WorldWideScience

Sample records for highly invasive vegetation

  1. Impact of Prosopis (mesquite) invasion and clearing on vegetation ...

    African Journals Online (AJOL)

    We evaluated the impact of Prosopis invasion and clearing on vegetation species composition and diversity (alien and indigenous species richness and cover) in Nama-Karoo rangeland on two sheep farms in the Beaufort ... Keywords: invasive plants – exotic, Nama-Karoo, plant community ecology, rehabilitation, semi-arid ...

  2. Effects of Lantana camara (L.) invasion on the native vegetation of ...

    African Journals Online (AJOL)

    ... camara (L.) invasion on the native vegetation of Gonarezhou National Park, Zimbabwe. ... A total of 41 native woody species and 2 native herbaceous species were ... Keywords : Alien plants, Biodiversity, Invasive plants, Lantana camara, ...

  3. Alien plant invasion in mixed-grass prairie: Effects of vegetation type and anthropogenic disturbance

    Science.gov (United States)

    Larson, D.L.; Anderson, P.J.; Newton, W.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  4. Water dispersal of vegetative bulbils of the invasive exotic Dioscorea oppositifolia L. in southern Illinois

    Science.gov (United States)

    Thomas, J.R.; Gibson, D.J.; Middleton, B.A.

    2005-01-01

    Riparian corridors promote dispersal of several species of exotic invasives worldwide. Dispersal plays a role in the colonization of exotic invasive species into new areas and this study was conducted to determine if the invasiveness of Dioscorea oppositifolia L. (Chinese yam) is facilitated by secondary dispersal of vegetative diaspores (bulbils) by water. Since seed production of this plant has not been observed in the United States, bulbils represent the only means of dispersal to new habitats. Dispersal was monitored by placing aquatic traps, tethered bulbils, and painted bulbil caches in a tributary of Drury Creek, Giant City State Park, Illinois. Results indicate that high-energy flow in the creek accelerated secondary dispersal of bulbils downstream and onto the floodplain. The longest recorded dispersal distance was 206.2 m downstream. Dispersal distance of tethered bulbils was not related to rainfall or flow velocity in the creek; however the total number of bulbils trapped was positively related to flow velocity. We conclude that secondary dispersal by water in streams can facilitate dispersal of vegetative bulbils of this exotic species.

  5. Invasive Alien Species of Terrestrial Vegetation of North-Eastern Uttar Pradesh

    Directory of Open Access Journals (Sweden)

    Sumit Srivastava

    2014-01-01

    Full Text Available The vegetational landscape of north-eastern Terai region at the foot hills of Central Himalayas is a mosaic of grassland, old-field, wasteland, and forest ecosystems. Like many other parts of the country, this region is also infested with alien intruders which not only interfere with the growth and production of food crops but also exercise adverse effects on the biodiversity of native species. The present study attempts to catalogue the invasive alien species of the terrestrial vegetation of north-eastern Uttar Pradesh especially with reference to their habit, taxonomic position, and nativity. A total of 1135 plant species within 580 genera under 119 families are so far known to occur in the region. Of these, only 149 species within 100 genera under 41 families have been found to be invasive aliens as evident from their center of origin, past history, nature of aggregation, and invasion observed under field conditions. About 80% of these invaders have been introduced from neotropics. Out of 173 invasive plants across India, this region shares 149 species, out of which 66% of species have come from Tropical America, 14% from African continent, and the rest from other countries. A better planning in the form of early identification and reporting of infestation and spread of noxious weeds is needed for their control.

  6. An invasive plant alters phenotypic selection on the vegetative growth of a native congener.

    Science.gov (United States)

    Beans, Carolyn M; Roach, Deborah A

    2015-02-01

    The ecological consequences of plant competition have frequently been tested, but the evolutionary outcomes of these interactions have gone largely unexplored. The study of species invasions can make an important contribution to this field of research by allowing us to watch ecological and evolutionary processes unfold as a novel species is integrated into a plant community. We explored the ecological and evolutionary impact of an invasive jewelweed, Impatiens glandulifera, on a closely related native congener, I. capensis and asked: (1) Does the presence of the invasive jewelweed alter the fitness of native jewelweed populations? (2) Does the invasive jewelweed affect the vegetative growth of the native congener? and (3) Does the invasive jewelweed alter phenotypic selection on the vegetative traits of the native congener? We used a greenhouse competition experiment, an invasive species removal field experiment, and a survey of natural populations. We show that when the invasive jewelweed is present, phenotypic selection favors native jewelweed individuals investing less in rapid upward growth and more in branching and fruiting potential through the production of nodes. This research demonstrates that invasive plants have the potential to greatly alter natural selection on native competitors. Studies investigating altered selection in invaded communities can reveal the potential evolutionary impact of invasive competitors, while deepening our understanding of the more general role of competition in driving plant evolution and permitting species coexistence. © 2015 Botanical Society of America, Inc.

