculate a library-specific oversampling metric, based on fidelity, diversity, and representation of variants, which informs researchers, prior to screening the library, of the amount of oversampling required to ensure that the desired fraction of variant molecules will be sampled. To derive this oversampling metric, we developed a novel alignment tool to efficiently measure frequency counts of individual nucleotide variant positions using next-generation sequencing data. Next, we apply a method based on the "coupon collector" probability theory to construct a curve of upper bound estimates of the sampling size required for any desired variant coverage. The calculated oversampling metric will guide researchers to maximize their efficiency in using highly variant libraries.

  1. Determination of a Screening Metric for High Diversity DNA Libraries.

    Directory of Open Access Journals (Sweden)

    Nicholas J Guido

    Full Text Available The fields of antibody engineering, enzyme optimization and pathway construction rely increasingly on screening complex variant DNA libraries. These highly diverse libraries allow researchers to sample a maximized sequence space; and therefore, more rapidly identify proteins with significantly improved activity. The current state of the art in synthetic biology allows for libraries with billions of variants, pushing the limits of researchers' ability to qualify libraries for screening by measuring the traditional quality metrics of fidelity and diversity of variants. Instead, when screening variant libraries, researchers typically use a generic, and often insufficient, oversampling rate based on a common rule-of-thumb. We have developed methods to calculate a library-specific oversampling metric, based on fidelity, diversity, and representation of variants, which informs researchers, prior to screening the library, of the amount of oversampling required to ensure that the desired fraction of variant molecules will be sampled. To derive this oversampling metric, we developed a novel alignment tool to efficiently measure frequency counts of individual nucleotide variant positions using next-generation sequencing data. Next, we apply a method based on the "coupon collector" probability theory to construct a curve of upper bound estimates of the sampling size required for any desired variant coverage. The calculated oversampling metric will guide researchers to maximize their efficiency in using highly variant libraries.

  2. Energy, ropelength, and other physical aspects of equilateral knots

    International Nuclear Information System (INIS)

    Millett, Kenneth C.; Rawdon, Eric J.

    2003-01-01

    Closed macromolecular chains may form physically knotted conformations whose relative occurrence and spatial measurements provide insight into their properties and the mechanisms acting upon them. Under the assumption of a degree of structural homogeneity, equilateral spatial polygons are a productive context within which to create mathematical models of these knots and to study their mathematical and physical properties. The ensembles, or spaces, of these knots are models of the settings within which the knots evolve in ways determined by a physical model. In this paper we describe the mathematical foundation of such models as well as such spatial, geometric, statistical, and physical properties of the configurations as mathematical energies, thickness and ropelength, average crossing number, average writhe, and volumes and surfaces areas of standard bodies enclosing the knots. We present methods with which the energy and ropelength are optimized within the families of spatially equivalent equilateral configurations. Numerical results from our implementation of these methods are shown to illustrate connections between the physical measurements and spatial characteristics of the optimized knot configurations. In addition, these data suggest potentially new connections involving their spatial properties

  3. Methods for High-throughput Characterisation of Environmental DNA

    DEFF Research Database (Denmark)

    Andersen, Kenneth

    This PhD thesis examines the potential of describing biodiversity of green plants (Viridiplantae), birds (Aves) and mammals (Mammalia), in the context of next-generation sequencing, from the DNA that all organisms segregate into the environment (eDNA). The research is based on case studies...... of species assemblages described by eDNA recovered from contemporary surface soil and Holocene sediment sequences, to assess the accuracy and limitations of the approach. Biodiversity incorporates two aspects of ecological communities, including both the taxonomic richness and abundance of individual taxa...... inhibition. In chapter four, alternative DNA extraction protocols and pipelines for characterising plant eDNA are tested on samples from contrasting environments including modern, Holocene and Pleistocene sediment samples. These results are compared to pollen and macrofossil records described from earlier...

  4. Knots Untie: Molecular Determinants Involved in Knot Formation Induced by Pseudomonas savastanoi in Woody Hosts

    Directory of Open Access Journals (Sweden)

    Eloy Caballo-Ponce

    2017-06-01

    Full Text Available The study of the molecular basis of tree diseases is lately receiving a renewed attention, especially with the emerging perception that pathogens require specific pathogenicity and virulence factors to successfully colonize woody hosts. Pathosystems involving woody plants are notoriously difficult to study, although the use of model bacterial strains together with genetically homogeneous micropropagated plant material is providing a significant impetus to our understanding of the molecular determinants leading to disease. The gammaproteobacterium Pseudomonas savastanoi belongs to the intensively studied Pseudomonas syringae complex, and includes three pathogenic lineages causing tumorous overgrowths (knots in diverse economically relevant trees and shrubs. As it occurs with many other bacteria, pathogenicity of P. savastanoi is dependent on a type III secretion system, which is accompanied by a core set of at least 20 effector genes shared among strains isolated from olive, oleander, and ash. The induction of knots of wild-type size requires that the pathogen maintains adequate levels of diverse metabolites, including the phytohormones indole-3-acetic acid and cytokinins, as well as cyclic-di-GMP, some of which can also regulate the expression of other pathogenicity and virulence genes and participate in bacterial competitiveness. In a remarkable example of social networking, quorum sensing molecules allow for the communication among P. savastanoi and other members of the knot microbiome, while at the same time are essential for tumor formation. Additionally, a distinguishing feature of bacteria from the P. syringae complex isolated from woody organs is the possession of a 15 kb genomic island (WHOP carrying four operons and three other genes involved in degradation of phenolic compounds. Two of these operons mediate the catabolism of anthranilate and catechol and, together with another operon, are required for the induction of full-size tumors

  5. Stripped-down DNA repair in a highly reduced parasite

    Directory of Open Access Journals (Sweden)

    Fast Naomi M

    2007-03-01

    Full Text Available Abstract Background Encephalitozoon cuniculi is a member of a distinctive group of single-celled parasitic eukaryotes called microsporidia, which are closely related to fungi. Some of these organisms, including E. cuniculi, also have uniquely small genomes that are within the prokaryotic range. Thus, E. cuniculi has undergone a massive genome reduction which has resulted in a loss of genes from diverse biological pathways, including those that act in DNA repair. DNA repair is essential to any living cell. A loss of these mechanisms invariably results in accumulation of mutations and/or cell death. Six major pathways of DNA repair in eukaryotes include: non-homologous end joining (NHEJ, homologous recombination repair (HRR, mismatch repair (MMR, nucleotide excision repair (NER, base excision repair (BER and methyltransferase repair. DNA polymerases are also critical players in DNA repair processes. Given the close relationship between microsporidia and fungi, the repair mechanisms present in E. cuniculi were compared to those of the yeast Saccharomyces cerevisiae to ascertain how the process of genome reduction has affected the DNA repair pathways. Results E. cuniculi lacks 16 (plus another 6 potential absences of the 56 DNA repair genes sought via BLASTP and PSI-BLAST searches. Six of 14 DNA polymerases or polymerase subunits are also absent in E. cuniculi. All of these genes are relatively well conserved within eukaryotes. The absence of genes is not distributed equally among the different repair pathways; some pathways lack only one protein, while there is a striking absence of many proteins that are components of both double strand break repair pathways. All specialized repair polymerases are also absent. Conclusion Given the large number of DNA repair genes that are absent from the double strand break repair pathways, E. cuniculi is a prime candidate for the study of double strand break repair with minimal machinery. Strikingly, all of the

  6. A novel platform based on defect-rich knotted graphene nanotubes for detection of small biomolecules

    International Nuclear Information System (INIS)

    Lan, Shumin; Song, Yingpan; Chen, Qidi; Guo, Zhiyong; Zhan, Hongbing

    2016-01-01

    Highlights: • Curvature of the SC-CNTs’ cavities had more local pressure, leading to form k-GNTs. • k-GNTs are divided into sections by knots with abundant edge-plane sites/defects. • k-GNTs exhibited excellent catalytic activity, sensitivity and reproducibility. - Abstract: Detection of disease-related small biomolecules was of great significance for clinical diagnostics and treatment. In this work, we synthesized defect-rich knotted graphene nanotubes (k-GNTs) via chemical oxidative etching of stacked-up carbon nanotubes (SC-CNTs) followed by chemical reduction, to detect disease-related small biomolecules. We further studied the electrochemical properties using three representative redox probes and analyzed their biosensitivity using five biomolecules. The k-GNT-modified electrodes exhibited excellent electrochemical response, with the lowest ΔE p and the highest k 0 . Besides, the modified electrodes could simultaneously detect and discriminate between dopamine (DA), ascorbic acid and uric acid (UA), as well as differentiate phenethylamine (PEA) and epinephrine (EP) existed in newborn rat serum, providing the wide linear detection ranges with high sensitivities for DA, UA, PEA, and EP. These excellent electrocatalytic properties could be ascribe to the unique knotted graphene nanotube structure with high proportion of defect/edge sites, large, accessible, three-dimensional, accessible surface area, fewer oxygen-containing groups and doped N atoms. Our work reveals defect-rich k-GNTs as a promising platform for further applications in electrochemical biosensing and electrocatalysis.

  7. Knots, topology and quantum field theories

    International Nuclear Information System (INIS)

    Lusanna, L.

    1989-01-01

    The title of the workshop, Knots, Topology and Quantum Field Theory, accurate reflected the topics discussed. There have been important developments in mathematical and quantum field theory in the past few years, which had a large impact on physicist thinking. It is historically unusual and pleasing that these developments are taking place as a result of an intense interaction between mathematical physicists and mathematician. On the one hand, topological concepts and methods are playing an increasingly important lead to novel mathematical concepts: for instance, the study of quantum groups open a new chapter in the deformation theory of Lie algebras. These developments at present will lead to new insights into the theory of elementary particles and their interactions. In essence, the talks dealt with three, broadly defined areas of theoretical physics. One was topological quantum field theories, the other the problem of quantum groups and the third one certain aspects of more traditional field theories, such as, for instance, quantum gravity. These topics, however, are interrelated and the general theme of the workshop defies rigid classification; this was evident from the cross references to be found in almo all the talks

  8. Type IIB Ileosigmoid knotting: a case report

    Directory of Open Access Journals (Sweden)

    Ajak Makor

    2018-02-01

    Full Text Available Ileosigmoid knotting is a rare cause of acute intestinal obstruction. It is more common in Africans and Asians than in white populations and it is more prevalent in males than in females with a ratio of 14:1. It is classified into four types (I, II, III and IV with further extra two subtypes of A and B where type A is the most common presentation. Preoperative diagnosis is a challenge to the frontline doctors in the accidents and emergency departments; especially with limited diagnostic tools. Ultrasonography may be misleading in most of the cases due to the similarity of the disease with other causes of acute abdomen, especially acute appendicitis. Clinical presentation of an unprecedented intestinal obstruction with constant upper to mid-abdominal quadrant pain associated with mild to moderate abdominal distension contrary to the severe abdominal distension in sigmoid volvulus are the hallmarks that can help the surgical team to reach an accurate and early diagnosis preoperatively to avoid the devastating ischemia and gangrene in case of delay.

  9. Capillary gel electrophoresis for rapid, high resolution DNA sequencing.

    OpenAIRE

    Swerdlow, H; Gesteland, R

    1990-01-01

    Capillary gel electrophoresis has been demonstrated for the separation and detection of DNA sequencing samples. Enzymatic dideoxy nucleotide chain termination was employed, using fluorescently tagged oligonucleotide primers and laser based on-column detection (limit of detection is 6,000 molecules per peak). Capillary gel separations were shown to be three times faster, with better resolution (2.4 x), and higher separation efficiency (5.4 x) than a conventional automated slab gel DNA sequenci...

  10. Meloidogyne luci n. sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitising different crops in Brazil, Chile and Iran

    NARCIS (Netherlands)

    Carneiro, R.M.D.G.; Correa, V.R.; Almeida, M.R.A.; Gomes, A.C.M.M.; Deimi, A.M.; Castagnone-Sereno, P.; Karssen, G.

    2014-01-01

    A new root-knot nematode parasitising vegetables, flowers and fruits in Brazil, Iran and Chile, is described as Meloidogyne luci n. sp. The female has an oval to squarish perineal pattern with a low to moderately high dorsal arc and without shoulders, similar to M. ethiopica. The female stylet is

  11. An optimized rapid bisulfite conversion method with high recovery of cell-free DNA.

    Science.gov (United States)

    Yi, Shaohua; Long, Fei; Cheng, Juanbo; Huang, Daixin

    2017-12-19

    Methylation analysis of cell-free DNA is a encouraging tool for tumor diagnosis, monitoring and prognosis. Sensitivity of methylation analysis is a very important matter due to the tiny amounts of cell-free DNA available in plasma. Most current methods of DNA methylation analysis are based on the difference of bisulfite-mediated deamination of cytosine between cytosine and 5-methylcytosine. However, the recovery of bisulfite-converted DNA based on current methods is very poor for the methylation analysis of cell-free DNA. We optimized a rapid method for the crucial steps of bisulfite conversion with high recovery of cell-free DNA. A rapid deamination step and alkaline desulfonation was combined with the purification of DNA on a silica column. The conversion efficiency and recovery of bisulfite-treated DNA was investigated by the droplet digital PCR. The optimization of the reaction results in complete cytosine conversion in 30 min at 70 °C and about 65% of recovery of bisulfite-treated cell-free DNA, which is higher than current methods. The method allows high recovery from low levels of bisulfite-treated cell-free DNA, enhancing the analysis sensitivity of methylation detection from cell-free DNA.

  12. Developing an Objective Structured Assessment of Technical Skills for Laparoscopic Suturing and Intracorporeal Knot Tying.

    Science.gov (United States)

    Chang, Olivia H; King, Louise P; Modest, Anna M; Hur, Hye-Chun

    2016-01-01

    To develop a teaching and assessment tool for laparoscopic suturing and intracorporeal knot tying. We designed an Objective Structured Assessment of Technical Skills (OSATS) tool that includes a procedure-specific checklist (PSC) and global rating scale (GRS) to assess laparoscopic suturing and intracorporeal knot-tying performance. Obstetrics and Gynecology residents at our institution were videotaped while performing a laparoscopic suturing and intracorporeal knot-tying task at a surgical simulation workshop. A total of 2 expert reviewers assessed resident performance using the OSATS tool during live performance and 1 month later using the videotaped recordings. OSATS scores were analyzed using the Wilcoxon rank-sum test. Data are presented as median scores (interquartile range [IQR]). Intrarater and interrater reliabilities were assessed using a Spearman correlation and are presented as an r correlation coefficient and p value. An r ≥ 0.8 was considered as a high correlation. After testing, we received feedback from residents and faculty to improve the OSATS tool as part of an iterative design process. In all, 14 of 21 residents (66.7%) completed the study, with 9 junior residents and 5 senior residents. Junior residents had a lower score on the PSC than senior residents did; however, this was not statistically significant (median = 6.0 [IQR: 4.0-10.0] and median = 13.0 [IQR: 10.0-13.0]; p = 0.09). There was excellent intrarater reliability with our OSATS tool (for PSC component, r = 0.88 for Rater 1 and 0.93 for Rater 2, both p assessment and teaching tool for laparoscopic suturing and intracorporeal knot-tying skills. Overall, good intrarater reliability was demonstrated, suggesting that this tool may be useful for longitudinal assessment of surgical skills. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  13. Hair-on-hair static friction coefficient can be determined by tying a knot.

    Science.gov (United States)

    Chevalier, Nicolas R

    2017-11-01

    Characterizing the tribological properties of the hair-hair interface is important to quantify the manageability of hair and to assess the performance of hair care products. Audoly et al. (Phys. Rev. Lett. 99, 164301, 2007) derived an equation relating the self-friction coefficient of an elastic fiber to the dimensions of a simple, relaxed overhand knot made from this fiber. I experimentally tested and validated their equation using nylon thread and an independent measurement of its self-friction coefficient. I show that this methodology can be applied to provide high-throughput data on the static self-friction coefficient of single hair fibers in various conditions and to quantitatively assess how hair care treatments (conditioner, relaxant) alter frictional properties. I find that treatment of hair with 1M sodium hydroxide leads to a quick, irreversible self-friction coefficient increase; the resulting fine frictional fibers can be used to form very small knots for microsurgical vessel and organ ligature in medicine or embryology. The relaxed overhand knot method can more generally be used to measure the self-friction coefficients of a wide range of elastic fibers from the nano- (e.g. proteins, nanotubes) to the macro-scale (e.g. textile fiber, fiberglass). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Blue optical continuum associated with a radio knot in 3C346

    Science.gov (United States)

    Dey, Arjun; van Breugel, Wil J. M.

    1994-06-01

    We report the discovery of extremely luminous near-UV continuum emission associated with a bright radio knot in the radio galaxy 3C346 (zeta = 0.162). Photometric measurements from U and r' band images and longslit spectra show a spectral energy distribution that steepens at higher frequencies, with radio and optical spectral indices alphar = -0.37 +/- 0.02 and alphao = -1.8 +/- 0.2, respectively. Based on a comparison of the optical properties of this knot with other known cases of optical emission associated with radio structures, we conclude that the continuum emission is optical synchrotron radiation. Our observations are consistent with the suggestion that 3C346 is a foreshortened FR-II radio galaxy with its radio axis oriented close to the line of sight. The optical and radio emission from the knot appear to be associated with a hotspot (at the end of a jet) on the near side. Finally, our U and r' images of 3C346 provide a striking illustration that the optical morphologies of nearby radio galaxies also depend upon wavelength and that studies of these objects are relevant to the interpretation of the alignment effect seen in the high redshift radio galaxies.

  15. mtDNA point and length heteroplasmy in high- and low radiation areas of Kerala

    International Nuclear Information System (INIS)

    Forster, L.; Forster, P.; Gurney, S.M.; Spencer, M.; Huang, C.; Röhl, A.; Brinkmann, B.

    2010-01-01

    A coastal peninsula in Kerala (India) contains the world's highest level of natural radioactivity in a densely populated area, offering an opportunity to characterize radiation-associated DNA mutations. Here, we focus on mitochondrial DNA (mtDNA) mutations, which are passed exclusively from the mother to her children. To analyse point mutations, we sampled 248 pedigrees (988 individuals) in the high-radiation peninsula and in nearby low-radiation islands as a control population. Then, in an extended sample of 1,172 mtDNA sequences (containing some non-Indians for comparison), we also analysed length mutations, which in mtDNA can lead to the phenomenon of length heteroplasmy, i.e. the existence of different DNA types in the same cell. We wished to find out how fast mtDNA mutates between generations, and whether the mutation rate is increased in radioactive conditions compared to the low-irradiation sample

  16. DNA barcode detects high genetic structure within neotropical bird species.

    Directory of Open Access Journals (Sweden)

    Erika Sendra Tavares

    Full Text Available BACKGROUND: Towards lower latitudes the number of recognized species is not only higher, but also phylogeographic subdivision within species is more pronounced. Moreover, new genetically isolated populations are often described in recent phylogenies of Neotropical birds suggesting that the number of species in the region is underestimated. Previous COI barcoding of Argentinean bird species showed more complex patterns of regional divergence in the Neotropical than in the North American avifauna. METHODS AND FINDINGS: Here we analyzed 1,431 samples from 561 different species to extend the Neotropical bird barcode survey to lower latitudes, and detected even higher geographic structure within species than reported previously. About 93% (520 of the species were identified correctly from their DNA barcodes. The remaining 41 species were not monophyletic in their COI sequences because they shared barcode sequences with closely related species (N = 21 or contained very divergent clusters suggestive of putative new species embedded within the gene tree (N = 20. Deep intraspecific divergences overlapping with among-species differences were detected in 48 species, often with samples from large geographic areas and several including multiple subspecies. This strong population genetic structure often coincided with breaks between different ecoregions or areas of endemism. CONCLUSIONS: The taxonomic uncertainty associated with the high incidence of non-monophyletic species and discovery of putative species obscures studies of historical patterns of species diversification in the Neotropical region. We showed that COI barcodes are a valuable tool to indicate which taxa would benefit from more extensive taxonomic revisions with multilocus approaches. Moreover, our results support hypotheses that the megadiversity of birds in the region is associated with multiple geographic processes starting well before the Quaternary and extending to more recent

  17. High-resolution analysis of cytosine methylation in ancient DNA.

    Directory of Open Access Journals (Sweden)

    Bastien Llamas

    Full Text Available Epigenetic changes to gene expression can result in heritable phenotypic characteristics that are not encoded in the DNA itself, but rather by biochemical modifications to the DNA or associated chromatin proteins. Interposed between genes and environment, these epigenetic modifications can be influenced by environmental factors to affect phenotype for multiple generations. This raises the possibility that epigenetic states provide a substrate for natural selection, with the potential to participate in the rapid adaptation of species to changes in environment. Any direct test of this hypothesis would require the ability to measure epigenetic states over evolutionary timescales. Here we describe the first single-base resolution of cytosine methylation patterns in an ancient mammalian genome, by bisulphite allelic sequencing of loci from late Pleistocene Bison priscus remains. Retrotransposons and the differentially methylated regions of imprinted loci displayed methylation patterns identical to those derived from fresh bovine tissue, indicating that methylation patterns are preserved in the ancient DNA. Our findings establish the biochemical stability of methylated cytosines over extensive time frames, and provide the first direct evidence that cytosine methylation patterns are retained in DNA from ancient specimens. The ability to resolve cytosine methylation in ancient DNA provides a powerful means to study the role of epigenetics in evolution.

  18. High-resolution DNA content analysis of microbiopsy samples in oral lichen planus.

    Science.gov (United States)

    Pentenero, M; Monticone, M; Marino, R; Aiello, C; Marchitto, G; Malacarne, D; Giaretti, W; Gandolfo, S; Castagnola, P

    2017-04-01

    DNA aneuploidy has been reported to be a predictor of poor prognosis in both premalignant and malignant lesions. In oral lichen planus (OLP), this hypothesis remains to be proved. This study aimed to determine the rate of occurrence of DNA aneuploidy in patients with OLP by high-resolution DNA flow cytometry. Patients with OLP were consecutively enrolled. Tissue samples were subdivided for formalin fixation and routine histological assessment and for immediate storage at -20°C for later DNA ploidy analysis, which was performed by DAPI staining of the extracted nuclei and excitation with a UV lamp. The DNA aneuploid sublines were characterized by the DNA Index. A DNA aneuploid status was observed in two of 77 patients with OLP (2.6%). When considering the clinical aspect of the OLP lesions, both DNA aneuploid cases had a reticular clinical aspect. DNA aneuploidy is an uncommon event in OLP and less frequent compared to other non-dysplastic and non-OLP oral potentially malignant disorders. The extremely low rate of DNA aneuploidy could represent an occasional finding or reflect the low rate of malignant transformation observed in patients with OLP even if the real prognostic value of DNA ploidy analysis in patients with OLP remains to be confirmed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.

    Directory of Open Access Journals (Sweden)

    Soichi Inagaki

    Full Text Available Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.

  20. High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.

    Science.gov (United States)

    Inagaki, Soichi; Henry, Isabelle M; Lieberman, Meric C; Comai, Luca

    2015-01-01

    Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.

  1. High molecular weight DNA assembly in vivo for synthetic biology applications.

    Science.gov (United States)

    Juhas, Mario; Ajioka, James W

    2017-05-01

    DNA assembly is the key technology of the emerging interdisciplinary field of synthetic biology. While the assembly of smaller DNA fragments is usually performed in vitro, high molecular weight DNA molecules are assembled in vivo via homologous recombination in the host cell. Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae are the main hosts used for DNA assembly in vivo. Progress in DNA assembly over the last few years has paved the way for the construction of whole genomes. This review provides an update on recent synthetic biology advances with particular emphasis on high molecular weight DNA assembly in vivo in E. coli, B. subtilis and S. cerevisiae. Special attention is paid to the assembly of whole genomes, such as those of the first synthetic cell, synthetic yeast and minimal genomes.

  2. A Microneedle Functionalized with Polyethyleneimine and Nanotubes for Highly Sensitive, Label-Free Quantification of DNA

    OpenAIRE

    Saadat-Moghaddam, Darius; Kim, Jong-Hoon

    2017-01-01

    The accurate measure of DNA concentration is necessary for many DNA-based biological applications. However, the current methods are limited in terms of sensitivity, reproducibility, human error, and contamination. Here, we present a microneedle functionalized with polyethyleneimine (PEI) and single-walled carbon nanotubes (SWCNTs) for the highly sensitive quantification of DNA. The microneedle was fabricated using ultraviolet (UV) lithography and anisotropic etching, and then functionalized w...

  3. Targeted DNA Methylation Analysis by High Throughput Sequencing in Porcine Peri-attachment Embryos

    OpenAIRE

    MORRILL, Benson H.; COX, Lindsay; WARD, Anika; HEYWOOD, Sierra; PRATHER, Randall S.; ISOM, S. Clay

    2013-01-01

    Abstract The purpose of this experiment was to implement and evaluate the effectiveness of a next-generation sequencing-based method for DNA methylation analysis in porcine embryonic samples. Fourteen discrete genomic regions were amplified by PCR using bisulfite-converted genomic DNA derived from day 14 in vivo-derived (IVV) and parthenogenetic (PA) porcine embryos as template DNA. Resulting PCR products were subjected to high-throughput sequencing using the Illumina Genome Analyzer IIx plat...

  4. Novel Inhibitor Cystine Knot Peptides from Momordica charantia

    Science.gov (United States)

    Clark, Richard J.; Tang, Jun; Zeng, Guang-Zhi; Franco, Octavio L.; Cantacessi, Cinzia; Craik, David J.; Daly, Norelle L.; Tan, Ning-Hua

    2013-01-01

    Two new peptides, MCh-1 and MCh-2, along with three known trypsin inhibitors (MCTI-I, MCTI-II and MCTI-III), were isolated from the seeds of the tropical vine Momordica charantia. The sequences of the peptides were determined using mass spectrometry and NMR spectroscopy. Using a strategy involving partial reduction and stepwise alkylation of the peptides, followed by enzymatic digestion and tandem mass spectrometry sequencing, the disulfide connectivity of MCh-1 was elucidated to be CysI-CysIV, CysII-CysV and CysIII-CysVI. The three-dimensional structures of MCh-1 and MCh-2 were determined using NMR spectroscopy and found to contain the inhibitor cystine knot (ICK) motif. The sequences of the novel peptides differ significantly from peptides previously isolated from this plant. Therefore, this study expands the known peptide diversity in M. charantia and the range of sequences that can be accommodated by the ICK motif. Furthermore, we show that a stable two-disulfide intermediate is involved in the oxidative folding of MCh-1. This disulfide intermediate is structurally homologous to the proposed ancestral fold of ICK peptides, and provides a possible pathway for the evolution of this structural motif, which is highly prevalent in nature. PMID:24116036

  5. Novel inhibitor cystine knot peptides from Momordica charantia.

    Directory of Open Access Journals (Sweden)

    Wen-Jun He

    Full Text Available Two new peptides, MCh-1 and MCh-2, along with three known trypsin inhibitors (MCTI-I, MCTI-II and MCTI-III, were isolated from the seeds of the tropical vine Momordica charantia. The sequences of the peptides were determined using mass spectrometry and NMR spectroscopy. Using a strategy involving partial reduction and stepwise alkylation of the peptides, followed by enzymatic digestion and tandem mass spectrometry sequencing, the disulfide connectivity of MCh-1 was elucidated to be CysI-CysIV, CysII-CysV and CysIII-CysVI. The three-dimensional structures of MCh-1 and MCh-2 were determined using NMR spectroscopy and found to contain the inhibitor cystine knot (ICK motif. The sequences of the novel peptides differ significantly from peptides previously isolated from this plant. Therefore, this study expands the known peptide diversity in M. charantia and the range of sequences that can be accommodated by the ICK motif. Furthermore, we show that a stable two-disulfide intermediate is involved in the oxidative folding of MCh-1. This disulfide intermediate is structurally homologous to the proposed ancestral fold of ICK peptides, and provides a possible pathway for the evolution of this structural motif, which is highly prevalent in nature.

  6. Stability of Human Telomere Quadruplexes at High DNA Concentrations

    Czech Academy of Sciences Publication Activity Database

    Kejnovská, Iva; Vorlíčková, Michaela; Brázdová, Marie; Sagi, J.

    2014-01-01

    Roč. 101, č. 4 (2014), s. 428-438 ISSN 0006-3525 R&D Projects: GA ČR(CZ) GAP205/12/0466 Institutional support: RVO:68081707 Keywords : quadruplex * DNA concentration * folding topology Subject RIV: BO - Biophysics Impact factor: 2.385, year: 2014

  7. No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation

    Directory of Open Access Journals (Sweden)

    Hellberg Michael E

    2006-03-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of most animals evolves more rapidly than nuclear DNA, and often shows higher levels of intraspecific polymorphism and population subdivision. The mtDNA of anthozoans (corals, sea fans, and their kin, by contrast, appears to evolve slowly. Slow mtDNA evolution has been reported for several anthozoans, however this slow pace has been difficult to put in phylogenetic context without parallel surveys of nuclear variation or calibrated rates of synonymous substitution that could permit quantitative rate comparisons across taxa. Here, I survey variation in the coding region of a mitochondrial gene from a coral species (Balanophyllia elegans known to possess high levels of nuclear gene variation, and estimate synonymous rates of mtDNA substitution by comparison to another coral (Tubastrea coccinea. Results The mtDNA surveyed (630 bp of cytochrome oxidase subunit I was invariant among individuals sampled from 18 populations spanning 3000 km of the range of B. elegans, despite high levels of variation and population subdivision for allozymes over these same populations. The synonymous substitution rate between B. elegans and T. coccinea (0.05%/site/106 years is similar to that in most plants, but 50–100 times lower than rates typical for most animals. In addition, while substitutions to mtDNA in most animals exhibit a strong bias toward transitions, mtDNA from these corals does not. Conclusion Slow rates of mitochondrial nucleotide substitution result in low levels of intraspecific mtDNA variation in corals, even when nuclear loci vary. Slow mtDNA evolution appears to be the basal condition among eukaryotes. mtDNA substitution rates switch from slow to fast abruptly and unidirectionally. This switch may stem from the loss of just one or a few mitochondrion-specific DNA repair or replication genes.

  8. Large-scale DNA Barcode Library Generation for Biomolecule Identification in High-throughput Screens.

    Science.gov (United States)

    Lyons, Eli; Sheridan, Paul; Tremmel, Georg; Miyano, Satoru; Sugano, Sumio

    2017-10-24

    High-throughput screens allow for the identification of specific biomolecules with characteristics of interest. In barcoded screens, DNA barcodes are linked to target biomolecules in a manner allowing for the target molecules making up a library to be identified by sequencing the DNA barcodes using Next Generation Sequencing. To be useful in experimental settings, the DNA barcodes in a library must satisfy certain constraints related to GC content, homopolymer length, Hamming distance, and blacklisted subsequences. Here we report a novel framework to quickly generate large-scale libraries of DNA barcodes for use in high-throughput screens. We show that our framework dramatically reduces the computation time required to generate large-scale DNA barcode libraries, compared with a naїve approach to DNA barcode library generation. As a proof of concept, we demonstrate that our framework is able to generate a library consisting of one million DNA barcodes for use in a fragment antibody phage display screening experiment. We also report generating a general purpose one billion DNA barcode library, the largest such library yet reported in literature. Our results demonstrate the value of our novel large-scale DNA barcode library generation framework for use in high-throughput screening applications.

  9. Association between high risk papillomavirus DNA and nitric oxide release in the human uterine cervix.

    Science.gov (United States)

    Rahkola, Paivi; Mikkola, Tomi S; Ylikorkala, Olavi; Vaisanen-Tommiska, Mervi

    2009-08-01

    Local cervical factors may determine the outcome of human papillomavirus (HPV) infection. Nitric oxide (NO) may be one such factor, since it is produced by uterine cervical cells and it takes part in both immunological and carcinogenic reactions. We studied the association between the presence of cervical high risk (hr) HPV DNA and NO in the cervical canal in women. High risk HPV DNA status was assessed from 328 women by using a specific DNA test and the release of cervical NO was assessed as nitrate/nitrite in cervical fluid. Cervical NO was then compared between women showing different status of hr HPV DNA and different cytological and histological findings. High risk HPV DNA was present in 175/328 (53%) women. The cervical NO release in women with hr HPV DNA was 90% higher compared to hr HPV DNA negative women (poral contraception, intrauterine devices, or signs of bacterial vaginosis or candida infection. Cytologically healthy epithelium and epithelium with mild cytological or histological changes showed elevated NO release if hr HPV DNA was present. The presence of hr HPV DNA is associated with an increased release of NO in the human uterine cervix. The clinical significance of this phenomenon remains open.

  10. Sectional meeting on Numerical Methods, Calculations and Simulations in Knot Theory and its Applications

    CERN Document Server

    Millett, Kenneth C; Rawdon, Eric J; Stasiak, Andrzej; Physical and Numerical Models in Knot theory: including Applications to the Life Sciences; Conference on Knots, Random Walks and Biomolecules

    2005-01-01

    The physical properties of knotted and linked configurations in space have long been of interest to mathematicians. More recently, these properties have become significant to biologists, physicists, and engineers among others. Their depth of importance and breadth of application are now widely appreciated and valuable progress continues to be made each year. This volume presents several contributions from researchers using computers to study problems that would otherwise be intractable. While computations have long been used to analyze problems, formulate conjectures, and search for special structures in knot theory, increased computational power has made them a staple in many facets of the field. The volume also includes contributions concentrating on models researchers use to understand knotting, linking, and entanglement in physical and biological systems. Topics include properties of knot invariants, knot tabulation, studies of hyperbolic structures, knot energies, the exploration of spaces of knots, knot...

  11. Classification of knotted tori in 2-metastable dimension

    KAUST Repository

    Cencelj, Matija

    2012-11-30

    This paper is devoted to the classical Knotting Problem: for a given manifold N and number m describe the set of isotopy classes of embeddings N → Sm. We study the specific case of knotted tori, that is, the embeddings Sp × Sq → Sm. The classification of knotted tori up to isotopy in the metastable dimension range m > p + 3 2 q + 2, p 6 q, was given by Haefliger, Zeeman and A. Skopenkov. We consider the dimensions below the metastable range and give an explicit criterion for the finiteness of this set of isotopy classes in the 2-metastable dimension: Theorem. Assume that p+ 4 3 q +2 < mp+ 3 2 q +2 and m > 2p+q +2. Then the set of isotopy classes of smooth embeddings Sp × Sq → Sm is infinite if and only if either q + 1 or p + q + 1 is divisible by 4. © 2012 RAS(DoM) and LMS.

  12. Classification of knotted tori in 2-metastable dimension

    KAUST Repository

    Cencelj, Matija; Repovš, Dušan; Skopenkov, Mikhail

    2012-01-01

    This paper is devoted to the classical Knotting Problem: for a given manifold N and number m describe the set of isotopy classes of embeddings N → Sm. We study the specific case of knotted tori, that is, the embeddings Sp × Sq → Sm. The classification of knotted tori up to isotopy in the metastable dimension range m > p + 3 2 q + 2, p 6 q, was given by Haefliger, Zeeman and A. Skopenkov. We consider the dimensions below the metastable range and give an explicit criterion for the finiteness of this set of isotopy classes in the 2-metastable dimension: Theorem. Assume that p+ 4 3 q +2 < mp+ 3 2 q +2 and m > 2p+q +2. Then the set of isotopy classes of smooth embeddings Sp × Sq → Sm is infinite if and only if either q + 1 or p + q + 1 is divisible by 4. © 2012 RAS(DoM) and LMS.

  13. Lipofection: A Highly Efficient, Lipid-Mediated DNA-Transfection Procedure

    Science.gov (United States)

    Felgner, Philip L.; Gadek, Thomas R.; Holm, Marilyn; Roman, Richard; Chan, Hardy W.; Wenz, Michael; Northrop, Jeffrey P.; Ringold, Gordon M.; Danielsen, Mark

    1987-11-01

    A DNA-transfection protocol has been developed that makes use of a synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA). Small unilamellar liposomes containing DOTMA interact spontaneously with DNA to form lipid-DNA complexes with 100% entrapment of the DNA. DOTMA facilitates fusion of the complex with the plasma membrane of tissue culture cells, resulting in both uptake and expression of the DNA. The technique is simple, highly reproducible, and effective for both transient and stable expression of transfected DNA. Depending upon the cell line, lipofection is from 5- to >100-fold more effective than either the calcium phosphate or the DEAE-dextran transfection technique.

  14. Serum induced degradation of 3D DNA box origami observed by high speed atomic force microscope

    DEFF Research Database (Denmark)

    Jiang, Zaixing; Zhang, Shuai; Yang, Chuanxu

    2015-01-01

    3D DNA origami holds tremendous potential to encapsulate and selectively release therapeutic drugs. Observations of real-time performance of 3D DNA origami structures in physiological environment will contribute much to its further applications. Here, we investigate the degradation kinetics of 3D...... DNA box origami in serum using high-speed atomic force microscope optimized for imaging 3D DNA origami in real time. The time resolution allows characterizing the stages of serum effects on individual 3D DNA box origami with nanometer resolution. Our results indicate that the whole digest process...... is a combination of a rapid collapse phase and a slow degradation phase. The damages of box origami mainly happen in the collapse phase. Thus, the structure stability of 3D DNA box origami should be further improved, especially in the collapse phase, before clinical applications...

  15. High-Resolution Melting (HRM) of Hypervariable Mitochondrial DNA Regions for Forensic Science.

    Science.gov (United States)

    Dos Santos Rocha, Alípio; de Amorim, Isis Salviano Soares; Simão, Tatiana de Almeida; da Fonseca, Adenilson de Souza; Garrido, Rodrigo Grazinoli; Mencalha, Andre Luiz

    2018-03-01

    Forensic strategies commonly are proceeding by analysis of short tandem repeats (STRs); however, new additional strategies have been proposed for forensic science. Thus, this article standardized the high-resolution melting (HRM) of DNA for forensic analyzes. For HRM, mitochondrial DNA (mtDNA) from eight individuals were extracted from mucosa swabs by DNAzol reagent, samples were amplified by PCR and submitted to HRM analysis to identify differences in hypervariable (HV) regions I and II. To confirm HRM, all PCR products were DNA sequencing. The data suggest that is possible discriminate DNA from different samples by HRM curves. Also, uncommon dual-dissociation was identified in a single PCR product, increasing HRM analyzes by evaluation of melting peaks. Thus, HRM is accurate and useful to screening small differences in HVI and HVII regions from mtDNA and increase the efficiency of laboratory routines based on forensic genetics. © 2017 American Academy of Forensic Sciences.

  16. Knots and Random Walks in Vibrated Granular Chains

    International Nuclear Information System (INIS)

    Ben-Naim, E.; Daya, Z. A.; Vorobieff, P.; Ecke, R. E.

    2001-01-01

    We study experimentally statistical properties of the opening times of knots in vertically vibrated granular chains. Our measurements are in good qualitative and quantitative agreement with a theoretical model involving three random walks interacting via hard-core exclusion in one spatial dimension. In particular, the knot survival probability follows a universal scaling function which is independent of the chain length, with a corresponding diffusive characteristic time scale. Both the large-exit-time and the small-exit-time tails of the distribution are suppressed exponentially, and the corresponding decay coefficients are in excellent agreement with theoretical values

  17. High-fidelity DNA replication in Mycobacterium tuberculosis relies on a trinuclear zinc center.

    Science.gov (United States)

    Baños-Mateos, Soledad; van Roon, Anne-Marie M; Lang, Ulla F; Maslen, Sarah L; Skehel, J Mark; Lamers, Meindert H

    2017-10-11

    High-fidelity DNA replication depends on a proofreading 3'-5' exonuclease that is associated with the replicative DNA polymerase. The replicative DNA polymerase DnaE1 from the major pathogen Mycobacterium tuberculosis (Mtb) uses its intrinsic PHP-exonuclease that is distinct from the canonical DEDD exonucleases found in the Escherichia coli and eukaryotic replisomes. The mechanism of the PHP-exonuclease is not known. Here, we present the crystal structure of the Mtb DnaE1 polymerase. The PHP-exonuclease has a trinuclear zinc center, coordinated by nine conserved residues. Cryo-EM analysis reveals the entry path of the primer strand in the PHP-exonuclease active site. Furthermore, the PHP-exonuclease shows a striking similarity to E. coli endonuclease IV, which provides clues regarding the mechanism of action. Altogether, this work provides important insights into the PHP-exonuclease and reveals unique properties that make it an attractive target for novel anti-mycobacterial drugs.The polymerase and histidinol phosphatase (PHP) domain in the DNA polymerase DnaE1 is essential for mycobacterial high-fidelity DNA replication. Here, the authors determine the DnaE1 crystal structure, which reveals the PHP-exonuclease mechanism that can be exploited for antibiotic development.

  18. Successful Treatment of Stent Knot in the Proximal Ureter Using Ureteroscopy and Holmium Laser

    Directory of Open Access Journals (Sweden)

    Masters M. Richards

    2011-01-01

    Full Text Available Knotted ureteral stent is rare yet tedious complication that might represent a treatment challenge to the endourologist. Only twelve cases of knotted stent have been reported. Different management options have been reported, including simple traction, ureteroscopy, percutaneous removal, and open surgery. In this paper, we present the successful untying of the knot using ureteroscopy with holmium laser.

  19. Comparative analysis of the folding dynamics and kinetics of an engineered knotted protein and its variants derived from HP0242 of Helicobacter pylori

    Science.gov (United States)

    Wang, Liang-Wei; Liu, Yu-Nan; Lyu, Ping-Chiang; Jackson, Sophie E.; Hsu, Shang-Te Danny

    2015-09-01

    Understanding the mechanism by which a polypeptide chain thread itself spontaneously to attain a knotted conformation has been a major challenge in the field of protein folding. HP0242 is a homodimeric protein from Helicobacter pylori with intertwined helices to form a unique pseudo-knotted folding topology. A tandem HP0242 repeat has been constructed to become the first engineered trefoil-knotted protein. Its small size renders it a model system for computational analyses to examine its folding and knotting pathways. Here we report a multi-parametric study on the folding stability and kinetics of a library of HP0242 variants, including the trefoil-knotted tandem HP0242 repeat, using far-UV circular dichroism and fluorescence spectroscopy. Equilibrium chemical denaturation of HP0242 variants shows the presence of highly populated dimeric and structurally heterogeneous folding intermediates. Such equilibrium folding intermediates retain significant amount of helical structures except those at the N- and C-terminal regions in the native structure. Stopped-flow fluorescence measurements of HP0242 variants show that spontaneous refolding into knotted structures can be achieved within seconds, which is several orders of magnitude faster than previously observed for other knotted proteins. Nevertheless, the complex chevron plots indicate that HP0242 variants are prone to misfold into kinetic traps, leading to severely rolled-over refolding arms. The experimental observations are in general agreement with the previously reported molecular dynamics simulations. Based on our results, kinetic folding pathways are proposed to qualitatively describe the complex folding processes of HP0242 variants.

  20. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    International Nuclear Information System (INIS)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2014-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication

  1. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Gagnon, David [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Gjoerup, Ole [Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111 (United States); Archambault, Jacques [Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7 (Canada); Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec (Canada); Bullock, Peter A., E-mail: Peter.Bullock@tufts.edu [Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States)

    2014-11-15

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.

  2. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors.