  7. UAVs and Machine Learning Revolutionising Invasive Grass and Vegetation Surveys in Remote Arid Lands

    Directory of Open Access Journals (Sweden)

    Juan Sandino

    2018-02-01

    Full Text Available The monitoring of invasive grasses and vegetation in remote areas is challenging, costly, and on the ground sometimes dangerous. Satellite and manned aircraft surveys can assist but their use may be limited due to the ground sampling resolution or cloud cover. Straightforward and accurate surveillance methods are needed to quantify rates of grass invasion, offer appropriate vegetation tracking reports, and apply optimal control methods. This paper presents a pipeline process to detect and generate a pixel-wise segmentation of invasive grasses, using buffel grass (Cenchrus ciliaris and spinifex (Triodia sp. as examples. The process integrates unmanned aerial vehicles (UAVs also commonly known as drones, high-resolution red, green, blue colour model (RGB cameras, and a data processing approach based on machine learning algorithms. The methods are illustrated with data acquired in Cape Range National Park, Western Australia (WA, Australia, orthorectified in Agisoft Photoscan Pro, and processed in Python programming language, scikit-learn, and eXtreme Gradient Boosting (XGBoost libraries. In total, 342,626 samples were extracted from the obtained data set and labelled into six classes. Segmentation results provided an individual detection rate of 97% for buffel grass and 96% for spinifex, with a global multiclass pixel-wise detection rate of 97%. Obtained results were robust against illumination changes, object rotation, occlusion, background cluttering, and floral density variation.

  8. Alien plant invasion in mixed-grass prairie: effects of vegetation type, stochiasticity, and anthropogenic disturbance in two park units

    Science.gov (United States)

    Larson, Diane L.; Anderson, Patrick J.; Newton, Wesley E.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  9. [The vegetation adventivisation through perspective of modern ecological ideas].

    Science.gov (United States)

    Mirkin, B M; Naumova, L G

    2002-01-01

    Results of study of vegetation adventivisation (increase in proportion of invasive species) correspond to the theory of present ecology that denies general universal laws. Diverse features of invasive species play different role under various ecological conditions and at various time and space scale. The invasibility of communities under various conditions is determined by combination of different biotic and abiotic factors though it is obvious that most of invasive species are characterized with the high seed production, well developed vegetative propagation, windblown pollination, high plasticity and effective use of resources, low consumption by herbivores. The definition of an "ideal invasive species" or an "ideal invasible community" is impossible. The regularities of vegetation adventivisation can be observed clearly only at very large scale.

  10. Invasive Impatiens parviflora has negative impact on native vegetation in oak-hornbeam forests

    Czech Academy of Sciences Publication Activity Database

    Florianová, Anna; Münzbergová, Zuzana

    2017-01-01

    Roč. 226, Jan 2017 (2017), s. 10-16 ISSN 0367-2530 Institutional support: RVO:67985939 Keywords : small balsam * impact of invasive plant on vegetation * removal experiment Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 1.125, year: 2016

  11. Enhancing Pre- and Post-Wildfire Vegetation Recovery and Understanding Feedbacks of Cheatgrass invasion Using NASA Earth Observations

    Science.gov (United States)

    Olsen, N.; Counts, A.; Quistorff, C.; Ohr, C. A.; Toner, C.

    2017-12-01

    Increasing wildfire frequency and severity has emphasized the importance of post-wildfire recovery efforts in southern Idaho's sagebrush ecosystems. These changing fire regimes favor invasive grass species while hindering native sagebrush habitat regeneration, causing a positive feedback cycle of invasive growth - wildfires - invasive growth. Due to this undesirable process and anthropogenic influences, the sagebrush ecosystem is one of the most endangered in the US. In this project the NASA DEVELOP group of Pocatello, Idaho partnered with the Bureau of Land Management, Idaho Department of Fish and Game, and the US Department of Agriculture to characterize ecosystem recovery following the Crystal (2006), Henry Creek (2016), Jefferson (2010), and Soda (2015) wildfires. Determining vegetation cover heterogeneity and density can be time consuming and the factors affecting ecosystem recovery can be complex. In addition, restoration success is difficult to determine as vegetation composition is not often known prior to wildfire events and monitoring vegetation composition after restoration efforts can be resource intensive. These wildfires temporal monitoring consisted of 2001 to 2017 using NASA Earth observations such as Landsat 5 Thermal Mapper (TM), Landsat 8 Operational Land Imager (OLI), Terra Moderate Resolution Imaging Spectroradiometer (MODIS), and Shuttle Radar Topography Mission (SRTM) to determine the most significant factors of wildfire recovery and the influence targeted grazing could have for recovery. In addition, this project will include monitoring of invasive species propagation and whether spatial patterns or extents of the wildfire contribute to propagation. Understanding the key variables that made reseeding and natural recovery work in some areas, assessing why they failed in others, and identifying factors that made non-native propagation ideal are important issues for land managers in this region.

  12. Post-fire Downy Brome (Bromus tectorum) invasion at high elevation in Wyoming

    Science.gov (United States)

    The invasive annual grass downy brome is the most ubiquitous weed in sagebrush systems of western North America. The center of invasion has largely been the Great Basin region, but there is an increasing abundance and distribution in the Rocky Mountain States. We evaluated post-fire vegetation chang...

  13. Butterfly Assemblages Associated with Invasive Tamarisk (Tamarix spp.) Sites: Comparisons with Tamarisk Control and Native Vegetation Reference Sites

    OpenAIRE

    S. Mark Nelson; Rick Wydoski

    2013-01-01

    We studied butterfly assemblages at six types of riparian landscapes in five different watersheds in the southwestern United States (n=34 sites). Sites included exotic-invasive Tamarix ramosissima (tamarisk) dominated sites; sites where tamarisk was controlled, but not actively revegetated; sites revegetated with upland plants; sites where control was followed with riparian plant revegetation; native riparian vegetation sites; and sites that were a mixture of native and tamarisk vegetations. ...

  14. Spatial and temporal relationships between the invasive snail Bithynia tentaculata and submersed aquatic vegetation in Pool 8 of the Upper Mississippi River

    Science.gov (United States)

    Weeks, Alicia M.; DeJager, Nathan R.; Haro, Roger J.; Sandland, Greg J.

    2017-01-01

    Bithynia tentaculata is an invasive snail that was first reported in Lake Michigan in 1871 and has since spread throughout a number of freshwater systems of the USA. This invasion has been extremely problematic in the Upper Mississippi River as the snails serve as intermediate hosts for several trematode parasites that have been associated with waterfowl mortality in the region. This study was designed to assess the abundance and distribution of B. tentaculata relative to submersed aquatic vegetation as macrophytes provide important nesting and food resources for migrating waterfowl. Temporal changes in both vegetation and snail densities were compared between 2007 and 2015. Between these years, B. tentaculata densities have nearly quadrupled despite minor changes in vegetation abundance, distribution and composition. Understanding the spatial distribution of B. tentaculata in relation to other habitat features, including submersed vegetation, and quantifying any further changes in the abundance and distribution of B. tentaculata over time will be important for better identifying areas of risk for disease transmission to waterfowl.

  15. Estimating Invasion Success by Non-Native Trees in a National Park Combining WorldView-2 Very High Resolution Satellite Data and Species Distribution Models

    Directory of Open Access Journals (Sweden)