    Science.gov (United States)

    Adalsteinsson, Viktor A; Ha, Gavin; Freeman, Samuel S; Choudhury, Atish D; Stover, Daniel G; Parsons, Heather A; Gydush, Gregory; Reed, Sarah C; Rotem, Denisse; Rhoades, Justin; Loginov, Denis; Livitz, Dimitri; Rosebrock, Daniel; Leshchiner, Ignaty; Kim, Jaegil; Stewart, Chip; Rosenberg, Mara; Francis, Joshua M; Zhang, Cheng-Zhong; Cohen, Ofir; Oh, Coyin; Ding, Huiming; Polak, Paz; Lloyd, Max; Mahmud, Sairah; Helvie, Karla; Merrill, Margaret S; Santiago, Rebecca A; O'Connor, Edward P; Jeong, Seong H; Leeson, Rachel; Barry, Rachel M; Kramkowski, Joseph F; Zhang, Zhenwei; Polacek, Laura; Lohr, Jens G; Schleicher, Molly; Lipscomb, Emily; Saltzman, Andrea; Oliver, Nelly M; Marini, Lori; Waks, Adrienne G; Harshman, Lauren C; Tolaney, Sara M; Van Allen, Eliezer M; Winer, Eric P; Lin, Nancy U; Nakabayashi, Mari; Taplin, Mary-Ellen; Johannessen, Cory M; Garraway, Levi A; Golub, Todd R; Boehm, Jesse S; Wagle, Nikhil; Getz, Gad; Love, J Christopher; Meyerson, Matthew

    2017-11-06

    Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations. We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its applicability to many patients, and demonstrate high concordance of cfDNA and metastatic tumor whole-exome sequencing.

  3. Functional role of a highly repetitive DNA sequence in anchorage of the mouse genome.

    Science.gov (United States)

    Neuer-Nitsche, B; Lu, X N; Werner, D

    1988-09-12

    The major portion of the eukaryotic genome consists of various categories of repetitive DNA sequences which have been studied with respect to their base compositions, organizations, copy numbers, transcription and species specificities; their biological roles, however, are still unclear. A novel quality of a highly repetitive mouse DNA sequence is described which points to a functional role: All copies (approximately 50,000 per haploid genome) of this DNA sequence reside on genomic Alu I DNA fragments each associated with nuclear polypeptides that are not released from DNA by proteinase K, SDS and phenol extraction. By this quality the repetitive DNA sequence is classified as a member of the sub-set of DNA sequences involved in tight DNA-polypeptide complexes which have been previously shown to be components of the subnuclear structure termed 'nuclear matrix'. From these results it has to be concluded that the repetitive DNA sequence characterized in this report represents or comprises a signal for a large number of site specific attachment points of the mouse genome in the nuclear matrix.

  4. Assessment of Multiple Types of DNA Damage in Human Placentas from Smoking and Non-smoking Women in the Czech Republic

    Science.gov (United States)

    Margaret Pratt, M.; King, Leon C.; Adams, Linda D.; John, Kaarthik; Sirajuddin, Paul; Olivero, Ofelia A.; Manchester, David K.; Sram, Radim J.; DeMarini, David M.; Poirier, Miriam C.

    2010-01-01

    Three classes of DNA damage were assessed in human placentas collected (in 2000-4) from 51 women living in the Teplice region of the Czech Republic, a mining area considered to have some of the worst environmental pollution in Europe in the 1980s. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts were localized and semiquantified using immunohistochemistry (IHC) and the Automated Cellular Imaging System (ACIS). More generalized DNA damage was measured both by 32P-postlabeling and by abasic (AB) site analysis. Placenta stained with antiserum elicited against DNA modified with r7, t8-dihydroxy-t-9, 10-oxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE) revealed PAH-DNA adduct localization in nuclei of the cytotrophoblast (CT) cells and syncytiotrophoblast (ST) knots lining the chorionic villi. The highest levels of DNA damage, 49–312 PAH-DNA adducts/108 nucleotides, were found by IHC/ACIS in 14 immediately-fixed placenta samples. An additional 37 placenta samples were stored frozen before fixation and embedding, and because PAH-DNA adducts were largely undetectable in these samples, freezing was implicated in the loss of IHC signal. The same placentas (n = 37) contained 1.7 – 8.6 stable/bulky DNA adducts/108 nucleotides and 0.6 – 47.2 AB sites/105 nucleotides. For all methods there was no correlation among types of DNA damage and no difference in extent of DNA damage between smokers and non-smokers. Therefore, the data show that DNA from placentas obtained in Teplice contained multiple types of DNA damage, which likely arose from various environmental exposures. In addition, PAH-DNA adducts were present at high concentrations in the CT cells and ST knots of the chorionic villi. PMID:20839217

  5. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    International Nuclear Information System (INIS)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-01-01

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K d 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K d 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy

  6. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng-Liang [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yang, Hai-Tao; Wang, Jiang-Jie [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yao, Pei-Sen [Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Pan, Ru-Jun [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yang, Chaoyong James, E-mail: cyyang@xmu.edu.cn [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Kang, De-Zhi, E-mail: kdzy99988@163.com [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  7. True Umbilical Cord Knot Leading to Fetal Demise

    African Journals Online (AJOL)

    weight was 140 kg, height 1.69 m, blood pressure 120 mmHg. The booking ... The fetal heart tones were monitored using Doppler sonicaid. They remained normal throughout .... true knot, seemingly because the umbilical cord vessels can be compressed ... Therefore, the Wharton's jelly surrounding the fetal vessels has the ...

  8. The multivariable Alexander polynomial and modern knot theory

    International Nuclear Information System (INIS)

    Saleur, H.; Yale Univ., New Haven, CT

    1991-01-01

    This note is a summary of several recent works (by the author and collaborators) that study the Conway Alexander link invariant in the light of quantum groups and topological quantum field theories. Their purpose is to understand connections between ''modern'' knot theory and more classical topological concepts. (author)

  9. The multivariable Alexander polynomial and modern knot theory

    International Nuclear Information System (INIS)

    Saleur, H.

    1992-01-01

    This paper is a summary of several recent works (by the author and collaborators) that study the Conway-Alexander link invariant in the light of quantum groups and topological quantum field theories. Their purpose is to understand connections between modern knot theory and more classical topological concepts

  10. The unique cysteine knot regulates the pleotropic hormone leptin.

    Directory of Open Access Journals (Sweden)

    Ellinor Haglund

    Full Text Available Leptin plays a key role in regulating energy intake/expenditure, metabolism and hypertension. It folds into a four-helix bundle that binds to the extracellular receptor to initiate signaling. Our work on leptin revealed a hidden complexity in the formation of a previously un-described, cysteine-knotted topology in leptin. We hypothesized that this unique topology could offer new mechanisms in regulating the protein activity. A combination of in silico simulation and in vitro experiments was used to probe the role of the knotted topology introduced by the disulphide-bridge on leptin folding and function. Our results surprisingly show that the free energy landscape is conserved between knotted and unknotted protein, however the additional complexity added by the knot formation is structurally important. Native state analyses led to the discovery that the disulphide-bond plays an important role in receptor binding and thus mediate biological activity by local motions on distal receptor-binding sites, far removed from the disulphide-bridge. Thus, the disulphide-bridge appears to function as a point of tension that allows dissipation of stress at a distance in leptin.

  11. Spontaneous knot; a rare cause of ventriculoperitoneal shunt blockage.

    LENUS (Irish Health Repository)

    Mohammed, Wail

    2011-02-01

    A 14-year old X linked congenital hydrocephalus presented with unexplained headaches and vomiting. He had external ventricular drain and intracranial pressure monitoring (ICP). Subsequently, he underwent exploration and removal of previously inserted ventriculoperitoneal (VP) shunts. On retrieval of peritoneal catheters a double knot was noted between his two distal catheters. This case illustrates a rare cause of ventriculoperitoneal shunt malfunction.

  12. Spontaneous knot; a rare cause of ventriculoperitoneal shunt blockage.

    LENUS (Irish Health Repository)

    Mohammed, Wail

    2012-02-01

    A 14-year old X linked congenital hydrocephalus presented with unexplained headaches and vomiting. He had external ventricular drain and intracranial pressure monitoring (ICP). Subsequently, he underwent exploration and removal of previously inserted ventriculoperitoneal (VP) shunts. On retrieval of peritoneal catheters a double knot was noted between his two distal catheters. This case illustrates a rare cause of ventriculoperitoneal shunt malfunction.

  13. Braid group, knot theory and statistical mechanics II

    CERN Document Server

    Yang Chen Ning

    1994-01-01

    The present volume is an updated version of the book edited by C N Yang and M L Ge on the topics of braid groups and knot theory, which are related to statistical mechanics. This book is based on the 1989 volume but has new material included and new contributors.

  14. Prevalence, incidence and molecular identification of root-knot ...

    African Journals Online (AJOL)

    Tomato is a widely grown vegetable in Pakistan. However, its production is severely constrained by root knot nematodes (RKNs). Accurate identification of RKNs is essential for an appropriate control program. The current study evaluated the prevalence, incidence and diversity of RKNs of tomato crops grown in the Khyber ...

  15. A high-throughput and quantitative method to assess the mutagenic potential of translesion DNA synthesis

    Science.gov (United States)

    Taggart, David J.; Camerlengo, Terry L.; Harrison, Jason K.; Sherrer, Shanen M.; Kshetry, Ajay K.; Taylor, John-Stephen; Huang, Kun; Suo, Zucai

    2013-01-01

    Cellular genomes are constantly damaged by endogenous and exogenous agents that covalently and structurally modify DNA to produce DNA lesions. Although most lesions are mended by various DNA repair pathways in vivo, a significant number of damage sites persist during genomic replication. Our understanding of the mutagenic outcomes derived from these unrepaired DNA lesions has been hindered by the low throughput of existing sequencing methods. Therefore, we have developed a cost-effective high-throughput short oligonucleotide sequencing assay that uses next-generation DNA sequencing technology for the assessment of the mutagenic profiles of translesion DNA synthesis catalyzed by any error-prone DNA polymerase. The vast amount of sequencing data produced were aligned and quantified by using our novel software. As an example, the high-throughput short oligonucleotide sequencing assay was used to analyze the types and frequencies of mutations upstream, downstream and at a site-specifically placed cis–syn thymidine–thymidine dimer generated individually by three lesion-bypass human Y-family DNA polymerases. PMID:23470999

  16. A Novel Low Temperature PCR Assured High-Fidelity DNA Amplification

    Directory of Open Access Journals (Sweden)

    Shaoxia Zhou

    2013-06-01

    Full Text Available As previously reported, a novel low temperature (LoTemp polymerase chain reaction (PCR catalyzed by a moderately heat-resistant (MHR DNA polymerase with a chemical-assisted denaturation temperature set at 85 °C instead of the conventional 94–96 °C can achieve high-fidelity DNA amplification of a target DNA, even after up to 120 PCR thermal cycles. Furthermore, such accurate amplification is not achievable with conventional PCR. Now, using a well-recognized L1 gene segment of the human papillomavirus (HPV type 52 (HPV-52 as the template for experiments, we demonstrate that the LoTemp high-fidelity DNA amplification is attributed to an unusually high processivity and stability of the MHR DNA polymerase whose high fidelity in template-directed DNA synthesis is independent of non-existent 3'–5' exonuclease activity. Further studies and understanding of the characteristics of the LoTemp PCR technology may facilitate implementation of DNA sequencing-based diagnostics at the point of care in community hospital laboratories.

  17. Filtration of the classical knot concordance group and Casson-Gordon invariants

    OpenAIRE

    Kim, Taehee

    2002-01-01

    It is known that if any prime power branched cyclic cover of a knot in the 3-sphere is a homology sphere, then the knot has vanishing Casson-Gordon invariants. We construct infinitely many examples of (topologically) non-slice knots in the 3-sphere whose prime power branched cyclic covers are homology spheres. We show that these knots generate an infinite rank subgroup of F_(1.0)/F_(1.5) for which Casson-Gordon invariants vanish in Cochran-Orr-Teichner's filtration of the classical knot conco...

  18. Topological and metric properties of linear and circular DNA chains in nano-slits and nano-channels

    Science.gov (United States)

    Orlandini, Enzo; Micheletti, Cristian

    2014-03-01

    Motivated by recent advancements in single DNA molecule experiments, based on nanofluidic devices, we investigate numerically the metric and topological properties of a modelof open and circular DNA chains confined inside nano-slits and nano-channles. The results reveal an interesting characterization of the metric crossover behaviour in terms of the abundance, type and length of occuring knots. In particular we find that the knotting probability is nonmonotonic for increasing confinement and can be largely enhanced or suppressed, compared to the bulk case, by simply varying the slit or channel trasversal dimension. The observed knot population consists of knots that are far simpler than for DNA chains in spherical (i.e. cavities or capsids) confinement. These results suggest that nanoslits and nanochannels can be properly designed to produce open DNA chains hosting simple knots or to sieve DNA rings according to their knotted state. Finally we discuss the implications that the presence of knots may have on the dynamical properties of confined DNA chains such as chain elongation, injection/ejection processes and entanglement relaxation. We acknowledge financial support from the Italian ministry of education, grant PRIN 2010HXAW77.

  19. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques.

    OpenAIRE

    Aljanabi, S M; Martinez, I

    1997-01-01

    A very simple, fast, universally applicable and reproducible method to extract high quality megabase genomic DNA from different organisms is described. We applied the same method to extract high quality complex genomic DNA from different tissues (wheat, barley, potato, beans, pear and almond leaves as well as fungi, insects and shrimps' fresh tissue) without any modification. The method does not require expensive and environmentally hazardous reagents and equipment. It can be performed even i...

  20. The Chern-Simons current in time series of knots and links in proteins

    Science.gov (United States)

    Capozziello, Salvatore; Pincak, Richard

    2018-06-01

    A superspace model of knots and links for DNA time series data is proposed to take into account the feedback loop from docking to undocking state of protein-protein interactions. In particular, the direction of interactions between the 8 hidden states of DNA is considered. It is a E8 ×E8 unified spin model where the genotype, from active and inactive side of DNA time data series, can be considered for any living organism. The mathematical model is borrowed from loop-quantum gravity and adapted to biology. It is used to derive equations for gene expression describing transitions from ground to excited states, and for the 8 coupling states between geneon and anti-geneon transposon and retrotransposon in trash DNA. Specifically, we adopt a modified Grothendieck cohomology and a modified Khovanov cohomology for biology. The result is a Chern-Simons current in (8 + 3) extradimensions of a given unoriented supermanifold with ghost fields of protein structures. The 8 dimensions come from the 8 hidden states of spinor field of genetic code. The extradimensions come from the 3 types of principle fiber bundle in the secondary protein.

  1. Isolation and characterization of high affinity aptamers against DNA polymerase iota.

    Science.gov (United States)

    Lakhin, Andrei V; Kazakov, Andrei A; Makarova, Alena V; Pavlov, Yuri I; Efremova, Anna S; Shram, Stanislav I; Tarantul, Viacheslav Z; Gening, Leonid V

    2012-02-01

    Human DNA-polymerase iota (Pol ι) is an extremely error-prone enzyme and the fidelity depends on the sequence context of the template. Using the in vitro systematic evolution of ligands by exponential enrichment (SELEX) procedure, we obtained an oligoribonucleotide with a high affinity to human Pol ι, named aptamer IKL5. We determined its dissociation constant with homogenous preparation of Pol ι and predicted its putative secondary structure. The aptamer IKL5 specifically inhibits DNA-polymerase activity of the purified enzyme Pol ι, but did not inhibit the DNA-polymerase activities of human DNA polymerases beta and kappa. IKL5 suppressed the error-prone DNA-polymerase activity of Pol ι also in cellular extracts of the tumor cell line SKOV-3. The aptamer IKL5 is useful for studies of the biological role of Pol ι and as a potential drug to suppress the increase of the activity of this enzyme in malignant cells.

  2. Multi-line split DNA synthesis: a novel combinatorial method to make high quality peptide libraries

    Directory of Open Access Journals (Sweden)

    Ueno Shingo

    2004-09-01

    Full Text Available Abstract Background We developed a method to make a various high quality random peptide libraries for evolutionary protein engineering based on a combinatorial DNA synthesis. Results A split synthesis in codon units was performed with mixtures of bases optimally designed by using a Genetic Algorithm program. It required only standard DNA synthetic reagents and standard DNA synthesizers in three lines. This multi-line split DNA synthesis (MLSDS is simply realized by adding a mix-and-split process to normal DNA synthesis protocol. Superiority of MLSDS method over other methods was shown. We demonstrated the synthesis of oligonucleotide libraries with 1016 diversity, and the construction of a library with random sequence coding 120 amino acids containing few stop codons. Conclusions Owing to the flexibility of the MLSDS method, it will be able to design various "rational" libraries by using bioinformatics databases.

  3. High frequency of parvovirus B19 DNA in bone marrow samples from rheumatic patients

    DEFF Research Database (Denmark)

    Lundqvist, Anders; Isa, Adiba; Tolfvenstam, Thomas

    2005-01-01

    BACKGROUND: Human parvovirus B19 (B19) polymerase chain reaction (PCR) is now a routine analysis and serves as a diagnostic marker as well as a complement or alternative to B19 serology. The clinical significance of a positive B19 DNA finding is however dependent on the type of tissue or body fluid...... analysed and of the immune status of the patient. OBJECTIVES: To analyse the clinical significance of B19 DNA positivity in bone marrow samples from rheumatic patients. STUDY DESIGN: Parvovirus B19 DNA was analysed in paired bone marrow and serum samples by nested PCR technique. Serum was also analysed...... negative group. A high frequency of parvovirus B19 DNA was thus detected in bone marrow samples in rheumatic patients. The clinical data does not support a direct association between B19 PCR positivity and rheumatic disease manifestation. Therefore, the clinical significance of B19 DNA positivity in bone...

  4. Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.

    Directory of Open Access Journals (Sweden)

    Jason D Thompson

    Full Text Available Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.

  5. Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.

    Science.gov (United States)

    Thompson, Jason D; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre

    2012-01-01

    Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.

  6. Scaling behavior of knotted random polygons and self-avoiding polygons: Topological swelling with enhanced exponent.

    Science.gov (United States)

    Uehara, Erica; Deguchi, Tetsuo

    2017-12-07

    We show that the average size of self-avoiding polygons (SAPs) with a fixed knot is much larger than that of no topological constraint if the excluded volume is small and the number of segments is large. We call it topological swelling. We argue an "enhancement" of the scaling exponent for random polygons with a fixed knot. We study them systematically through SAP consisting of hard cylindrical segments with various different values of the radius of segments. Here we mean by the average size the mean-square radius of gyration. Furthermore, we show numerically that the topological balance length of a composite knot is given by the sum of those of all constituent prime knots. Here we define the topological balance length of a knot by such a number of segments that topological entropic repulsions are balanced with the knot complexity in the average size. The additivity suggests the local knot picture.

  7. Binary self-assembly of highly symmetric DNA nanocages via sticky-end engineering

    Institute of Scientific and Technical Information of China (English)

    Xiao-Rong Wu; Chen-Wei Wu; Fei Ding; Cheng Tian; Wen Jiang; Cheng-De Mao; Chuan Zhang

    2017-01-01

    Discrete and symmetric three-dimensional (3D) DNA nanocages have been revoked as excellent candidates for various applications,such as guest component encapsulation and organization (e.g.dye molecules,proteins,inorganic nanoparticles,etc.) to construct new materials and devices.To date,a large variety of DNA nanocages has been synthesized through assembling small individual DNA motifs into predesigned structures in a bottom-up fashion.Most of them rely on the assembly using multiple copies of single type of motifs and a few sophisticated nanostructures have been engineered by co-assembling multi-types of DNA tiles simultaneously.However,the availability of complex DNA nanocages is still limited.Herein,we demonstrate that highly symmetric DNA nanocages consisted of binary DNA pointstar motifs can be easily assembled by deliberately engineering the sticky-end interaction between the component building blocks.As such,DNA nanocages with new geometries,including elongated tetrahedron (E-TET),rhombic dodecahedron (R-DOD),and rhombic triacontahedron (R-TRI) are successfully synthesized.Moreover,their design principle,assembly process,and structural features are revealed by polyacryalmide gel electrophoresis (PAGE),atomic force microscope (AFM) imaging,and cryogenic transmission electron microscope imaging (cryo-TEM) associated with single particle reconstruction.

  8. Spermatic Cord Knot: A Clinical Finding in Patients with Spermatic Cord Torsion

    Directory of Open Access Journals (Sweden)

    Abdullatif Al-Terki

    2011-01-01

    Full Text Available Pertinent history taking and careful examination often taper the differentials of the acute scrotum; congruently the ability to diagnose acute spermatic cord torsion (SCT when radiological adjuncts are not available is highly imperative. This observational study serves to present a series of 46 cases of spermatic cord torsion whereby we hypothesize the identification of a clinical knot on scrotal examination as an important clinical aid in making a decision to surgical exploration in patients with acute and subacute SCT, especially in centers where imaging resources are unavailable.

  9. Interspersion of highly repetitive DNA with single copy DNA in the genome of the red crab, Geryon quinquedens

    Energy Technology Data Exchange (ETDEWEB)

    Christie, N.T. (Univ. of Tennessee, Oak Ridge); Skinner, D.M.

    1979-02-01

    Kinetic analysis of the reassociation of 420 nucleotide (NT) long fragments has shown that essentially all of the repetitive sequences of the DNA of the red crab Geryon quinquedens are highly repetitive. There are negligible amounts of low and intermediate repetitive DNAs. Though atypical of most eukaryotes, this pattern has been observed in al other brachyurans (true crabs) studied. The major repetitive component is subdivided into short runs of 300 NT and longer runs of greater than 1200 NT while the minor component has an average sequence length of 400 NT. Both components reassociate at rates commonly observed for satellite DNAs. Unique among eukaryotes the organization of the genome includes single copy DNA contiguous to short runs (300 NT) of both repetitive components. Although patent satellites are not present, subsets of the repetitive DNA have been isolated by either restriction endonuclease digestion or by centrifugation in Ag/sup +/ or Hg/sup 2 +//Cs/sub 2/SO/sub 4/ density gradients.

  10. DNA damage produced by exposure of supercoiled plasmid DNA to high- and low-LET ionizing radiation: Effects of hydroxyl radical quenchers. DNA breakage, neutrons, OH radicals

    International Nuclear Information System (INIS)

    Peak, J.G.; Ito, T.; Peak, M.J.; Robb, F.T.

    1994-01-01

    A supercoiled plasmid of 7300 base pairs was isolated and exposed in an aqueous environment to 60 Co γ rays and JANUS 0.85 MeV fission-spectrum neutrons. Dose responses for the production of single-strand breaks (SSBs), double-strand breaks (DSBs) and alkali-labile sites (ALSs) were compared with computations made from the conversion of the supercoil to its relaxed and linear forms. The relative biological effectiveness (RBE) for production of SSBs and DSBs was similar to that previously measured in the cellular environment. The RBE for destruction of genetic transforming activity of M13 viral DNA followed that for DNA damage. This is in contrast to the situation for biological effects such as lethality, mutagenesis, and cellular transformation measured in mammalian cells, where the RBE values are reversed. The role of hydroxyl (OH) radical in DNA damage induction by neutrons was investigated by exposure of plasmid in the presence of known quenchers of this species. Of four quenchers tested, all were able to reduce the yields of both SSBs and DSBs. These findings are consistent with a model for SSB and DSB induction by high linear energy transfer that involves OH radical mediation

  11. Electrostatics of DNA-DNA juxtapositions: consequences for type II topoisomerase function

    International Nuclear Information System (INIS)

    Randall, Graham L; Pettitt, B Montgomery; Buck, Gregory R; Zechiedrich, E Lynn

    2006-01-01

    Type II topoisomerases resolve problematic DNA topologies such as knots, catenanes, and supercoils that arise as a consequence of DNA replication and recombination. Failure to remove problematic DNA topologies prohibits cell division and can result in cell death or genetic mutation. Such catastrophic consequences make topoisomerases an effective target for antibiotics and anticancer agents. Despite their biological and clinical importance, little is understood about how a topoisomerase differentiates DNA topologies in a molecule that is significantly larger than the topoisomerase itself. It has been proposed that type II topoisomerases recognize angle and curvature between two DNA helices characteristic of knotted and catenated DNA to account for the enzyme's preference to unlink instead of link DNA. Here we consider the electrostatic potential of DNA juxtapositions to determine the possibility of juxtapositions occurring through Brownian diffusion. We found that despite the large negative electrostatic potential formed between two juxtaposed DNA helices, a bulk counterion concentration as small as 50 mM provides sufficient electrostatic screening to prohibit significant interaction beyond an interhelical separation of 3 nm in both hooked and free juxtapositions. This suggests that instead of electrostatics, mechanical forces such as those occurring in anaphase, knots, catenanes, or the writhe of supercoiled DNA may be responsible for the formation of DNA juxtapositions

  12. Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity.

    Science.gov (United States)

    Boessenkool, Sanne; McGlynn, Gayle; Epp, Laura S; Taylor, David; Pimentel, Manuel; Gizaw, Abel; Nemomissa, Sileshi; Brochmann, Christian; Popp, Magnus

    2014-04-01

    Conservation of biodiversity may in the future increasingly depend upon the availability of scientific information to set suitable restoration targets. In traditional paleoecology, sediment-based pollen provides a means to define preanthropogenic impact conditions, but problems in establishing the exact provenance and ecologically meaningful levels of taxonomic resolution of the evidence are limiting. We explored the extent to which the use of sedimentary ancient DNA (sedaDNA) may complement pollen data in reconstructing past alpine environments in the tropics. We constructed a record of afro-alpine plants retrieved from DNA preserved in sediment cores from 2 volcanic crater sites in the Albertine Rift, eastern Africa. The record extended well beyond the onset of substantial anthropogenic effects on tropical mountains. To ensure high-quality taxonomic inference from the sedaDNA sequences, we built an extensive DNA reference library covering the majority of the afro-alpine flora, by sequencing DNA from taxonomically verified specimens. Comparisons with pollen records from the same sediment cores showed that plant diversity recovered with sedaDNA improved vegetation reconstructions based on pollen records by revealing both additional taxa and providing increased taxonomic resolution. Furthermore, combining the 2 measures assisted in distinguishing vegetation change at different geographic scales; sedaDNA almost exclusively reflects local vegetation, whereas pollen can potentially originate from a wide area that in highlands in particular can span several ecozones. Our results suggest that sedaDNA may provide information on restoration targets and the nature and magnitude of human-induced environmental changes, including in high conservation priority, biodiversity hotspots, where understanding of preanthropogenic impact (or reference) conditions is highly limited. © 2013 Society for Conservation Biology.

  13. Extracting DNA from 'jaws': High yield and quality from archived tiger shark (Galeocerdo cuvier) skeletal material

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Morgan, J. A T; Maher, S. L.

    2017-01-01

    of tiger sharks (Galeocerdo cuvier). Protocols were compared for DNA yield and quality using a qPCR approach. For jaw swarf, all methods provided relatively high DNA yield and quality, while large differences in yield between protocols were observed for vertebrae. Similar results were obtained from samples...... observed, likely reflecting different preparation and storage methods for the trophies. Trial sequencing of DNA capture genomic libraries using 20 000 baits revealed that a significant proportion of captured sequences were derived from tiger sharks. This study demonstrates that archived shark jaws...

  14. Optimized mtDNA Control Region Primer Extension Capture Analysis for Forensically Relevant Samples and Highly Compromised mtDNA of Different Age and Origin

    Directory of Open Access Journals (Sweden)

    Mayra Eduardoff

    2017-09-01

    Full Text Available The analysis of mitochondrial DNA (mtDNA has proven useful in forensic genetics and ancient DNA (aDNA studies, where specimens are often highly compromised and DNA quality and quantity are low. In forensic genetics, the mtDNA control region (CR is commonly sequenced using established Sanger-type Sequencing (STS protocols involving fragment sizes down to approximately 150 base pairs (bp. Recent developments include Massively Parallel Sequencing (MPS of (multiplex PCR-generated libraries using the same amplicon sizes. Molecular genetic studies on archaeological remains that harbor more degraded aDNA have pioneered alternative approaches to target mtDNA, such as capture hybridization and primer extension capture (PEC methods followed by MPS. These assays target smaller mtDNA fragment sizes (down to 50 bp or less, and have proven to be substantially more successful in obtaining useful mtDNA sequences from these samples compared to electrophoretic methods. Here, we present the modification and optimization of a PEC method, earlier developed for sequencing the Neanderthal mitochondrial genome, with forensic applications in mind. Our approach was designed for a more sensitive enrichment of the mtDNA CR in a single tube assay and short laboratory turnaround times, thus complying with forensic practices. We characterized the method using sheared, high quantity mtDNA (six samples, and tested challenging forensic samples (n = 2 as well as compromised solid tissue samples (n = 15 up to 8 kyrs of age. The PEC MPS method produced reliable and plausible mtDNA haplotypes that were useful in the forensic context. It yielded plausible data in samples that did not provide results with STS and other MPS techniques. We addressed the issue of contamination by including four generations of negative controls, and discuss the results in the forensic context. We finally offer perspectives for future research to enable the validation and accreditation of the PEC MPS

  15. Use of electroporation for high-molecular-weight DNA-mediated gene transfer.

    Science.gov (United States)

    Jastreboff, M M; Ito, E; Bertino, J R; Narayanan, R

    1987-08-01

    Electroporation was used to introduce high-molecular-weight DNA into murine hematopoietic cells and NIH3T3 cells. CCRF-CEM cells were stably transfected with SV2NEO plasmid and the genomic DNA from G-418-resistant clones (greater than 65 kb) was introduced into mouse bone marrow and NIH3T3 cells by electroporation. NEO sequences and expression were detected in the hematopoietic tissues of lethally irradiated mice, with 24% of individual spleen colonies expressing NEO. The frequency of genomic DNA transfer into NIH3T3 cells was 0.25 X 10(-3). Electroporation thus offers a powerful mode of gene transfer not only of cloned genes but also of high-molecular-weight DNA into cells.

  16. A combined HM-PCR/SNuPE method for high sensitive detection of rare DNA methylation

    Directory of Open Access Journals (Sweden)

    Tierling Sascha

    2010-06-01

    Full Text Available Abstract Background DNA methylation changes are widely used as early molecular markers in cancer detection. Sensitive detection and classification of rare methylation changes in DNA extracted from circulating body fluids or complex tissue samples is crucial for the understanding of tumor etiology, clinical diagnosis and treatment. In this paper, we describe a combined method to monitor the presence of methylated tumor DNA in an excess of unmethylated background DNA of non-tumorous cells. The method combines heavy methyl-PCR, which favors preferential amplification of methylated marker sequence from bisulfite-treated DNA with a methylation-specific single nucleotide primer extension monitored by ion-pair, reversed-phase, high-performance liquid chromatography separation. Results This combined method allows detection of 14 pg (that is, four to five genomic copies of methylated chromosomal DNA in a 2000-fold excess (that is, 50 ng of unmethylated chromosomal background, with an analytical sensitivity of > 90%. We outline a detailed protocol for the combined assay on two examples of known cancer markers (SEPT9 and TMEFF2 and discuss general aspects of assay design and data interpretation. Finally, we provide an application example for rapid testing on tumor methylation in plasma DNA derived from a small cohort of patients with colorectal cancer. Conclusion The method allows unambiguous detection of rare DNA methylation, for example in body fluid or DNA isolates from cells or tissues, with very high sensitivity and accuracy. The application combines standard technologies and can easily be adapted to any target region of interest. It does not require costly reagents and can be used for routine screening of many samples.

  17. Extraction of high quality DNA from seized Moroccan cannabis resin (Hashish.

    Directory of Open Access Journals (Sweden)

    Moulay Abdelaziz El Alaoui

    Full Text Available The extraction and purification of nucleic acids is the first step in most molecular biology analysis techniques. The objective of this work is to obtain highly purified nucleic acids derived from Cannabis sativa resin seizure in order to conduct a DNA typing method for the individualization of cannabis resin samples. To obtain highly purified nucleic acids from cannabis resin (Hashish free from contaminants that cause inhibition of PCR reaction, we have tested two protocols: the CTAB protocol of Wagner and a CTAB protocol described by Somma (2004 adapted for difficult matrix. We obtained high quality genomic DNA from 8 cannabis resin seizures using the adapted protocol. DNA extracted by the Wagner CTAB protocol failed to give polymerase chain reaction (PCR amplification of tetrahydrocannabinolic acid (THCA synthase coding gene. However, the extracted DNA by the second protocol permits amplification of THCA synthase coding gene using different sets of primers as assessed by PCR. We describe here for the first time the possibility of DNA extraction from (Hashish resin derived from Cannabis sativa. This allows the use of DNA molecular tests under special forensic circumstances.

  18. Self-Assembly DNA Polyplex Vaccine inside Dissolving Microneedles for High-Potency Intradermal Vaccination

    Science.gov (United States)

    Liao, Jing-Fong; Lee, Jin-Ching; Lin, Chun-Kuang; Wei, Kuo-Chen; Chen, Pin-Yuan; Yang, Hung-Wei

    2017-01-01

    The strong immunogenicity induction is the powerful weapon to prevent the virus infections. This study demonstrated that one-step synthesis of DNA polyplex vaccine in microneedle (MN) patches can induce high immunogenicity through intradermal vaccination and increase the vaccine stability for storage outside the cold chain. More negative charged DNA vaccine was entrapped into the needle region of MNs followed by DNA polyplex formation with branched polyethylenimine (bPEI) pre-coated in the cavities of polydimethylsiloxane (PDMS) molds that can deliver more DNA vaccine to immune-cell rich epidermis with high transfection efficiency. Our data in this study support the safety and immunogenicity of the MN-based vaccine; the MN patch delivery system induced an immune response 3.5-fold as strong as seen with conventional intramuscular administration; the DNA polyplex formulation provided excellent vaccine stability at high temperature (could be stored at 45ºC for at least 4 months); the DNA vaccine is expected to be manufactured at low cost and not generate sharps waste. We think this study is significant to public health because there is a pressing need for an effective vaccination in developing countries. PMID:28819449

  19. Quality of human spermatozoa: relationship between high-magnification sperm morphology and DNA integrity.

    Science.gov (United States)

    Maettner, R; Sterzik, K; Isachenko, V; Strehler, E; Rahimi, G; Alabart, J L; Sánchez, R; Mallmann, P; Isachenko, E

    2014-06-01

    The aim of this work is to establish the relationship between the morphology of Intracytoplasmic Morphologically Selected Sperm Injection (IMSI)-selected spermatozoa and their DNA integrity. The 45 ejaculates were randomly distributed into three treatment groups: normozoospermic, oligoasthenozoospermic and oligoasthenotheratozoospermic samples. The evaluation of DNA integrity was performed using the sperm chromatin dispersion test. It was established that DNA integrity of spermatozoa is strongly dependent on ejaculate quality (P count of spermatozoa with nonfragmented DNA in normozoospermic samples was high and independent from IMSI-morphological classes (Class 1 versus Class 3, respectively) (P > 0.1). With decreased ejaculate quality, the percentage of spermatozoa with nonfragmented DNA decreased significantly (P < 0.05) independent from morphological class. Nevertheless, the rate of IMSI-selected spermatozoa with fragmented DNA within of Class 1 in normozoospermic (Group 1), in oligoasthenozoospermic (Group 2) and in oligoasthenotheratozoospermic (Group 3) samples was 21.1%, 31.8% and 54.1%, respectively. In conclusion, there is a direct relationship between morphological parameters of spermatozoa and their DNA integrity. However, the IMSI technique alone is not enough for the selection of spermatozoa with intact nuclei. © 2013 Blackwell Verlag GmbH.

  20. Highly Sensitive DNA Sensor Based on Upconversion Nanoparticles and Graphene Oxide.

    Science.gov (United States)

    Alonso-Cristobal, P; Vilela, P; El-Sagheer, A; Lopez-Cabarcos, E; Brown, T; Muskens, O L; Rubio-Retama, J; Kanaras, A G

    2015-06-17

    In this work we demonstrate a DNA biosensor based on fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er nanoparticles and graphene oxide (GO). Monodisperse NaYF4:Yb,Er nanoparticles with a mean diameter of 29.1 ± 2.2 nm were synthesized and coated with a SiO2 shell of 11 nm, which allowed the attachment of single strands of DNA. When these DNA-functionalized NaYF4:Yb,Er@SiO2 nanoparticles were in the proximity of the GO surface, the π-π stacking interaction between the nucleobases of the DNA and the sp(2) carbons of the GO induced a FRET fluorescence quenching due to the overlap of the fluorescence emission of the NaYF4:Yb,Er@SiO2 and the absorption spectrum of GO. By contrast, in the presence of the complementary DNA strands, the hybridization leads to double-stranded DNA that does not interact with the GO surface, and thus the NaYF4:Yb,Er@SiO2 nanoparticles remain unquenched and fluorescent. The high sensitivity and specificity of this sensor introduces a new method for the detection of DNA with a detection limit of 5 pM.

  1. A DNA fingerprinting procedure for ultra high-throughput genetic analysis of insects.

    Science.gov (United States)

    Schlipalius, D I; Waldron, J; Carroll, B J; Collins, P J; Ebert, P R

    2001-12-01

    Existing procedures for the generation of polymorphic DNA markers are not optimal for insect studies in which the organisms are often tiny and background molecular information is often non-existent. We have used a new high throughput DNA marker generation protocol called randomly amplified DNA fingerprints (RAF) to analyse the genetic variability in three separate strains of the stored grain pest, Rhyzopertha dominica. This protocol is quick, robust and reliable even though it requires minimal sample preparation, minute amounts of DNA and no prior molecular analysis of the organism. Arbitrarily selected oligonucleotide primers routinely produced approximately 50 scoreable polymorphic DNA markers, between individuals of three independent field isolates of R. dominica. Multivariate cluster analysis using forty-nine arbitrarily selected polymorphisms generated from a single primer reliably separated individuals into three clades corresponding to their geographical origin. The resulting clades were quite distinct, with an average genetic difference of 37.5 +/- 6.0% between clades and of 21.0 +/- 7.1% between individuals within clades. As a prelude to future gene mapping efforts, we have also assessed the performance of RAF under conditions commonly used in gene mapping. In this analysis, fingerprints from pooled DNA samples accurately and reproducibly reflected RAF profiles obtained from individual DNA samples that had been combined to create the bulked samples.

  2. Novel PVA-DNA nanoparticles prepared by ultra high pressure technology for gene delivery

    International Nuclear Information System (INIS)

    Kimura, Tsuyoshi; Okuno, Akira; Miyazaki, Kozo; Furuzono, Tsutomu; Ohya, Yuichi; Ouchi, Tatsuro; Mutsuo, Shingo; Yoshizawa, Hidekazu; Kitamura, Yoshiro; Fujisato, Toshiyta; Kishida, Akio

    2004-01-01

    Polyvinyl alcohol (PVA)-DNA nanoparticles have been developed by ultra high pressure (UHP) technology. Mixture solutions of DNA and PVA having various molecular weights (Mw) and degree of saponifications (DS) were treated under 10,000 atmospheres (981 MPa) condition at 40 deg. C for 10 min. Agarose gel electrophoresis and scanning electron microscope observation revealed that the PVA-DNA nanoparticles with average diameter of about 200 nm were formed. Using PVA of higher Mw and degree of saponifications, the amount of nanoparticles formed increased. The driving force of nanoparticle formation was the hydrogen bonding between DNA and PVA. In order to apply the PVA-DNA nanoparticles for gene delivery, the cytotoxicity and the cellular uptake of them were investigated using Raw264 cell lines. The cell viability was not influenced whether the presence of the PVA-DNA nanoparticles. Further, the nanoparticles internalized into cells were observed by fluorescent microscope. These results indicates that the PVA-DNA nanoparticles prepared by UHP technology showed be useful as drug carrier, especially for gene delivery

  3. Excessive counterion condensation on immobilized ssDNA in solutions of high ionic strength.

    Science.gov (United States)

    Rant, Ulrich; Arinaga, Kenji; Fujiwara, Tsuyoshi; Fujita, Shozo; Tornow, Marc; Yokoyama, Naoki; Abstreiter, Gerhard

    2003-12-01

    We present experiments on the bias-induced release of immobilized, single-stranded (ss) 24-mer oligonucleotides from Au-surfaces into electrolyte solutions of varying ionic strength. Desorption is evidenced by fluorescence measurements of dye-labeled ssDNA. Electrostatic interactions between adsorbed ssDNA and the Au-surface are investigated with respect to 1), a variation of the bias potential applied to the Au-electrode; and 2), the screening effect of the electrolyte solution. For the latter, the concentration of monovalent salt in solution is varied from 3 to 1600 mM. We find that the strength of electric interaction is predominantly determined by the effective charge of the ssDNA itself and that the release of DNA mainly occurs before the electrochemical double layer has been established at the electrolyte/Au interface. In agreement with Manning's condensation theory, the measured desorption efficiency (etarel) stays constant over a wide range of salt concentrations; however, as the Debye length is reduced below a value comparable to the axial charge spacing of the DNA, etarel decreases substantially. We assign this effect to excessive counterion condensation on the DNA in solutions of high ionic strength. In addition, the relative translational diffusion coefficient of ssDNA in solution is evaluated for different salt concentrations.

  4. Sequence of a cDNA encoding turtle high mobility group 1 protein.

    Science.gov (United States)

    Zheng, Jifang; Hu, Bi; Wu, Duansheng

    2005-07-01

    In order to understand sequence information about turtle HMG1 gene, a cDNA encoding HMG1 protein of the Chinese soft-shell turtle (Pelodiscus sinensis) was amplified by RT-PCR from kidney total RNA, and was cloned, sequenced and analyzed. The results revealed that the open reading frame (ORF) of turtle HMG1 cDNA is 606 bp long. The ORF codifies 202 amino acid residues, from which two DNA-binding domains and one polyacidic region are derived. The DNA-binding domains share higher amino acid identity with homologues sequences of chicken (96.5%) and mammalian (74%) than homologues sequence of rainbow trout (67%). The polyacidic region shows 84.6% amino acid homology with the equivalent region of chicken HMG1 cDNA. Turtle HMG1 protein contains 3 Cys residues located at completely conserved positions. Conservation in sequence and structure suggests that the functions of turtle HMG1 cDNA may be highly conserved during evolution. To our knowledge, this is the first report of HMG1 cDNA sequence in any reptilian.

  5. Two efficient methods for isolation of high-quality genomic DNA from entomopathogenic fungi.

    Science.gov (United States)

    Serna-Domínguez, María G; Andrade-Michel, Gilda Y; Arredondo-Bernal, Hugo C; Gallou, Adrien

    2018-03-27

    Conventional and commercial methods for isolation of nucleic acids are available for fungal samples including entomopathogenic fungi (EPF). However, there is not a unique optimal method for all organisms. The cell wall structure and the wide range of secondary metabolites of EPF can broadly interfere with the efficiency of the DNA extraction protocol. This study compares three commercial protocols: DNeasy® Plant Mini Kit (Qiagen), Wizard® Genomic DNA Purification Kit (Promega), and Axygen™ Multisource Genomic DNA Miniprep Kit (Axygen) and three conventional methods based on different buffers: SDS, CTAB/PVPP, and CTAB/β-mercaptoethanol versus three cell lysis procedures: liquid nitrogen homogenization and two bead-beating materials (i.e., tungsten-carbide and stainless-steel) for four representative species of EPF (i.e., Beauveria bassiana, Hirsutella citriformis, Isaria javanica, and Metarhizium anisopliae). Liquid nitrogen homogenization combined with DNeasy® Plant Mini Kit (i.e., QN) or SDS buffer (i.e., SN) significantly improved the yield with a good purity (~1.8) and high integrity (>20,000 bp) of genomic DNA in contrast with other methods, also, these results were better when compared with the two bead-beating materials. The purified DNA was evaluated by PCR-based techniques: amplification of translation elongation factor 1-α (TEF) and two highly sensitive molecular markers (i.e., ISSR and AFLP) with reliable and reproducible results. Despite a variation in yield, purity, and integrity of extracted DNA across the four species of EPF with the different DNA extraction methods, the SN and QN protocols maintained a high-quality of DNA which is required for downstream molecular applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Design and performance of the APPLE-Knot undulator

    International Nuclear Information System (INIS)

    Ji, Fuhao; Chang, Rui; Zhou, Qiaogen; Zhang, Wei; Ye, Mao; Sasaki, Shigemi; Qiao, Shan

    2015-01-01

    The design and performance of the Apple-Knot undulator which can generate photons with arbitrary polarization and low on-axis heat load are presented. Along with the development of accelerator technology, synchrotron emittance has continuously decreased. This results in increased brightness, but also causes a heavy heat load on beamline optics. Recently, optical surfaces with 0.1 nm micro-roughness and 0.05 µrad slope error (r.m.s.) have become commercially available and surface distortions due to heat load have become a key factor in determining beamline performance, and heat load has become a serious problem at modern synchrotron radiation facilities. Here, APPLE-Knot undulators which can generate photons with arbitrary polarization, with low on-axis heat load, are reported

  7. Design and performance of the APPLE-Knot undulator

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Fuhao [Department of Physics, State Key Laboratory of Surface Physics, and Laboratory of Advanced Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, People’s Republic of (China); Chang, Rui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, People’s Republic of (China); Zhou, Qiaogen; Zhang, Wei [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, People’s Republic of (China); Ye, Mao [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, People’s Republic of (China); Sasaki, Shigemi [Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Hiroshima 739-0046 (Japan); Qiao, Shan, E-mail: qiaoshan@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, People’s Republic of (China); School of Physical Science and Technology, ShanghaiTech University, 319 Yueyang Road, Shanghai 200031, People’s Republic of (China)

    2015-06-09

    The design and performance of the Apple-Knot undulator which can generate photons with arbitrary polarization and low on-axis heat load are presented. Along with the development of accelerator technology, synchrotron emittance has continuously decreased. This results in increased brightness, but also causes a heavy heat load on beamline optics. Recently, optical surfaces with 0.1 nm micro-roughness and 0.05 µrad slope error (r.m.s.) have become commercially available and surface distortions due to heat load have become a key factor in determining beamline performance, and heat load has become a serious problem at modern synchrotron radiation facilities. Here, APPLE-Knot undulators which can generate photons with arbitrary polarization, with low on-axis heat load, are reported.

  8. BPS counting for knots and combinatorics on words

    Energy Technology Data Exchange (ETDEWEB)

    Kucharski, Piotr [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Sułkowski, Piotr [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States)

    2016-11-21

    We discuss relations between quantum BPS invariants defined in terms of a product decomposition of certain series, and difference equations (quantum A-polynomials) that annihilate such series. We construct combinatorial models whose structure is encoded in the form of such difference equations, and whose generating functions (Hilbert-Poincaré series) are solutions to those equations and reproduce generating series that encode BPS invariants. Furthermore, BPS invariants in question are expressed in terms of Lyndon words in an appropriate language, thereby relating counting of BPS states to the branch of mathematics referred to as combinatorics on words. We illustrate these results in the framework of colored extremal knot polynomials: among others we determine dual quantum extremal A-polynomials for various knots, present associated combinatorial models, find corresponding BPS invariants (extremal Labastida-Mariño-Ooguri-Vafa invariants) and discuss their integrality.

  9. Gordian Knots of Prevision: The lessons of history

    Science.gov (United States)

    Fleming, J. R.

    2017-12-01

    Atmospheric researchers have long attempted to untie the Gordian Knot of meteorology—that intractable and intertwined tangle of observational imprecision, theoretical uncertainties, and non-linear influences—that, if unraveled, would provide perfect prevision of the weather for ten days, of seasonal conditions for the year, and of climatic conditions for a decade, a century, a millennium, or longer. This presentation, based on Inventing Atmospheric Science (M.I.T. Press, 2016), examines the work of four interconnected generations of scientists (Vilhelm Bjerknes, C.-G. Rossby, Harry Wexler, Ed Lorenz) and the influence of four transformative technologies (radio, nuclear, computation, aerospace) from the dawn of applied fluid dynamics to the emergence of the interdisciplinary atmospheric sciences and the new Gordian Knot of chaos.

  10. Energy and helicity of magnetic torus knots and braids

    Science.gov (United States)

    Oberti, Chiara; Ricca, Renzo L.

    2018-02-01

    By considering steady magnetic fields in the shape of torus knots and unknots in ideal magnetohydrodynamics, we compute some fundamental geometric and physical properties to provide estimates for magnetic energy and helicity. By making use of an appropriate parametrization, we show that knots with dominant toroidal coils that are a good model for solar coronal loops have negligible total torsion contribution to magnetic helicity while writhing number provides a good proxy. Hence, by the algebraic definition of writhe based on crossing numbers, we show that the estimated values of writhe based on image analysis provide reliable information for the exact values of helicity. We also show that magnetic energy is linearly related to helicity, and the effect of the confinement of magnetic field can be expressed in terms of geometric information. These results can find useful application in solar and plasma physics, where braided structures are often present.

  11. BPS counting for knots and combinatorics on words

    Science.gov (United States)

    Kucharski, Piotr; Sułkowski, Piotr

    2016-11-01

    We discuss relations between quantum BPS invariants defined in terms of a product decomposition of certain series, and difference equations (quantum A-polynomials) that annihilate such series. We construct combinatorial models whose structure is encoded in the form of such difference equations, and whose generating functions (Hilbert-Poincaré series) are solutions to those equations and reproduce generating series that encode BPS invariants. Furthermore, BPS invariants in question are expressed in terms of Lyndon words in an appropriate language, thereby relating counting of BPS states to the branch of mathematics referred to as combinatorics on words. We illustrate these results in the framework of colored extremal knot polynomials: among others we determine dual quantum extremal A-polynomials for various knots, present associated combinatorial models, find corresponding BPS invariants (extremal Labastida-Mariño-Ooguri-Vafa invariants) and discuss their integrality.

  12. Polynomial invariants for torus knots and topological strings

    International Nuclear Information System (INIS)

    Labastida, J.M.F.

    2001-01-01

    We make a precision test of a recently proposed conjecture relating Chern-Simons gauge theory to topological string theory on the resolution of the conifold. First, we develop a systematic procedure to extract string amplitudes from vacuum expectation values (vevs) of Wilson loops in Chern-Simons gauge theory, and then we evaluate these vevs in arbitrary irreducible representations of SU(N) for torus knots. We find complete agreement with the predictions derived from the target space interpretation of the string amplitudes. We also show that the structure of the free energy of topological open string theory gives further constraints on the Chern-Simons vevs. Our work provides strong evidence towards an interpretation of knot polynomial invariants as generating functions associated to enumerative problems. (orig.)

  13. A Robust Highly Aligned DNA Nanowire Array-Enabled Lithography for Graphene Nanoribbon Transistors.

    Science.gov (United States)

    Kang, Seok Hee; Hwang, Wan Sik; Lin, Zhiqun; Kwon, Se Hun; Hong, Suck Won

    2015-12-09

    Because of its excellent charge carrier mobility at the Dirac point, graphene possesses exceptional properties for high-performance devices. Of particular interest is the potential use of graphene nanoribbons or graphene nanomesh for field-effect transistors. Herein, highly aligned DNA nanowire arrays were crafted by flow-assisted self-assembly of a drop of DNA aqueous solution on a flat polymer substrate. Subsequently, they were exploited as "ink" and transfer-printed on chemical vapor deposited (CVD)-grown graphene substrate. The oriented DNA nanowires served as the lithographic resist for selective removal of graphene, forming highly aligned graphene nanoribbons. Intriguingly, these graphene nanoribbons can be readily produced over a large area (i.e., millimeter scale) with a high degree of feature-size controllability and a low level of defects, rendering the fabrication of flexible two terminal devices and field-effect transistors.

  14. New Ways to Cut through Ethical Gordian Knots.

    Science.gov (United States)

    Howe, Edmund G

    2017-01-01

    Clinicians and ethicists routinely encounter complex ethical dilemmas that seem intractable, which have been described as ethical Gordian knots. How can they best assist patients and surrogate decision makers who are entangled in struggles around the capacity to make life-or-death treatment decisions? In this article I describe unconventional and unorthodox approaches to help slice through these dilemmas. Copyright 2017 The Journal of Clinical Ethics. All rights reserved.

  15. Southward migration and fuel deposition of Red Knots Calidris canutus

    OpenAIRE

    Helseth, Anders; Lindström, Åke; Stervander, Martin

    2005-01-01

    We compared the differences between spring and autumn in migration speed, fuelling rates and fuel loads of migrating Red Knots Calidris canutus. As a basis we used ringing data from Ottenby Bird Observatory, southeastern Sweden, collected 1948–2003, with morphometrical data from 1990–2003. Numbers ringed varied between 0 and 301 per year (average 56). Morphometrics, recoveries and recaptures of ringed birds indicated that most birds belonged to the Afro-Siberian subspecies C. c. canutus, poss...

  16. Different Levels of DNA Methylation Detected in Human Sperms after Morphological Selection Using High Magnification Microscopy

    Directory of Open Access Journals (Sweden)

    Nino Guy Cassuto

    2016-01-01

    Full Text Available Objective. To analyze DNA methylation levels between two groups of spermatozoa taken from the same sample, following morphological selection by high magnification (HM at 6100x microscopy. A prospective study was conducted and studied 876 spermatozoa from 10 randomly selected men. Sperm morphology was characterized at HM according to criteria previously established. High-scoring Score 6 and low-scoring Score 0 sperm were selected. Sperm DNA methylation level was assessed using an immunoassay method targeting 5-methylcytosine residues by fluorescence microscopy with imaging analysis system to detect DNA methylation in single spermatozoon. Results. In total, 448 S6 spermatozoa and 428 S0 spermatozoa were analyzed. A strong relationship was found between sperm DNA methylation levels and sperm morphology observed at HM. Sperm DNA methylation level in the S6 group was significantly lower compared with that in the S0 group (p<10-6, OR = 2.4; and p<0.001, as determined using the Wilcoxon test. Conclusion. Differences in DNA methylation levels are associated with sperm morphology variations as observed at HM, which allows spermatozoa with abnormal levels to be discarded and ultimately decrease birth defects, malformations, and epigenetic diseases that may be transmitted from sperm to offspring in ICSI.

  17. Knot invariants and M-theory: Proofs and derivations

    Science.gov (United States)

    Errasti Díez, Verónica

    2018-01-01

    We construct two distinct yet related M-theory models that provide suitable frameworks for the study of knot invariants. We then focus on the four-dimensional gauge theory that follows from appropriately compactifying one of these M-theory models. We show that this theory has indeed all required properties to host knots. Our analysis provides a unifying picture of the various recent works that attempt an understanding of knot invariants using techniques of four-dimensional physics. This is a companion paper to K. Dasgupta, V. Errasti Díez, P. Ramadevi, and R. Tatar, Phys. Rev. D 95, 026010 (2017), 10.1103/PhysRevD.95.026010, covering all but Sec. III C. It presents a detailed mathematical derivation of the main results there, as well as additional material. Among the new insights, those related to supersymmetry and the topological twist are highlighted. This paper offers an alternative, complementary formulation of the contents in the first paper, but is self-contained and can be read independently.

  18. Rectangular superpolynomials for the figure-eight knot 41

    Science.gov (United States)

    Kononov, Ya. A.; Morozov, A. Yu.

    2017-11-01

    We rewrite the recently proposed differential expansion formula for HOMFLY polynomials of the knot 41 in an arbitrary rectangular representation R = [rs] as a sum over all Young subdiagrams λ of R with surprisingly simple coefficients of the Z factors. Intriguingly, these coefficients are constructed from the quantum dimensions of symmetric representations of the groups SL(r) and SL(s) and restrict the summation to diagrams with no more than s rows and r columns. Moreover, the β-deformation to Macdonald dimensions yields polynomials with positive integer coefficients, which are plausible candidates for the role of superpolynomials for rectangular representations. Both the polynomiality and the positivity of the coefficients are nonobvious, nevertheless true. This generalizes the previously known formulas for symmetric representations to arbitrary rectangular representations. The differential expansion allows introducing additional gradings. For the trefoil knot 31, to which our results for the knot 41 are immediately extended, we obtain the so-called fourth grading of hyperpolynomials. The property of factorization in roots of unity is preserved even in the five-graded case.

  19. Adhering Pasteuria penetrans endospores affect movements of root-knot nematode juveniles

    Directory of Open Access Journals (Sweden)

    Ioannis VAGELAS

    2013-01-01

    Full Text Available Pasteuria penetrans is a biological control agent of root-knot nematodes (Meloidogyne spp., preventing root invasion by second-stage juveniles (J2s, and eventually causing females sterility and death. greatest control effects for P. penetrans depend on the numbers of endospores attached to nematode cuticles. a method based on digital image analysis was used to record the effects of endospore attachment on the movements of juvenile root-knot nematodes, using a model based on the centroid point. Data showed that the numbers of endospores attached to the cuticle influenced nematode movement. At high endospore attachment levels (20‒30 per J2, nematodes did not show directional movement, whereas nematodes encumbered with five to eight spores showed limited directional movement, compared to those without endospores. nematode cephalic region turns were modelled using a markov chain, showing that P. penetrans endospores affected movements. Less nematodes invaded and established on tomato root systems when encumbered with low (five to eight or high numbers (20‒30 of P. penetrans endospores, compared with unencumbered nematodes.

  20. High quality DNA from human papillomavirus (HPV for PCR/RFLPs

    Directory of Open Access Journals (Sweden)

    Denise Wanderlei-Silva

    2005-01-01

    Full Text Available The analysis of DNA in clinical samples for a secure diagnostic has become indispensable nowadays. Techniques approaching isolation of high molecular weigth DNA of HPV could lead to efficient amplification and early clinical diagnosis of the virus DNA by PCR (polymerase chain reaction. We describe a fast, non-toxical, efficient and cheap method for DNA isolation of human papilloma virus (HPV from cervical smears using guanidine (DNAzol solution. A 450 bp DNA band correponding to the late region (L1 of the virus genome was detected by PCR, showing that the DNAzol extraction soluction generated a good viral DNA yield. The electrophoretic pattern after digestion with restriction endonucleases (RFLPs/PCR revealed the predominance of HPV-16 and HPV-33 in the samples from the State of Alagoas, Brazil.A detecção de DNA em amostras clínicas visando um diagnóstico mais seguro vem se tornando uma prática comum em laboratórios de análise clínica. Metodologias que objetivem o isolamento de DNA de alto peso molecular de HPV podem levar a uma amplificação precisa e diagnose precoce do DNA do vírus por PCR (reação de polimerase em cadeia. Nós descrevemos um método para o isolamento do DNA do vírus do papiloma humano de amostras cervicais utilizando o detergente guanidina (solução DNAzol. O método foi rápido, não-tóxico e eficiente. Uma banda de DNA de 450 pb correspondente à região tardia (L1 do genoma viral foi detectada por PCR, mostrando que a extração com DNAzol gerou quantidade suficiente de DNA para análise. O padrão eletroforético, após digestão com endonucleases de restrição (RFLPs/PCR, revelou predominância de HPV 16 e HPV-33 nas amostras no Estado de Alagoas, Brasil.

  1. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    DEFF Research Database (Denmark)

    Lundby, Carsten; Pilegaard, Henriette; van Hall, Gerrit

    2003-01-01

    Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen-consuming...

  2. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    International Nuclear Information System (INIS)

    Lundby, Carsten; Pilegaard, Henriette; Hall, Gerrit van; Sander, Mikael; Calbet, Jose; Loft, Steffen; Moeller, Peter

    2003-01-01

    Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen-consuming tissue. Muscle biopsies from seven healthy humans were obtained at sea level and after 2 and 8 weeks of hypoxia at 4100 m.a.s.l. We found increased levels of strand breaks and endonuclease III-sensitive sites after 2 weeks of hypoxia, whereas oxidative DNA damage detected by formamidopyrimidine DNA glycosylase (FPG) protein was unaltered. The expression of 8-oxoguanine DNA glycosylase 1 (OGG1), determined by quantitative RT-PCR of mRNA levels did not significantly change during high-altitude hypoxia, although the data could not exclude a minor upregulation. The expression of heme oxygenase-1 (HO-1) was unaltered by prolonged hypoxia, in accordance with the notion that HO-1 is an acute stress response protein. In conclusion, our data indicate high-altitude hypoxia may serve as a good model for oxidative stress and that antioxidant genes are not upregulated in muscle tissue by prolonged hypoxia despite increased generation of oxidative DNA damage

  3. PCR cycles above routine numbers do not compromise high-throughput DNA barcoding results.

    Science.gov (United States)

    Vierna, J; Doña, J; Vizcaíno, A; Serrano, D; Jovani, R

    2017-10-01

    High-throughput DNA barcoding has become essential in ecology and evolution, but some technical questions still remain. Increasing the number of PCR cycles above the routine 20-30 cycles is a common practice when working with old-type specimens, which provide little amounts of DNA, or when facing annealing issues with the primers. However, increasing the number of cycles can raise the number of artificial mutations due to polymerase errors. In this work, we sequenced 20 COI libraries in the Illumina MiSeq platform. Libraries were prepared with 40, 45, 50, 55, and 60 PCR cycles from four individuals belonging to four species of four genera of cephalopods. We found no relationship between the number of PCR cycles and the number of mutations despite using a nonproofreading polymerase. Moreover, even when using a high number of PCR cycles, the resulting number of mutations was low enough not to be an issue in the context of high-throughput DNA barcoding (but may still remain an issue in DNA metabarcoding due to chimera formation). We conclude that the common practice of increasing the number of PCR cycles should not negatively impact the outcome of a high-throughput DNA barcoding study in terms of the occurrence of point mutations.

  4. A high sensitivity, high throughput, automated single-cell gel electrophoresis ('Comet') DNA damage assay

    International Nuclear Information System (INIS)

    Vojnovic, B.; Barber, P.R.; Johnston, P.J.; Gregory, H.C.; Locke, R.J.

    2003-01-01

    A fully automated microscopy machine vision image capture and analysis system for the collection of data from slides of 'comets' has been developed. The novel image processing algorithms employed in delineating the 'comet head' from the 'comet tail' allow us to determine accurately very low levels of damage. In conjunction with calibrated and automated image capture methods, we are able to eliminate operator subjectivity and analyse large numbers of cells (>2500) in a short time (<1 hour). The image processing algorithm is designed to handle particularly difficult nuclei containing a high degree of structure, due to DNA clumping. We also present techniques used to extend the assay's dynamic range by removing interfering background fluorescence and to define a region of interest. If subtle biological variations are to be quantified (e.g. cell cycle dependant damage), then the use of large cell populations is dictated. Under those circumstances, the use of a fully automated system is particularly advantageous providing that the manner in which data is extracted does not introduce any inadvertent bias. In practice, it is essential that the image processing steps are geared towards the correct recognition of an acceptable cell nucleus, i.e. comet 'head'. We acknowledge the financial support of CRUK, Programme Grant C133/A1812 - SP 2195-01/02 and the US Department of Energy Low Dose Radiation Research Program grant DE-FG07-99ER62878

  5. Persistent DNA damage after high dose in vivo gamma exposure of minipig skin.

    Directory of Open Access Journals (Sweden)

    Emad A Ahmed

    Full Text Available Exposure to high doses of ionizing radiation (IR can lead to localized radiation injury of the skin and exposed cells suffer dsDNA breaks that may elicit cell death or stochastic changes. Little is known about the DNA damage response after high-dose exposure of the skin. Here, we investigate the cellular and DNA damage response in acutely irradiated minipig skin.IR-induced DNA damage, repair and cellular survival were studied in 15 cm(2 of minipig skin exposed in vivo to ~50 Co-60 γ rays. Skin biopsies of control and 4 h up to 96 days post exposure were investigated for radiation-induced foci (RIF formation using γ-H2AX, 53BP1, and active ATM-p immunofluorescence. High-dose IR induced massive γ-H2AX phosphorylation and high 53BP1 RIF numbers 4 h, 20 h after IR. As time progressed RIF numbers dropped to a low of 3-fold elevated at all subsequent time points. Replicating basal cells (Ki67+ were reduced 3 days post IR followed by increased proliferation and recovery of epidermal cellularity after 28 days.Acute high dose irradiation of minipig epidermis impaired stem cell replication and induced elevated apoptosis from 3 days onward. DNA repair cleared the high numbers of DBSs in skin cells, while RIFs that persisted in <1% cells marked complex and potentially lethal DNA damage up to several weeks after exposure. An elevated frequency of keratinocytes with persistent RIFs may thus serve as indicator of previous acute radiation exposure, which may be useful in the follow up of nuclear or radiological accident scenarios.

  6. Photolysis of phosphodiester bonds in plasmid DNA by high intensity UV laser irradiation

    International Nuclear Information System (INIS)

    Croke, D.T.; Blau, Werner; OhUigin, Colm; Kelly, J.M.; McConnell, D.J.

    1988-01-01

    The cleavage of phosphodiester bonds in DNA exposed to high intensity UV laser pulses in aerated aqueous solution has been investigated using a krypton fluoride excimer laser (248 nm) and bacterial plasmid DNA. The dependence of strand breakage on fluence and intensity has been studied in detail and shows that the process is non-linear with respect to intensity. The relationship between the quantum yield for strand breakage and intensity shows that the strand breakage reaction involves two-photon excitation of DNA bases. The quantum yield rises with intensity from a lower value of 7 x 10 -5 until a maximum value of 4.5 x 10 -4 is attained at intensities of 10 11 W m -2 and above. This value is approximately fifty-fold higher than the quantum yield for strand breakage induced by exposure to low density UV irradiation (254 nm, 12 W m -2 ). DNA sequencing experiments have shown that strand breakage occurs by the specific cleavage of the phosphodiester bond which lies immediately 3' to guanine residues in the DNA, leaving some alkali-labile remnant attached to the terminal phosphate. A mechanism for DNA strand breakage which involves the generation of guanine radical cations is proposed. (author)

  7. Purification of High Molecular Weight Genomic DNA from Powdery Mildew for Long-Read Sequencing.

    Science.gov (United States)

    Feehan, Joanna M; Scheibel, Katherine E; Bourras, Salim; Underwood, William; Keller, Beat; Somerville, Shauna C

    2017-03-31

    The powdery mildew fungi are a group of economically important fungal plant pathogens. Relatively little is known about the molecular biology and genetics of these pathogens, in part due to a lack of well-developed genetic and genomic resources. These organisms have large, repetitive genomes, which have made genome sequencing and assembly prohibitively difficult. Here, we describe methods for the collection, extraction, purification and quality control assessment of high molecular weight genomic DNA from one powdery mildew species, Golovinomyces cichoracearum. The protocol described includes mechanical disruption of spores followed by an optimized phenol/chloroform genomic DNA extraction. A typical yield was 7 µg DNA per 150 mg conidia. The genomic DNA that is isolated using this procedure is suitable for long-read sequencing (i.e., > 48.5 kbp). Quality control measures to ensure the size, yield, and purity of the genomic DNA are also described in this method. Sequencing of the genomic DNA of the quality described here will allow for the assembly and comparison of multiple powdery mildew genomes, which in turn will lead to a better understanding and improved control of this agricultural pathogen.

  8. Charge reversible gold nanoparticles for high efficient absorption and desorption of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Wang Can; Zhuang Jiaqi; Jiang Shan; Li Jun; Yang Wensheng, E-mail: wsyang@jlu.edu.cn [Jilin University, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry (China)

    2012-10-15

    Mercaptoundecylamine and mercaptoundecanoic acid co-modified Au nanoparticles were prepared by two-step ligand exchange of 6-mercaptohexanoic acid modified gold nanoparticles. Such particles terminated by appropriate ratios of the amine and carboxyl groups (R{sub N/C}) were identified to show reversible charge on their surface, which were switchable by pH of the solution. The isoelectric point (IEP) of the particles is tunable by changing the ratios of the amine and carboxyl groups on the particle surfaces. The particles can absorb DNA effectively at pH lower than the IEP driven by the direct electrostatic interactions between DNA and the particle surface. When pH of the solutions was elevated to be higher than the IEP, the absorbed DNA can be released almost completely due to the electrostatic repulsion between the particle surface and DNA. With appropriate R{sub N/C} ratios of 0.8, the absorption and desorption efficiencies of DNA were 97 and 98%, respectively, corresponding an extraction efficiency of 95 %. Such particles with reversible surface charges allow the high efficient extraction of DNA by simply changing pH instead of by changing salt concentration in the conventional salt bridge method.Graphical Abstract.

  9. High-throughput STR analysis for DNA database using direct PCR.

    Science.gov (United States)

    Sim, Jeong Eun; Park, Su Jeong; Lee, Han Chul; Kim, Se-Yong; Kim, Jong Yeol; Lee, Seung Hwan

    2013-07-01

    Since the Korean criminal DNA database was launched in 2010, we have focused on establishing an automated DNA database profiling system that analyzes short tandem repeat loci in a high-throughput and cost-effective manner. We established a DNA database profiling system without DNA purification using a direct PCR buffer system. The quality of direct PCR procedures was compared with that of conventional PCR system under their respective optimized conditions. The results revealed not only perfect concordance but also an excellent PCR success rate, good electropherogram quality, and an optimal intra/inter-loci peak height ratio. In particular, the proportion of DNA extraction required due to direct PCR failure could be minimized to <3%. In conclusion, the newly developed direct PCR system can be adopted for automated DNA database profiling systems to replace or supplement conventional PCR system in a time- and cost-saving manner. © 2013 American Academy of Forensic Sciences Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  10. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    Science.gov (United States)

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity.

    Science.gov (United States)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher's attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56±7.3nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Tightening slip knots in raw and degummed silk to increase toughness without losing strength

    OpenAIRE

    Pantano, Maria; Berardo, Alice; Pugno, Nicola

    2016-01-01

    Knots are fascinating topological elements, which can be found in both natural and artificial systems. While in most of the cases, knots cannot be loosened without breaking the strand where they are tightened, herein, attention is focused on slip or running knots, which on the contrary can be unfastened without compromising the structural integrity of their hosting material. Two different topologies are considered, involving opposite unfastening mechanisms, and their influence on the mechanic...

  13. Application of high-throughput DNA sequencing in phytopathology.

    Science.gov (United States)

    Studholme, David J; Glover, Rachel H; Boonham, Neil

    2011-01-01

    The new sequencing technologies are already making a big impact in academic research on medically important microbes and may soon revolutionize diagnostics, epidemiology, and infection control. Plant pathology also stands to gain from exploiting these opportunities. This manuscript reviews some applications of these high-throughput sequencing methods that are relevant to phytopathology, with emphasis on the associated computational and bioinformatics challenges and their solutions. Second-generation sequencing technologies have recently been exploited in genomics of both prokaryotic and eukaryotic plant pathogens. They are also proving to be useful in diagnostics, especially with respect to viruses. Copyright © 2011 by Annual Reviews. All rights reserved.

  14. Overexpression of MIC-3 indicates a direct role for the MIC gene family in mediating Upland cotton (Gossypium hirsutum) resistance to root-knot nematode (Meloidogyne incognita)

    Science.gov (United States)

    Major quantitative trait loci (QTL) have been mapped to Upland cotton (Gossypium hirsutum L.) chromosomes 11 and 14 that govern the highly resistant phenotype in response to infection by root-knot nematode (RKN; Meloidogyne incognita Chitwood & White); however, nearly nothing is known regarding the ...

  15. Pioglitazone retrieves hepatic antioxidant DNA repair in a mice model of high fat diet

    Directory of Open Access Journals (Sweden)

    Yang Ching-Hsiu

    2008-09-01

    Full Text Available Abstract Background Pioglitazone was reported to improve hepatic steatosis and necroinflammation in human studies. To investigate whether the hepato-protective effect of pioglitazone was associated with an improvement of antioxidant defense mechanism, oxidative DNA damage and repair activity were determined in a high fat diet model. Male C57BL/6 mice were respectively fed with a 30% fat diet, the same diet with pioglitazone 100 mg/kg/day, or a chow diet as control for 8 weeks. Tissue oxidative stress was indicated by malondialdehyde concentration. Oxidative DNA damage was detected by immunohistochemical 8-oxoG staining. Enzymatic antioxidant defense was detected by the real-time PCR of superoxide dismutase (Sod1, Sod2 and DNA glycosylase (Ogg1, MutY. Oxidative DNA repair was detected by immunohistochemical staining and western blotting of OGG1 expression. Results Our results show that hepatic steatosis was induced by a high-fat diet and improved by adding pioglitazone. Malondialdehyde concentration and 8-oxoG staining were strongly increased in the high-fat diet group, but attenuated by pioglitazone. Gene expressions of antioxidant defense mechanism: Sod1, Sod2, Ogg1 and MutY significantly decreased in the high-fat diet group but reversed by pioglitazone co-administration. Conclusion The attenuation of hepatic oxidative DNA damage by pioglitazone in a high-fat diet may be mediated by up-regulation of the antioxidant defense mechanism and oxidative DNA repair activity. The diminution of oxidative damage may explain the clinical benefit of pioglitazone treatment in patients with non-alcoholic fatty liver disease.

  16. Pioglitazone retrieves hepatic antioxidant DNA repair in a mice model of high fat diet

    Science.gov (United States)

    Hsiao, Pi-Jung; Hsieh, Tusty-Jiuan; Kuo, Kung-Kai; Hung, Wei-Wen; Tsai, Kun-Bow; Yang, Ching-Hsiu; Yu, Ming-Lung; Shin, Shyi-Jang

    2008-01-01

    Background Pioglitazone was reported to improve hepatic steatosis and necroinflammation in human studies. To investigate whether the hepato-protective effect of pioglitazone was associated with an improvement of antioxidant defense mechanism, oxidative DNA damage and repair activity were determined in a high fat diet model. Male C57BL/6 mice were respectively fed with a 30% fat diet, the same diet with pioglitazone 100 mg/kg/day, or a chow diet as control for 8 weeks. Tissue oxidative stress was indicated by malondialdehyde concentration. Oxidative DNA damage was detected by immunohistochemical 8-oxoG staining. Enzymatic antioxidant defense was detected by the real-time PCR of superoxide dismutase (Sod1, Sod2) and DNA glycosylase (Ogg1, MutY). Oxidative DNA repair was detected by immunohistochemical staining and western blotting of OGG1 expression. Results Our results show that hepatic steatosis was induced by a high-fat diet and improved by adding pioglitazone. Malondialdehyde concentration and 8-oxoG staining were strongly increased in the high-fat diet group, but attenuated by pioglitazone. Gene expressions of antioxidant defense mechanism: Sod1, Sod2, Ogg1 and MutY significantly decreased in the high-fat diet group but reversed by pioglitazone co-administration. Conclusion The attenuation of hepatic oxidative DNA damage by pioglitazone in a high-fat diet may be mediated by up-regulation of the antioxidant defense mechanism and oxidative DNA repair activity. The diminution of oxidative damage may explain the clinical benefit of pioglitazone treatment in patients with non-alcoholic fatty liver disease. PMID:18822121

  17. Interaction of a non-histone chromatin protein (high-mobility group protein 2) with DNA

    International Nuclear Information System (INIS)

    Goodwin, G.H.; Shooter, K.V.; Johns, E.W.

    1975-01-01

    The interaction with DNA of the calf thymus chromatin non-histone protein termed the high-mobility group protein 2 has been studied by sedimentation analysis in the ultracentrifuge and by measuring the binding of the 125 I-labelled protein to DNA. The results have been compared with those obtained previously by us [Eur. J. Biochem. (1974) 47, 263-270] for the interaction of high-mobility group protein 1 with DNA. Although the binding parameters are similar for these two proteins, high-mobility group protein 2 differs from high-mobility group protein 1 in that the former appears to change the shape of the DNA to a more compact form. The molecular weight of high-mobility group protein 2 has been determined by equilibrium sedimentation and a mean value of 26,000 was obtained. A low level of nuclease activity detected in one preparation of high-mobility group protein 2 has been investigated. (orig.) [de

  18. A high-throughput and sensitive method to measure Global DNA Methylation: Application in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Mamaev Sergey

    2008-08-01

    Full Text Available Abstract Background Genome-wide changes in DNA methylation are an epigenetic phenomenon that can lead to the development of disease. The study of global DNA methylation utilizes technology that requires both expensive equipment and highly specialized skill sets. Methods We have designed and developed an assay, CpGlobal, which is easy-to-use, does not utilize PCR, radioactivity and expensive equipment. CpGlobal utilizes methyl-sensitive restriction enzymes, HRP Neutravidin to detect the biotinylated nucleotides incorporated in an end-fill reaction and a luminometer to measure the chemiluminescence. The assay shows high accuracy and reproducibility in measuring global DNA methylation. Furthermore, CpGlobal correlates significantly with High Performance Capillary Electrophoresis (HPCE, a gold standard technology. We have applied the technology to understand the role of global DNA methylation in the natural history of lung cancer. World-wide, it is the leading cause of death attributed to any cancer. The survival rate is 15% over 5 years due to the lack of any clinical symptoms until the disease has progressed to a stage where cure is limited. Results Through the use of cell lines and paired normal/tumor samples from patients with non-small cell lung cancer (NSCLC we show that global DNA hypomethylation is highly associated with the progression of the tumor. In addition, the results provide the first indication that the normal part of the lung from a cancer patient has already experienced a loss of methylation compared to a normal individual. Conclusion By detecting these changes in global DNA methylation, CpGlobal may have a role as a barometer for the onset and development of lung cancer.

  19. Meso-Decorated Switching-Knot Gels

    Science.gov (United States)

    Gong, Jin; Sawamura, Kensuke; Makino, Masato; Kabir, M. H.; Furukawa, Hidemitsu

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry .In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals. The strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  20. Analysis of Active Methylotrophic Communities: When DNA-SIP Meets High-Throughput Technologies.

    Science.gov (United States)

    Taubert, Martin; Grob, Carolina; Howat, Alexandra M; Burns, Oliver J; Chen, Yin; Neufeld, Josh D; Murrell, J Colin

    2016-01-01

    Methylotrophs are microorganisms ubiquitous in the environment that can metabolize one-carbon (C1) compounds as carbon and/or energy sources. The activity of these prokaryotes impacts biogeochemical cycles within their respective habitats and can determine whether these habitats act as sources or sinks of C1 compounds. Due to the high importance of C1 compounds, not only in biogeochemical cycles, but also for climatic processes, it is vital to understand the contributions of these microorganisms to carbon cycling in different environments. One of the most challenging questions when investigating methylotrophs, but also in environmental microbiology in general, is which species contribute to the environmental processes of interest, or "who does what, where and when?" Metabolic labeling with C1 compounds substituted with (13)C, a technique called stable isotope probing, is a key method to trace carbon fluxes within methylotrophic communities. The incorporation of (13)C into the biomass of active methylotrophs leads to an increase in the molecular mass of their biomolecules. For DNA-based stable isotope probing (DNA-SIP), labeled and unlabeled DNA is separated by isopycnic ultracentrifugation. The ability to specifically analyze DNA of active methylotrophs from a complex background community by high-throughput sequencing techniques, i.e. targeted metagenomics, is the hallmark strength of DNA-SIP for elucidating ecosystem functioning, and a protocol is detailed in this chapter.

  1. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    Science.gov (United States)

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2015-01-01

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. PMID:25155200

  2. Co-Immobilization of Proteins and DNA Origami Nanoplates to Produce High-Contrast Biomolecular Nanoarrays.

    Science.gov (United States)

    Hager, Roland; Burns, Jonathan R; Grydlik, Martyna J; Halilovic, Alma; Haselgrübler, Thomas; Schäffler, Friedrich; Howorka, Stefan

    2016-06-01

    The biofunctionalization of nanopatterned surfaces with DNA origami nanostructures is an important topic in nanobiotechnology. An unexplored challenge is, however, to co-immobilize proteins with DNA origami at pre-determined substrate sites in high contrast relative to the nontarget areas. The immobilization should, in addition, preferably be achieved on a transparent substrate to allow ultrasensitive optical detection. If successful, specific co-binding would be a step towards stoichiometrically defined arrays with few to individual protein molecules per site. Here, we successfully immobilize with high specificity positively charged avidin proteins and negatively charged DNA origami nanoplates on 100 nm-wide carbon nanoislands while suppressing undesired adsorption to surrounding nontarget areas. The arrays on glass slides achieve unprecedented selectivity factors of up to 4000 and allow ultrasensitive fluorescence read-out. The co-immobilization onto the nanoislands leads to layered biomolecular architectures, which are functional because bound DNA origami influences the number of capturing sites on the nanopatches for other proteins. The novel hybrid DNA origami-protein nanoarrays allow the fabrication of versatile research platforms for applications in biosensing, biophysics, and cell biology, and, in addition, represent an important step towards single-molecule protein arrays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Are High School Students Ready for Recombinant DNA?: The UOP Experience.

    Science.gov (United States)

    Minch, Michael J.

    1989-01-01

    Discusses a three-week summer college honors course for talented high school juniors with three exams, lab six days a week, a research paper, field trips, and student panel discussions. Presents an overview of the course. Describes the lab which uses "E. coli" for DNA recombination. (MVL)

  4. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases

    DEFF Research Database (Denmark)

    Chen, Fuqiang; Pruett-Miller, Shondra M; Huang, Yuping

    2011-01-01

    Zinc-finger nucleases (ZFNs) have enabled highly efficient gene targeting in multiple cell types and organisms. Here we describe methods for using simple ssDNA oligonucleotides in tandem with ZFNs to efficiently produce human cell lines with three distinct genetic outcomes: (i) targeted point...

  5. Synthetic LNA/DNA nano-scaffolds for highly efficient diagnostics of nucleic acids and autoimmune antibodies

    DEFF Research Database (Denmark)

    Astakhova, Irina Kira

    2014-01-01

    ) strands and a series of fluorescent azides. The multiply labeled fluorescent LNA/DNA probes prepared herein generally display high binding affinity to complementary DNA/RNA, high quantum yields and, hence, high fluorescence brightness values. With the novel fluorescent probes, specific sensing...

  6. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley

    Directory of Open Access Journals (Sweden)

    Bartoš Jan

    2008-06-01

    Full Text Available Abstract Background Flow cytometry facilitates sorting of single chromosomes and chromosome arms which can be used for targeted genome analysis. However, the recovery of microgram amounts of DNA needed for some assays requires sorting of millions of chromosomes which is laborious and time consuming. Yet, many genomic applications such as development of genetic maps or physical mapping do not require large DNA fragments. In such cases time-consuming de novo sorting can be minimized by utilizing whole-genome amplification. Results Here we report a protocol optimized in barley including amplification of DNA from only ten thousand chromosomes, which can be isolated in less than one hour. Flow-sorted chromosomes were treated with proteinase K and amplified using Phi29 multiple displacement amplification (MDA. Overnight amplification in a 20-microlitre reaction produced 3.7 – 5.7 micrograms DNA with a majority of products between 5 and 30 kb. To determine the purity of sorted fractions and potential amplification bias we used quantitative PCR for specific genes on each chromosome. To extend the analysis to a whole genome level we performed an oligonucleotide pool assay (OPA for interrogation of 1524 loci, of which 1153 loci had known genetic map positions. Analysis of unamplified genomic DNA of barley cv. Akcent using this OPA resulted in 1426 markers with present calls. Comparison with three replicates of amplified genomic DNA revealed >99% concordance. DNA samples from amplified chromosome 1H and a fraction containing chromosomes 2H – 7H were examined. In addition to loci with known map positions, 349 loci with unknown map positions were included. Based on this analysis 40 new loci were mapped to 1H. Conclusion The results indicate a significant potential of using this approach for physical mapping. Moreover, the study showed that multiple displacement amplification of flow-sorted chromosomes is highly efficient and representative which

  7. Robust DNA Isolation and High-throughput Sequencing Library Construction for Herbarium Specimens.

    Science.gov (United States)

    Saeidi, Saman; McKain, Michael R; Kellogg, Elizabeth A

    2018-03-08

    Herbaria are an invaluable source of plant material that can be used in a variety of biological studies. The use of herbarium specimens is associated with a number of challenges including sample preservation quality, degraded DNA, and destructive sampling of rare specimens. In order to more effectively use herbarium material in large sequencing projects, a dependable and scalable method of DNA isolation and library preparation is needed. This paper demonstrates a robust, beginning-to-end protocol for DNA isolation and high-throughput library construction from herbarium specimens that does not require modification for individual samples. This protocol is tailored for low quality dried plant material and takes advantage of existing methods by optimizing tissue grinding, modifying library size selection, and introducing an optional reamplification step for low yield libraries. Reamplification of low yield DNA libraries can rescue samples derived from irreplaceable and potentially valuable herbarium specimens, negating the need for additional destructive sampling and without introducing discernible sequencing bias for common phylogenetic applications. The protocol has been tested on hundreds of grass species, but is expected to be adaptable for use in other plant lineages after verification. This protocol can be limited by extremely degraded DNA, where fragments do not exist in the desired size range, and by secondary metabolites present in some plant material that inhibit clean DNA isolation. Overall, this protocol introduces a fast and comprehensive method that allows for DNA isolation and library preparation of 24 samples in less than 13 h, with only 8 h of active hands-on time with minimal modifications.

  8. Quantum invariants of knots and 3-manifolds

    CERN Document Server

    Turaev, Vladimir G

    2016-01-01

    The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monogr...

  9. A 'FIREWORK' OF H2 KNOTS IN THE PLANETARY NEBULA NGC 7293 (THE HELIX NEBULA)

    International Nuclear Information System (INIS)

    Matsuura, M.; Speck, A. K.; McHunu, B. M.; Tanaka, I.; Wright, N. J.; Viti, S.; Wesson, R.; Smith, M. D.; Zijlstra, A. A.

    2009-01-01

    We present a deep and wide field-of-view (4' x 7') image of the planetary nebula (PN) NGC 7293 (the Helix Nebula) in the 2.12 μm H 2 v = 1 → 0 S(1) line. The excellent seeing (0.''4) at the Subaru Telescope, allows the details of cometary knots to be examined. The knots are found at distances of 2.'2-6.'4 from the central star (CS). At the inner edge and in the inner ring (up to 4.'5 from the CS), the knot often show a 'tadpole' shape, an elliptical head with a bright crescent inside and a long tail opposite to the CS. In detail, there are variations in the tadpole shapes, such as narrowing tails, widening tails, meandering tails, or multipeaks within a tail. In the outer ring (4.'5-6.'4 from the CS), the shapes are more fractured, and the tails do not collimate into a single direction. The transition in knot morphology from the inner edge to the outer ring is clearly seen. The number density of knots governs the H 2 surface brightness in the inner ring: H 2 exists only within the knots. Possible mechanisms which contribute to the shaping of the knots are discussed, including photoionization and streaming motions. A plausible interpretation of our images is that inner knots are being overrun by a faster wind, but that this has not (yet) reached the outer knots. Based on H 2 formation and destruction rates, H 2 gas can survive in knots from formation during the late asymptotic giant branch phase throughout the PN phase. These observations provide new constraints on the formation and evolution of knots, and on the physics of molecular gas embedded within ionized gas.

  10. A "Firework" of H2 Knots in the Planetary Nebula NGC 7293 (The Helix Nebula)

    Science.gov (United States)

    Matsuura, M.; Speck, A. K.; McHunu, B. M.; Tanaka, I.; Wright, N. J.; Smith, M. D.; Zijlstra, A. A.; Viti, S.; Wesson, R.

    2009-08-01

    We present a deep and wide field-of-view (4' × 7') image of the planetary nebula (PN) NGC 7293 (the Helix Nebula) in the 2.12 μm H2 v = 1 → 0 S(1) line. The excellent seeing (0farcs4) at the Subaru Telescope, allows the details of cometary knots to be examined. The knots are found at distances of 2farcm2-6farcm4 from the central star (CS). At the inner edge and in the inner ring (up to 4farcm5 from the CS), the knot often show a "tadpole" shape, an elliptical head with a bright crescent inside and a long tail opposite to the CS. In detail, there are variations in the tadpole shapes, such as narrowing tails, widening tails, meandering tails, or multipeaks within a tail. In the outer ring (4farcm5-6farcm4 from the CS), the shapes are more fractured, and the tails do not collimate into a single direction. The transition in knot morphology from the inner edge to the outer ring is clearly seen. The number density of knots governs the H2 surface brightness in the inner ring: H2 exists only within the knots. Possible mechanisms which contribute to the shaping of the knots are discussed, including photoionization and streaming motions. A plausible interpretation of our images is that inner knots are being overrun by a faster wind, but that this has not (yet) reached the outer knots. Based on H2 formation and destruction rates, H2 gas can survive in knots from formation during the late asymptotic giant branch phase throughout the PN phase. These observations provide new constraints on the formation and evolution of knots, and on the physics of molecular gas embedded within ionized gas. Based on data taken with the Subaru Telescope, National Astronomical Observatory of Japan (proposal ID S07B-054).