    Antonio T. Monteiro

    2017-01-01

    Full Text Available Invasion by non-native tree species is an environmental and societal challenge requiring predictive tools to assess invasion dynamics. The frequent scale mismatch between such tools and on-ground conservation is currently limiting invasion management. This study aimed to reduce these scale mismatches, assess the success of non-native tree invasion and determine the environmental factors associated to it. A hierarchical scaling approach combining species distribution models (SDMs and satellite mapping at very high resolution (VHR was developed to assess invasion by Acacia dealbata in Peneda-Gerês National Park, the only national park in Portugal. SDMs were first used to predict the climatically suitable areas for A. dealdata and satellite mapping with the random-forests classifier was then applied to WorldView-2 very-high resolution imagery to determine whether A. dealdata had actually colonized the predicted areas (invasion success. Environmental attributes (topographic, disturbance and canopy-related differing between invaded and non-invaded vegetated areas were then analyzed. The SDM results indicated that most (67% of the study area was climatically suitable for A. dealbata invasion. The onset of invasion was documented to 1905 and satellite mapping highlighted that 12.6% of study area was colonized. However, this species had only colonized 62.5% of the maximum potential range, although was registered within 55.6% of grid cells that were considerable unsuitable. Across these areas, the specific success rate of invasion was mostly below 40%, indicating that A. dealbata invasion was not dominant and effective management may still be possible. Environmental attributes related to topography (slope, canopy (normalized difference vegetation index (ndvi, land surface albedo and disturbance (historical burnt area differed between invaded and non-invaded vegetated area, suggesting that landscape attributes may alter at specific locations with Acacia

  16. Do invasive alien plants really threaten river bank vegetation? A case study based on plant communities typical for Chenopodium ficifolium—An indicator of large river valleys

    Science.gov (United States)

    Nowak, Arkadiusz; Rola, Kaja

    2018-01-01

    Riparian zones are very rich in species but subjected to strong anthropogenic changes and extremely prone to alien plant invasions, which are considered to be a serious threat to biodiversity. Our aim was to determine the spatial distribution of Chenopodium ficifolium, a species demonstrating strong confinement to large river valleys in Central Europe and an indicator of annual pioneer nitrophilous vegetation developing on river banks, which are considered to be of importance to the European Community. Additionally, the habitat preferences of the species were analysed. Differences in the richness and abundance of species diagnostic for riverside habitats, as well as the contribution of resident and invasive alien species in vegetation plots along three rivers differing in terms of size and anthropogenic impact were also examined. Finally, the effect of invaders on the phytocoenoses typical for C. ficifolium was assessed. The frequency of C. ficifolium clearly decreased with an increasing distance from the river. Among natural habitats, the species mostly preferred the banks of large rivers. The vegetation plots developing on the banks of the three studied rivers differed in total species richness, the number and cover of resident, diagnostic and invasive alien species, as well as in species composition. Our research indicates that abiotic and anthropogenic factors are the most significant drivers of species richness and plant cover of riverbank vegetation, and invasive alien plants affect this type of vegetation to a small extent. PMID:29543919

  17. Do invasive alien plants really threaten river bank vegetation? A case study based on plant communities typical for Chenopodium ficifolium-An indicator of large river valleys.

    Science.gov (United States)

    Nobis, Agnieszka; Nowak, Arkadiusz; Rola, Kaja

    2018-01-01

    Riparian zones are very rich in species but subjected to strong anthropogenic changes and extremely prone to alien plant invasions, which are considered to be a serious threat to biodiversity. Our aim was to determine the spatial distribution of Chenopodium ficifolium, a species demonstrating strong confinement to large river valleys in Central Europe and an indicator of annual pioneer nitrophilous vegetation developing on river banks, which are considered to be of importance to the European Community. Additionally, the habitat preferences of the species were analysed. Differences in the richness and abundance of species diagnostic for riverside habitats, as well as the contribution of resident and invasive alien species in vegetation plots along three rivers differing in terms of size and anthropogenic impact were also examined. Finally, the effect of invaders on the phytocoenoses typical for C. ficifolium was assessed. The frequency of C. ficifolium clearly decreased with an increasing distance from the river. Among natural habitats, the species mostly preferred the banks of large rivers. The vegetation plots developing on the banks of the three studied rivers differed in total species richness, the number and cover of resident, diagnostic and invasive alien species, as well as in species composition. Our research indicates that abiotic and anthropogenic factors are the most significant drivers of species richness and plant cover of riverbank vegetation, and invasive alien plants affect this type of vegetation to a small extent.