  11. Polymorphism discovery and allele frequency estimation using high-throughput DNA sequencing of target-enriched pooled DNA samples

    Directory of Open Access Journals (Sweden)

    Mullen Michael P

    2012-01-01

    Full Text Available Abstract Background The central role of the somatotrophic axis in animal post-natal growth, development and fertility is well established. Therefore, the identification of genetic variants affecting quantitative traits within this axis is an attractive goal. However, large sample numbers are a pre-requisite for the identification of genetic variants underlying complex traits and although technologies are improving rapidly, high-throughput sequencing of large numbers of complete individual genomes remains prohibitively expensive. Therefore using a pooled DNA approach coupled with target enrichment and high-throughput sequencing, the aim of this study was to identify polymorphisms and estimate allele frequency differences across 83 candidate genes of the somatotrophic axis, in 150 Holstein-Friesian dairy bulls divided into two groups divergent for genetic merit for fertility. Results In total, 4,135 SNPs and 893 indels were identified during the resequencing of the 83 candidate genes. Nineteen percent (n = 952 of variants were located within 5' and 3' UTRs. Seventy-two percent (n = 3,612 were intronic and 9% (n = 464 were exonic, including 65 indels and 236 SNPs resulting in non-synonymous substitutions (NSS. Significant (P ® MassARRAY. No significant differences (P > 0.1 were observed between the two methods for any of the 43 SNPs across both pools (i.e., 86 tests in total. Conclusions The results of the current study support previous findings of the use of DNA sample pooling and high-throughput sequencing as a viable strategy for polymorphism discovery and allele frequency estimation. Using this approach we have characterised the genetic variation within genes of the somatotrophic axis and related pathways, central to mammalian post-natal growth and development and subsequent lactogenesis and fertility. We have identified a large number of variants segregating at significantly different frequencies between cattle groups divergent for calving

  12. Analysis on the DNA Fingerprinting of Aspergillus Oryzae Mutant Induced by High Hydrostatic Pressure

    International Nuclear Information System (INIS)

    Wang Hua; Zhang Jian; Wang Kai; Liu Bing-Bing; Zou Bo; Zou Guang-Tian; Yang Fan; Shen Si-Le

    2011-01-01

    The mutant strains of aspergillus oryzae (HP300a) are screened under 300 MPa for 20 min. Compared with the control strains, the screened mutant strains have unique properties such as genetic stability, rapid growth, lots of spores, and high protease activity. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) are used to analyze the DNA fingerprinting of HP300a and the control strains. There are 67.9% and 51.3% polymorphic bands obtained by these two markers, respectively, indicating significant genetic variations between HP300a and the control strains. In addition, comparison of HP300a and the control strains, the genetic distances of random sequence and simple sequence repeat of DNA are 0.51 and 0.34, respectively. (general)

  13. Analysis on the DNA Fingerprinting of Aspergillus Oryzae Mutant Induced by High Hydrostatic Pressure

    Science.gov (United States)

    Wang, Hua; Zhang, Jian; Yang, Fan; Wang, Kai; Shen, Si-Le; Liu, Bing-Bing; Zou, Bo; Zou, Guang-Tian

    2011-01-01

    The mutant strains of aspergillus oryzae (HP300a) are screened under 300 MPa for 20 min. Compared with the control strains, the screened mutant strains have unique properties such as genetic stability, rapid growth, lots of spores, and high protease activity. Random amplified polymorphic DNA (RAPD) and inter simple sequence repeats (ISSR) are used to analyze the DNA fingerprinting of HP300a and the control strains. There are 67.9% and 51.3% polymorphic bands obtained by these two markers, respectively, indicating significant genetic variations between HP300a and the control strains. In addition, comparison of HP300a and the control strains, the genetic distances of random sequence and simple sequence repeat of DNA are 0.51 and 0.34, respectively.

  14. Refining DNA Barcoding Coupled High Resolution Melting for Discrimination of 12 Closely Related Croton Species.

    Directory of Open Access Journals (Sweden)

    Maslin Osathanunkul

    Full Text Available DNA barcoding coupled high resolution melting (Bar-HRM is an emerging method for species discrimination based on DNA dissociation kinetics. The aim of this work was to evaluate the suitability of different primer sets, derived from selected DNA regions, for Bar-HRM analysis of species in Croton (Euphorbiaceae, one of the largest genera of plants with over 1,200 species. Seven primer pairs were evaluated (matK, rbcL1, rbcL2, rbcL3, rpoC, trnL and ITS1 from four plastid regions, matK, rbcL, rpoC, and trnL, and the nuclear ribosomal marker ITS1. The primer pair derived from the ITS1 region was the single most effective region for the identification of the tested species, whereas the rbcL1 primer pair gave the lowest resolution. It was observed that the ITS1 barcode was the most useful DNA barcoding region overall for species discrimination out of all of the regions and primers assessed. Our Bar-HRM results here also provide further support for the hypothesis that both sequence and base composition affect DNA duplex stability.

  15. Multiplex target enrichment using DNA indexing for ultra-high throughput SNP detection.

    LENUS (Irish Health Repository)

    Kenny, Elaine M

    2011-02-01

    Screening large numbers of target regions in multiple DNA samples for sequence variation is an important application of next-generation sequencing but an efficient method to enrich the samples in parallel has yet to be reported. We describe an advanced method that combines DNA samples using indexes or barcodes prior to target enrichment to facilitate this type of experiment. Sequencing libraries for multiple individual DNA samples, each incorporating a unique 6-bp index, are combined in equal quantities, enriched using a single in-solution target enrichment assay and sequenced in a single reaction. Sequence reads are parsed based on the index, allowing sequence analysis of individual samples. We show that the use of indexed samples does not impact on the efficiency of the enrichment reaction. For three- and nine-indexed HapMap DNA samples, the method was found to be highly accurate for SNP identification. Even with sequence coverage as low as 8x, 99% of sequence SNP calls were concordant with known genotypes. Within a single experiment, this method can sequence the exonic regions of hundreds of genes in tens of samples for sequence and structural variation using as little as 1 μg of input DNA per sample.

  16. High-Risk Palliative Care Patients' Knowledge and Attitudes about Hereditary Cancer Testing and DNA Banking.

    Science.gov (United States)

    Quillin, John M; Emidio, Oluwabunmi; Ma, Brittany; Bailey, Lauryn; Smith, Thomas J; Kang, In Guk; Yu, Brandon J; Owodunni, Oluwafemi Patrick; Abusamaan, Mohammed; Razzak, Rab; Bodurtha, Joann N

    2017-12-04

    Even at the end of life, testing cancer patients for inherited susceptibility may provide life-saving information to their relatives. Prior research suggests palliative care inpatients have suboptimal understanding of genetic importance, and testing may be underutilized in this clinical setting. These conclusions are based on limited research. This study aimed to estimate genetic testing prevalence among high-risk palliative care patients in a National Cancer Institute-designated comprehensive cancer center. We also aimed to understand these patients' understanding of, and attitudes toward, hereditary cancer testing and DNA banking. Palliative care in-patients with cancer completed structured interviews, and their medical records were reviewed. Among patients at high risk for hereditary cancer, we assessed history of genetic testing/DNA banking; and related knowledge and attitudes. Among 24 high-risk patients, 14 (58.3%) said they/their relatives had genetic testing or they had been referred for a genetics consultation. Of the remaining 10 patients, seven (70%) said they would "probably" or "definitely" get tested. Patients who had not had testing were least concerned about the impact of future testing on their family relationships; two (20%) said they were "extremely concerned" about privacy related to genetic testing. Of patients without prior testing, five (50%) said they had heard or read "a fair amount" about genetic testing. No high-risk patients had banked DNA. Overall, 23 (95.8%) said they had heard or read "almost nothing" or "relatively little" about DNA banking. Written materials and clinician discussion were most preferred ways to learn about genetic testing and DNA banking. Overall, this study demonstrates underutilization of genetics services at the end of life continues to be problematic, despite high patient interest.

  17. A simple approach for producing highly efficient DNA carriers with reduced toxicity based on modified polyallylamine

    Energy Technology Data Exchange (ETDEWEB)

    Oskuee, Reza Kazemi [Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Dosti, Fatemeh [School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Gholami, Leila [Targeted Drug Delivery Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Malaekeh-Nikouei, Bizhan, E-mail: malaekehb@mums.ac.ir [Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2015-04-01

    Nowadays gene delivery is a topic in many research studies. Non-viral vectors have many advantages over viral vectors in terms of safety, immunogenicity and gene carrying capacity but they suffer from low transfection efficiency and high toxicity. In this study, polyallylamine (PAA), the cationic polymer, has been modified with hydrophobic branches to increase the transfection efficiency of the polymer. Polyallylamine with molecular weights of 15 and 65 kDa was selected and grafted with butyl, hexyl and decyl acrylate at percentages of 10, 30 and 50. The ability of the modified polymer to condense DNA was examined by ethidium bromide test. The complex of modified polymer and DNA (polyplex) was characterized for size, zeta potential, transfection efficiency and cytotoxicity in Neuro2A cell lines. The results of ethidium bromide test showed that grafting of PAA decreased its ability for DNA condensation but vectors could still condense DNA at moderate and high carrier to DNA ratios. Most of polyplexes had particle size between 150 and 250 nm. The prepared vectors mainly showed positive zeta potential but carriers composed of PAA with high percentage of grafting had negative zeta potential. The best transfection activity was observed in vectors with hexyl acrylate chain. Grafting of polymer reduced its cytotoxicity especially at percentages of 30 and 50. The vectors based of PAA 15 kDa had better transfection efficiency than the vectors made of PAA 65 kDa. In conclusion, results of the present study indicated that grafting PAA 15 kDa with high percentages of hexyl acrylate can help to prepare vectors with better transfection efficiency and less cytotoxicity. - Highlights: • The modified polyallylamine was synthesized as a gene carrier. • Modification of polyallylamine (15 kDa) with high percentages of hexyl acrylate improved transfection activity remarkably. • Grafting of polymer with acrylate derivatives reduced polymer cytotoxicity especially at percentages of

  18. Knots and surfaces a guide to discovering mathematics

    CERN Document Server

    Farmer, David W

    1995-01-01

    In most mathematics textbooks, the most exciting part of mathematics-the process of invention and discovery-is completely hidden from the reader. The aim of Knots and Surfaces is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequi

  19. Explorations in topology map coloring, surfaces and knots

    CERN Document Server

    Gay, David

    2013-01-01

    Explorations in Topology, Second Edition, provides students a rich experience with low-dimensional topology (map coloring, surfaces, and knots), enhances their geometrical and topological intuition, empowers them with new approaches to solving problems, and provides them with experiences that will help them make sense of future, more formal topology courses. The book's innovative story-line style models the problem-solving process, presents the development of concepts in a natural way, and engages students in meaningful encounters with the material. The updated end-of-chapter investigation

  20. High-resolution NMR studies of chimeric DNA-RNA-DNA duplexes, heteronomous base pairing, and continuous base stacking at junctions

    International Nuclear Information System (INIS)

    Chou, Shanho; Flynn, P.; Wang, A.; Reid, B.

    1991-01-01

    Two symmetrical DNA-RNA-DNA duplex chimeras, d(CGCG)r(AAUU)d(CGCG) (designated rAAUU) and d(CGCG)r(UAUA)d(CGCG) (designated rUAUA), and a nonsymmetrical chimeric duplex, d(CGTT)r(AUAA)d(TGCG)/d(CGCA)r(UUAU)d(AACG) (designated rAUAA), as well as their pure DNA analogues, containing dU instead of T, have been synthesized by solid-phase phosphoramidite methods and studied by high-resolution NMR techniques. The 1D imino proton NOE spectra of these d-r-d chimeras indicate normal Watson-Crick hydrogen bonding and base stacking at the junction region. Preliminary qualitative NOESY, COSY, and chemical shift data suggest that the internal RNA segment contains C3'-endo (A-type) sugar conformations except for the first RNA residues (position 5 and 17) following the 3' end of the DNA block, which, unlike the other six ribonucleotides, exhibit detectable H1'-H2' J coupling. The nucleosides of the two flanking DNA segments appear to adopt a fairly normal C2'-endo B-DNA conformation except at the junction with the RNA blocks (residues 4 and 16), where the last DNA residue appears to adopt an intermediate sugar conformation. The data indicate that A-type and B-type conformations can coexist in a single short continuous nucleic acid duplex, but these results differ somewhat from previous theoretical model studies

  1. A summary of modulus of elasticity and knot size surveys for laminating grades of lumber

    Science.gov (United States)

    R. W. Wolfe; R. C. Moody

    1981-01-01

    A summary of modulus of elasticity (MOE) and knot data is presented for grades of lumber commonly used to manufacture glued-laminated (glulam) timber by the laminating Industry. Tabulated values represent 30 different studies covering a time span of over 16 years. Statistical estimates of average and near-maximum knot sizes as well as mean and coefficient of variation...

  2. The volume conjecture, perturbative knot invariants, and recursion relations for topological strings

    NARCIS (Netherlands)

    Dijkgraaf, R.; Fuji, H.; Manabe, M.

    2011-01-01

    We study the relation between perturbative knot invariants and the free energies defined by topological string theory on the character variety of the knot. Such a correspondence between SL(2;C) Chern-Simons gauge theory and the topological open string theory was proposed earlier on the basis of the

  3. First report of the root-knot nematode Meloidogyne ethiopica on tomato in Slovenia

    NARCIS (Netherlands)

    Sirca, S.; Urek, G.; Karssen, G.

    2004-01-01

    The root-knot nematode Meloidogyne ethiopica Whitehead originally described from Tanzania is also distributed in South Africa, Zimbabwe, and Ethiopia (3). Although this species is a relatively unknown root-knot nematode, M. ethiopica parasitizes several economical important crops, such as tomato,

  4. Use of gadolinium chloride as a contrast agent for imaging spruce knots by magnetic resonance

    Science.gov (United States)

    Thomas L. Eberhardt; Chi-Leung So; Amy H. Herlihy; Po-Wah So

    2006-01-01

    Treatments of knot-containing spruce wood blocks with a paramagnetic salt, gadolinium (III) chloride, in combination with solvent pretreatments, were evaluated as strategies to enhance the visualization of wood features by magnetic resonance imaging (MRI). Initial experiments with clear wood and excised knot samples showed differences in moisture uptake after...

  5. Characterization of the psoRPM1 gene for resistance to root-knot ...

    African Journals Online (AJOL)

    Several root-knot nematode (Meloidogyne spp.) resistance genes have been discovered in different stone fruit crops. However, none of them has yet been cloned and they were only located on the chromosomes. In this study, a candidate root-knot nematode resistance gene (designated as psoRPM1) was isolated from the ...

  6. Extraction of High Molecular Weight DNA from Fungal Rust Spores for Long Read Sequencing.

    Science.gov (United States)

    Schwessinger, Benjamin; Rathjen, John P

    2017-01-01

    Wheat rust fungi are complex organisms with a complete life cycle that involves two different host plants and five different spore types. During the asexual infection cycle on wheat, rusts produce massive amounts of dikaryotic urediniospores. These spores are dikaryotic (two nuclei) with each nucleus containing one haploid genome. This dikaryotic state is likely to contribute to their evolutionary success, making them some of the major wheat pathogens globally. Despite this, most published wheat rust genomes are highly fragmented and contain very little haplotype-specific sequence information. Current long-read sequencing technologies hold great promise to provide more contiguous and haplotype-phased genome assemblies. Long reads are able to span repetitive regions and phase structural differences between the haplomes. This increased genome resolution enables the identification of complex loci and the study of genome evolution beyond simple nucleotide polymorphisms. Long-read technologies require pure high molecular weight DNA as an input for sequencing. Here, we describe a DNA extraction protocol for rust spores that yields pure double-stranded DNA molecules with molecular weight of >50 kilo-base pairs (kbp). The isolated DNA is of sufficient purity for PacBio long-read sequencing, but may require additional purification for other sequencing technologies such as Nanopore and 10× Genomics.

  7. Filtration of the classical knot concordance group and Casson-Gordon invariants

    Science.gov (United States)

    Kim, Taehee

    2004-09-01

    It is known that if every prime power branched cyclic cover of a knot in S(3) is a homology sphere, then the knot has vanishing Casson-Gordon invariants. We construct infinitely many examples of (topologically) non-slice knots in S(3) whose prime power branched cyclic covers are homology spheres. We show that these knots generate an infinite rank subgroup of scrf_{(1.0)}/scrf_{(1.5)} for which Casson-Gordon invariants vanish in Cochran-Orr-Teichner's filtration of the classical knot concordance group. As a corollary, it follows that Casson-Gordon invariants are not a complete set of obstructions to a second layer of Whitney disks.

  8. Analysis of Canis mitochondrial DNA demonstrates high concordance between the control region and ATPase genes

    Directory of Open Access Journals (Sweden)

    White Bradley N

    2010-07-01

    Full Text Available Abstract Background Phylogenetic studies of wild Canis species have relied heavily on the mitochondrial DNA control region (mtDNA CR to infer species relationships and evolutionary lineages. Previous analyses of the CR provided evidence for a North American evolved eastern wolf (C. lycaon, that is more closely related to red wolves (C. rufus and coyotes (C. latrans than grey wolves (C. lupus. Eastern wolf origins, however, continue to be questioned. Therefore, we analyzed mtDNA from 89 wolves and coyotes across North America and Eurasia at 347 base pairs (bp of the CR and 1067 bp that included the ATPase6 and ATPase8 genes. Phylogenies and divergence estimates were used to clarify the evolutionary history of eastern wolves, and regional comparisons of nonsynonomous to synonomous substitutions (dN/dS at the ATPase6 and ATPase8 genes were used to elucidate the potential role of selection in shaping mtDNA geographic distribution. Results We found high concordance across analyses between the mtDNA regions studied. Both had a high percentage of variable sites (CR = 14.6%; ATP = 9.7% and both phylogenies clustered eastern wolf haplotypes monophyletically within a North American evolved lineage apart from coyotes. Divergence estimates suggest the putative red wolf sequence is more closely related to coyotes (DxyCR = 0.01982 ± 0.00494 SD; DxyATP = 0.00332 ± 0.00097 SD than the eastern wolf sequences (DxyCR = 0.03047 ± 0.00664 SD; DxyATP = 0.00931 ± 0.00205 SD. Neutrality tests on both genes were indicative of the population expansion of coyotes across eastern North America, and dN/dS ratios suggest a possible role for purifying selection in the evolution of North American lineages. dN/dS ratios were higher in European evolved lineages from northern climates compared to North American evolved lineages from temperate regions, but these differences were not statistically significant. Conclusions These results demonstrate high concordance between coding

  9. Knots on a Torus: A Model of the Elementary Particles

    Directory of Open Access Journals (Sweden)

    Jack S. Avrin

    2012-02-01

    Full Text Available Two knots; just two rudimentary knots, the unknot and the trefoil. That’s all we need to build a model of the elementary particles of physics, one with fermions and bosons, hadrons and leptons, interactions weak and strong and the attributes of spin, isospin, mass, charge, CPT invariance and more. There are no quarks to provide fractional charge, no gluons to sequester them within nucleons and no “colors” to avoid violating Pauli’s principle. Nor do we require the importation of an enigmatic Higgs boson to confer mass upon the particles of our world. All the requisite attributes emerge simply (and relativistically invariant as a result of particle conformation and occupation in and of spacetime itself, a spacetime endowed with the imprimature of general relativity. Also emerging are some novel tools for systemizing the particle taxonomy as governed by the gauge group SU(2 and the details of particle degeneracy as well as connections to Hopf algebra, Dirac theory, string theory, topological quantum field theory and dark matter. One exception: it is found necessary to invoke the munificent geometry of the icosahedron in order to provide, as per the group “flavor” SU(3, a scaffold upon which to organize the well-known three generations—no more, no less—of the particle family tree.

  10. Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches.

    Science.gov (United States)

    Idili, Andrea; Plaxco, Kevin W; Vallée-Bélisle, Alexis; Ricci, Francesco

    2013-12-23

    Naturally occurring chemoreceptors almost invariably employ structure-switching mechanisms, an observation that has inspired the use of biomolecular switches in a wide range of artificial technologies in the areas of diagnostics, imaging, and synthetic biology. In one mechanism for generating such behavior, clamp-based switching, binding occurs via the clamplike embrace of two recognition elements onto a single target molecule. In addition to coupling recognition with a large conformational change, this mechanism offers a second advantage: it improves both affinity and specificity simultaneously. To explore the physics of such switches we have dissected here the thermodynamics of a clamp-switch that recognizes a target DNA sequence through both Watson-Crick base pairing and triplex-forming Hoogsteen interactions. When compared to the equivalent linear DNA probe (which relies solely on Watson-Crick interactions), the extra Hoogsteen interactions in the DNA clamp-switch increase the probe's affinity for its target by ∼0.29 ± 0.02 kcal/mol/base. The Hoogsteen interactions of the clamp-switch likewise provide an additional specificity check that increases the discrimination efficiency toward a single-base mismatch by 1.2 ± 0.2 kcal/mol. This, in turn, leads to a 10-fold improvement in the width of the "specificity window" of this probe relative to that of the equivalent linear probe. Given these attributes, clamp-switches should be of utility not only for sensing applications but also, in the specific field of DNA nanotechnology, for applications calling for a better control over the building of nanostructures and nanomachines.

  11. BUBBLES AND KNOTS IN THE KINEMATICAL STRUCTURE OF THE BIPOLAR PLANETARY NEBULA NGC 2818

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, Roberto, E-mail: vazquez@astro.unam.mx [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Km 103 Carretera Tijuana-Ensenada, 22860 Ensenada, BC (Mexico)

    2012-06-01

    High-resolution Hubble Space Telescope archive imaging and high-dispersion spectroscopy are used to study the complex morphological and kinematical structure of the planetary nebula, NGC 2818. We analyze narrowband H{alpha}, [O III], [N II], [S II], and He II images, addressing important morphological features. Ground-based long-slit echelle spectra were obtained crossing NGC 2818 at five different positions to precisely determine kinematical features in the structure of the nebula. A distance of 2.5 kpc was used to determine physical scales. Constructing models to fit the data with modern computational tools, we find NGC 2818 is composed of (1) a non-uniform bipolar structure with a semimajor axis of 0.92 pc (75''), possibly deformed by the stellar wind, (2) a 0.17 pc (14'') diameter central region, which is potentially the remnant of an equatorial enhancement, and (3) a great number of cometary knots. These knots are preferentially located inside a radius of 0.24 pc (20'') around the central star. The major axis of the main structure is oriented at i {approx_equal} 60 Degree-Sign with respect to the line of sight and at P.A. = +89 Degree-Sign on the plane of the sky. Expansion velocities of this nebula are V{sub pol} = 105 km s{sup -1} and V{sub eq} = 20 km s{sup -1}, which lead to our estimate of the kinematical age of {tau}{sub k} {approx_equal} 8400 {+-} 3400 yr (assuming homologous expansion). Our observations do not support the idea that high-velocity collimated ejections are responsible for the formation of microstructures inside the nebula. We determine the systemic velocity of NGC 2818 to be V{sub HEL} = +26 {+-} 2 km s{sup -1}.

  12. Forensic genetic SNP typing of low-template DNA and highly degraded DNA from crime case samples

    DEFF Research Database (Denmark)

    Børsting, Claus; Mogensen, Helle Smidt; Morling, Niels

    2013-01-01

    the heterozygote balance. Allele drop-ins were only observed in experiments with 25 pg of DNA and not in experiments with 50 and 100 pg of DNA. The allele drop-in rate in the 25 pg experiments was 0.06% or 100 times lower than what was previously reported for STR typing of LtDNA. A composite model and two......Heterozygote imbalances leading to allele drop-outs and disproportionally large stutters leading to allele drop-ins are known stochastic phenomena related to STR typing of low-template DNA (LtDNA). The large stutters and the many drop-ins in typical STR stutter positions are artifacts from the PCR...... amplification of tandem repeats. These artifacts may be avoided by typing bi-allelic markers instead of STRs. In this work, the SNPforID multiplex assay was used to type LtDNA. A sensitized SNP typing protocol was introduced, that increased signal strengths without increasing noise and without affecting...

  13. High Avidity dsDNA Autoantibodies in Brazilian Women with Systemic Lupus Erythematosus: Correlation with Active Disease and Renal Dysfunction

    Directory of Open Access Journals (Sweden)

    Rodrigo C. Oliveira

    2015-01-01

    Full Text Available We investigated in Brazilian women with SLE the prevalence and levels of high avidity (HA dsDNA antibodies and tested their correlation with lupus activity and biomarkers of renal disease. We also compared these correlations to those observed with total dsDNA antibodies and antibodies against nucleosome (ANuA. Autoantibodies were detected by ELISA, while C3 and C4 levels were determined by nephelometry. Urine protein/creatinine ratio was determined, and lupus activity was measured by SLEDAI-2K. The prevalence of total and HA dsDNA antibodies was similar to but lower than that verified for ANuA. The levels of the three types of antibodies were correlated, but the correlation was more significant between HA dsDNA antibodies and ANuA. High avidity dsDNA antibodies correlated positively with ESR and SLEDAI and inversely with C3 and C4. Similar correlations were observed for ANuA levels, whereas total dsDNA antibodies only correlated with SLEDAI and C3. The levels of HA dsDNA antibodies were higher in patients with proteinuria, but their levels of total dsDNA antibodies and ANuA were unaltered. High avidity dsDNA antibodies can be found in high prevalence in Brazilian women with SLE and are important biomarkers of active disease and kidney dysfunction.

  14. High-throughput sequencing of three Lemnoideae (duckweeds chloroplast genomes from total DNA.

    Directory of Open Access Journals (Sweden)

    Wenqin Wang

    Full Text Available BACKGROUND: Chloroplast genomes provide a wealth of information for evolutionary and population genetic studies. Chloroplasts play a particularly important role in the adaption for aquatic plants because they float on water and their major surface is exposed continuously to sunlight. The subfamily of Lemnoideae represents such a collection of aquatic species that because of photosynthesis represents one of the fastest growing plant species on earth. METHODS: We sequenced the chloroplast genomes from three different genera of Lemnoideae, Spirodela polyrhiza, Wolffiella lingulata and Wolffia australiana by high-throughput DNA sequencing of genomic DNA using the SOLiD platform. Unfractionated total DNA contains high copies of plastid DNA so that sequences from the nucleus and mitochondria can easily be filtered computationally. Remaining sequence reads were assembled into contiguous sequences (contigs using SOLiD software tools. Contigs were mapped to a reference genome of Lemna minor and gaps, selected by PCR, were sequenced on the ABI3730xl platform. CONCLUSIONS: This combinatorial approach yielded whole genomic contiguous sequences in a cost-effective manner. Over 1,000-time coverage of chloroplast from total DNA were reached by the SOLiD platform in a single spot on a quadrant slide without purification. Comparative analysis indicated that the chloroplast genome was conserved in gene number and organization with respect to the reference genome of L. minor. However, higher nucleotide substitution, abundant deletions and insertions occurred in non-coding regions of these genomes, indicating a greater genomic dynamics than expected from the comparison of other related species in the Pooideae. Noticeably, there was no transition bias over transversion in Lemnoideae. The data should have immediate applications in evolutionary biology and plant taxonomy with increased resolution and statistical power.

  15. [Diversity of actinomycetes associated with root-knot nematode and their potential for nematode control].

    Science.gov (United States)

    Luo, Hong-li; Sun, Man-hong; Xie, Jian-ping; Liu, Zhi-heng; Huang, Ying

    2006-08-01

    Twenty actinomycetes were isolated from root-knot nematode eggs and females collected from 11 plant root samples infested by Meloidogyne spp.. The isolates were assigned to the genera Streptomyces, Nocardia and Pseudonocardia respectively, based on analysis of morphological characteristics, cell-wall DAPs and 16S rRNA gene sequences. 80% of them were streptomycetes. Biocontrol potential of the isolates against Meloidogyne hapla was evaluated in liquid culture in vitro. The average percentages of egg parasitism, egg hatching, and juvenile mortality were 54.1, 40.4 and 26.2, respectively. Three Streptomyces strains and one Nocardia strain with high pathogenicity in vitro were selected to determine their ability to reduce tomato root galls in greenhouse. The results demonstrated good biocontrol efficacy (31.4%-56.4%) of the strains.

  16. Highly efficient PCR assay to discriminate allelic DNA methylation status using whole genome amplification

    Directory of Open Access Journals (Sweden)

    Ito Takashi

    2011-06-01

    Full Text Available Abstract Background We previously developed a simple method termed HpaII-McrBC PCR (HM-PCR to discriminate allelic methylation status of the genomic sites of interest, and successfully applied it to a comprehensive analysis of CpG islands (CGIs on human chromosome 21q. However, HM-PCR requires 200 ng of genomic DNA to examine one target site, thereby precluding its application to such samples that are limited in quantity. Findings We developed HpaII-McrBC whole-genome-amplification PCR (HM-WGA-PCR that uses whole-genome-amplified DNA as the template. HM-WGA-PCR uses only 1/100th the genomic template material required for HM-PCR. Indeed, we successfully analyzed 147 CGIs by HM-WGA-PCR using only ~300 ng of DNA, whereas previous HM-PCR study had required ~30 μg. Furthermore, we confirmed that allelic methylation status revealed by HM-WGA-PCR is identical to that by HM-PCR in every case of the 147 CGIs tested, proving high consistency between the two methods. Conclusions HM-WGA-PCR would serve as a reliable alternative to HM-PCR in the analysis of allelic methylation status when the quantity of DNA available is limited.

  17. A Microneedle Functionalized with Polyethyleneimine and Nanotubes for Highly Sensitive, Label-Free Quantification of DNA.

    Science.gov (United States)

    Saadat-Moghaddam, Darius; Kim, Jong-Hoon

    2017-08-16

    The accurate measure of DNA concentration is necessary for many DNA-based biological applications. However, the current methods are limited in terms of sensitivity, reproducibility, human error, and contamination. Here, we present a microneedle functionalized with polyethyleneimine (PEI) and single-walled carbon nanotubes (SWCNTs) for the highly sensitive quantification of DNA. The microneedle was fabricated using ultraviolet (UV) lithography and anisotropic etching, and then functionalized with PEI and SWCNTs through a dip coating process. The electrical characteristics of the microneedle change with the accumulation of DNA on the surface. Current-voltage measurements in deionized water were conducted to study these changes in the electrical properties of the sensor. The sensitivity test found the signal to be discernable from the noise level down to 100 attomolar (aM), demonstrating higher sensitivity than currently available UV fluorescence and UV absorbance based methods. A microneedle without any surface modification only had a 100 femtomolar (fM) sensitivity. All measurement results were consistent with fluorescence microscopy.

  18. Rapid Extraction of Genomic DNA from Medically Important Yeasts and Filamentous Fungi by High-Speed Cell Disruption

    OpenAIRE

    Müller, Frank-Michael C.; Werner, Katherine E.; Kasai, Miki; Francesconi, Andrea; Chanock, Stephen J.; Walsh, Thomas J.

    1998-01-01

    Current methods of DNA extraction from different fungal pathogens are often time-consuming and require the use of toxic chemicals. DNA isolation from some fungal organisms is difficult due to cell walls or capsules that are not readily susceptible to lysis. We therefore investigated a new and rapid DNA isolation method using high-speed cell disruption (HSCD) incorporating chaotropic reagents and lysing matrices in comparison to standard phenol-chloroform (PC) extraction protocols for isolatio...

  19. A Simple Thermoplastic Substrate Containing Hierarchical Silica Lamellae for High-Molecular-Weight DNA Extraction.

    Science.gov (United States)

    Zhang, Ye; Zhang, Yi; Burke, Jeffrey M; Gleitsman, Kristin; Friedrich, Sarah M; Liu, Kelvin J; Wang, Tza-Huei

    2016-12-01

    An inexpensive, magnetic thermoplastic nanomaterial is developed utilizing a hierarchical layering of micro- and nanoscale silica lamellae to create a high-surface-area and low-shear substrate capable of capturing vast amounts of ultrahigh-molecular-weight DNA. Extraction is performed via a simple 45 min process and is capable of achieving binding capacities up to 1 000 000 times greater than silica microparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Risk score predicts high-grade prostate cancer in DNA-methylation positive, histopathologically negative biopsies.

    Science.gov (United States)

    Van Neste, Leander; Partin, Alan W; Stewart, Grant D; Epstein, Jonathan I; Harrison, David J; Van Criekinge, Wim

    2016-09-01

    Prostate cancer (PCa) diagnosis is challenging because efforts for effective, timely treatment of men with significant cancer typically result in over-diagnosis and repeat biopsies. The presence or absence of epigenetic aberrations, more specifically DNA-methylation of GSTP1, RASSF1, and APC in histopathologically negative prostate core biopsies has resulted in an increased negative predictive value (NPV) of ∼90% and thus could lead to a reduction of unnecessary repeat biopsies. Here, it is investigated whether, in methylation-positive men, DNA-methylation intensities could help to identify those men harboring high-grade (Gleason score ≥7) PCa, resulting in an improved positive predictive value. Two cohorts, consisting of men with histopathologically negative index biopsies, followed by a positive or negative repeat biopsy, were combined. EpiScore, a methylation intensity algorithm was developed in methylation-positive men, using area under the curve of the receiver operating characteristic as metric for performance. Next, a risk score was developed combining EpiScore with traditional clinical risk factors to further improve the identification of high-grade (Gleason Score ≥7) cancer. Compared to other risk factors, detection of DNA-methylation in histopathologically negative biopsies was the most significant and important predictor of high-grade cancer, resulting in a NPV of 96%. In methylation-positive men, EpiScore was significantly higher for those with high-grade cancer detected upon repeat biopsy, compared to those with either no or low-grade cancer. The risk score resulted in further improvement of patient risk stratification and was a significantly better predictor compared to currently used metrics as PSA and the prostate cancer prevention trial (PCPT) risk calculator (RC). A decision curve analysis indicated strong clinical utility for the risk score as decision-making tool for repeat biopsy. Low DNA-methylation levels in PCa-negative biopsies led

  1. Laser desorption mass spectrometry for high-throughput DNA analysis and its applications

    Science.gov (United States)

    Chen, C. H. Winston; Golovlev, Valeri V.; Taranenko, N. I.; Allman, S. L.; Isola, Narayana R.; Potter, N. T.; Matteson, K. J.; Chang, Linus Y.

    1999-05-01

    Laser desorption mass spectrometry (LDMS) has been developed for DNA sequencing, disease diagnosis, and DNA fingerprinting for forensic applications. With LDMS, the speed of DNA analysis can be much faster than conventional gel electrophoresis. No dye or radioactive tagging to DNA segments for detection is needed. LDMS is emerging as a new alternative technology for DNA analysis.

  2. Non-Gaussian Distribution of DNA Barcode Extension In Nanochannels Using High-throughput Imaging

    Science.gov (United States)

    Sheats, Julian; Reinhart, Wesley; Reifenberger, Jeff; Gupta, Damini; Muralidhar, Abhiram; Cao, Han; Dorfman, Kevin

    2015-03-01

    We present experimental data for the extension of internal segments of highly confined DNA using a high-­throughput experimental setup. Barcode­-labeled E. coli genomic DNA molecules were imaged at a high areal density in square nanochannels with sizes ranging from 40 nm to 51 nm in width. Over 25,000 molecules were used to obtain more than 1,000,000 measurements for genomic distances between 2,500 bp and 100,000 bp. The distribution of extensions has positive excess kurtosis and is skew­ left due to weak backfolding in the channel. As a result, the two Odijk theories for the chain extension and variance bracket the experimental data. We compared to predictions of a harmonic approximation for the confinement free energy and show that it produces a substantial error in the variance. These results suggest an inherent error associated with any statistical analysis of barcoded DNA that relies on harmonic models for chain extension. Present address: Department of Chemical and Biological Engineering, Princeton University.

  3. Antagonistic Activities of Streptomyces against Root Knot Nematode of Kiwifruit

    Directory of Open Access Journals (Sweden)

    S. Bashiri

    2016-02-01

    Full Text Available Introduction: Iran is among the world leading kiwifruit producers with 2.816 ha cultivated and 31.567 tones production. Plant parasitic nematodes cause damages to a variety of agricultural crops throughout the world. Interest in biological control of nematodes has increased because of the need for alternative methods to fumigant and non-fumigant nematicides and overall improvement of IPM programs. Bacterial species with nematicidal activity have also been used with some success for controlling root-knot diseases, including Streptomyces spp., Serratia spp., Bacillus spp. and Pseudomonas spp. The goal of the current study was to isolate, identify and investigate the potential of local Streptomyces bacteria for controlling and reducing root-knot nematode population in the north of Iran. Materials and Methods: In order to evaluate the effect of antagonistic bacteria on control of root-knot nematode of Kiwifruit, 100 isolates of bacteria were collected from Kiwifruit rhizosphere in the north of Iran and screened for pigmented microorganisms especially Streptomyces by applying standard serial dilution plate technique, using starch casein nitrate agar and glycerol asparagine agar. Morphological characterizations were achieved by the microscopic method. The microscopic characterization was done by cover slip culture method. The mycelium structure, color and arrangement of conidiospore and arthrospore on the mycelium were observed through the oil immersion (100X. The observed structure was compared with Bergey’s Manual of Determinative Bacteriology and the organism was identified. Various biochemical tests performed for the identification of the potent isolates are as follows: casein hydrolysis, starch hydrolysis, urea hydrolysis, esculin hydrolysis, acid production from sugar, NaCl resistance, temperature tolerance. Soil samples (100g were collected, and then processed for nematode egg and larvae extraction Hussey method. The suspension was pipetted

  4. Rapid turnover of 2-LTR HIV-1 DNA during early stage of highly active antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Weijun Zhu

    Full Text Available BACKGROUND: Despite prolonged treatment with highly active antiretroviral therapy (HAART, the infectious HIV-1 continues to replicate and resides latently in the resting memory CD4+ T lymphocytes, which blocks the eradication of HIV-1. The viral persistence of HIV-1 is mainly caused by its proviral DNA being either linear nonintegrated, circular nonintegrated, or integrated. Previous reports have largely focused on the dynamics of HIV-1 DNA from the samples collected with relatively long time intervals during the process of disease and HAART treatment, which may have missed the intricate changes during the intervals in early treatment. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the dynamics of HIV-1 DNA in patients during the early phase of HARRT treatment. Using optimized real time PCR, we observed significant changes in 2-LTR during the first 12-week of treatment, while total and integrated HIV-1 DNA remained stable. The doubling time and half-life of 2-LTR were not correlated with the baseline and the rate of changes in plasma viral load and various CD4+ T-cell populations. Longitudinal analyses on 2-LTR sequences and plasma lipopolysaccharide (LPS levels did not reveal any significant changes in the same treatment period. CONCLUSIONS/SIGNIFICANCE: Our study revealed the rapid changes in 2-LTR concentration in a relatively large number of patients during the early HAART treatment. The rapid changes indicate the rapid infusion and clearance of cells bearing 2-LTR in the peripheral blood. Those changes are not expected to be caused by the blocking of viral integration, as our study did not include the integrase inhibitor raltegravir. Our study helps better understand the dynamics of HIV-DNA and its potential role as a biomarker for the diseases and for the treatment efficacy of HAART.

  5. DNA Binding in High Salt: Analysing the Salt Dependence of Replication Protein A3 from the Halophile Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Jody A. Winter

    2012-01-01

    Full Text Available Halophilic archaea maintain intracellular salt concentrations close to saturation to survive in high-salt environments and their cellular processes have adapted to function under these conditions. Little is known regarding halophilic adaptation of the DNA processing machinery, particularly intriguing since protein-DNA interactions are classically salt sensitive. To investigate such adaptation, we characterised the DNA-binding capabilities of recombinant RPA3 from Haloferax volcanii (HvRPA3. Under physiological salt conditions (3 M KCl, HvRPA3 is monomeric, binding 18 nucleotide ssDNA with nanomolar affinity, demonstrating that RPAs containing the single OB-fold/zinc finger architecture bind with broadly comparable affinity to two OB-fold/zinc finger RPAs. Reducing the salt concentration to 1 M KCl induces dimerisation of the protein, which retains its ability to bind DNA. On circular ssDNA, two concentration-dependent binding modes are observed. Conventionally, increased salt concentration adversely affects DNA binding but HvRPA3 does not bind DNA in 0.2 M KCl, although multimerisation may occlude the binding site. The single N-terminal OB-fold is competent to bind DNA in the absence of the C-terminal zinc finger, albeit with reduced affinity. This study represents the first quantitative characterisation of DNA binding in a halophilic protein in extreme salt concentrations.

  6. An Indwelling Urethral Catheter Knotted Around a Double-J Ureteral Stent: An Unusual Complication after Kidney Transplantation

    Directory of Open Access Journals (Sweden)

    E. G. Warmerdam

    2011-01-01

    Full Text Available Urethral catheterization is a common procedure with a relatively low complication rate. Knotting of an indwelling urethral catheter is a very rare complication, and there are only a few case reports on knotted catheters, most of them concerning children. We report an especially rare case where a urethral catheter formed a knot around a double-J ureteral stent after a kidney transplantation. We will discuss the various risk factors for knotting of a catheter and the methods to untangle a knot.

  7. Forensic genetic SNP typing of low-template DNA and highly degraded DNA from crime case samples.

    Science.gov (United States)

    Børsting, Claus; Mogensen, Helle Smidt; Morling, Niels

    2013-05-01

    Heterozygote imbalances leading to allele drop-outs and disproportionally large stutters leading to allele drop-ins are known stochastic phenomena related to STR typing of low-template DNA (LtDNA). The large stutters and the many drop-ins in typical STR stutter positions are artifacts from the PCR amplification of tandem repeats. These artifacts may be avoided by typing bi-allelic markers instead of STRs. In this work, the SNPforID multiplex assay was used to type LtDNA. A sensitized SNP typing protocol was introduced, that increased signal strengths without increasing noise and without affecting the heterozygote balance. Allele drop-ins were only observed in experiments with 25 pg of DNA and not in experiments with 50 and 100 pg of DNA. The allele drop-in rate in the 25 pg experiments was 0.06% or 100 times lower than what was previously reported for STR typing of LtDNA. A composite model and two different consensus models were used to interpret the SNP data. Correct profiles with 42-49 SNPs were generated from the 50 and 100 pg experiments, whereas a few incorrect genotypes were included in the generated profiles from the 25 pg experiments. With the strict consensus model, between 35 and 48 SNPs were correctly typed in the 25 pg experiments and only one allele drop-out (error rate: 0.07%) was observed in the consensus profiles. A total of 28 crime case samples were selected for typing with the sensitized SNPforID protocol. The samples were previously typed with old STR kits during the crime case investigation and only partial profiles (0-6 STRs) were obtained. Eleven of the samples could not be quantified with the Quantifiler™ Human DNA Quantification kit because of partial or complete inhibition of the PCR. For eight of these samples, SNP typing was only possible when the buffer and DNA polymerase used in the original protocol was replaced with the AmpFℓSTR(®) SEfiler Plus™ Master Mix, which was developed specifically for challenging forensic samples. All

  8. Uncovering the molecular organization of unusual highly scattered 5S rDNA: The case of Chariesterus armatus (Heteroptera).

    Science.gov (United States)

    Bardella, Vanessa Bellini; Cabral-de-Mello, Diogo Cavalcanti

    2018-03-10

    One cluster of 5S rDNA per haploid genome is the most common pattern among Heteroptera. However, in Chariesterus armatus, highly scattered signals were noticed. We isolated and characterized the entire 5S rDNA unit of C. armatus aiming to a deeper knowledge of molecular organization of the 5S rDNA among Heteroptera and to understand possible causes and consequences of 5S rDNA chromosomal spreading. For a comparative analysis, we performed the same approach in Holymenia histrio with 5S rDNA restricted to one bivalent. Multiple 5S rDNA variants were observed in both species, though they were more variable in C. armatus, with some of variants corresponding to pseudogenes. These pseudogenes suggest birth-and-death mechanism, though homogenization was also observed (concerted evolution), indicating evolution through mixed model. Association between transposable elements and 5S rDNA was not observed, suggesting spreading of 5S rDNA through other mechanisms, like ectopic recombination. Scattered organization is a rare example for 5S rDNA, and such organization in C. armatus genome could have led to the high diversification of sequences favoring their pseudogenization. Copyright © 2017. Published by Elsevier B.V.

  9. Decondensation behavior of DNA chains induced by multivalent cations at high salt concentrations: Molecular dynamics simulations and experiments

    International Nuclear Information System (INIS)

    Jiang Yang-Wei; Zhang Lin-Xi; Ran Shi-Yong; He Lin-Li; Wang Xiang-Hong

    2015-01-01

    Using molecular dynamics simulations and atomic force microscopy (AFM), we study the decondensation process of DNA chains induced by multivalent cations at high salt concentrations in the presence of short cationic chains in solutions. The typical simulation conformations of DNA chains with varying salt concentrations for multivalent cations imply that the concentration of salt cations and the valence of multivalent cations have a strong influence on the process of DNA decondensation. The DNA chains are condensed in the absence of salt or at low salt concentrations, and the compacted conformations of DNA chains become loose when a number of cations and anions are added into the solution. It is explicitly demonstrated that cations can overcompensate the bare charge of the DNA chains and weaken the attraction interactions between the DNA chains and short cationic chains at high salt concentrations. The condensation-decondensation transitions of DNA are also experimentally observed in mixing spermidine with λ-phage DNA at different concentrations of NaCl/MgCl 2 solutions. (paper)

  10. Transcription of highly repetitive tandemly organized DNA in amphibians and birds: A historical overview and modern concepts.

    Science.gov (United States)

    Trofimova, Irina; Krasikova, Alla

    2016-12-01

    Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription.

  11. Microbiomes associated with infective stages of root-knot and lesion nematodes in soil.

    Directory of Open Access Journals (Sweden)

    Ahmed Elhady

    Full Text Available Endoparasitic root-knot (Meloidogyne spp. and lesion (Pratylenchus spp. nematodes cause considerable damage in agriculture. Before they invade roots to complete their life cycle, soil microbes can attach to their cuticle or surface coat and antagonize the nematode directly or by induction of host plant defenses. We investigated whether the nematode-associated microbiome in soil differs between infective stages of Meloidogyne incognita and Pratylenchus penetrans, and whether it is affected by variation in the composition of microbial communities among soils. Nematodes were incubated in suspensions of five organically and two integrated horticultural production soils, recovered by sieving and analyzed for attached bacteria and fungi after washing off loosely adhering microbes. Significant effects of the soil type and nematode species on nematode-associated fungi and bacteria were revealed as analyzed by community profiling using denaturing gradient gel electrophoresis. Attached microbes represented a small specific subset of the soil microbiome. Two organic soils had very similar bacterial and fungal community profiles, but one of them was strongly suppressive towards root-knot nematodes. They were selected for deep amplicon sequencing of bacterial 16S rRNA genes and fungal ITS. Significant differences among the microbiomes associated with the two species in both soils suggested specific surface epitopes. Among the 28 detected bacterial classes, Betaproteobacteria, Bacilli and Actinobacteria were the most abundant. The most frequently detected fungal genera were Malassezia, Aspergillus and Cladosporium. Attached microbiomes did not statistically differ between these two soils. However, Malassezia globosa and four fungal species of the family Plectosphaerellaceae, and the bacterium Neorhizobium galegae were strongly enriched on M. incognita in the suppressive soil. In conclusion, the highly specific attachment of microbes to infective stages of

  12. Root-Knot and Cyst Nematodes Activate Procambium-Associated Genes in Arabidopsis Roots

    Directory of Open Access Journals (Sweden)

    Yasuka L. Yamaguchi

    2017-07-01

    Full Text Available Developmental plasticity is one of the most striking features of plant morphogenesis, as plants are able to vary their shapes in response to environmental cues. Biotic or abiotic stimuli often promote organogenesis events in plants not observed under normal growth conditions. Root-knot nematodes (RKNs are known to parasitize multiple species of rooting plants and to induce characteristic tissue expansion called galls or root-knots on the roots of their hosts by perturbing the plant cellular machinery. Galls contain giant cells (GCs and neighboring cells, and the GCs are a source of nutrients for the parasitizing nematode. Highly active cell proliferation was observed in galls. However, the underlying mechanisms that regulate the symptoms triggered by the plant-nematode interaction have not yet been elucidated. In this study, we deciphered the molecular mechanism of gall formation with an in vitro infection assay system using RKN Meloidogyne incognita, and the model plant Arabidopsis thaliana. By taking advantages of this system, we performed next-generation sequencing-based transcriptome profiling, and found that the expression of procambium identity-associated genes were enriched during gall formation. Clustering analyses with artificial xylogenic systems, together with the results of expression analyses of the candidate genes, showed a significant correlation between the induction of gall cells and procambium-associated cells. Furthermore, the promoters of several procambial marker genes such as ATHB8, TDR and WOX4 were activated not only in M. incognita-induced galls, but similarly in M. javanica induced-galls and Heterodera schachtii-induced syncytia. Our findings suggest that phytoparasitic nematodes modulate the host’s developmental regulation of the vascular stem cells during gall formation.

  13. Root-Knot and Cyst Nematodes Activate Procambium-Associated Genes in Arabidopsis Roots.

    Science.gov (United States)

    Yamaguchi, Yasuka L; Suzuki, Reira; Cabrera, Javier; Nakagami, Satoru; Sagara, Tomomi; Ejima, Chika; Sano, Ryosuke; Aoki, Yuichi; Olmo, Rocio; Kurata, Tetsuya; Obayashi, Takeshi; Demura, Taku; Ishida, Takashi; Escobar, Carolina; Sawa, Shinichiro

    2017-01-01

    Developmental plasticity is one of the most striking features of plant morphogenesis, as plants are able to vary their shapes in response to environmental cues. Biotic or abiotic stimuli often promote organogenesis events in plants not observed under normal growth conditions. Root-knot nematodes (RKNs) are known to parasitize multiple species of rooting plants and to induce characteristic tissue expansion called galls or root-knots on the roots of their hosts by perturbing the plant cellular machinery. Galls contain giant cells (GCs) and neighboring cells, and the GCs are a source of nutrients for the parasitizing nematode. Highly active cell proliferation was observed in galls. However, the underlying mechanisms that regulate the symptoms triggered by the plant-nematode interaction have not yet been elucidated. In this study, we deciphered the molecular mechanism of gall formation with an in vitro infection assay system using RKN Meloidogyne incognita , and the model plant Arabidopsis thaliana. By taking advantages of this system, we performed next-generation sequencing-based transcriptome profiling, and found that the expression of procambium identity-associated genes were enriched during gall formation. Clustering analyses with artificial xylogenic systems, together with the results of expression analyses of the candidate genes, showed a significant correlation between the induction of gall cells and procambium-associated cells. Furthermore, the promoters of several procambial marker genes such as ATHB8 , TDR and WOX4 were activated not only in M. incognita -induced galls, but similarly in M. javanica induced-galls and Heterodera schachtii -induced syncytia. Our findings suggest that phytoparasitic nematodes modulate the host's developmental regulation of the vascular stem cells during gall formation.

  14. Growth and yield of grafted cucumbers in soil infested with root-knot nematodes

    Directory of Open Access Journals (Sweden)

    Smiljana Goreta Ban

    2014-03-01

    Full Text Available The aim of this study was to determine the effect of rootstocks on the growth and yield of cucumber (Cucumis sativus L. plants in soils infested with root-knot nematodes (Meloidogyne spp. Cucumber 'Adrian' was grown with its own roots or was grafted onto three rootstocks of Lagenariasiceraria (Molina Standi. ('Emphasis', 'S-1', and 'Gourd', two interspecific hybrid rootstocks of Cucurbita maxima Duchesne x C. moschata Duchesne ('Strong Tosa' and 'RS 841 Improved' and zucchini Cucurbita pepo L. ('Romanesco Zucchini'. The experiments were conducted in commercial greenhouse, with cucumber grafted onto three rootstocks in the first season and onto six rootstocks in the second spring-summer season. The number of leaves was considerably affected by the rootstock in both seasons, and was the highest for the plants grafted onto interspecific rootstocks (28.0 in the first and 44.9 in the second season. The plants grafted onto 'Strong Tosa' had higher total number of fruits (19.9 and yield (5.38 kg compared to other rootstocks or non-grafted plants in first season, and the same result was found for two interspecific rootstocks in the second season (6.96 kg and more than 28.9 fruits per plant. The total soluble solids, pH and electrical conductivity of the fruit were not affected by rootstock, while titratable acidity changed with the rootstock type. The grafting of cucumber plants onto different rootstocks was confirmed as an acceptable non-chemical method to compete with the limitations of soils infected with root-knot nematodes, but the effect was highly dependent on the choice of the rootstock.

  15. Prototype Systems Containing Human Cytochrome P450 for High-Throughput Real-Time Detection of DNA Damage by Compounds That Form DNA-Reactive Metabolites.

    Science.gov (United States)

    Brito Palma, Bernardo; Fisher, Charles W; Rueff, José; Kranendonk, Michel

    2016-05-16

    The formation of reactive metabolites through biotransformation is the suspected cause of many adverse drug reactions. Testing for the propensity of a drug to form reactive metabolites has increasingly become an integral part of lead-optimization strategy in drug discovery. DNA reactivity is one undesirable facet of a drug or its metabolites and can lead to increased risk of cancer and reproductive toxicity. Many drugs are metabolized by cytochromes P450 in the liver and other tissues, and these reactions can generate hard electrophiles. These hard electrophilic reactive metabolites may react with DNA and may be detected in standard in vitro genotoxicity assays; however, the majority of these assays fall short due to the use of animal-derived organ extracts that inadequately represent human metabolism. The current study describes the development of bacterial systems that efficiently detect DNA-damaging electrophilic reactive metabolites generated by human P450 biotransformation. These assays use a GFP reporter system that detects DNA damage through induction of the SOS response and a GFP reporter to control for cytotoxicity. Two human CYP1A2-competent prototypes presented here have appropriate characteristics for the detection of DNA-damaging reactive metabolites in a high-throughput manner. The advantages of this approach include a short assay time (120-180 min) with real-time measurement, sensitivity to small amounts of compound, and adaptability to a microplate format. These systems are suitable for high-throughput assays and can serve as prototypes for the development of future enhanced versions.

  16. Crystal structure of Pfu, the high fidelity DNA polymerase from Pyrococcus furiosus.

    Science.gov (United States)

    Kim, Suhng Wook; Kim, Dong-Uk; Kim, Jin Kwang; Kang, Lin-Woo; Cho, Hyun-Soo

    2008-05-01

    We have determined a 2.6A resolution crystal structure of Pfu DNA polymerase, the most commonly used high fidelity PCR enzyme, from Pyrococcus furiosus. Although the structures of Pfu and KOD1 are highly similar, the structure of Pfu elucidates the electron density of the interface between the exonuclease and thumb domains, which has not been previously observed in the KOD1 structure. The interaction of these two domains is known to coordinate the proofreading and polymerization activity of DNA polymerases, especially via H147 that is present within the loop (residues 144-158) of the exonuclease domain. In our structure of Pfu, however, E148 rather than H147 is located at better position to interact with the thumb domain. In addition, the structural analysis of Pfu and KOD1 shows that both the Y-GG/A and beta-hairpin motifs of Pfu are found to differ with that of KOD1, and may explain differences in processivity. This information enables us to better understand the mechanisms of polymerization and proofreading of DNA polymerases.

  17. Reliable discrimination of 10 ungulate species using high resolution melting analysis of faecal DNA.

    Directory of Open Access Journals (Sweden)

    Ana Ramón-Laca

    Full Text Available Identifying species occupying an area is essential for many ecological and conservation studies. Faecal DNA is a potentially powerful method for identifying cryptic mammalian species. In New Zealand, 10 species of ungulate (Order: Artiodactyla have established wild populations and are managed as pests because of their impacts on native ecosystems. However, identifying the ungulate species present within a management area based on pellet morphology is unreliable. We present a method that enables reliable identification of 10 ungulate species (red deer, sika deer, rusa deer, fallow deer, sambar deer, white-tailed deer, Himalayan tahr, Alpine chamois, feral sheep, and feral goat from swabs of faecal pellets. A high resolution melting (HRM assay, targeting a fragment of the 12S rRNA gene, was developed. Species-specific primers were designed and combined in a multiplex PCR resulting in fragments of different length and therefore different melting behaviour for each species. The method was developed using tissue from each of the 10 species, and was validated in blind trials. Our protocol enabled species to be determined for 94% of faecal pellet swabs collected during routine monitoring by the New Zealand Department of Conservation. Our HRM method enables high-throughput and cost-effective species identification from low DNA template samples, and could readily be adapted to discriminate other mammalian species from faecal DNA.

  18. High Sequence Variations in Mitochondrial DNA Control Region among Worldwide Populations of Flathead Mullet Mugil cephalus

    Directory of Open Access Journals (Sweden)

    Brian Wade Jamandre

    2014-01-01

    Full Text Available The sequence and structure of the complete mtDNA control region (CR of M. cephalus from African, Pacific, and Atlantic populations are presented in this study to assess its usefulness in phylogeographic studies of this species. The mtDNA CR sequence variations among M. cephalus populations largely exceeded intraspecific polymorphisms that are generally observed in other vertebrates. The length of CR sequence varied among M. cephalus populations due to the presence of indels and variable number of tandem repeats at the 3′ hypervariable domain. The high evolutionary rate of the CR in this species probably originated from these mutations. However, no excessive homoplasic mutations were noticed. Finally, the star shaped tree inferred from the CR polymorphism stresses a rapid radiation worldwide, in this species. The CR still appears as a good marker for phylogeographic investigations and additional worldwide samples are warranted to further investigate the genetic structure and evolution in M. cephalus.

  19. DNA in glasses at 77 K: high energy ionizing radiation versus UV electron injection

    International Nuclear Information System (INIS)

    Malone, M.E.; Parker, A.W.

    1994-01-01

    Most in the field of ionizing radiation damage to DNA in frozen aqueous solutions agree that two major types of radical ions are formed, i.e. . G + / . A + and . T - / . C - . The main evidence stems from EPR and strand break studies. Fluid solutions exposed to laser light are known to give G .+ and e solv - with low yields of single strand breaks. We have explored this contrast by photoionizing DNA solutions at 77 K, in the expectation that this would prevent the formation of e solv - and hence that the results might be similar to those for high energy radiation. They are not: the results show only the formation of G .+ (or) A .+ , the fate of the ejected electrons is unclear except for sodium perchlorate glasses when they react to give O .- . (Author)

  20. Economic design in a long-distance migrating molluscivore: how fast-fuelling red knots in Bohai Bay, China, get away with small gizzards.

    Science.gov (United States)

    Yang, Hong-Yan; Chen, Bing; Ma, Zhi-Jun; Hua, Ning; van Gils, Jan A; Zhang, Zheng-Wang; Piersma, Theunis

    2013-10-01

    We carried out an observational and experimental study to decipher how resource characteristics, in interaction with the predator's phenotype, constrain a fitness-determining performance measure, i.e. refuelling in a migrant bird. Two subspecies of red knot (Calidris canutus rogersi and C. c. piersmai) use northern Bohai Bay, Yellow Sea, China, for the final prebreeding stopover, during their 10,000-15,000 km long migrations between wintering and breeding areas. Here, they feed on small bivalves, especially 2-7 mm long Potamocorbula laevis. With an average stay of 29 days, and the need to store 80 g of fat for the onward flights to high-Arctic breeding grounds, red knots need to refuel fast. Using existing knowledge, we expected them to achieve this on the basis of (1) prey with high flesh to shell mass ratios, (2) large gizzards to crush the ingested molluscs, or (3) a combination of the two. Rejecting all three predictions, we found that red knots staging in Bohai Bay had the smallest gizzards on record (4.9 ± 0.8 g, mean ± s.e.m., N = 27), and also found that prey quality of P. laevis is much lower than predicted for the measured gizzard size (i.e. 1.3 rather than the predicted 4.5 kJ g(-1) dry shell mass, DM(shell)). The estimated handling time of P. laevis (0.2 s) is much shorter than the observed time between two prey ingestions (0.7 s), indicating that prey handling time is no constraint. Based on field observations of dropping rates and on indoor digestion trails, the shell processing rate was estimated at 3.9 mg DM(shell) s(-1), i.e. three times higher the rate previously predicted for red knots eating as fast as they can with the measured gizzard size. This is explained by the small and easily crushed P. laevis enabling high processing rates. As P. laevis also occurred in high densities, the metabolizable energy intake rate of red knots with small gizzards at 5 J s(-1) was as high as at northward staging sites elsewhere in the world. Currently

  1. Numerical simulation of the knotted nylon netting panel

    Directory of Open Access Journals (Sweden)

    Li Yuwei

    2016-01-01

    Full Text Available A piece of netting, consists of the 8 8 meshes, fixed on a square frame, was simulated and the tensions and their distribution, the positions of knots and netting shape were calculated by means of MATLAB in computer. The dynamic mathematic model was developed based on lumped mass method, the netting was treated as spring-mass system, the Runge-Kutta fifth-order and sixth-order method was used to solve the differential equations for every step, then the displacement and tension of each mass point were obtained. For verify this model, the tests have been carried out in a flume tank. The results of the numerical simulation fully agreed with the experiments.

  2. Disciplinary Knots and Learning Problems in Waves Physics

    Science.gov (United States)

    Di Renzone, Simone; Frati, Serena; Montalbano, Vera

    An investigation on student understanding of waves is performed during an optional laboratory realized in informal extracurricular way with few, interested and talented pupils. The background and smart intuitions of students rendered the learning path very dynamic and ambitious. The activities started by investigating the basic properties of waves by means of a Shive wave machine. In order to make quantitative observed phenomena, the students used a camcorder and series of measures were obtained from the captured images. By checking the resulting data, it arose some learning difficulties especially in activities related to the laboratory. This experience was the starting point for a further analysis on disciplinary knots and learning problems in the physics of waves in order to elaborate a teaching-learning proposal on this topic.

  3. New knotted solutions of Maxwell's equations

    International Nuclear Information System (INIS)

    Hoyos, Carlos; Sircar, Nilanjan; Sonnenschein, Jacob

    2015-01-01

    In this paper we have further developed the study of topologically non-trivial solutions of vacuum electrodynamics. We have discovered a novel method of generating such solutions by applying conformal transformations with complex parameters on known solutions expressed in terms of Bateman's variables. This has enabled us to obtain a wide class of solutions from the basic configuration, such as constant electromagnetic fields and plane-waves. We have introduced a covariant formulation of Bateman's construction and discussed the conserved charges associated with the conformal group as well as a set of four types of conserved helicities. We have also given a formulation in terms of quaternions. This led to a simple map between the electromagnetic knotted and linked solutions into flat connections of SU(2) gauge theory. We have computed the corresponding Chern–Simons charge in a class of solutions and the charge takes integer values. (paper)

  4. Average size of random polygons with fixed knot topology.

    Science.gov (United States)

    Matsuda, Hiroshi; Yao, Akihisa; Tsukahara, Hiroshi; Deguchi, Tetsuo; Furuta, Ko; Inami, Takeo

    2003-07-01

    We have evaluated by numerical simulation the average size R(K) of random polygons of fixed knot topology K=,3(1),3(1) musical sharp 4(1), and we have confirmed the scaling law R(2)(K) approximately N(2nu(K)) for the number N of polygonal nodes in a wide range; N=100-2200. The best fit gives 2nu(K) approximately 1.11-1.16 with good fitting curves in the whole range of N. The estimate of 2nu(K) is consistent with the exponent of self-avoiding polygons. In a limited range of N (N greater, similar 600), however, we have another fit with 2nu(K) approximately 1.01-1.07, which is close to the exponent of random polygons.

  5. Human β satellite DNA: Genomic organization and sequence definition of a class of highly repetitive tandem DNA

    International Nuclear Information System (INIS)

    Waye, J.S.; Willard, H.F.

    1989-01-01

    The authors describe a class of human repetitive DNA, called β satellite, that, at a most fundamental level, exists as tandem arrays of diverged ∼68-base-pair monomer repeat units. The monomer units are organized as distinct subsets, each characterized by a multimeric higher-order repeat unit that is tandemly reiterated and represents a recent unit of amplification. They have cloned, characterized, and determined the sequence of two β satellite higher-order repeat units: one located on chromosome 9, the other on the acrocentric chromosomes (13, 14, 15, 21, and 22) and perhaps other sites in the genome. Analysis by pulsed-field gel electrophoresis reveals that these tandem arrays are localized in large domains that are marked by restriction fragment length polymorphisms. In total, β-satellite sequences comprise several million base pairs of DNA in the human genome. Analysis of this DNA family should permit insights into the nature of chromosome-specific and nonspecific modes of satellite DNA evolution and provide useful tools for probing the molecular organization and concerted evolution of the acrocentric chromosomes

  6. Quantum invariants of knots and 3-manifolds. 2. rev. ed.

    International Nuclear Information System (INIS)

    Turaev, Vladimir G.

    2010-01-01

    Due to the strong appeal and wide use of this monograph, it is now available in its second revised edition. The monograph gives a systematic treatment of 3-dimensional topological quantum field theories (TQFTs) based on the work of the author with N. Reshetikhin and O. Viro. This subject was inspired by the discovery of the Jones polynomial of knots and the Witten-Chern-Simons field theory. On the algebraic side, the study of 3-dimensional TQFTs has been influenced by the theory of braided categories and the theory of quantum groups. The book is divided into three parts. Part I presents a construction of 3-dimensional TQFTs and 2-dimensional modular functors from so-called modular categories. This gives a vast class of knot invariants and 3-manifold invariants as well as a class of linear representations of the mapping class groups of surfaces. In Part II the technique of 6j-symbols is used to define state sum invariants of 3-manifolds. Their relation to the TQFTs constructed in Part I is established via the theory of shadows. Part III provides constructions of modular categories, based on quantum groups and skein modules of tangles in the 3-space. This fundamental contribution to topological quantum field theory is accessible to graduate students in mathematics and physics with knowledge of basic algebra and topology. It is an indispensable source for everyone who wishes to enter the forefront of this fascinating area at the borderline of mathematics and physics. From the contents: - Invariants of graphs in Euclidean 3-space and of closed 3-manifolds - Foundations of topological quantum field theory - Three-dimensional topological quantum field theory - Two-dimensional modular functors - 6j-symbols - Simplicial state sums on 3-manifolds - Shadows of manifolds and state sums on shadows - Constructions of modular categories. (orig.)

  7. HOMFLYPT polynomial is the best quantifier for topological cascades of vortex knots

    Science.gov (United States)

    Ricca, Renzo L.; Liu, Xin

    2018-02-01

    In this paper we derive and compare numerical sequences obtained by adapted polynomials such as HOMFLYPT, Jones and Alexander-Conway for the topological cascade of vortex torus knots and links that progressively untie by a single reconnection event at a time. Two cases are considered: the alternate sequence of knots and co-oriented links (with positive crossings) and the sequence of two-component links with oppositely oriented components (negative crossings). New recurrence equations are derived and sequences of numerical values are computed. In all cases the adapted HOMFLYPT polynomial proves to be the best quantifier for the topological cascade of torus knots and links.

  8. Replication of kinetoplast minicircle DNA

    International Nuclear Information System (INIS)

    Sheline, C.T.

    1989-01-01

    These studies describe the isolation and characterization of early minicircle replication intermediates from Crithidia fasciculata, and Leishmania tarentolae, the mitochondrial localization of a type II topoisomerase (TIImt) in C. fasciculata, and the implication of the aforementioned TIImt in minicircle replication in L. tarentolae. Early minicircle replication intermediates from C. fasciculata were identified and characterized using isolated kinetoplasts to incorporate radiolabeled nucleotides into its DNA. The pulse-label in an apparent theta-type intermediate chase into two daughter molecules. A uniquely gapped, ribonucleotide primed, knotted molecule represents the leading strand in the model proposed, and a highly gapped molecule represents the lagging strand. This theta intermediate is repaired in vitro to a doubly nicked catenated dimer which was shown to result from the replication of a single parental molecule. Very similar intermediates were found in the heterogeneous population of minicircles of L. tarentolae. The sites of the Leishmania specific discontinuities were mapped and shown to lie within the universally conserved sequence blocks in identical positions as compared to C. fasciculata and Trypanosoma equiperdum

  9. DNA-dispersed graphene/NiO hybrid materials for highly sensitive non-enzymatic glucose sensor

    International Nuclear Information System (INIS)

    Lv Wei; Jin Fengmin; Guo Quangui; Yang Quanhong; Kang Feiyu

    2012-01-01

    Highlights: ► We investigated the potential of GNS/NiO/DNA hybrid used as a nonenzymatic sensor. ► DNA is a highly efficient disperse agent for GNS/NiO hybrid than ionic surfactants. ► GNS/NiO/DNA hybrid shows fast electron transfer in the electrochemical reaction. ► GNS/NiO/DNA hybrid shows good detection performance towards glucose. - Abstract: We demonstrate graphene nanosheet/NiO hybrids (GNS/NiO) as the active material for high-performance non-enzymatic glucose sensors. Such sensors are fabricated by DNA-dispersed GNS/NiO suspension deposited on glassy carbon electrodes. ss-DNA shows strong dispersing ability for the GNS/NiO hybrid materials resulting in stable water-dispersible GNS/NiO/DNA hybrids with fully separated layers. The GNS/NiO/DNA hybrids show enhanced electron transfer in the electrocatalytic reaction process, and accordingly, such hybrids modified electrodes show good sensing performance towards glucose and are characterized by large detection ranges, short response periods, low detection limit and high sensitivity and stability.

  10. A Highly Sensitive Electrochemical DNA Biosensor from Acrylic-Gold Nano-composite for the Determination of Arowana Fish Gender

    Science.gov (United States)

    Rahman, Mahbubur; Heng, Lee Yook; Futra, Dedi; Chiang, Chew Poh; Rashid, Zulkafli A.; Ling, Tan Ling

    2017-08-01

    The present research describes a simple method for the identification of the gender of arowana fish ( Scleropages formosus). The DNA biosensor was able to detect specific DNA sequence at extremely low level down to atto M regimes. An electrochemical DNA biosensor based on acrylic microsphere-gold nanoparticle (AcMP-AuNP) hybrid composite was fabricated. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesised with a facile and well-established one-step photopolymerization procedure and physically adsorbed on the AuNPs at the surface of a carbon screen printed electrode (SPE). The DNA biosensor was constructed simply by grafting an aminated DNA probe on the succinimide functionalised AcMPs via a strong covalent attachment. DNA hybridisation response was determined by differential pulse voltammetry (DPV) technique using anthraquinone monosulphonic acid redox probe as an electroactive oligonucleotide label (Table 1). A low detection limit at 1.0 × 10-18 M with a wide linear calibration range of 1.0 × 10-18 to 1.0 × 10-8 M ( R 2 = 0.99) can be achieved by the proposed DNA biosensor under optimal conditions. Electrochemical detection of arowana DNA can be completed within 1 hour. Due to its small size and light weight, the developed DNA biosensor holds high promise for the development of functional kit for fish culture usage.

  11. High fat diet and exercise lead to a disrupted and pathogenic DNA methylome in mouse liver.

    Science.gov (United States)

    Zhou, Dan; Hlady, Ryan A; Schafer, Marissa J; White, Thomas A; Liu, Chen; Choi, Jeong-Hyeon; Miller, Jordan D; Roberts, Lewis R; LeBrasseur, Nathan K; Robertson, Keith D

    2017-01-02

    High-fat diet consumption and sedentary lifestyle elevates risk for obesity, non-alcoholic fatty liver disease, and cancer. Exercise training conveys health benefits in populations with or without these chronic conditions. Diet and exercise regulate gene expression by mediating epigenetic mechanisms in many tissues; however, such effects are poorly documented in the liver, a central metabolic organ. To dissect the consequences of diet and exercise on the liver epigenome, we measured DNA methylation, using reduced representation bisulfite sequencing, and transcription, using RNA-seq, in mice maintained on a fast food diet with sedentary lifestyle or exercise, compared with control diet with and without exercise. Our analyses reveal that genome-wide differential DNA methylation and expression of gene clusters are induced by diet and/or exercise. A combination of fast food and exercise triggers extensive gene alterations, with enrichment of carbohydrate/lipid metabolic pathways and muscle developmental processes. Through evaluation of putative protective effects of exercise on diet-induced DNA methylation, we show that hypermethylation is effectively prevented, especially at promoters and enhancers, whereas hypomethylation is only partially attenuated. We assessed diet-induced DNA methylation changes associated with liver cancer-related epigenetic modifications and identified significant increases at liver-specific enhancers in fast food groups, suggesting partial loss of liver cell identity. Hypermethylation at a subset of gene promoters was associated with inhibition of tissue development and promotion of carcinogenic processes. Our study demonstrates extensive reprogramming of the epigenome by diet and exercise, emphasizing the functional relevance of epigenetic mechanisms as an interface between lifestyle modifications and phenotypic alterations.

  12. Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner.

    Science.gov (United States)

    Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan; Brent, Michael R

    2009-07-01

    The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than heuristics. We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners. To validate these results with natural sequences, we performed cross-species alignment using orthologous transcripts from human, mouse and rat. We found that aligner accuracy is heavily dependent on sequence identity. For sequences with 100% identity, Pairagon achieved accuracy levels of >99.6%, with one quarter of the errors of any other aligner. Furthermore, for human/mouse alignments, which are only 85% identical, Pairagon achieved 87% accuracy, higher than any other aligner. Pairagon source and executables are freely available at http://mblab.wustl.edu/software/pairagon/

  13. High levels of fetal DNA are associated with increased risk of spontaneous preterm delivery

    DEFF Research Database (Denmark)

    Jakobsen, Tanja R; Clausen, Frederik B; Rode, Line

    2012-01-01

    To assess whether spontaneous preterm delivery can be predicted from the amount of cell free fetal DNA (cffDNA) as determined by routine fetal RHD genotyping at 25 weeks' gestation.......To assess whether spontaneous preterm delivery can be predicted from the amount of cell free fetal DNA (cffDNA) as determined by routine fetal RHD genotyping at 25 weeks' gestation....

  14. Multiplex and high-throughput DNA detection using surface plasmon mediated fluorescence

    Science.gov (United States)

    Mei, Zhong

    The overall objective of this research project was to develop a user-friendly and sensitive biosensor for nucleic acid aptamers with multiplexing and high-throughput capability. The sensing was based on the fluorescence signals emitted by the fluorophores coupling with plamonic nanoparticle (gold nanorod) deposited on a patterned substrate. Gold nanorods (GNRs) were synthesized using a binary mixture of hexadecyltrimethylammonium bromide (CTAB) and sodium oleate (NaOL) in seed mediated growth method. Polytetrafluoroethylene (PTFE) printed glass slides were selectively coated with a gold thin-film to define hydrophilic areas for GNR deposition. Due to the wettablity contrast, GNR solution dropped on the slide was induced to assemble exclusively in the hydrophilic spots. By controlling temperature and humidity of the evaporation process, vertically-standing GNR arrays were achieved on the pattered slide. Fluorescence was conjugated to GNR surface via DNA double strand with tunable length. Theoretical simulation predicted a flat layer ( 30 nm thick) of uniform "hot spots" presented on the GNR tips, which could modify the nearby fluorescence. Experimentally, the vertical GNR arrays yielded metallic enhanced fluorescence (MEF) effect, which was dependent on the spectrum overlap and GNR-fluorophore distance. Specifically, the maximum enhancement of Quasar 670 and Alexa 750 was observed when it was coupled with GNR664 (plasmonic wavelength 664 nm) and GNR778 respectively at a distance of 16 nm, while the carboxyfluorescein (FAM) was at maximal intensity when attached to gold nanosphere520. This offers an opportunity for multiplexed DNA sensing. Based on this, we developed a novel GNR mediated fluorescence biosensor for DNA detection. Fluorescence labeled haipin-DNA probes were introduced to designated spots of GNR array with the matching LSPR wavelengths on the substrate. The fluorescence was quenched originally because of Forster resonance energy transfer (FRET) effect

  15. Measurement of spontaneous DNA damage and DNA repair capacity in healthy adult individuals from high and normal level natural radiation areas of Kerala, India

    International Nuclear Information System (INIS)

    Vivek Kumar, P.R.; Jaikrishan, G.; Das, Birajalaxmi

    2014-01-01

    Inhabitants of the south west coastal areas of Kerala receive high level natural radiation due to the presence of monazite ( 232 Th) in the beach sand. This provides a unique opportunity to investigate the biological effects of high level natural radiation on humans. This study evaluate basal DNA damage in 149 healthy adult male subjects (104 from high level natural radiation areas (HLNRA, > 1mSv year -1 ) and 45 from normal level natural radiation area (NLNRA, d''1mSv year -1 ) by the alkaline comet assay. Oxidative DNA damage (ENDO III, FPG and hOGG1-sensitive sites) was measured by the enzyme modified comet assay. Induction and rejoining of DNA strand breaks was measured after irradiating peripheral blood lymphocytes with 2 Gy or 4 Gy gamma radiation. Basal damage due to age and residential area of the donors showed significant interaction (P=0.001), when all subjects were analyzed using a general linear model (GLM). In subgroup analysis, basal damage increased with age in subjects from the NLNRA (P=0.007), while a significant negative correlation (P=0.01) was observed in subjects from HLNRA. Oxidative DNA damage was not influenced by age, smoking habit or residential area in the entire sample. Subjects of high dose group from HLNRA (>5.75 mSv/y, N=34) showed a significant reduction in the induction of DNA damage after 2 Gy (P=0.03) and 4 Gy (P=0.05) compared to subjects form NLNRA. The study showed increased rejoining of DNA strand breaks in subjects from HLNRA when measured at 7 minutes after irradiation (P=0.04). In this pilot study, a low basal damage in elderly subjects from HLNRA and a reduced induction of DNA damage after 2 Gy and 4 Gy irradiation in high dose group subjects from HLNRA might suggest a possible role of chronic low dose natural radiation on the induction of an in vivo radio adaptive response. However, our findings need more validation in a larger study population. (author)

  16. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    Science.gov (United States)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  17. In vitro analysis of integrated global high-resolution DNA methylation profiling with genomic imbalance and gene expression in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Bekim Sadikovic

    Full Text Available Genetic and epigenetic changes contribute to deregulation of gene expression and development of human cancer. Changes in DNA methylation are key epigenetic factors regulating gene expression and genomic stability. Recent progress in microarray technologies resulted in developments of high resolution platforms for profiling of genetic, epigenetic and gene expression changes. OS is a pediatric bone tumor with characteristically high level of numerical and structural chromosomal changes. Furthermore, little is known about DNA methylation changes in OS. Our objective was to develop an integrative approach for analysis of high-resolution epigenomic, genomic, and gene expression profiles in order to identify functional epi/genomic differences between OS cell lines and normal human osteoblasts. A combination of Affymetrix Promoter Tilling Arrays for DNA methylation, Agilent array-CGH platform for genomic imbalance and Affymetrix Gene 1.0 platform for gene expression analysis was used. As a result, an integrative high-resolution approach for interrogation of genome-wide tumour-specific changes in DNA methylation was developed. This approach was used to provide the first genomic DNA methylation maps, and to identify and validate genes with aberrant DNA methylation in OS cell lines. This first integrative analysis of global cancer-related changes in DNA methylation, genomic imbalance, and gene expression has provided comprehensive evidence of the cumulative roles of epigenetic and genetic mechanisms in deregulation of gene expression networks.

  18. Young men with low birthweight exhibit decreased plasticity of genome-wide muscle DNA methylation by high-fat overfeeding

    DEFF Research Database (Denmark)

    Jacobsen, Stine C; Gillberg, Linn; Bork-Jensen, Jette

    2014-01-01

    The association between low birthweight (LBW) and risk of developing type 2 diabetes may involve epigenetic mechanisms, with skeletal muscle being a prime target tissue. Differential DNA methylation patterns have been observed in single genes in muscle tissue from type 2 diabetic and LBW...... individuals, and we recently showed multiple DNA methylation changes during short-term high-fat overfeeding in muscle of healthy people. In a randomised crossover study, we analysed genome-wide DNA promoter methylation in skeletal muscle of 17 young LBW men and 23 matched normal birthweight (NBW) men after...... a control and a 5 day high-fat overfeeding diet....

  19. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Brian H. Carrick

    2016-03-01

    Full Text Available Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant “CelTag” DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies.

  20. Knot numbers used as labels for identifying subject matter of a khipu

    Directory of Open Access Journals (Sweden)

    Alberto Saez-Rodriguez

    2013-03-01

    Full Text Available This investigation presents a new way to look at the numerical khipu, a knotted-string recording device from Pachacamac (Peru, and the types of information it contains. In addition to celestial coordinates, khipu knots apparently pertain to an early form of double-entry accounting. This study hypothesizes that the khipu sample has the recording capacity needed to register double-entry-like accounts. After the identification of its subject matter, the khipu sample was studied in an attempt to ascertain whether the knot values could represent instructions from the Inca state administration to a local accounting center. The results indicate that the numerical information in the pairing quadrants (determined by the distribution of S- and Z-knots should be read from top to bottom along the full length of the string and can then provide certain complementary details regarding the projected corn stocks of the Inca stat

  1. Explicit Gaussian quadrature rules for C^1 cubic splines with symmetrically stretched knot sequence

    KAUST Repository

    Ait-Haddou, Rachid; Barton, Michael; Calo, Victor M.

    2015-01-01

    We provide explicit expressions for quadrature rules on the space of C^1 cubic splines with non-uniform, symmetrically stretched knot sequences. The quadrature nodes and weights are derived via an explicit recursion that avoids an intervention

  2. Effect of soil solarization using plastic mulch in controlling root-knot ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... effect of soil solarization using plastic mulch in controlling root-knot nematode infestation and yield of ... addition to their increased toxic effects in the soil over the .... thereby promoting conducive environment for the utiliza- ...

  3. Knotted solutions for linear and nonlinear theories: Electromagnetism and fluid dynamics

    Directory of Open Access Journals (Sweden)

    Daniel W.F. Alves

    2017-10-01

    Full Text Available We examine knotted solutions, the most simple of which is the “Hopfion”, from the point of view of relations between electromagnetism and ideal fluid dynamics. A map between fluid dynamics and electromagnetism works for initial conditions or for linear perturbations, allowing us to find new knotted fluid solutions. Knotted solutions are also found to be solutions of nonlinear generalizations of electromagnetism, and of quantum-corrected actions for electromagnetism coupled to other modes. For null configurations, electromagnetism can be described as a null pressureless fluid, for which we can find solutions from the knotted solutions of electromagnetism. We also map them to solutions of Euler's equations, obtained from a type of nonrelativistic reduction of the relativistic fluid equations.

  4. PRESENCE OF RED KNOT (CALIDRIS CANUTUS) IN ITE WETLANDS, TACNA, PERU

    OpenAIRE

    Jhonson K. Vizcarra

    2012-01-01

    The presence of Red Knot (Calidris canutus, Linnaeus 1758) in Ite Wetlands, Tacna, Peru is documented. Two individuals were observed in October 2011. This species had only one occurrence without details in this area.

  5. Splitting, linking, knotting, and solitonic escape of topological defects in nematic drops with handles.

    Science.gov (United States)

    Tasinkevych, Mykola; Campbell, Michael G; Smalyukh, Ivan I

    2014-11-18

    Topologically nontrivial field excitations, including solitonic, linked, and knotted structures, play important roles in physical systems ranging from classical fluids and liquid crystals, to electromagnetism, classic, and quantum field theories. These excitations can appear spontaneously during symmetry-breaking phase transitions. For example, in cosmological theories, cosmic strings may have formed knotted configurations influencing the Early Universe development, whereas in liquid crystals transient tangled defect lines were observed during isotropic-nematic transitions, eventually relaxing to defect-free states. Knotted and solitonic fields and defects were also obtained using optical manipulation, complex-shaped colloids, and frustrated cholesterics. Here we use confinement of nematic liquid crystal by closed surfaces with varied genus and perpendicular boundary conditions for a robust control of appearance and stability of such field excitations. Theoretical modeling and experiments reveal structure of defect lines as a function of the surface topology and material and geometric parameters, establishing a robust means of controlling solitonic, knotted, linked, and other field excitations.

  6. Roche genome sequencer FLX based high-throughput sequencing of ancient DNA

    DEFF Research Database (Denmark)

    Alquezar-Planas, David E; Fordyce, Sarah Louise

    2012-01-01

    Since the development of so-called "next generation" high-throughput sequencing in 2005, this technology has been applied to a variety of fields. Such applications include disease studies, evolutionary investigations, and ancient DNA. Each application requires a specialized protocol to ensure...... that the data produced is optimal. Although much of the procedure can be followed directly from the manufacturer's protocols, the key differences lie in the library preparation steps. This chapter presents an optimized protocol for the sequencing of fossil remains and museum specimens, commonly referred...

  7. Detection of somatic mutations by high-resolution DNA melting (HRM) analysis in multiple cancers.

    Science.gov (United States)

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S; Garcia-Closas, Montserrat; Sherman, Mark E; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P; Khan, Javed; Chanock, Stephen

    2011-01-17

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  8. Detection of somatic mutations by high-resolution DNA melting (HRM analysis in multiple cancers.

    Directory of Open Access Journals (Sweden)

    Jesus Gonzalez-Bosquet

    Full Text Available Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each. HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  9. Expression profiling on high-density DNA grids to detect novel targets in dendritic cells

    International Nuclear Information System (INIS)

    Weissmann, M.

    2000-10-01

    Gene expression analyzes on a large scale using DNA microarrays is a novel approach to study transcription of thousands of genes in parallel. By comparing gene expression profiles of different cell-types and of cells in different activation, novel regulatory networks will be identified that are unique to a cell-type and hence, important in its biological function. Among the differentially expressed genes many novel drug targets will be found. The Genetic department of the Novartis Research Institute was following this approach to identify novel genes, which are critical in the antigen presenting function of DCs and could become promising drug targets. Drugs that modulate effector functions of DCs towards induction of energy or tolerance in T-cells could be useful in the treatment of chronic inflammatory or autoimmune diseases. By using specific robotics equipment high-density cDNA grids on nylon membranes have been produced for hybridizations with various radioactive labeled DNA probes. By our format, based on 384 well plates and limited by the resolution power of our current image analysis software, 27.648 cDNA clones, bacterial colonies or pure DNA, were spotted on one filter. For RNA profiling, we generated filters containing a collection of genes expressed in peripheral blood DCs or monocytes and characterized by oligonucleotide fingerprinting (ONF) as being differentially expressed. The gene collection contained many unknown genes. Sequence analysis of to date 18.000 cDNA clones led to an estimate of 5.000 non-redundant genes being represented in the collection. 10 % of them are either completely unknown or homologous to rare ESTs (expressed sequence tags) in the public EST database. These clones occurred predominantly in small fingerprint clusters and were therefore assumed to be rarely expressed in DCs or monocytes. Some of those genes may become novel drug targets if their expression is DC specific or induced by external stimuli driving DCs into

  10. Potential of Tissue Culture for Breeding Root-Knot Nematode Resistance into Vegetables

    OpenAIRE

    Fassuliotis, G.; Bhatt, D. P.

    1982-01-01

    Plant protoplast technology is being investigated as a means of transferring root-knot nematode resistance factors from Solanum sisymbriifolium into the susceptible S. melongena. Solanum sisymbriifolium plants regenerated from callus lost resistance to Meloidogyne javanica but retained resistance to M. incognita. Tomato plants cloned from leaf discs of the root-knot nematode resistant 'Patriot' were completely susceptible to M. incognita, while sections of stems and leaves rooted in sand in t...

  11. Control of Root-Knot Nematodes on Tomato by the Endoparasitic Fungus Meria coniospora

    OpenAIRE

    Jansson, Hans-Börje; Jeyaprakash, A.; Zuckerman, Bert M.

    1985-01-01

    The endoparasitic nematophagous fungus Meria coniospora reduced root-knot nematode galling on tomatoes in greenhouse pot trials. The fungus was introduced to pots by addition of conidia at several inoculum levels directly to the soil or addition of nematodes infected with M. coniospora to the soil; both methods reduced root galling by root-knot nematodes. These studies represent a part of a recently initiated effort to evaluate the potential of endoparasitic nematophagous fungi for biocontrol...

  12. Imaging and high-sensitivity quantification of chemiluminescent labeled DNA-blots

    International Nuclear Information System (INIS)

    Dorner, G.

    1997-01-01

    The present thesis has for objective the development of both, methods of DNA labeling by chemiluminescence (via the catalytic activity of the enzyme alkaline phosphatase - AP) and an appropriate imaging system. Offering a competitive alternative to the detection of classical radio-labels in molecular-biological experiments of the blotting type, this technique should permit the realization of quantitative studies of gene expression at ultra-high sensitivity necessary in particular for differential-screening experiments. To reach our aim. we separated the project into three different parts. In a first step an imager based on a liquid-nitrogen-cooled CCD coupled to a standard optics (50 mm/fl.2) has been installed and characterized. This system offers a sensitive area of up to 625 cm 2 , a spatial resolution of 0.3-1 mm (depending on the field of view) and a sensitivity sufficient to detect 10 fg/mm 2 labeled DNA. In a second part, the chemiluminescent light-generation process in solution has been investigated to optimize the parameters temperature. pH and concentration of the substrate as well as the enzyme. The substrate offering the highest light yield (CDP-Star in addition with the enhancer EMERALD II) allows quantification of AP down to 10 -15 M within a dynamic range of 10 4 in solution. Finally. preparation, immobilization and detection of AP-labeled DNA probes (via a biotin-streptavidin-biotin-AP bridge) on nylon membranes has been optimized. A linear relation between the light intensities and the amount of DNA was observed in a range of 10 fg/mm 2 - 100 pg/mm 2 . Hybridization of the probes to bacterial cloned target-DNA has been addressed after examination of the best hybridization conditions. Our protocol includes the treatment of a proteinase, which resulted in a significantly lower background on the filter. The results of our investigations suggest that the main conditions for a reliable differential-screening experiment are fulfilled when using

  13. On the species status of the root-knot nematode Meloidogyne ulmi Palmisano & Ambrogioni, 2000 (Nematoda, Meloidogynidae

    Directory of Open Access Journals (Sweden)

    Mohammed Ahmed

    2013-12-01

    Full Text Available The root-knot nematode Meloidogyne ulmi is synonymised with Meloidogyne mali based on morphological and morphometric similarities, common hosts, as well as biochemical similarities at both protein and DNA levels. M. mali was first described in Japan on Malus prunifolia Borkh.; and M. ulmi in Italy on Ulmus chenmoui W.C. Cheng. Morphological and morphometric studies of their holo- and paratypes revealed important similarities in the major characters as well as some general variability in a few others. Host test also showed that besides the two species being able to parasitize the type hosts of the other, they share some other common hosts. Our study of the esterase and malate dehydrogenase isozyme phenotypes of some M. ulmi populations gave a perfectly comparable result to that already known for M. mali. Finally, phylogenetic studies of their SSU and LSU rDNA sequence data revealed that the two are not distinguishable at DNA level. All these put together, leave strong evidences to support the fact that M. ulmi is not a valid species, but a junior synonym of M. mali. Brief discussion on the biology and life cycle of M. mali is given. An overview of all known hosts and the possible distribution of M. mali in Europe are also presented.

  14. Cutting the Gordian Knot of electrodeposition via controlled cathodic corrosion enabling the production of supported metal nanoparticles below 5 nm

    OpenAIRE

    Vanrenterghem, B.; Bele, M.; Zepeda, F.R.; Sala, M.; Hodnik, N.; Breugelmans, Tom

    2018-01-01

    Abstract: In the past decades, there has been an ongoing search for tailor-made active metal nanoparticles for the use as electrocatalysts. An upcoming versatile and green method for the synthesis of nanoparticles is electrodeposition. However, the state-of-the-art electrodeposited metal particle sizes are in the range of 50200 nm. Production of high surface area metallic electrocatalysts with small particle sizes is a serious limitation of electrodeposition, i.e., the Gordian Knot. In this a...

  15. PROPER MOTIONS OF THE OUTER KNOTS OF THE HH 80/81/80N RADIO-JET

    Energy Technology Data Exchange (ETDEWEB)

    Masqué, Josep M.; Rodriguez, Luis F.; Carrasco-González, Carlos [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58089, México (Mexico); Araudo, Anabella [University of Oxford, Astrophysics, Keble Road, Oxford OX1 3RH (United Kingdom); Estalella, Robert [Departament d’Astronomia i Meteorologia and Institut de Ciències del Cosmos (IEEC-UB), Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Catalunya (Spain); Anglada, Guillem; Osorio, Mayra [Instituto de Astrofísica de Andalucía (CSIC), Apartado 3004, E-18080 Granada (Spain); Girart, Josep M. [Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, S/N, E-08193 Cerdanyola del Vallès, Catalunya (Spain)

    2015-11-20

    The radio-knots of the Herbig–Haro (HH) 80/81/80N jet extend from the HH 80 object to the recently discovered Source 34 and has a total projected jet size of 10.3 pc, constituting the largest collimated radio-jet system known so far. It is powered by the bright infrared source IRAS 18162−2048 associated with a massive young stellar object. We report 6 cm JVLA observations that, compared with previous 6 cm VLA observations carried out in 1989, allow us to derive proper motions of the HH 80, HH 81, and HH 80N radio knots located about 2.5 pc away in projection from the powering source. For the first time, we measure proper motions of the optically obscured HH 80N object providing evidence that this knot, along with HH 81 and HH 80 are associated with the same radio-jet. We also confirm the presence of Source 34, located further north of HH 80N, previously proposed to belong to the jet.We derived that the tangential velocity of HH 80N is 260 km s{sup −1} and has a direction in agreement with the expected direction of a ballistic precessing jet. The HH 80 and HH 81 objects have tangential velocities of 350 and 220 km s{sup −1}, respectively, but their directions are somewhat deviated from the expected jet path. The velocities of the HH objects studied in this work are significantly lower than those derived for the radio knots of the jet close to the powering source (600–1400 km s{sup −1}) suggesting that the jet is slowing down due to a strong interaction with the ambient medium. As a result, since HH 80 and HH 81 are located near the edge of the cloud, the inhomogeneous and low density medium may contribute to skew the direction of their determined proper motions. The HH 80 and HH 80N emission at 6 cm is, at least in part, probably synchrotron radiation produced by relativistic electrons in a magnetic field of 1 mG. If these electrons are accelerated in a reverse adiabatic shock, we estimate a jet total density of ≲1000 cm{sup −3}. All of these

  16. A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition

    Science.gov (United States)

    Junicke, Henrik; Hart, Jonathan R.; Kisko, Jennifer; Glebov, Oleg; Kirsch, Ilan R.; Barton, Jacqueline K.

    2003-01-01

    A rhodium(III) complex, rac-[Rh(bpy)2phzi]3+ (bpy, 2,2′-bipyridine; phzi, benzo[a]phenazine-5,6-quinone diimine) has been designed as a sterically demanding intercalator targeted to destabilized mismatched sites in double-helical DNA. The complex is readily synthesized by condensation of the phenazine quinone with the corresponding diammine complex. Upon photoactivation, the complex promotes direct strand scission at single-base mismatch sites within the DNA duplex. As with the parent mismatch-specific reagent, [Rh(bpy)2(chrysi)]3+ [chrysene-5,6-quinone diimine (chrysi)], mismatch selectivity depends on the helix destabilization associated with mispairing. Unlike the parent chrysi complex, the phzi analogue binds and cleaves with high affinity and efficiency. The specific binding constants for CA, CC, and CT mismatches within a 31-mer oligonucleotide duplex are 0.3, 1, and 6 × 107 M−1, respectively; site-specific photocleavage is evident at nanomolar concentrations. Moreover, the specificity, defined as the ratio in binding affinities for mispaired vs. well paired sites, is maintained. The increase in affinity is attributed to greater stability in the mismatched site associated with stacking by the heterocyclic aromatic ligand. The high-affinity complex is also applied in the differential cleavage of DNA obtained from cell lines deficient in mismatch repair vs. those proficient in mismatch repair. Agreement is found between photocleavage by the mismatch-specific probes and deficiency in mismatch repair. This mismatch-specific targeting, therefore, offers a potential strategy for new chemotherapeutic design. PMID:12610209

  17. High Glucose-Induced Oxidative Stress Increases the Copy Number of Mitochondrial DNA in Human Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Ghada Al-Kafaji

    2013-01-01

    Full Text Available Oxidative damage to mitochondrial DNA (mtDNA has been linked to the pathogenicity of diabetic nephropathy. We tested the hypothesis that mtDNA copy number may be increased in human mesangial cells in response to high glucose-induced reactive oxygen species (ROS to compensate for damaged mtDNA. The effect of manganese superoxide dismutase mimetic (MnTBAP on glucose-induced mtDNA copy number was also examined. The copy number of mtDNA was determined by real-time PCR in human mesangial cells cultured in 5 mM glucose, 25 mM glucose, and mannitol (osmotic control, as well as in cells cultured in 25 mM glucose in the presence and absence of 200 μM MnTBAP. Intracellular ROS was assessed by confocal microscopy and flow cytometry in human mesangial cells. The copy number of mtDNA was significantly increased when human mesangial cells were incubated with 25 mM glucose compared to 5 mM glucose and mannitol. In addition, 25 mM glucose rapidly generated ROS in the cells, which was not detected in 5 mM glucose. Furthermore, mtDNA copy number was significantly decreased and maintained to normal following treatment of cells with 25 mM glucose and MnTBAP compared to 25 mM glucose alone. Inclusion of MnTBAP during 25 mM glucose incubation inhibited mitochondrial superoxide in human mesangial cells. Increased mtDNA copy number in human mesangial cells by high glucose could contribute to increased mitochondrial superoxide, and prevention of mtDNA copy number could have potential in retarding the development of diabetic nephropathy.

  18. Twin target self-amplification-based DNA machine for highly sensitive detection of cancer-related gene.

    Science.gov (United States)

    Xu, Huo; Jiang, Yifan; Liu, Dengyou; Liu, Kai; Zhang, Yafeng; Yu, Suhong; Shen, Zhifa; Wu, Zai-Sheng

    2018-06-29

    The sensitive detection of cancer-related genes is of great significance for early diagnosis and treatment of human cancers, and previous isothermal amplification sensing systems were often based on the reuse of target DNA, the amplification of enzymatic products and the accumulation of reporting probes. However, no reporting probes are able to be transformed into target species and in turn initiate the signal of other probes. Herein we reported a simple, isothermal and highly sensitive homogeneous assay system for tumor suppressor p53 gene detection based on a new autonomous DNA machine, where the signaling probe, molecular beacon (MB), was able to execute the function similar to target DNA besides providing the common signal. In the presence of target p53 gene, the operation of DNA machine can be initiated, and cyclical nucleic acid strand-displacement polymerization (CNDP) and nicking/polymerization cyclical amplification (NPCA) occur, during which the MB was opened by target species and cleaved by restriction endonuclease. In turn, the cleaved fragments could activate the next signaling process as target DNA did. According to the functional similarity, the cleaved fragment was called twin target, and the corresponding fashion to amplify the signal was named twin target self-amplification. Utilizing this newly-proposed DNA machine, the target DNA could be detected down to 0.1 pM with a wide dynamic range (6 orders of magnitude) and single-base mismatched targets were discriminated, indicating a very high assay sensitivity and good specificity. In addition, the DNA machine was not only used to screen the p53 gene in complex biological matrix but also was capable of practically detecting genomic DNA p53 extracted from A549 cell line. This indicates that the proposed DNA machine holds the potential application in biomedical research and early clinical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Knotting and unknotting proteins in the chaperonin cage: Effects of the excluded volume.

    Directory of Open Access Journals (Sweden)

    Szymon Niewieczerzal

    Full Text Available Molecular dynamics simulations are used to explore the effects of chaperonin-like cages on knotted proteins with very low sequence similarity, different depths of a knot but with a similar fold, and the same type of topology. The investigated proteins are VirC2, DndE and MJ0366 with two depths of a knot. A comprehensive picture how encapsulation influences folding rates is provided based on the analysis of different cage sizes and temperature conditions. Neither of these two effects with regard to knotted proteins has been studied by means of molecular dynamics simulations with coarse-grained structure-based models before. We show that encapsulation in a chaperonin is sufficient to self-tie and untie small knotted proteins (VirC2, DndE, for which the equilibrium process is not accessible in the bulk solvent. Furthermore, we find that encapsulation reduces backtracking that arises from the destabilisation of nucleation sites, smoothing the free energy landscape. However, this effect can also be coupled with temperature rise. Encapsulation facilitates knotting at the early stage of folding and can enhance an alternative folding route. Comparison to unknotted proteins with the same fold shows directly how encapsulation influences the free energy landscape. In addition, we find that as the size of the cage decreases, folding times increase almost exponentially in a certain range of cage sizes, in accordance with confinement theory and experimental data for unknotted proteins.

  20. Total curvature and total torsion of knotted random polygons in confinement

    Science.gov (United States)

    Diao, Yuanan; Ernst, Claus; Rawdon, Eric J.; Ziegler, Uta

    2018-04-01

    Knots in nature are typically confined spatially. The confinement affects the possible configurations, which in turn affects the spectrum of possible knot types as well as the geometry of the configurations within each knot type. The goal of this paper is to determine how confinement, length, and knotting affect the total curvature and total torsion of random polygons. Previously published papers have investigated these effects in the unconstrained case. In particular, we analyze how the total curvature and total torsion are affected by (1) varying the length of polygons within a fixed confinement radius and (2) varying the confinement radius of polygons with a fixed length. We also compare the total curvature and total torsion of groups of knots with similar complexity (measured as crossing number). While some of our results fall in line with what has been observed in the studies of the unconfined random polygons, a few surprising results emerge from our study, showing some properties that are unique due to the effect of knotting in confinement.

  1. Knot positioning during McDonald cervical cerclage, does it make a difference? A cohort study.

    Science.gov (United States)

    Atia, Hytham; Ellaithy, Mohamed; Altraigey, Ahmed; Ibrahim, Heba

    2018-05-15

    To study the effect of McDonald cerclage knot position on the different maternal and neonatal outcomes. This historical cohort study included women with singleton pregnancy who had a prophylactic McDonald cervical cerclage between 1 May 2010 and 31 September 2017. Maternal and neonatal outcome parameters were compared between the anterior and posterior knot cerclage procedures. The primary outcome measure was the rate of term birth. 550 Women had a prophylactic McDonald cervical cerclage, 306 with anterior knot (Group A) and 244 with posterior knot (Group B). There were no statistically significant differences regarding gestational age (GA) at delivery (36.3 ± 4.2 versus 35.8 ± 5.3 for groups A and B respectively), term birth rate, post-cerclage cervical length, symptomatic vaginitis, urinary tract infection, difficult cerclage removal and cervical lacerations. Similarly, there were no statistically significant differences as regards the studied neonatal outcomes including take home babies, neonatal intensive care admission, respiratory distress syndrome and neonatal sepsis. Survival analysis on GA at delivery demonstrated no statistically significant difference as regards the proportion of term deliveries in the anterior and posterior knot cerclage groups (log-rank test p-value = .478). Knot positioning during McDonald cervical cerclage, anteriorly or posteriorly, didn't significantly impact the studied maternal and neonatal outcomes.

  2. Intragenomic polymorphisms among high-copy loci: a genus-wide study of nuclear ribosomal DNA in Asclepias (Apocynaceae).

    Science.gov (United States)

    Weitemier, Kevin; Straub, Shannon C K; Fishbein, Mark; Liston, Aaron

    2015-01-01

    Despite knowledge that concerted evolution of high-copy loci is often imperfect, studies that investigate the extent of intragenomic polymorphisms and comparisons across a large number of species are rarely made. We present a bioinformatic pipeline for characterizing polymorphisms within an individual among copies of a high-copy locus. Results are presented for nuclear ribosomal DNA (nrDNA) across the milkweed genus, Asclepias. The 18S-26S portion of the nrDNA cistron of Asclepias syriaca served as a reference for assembly of the region from 124 samples representing 90 species of Asclepias. Reads were mapped back to each individual's consensus and at each position reads differing from the consensus were tallied using a custom perl script. Low frequency polymorphisms existed in all individuals (mean = 5.8%). Most nrDNA positions (91%) were polymorphic in at least one individual, with polymorphic sites being less frequent in subunit regions and loops. Highly polymorphic sites existed in each individual, with highest abundance in the "noncoding" ITS regions. Phylogenetic signal was present in the distribution of intragenomic polymorphisms across the genus. Intragenomic polymorphisms in nrDNA are common in Asclepias, being found at higher frequency than any other study to date. The high and variable frequency of polymorphisms across species highlights concerns that phylogenetic applications of nrDNA may be error-prone. The new analytical approach provided here is applicable to other taxa and other high-copy regions characterized by low coverage genome sequencing (genome skimming).

  3. The Science and Issues of Human DNA Polymoprhisms: A Training Workshop for High School Biology Teachers

    Energy Technology Data Exchange (ETDEWEB)

    David. A Micklos

    2006-10-30

    This project achieved its goal of implementing a nationwide training program to introduce high school biology teachers to the key uses and societal implications of human DNA polymorphisms. The 2.5-day workshop introduced high school biology faculty to a laboratory-based unit on human DNA polymorphisms – which provides a uniquely personal perspective on the science and Ethical, Legal and Social Implications (ELSI) of the Human Genome Project. As proposed, 12 workshops were conducted at venues across the United States. The workshops were attended by 256 high school faculty, exceeding proposed attendance of 240 by 7%. Each workshop mixed theoretical, laboratory, and computer work with practical and ethical implications. Program participants learned simplified lab techniques for amplifying three types of chromosomal polymorphisms: an Alu insertion (PV92), a VNTR (pMCT118/D1S80), and single nucleotide polymorphisms (SNPs) in the mitochondrial control region. These polymorphisms illustrate the use of DNA variations in disease diagnosis, forensic biology, and identity testing - and provide a starting point for discussing the uses and potential abuses of genetic technology. Participants also learned how to use their Alu and mitochondrial data as an entrée to human population genetics and evolution. Our work to simplify lab techniques for amplifying human DNA polymorphisms in educational settings culminated with the release in 1998 of three Advanced Technology (AT) PCR kits by Carolina Biological Supply Company, the nation’s oldest educational science supplier. The kits use a simple 30-minute method to isolate template DNA from hair sheaths or buccal cells and streamlined PCR chemistry based on Pharmacia Ready-To-Go Beads, which incorporate Taq polymerase, deoxynucleotide triphosphates, and buffer in a freeze-dried pellet. These kits have greatly simplified teacher implementation of human PCR labs, and their use is growing at a rapid pace. Sales of human polymorphism

  4. The Science and Issues of Human DNA Polymorphisms: A Training Workshop for High School Biology Teachers

    Energy Technology Data Exchange (ETDEWEB)

    Micklos, David A.

    2006-10-30

    This project achieved its goal of implementing a nationwide training program to introduce high school biology teachers to the key uses and societal implications of human DNA polymorphisms. The 2.5-day workshop introduced high school biology faculty to a laboratory-based unit on human DNA polymorphisms â which provides a uniquely personal perspective on the science and Ethical, Legal and Social Implications (ELSI) of the Human Genome Project. As proposed, 12 workshops were conducted at venues across the United States. The workshops were attended by 256 high school faculty, exceeding proposed attendance of 240 by 7%. Each workshop mixed theoretical, laboratory, and computer work with practical and ethical implications. Program participants learned simplified lab techniques for amplifying three types of chromosomal polymorphisms: an Alu insertion (PV92), a VNTR (pMCT118/D1S80), and single nucleotide polymorphisms (SNPs) in the mitochondrial control region. These polymorphisms illustrate the use of DNA variations in disease diagnosis, forensic biology, and identity testing - and provide a starting point for discussing the uses and potential abuses of genetic technology. Participants also learned how to use their Alu and mitochondrial data as an entrée to human population genetics and evolution. Our work to simplify lab techniques for amplifying human DNA polymorphisms in educational settings culminated with the release in 1998 of three Advanced Technology (AT) PCR kits by Carolina Biological Supply Company, the nationâÂÂs oldest educational science supplier. The kits use a simple 30-minute method to isolate template DNA from hair sheaths or buccal cells and streamlined PCR chemistry based on Pharmacia Ready-To-Go Beads, which incorporate Taq polymerase, deoxynucleotide triphosphates, and buffer in a freeze-dried pellet. These kits have greatly simplified teacher implementation of human PCR labs, and their use is growing at a rapid pace. Sales of human

  5. High-capacity conductive nanocellulose paper sheets for electrochemically controlled extraction of DNA oligomers.

    Directory of Open Access Journals (Sweden)

    Aamir Razaq

    Full Text Available Highly porous polypyrrole (PPy-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg(-1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30-50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m(2 g(-1 of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT(6, (dT(20, and (dT(40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules.

  6. ‘‘Blind'' mapping of genic DNA sequence polymorphisms in Lolium perenne L. by high resolution melting curve analysis

    DEFF Research Database (Denmark)

    Studer, Bruno; Jensen, Louise Bach; Fiil, Alice

    2009-01-01

    High resolution melting curve analysis (HRM) measures dissociation of double stranded DNA of a PCR product amplified in the presence of a saturating fluorescence dye. Recently, HRM proved successful to genotype DNA sequence polymorphisms such as SSRs and SNPs based on the shape of the melting...... curves. In this study, HRM was used for simultaneous screening and genotyping of genic DNA sequence polymorphisms identified in the Lolium perenne F2 mapping population VrnA. Melting profiles of PCR products amplified from previously published gene loci and from a novel gene putatively involved...

  7. Molecular Genetic Characterization of Mutagenesis Using a Highly Sensitive Single-Stranded DNA Reporter System in Budding Yeast.

    Science.gov (United States)

    Chan, Kin

    2018-01-01

    Mutations are permanent alterations to the coding content of DNA. They are starting material for the Darwinian evolution of species by natural selection, which has yielded an amazing diversity of life on Earth. Mutations can also be the fundamental basis of serious human maladies, most notably cancers. In this chapter, I describe a highly sensitive reporter system for the molecular genetic analysis of mutagenesis, featuring controlled generation of long stretches of single-stranded DNA in budding yeast cells. This system is ~100- to ~1000-fold more susceptible to mutation than conventional double-stranded DNA reporters, and is well suited for generating large mutational datasets to investigate the properties of mutagens.

  8. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    Science.gov (United States)

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids

  9. An ultra-high discrimination Y chromosome short tandem repeat multiplex DNA typing system.

    Directory of Open Access Journals (Sweden)

    Erin K Hanson

    Full Text Available In forensic casework, Y chromosome short tandem repeat markers (Y-STRs are often used to identify a male donor DNA profile in the presence of excess quantities of female DNA, such as is found in many sexual assault investigations. Commercially available Y-STR multiplexes incorporating 12-17 loci are currently used in forensic casework (Promega's PowerPlex Y and Applied Biosystems' AmpFlSTR Yfiler. Despite the robustness of these commercial multiplex Y-STR systems and the ability to discriminate two male individuals in most cases, the coincidence match probabilities between unrelated males are modest compared with the standard set of autosomal STR markers. Hence there is still a need to develop new multiplex systems to supplement these for those cases where additional discriminatory power is desired or where there is a coincidental Y-STR match between potential male participants. Over 400 Y-STR loci have been identified on the Y chromosome. While these have the potential to increase the discrimination potential afforded by the commercially available kits, many have not been well characterized. In the present work, 91 loci were tested for their relative ability to increase the discrimination potential of the commonly used 'core' Y-STR loci. The result of this extensive evaluation was the development of an ultra high discrimination (UHD multiplex DNA typing system that allows for the robust co-amplification of 14 non-core Y-STR loci. Population studies with a mixed African American and American Caucasian sample set (n = 572 indicated that the overall discriminatory potential of the UHD multiplex was superior to all commercial kits tested. The combined use of the UHD multiplex and the Applied Biosystems' AmpFlSTR Yfiler kit resulted in 100% discrimination of all individuals within the sample set, which presages its potential to maximally augment currently available forensic casework markers. It could also find applications in human evolutionary

  10. High quality methylome-wide investigations through next-generation sequencing of DNA from a single archived dry blood spot.

    Science.gov (United States)

    Aberg, Karolina A; Xie, Lin Y; Nerella, Srilaxmi; Copeland, William E; Costello, E Jane; van den Oord, Edwin J C G

    2013-05-01

    The potential importance of DNA methylation in the etiology of complex diseases has led to interest in the development of methylome-wide association studies (MWAS) aimed at interrogating all methylation sites in the human genome. When using blood as biomaterial for a MWAS the DNA is typically extracted directly from fresh or frozen whole blood that was collected via venous puncture. However, DNA extracted from dry blood spots may also be an alternative starting material. In the present study, we apply a methyl-CpG binding domain (MBD) protein enrichment-based technique in combination with next generation sequencing (MBD-seq) to assess the methylation status of the ~27 million CpGs in the human autosomal reference genome. We investigate eight methylomes using DNA from blood spots. This data are compared with 1,500 methylomes previously assayed with the same MBD-seq approach using DNA from whole blood. When investigating the sequence quality and the enrichment profile across biological features, we find that DNA extracted from blood spots gives comparable results with DNA extracted from whole blood. Only if the amount of starting material is ≤ 0.5µg DNA we observe a slight decrease in the assay performance. In conclusion, we show that high quality methylome-wide investigations using MBD-seq can be conducted in DNA extracted from archived dry blood spots without sacrificing quality and without bias in enrichment profile as long as the amount of starting material is sufficient. In general, the amount of DNA extracted from a single blood spot is sufficient for methylome-wide investigations with the MBD-seq approach.

  11. High resolution melting (HRM) analysis of DNA--its role and potential in food analysis.

    Science.gov (United States)

    Druml, Barbara; Cichna-Markl, Margit

    2014-09-01

    DNA based methods play an increasing role in food safety control and food adulteration detection. Recent papers show that high resolution melting (HRM) analysis is an interesting approach. It involves amplification of the target of interest in the presence of a saturation dye by the polymerase chain reaction (PCR) and subsequent melting of the amplicons by gradually increasing the temperature. Since the melting profile depends on the GC content, length, sequence and strand complementarity of the product, HRM analysis is highly suitable for the detection of single-base variants and small insertions or deletions. The review gives an introduction into HRM analysis, covers important aspects in the development of an HRM analysis method and describes how HRM data are analysed and interpreted. Then we discuss the potential of HRM analysis based methods in food analysis, i.e. for the identification of closely related species and cultivars and the identification of pathogenic microorganisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Assessment of DNA damage in car spray painters exposed to organic solvents by the high-throughput comet assay.

    Science.gov (United States)

    Londoño-Velasco, Elizabeth; Martínez-Perafán, Fabián; Carvajal-Varona, Silvio; García-Vallejo, Felipe; Hoyos-Giraldo, Luz Stella

    2016-05-01

    Occupational exposure as a painter is associated with DNA damage and development of cancer. Comet assay has been widely adopted as a sensitive and quantitative tool for DNA damage assessment at the individual cell level in populations exposed to genotoxics. The aim of this study was to assess the application of the high-throughput comet assay, to determine the DNA damage in car spray painters. The study population included 52 car spray painters and 52 unexposed subjects. A significant increase in the %TDNA median (p  0.05). The results showed an increase in DNA breaks in car spray painters exposed to organic solvents and paints; furthermore, they demonstrated the application of high-throughput comet assay in an occupational exposure study to genotoxic agents.

  13. Value of high-risk HPV-DNA testing in the triage of ASCUS.

    Science.gov (United States)

    Silverloo, Iréne; Andrae, Bengt; Wilander, Erik

    2009-01-01

    OBJECTIVE. Atypical squamous cells of undetermined significance (ASCUS) cells, occurring in organized cytological screening, may be either high-risk human papillomavirus (HPV) positive or negative. To refine the assessment of women with ASCUS, a high-risk HPV-DNA test is recommended as triage in Sweden. A total of 197 consecutive women (mean age 39 years, range 21-60) with a diagnosis of ASCUS from the primary screening were selected for triage. Their cervical smears were collected and evaluated by using conventional cytological examination in combination with a high-risk HPV-DNA test (hybrid capture 2). The women were categorized into four groups: Group A, Cytology + /HPV + ; Group B, Cytology-/HPV + ; Group C, Cytology + /HPV-; and Group D, Cytology-/ HPV-. Women within Groups A-C were admitted for colposcopy and cervical biopsy. The women in Group D were considered as a low-risk group for tumor development, and were re-examined after three years in the next round of the organized screening. In women in Group A (n=58) the prevalence of histological verified CIN2-3 was 41%, in Group B (n=41) 20%, and in Group C (n=9) 0%. In Group D (n=89), repeated primary screening three years later revealed CIN2-3 in two biopsies from 74 women studied (age in women with ASCUS. It was 74% in women or =50 years. Adding a high-risk HPV test in secondary screening increased the identification of women with CIN2-3 lesions by 33% in comparison with repeat cytology (p=0.01). The clinical significance of the ASCUS diagnosis varied with age of the women.

  14. Mitochondrial DNA Marker EST00083 Is Not Associated with High vs. Average IQ in a German Sample.

    Science.gov (United States)

    Moises, Hans W.; Yang, Liu; Kohnke, Michael; Vetter, Peter; Neppert, Jurgen; Petrill, Stephen A.; Plomin, Robert

    1998-01-01

    Tested the association of a mitochondrial DNA marker (EST00083) with high IQ in a sample of 47 German adults with high IQ scores and 77 adults with IQs estimated at lower than 110. Results do not support the hypothesis that high IQ is associated with this marker. (SLD)

  15. The magnetic resonance appearance of surfers' knots: a case report

    Directory of Open Access Journals (Sweden)

    Luke J. McManus, BMBS, PhD

    2016-09-01

    Full Text Available Athletes are at increased risk of developing soft-tissue lesions of the lower limbs. Although the majority of these will be benign, the differential diagnosis is broad and increasingly, doctors are turning to magnetic resonance imaging (MRI as a first-line investigation when presented with these sorts of lesions, both to narrow the differential diagnosis and exclude malignancy. We report the case of a 28-year-old Caucasian man who presented with 2 soft-tissue lesions of the right foot. History and examination of the nodules fitted with a diagnosis of surfers' knots, an unusual form of acquired, benign, connective tissue nodule that may appear over the tibial tuberosities, dorsum of the feet, and occasionally on the chest of surfers in association with repetitive microtrauma during surfing. MRI findings were consistent with this diagnosis with both lesions exhibiting T1 hypointensity and speckled T2 hypointensity with no significant blooming artifact on gradient echo imaging. When imaged with gadolinium, they demonstrated only mild contrast enhancement. MRI is a valuable tool when investigating athletes with soft-tissue lesions over the lower limbs where the possibility of malignancy must be addressed. In selected cases, MRI may be sufficient to permit a conservative approach to the management of these patients.

  16. Quandles and topological pairs symmetry, knots, and cohomology

    CERN Document Server

    Nosaka, Takefumi

    2017-01-01

    This book surveys quandle theory, starting from basic motivations and going on to introduce recent developments of quandles with topological applications and related topics. The book is written from topological aspects, but it illustrates how esteemed quandle theory is in mathematics, and it constitutes a crash course for studying quandles. More precisely, this work emphasizes the fresh perspective that quandle theory can be useful for the study of low-dimensional topology (e.g., knot theory) and relative objects with symmetry. The direction of research is summarized as “We shall thoroughly (re)interpret the previous studies of relative symmetry in terms of the quandle”. The perspectives contained herein can be summarized by the following topics. The first is on relative objects G/H, where G and H are groups, e.g., polyhedrons, reflection, and symmetric spaces. Next, central extensions of groups are discussed, e.g., spin structures, K2 groups, and some geometric anomalies. The third topic is a method to s...

  17. OH+ emission from cometary knots in planetary nebulae

    Science.gov (United States)

    Priestley, F. D.; Barlow, M. J.

    2018-05-01

    We model the molecular emission from cometary knots in planetary nebulae (PNe) using a combination of photoionization and photodissociation region (PDR) codes, for a range of central star properties and gas densities. Without the inclusion of ionizing extreme ultraviolet (EUV) radiation, our models require central star temperatures T* to be near the upper limit of the range investigated in order to match observed H2 and OH+ surface brightnesses consistent with observations - with the addition of EUV flux, our models reproduce observed OH+ surface brightnesses for T* ≥ 100 kK. For T* non-detection of this molecule in PNe with such central star temperatures. Our predicted level of H2 emission is somewhat weaker than commonly observed in PNe, which may be resolved by the inclusion of shock heating or fluorescence due to UV photons. Some of our models also predict ArH+ and HeH+ rotational line emission above detection thresholds, despite neither molecule having been detected in PNe, although the inclusion of photodissociation by EUV photons, which is neglected by our models, would be expected to reduce their detectability.

  18. Feedback in clinical education: untying the Gordian knot.

    Science.gov (United States)

    Weinstein, Debra F

    2015-05-01

    Feedback is essential to clinical education, especially in the era of competencies, milestones, and entrustable professional activities. It is, however, an area where medical educators often fall short. Although educational leaders and faculty supervisors provide feedback in a variety of clinical settings, surveys show important gaps in medical student and resident satisfaction with the feedback received, suggesting lost opportunities to identify performance problems as well as to help each learner reach his or her greatest potential.In this issue of Academic Medicine, Telio and colleagues extend the empirically validated concept of a "therapeutic alliance" to propose the "educational alliance" as a framework for enhancing feedback in medical education. They highlight the importance of source credibility, which depends on the teacher-learner relationship and alignment of values, the teacher's understanding of the learner's role and goals, the teacher's direct observation of the learner, and the learner's perception of the teacher's good intentions. The author of this Commentary suggests that the educational alliance framework should prompt medical educators to reconsider feedback and explore opportunities for optimizing it. Most medical schools and graduate medical education programs are not designed in a way that supports the education alliance model, but the Commentary author offers suggestions for cultivating educational alliances, including rethinking supervisor selection criteria. Such interventions should be combined with ongoing faculty development and efforts to improve coaching and mentoring for students, residents, and fellows. Untying the Gordian knot of effective feedback will require innovative approaches, exchange of successful strategies, and continued research.

  19. High and increasing Oxa-51 DNA load predict mortality in Acinetobacter baumannii bacteremia: implication for pathogenesis and evaluation of therapy.

    Directory of Open Access Journals (Sweden)

    Yu-Chung Chuang

    Full Text Available BACKGROUND: While quantification of viral loads has been successfully employed in clinical medicine and has provided valuable insights and useful markers for several viral diseases, the potential of measuring bacterial DNA load to predict outcome or monitor therapeutic responses remains largely unexplored. We tested this possibility by investigating bacterial loads in Acinetobacter baumannii bacteremia, a rapidly increasing nosocomial infection characterized by high mortality, drug resistance, multiple and complicated risk factors, all of which urged the need of good markers to evaluate therapeutics. METHODS AND FINDINGS: We established a quantitative real-time PCR assay based on an A. baumannii-specific gene, Oxa-51, and conducted a prospective study to examine A. baumannii loads in 318 sequential blood samples from 51 adults patients (17 survivors, 34 nonsurvivors with culture-proven A. baumannii bacteremia in the intensive care units. Oxa-51 DNA loads were significantly higher in the nonsurvivors than survivors on day 1, 2 and 3 (P=0.03, 0.001 and 0.006, respectively. Compared with survivors, nonsurvivors had higher maximum Oxa-51 DNA load and a trend of increase from day 0 to day 3 (P<0.001, which together with Pitt bacteremia score were independent predictors for mortality by multivariate analysis (P=0.014 and 0.016, for maximum Oxa-51 DNA and change of Oxa-51 DNA, respectively. Kaplan-Meier analysis revealed significantly different survival curves in patients with different maximum Oxa-51 DNA and change of Oxa-51 DNA from day 0 to day 3. CONCLUSIONS: High Oxa-51 DNA load and its initial increase could predict mortality. Moreover, monitoring Oxa-51 DNA load in blood may provide direct parameters for evaluating new regimens against A. baumannii in future clinical studies.

  20. Enhancing DNA binding rate using optical trapping of high-density gold nanodisks

    International Nuclear Information System (INIS)

    Lin, En-Hung; Pan, Ming-Yang; Lee, Ming-Chang; Wei, Pei-Kuen

    2014-01-01

    We present the dynamic study of optical trapping of fluorescent molecules using high-density gold nanodisk arrays. The gold nanodisks were fabricated by electron beam lithography with a diameter of 500 nm and a period of 1 μm. Dark-field illumination showed ∼15 times enhancement of fluorescence near edges of nanodisks. Such enhanced near-field generated an optical trapping force of ∼10 fN under 3.58 × 10 3 W/m 2 illumination intensity as calculated from the Brownian motions of 590 nm polystyrene beads. Kinetic observation of thiolated DNA modified with Cy5 dye showed different binding rates of DNA under different illumination intensity. The binding rate increased from 2.14 × 10 3 s −1 (I = 0.7 × 10 3 W/m 2 ) to 1.15 × 10 5 s −1 (I = 3.58 × 10 3 W/m 2 ). Both enhanced fluorescence and binding rate indicate that gold nanodisks efficiently improve both detection limit and interaction time for microarrays

  1. Detection of genomic variation by selection of a 9 mb DNA region and high throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Sergey I Nikolaev

    Full Text Available Detection of the rare polymorphisms and causative mutations of genetic diseases in a targeted genomic area has become a major goal in order to understand genomic and phenotypic variability. We have interrogated repeat-masked regions of 8.9 Mb on human chromosomes 21 (7.8 Mb and 7 (1.1 Mb from an individual from the International HapMap Project (NA12872. We have optimized a method of genomic selection for high throughput sequencing. Microarray-based selection and sequencing resulted in 260-fold enrichment, with 41% of reads mapping to the target region. 83% of SNPs in the targeted region had at least 4-fold sequence coverage and 54% at least 15-fold. When assaying HapMap SNPs in NA12872, our sequence genotypes are 91.3% concordant in regions with coverage > or = 4-fold, and 97.9% concordant in regions with coverage > or = 15-fold. About 81% of the SNPs recovered with both thresholds are listed in dbSNP. We observed that regions with low sequence coverage occur in close proximity to low-complexity DNA. Validation experiments using Sanger sequencing were performed for 46 SNPs with 15-20 fold coverage, with a confirmation rate of 96%, suggesting that DNA selection provides an accurate and cost-effective method for identifying rare genomic variants.

  2. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity.

    Science.gov (United States)

    Lohman, Gregory J S; Bauer, Robert J; Nichols, Nicole M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C

    2016-01-29

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Coupling of MIC-3 overexpression with the chromosome 11 and 14 root-knot nematode (RKN) (Meloidogyne incognita) resistance QTLs provides insights into the regulation of the RKN resistance response in Upland cotton...

    Science.gov (United States)

    High levels of resistance to root-knot nematode (RKN) (Meloidogyne incognita) in Upland cotton (Gossypium hirsutum) is mediated by two major quantitative trait loci (QTL) located on chromosomes 11 and 14. We had previously determined that MIC-3 expression played a direct role in suppressing RKN egg...

  4. High DNA stability in white blood cells and buffy coat lysates stored at ambient temperature under anoxic and anhydrous atmosphere.

    Directory of Open Access Journals (Sweden)

    Anne-Lise Fabre

    Full Text Available Conventional storage of blood-derived fractions relies on cold. However, lately, ambient temperature preservation has been evaluated by several independent institutions that see economic and logistic advantages in getting rid of the cold chain. Here we validated a novel procedure for ambient temperature preservation of DNA in white blood cell and buffy coat lysates based on the confinement of the desiccated biospecimens under anoxic and anhydrous atmosphere in original hermetic minicapsules. For this validation we stored encapsulated samples either at ambient temperature or at several elevated temperatures to accelerate aging. We found that DNA extracted from stored samples was of good quality with a yield of extraction as expected. Degradation rates were estimated from the average fragment size of denatured DNA run on agarose gels and from qPCR reactions. At ambient temperature, these rates were too low to be measured but the degradation rate dependence on temperature followed Arrhenius' law, making it possible to extrapolate degradation rates at 25°C. According to these values, the DNA stored in the encapsulated blood products would remain larger than 20 kb after one century at ambient temperature. At last, qPCR experiments demonstrated the compatibility of extracted DNA with routine DNA downstream analyses. Altogether, these results showed that this novel storage method provides an adequate environment for ambient temperature long term storage of high molecular weight DNA in dehydrated lysates of white blood cells and buffy coats.

  5. High DNA stability in white blood cells and buffy coat lysates stored at ambient temperature under anoxic and anhydrous atmosphere

    Science.gov (United States)

    Luis, Aurélie; Colotte, Marthe; Tuffet, Sophie; Bonnet, Jacques

    2017-01-01

    Conventional storage of blood-derived fractions relies on cold. However, lately, ambient temperature preservation has been evaluated by several independent institutions that see economic and logistic advantages in getting rid of the cold chain. Here we validated a novel procedure for ambient temperature preservation of DNA in white blood cell and buffy coat lysates based on the confinement of the desiccated biospecimens under anoxic and anhydrous atmosphere in original hermetic minicapsules. For this validation we stored encapsulated samples either at ambient temperature or at several elevated temperatures to accelerate aging. We found that DNA extracted from stored samples was of good quality with a yield of extraction as expected. Degradation rates were estimated from the average fragment size of denatured DNA run on agarose gels and from qPCR reactions. At ambient temperature, these rates were too low to be measured but the degradation rate dependence on temperature followed Arrhenius’ law, making it possible to extrapolate degradation rates at 25°C. According to these values, the DNA stored in the encapsulated blood products would remain larger than 20 kb after one century at ambient temperature. At last, qPCR experiments demonstrated the compatibility of extracted DNA with routine DNA downstream analyses. Altogether, these results showed that this novel storage method provides an adequate environment for ambient temperature long term storage of high molecular weight DNA in dehydrated lysates of white blood cells and buffy coats. PMID:29190767

  6. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    Energy Technology Data Exchange (ETDEWEB)

    Asaithamby, Aroumougame, E-mail: Aroumougame.Asaithamy@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States); Chen, David J., E-mail: David.Chen@UTsouthwestern.edu [Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390 (United States)

    2011-06-03

    Low-linear energy transfer (LET) radiation (i.e., {gamma}- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  7. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation

    International Nuclear Information System (INIS)

    Asaithamby, Aroumougame; Chen, David J.

    2011-01-01

    Low-linear energy transfer (LET) radiation (i.e., γ- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.

  8. Optimization of conditions to extract high quality DNA for PCR analysis from whole blood using SDS-proteinase K method

    Directory of Open Access Journals (Sweden)

    Wajhul Qamar

    2017-11-01

    Full Text Available In case of studies associated with human genetics, genomics, and pharmacogenetics the genomic DNA is extracted from the buccal cells, whole blood etc. Several methods are exploited by the researchers to extract DNA from the whole blood. One of these methods, which utilizes cell lysis and proteolytic properties of sodium dodecyl sulfate (SDS and proteinase K respectively, might also be called SDS-PK method. It does not include any hazardous chemicals such as phenol or chloroform and is inexpensive. However, several researchers report the same method with different formulas and conditions. During our experiments with whole blood DNA extraction we experienced problems such as protein contamination, DNA purity and yield when followed some SDS-PK protocols reported elsewhere. A260/A280 and A260/A230 ratios along with PCR amplification give a clear idea about the procedure that was followed to extract the DNA. In an effort to increase the DNA purity from human whole blood, we pointed out some steps of the protocol that play a crucial role in determining the extraction of high quality DNA.

  9. Pyrosequencing analysis of the protist communities in a High Arctic meromictic lake: DNA preservation and change

    Directory of Open Access Journals (Sweden)

    Sophie eCharvet

    2012-12-01

    Full Text Available High Arctic meromictic lakes are extreme environments characterized by cold temperatures, low nutrient inputs from their polar desert catchments and prolonged periods of low irradiance and darkness. These lakes are permanently stratified with an oxygenated freshwater layer (mixolimnion overlying a saline, anoxic water column (monimolimnion. The physical and chemical properties of the deepest known lake of this type in the circumpolar Arctic, Lake A, on the far northern coast of Ellesmere Island, Canada, have been studied over the last 15 years, but little is known about the lake’s biological communities. We applied high-throughput sequencing of the V4 region of the 18S ribosomal RNA gene to investigate the protist communities down the water column at three sampling times: under the ice at the end of winter in 2008, during an unusual period of warming and ice-out the same year, and again under the ice in mid-summer 2009. Sequences of many protist taxa occurred throughout the water column at all sampling times, including in the deep anoxic layer where growth is highly unlikely. Furthermore, there were sequences for taxonomic groups including diatoms and marine taxa, which have never been observed in Lake A by microscopic analysis. However the sequences of other taxa such as ciliates, chrysophytes, Cercozoa and Telonema varied with depth, between years and during the transition to ice-free conditions. These results imply that there are seasonally active taxa in the surface waters of the lake that are sensitive to depth and change with time. DNA from these taxa is superimposed upon background DNA from multiple internal and external sources that is preserved in the deep, cold, largely anoxic water column.

  10. High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA.

    Science.gov (United States)

    Chandrananda, Dineika; Thorne, Natalie P; Bahlo, Melanie

    2015-06-17

    High-throughput sequencing of cell-free DNA fragments found in human plasma has been used to non-invasively detect fetal aneuploidy, monitor organ transplants and investigate tumor DNA. However, many biological properties of this extracellular genetic material remain unknown. Research that further characterizes circulating DNA could substantially increase its diagnostic value by allowing the application of more sophisticated bioinformatics tools that lead to an improved signal to noise ratio in the sequencing data. In this study, we investigate various features of cell-free DNA in plasma using deep-sequencing data from two pregnant women (>70X, >50X) and compare them with matched cellular DNA. We utilize a descriptive approach to examine how the biological cleavage of cell-free DNA affects different sequence signatures such as fragment lengths, sequence motifs at fragment ends and the distribution of cleavage sites along the genome. We show that the size distributions of these cell-free DNA molecules are dependent on their autosomal and mitochondrial origin as well as the genomic location within chromosomes. DNA mapping to particular microsatellites and alpha repeat elements display unique size signatures. We show how cell-free fragments occur in clusters along the genome, localizing to nucleosomal arrays and are preferentially cleaved at linker regions by correlating the mapping locations of these fragments with ENCODE annotation of chromatin organization. Our work further demonstrates that cell-free autosomal DNA cleavage is sequence dependent. The region spanning up to 10 positions on either side of the DNA cleavage site show a consistent pattern of preference for specific nucleotides. This sequence motif is present in cleavage sites localized to nucleosomal cores and linker regions but is absent in nucleosome-free mitochondrial DNA. These background signals in cell-free DNA sequencing data stem from the non-random biological cleavage of these fragments. This

  11. High-Quality Exome Sequencing of Whole-Genome Amplified Neonatal Dried Blood Spot DNA

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave; Lescai, Francesco; Grove, Jakob

    2016-01-01

    Stored neonatal dried blood spot (DBS) samples from neonatal screening programmes are a valuable diagnostic and research resource. Combined with information from national health registries they can be used in population-based studies of genetic diseases. DNA extracted from neonatal DBSs can...... be amplified to obtain micrograms of an otherwise limited resource, referred to as whole-genome amplified DNA (wgaDNA). Here we investigate the robustness of exome sequencing of wgaDNA of neonatal DBS samples. We conducted three pilot studies of seven, eight and seven subjects, respectively. For each subject...... we analysed a neonatal DBS sample and corresponding adult whole-blood (WB) reference sample. Different DNA sample types were prepared for each of the subjects. Pilot 1: wgaDNA of 2x3.2mm neonatal DBSs (DBS_2x3.2) and raw DNA extract of the WB reference sample (WB_ref). Pilot 2: DBS_2x3.2, WB...

  12. Structures of an Apo and a Binary Complex of an Evolved Archeal B Family DNA Polymerase Capable of Synthesising Highly Cy-Dye Labelled DNA

    Science.gov (United States)

    Wynne, Samantha A.; Pinheiro, Vitor B.; Holliger, Philipp; Leslie, Andrew G. W.

    2013-01-01

    Thermophilic DNA polymerases of the polB family are of great importance in biotechnological applications including high-fidelity PCR. Of particular interest is the relative promiscuity of engineered versions of the exo- form of polymerases from the Thermo- and Pyrococcales families towards non-canonical substrates, which enables key advances in Next-generation sequencing. Despite this there is a paucity of structural information to guide further engineering of this group of polymerases. Here we report two structures, of the apo form and of a binary complex of a previously described variant (E10) of Pyrococcus furiosus (Pfu) polymerase with an ability to fully replace dCTP with Cyanine dye-labeled dCTP (Cy3-dCTP or Cy5-dCTP) in PCR and synthesise highly fluorescent “CyDNA” densely decorated with cyanine dye heterocycles. The apo form of Pfu-E10 closely matches reported apo form structures of wild-type Pfu. In contrast, the binary complex (in the replicative state with a duplex DNA oligonucleotide) reveals a closing movement of the thumb domain, increasing the contact surface with the nascent DNA duplex strand. Modelling based on the binary complex suggests how bulky fluorophores may be accommodated during processive synthesis and has aided the identification of residues important for the synthesis of unnatural nucleic acid polymers. PMID:23940661

  13. Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring.

    Science.gov (United States)

    Langie, Sabine A S; Achterfeldt, Sebastian; Gorniak, Joanna P; Halley-Hogg, Kirstin J A; Oxley, David; van Schooten, Frederik J; Godschalk, Roger W L; McKay, Jill A; Mathers, John C

    2013-08-01

    The mechanisms through which environmental and dietary factors modulate DNA repair are still unclear but may include dysregulation of gene expression due to altered epigenetic markings. In a mouse model, we investigated the effect of maternal folate depletion during pregnancy and lactation, and high-fat feeding from weaning, on base excision repair (BER) and DNA methylation and expression of selected BER-related genes in the brain of adult offspring. While folate depletion did not affect BER activity of the mothers, BER increased in the offspring at weaning (P=0.052). In the long term, as observed in 6-mo-old offspring, the double insult, i.e., maternal low-folate supply and high-fat feeding from weaning, decreased BER activity significantly in the cortex, cerebellum, hippocampus, and subcortical regions (P≤0.017). This fall in BER activity was associated with small changes in methylation or expression of BER-related genes. Maternal folate depletion led to slightly increased oxidative DNA damage levels in subcortical regions of adult offspring, which may increase sensitivity to oxidative stress and predispose to neurological disorders. In summary, our data suggest that low-folate supply during early life may leave an epigenetic mark that can predispose the offspring to further dietary insults, causing adverse effects during adult life.

  14. A New Euler's Formula for DNA Polyhedra

    Science.gov (United States)

    Hu, Guang; Qiu, Wen-Yuan; Ceulemans, Arnout

    2011-01-01

    DNA polyhedra are cage-like architectures based on interlocked and interlinked DNA strands. We propose a formula which unites the basic features of these entangled structures. It is based on the transformation of the DNA polyhedral links into Seifert surfaces, which removes all knots. The numbers of components , of crossings , and of Seifert circles are related by a simple and elegant formula: . This formula connects the topological aspects of the DNA cage to the Euler characteristic of the underlying polyhedron. It implies that Seifert circles can be used as effective topological indices to describe polyhedral links. Our study demonstrates that, the new Euler's formula provides a theoretical framework for the stereo-chemistry of DNA polyhedra, which can characterize enzymatic transformations of DNA and be used to characterize and design novel cages with higher genus. PMID:22022596

  15. Highly sensitive detection of human IgG using a novel bio-barcode assay combined with DNA chip technology

    International Nuclear Information System (INIS)

    Liu, Zhenbao; Zhou, Bo; Wang, Haiqing; Lu, Feng; Liu, Tianjun; Song, Cunxian; Leng, Xigang

    2013-01-01

    A simple and ultrasensitive detection of human IgG based on signal amplification using a novel bio-barcode assay and DNA chip technology was developed. The sensing platform was a sandwich system made up of antibody-modified magnetic microparticles (Ab-MMPs)/human IgG/Cy3-labeled single-stranded DNA and antibody-modified gold nanoparticles (Cy3-ssDNA-Ab-AuNPs). The MMPs (2.5 μm in diameter) modified with mouse anti-human IgG monoclonal-antibodies could capture human IgG and further be separated and enriched via a magnetic field. The AuNPs (13 nm in diameter) conjugated with goat anti-human IgG polyclonal-antibodies and Cy3-ssDNA could further combine with the human IgG/Ab-MMP complex. The Cy3-ssDNA on AuNPs was then released by TCEP to hybridize with the DNA chip, thus generating a detectable signal by the fluorescence intensity of Cy3. In order to improve detection sensitivity, a three-level cascaded signal amplification was developed: (1) The MMP enrichment as the first-level; (2) Large quantities of Cy3-ssDNA on AuNPs as the second-level; (3) The Cy3-ssDNA conjugate with DNA chip as the third-level. The highly sensitive technique showed an increased response of the fluorescence intensity to the increased concentration of human IgG through a detection range from 1 pg mL −1 to 10 ng mL −1 . This sensing technique could not only improve the detection sensitivity for the low concentration of human IgG but also present a robust and efficient signal amplification model. The detection method has good stability, specificity, and reproducibility and could be applied in the detection of human IgG in the real samples

  16. High Throughput Sample Preparation and Analysis for DNA Sequencing, PCR and Combinatorial Screening of Catalysis Based on Capillary Array Technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yonghua [Iowa State Univ., Ames, IA (United States)

    2000-01-01

    Sample preparation has been one of the major bottlenecks for many high throughput analyses. The purpose of this research was to develop new sample preparation and integration approach for DNA sequencing, PCR based DNA analysis and combinatorial screening of homogeneous catalysis based on multiplexed capillary electrophoresis with laser induced fluorescence or imaging UV absorption detection. The author first introduced a method to integrate the front-end tasks to DNA capillary-array sequencers. protocols for directly sequencing the plasmids from a single bacterial colony in fused-silica capillaries were developed. After the colony was picked, lysis was accomplished in situ in the plastic sample tube using either a thermocycler or heating block. Upon heating, the plasmids were released while chromsomal DNA and membrane proteins were denatured and precipitated to the bottom of the tube. After adding enzyme and Sanger reagents, the resulting solution was aspirated into the reaction capillaries by a syringe pump, and cycle sequencing was initiated. No deleterious effect upon the reaction efficiency, the on-line purification system, or the capillary electrophoresis separation was observed, even though the crude lysate was used as the template. Multiplexed on-line DNA sequencing data from 8 parallel channels allowed base calling up to 620 bp with an accuracy of 98%. The entire system can be automatically regenerated for repeated operation. For PCR based DNA analysis, they demonstrated that capillary electrophoresis with UV detection can be used for DNA analysis starting from clinical sample without purification. After PCR reaction using cheek cell, blood or HIV-1 gag DNA, the reaction mixtures was injected into the capillary either on-line or off-line by base stacking. The protocol was also applied to capillary array electrophoresis. The use of cheaper detection, and the elimination of purification of DNA sample before or after PCR reaction, will make this approach an

  17. Highly sensitive detection of human IgG using a novel bio-barcode assay combined with DNA chip technology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhenbao [Central South University, School of Pharmaceutical Sciences (China); Zhou, Bo, E-mail: zhoubo1771@163.com [The Affiliated Zhongda Hospital of Southeast University, Department of Gerontology (China); Wang, Haiqing; Lu, Feng; Liu, Tianjun; Song, Cunxian; Leng, Xigang, E-mail: lengxigyky@163.com [Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College (China)

    2013-09-15

    A simple and ultrasensitive detection of human IgG based on signal amplification using a novel bio-barcode assay and DNA chip technology was developed. The sensing platform was a sandwich system made up of antibody-modified magnetic microparticles (Ab-MMPs)/human IgG/Cy3-labeled single-stranded DNA and antibody-modified gold nanoparticles (Cy3-ssDNA-Ab-AuNPs). The MMPs (2.5 {mu}m in diameter) modified with mouse anti-human IgG monoclonal-antibodies could capture human IgG and further be separated and enriched via a magnetic field. The AuNPs (13 nm in diameter) conjugated with goat anti-human IgG polyclonal-antibodies and Cy3-ssDNA could further combine with the human IgG/Ab-MMP complex. The Cy3-ssDNA on AuNPs was then released by TCEP to hybridize with the DNA chip, thus generating a detectable signal by the fluorescence intensity of Cy3. In order to improve detection sensitivity, a three-level cascaded signal amplification was developed: (1) The MMP enrichment as the first-level; (2) Large quantities of Cy3-ssDNA on AuNPs as the second-level; (3) The Cy3-ssDNA conjugate with DNA chip as the third-level. The highly sensitive technique showed an increased response of the fluorescence intensity to the increased concentration of human IgG through a detection range from 1 pg mL{sup -1} to 10 ng mL{sup -1}. This sensing technique could not only improve the detection sensitivity for the low concentration of human IgG but also present a robust and efficient signal amplification model. The detection method has good stability, specificity, and reproducibility and could be applied in the detection of human IgG in the real samples.

  18. Highly sensitive detection of human IgG using a novel bio-barcode assay combined with DNA chip technology

    Science.gov (United States)

    Liu, Zhenbao; Zhou, Bo; Wang, Haiqing; Lu, Feng; Liu, Tianjun; Song, Cunxian; Leng, Xigang

    2013-09-01

    A simple and ultrasensitive detection of human IgG based on signal amplification using a novel bio-barcode assay and DNA chip technology was developed. The sensing platform was a sandwich system made up of antibody-modified magnetic microparticles (Ab-MMPs)/human IgG/Cy3-labeled single-stranded DNA and antibody-modified gold nanoparticles (Cy3-ssDNA-Ab-AuNPs). The MMPs (2.5 μm in diameter) modified with mouse anti-human IgG monoclonal-antibodies could capture human IgG and further be separated and enriched via a magnetic field. The AuNPs (13 nm in diameter) conjugated with goat anti-human IgG polyclonal-antibodies and Cy3-ssDNA could further combine with the human IgG/Ab-MMP complex. The Cy3-ssDNA on AuNPs was then released by TCEP to hybridize with the DNA chip, thus generating a detectable signal by the fluorescence intensity of Cy3. In order to improve detection sensitivity, a three-level cascaded signal amplification was developed: (1) The MMP enrichment as the first-level; (2) Large quantities of Cy3-ssDNA on AuNPs as the second-level; (3) The Cy3-ssDNA conjugate with DNA chip as the third-level. The highly sensitive technique showed an increased response of the fluorescence intensity to the increased concentration of human IgG through a detection range from 1 pg mL-1 to 10 ng mL-1. This sensing technique could not only improve the detection sensitivity for the low concentration of human IgG but also present a robust and efficient signal amplification model. The detection method has good stability, specificity, and reproducibility and could be applied in the detection of human IgG in the real samples.

  19. Transcription-factor-mediated DNA looping probed by high-resolution, single-molecule imaging in live E. coli cells.

    Directory of Open Access Journals (Sweden)

    Zach Hensel

    Full Text Available DNA looping mediated by transcription factors plays critical roles in prokaryotic gene regulation. The "genetic switch" of bacteriophage λ determines whether a prophage stays incorporated in the E. coli chromosome or enters the lytic cycle of phage propagation and cell lysis. Past studies have shown that long-range DNA interactions between the operator sequences O(R and O(L (separated by 2.3 kb, mediated by the λ repressor CI (accession number P03034, play key roles in regulating the λ switch. In vitro, it was demonstrated that DNA segments harboring the operator sequences formed loops in the presence of CI, but CI-mediated DNA looping has not been directly visualized in vivo, hindering a deep understanding of the corresponding dynamics in realistic cellular environments. We report a high-resolution, single-molecule imaging method to probe CI-mediated DNA looping in live E. coli cells. We labeled two DNA loci with differently colored fluorescent fusion proteins and tracked their separations in real time with ∼40 nm accuracy, enabling the first direct analysis of transcription-factor-mediated DNA looping in live cells. Combining looping measurements with measurements of CI expression levels in different operator mutants, we show quantitatively that DNA looping activates transcription and enhances repression. Further, we estimated the upper bound of the rate of conformational change from the unlooped to the looped state, and discuss how chromosome compaction may impact looping kinetics. Our results provide insights into transcription-factor-mediated DNA looping in a variety of operator and CI mutant backgrounds in vivo, and our methodology can be applied to a broad range of questions regarding chromosome conformations in prokaryotes and higher organisms.

  20. Microaspiration of esophageal gland cells and cDNA library construction for identifying parasitism genes of plant-parasitic nematodes.

    Science.gov (United States)

    Hussey, Richard S; Huang, Guozhong; Allen, Rex

    2011-01-01

    Identifying parasitism genes encoding proteins secreted from a plant-parasitic nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Parasitism genes have been cloned by directly microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages of cyst or root-knot nematodes to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. cDNA clones are sequenced and deduced protein sequences with a signal peptide for secretion are identified for high-throughput in situ hybridization to confirm gland-specific expression.

  1. Rapid and reliable high-throughput methods of DNA extraction for use in barcoding and molecular systematics of mushrooms.

    Science.gov (United States)

    Dentinger, Bryn T M; Margaritescu, Simona; Moncalvo, Jean-Marc

    2010-07-01

    We present two methods for DNA extraction from fresh and dried mushrooms that are adaptable to high-throughput sequencing initiatives, such as DNA barcoding. Our results show that these protocols yield ∼85% sequencing success from recently collected materials. Tests with both recent (100 years) specimens reveal that older collections have low success rates and may be an inefficient resource for populating a barcode database. However, our method of extracting DNA from herbarium samples using small amount of tissue is reliable and could be used for important historical specimens. The application of these protocols greatly reduces time, and therefore cost, of generating DNA sequences from mushrooms and other fungi vs. traditional extraction methods. The efficiency of these methods illustrates that standardization and streamlining of sample processing should be shifted from the laboratory to the field. © 2009 Blackwell Publishing Ltd.

  2. High-Quality and -Quantity DNA Extraction from Frozen Archival Blood Clots for Genotyping of Single-Nucleotide Polymorphisms

    DEFF Research Database (Denmark)

    Bank, Steffen; Nexø, Bjørn Andersen; Andersen, Vibeke

    2013-01-01

    the efficiency of commercial purification kits for extracting DNA from long-term frozen clotted blood. Methods: Serum tubes with clotted blood were stored at −20°C for 1 to 2.5 years before DNA extraction. DNA was extracted from 10 blood clot samples using PureGene (Qiagen) with and without glycogen, the QIAamp...... with a median of 0.65 μg (range 0.5–2.6 μg) pr 300 μL total blood. Conclusion: The yield obtained by the different commercial kits varied considerably. Our work demonstrates that high-quality and -quantity DNA can be extracted with the Maxwell 16 Blood purification kit (Promega) from cryopreserved blood clots...

  3. Restriction site extension PCR: a novel method for high-throughput characterization of tagged DNA fragments and genome walking.

    Directory of Open Access Journals (Sweden)

    Jiabing Ji

    Full Text Available BACKGROUND: Insertion mutant isolation and characterization are extremely valuable for linking genes to physiological function. Once an insertion mutant phenotype is identified, the challenge is to isolate the responsible gene. Multiple strategies have been employed to isolate unknown genomic DNA that flanks mutagenic insertions, however, all these methods suffer from limitations due to inefficient ligation steps, inclusion of restriction sites within the target DNA, and non-specific product generation. These limitations become close to insurmountable when the goal is to identify insertion sites in a high throughput manner. METHODOLOGY/PRINCIPAL FINDINGS: We designed a novel strategy called Restriction Site Extension PCR (RSE-PCR to efficiently conduct large-scale isolation of unknown genomic DNA fragments linked to DNA insertions. The strategy is a modified adaptor-mediated PCR without ligation. An adapter, with complementarity to the 3' overhang of the endonuclease (KpnI, NsiI, PstI, or SacI restricted DNA fragments, extends the 3' end of the DNA fragments in the first cycle of the primary RSE-PCR. During subsequent PCR cycles and a second semi-nested PCR (secondary RSE-PCR, touchdown and two-step PCR are combined to increase the amplification specificity of target fragments. The efficiency and specificity was demonstrated in our characterization of 37 tex mutants of Arabidopsis. All the steps of RSE-PCR can be executed in a 96 well PCR plate. Finally, RSE-PCR serves as a successful alternative to Genome Walker as demonstrated by gene isolation from maize, a plant with a more complex genome than Arabidopsis. CONCLUSIONS/SIGNIFICANCE: RSE-PCR has high potential application in identifying tagged (T-DNA or transposon sequence or walking from known DNA toward unknown regions in large-genome plants, with likely application in other organisms as well.

  4. Long-slit spectrophotometry of the multiple knots of the polar ring galaxy IIZw71

    Science.gov (United States)

    Pérez-Montero, E.; García-Benito, R.; Díaz, A. I.; Pérez, E.; Kehrig, C.

    2009-04-01

    Aims: The blue compact dwarf galaxy IIZw71 is catalogued as a probable polar-ring galaxy, and along its long axis it has several very luminous knots showing recent episodes of star formation. Our main aim is to study the physical properties, the stellar content, and the kinematics in the brightest knots of the polar ring. Methods: We carried out long-slit spectroscopic observations of the polar ring in the spectral range 3500-10 000 Å taken with the William Herschel Telescope (WHT). The spectroscopic observations complemented by the available photometry of the galaxy in narrow Hα filters. Results: We measured the rotation curve of the ring, from which we infer a ratio M/LB ≈ 3.9 inside the star-forming ring. We measured the auroral [Oiii] line in the two brightest knots, allowing us to measure oxygen, sulphur, nitrogen, argon, and neon chemical abundances following the direct method. Different empirical calibrators were used to estimate the oxygen abundance in the two faintest knots where the temperature sensitive lines could not be measured. The metallicities obtained are very similar for all the knots, but lower than previously reported in the literature from integrated spectra. The N/O abundance, as derived from the N2O2 parameter (the ratio of the [Nii] and [Oii] intensities), is remarkably constant over the ring, indicating that local polution processes are not conspicuous. Using synthetic stellar populations (SSPs) calculated with the code STARLIGHT, we studied the age distribution of the stellar populations in each knot, finding that in all of them there is a combination of a very young population with less than 10 Myr, responsible for the ionisation of the gas, with other populations older than 100 Myr, probably responsible for the chemical evolution of the knots. The small differences in metallicity and the age distributions among the different knots are indicative of a common chemical evolution, probably related to the process of interaction with the

  5. 360° virtual reality video for the acquisition of knot tying skills: A randomised controlled trial.

    Science.gov (United States)

    Yoganathan, S; Finch, D A; Parkin, E; Pollard, J

    2018-04-10

    360° virtual reality (VR) video is an exciting and evolving field. Current technology promotes a totally immersive, 3-dimensional (3D), 360° experience anywhere in the world using simply a smart phone and virtual reality headset. The potential for its application in the field of surgical education is enormous. The aim of this study was to determine knot tying skills taught with a 360-degree VR video compared to conventional 2D video teaching. This trial was a prospective, randomised controlled study. 40 foundation year doctors (first year postgraduate) were randomised to either the 360-degree VR video (n = 20) or 2D video teaching (n = 20). Participants were given 15 min to watch their allocated video. Ability to tie a single handed reef knot was then assessed against a marking criteria developed for the Royal College of Surgeons, England, (RCSeng) Basic Surgical Skills (BSS) course, by a blinded assessor competent in knot tying. Each candidate then underwent further teaching using Peyton's four step model. Knot tying technique was then re-assessed. Knot tying scores were significantly better in the VR video teaching arm when compared with conventional (median knot score 5.0 vs 4.0 p = 0.04). When used in combination with face to face skills teaching this difference persisted (median knot score 9.5 vs 9.0 p = 0.01). More people in the VR arm constructed a complete reef knot than in the 2D arm following face to face teaching (17/20 vs 12/20). No difference between the groups existed in the time taken to construct a reef knot following video and teaching (median time 31.0s vs 30.5s p = 0.89). This study shows there is significant merit in the application of 360-degree VR video technology in surgical training, both as an independent teaching aid and when used as an adjunct to traditional face to face teaching. Copyright © 2018 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  6. A novel knot selection method for the error-bounded B-spline curve fitting of sampling points in the measuring process

    International Nuclear Information System (INIS)

    Liang, Fusheng; Zhao, Ji; Ji, Shijun; Zhang, Bing; Fan, Cheng

    2017-01-01

    The B-spline curve has been widely used in the reconstruction of measurement data. The error-bounded sampling points reconstruction can be achieved by the knot addition method (KAM) based B-spline curve fitting. In KAM, the selection pattern of initial knot vector has been associated with the ultimate necessary number of knots. This paper provides a novel initial knots selection method to condense the knot vector required for the error-bounded B-spline curve fitting. The initial knots are determined by the distribution of features which include the chord length (arc length) and bending degree (curvature) contained in the discrete sampling points. Firstly, the sampling points are fitted into an approximate B-spline curve Gs with intensively uniform knot vector to substitute the description of the feature of the sampling points. The feature integral of Gs is built as a monotone increasing function in an analytic form. Then, the initial knots are selected according to the constant increment of the feature integral. After that, an iterative knot insertion (IKI) process starting from the initial knots is introduced to improve the fitting precision, and the ultimate knot vector for the error-bounded B-spline curve fitting is achieved. Lastly, two simulations and the measurement experiment are provided, and the results indicate that the proposed knot selection method can reduce the number of ultimate knots available. (paper)

  7. Prediction of the optimal set of contacts to fold the smallest knotted protein

    Science.gov (United States)

    Dabrowski-Tumanski, P.; Jarmolinska, A. I.; Sulkowska, J. I.

    2015-09-01

    Knotted protein chains represent a new motif in protein folds. They have been linked to various diseases, and recent extensive analysis of the Protein Data Bank shows that they constitute 1.5% of all deposited protein structures. Despite thorough theoretical and experimental investigations, the role of knots in proteins still remains elusive. Nonetheless, it is believed that knots play an important role in mechanical and thermal stability of proteins. Here, we perform a comprehensive analysis of native, shadow-specific and non-native interactions which describe free energy landscape of the smallest knotted protein (PDB id 2efv). We show that the addition of shadow-specific contacts in the loop region greatly enhances folding kinetics, while the addition of shadow-specific contacts along the C-terminal region (H3 or H4) results in a new folding route with slower kinetics. By means of direct coupling analysis (DCA) we predict non-native contacts which also can accelerate kinetics. Next, we show that the length of the C-terminal knot tail is responsible for the shape of the free energy barrier, while the influence of the elongation of the N-terminus is not significant. Finally, we develop a concept of a minimal contact map sufficient for 2efv protein to fold and analyze properties of this protein using this map.

  8. Prediction of the optimal set of contacts to fold the smallest knotted protein

    International Nuclear Information System (INIS)

    Dabrowski-Tumanski, P; Jarmolinska, A I; Sulkowska, J I

    2015-01-01

    Knotted protein chains represent a new motif in protein folds. They have been linked to various diseases, and recent extensive analysis of the Protein Data Bank shows that they constitute 1.5% of all deposited protein structures. Despite thorough theoretical and experimental investigations, the role of knots in proteins still remains elusive. Nonetheless, it is believed that knots play an important role in mechanical and thermal stability of proteins. Here, we perform a comprehensive analysis of native, shadow-specific and non-native interactions which describe free energy landscape of the smallest knotted protein (PDB id 2efv). We show that the addition of shadow-specific contacts in the loop region greatly enhances folding kinetics, while the addition of shadow-specific contacts along the C-terminal region (H3 or H4) results in a new folding route with slower kinetics. By means of direct coupling analysis (DCA) we predict non-native contacts which also can accelerate kinetics. Next, we show that the length of the C-terminal knot tail is responsible for the shape of the free energy barrier, while the influence of the elongation of the N-terminus is not significant. Finally, we develop a concept of a minimal contact map sufficient for 2efv protein to fold and analyze properties of this protein using this map. (paper)

  9. Particle on a torus knot: Constrained dynamics and semi-classical quantization in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Das, Praloy, E-mail: praloydasdurgapur@gmail.com; Pramanik, Souvik, E-mail: souvick.in@gmail.com; Ghosh, Subir, E-mail: subirghosh20@gmail.com

    2016-11-15

    Kinematics and dynamics of a particle moving on a torus knot poses an interesting problem as a constrained system. In the first part of the paper we have derived the modified symplectic structure or Dirac brackets of the above model in Dirac’s Hamiltonian framework, both in toroidal and Cartesian coordinate systems. This algebra has been used to study the dynamics, in particular small fluctuations in motion around a specific torus. The spatial symmetries of the system have also been studied. In the second part of the paper we have considered the quantum theory of a charge moving in a torus knot in the presence of a uniform magnetic field along the axis of the torus in a semiclassical quantization framework. We exploit the Einstein–Brillouin–Keller (EBK) scheme of quantization that is appropriate for multidimensional systems. Embedding of the knot on a specific torus is inherently two dimensional that gives rise to two quantization conditions. This shows that although the system, after imposing the knot condition reduces to a one dimensional system, even then it has manifested non-planar features which shows up again in the study of fractional angular momentum. Finally we compare the results obtained from EBK (multi-dimensional) and Bohr–Sommerfeld (single dimensional) schemes. The energy levels and fractional spin depend on the torus knot parameters that specifies its non-planar features. Interestingly, we show that there can be non-planar corrections to the planar anyon-like fractional spin.

  10. Rapid, highly sensitive and highly specific gene detection by combining enzymatic amplification and DNA chip detection simultaneously

    Directory of Open Access Journals (Sweden)

    Koji Hashimoto

    2016-05-01

    Full Text Available We have developed a novel gene detection method based on the loop-mediated isothermal amplification (LAMP reaction and the DNA dissociation reaction on the same DNA chip surface to achieve a lower detection limit, broader dynamic range and faster detection time than are attainable with a conventional DNA chip. Both FAM- and thiol-labeled DNA probe bound to the complementary sequence accompanying Dabcyl was immobilized on the gold surface via Au/thiol bond. The LAMP reaction was carried out on the DNA probe fixed gold surface. At first, Dabcyl molecules quenched the FAM fluorescence. According to the LAMP reaction, the complementary sequence with Dabcyl was competitively reacted with the amplified targeted sequence. As a result, the FAM fluorescence increased owing to dissociation of the complementary sequence from the DNA probe. The simultaneous reaction of LAMP and DNA chip detection was achieved, and 103 copies of the targeted gene were detected within an hour by measuring fluorescence intensity of the DNA probe. Keywords: Biosensor, DNA chip, Loop-mediated isothermal amplification (LAMP, Fluorescence detection, Gold substrate, Au/thiol bond

  11. A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP.

    Science.gov (United States)

    Kim, C S; Lee, C H; Shin, J S; Chung, Y S; Hyung, N I

    1997-03-01

    Because DNA degradation is mediated by secondary plant products such as phenolic terpenoids, the isolation of high quality DNA from plants containing a high content of polyphenolics has been a difficult problem. We demonstrate an easy extraction process by modifying several existing ones. Using this process we have found it possible to isolate DNAs from four fruit trees, grape (Vitis spp.), apple (Malus spp.), pear (Pyrus spp.) and persimmon (Diospyros spp.) and four species of conifer, Pinus densiflora, Pinus koraiensis,Taxus cuspidata and Juniperus chinensis within a few hours. Compared with the existing method, we have isolated high quality intact DNAs (260/280 = 1.8-2.0) routinely yielding 250-500 ng/microl (total 7.5-15 microg DNA from four to five tissue discs).

  12. High Interlaboratory Reprocucibility of DNA Sequence-based Typing of Bacteria in a Multicenter Study

    DEFF Research Database (Denmark)

    Sousa, MA de; Boye, Kit; Lencastre, H de

    2006-01-01

    Current DNA amplification-based typing methods for bacterial pathogens often lack interlaboratory reproducibility. In this international study, DNA sequence-based typing of the Staphylococcus aureus protein A gene (spa, 110 to 422 bp) showed 100% intra- and interlaboratory reproducibility without...... extensive harmonization of protocols for 30 blind-coded S. aureus DNA samples sent to 10 laboratories. Specialized software for automated sequence analysis ensured a common typing nomenclature....

  13. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis.

    Directory of Open Access Journals (Sweden)

    Sunwoo Chun

    Full Text Available A high phosphorus (HP diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus or a HP diet (containing 1.2% phosphorus. Gene Ontology analysis of differentially expressed genes (DEGs revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα, a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054 in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty

  14. Characterization of a Xenopus laevis mitochondrial protein with a high affinity for supercoiled DNA.

    OpenAIRE

    Mignotte, B; Barat, M

    1986-01-01

    A DNA binding protein of 31 Kd -mtDBPC- has been isolated from X. laevis oocyte mitochondria. It is present in large amounts in the organelle and does not show any enzymatic activity. Its binding to the superhelical form of a DNA is higher than for any other form, or for RNA. No sequence specificity could be found for any mtDNA fragments tested, including both origins of replication. It is able to introduce superhelical turns into relaxed circular DNA in the presence of a topoisomerase I acti...

  15. Construction of highly ordered polyaniline nanowires and their applications in DNA sensing.

    Science.gov (United States)

    Hao, Yuanqiang; Zhou, Binbin; Wang, Fangbin; Li, Juan; Deng, Liu; Liu, You-Nian

    2014-02-15

    A novel electrochemical active polyaniline (PANI) nanowire was fabricated and utilized for the construction of a highly sensitive and selective electrochemical sensor for hepatitis B virus gene. The uniform PANI nanowire was prepared by the enzymatic polymerization of aniline monomers on the amyloid-like nanofiber (AP nanowire), which was self-assembled from an aniline-attached nonapeptide, aniline-GGAAKLVFF (AP). The prepared PANI nanowires were characterized by electron microscopy, UV-vis absorption spectra, and cyclic voltammetry (CV). These ultra-thin nanowires displayed high electrochemical activity. Then the nucleic acid biosensor was constructed by modifying a glass carbon electrode with AP nanowires which were functionalized by a designed hair-pin loop DNA. Upon the presence of target nucleic acid and horseradish peroxidase (HRP) labeled oligonucleotide, the HRP will catalyze the polymerization of aniline monomers conjugated in AP nanowires, leading to the formation of PANI nanowires which can bring about a dramatical increase in the current response of the biosensor. The dynamic range of the sensor for hepatitis B virus gene is 2.0-800.0 fM with a low detection limit of 1.0 fM (3σ, n=10). The biosensor also displayed highly selectivity and stability. All these excellent performances of the developed biosensor indicate that this platform can be easily extended to the detection of other nucleic acids. © 2013 Elsevier B.V. All rights reserved.

  16. High Variety of Known and New RNA and DNA Viruses of Diverse Origins in Untreated Sewage

    Science.gov (United States)

    Ng, Terry Fei Fan; Marine, Rachel; Wang, Chunlin; Simmonds, Peter; Kapusinszky, Beatrix; Bodhidatta, Ladaporn; Oderinde, Bamidele Soji; Wommack, K. Eric

    2012-01-01

    Deep sequencing of untreated sewage provides an opportunity to monitor enteric infections in large populations and for high-throughput viral discovery. A metagenomics analysis of purified viral particles in untreated sewage from the United States (San Francisco, CA), Nigeria (Maiduguri), Thailand (Bangkok), and Nepal (Kathmandu) revealed sequences related to 29 eukaryotic viral families infecting vertebrates, invertebrates, and plants (BLASTx E score, 90% protein identities) in numerous viral families infecting humans (Adenoviridae, Astroviridae, Caliciviridae, Hepeviridae, Parvoviridae, Picornaviridae, Picobirnaviridae, and Reoviridae), plants (Alphaflexiviridae, Betaflexiviridae, Partitiviridae, Sobemovirus, Secoviridae, Tombusviridae, Tymoviridae, Virgaviridae), and insects (Dicistroviridae, Nodaviridae, and Parvoviridae). The full and partial genomes of a novel kobuvirus, salivirus, and sapovirus are described. A novel astrovirus (casa astrovirus) basal to those infecting mammals and birds, potentially representing a third astrovirus genus, was partially characterized. Potential new genera and families of viruses distantly related to members of the single-stranded RNA picorna-like virus superfamily were genetically characterized and named Picalivirus, Secalivirus, Hepelivirus, Nedicistrovirus, Cadicistrovirus, and Niflavirus. Phylogenetic analysis placed these highly divergent genomes near the root of the picorna-like virus superfamily, with possible vertebrate, plant, or arthropod hosts inferred from nucleotide composition analysis. Circular DNA genomes distantly related to the plant-infecting Geminiviridae family were named Baminivirus, Nimivirus, and Niminivirus. These results highlight the utility of analyzing sewage to monitor shedding of viral pathogens and the high viral diversity found in this common pollutant and provide genetic information to facilitate future studies of these newly characterized viruses. PMID:22933275

  17. High-risk human papillomavirus (HPV) DNA sequences in metaplastic breast carcinomas of Mexican women

    International Nuclear Information System (INIS)

    Herrera-Goepfert, Roberto; Vela-Chávez, Teresa; Carrillo-García, Adela; Lizano-Soberón, Marcela; Amador-Molina, Alfredo; Oñate-Ocaña, Luis F; Hallmann, Rita Sotelo-Regil

    2013-01-01

    Metaplastic carcinoma, an uncommon subtype of breast cancer, is part of the spectrum of basal-like, triple receptor-negative breast carcinomas. The present study examined 20 surgical specimens of metaplastic breast carcinomas, for the presence of high-risk Human papillomavirus (HPV), which is suspected to be a potential carcinogenic agent for breast carcinoma. Mastectomy specimens from patients harboring metaplastic breast carcinoma, as defined by the World Health Organization (WHO), and who attended the Instituto Nacional de Cancerologia in Mexico City, were retrieved from the files of the Department of Pathology accumulated during a 16-year period (1995–2008). Demographic and clinical information was obtained from patients’ medical records. DNA was extracted from formalin-fixed, paraffin-embedded tumors and HPV type-specific amplification was performed by means of Polymerase chain reaction (PCR). Quantitative Real-time (RT) PCR was conducted in HPV positive cases. Statistically, the association of continuous or categorical variables with HPV status was tested by the Student t, the Chi square, or Fisher’s exact tests, as appropriate. High-risk HPV DNA was detected in eight (40%) of 20 metaplastic breast carcinomas: seven (87.5%) HPV-16 and one (12.5%) HPV-18. Mean age of patients with HPV-positive cases was 49 years (range 24–72 years), the same as for HPV-negative cases (range, 30–73 years). There were not striking differences between HPV + and HPV– metaplastic carcinomas regarding clinical findings. Nearly all cases were negative for estrogen, progesterone and Human epidermal growth factor receptor 2 (HER2), but positive for Epidermal growth factor receptor (EGFR). High-risk HPV has been strongly associated with conventional breast carcinomas, although the subtle mechanism of neoplastic transformation is poorly understood. In Mexican patients, the prevalence of HPV infection among metaplastic breast carcinomas is higher than in non-metaplastic ones

  18. High-resolution analysis of the 5'-end transcriptome using a next generation DNA sequencer.

    Directory of Open Access Journals (Sweden)

    Shin-ichi Hashimoto

    Full Text Available Massively parallel, tag-based sequencing systems, such as the SOLiD system, hold the promise of revolutionizing the study of whole genome gene expression due to the number of data points that can be generated in a simple and cost-effective manner. We describe the development of a 5'-end transcriptome workflow for the SOLiD system and demonstrate the advantages in sensitivity and dynamic range offered by this tag-based application over traditional approaches for the study of whole genome gene expression. 5'-end transcriptome analysis was used to study whole genome gene expression within a colon cancer cell line, HT-29, treated with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5Aza. More than 20 million 25-base 5'-end tags were obtained from untreated and 5Aza-treated cells and matched to sequences within the human genome. Seventy three percent of the mapped unique tags were associated with RefSeq cDNA sequences, corresponding to approximately 14,000 different protein-coding genes in this single cell type. The level of expression of these genes ranged from 0.02 to 4,704 transcripts per cell. The sensitivity of a single sequence run of the SOLiD platform was 100-1,000 fold greater than that observed from 5'end SAGE data generated from the analysis of 70,000 tags obtained by Sanger sequencing. The high-resolution 5'end gene expression profiling presented in this study will not only provide novel insight into the transcriptional machinery but should also serve as a basis for a better understanding of cell biology.

  19. Nonviral gene-delivery by highly fluorinated gemini bispyridinium surfactant-based DNA nanoparticles.

    Science.gov (United States)

    Fisicaro, Emilia; Compari, Carlotta; Bacciottini, Franco; Contardi, Laura; Pongiluppi, Erika; Barbero, Nadia; Viscardi, Guido; Quagliotto, Pierluigi; Donofrio, Gaetano; Krafft, Marie Pierre

    2017-02-01

    Biological and thermodynamic properties of a new homologous series of highly fluorinated bispyridinium cationic gemini surfactants, differing in the length of the spacer bridging the pyridinium polar heads in 1,1' position, are reported for the first time. Interestingly, gene delivery ability is closely associated with the spacer length due to a structural change of the molecule in solution. This conformation change is allowed when the spacer reaches the right length, and it is suggested by the trends of the apparent and partial molar enthalpies vs molality. To assess the compounds' biological activity, they were tested with an agarose gel electrophoresis mobility shift assay (EMSA), MTT proliferation assay and Transient Transfection assays on a human rhabdomyosarcoma cell line. Data from atomic force microscopy (AFM) allow for morphological characterization of DNA nanoparticles. Dilution enthalpies, measured at 298K, enabled the determination of apparent and partial molar enthalpies vs molality. All tested compounds (except that with the longest spacer), at different levels, can deliver the plasmid when co-formulated with 1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE). The compound with a spacer formed by eight carbon atoms gives rise to a gene delivery ability that is comparable to that of the commercial reagent. The compound with the longest spacer compacts DNA in loosely condensed structures by forming bows, which are not suitable for transfection. Regarding the compounds' hydrogenated counterparts, the tight relationship between the solution thermodynamics data and their biological performance is amazing, making "old" methods the foundation to deeply understanding "new" applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Dissecting DNA repair in adult high grade gliomas for patient stratification in the post-genomic era

    Science.gov (United States)

    Perry, Christina; Agarwal, Devika; Abdel-Fatah, Tarek M.A.; Lourdusamy, Anbarasu; Grundy, Richard; Auer, Dorothee T.; Walker, David; Lakhani, Ravi; Scott, Ian S.; Chan, Stephen; Ball, Graham; Madhusudan, Srinivasan

    2014-01-01

    Deregulation of multiple DNA repair pathways may contribute to aggressive biology and therapy resistance in gliomas. We evaluated transcript levels of 157 genes involved in DNA repair in an adult glioblastoma Test set (n=191) and validated in ‘The Cancer Genome Atlas’ (TCGA) cohort (n=508). A DNA repair prognostic index model was generated. Artificial neural network analysis (ANN) was conducted to investigate global gene interactions. Protein expression by immunohistochemistry was conducted in 61 tumours. A fourteen DNA repair gene expression panel was associated with poor survival in Test and TCGA cohorts. A Cox multivariate model revealed APE1, NBN, PMS2, MGMT and PTEN as independently associated with poor prognosis. A DNA repair prognostic index incorporating APE1, NBN, PMS2, MGMT and PTEN stratified patients in to three prognostic sub-groups with worsening survival. APE1, NBN, PMS2, MGMT and PTEN also have predictive significance in patients who received chemotherapy and/or radiotherapy. ANN analysis of APE1, NBN, PMS2, MGMT and PTEN revealed interactions with genes involved in transcription, hypoxia and metabolic regulation. At the protein level, low APE1 and low PTEN remain associated with poor prognosis. In conclusion, multiple DNA repair pathways operate to influence biology and clinical outcomes in adult high grade gliomas. PMID:25026297

  1. Ultra-high resolution HLA genotyping and allele discovery by highly multiplexed cDNA amplicon pyrosequencing

    Directory of Open Access Journals (Sweden)

    Lank Simon M

    2012-08-01

    Full Text Available Abstract Background High-resolution HLA genotyping is a critical diagnostic and research assay. Current methods rarely achieve unambiguous high-resolution typing without making population-specific frequency inferences due to a lack of locus coverage and difficulty in exon-phase matching. Achieving high-resolution typing is also becoming more challenging with traditional methods as the database of known HLA alleles increases. Results We designed a cDNA amplicon-based pyrosequencing method to capture 94% of the HLA class I open-reading-frame with only two amplicons per sample, and an analogous method for class II HLA genes, with a primary focus on sequencing the DRB loci. We present a novel Galaxy server-based analysis workflow for determining genotype. During assay validation, we performed two GS Junior sequencing runs to determine the accuracy of the HLA class I amplicons and DRB amplicon at different levels of multiplexing. When 116 amplicons were multiplexed, we unambiguously resolved 99%of class I alleles to four- or six-digit resolution, as well as 100% unambiguous DRB calls. The second experiment, with 271 multiplexed amplicons, missed some alleles, but generated high-resolution, concordant typing for 93% of class I alleles, and 96% for DRB1 alleles. In a third, preliminary experiment we attempted to sequence novel amplicons for other class II loci with mixed success. Conclusions The presented assay is higher-throughput and higher-resolution than existing HLA genotyping methods, and suitable for allele discovery or large cohort sampling. The validated class I and DRB primers successfully generated unambiguously high-resolution genotypes, while further work is needed to validate additional class II genotyping amplicons.

  2. Rapid extraction of genomic DNA from medically important yeasts and filamentous fungi by high-speed cell disruption.

    Science.gov (United States)

    Müller, F M; Werner, K E; Kasai, M; Francesconi, A; Chanock, S J; Walsh, T J

    1998-06-01

    Current methods of DNA extraction from different fungal pathogens are often time-consuming and require the use of toxic chemicals. DNA isolation from some fungal organisms is difficult due to cell walls or capsules that are not readily susceptible to lysis. We therefore investigated a new and rapid DNA isolation method using high-speed cell disruption (HSCD) incorporating chaotropic reagents and lysing matrices in comparison to standard phenol-chloroform (PC) extraction protocols for isolation of DNA from three medically important yeasts (Candida albicans, Cryptococcus neoformans, and Trichosporon beigelii) and two filamentous fungi (Aspergillus fumigatus and Fusarium solani). Additional extractions by HSCD were performed on Saccharomyces cerevisiae, Pseudallescheria boydii, and Rhizopus arrhizus. Two different inocula (10(8) and 10(7) CFU) were compared for optimization of obtained yields. The entire extraction procedure was performed on as many as 12 samples within 1 h compared to 6 h for PC extraction. In comparison to the PC procedure, HSCD DNA extraction demonstrated significantly greater yields for 10(8) CFU of C. albicans, T. beigelii, A. fumigatus, and F. solani (P extraction and PC extraction. For 10(7) CFU of T. beigelii, PC extraction resulted in a greater yield than did HSCD (P fungi than for yeasts by the HSCD extraction procedure (P extraction procedure, differences were not significant. For all eight organisms, the rapid extraction procedure resulted in good yield, integrity, and quality of DNA as demonstrated by restriction fragment length polymorphism, PCR, and random amplified polymorphic DNA. We conclude that mechanical disruption of fungal cells by HSCD is a safe, rapid, and efficient procedure for extracting genomic DNA from medically important yeasts and especially from filamentous fungi.

  3. Effect of Emamectin Benzoate on Root-Knot Nematodes and Tomato Yield.

    Science.gov (United States)

    Cheng, Xingkai; Liu, Xiumei; Wang, Hongyan; Ji, Xiaoxue; Wang, Kaiyun; Wei, Min; Qiao, Kang

    2015-01-01

    Southern root-knot nematode (Meloidogyne incognita) is an obligate, sedentary endoparasite of more than 3000 plant species, that causes heavy economic losses and limit the development of protected agriculture of China. As a biological pesticide, emamectin benzoate has effectively prevented lepidopteran pests; however, its efficacy to control M. incognita remains unknown. The purpose of the present study was to test soil application of emamectin benzoate for management of M. incognita in laboratory, greenhouse and field trials. Laboratory results showed that emamectin benzoate exhibited high toxicity to M. incognita, with LC50 and LC90 values 3.59 and 18.20 mg L(-1), respectively. In greenhouse tests, emamectin benzoate soil application offered good efficacy against M. incognita while maintaining excellent plant growth. In field trials, emamectin benzoate provided control efficacy against M. incognita and resulted in increased tomato yields. Compared with the untreated control, there was a 36.5% to 81.3% yield increase obtained from all treatments and the highest yield was received from the highest rate of emamectin benzoate. The results confirmed that emamectin benzoate has enormous potential for the control of M. incognita in tomato production in China.

  4. Effect of Emamectin Benzoate on Root-Knot Nematodes and Tomato Yield.

    Directory of Open Access Journals (Sweden)

    Xingkai Cheng

    Full Text Available Southern root-knot nematode (Meloidogyne incognita is an obligate, sedentary endoparasite of more than 3000 plant species, that causes heavy economic losses and limit the development of protected agriculture of China. As a biological pesticide, emamectin benzoate has effectively prevented lepidopteran pests; however, its efficacy to control M. incognita remains unknown. The purpose of the present study was to test soil application of emamectin benzoate for management of M. incognita in laboratory, greenhouse and field trials. Laboratory results showed that emamectin benzoate exhibited high toxicity to M. incognita, with LC50 and LC90 values 3.59 and 18.20 mg L(-1, respectively. In greenhouse tests, emamectin benzoate soil application offered good efficacy against M. incognita while maintaining excellent plant growth. In field trials, emamectin benzoate provided control efficacy against M. incognita and resulted in increased tomato yields. Compared with the untreated control, there was a 36.5% to 81.3% yield increase obtained from all treatments and the highest yield was received from the highest rate of emamectin benzoate. The results confirmed that emamectin benzoate has enormous potential for the control of M. incognita in tomato production in China.

  5. Selective automation and skill transfer in medical robotics: a demonstration on surgical knot-tying.

    Science.gov (United States)

    Knoll, Alois; Mayer, Hermann; Staub, Christoph; Bauernschmitt, Robert

    2012-12-01

    Transferring non-trivial human manipulation skills to robot systems is a challenging task. There have been a number of attempts to design research systems for skill transfer, but the level of the complexity of the actual skills transferable to the robot was rather limited, and delicate operations requiring a high dexterity and long action sequences with many sub-operations were impossible to transfer. A novel approach to human-machine skill transfer for multi-arm robot systems is presented. The methodology capitalizes on the metaphor of 'scaffolded learning', which has gained widespread acceptance in psychology. The main idea is to formalize the superior knowledge of a teacher in a certain way to generate support for a trainee. In our case, the scaffolding is constituted by abstract patterns, which facilitate the structuring and segmentation of information during 'learning by demonstration'. The actual skill generalization is then based on simulating fluid dynamics. The approach has been successfully evaluated in the medical domain for the delicate task of automated knot-tying for suturing with standard surgical instruments and a realistic minimally invasive robotic surgery system. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Hyperstretching DNA

    NARCIS (Netherlands)

    Schakenraad, Koen; Biebricher, Andreas S.; Sebregts, Maarten; Ten Bensel, Brian; Peterman, Erwin J.G.; Wuite, Gijs J L; Heller, Iddo; Storm, Cornelis; Van Der Schoot, Paul

    2017-01-01

    The three-dimensional structure of DNA is highly susceptible to changes by mechanical and biochemical cues in vivo and in vitro. In particular, large increases in base pair spacing compared to regular B-DNA are effected by mechanical (over)stretching and by intercalation of compounds that are widely

  7. Intragenomic polymorphisms among high-copy loci: a genus-wide study of nuclear ribosomal DNA in Asclepias (Apocynaceae

    Directory of Open Access Journals (Sweden)

    Kevin Weitemier

    2015-01-01

    Full Text Available Despite knowledge that concerted evolution of high-copy loci is often imperfect, studies that investigate the extent of intragenomic polymorphisms and comparisons across a large number of species are rarely made. We present a bioinformatic pipeline for characterizing polymorphisms within an individual among copies of a high-copy locus. Results are presented for nuclear ribosomal DNA (nrDNA across the milkweed genus, Asclepias. The 18S-26S portion of the nrDNA cistron of Asclepias syriaca served as a reference for assembly of the region from 124 samples representing 90 species of Asclepias. Reads were mapped back to each individual’s consensus and at each position reads differing from the consensus were tallied using a custom perl script. Low frequency polymorphisms existed in all individuals (mean = 5.8%. Most nrDNA positions (91% were polymorphic in at least one individual, with polymorphic sites being less frequent in subunit regions and loops. Highly polymorphic sites existed in each individual, with highest abundance in the “noncoding” ITS regions. Phylogenetic signal was present in the distribution of intragenomic polymorphisms across the genus. Intragenomic polymorphisms in nrDNA are common in Asclepias, being found at higher frequency than any other study to date. The high and variable frequency of polymorphisms across species highlights concerns that phylogenetic applications of nrDNA may be error-prone. The new analytical approach provided here is applicable to other taxa and other high-copy regions characterized by low coverage genome sequencing (genome skimming.

  8. "Nara" knot for suturing of cleft lip in children to make removal easy

    Directory of Open Access Journals (Sweden)

    Obaidullah

    2006-01-01

    Full Text Available Cleft patients usually go through a lifetime of repeated hospital admissions and multiple procedures. Suture removal at a tender age and on a sensitive area like the lip becomes a challenge for the nursing staff. It is also emotionally demanding on the part of the parents. Hence, in most centres these patients are at least sedated if not anaesthetised. We have been using a simple knot and running prolene material so that undoing of the knot becomes easy and suture removal more or less atraumatic. We would like to share our experience with readers through this article. An analysis of 53 cleft lip repairs has shown that this knot is safe and easily removable.

  9. Sensitivity of root-knot nematodes to gamma irradiation, salinity and plant growth regulator, cycocel

    Energy Technology Data Exchange (ETDEWEB)

    Sweelam, M E [Econ. Entomology Dept., Fac. Agric. Menoufia University Shebin El-Kom, (Egypt)

    1995-10-01

    The experiment was carried out at the experimental station of the faculty of agriculture, Menoufia Univ. To determine the sensitivity of root-knot nematode, Meloidogyne Javanica infecting tomato plants exposed to different doses of gamma irradiation 0,20,40,60,80 Gy, salinity levels 0. 1000, 2000, 4000 ppm and the plant growth regulator cycocel 0,200 ppm. Treated seeds were planted clay pots and salinity levels and cycocel concentrations were applied. Fresh weights and nematode populations were computed 3 months after application. Results indicated that 20 Gy, 1000 ppm salinity and cycocel gave the highest fresh weight of shoots and roots. The developmental stages and egg-laying females of nematode decreased by the increasing of irradiation dose and salinity levels. Root-knot galls decreased with 40 and 60 Gy, while significant increase was observed with 0 and 80 Gy, salinity levels decreased root galls. Cycocel decreased nematode population, egg-lying females and root-knot galls.

  10. Sensitivity of root-knot nematodes to gamma irradiation, salinity and plant growth regulator, cycocel

    International Nuclear Information System (INIS)

    Sweelam, M.E.

    1995-01-01

    The experiment was carried out at the experimental station of the faculty of agriculture, Menoufia Univ. To determine the sensitivity of root-knot nematode, Meloidogyne Javanica infecting tomato plants exposed to different doses of gamma irradiation 0,20,40,60,80 Gy, salinity levels 0. 1000, 2000, 4000 ppm and the plant growth regulator cycocel 0,200 ppm. Treated seeds were planted clay pots and salinity levels and cycocel concentrations were applied. Fresh weights and nematode populations were computed 3 months after application. Results indicated that 20 Gy, 1000 ppm salinity and cycocel gave the highest fresh weight of shoots and roots. The developmental stages and egg-laying females of nematode decreased by the increasing of irradiation dose and salinity levels. Root-knot galls decreased with 40 and 60 Gy, while significant increase was observed with 0 and 80 Gy, salinity levels decreased root galls. Cycocel decreased nematode population, egg-lying females and root-knot galls

  11. Short Communication An efficient method for simultaneous extraction of high-quality RNA and DNA from various plant tissues.

    Science.gov (United States)

    Oliveira, R R; Viana, A J C; Reátegui, A C E; Vincentz, M G A

    2015-12-29

    Determination of gene expression is an important tool to study biological processes and relies on the quality of the extracted RNA. Changes in gene expression profiles may be directly related to mutations in regulatory DNA sequences or alterations in DNA cytosine methylation, which is an epigenetic mark. Correlation of gene expression with DNA sequence or epigenetic mark polymorphism is often desirable; for this, a robust protocol to isolate high-quality RNA and DNA simultaneously from the same sample is required. Although commercial kits and protocols are available, they are mainly optimized for animal tissues and, in general, restricted to RNA or DNA extraction, not both. In the present study, we describe an efficient and accessible method to extract both RNA and DNA simultaneously from the same sample of various plant tissues, using small amounts of starting material. The protocol was efficient in the extraction of high-quality nucleic acids from several Arabidopsis thaliana tissues (e.g., leaf, inflorescence stem, flower, fruit, cotyledon, seedlings, root, and embryo) and from other tissues of non-model plants, such as Avicennia schaueriana (Acanthaceae), Theobroma cacao (Malvaceae), Paspalum notatum (Poaceae), and Sorghum bicolor (Poaceae). The obtained nucleic acids were used as templates for downstream analyses, such as mRNA sequencing, quantitative real time-polymerase chain reaction, bisulfite treatment, and others; the results were comparable to those obtained with commercial kits. We believe that this protocol could be applied to a broad range of plant species, help avoid technical and sampling biases, and facilitate several RNA- and DNA-dependent analyses.

  12. High-affinity triplex targeting of double stranded DNA using chemically modified peptide nucleic acid oligomers

    DEFF Research Database (Denmark)

    Hansen, Mads E; Bentin, Thomas; Nielsen, Peter E

    2009-01-01

    While sequence-selective dsDNA targeting by triplex forming oligonucleotides has been studied extensively, only very little is known about the properties of PNA-dsDNA triplexes-mainly due to the competing invasion process. Here we show that when appropriately modified using pseudoisocytosine subs...

  13. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution

    NARCIS (Netherlands)

    Falconer, Ester; Hills, Mark; Naumann, Ulrike; Poon, Steven S. S.; Chavez, Elizabeth A.; Sanders, Ashley D.; Zhao, Yongjun; Hirst, Martin; Lansdorp, Peter M.

    DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it

  14. Extracellular DNA amplicon sequencing reveals high levels of benthic eukaryotic diversity in the central Red Sea

    KAUST Repository

    Pearman, John K.

    2015-11-01

    The present study aims to characterize the benthic eukaryotic biodiversity patterns at a coarse taxonomic level in three areas of the central Red Sea (a lagoon, an offshore area in Thuwal and a shallow coastal area near Jeddah) based on extracellular DNA. High-throughput amplicon sequencing targeting the V9 region of the 18S rRNA gene was undertaken for 32 sediment samples. High levels of alpha-diversity were detected with 16,089 operational taxonomic units (OTUs) being identified. The majority of the OTUs were assigned to Metazoa (29.2%), Alveolata (22.4%) and Stramenopiles (17.8%). Stramenopiles (Diatomea) and Alveolata (Ciliophora) were frequent in a lagoon and in shallower coastal stations, whereas metazoans (Arthropoda: Maxillopoda) were dominant in deeper offshore stations. Only 24.6% of total OTUs were shared among all areas. Beta-diversity was generally lower between the lagoon and Jeddah (nearshore) than between either of those and the offshore area, suggesting a nearshore–offshore biodiversity gradient. The current approach allowed for a broad-range of benthic eukaryotic biodiversity to be analysed with significantly less labour than would be required by other traditional taxonomic approaches. Our findings suggest that next generation sequencing techniques have the potential to provide a fast and standardised screening of benthic biodiversity at large spatial and temporal scales.

  15. Food, feeding, and refuelling of Red Knots during northward migration at San Antonio Oeste, Rio Negro, Argentina

    NARCIS (Netherlands)

    Gonzalez, PM; Piersma, T; Verkuil, Y; González, Patricia M.

    1996-01-01

    We studied the food and feeding ecology of Red Knots Calidris canutus rufa on an area of rocky flat, or restinga, near San Antonio Oeste in the northwest of Golfo San Matias, Provincia de Rio Negro, Argentina in March 1992. These Red Knots are on their way north, from ''wintering'' areas in Tierra

  16. Red Knots (Calidris canutus piersmai and C. c. rogersi) depend on a small threatened staging area in Bohai Bay, China

    NARCIS (Netherlands)

    Rogers, Danny I.; Yang, Hong-Yan; Hassell, Chris J.; Boyle, Adrian N.; Rogers, Ken G.; Chen, Bing; Zhang, Zheng-Wang; Piersma, Theunis

    2010-01-01

    We monitored numbers of Red Knots (Calidris canutus) staging in Bohai Bay, China (39 degrees 02'N, 118 degrees 15'E) on northward migration. Knots were identified to subspecies, and we systematically searched for colour-banded birds from the non-breeding grounds. We modelled migratory turnover, and

  17. Being at the right time at the right place: interpreting the annual life cycle of Afro-Siberian red knots

    NARCIS (Netherlands)

    Leyrer, J.

    2011-01-01

    This thesis describes the possible selection pressures acting on survival and, indirectly, on reproduction of Afro-Siberian red knots Calidris canutus canutus while wintering and migrating. Afro-Siberian red knots are long-distance migrants. They travel between the West African wintering areas and

  18. Characterization of Staphylococcus aureus Primosomal DnaD Protein: Highly Conserved C-Terminal Region Is Crucial for ssDNA and PriA Helicase Binding but Not for DnaA Protein-Binding and Self-Tetramerization.

    Directory of Open Access Journals (Sweden)

    Yen-Hua Huang

    Full Text Available The role of DnaD in the recruitment of replicative helicase has been identified. However, knowledge of the DNA, PriA, and DnaA binding mechanism of this protein for the DnaA- and PriA-directed replication primosome assemblies is limited. We characterized the DNA-binding properties of DnaD from Staphylococcus aureus (SaDnaD and analyzed its interactions with SaPriA and SaDnaA. The gel filtration chromatography analysis of purified SaDnaD and its deletion mutant proteins (SaDnaD1-195, SaDnaD1-200 and SaDnaD1-204 showed a stable tetramer in solution. This finding indicates that the C-terminal region aa 196-228 is not crucial for SaDnaD oligomerization. SaDnaD forms distinct complexes with ssDNA of different lengths. In fluorescence titrations, SaDnaD bound to ssDNA with a binding-site size of approximately 32 nt. A stable complex of SaDnaD1-195, SaDnaD1-200, and SaDnaD1-204 with ssDNA dT40 was undetectable, indicating that the C-terminal region of SaDnaD (particularly aa 205-228 is crucial for ssDNA binding. The SPR results revealed that SaDnaD1-195 can interact with SaDnaA but not with SaPriA, which may indicate that DnaD has different binding sites for PriA and DnaA. Both SaDnaD and SaDnaDY176A mutant proteins, but not SaDnaD1-195, can significantly stimulate the ATPase activity of SaPriA. Hence, the stimulation effect mainly resulted from direct contact within the protein-protein interaction, not via the DNA-protein interaction. Kinetic studies revealed that the SaDnaD-SaPriA interaction increases the Vmax of the SaPriA ATPase fivefold without significantly affecting the Km. These results indicate that the conserved C-terminal region is crucial for ssDNA and PriA helicase binding, but not for DnaA protein-binding and self-tetramerization.

  19. The DNA damage of high doses of X-ray on human peripheral blood nucleated cell's and sperm

    International Nuclear Information System (INIS)

    Wang Hui; Zoulian; Jiang Qisheng; Li Fengsheng; He Rui; Song Xiujun

    2011-01-01

    Objective: To detect the DNA damage of high doses of X-ray on human peripheral blood nucleated cell's and sperm by single cell gel electrophoresis (SCGE). Evaluation the level of DNA damage of human peripheral blood nucleated cell's and sperm after high doses of X-ray. Methods: Using human peripheral blood with normal blood routine and normal sperm,give the dose of 0 Gy, 2 Gy, 4 Gy, 6 Gy, 8 Gy, 10 Gy X-ray radiation with energy of 6MU. Detect the percentage of comet-like tail, tail length and content of DNA in tail of whole blood cell's DNA and sperm's DNA by SCGE technique in 1 hour. Results: The peripheral blood nucleated cell's and sperm's comet rate were 1.00±0.10%, 2.1±1.5%, respectively, have an evidently variance in 0 Gy group (υ=18, t=2.31>1.734, P 1.734, P 1.734, P<0.05). The peripheral blood nucleated cell's and sperm's comet rate were all 100%, 100%, have no-statistical significance in 8 Gy, 10 Gy group. Conclusion: The evidence is powerful enough. That the sperm's SCGE is more sensitive than peripheral blood nucleated cell's SCGE in reflect the X-ray damage in a certain extent (2-6 Gy). (authors)

  20. Whole genome DNA copy number changes identified by high density oligonucleotide arrays

    Directory of Open Access Journals (Sweden)

    Huang Jing

    2004-05-01

    Full Text Available Abstract Changes in DNA copy number are one of the hallmarks of the genetic instability common to most human cancers. Previous micro-array-based methods have been used to identify chromosomal gains and losses; however, they are unable to genotype alleles at the level of single nucleotide polymorphisms (SNPs. Here we describe a novel algorithm that uses a recently developed high-density oligonucleotide array-based SNP genotyping method, whole genome sampling analysis (WGSA, to identify genome-wide chromosomal gains and losses at high resolution. WGSA simultaneously genotypes over 10,000 SNPs by allele-specific hybridisation to perfect match (PM and mismatch (MM probes synthesised on a single array. The copy number algorithm jointly uses PM intensity and discrimination ratios between paired PM and MM intensity values to identify and estimate genetic copy number changes. Values from an experimental sample are compared with SNP-specific distributions derived from a reference set containing over 100 normal individuals to gain statistical power. Genomic regions with statistically significant copy number changes can be identified using both single point analysis and contiguous point analysis of SNP intensities. We identified multiple regions of amplification and deletion using a panel of human breast cancer cell lines. We verified these results using an independent method based on quantitative polymerase chain reaction and found that our approach is both sensitive and specific and can tolerate samples which contain a mixture of both tumour and normal DNA. In addition, by using known allele frequencies from the reference set, statistically significant genomic intervals can be identified containing contiguous stretches of homozygous markers, potentially allowing the detection of regions undergoing loss of heterozygosity (LOH without the need for a matched normal control sample. The coupling of LOH analysis, via SNP genotyping, with copy number

  1. Gaussian quadrature rules for C 1 quintic splines with uniform knot vectors

    KAUST Repository

    Barton, Michael; Ait-Haddou, Rachid; Calo, Victor Manuel

    2017-01-01

    We provide explicit quadrature rules for spaces of C1C1 quintic splines with uniform knot sequences over finite domains. The quadrature nodes and weights are derived via an explicit recursion that avoids numerical solvers. Each rule is optimal, that is, requires the minimal number of nodes, for a given function space. For each of nn subintervals, generically, only two nodes are required which reduces the evaluation cost by 2/32/3 when compared to the classical Gaussian quadrature for polynomials over each knot span. Numerical experiments show fast convergence, as nn grows, to the “two-third” quadrature rule of Hughes et al. (2010) for infinite domains.

  2. Post-breeding migration and connectivity of red knots in the Western Atlantic

    Science.gov (United States)

    Lyons, James E.; Winn, Bradford; Keyes, Timothy; Kalasz, Kevin S.

    2018-01-01

    Red knots (Calidris canutus rufa) have 3 distinct nonbreeding regions: 1 in the southeastern United States and Caribbean, another on the northeast coast of Brazil in the Maranhão region, and a third along the Patagonian coasts of Chile and Argentina. Effective conservation and recovery of this threatened long-distance migrant will require knowledge of population structure, migration ecology, and abundance and distribution throughout the annual cycle. We conducted a stopover population and biogeographic assessment of knots at the Altamaha River Delta, Georgia, an important stopover area in the southeastern United States. We estimated stopover population size and stopover duration during post-breeding migration in 2011 at the Altamaha study area using mark-resight data, and we inferred nonbreeding regions for this stopover population using stable isotope ratios of carbon and nitrogen in feathers, and observations (sightings and captures) during boreal winter from across the hemisphere. With an integrated Bayesian analysis of all these data, we also estimated the number of birds in the southeastern United States and northern Brazil during boreal winter. For mark-resight analyses in Georgia, we made observations of marked individuals during 14 weeks from early August to early November 2011 and detected 814 individually marked birds. We used the Jolly-Seber mark-recapture model and estimated the southbound passage population at approximately 23,400 red knots. In ongoing studies elsewhere, isotope samples were collected from 175 (21%) of the 814 birds detected in our study, and ≥1 sighting or capture record during boreal winter was located in data repositories for 659 birds (81%). Isotopic signatures and boreal winter records indicate that the majority (82–96%) of the birds that stopped at the Altamaha Delta spend the boreal winter in the northern part of the nonbreeding range (southeast USA, Caribbean, and northern Brazil). Knots migrating to the southeastern

  3. Intraurethral knot in a very-low-birth-weight infant: radiological recognition, surgical management and prevention

    International Nuclear Information System (INIS)

    Lodha, Abhay; Ly, Linh; McNamara, Patrick J.; Brindle, Mary; Daneman, Alan

    2005-01-01

    We report a case where a knot developed in a urinary catheter and became lodged within the urethra of a very-low-birth-weight (VLBW) preterm infant. The catheter was removed with the assistance of a urologist. We recommend using caution when placing urinary catheters in VLBW infants and question the appropriateness of feeding tubes as catheters. Recognition on radiographs of malpositioned bladder catheters is vital to the care of these patients. All staff involved in the insertion, maintenance or removal of these catheters should be suitably trained to minimize the risk of knots and related complications. (orig.)

  4. Gaussian quadrature rules for C 1 quintic splines with uniform knot vectors

    KAUST Repository

    Bartoň, Michael

    2017-03-21

    We provide explicit quadrature rules for spaces of C1C1 quintic splines with uniform knot sequences over finite domains. The quadrature nodes and weights are derived via an explicit recursion that avoids numerical solvers. Each rule is optimal, that is, requires the minimal number of nodes, for a given function space. For each of nn subintervals, generically, only two nodes are required which reduces the evaluation cost by 2/32/3 when compared to the classical Gaussian quadrature for polynomials over each knot span. Numerical experiments show fast convergence, as nn grows, to the “two-third” quadrature rule of Hughes et al. (2010) for infinite domains.

  5. DIRECT DETECTION OF THE HELICAL MAGNETIC FIELD GEOMETRY FROM 3D RECONSTRUCTION OF PROMINENCE KNOT TRAJECTORIES

    Energy Technology Data Exchange (ETDEWEB)

    Zapiór, Maciej; Martinez-Gómez, David, E-mail: zapior.maciek@gmail.com [Physics Department, University of the Balearic Islands, Cra. de Valldemossa, km 7.5. Palma (Illes Balears), E-07122 (Spain)

    2016-02-01

    Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1–3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 10{sup 9} A.

  6. Direct Detection of the Helical Magnetic Field Geometry from 3D Reconstruction of Prominence Knot Trajectories

    Science.gov (United States)

    Zapiór, Maciej; Martínez-Gómez, David

    2016-02-01

    Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1-3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 109 A.

  7. Rapid discrimination of Isaria javanica and Isaria poprawskii from Isaria spp. using high resolution DNA melting assays

    Science.gov (United States)

    The current study evaluates the potential of using high resolution DNA melting assays to discriminate species in the genus, Isaria. The study utilizes a previously identified 103 base pair PCR amplicon, which was reported to be selective for Isaria fumosorosea. Our study finds the amplicon selective...

  8. TALE nickase mediates high efficient targeted transgene integration at the human multi-copy ribosomal DNA locus.

    Science.gov (United States)

    Wu, Yong; Gao, Tieli; Wang, Xiaolin; Hu, Youjin; Hu, Xuyun; Hu, Zhiqing; Pang, Jialun; Li, Zhuo; Xue, Jinfeng; Feng, Mai; Wu, Lingqian; Liang, Desheng

    2014-03-28

    Although targeted gene addition could be stimulated strikingly by a DNA double strand break (DSB) created by either zinc finger nucleases (ZFNs) or TALE nucleases (TALENs), the DSBs are really mutagenic and toxic to human cells. As a compromised solution, DNA single-strand break (SSB) or nick has been reported to mediate high efficient gene addition but with marked reduction of random mutagenesis. We previously demonstrated effective targeted gene addition at the human multicopy ribosomal DNA (rDNA) locus, a genomic safe harbor for the transgene with therapeutic potential. To improve the transgene integration efficiency by using TALENs while lowering the cytotoxicity of DSBs, we created both TALENs and TALE nickases (TALENickases) targeting this multicopy locus. A targeting vector which could integrate a GFP cassette at the rDNA locus was constructed and co-transfected with TALENs or TALENickases. Although the fraction of GFP positive cells using TALENs was greater than that using TALENickases during the first few days after transfection, it reduced to a level less than that using TALENickases after continuous culture. Our findings showed that the TALENickases were more effective than their TALEN counterparts at the multi-copy rDNA locus, though earlier studies using ZFNs and ZFNickases targeting the single-copy loci showed the reverse. Besides, TALENickases mediated the targeted integration of a 5.4 kb fragment at a frequency of up to 0.62% in HT1080 cells after drug selection, suggesting their potential application in targeted gene modification not being limited at the rDNA locus. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. An automated quantitative DNA image cytometry system detects abnormal cells in cervical cytology with high sensitivity.

    Science.gov (United States)

    Wong, O G; Ho, M W; Tsun, O K; Ng, A K; Tsui, E Y; Chow, J N; Ip, P P; Cheung, A N

    2018-03-26

    To evaluate the performance of an automated DNA-image-cytometry system as a tool to detect cervical carcinoma. Of 384 liquid-based cervical cytology samples with available biopsy follow-up were analyzed by both the Imager System and a high-risk HPV test (Cobas). The sensitivity and specificity of Imager System for detecting biopsy proven high-grade squamous intraepithelial lesion (HSIL, cervical intraepithelial neoplasia [CIN]2-3) and carcinoma were 89.58% and 56.25%, respectively, compared to 97.22% and 23.33% of HPV test but additional HPV 16/18 genotyping increased the specificity to 69.58%. The sensitivity and specificity of the Imager System for predicting HSIL+ (CIN2-3+) lesions among atypical squamous cells of undetermined significance samples were 80.00% and 70.53%, respectively, compared to 100% and 11.58% of HPV test whilst the HPV 16/18 genotyping increased the specificity to 77.89%. Among atypical squamous cells-cannot exclude HSIL, the sensitivity and specificity of Imager System for predicting HSIL+ (CIN2-3+) lesions upon follow up were 82.86% and 33.33%%, respectively, compared to 97.14% and 4.76% of HPV test and the HPV 16/18 genotyping increased the specificity to 19.05%. Among low-grade squamous intraepithelial lesion cases, the sensitivity and specificity of the Imager System for predicting HSIL+ (CIN2-3+) lesions were 66.67% and 35.71%%, respectively, compared to 66.67% and 29.76% of HPV test while HPV 16/18 genotyping increased the specificity to 79.76%. The overall results of imager and high-risk HPV test agreed in 69.43% (268) of all samples. The automated imager system and HPV 16/18 genotyping can enhance the specificity of detecting HSIL+ (CIN2-3+) lesions. © 2018 John Wiley & Sons Ltd.

  10. Preparation of a Nanoscaled Poly(vinyl alcohol/Hydroxyapatite/DNA Complex Using High Hydrostatic Pressure Technology for In Vitro and In Vivo Gene Delivery

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Kimura

    2011-01-01

    Full Text Available Our previous research showed that poly(vinyl alcohol (PVA nanoparticles incorporating DNA with hydrogen bonds obtained by high hydrostatic pressurization are able to deliver DNA without any significant cytotoxicity. To enhance transfection efficiency of PVA/DNA nanoparticles, we describe a novel method to prepare PVA/DNA nanoparticles encapsulating nanoscaled hydroxyapatites (HAps prepared by high hydrostatic pressurization (980 MPa, which is designed to facilitate endosomal escape induced by dissolving HAps in an endosome. Scanning electron microscopic observation and dynamic light scattering measurement revealed that HAps were significantly encapsulated in PVA/HAp/DNA nanoparticles. The cytotoxicity, cellular uptake, and transgene expression of PVA/HAp/DNA nanoparticles were investigated using COS-7 cells. It was found that, in contrast to PVA/DNA nanoparticles, their internalization and transgene expression increased without cytotoxicity occurring. Furthermore, a similar level of transgene expression between plasmid DNA and PVA/HAp/DNA nanoparticles was achieved using in vivo hydrodynamic injection. Our results show a novel method of preparing PVA/DNA nanoparticles encapsulating HAp nano-crystals by using high hydrostatic pressure technology and the potential use of HAps as an enhancer of the transfection efficiency of PVA/DNA nanoparticles without significant cytotoxicity.

  11. An Improved Method for High Quality Metagenomics DNA Extraction from Human and Environmental Samples

    DEFF Research Database (Denmark)

    Bag, Satyabrata; Saha, Bipasa; Mehta, Ojasvi

    2016-01-01

    and human origin samples. We introduced a combination of physical, chemical and mechanical lysis methods for proper lysis of microbial inhabitants. The community microbial DNA was precipitated by using salt and organic solvent. Both the quality and quantity of isolated DNA was compared with the existing...... methodologies and the supremacy of our method was confirmed. Maximum recovery of genomic DNA in the absence of substantial amount of impurities made the method convenient for nucleic acid extraction. The nucleic acids obtained using this method are suitable for different downstream applications. This improved...

  12. High-throughput sequencing of ancient plant and mammal DNA preserved in herbivore middens

    DEFF Research Database (Denmark)

    Murray, Dáithí C.; Pearson, Stuart G.; Fullagar, Richard

    2012-01-01

    DNA analysis identified unreported plant and animal taxa, some of which are locally extinct or endemic. The survival and preservation of DNA in hot, arid environments is a complex and poorly understood process that is both sporadic and rare, but the survival of DNA through desiccation may be important......The study of arid palaeoenvironments is often frustrated by the poor or non-existent preservation of plant and animal material, yet these environments are of considerable environmental importance. The analysis of pollen and macrofossils isolated from herbivore middens has been an invaluable source...

  13. Interplay between human high mobility group protein 1 and replication protein A on psoralen-cross-linked DNA

    DEFF Research Database (Denmark)

    Reddy, Madhava C; Christensen, Jesper; Vasquez, Karen M

    2005-01-01

    -DNA interstrand cross-link (ICL) to a specific site to determine the effect of HMGB proteins on recognition of these lesions. Our results reveal that human HMGB1 (but not HMGB2) binds with high affinity and specificity to psoralen ICLs, and interacts with the essential NER protein, replication protein A (RPA......), at these lesions. RPA, shown previously to bind tightly to these lesions, also binds in the presence of HMGB1, without displacing HMGB1. A discrete ternary complex is formed, containing HMGB1, RPA, and psoralen-damaged DNA. Thus, HMGB1 has the ability to recognize ICLs, can cooperate with RPA in doing so...

  14. Synthesis of high specific activity tritium-labelled chloroethylcyclohexylnitrosourea and its application to the study of DNA modification

    Energy Technology Data Exchange (ETDEWEB)

    Siew, E.L. (State Univ. of New York, Albany, NY (USA). Dept. of Chemistry); Habraken, Yvette; Ludlum, D.B. (Massachusetts Univ., Worcester, MA (USA). Medical School)

    1991-02-01

    A small-scale synthesis of high specific activity, N-(2-chloro-2-{sup 3}H-ethyl)-N'-cyclohexyl-N-nitrosourea ({sup 3}H-CCNU) has been accomplished from tritium-labelled ethanolamine. The product is pure by TLC and HPLC analysis and has been used successfully to modify DNA. The overall yield on radioactivity including losses in HPLC purification is approximately 4 percent. The availability of this tritium-labelled compound makes studies of DNA repair and of cellular resistance to N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea possible. (author).

  15. Synthesis of high specific activity tritium-labelled chloroethylcyclohexylnitrosourea and its application to the study of DNA modification

    International Nuclear Information System (INIS)

    Siew, E.L.; Habraken, Yvette; Ludlum, D.B.

    1991-01-01

    A small-scale synthesis of high specific activity, N-(2-chloro-2-[ 3 H-ethyl)-N'-cyclohexyl-N-nitrosourea ([ 3 H]-CCNU) has been accomplished from tritium-labelled ethanolamine. The product is pure by TLC and HPLC analysis and has been used successfully to modify DNA. The overall yield on radioactivity including losses in HPLC purification is approximately 4 percent. The availability of this tritium-labelled compound makes studies of DNA repair and of cellular resistance to N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea possible. (author)

  16. Incorporation of gene-specific variability improves expression analysis using high-density DNA microarrays

    Directory of Open Access Journals (Sweden)

    Spitznagel Edward

    2003-11-01

    Full Text Available Abstract Background The assessment of data reproducibility is essential for application of microarray technology to exploration of biological pathways and disease states. Technical variability in data analysis largely depends on signal intensity. Within that context, the reproducibility of individual probe sets has not been hitherto addressed. Results We used an extraordinarily large replicate data set derived from human placental trophoblast to analyze probe-specific contribution to variability of gene expression. We found that signal variability, in addition to being signal-intensity dependant, is probe set-specific. Importantly, we developed a novel method to quantify the contribution of this probe set-specific variability. Furthermore, we devised a formula that incorporates a priori-computed, replicate-based information on probe set- and intensity-specific variability in determination of expression changes even without technical replicates. Conclusion The strategy of incorporating probe set-specific variability is superior to analysis based on arbitrary fold-change thresholds. We recommend its incorporation to any computation of gene expression changes using high-density DNA microarrays. A Java application implementing our T-score is available at http://www.sadovsky.wustl.edu/tscore.html.

  17. Evidence of disrupted high-risk human papillomavirus DNA in morphologically normal cervices of older women.

    Science.gov (United States)

    Leonard, Sarah M; Pereira, Merlin; Roberts, Sally; Cuschieri, Kate; Nuovo, Gerard; Athavale, Ramanand; Young, Lawrence; Ganesan, Raji; Woodman, Ciarán B

    2016-02-15

    High-risk human papillomavirus (HR-HPV) causes nearly 100% of cervical carcinoma. However, it remains unclear whether HPV can establish a latent infection, one which may be responsible for the second peak in incidence of cervical carcinoma seen in older women. Therefore, using Ventana in situ hybridisation (ISH), quantitative PCR assays and biomarkers of productive and transforming viral infection, we set out to provide the first robust estimate of the prevalence and characteristics of HPV genomes in FFPE tissue from the cervices of 99 women undergoing hysterectomy for reasons unrelated to epithelial abnormality. Our ISH assay detected HR-HPV in 42% of our study population. The majority of ISH positive samples also tested HPV16 positive using sensitive PCR based assays and were more likely to have a history of preceding cytological abnormality. Analysis of subsets of this population revealed HR-HPV to be transcriptionally inactive as there was no evidence of a productive or transforming infection. Critically, the E2 gene was always disrupted in those HPV16 positive cases which were assessed. These findings point to a reservoir of transcriptionally silent, disrupted HPV16 DNA in morphologically normal cervices, re-expression of which could explain the increase in incidence of cervical cancer observed in later life.

  18. High-throughput DNA methylation analysis in anorexia nervosa confirms TNXB hypermethylation.

    Science.gov (United States)

    Kesselmeier, Miriam; Pütter, Carolin; Volckmar, Anna-Lena; Baurecht, Hansjörg; Grallert, Harald; Illig, Thomas; Ismail, Khadeeja; Ollikainen, Miina; Silén, Yasmina; Keski-Rahkonen, Anna; Bulik, Cynthia M; Collier, David A; Zeggini, Eleftheria; Hebebrand, Johannes; Scherag, André; Hinney, Anke

    2018-04-01

    Patients with anorexia nervosa (AN) are ideally suited to identify differentially methylated genes in response to starvation. We examined high-throughput DNA methylation derived from whole blood of 47 females with AN, 47 lean females without AN and 100 population-based females to compare AN with both controls. To account for different cell type compositions, we applied two reference-free methods (FastLMM-EWASher, RefFreeEWAS) and searched for consensus CpG sites identified by both methods. We used a validation sample of five monozygotic AN-discordant twin pairs. Fifty-one consensus sites were identified in AN vs. lean and 81 in AN vs. population-based comparisons. These sites have not been reported in AN methylation analyses, but for the latter comparison 54/81 sites showed directionally consistent differential methylation effects in the AN-discordant twins. For a single nucleotide polymorphism rs923768 in CSGALNACT1 a nearby site was nominally associated with AN. At the gene level, we confirmed hypermethylated sites at TNXB. We found support for a locus at NR1H3 in the AN vs. lean control comparison, but the methylation direction was opposite to the one previously reported. We confirm genes like TNXB previously described to comprise differentially methylated sites, and highlight further sites that might be specifically involved in AN starvation processes.

  19. High-resolution AFM structure of DNA G-wires in aqueous solution.

    Science.gov (United States)

    Bose, Krishnashish; Lech, Christopher J; Heddi, Brahim; Phan, Anh Tuân

    2018-05-17

    We investigate the self-assembly of short pieces of the Tetrahymena telomeric DNA sequence d[G 4 T 2 G 4 ] in physiologically relevant aqueous solution using atomic force microscopy (AFM). Wire-like structures (G-wires) of 3.0 nm height with well-defined surface periodic features were observed. Analysis of high-resolution AFM images allowed their classification based on the periodicity of these features. A major species is identified with periodic features of 4.3 nm displaying left-handed ridges or zigzag features on the molecular surface. A minor species shows primarily left-handed periodic features of 2.2 nm. In addition to 4.3 and 2.2 nm ridges, background features with periodicity of 0.9 nm are also observed. Using molecular modeling and simulation, we identify a molecular structure that can explain both the periodicity and handedness of the major G-wire species. Our results demonstrate the potential structural diversity of G-wire formation and provide valuable insight into the structure of higher-order intermolecular G-quadruplexes. Our results also demonstrate how AFM can be combined with simulation to gain insight into biomolecular structure.

  20. DNA-A of a highly pathogenic Indian cassava mosaic virus isolated from Jatropha curcas causes symptoms in Nicotiana benthamiana.

    Science.gov (United States)

    Wang, Gang; Sun, Yanwei; Xu, Ruirui; Qu, Jing; Tee, Chuansia; Jiang, Xiyuan; Ye, Jian

    2014-04-01

    Jatropha curcas mosaic disease (JcMD) is a newly emerging disease that has been reported in Africa and India. Here, we report the complete nucleotide sequence of a new Indian cassava mosaic virus isolate (ICMV-SG) from Singapore. Infection of ICMV-SG showed more severe JcMD in Jatropha curcas and Nicotiana benthamiana than the other ICMV isolates reported previously, though ICMV-SG shares high sequence identity with the other ICMV isolates. Agroinfectious DNA-A alone sufficiently induced systemic symptoms in N. benthamiana, but not in J. curcas. Results from agroinfection assays showed that systemic infection of ICMV-SG in J. curcas required both DNA-A and DNA-B components.