  18. Mapping of invasive Acacia species in Brazilian Mussununga ecosystems using high- resolution IR remote sensing data acquired with an autonomous Unmanned Aerial System (UAS)

    Science.gov (United States)

    Lehmann, Jan Rudolf Karl; Zvara, Ondrej; Prinz, Torsten

    2015-04-01

    The biological invasion of Australian Acacia species in natural ecosystems outside Australia has often a negative impact on native and endemic plant species and the related biodiversity. In Brazil, the Atlantic rainforest of Bahia and Espirito Santo forms an associated type of ecosystem, the Mussununga. In our days this biologically diverse ecosystem is negatively affected by the invasion of Acacia mangium and Acacia auriculiformis, both introduced to Brazil by the agroforestry to increase the production of pulp and high grade woods. In order to detect the distribution of Acacia species and to monitor the expansion of this invasion the use of high-resolution imagery data acquired with an autonomous Unmanned Aerial System (UAS) proved to be a very promising approach. In this study, two types of datasets - CIR and RGB - were collected since both types provide different information. In case of CIR imagery attention was paid on spectral signatures related to plants, whereas in case of RGB imagery the focus was on surface characteristics. Orthophoto-mosaics and DSM/DTM for both dataset were extracted. RGB/IHS transformations of the imagery's colour space were utilized, as well as NDVIblue index in case of CIR imagery to discriminate plant associations. Next, two test areas were defined in order validate OBIA rule sets using eCognition software. In case of RGB dataset, a rule set based on elevation distinction between high vegetation (including Acacia) and low vegetation (including soils) was developed. High vegetation was classified using Nearest Neighbour algorithm while working with the CIR dataset. The IHS information was used to mask shadows, soils and low vegetation. Further Nearest Neighbour classification was used for distinction between Acacia and other high vegetation types. Finally an accuracy assessment was performed using a confusion matrix. One can state that the IHS information appeared to be helpful in Acacia detection while the surface elevation

  19. Monitoring Invasive Aquatic Vegetation in Lake Okeechobee, Florida, Using NDVI Derived from Modis Data

    Science.gov (United States)

    Woods, Kate; Brozen, Madeline; Malik, Sadaf; Maki, Angela

    2009-01-01

    Lake Okeechobee, located in southern Florida, encompasses approximately 1,700 sq km and is a vital part of the Lake Okeechobee and Everglades ecosystem. Major cyanobacterial blooms have been documented in Lake Okeechobee since the 1970s and have continued to plague the ecosystem. Similarly, hydrilla, water hyacinth, and water lettuce have been documented in the lake and continue to threaten the ecosystem by their rapid growth. This study examines invasive aquatic vegetation occurrence through the use of the Normalized Difference Vegetation Index (NDVI) calculated on MOD09 surface reflectance imagery. Occurrence during 2008 was analyzed using the Time Series Product Tool (TSPT), a MATLAB-based program developed at John C. Stennis Space Center. This project tracked spatial and temporal variability of cyanobacterial blooms, and overgrowth of water lettuce, water hyacinth, and hydrilla. In addition, this study presents an application of Moderate Resolution Imaging Spectroradiometer (MODIS) data to assist in water quality management.

  20. Effects of high fire frequency in creosote bush scrub vegetation of the Mojave Desert

    Science.gov (United States)

    Brooks, M.L.

    2012-01-01

    Plant invasions can increase fire frequency in desert ecosystems where fires were historically infrequent. Although there are many resource management concerns associated with high frequency fire in deserts, fundamental effects on plant community characteristics remain largely unstudied. Here I describe the effects of fire frequency on creosote bush scrub vegetation in the Mojave Desert, USA. Biomass of the invasive annual grass Bromus rubens L. increased following fire, but did not increase further with additional fires. In contrast, density, cover and species richness of native perennial plants each decreased following fire and continued to decrease with subsequent fires, although not as dramatically as after the initial fire. Responses were similar 5 and 14 years post-fire, except that cover of Hymenoclea salsola Torr. & A. Gray and Achnatherum speciosa Trin. & Rupr. both increased in areas burnt once. These results suggest that control of B. rubens may be equally warranted after one, two or three fires, but revegetation of native perennial plants is most warranted following multiple fires. These results are valid within the scope of this study, which is defined as relatively short term vegetation responses (???14 years) to short fire return intervals (6.3 and 7.3 years for the two and three fire frequency levels) within creosote bush scrub of the Mojave Desert. ?? 2012 IAWF.

  1. Propagule pressure, habitat conditions and clonal integration influence the establishment and growth of an invasive clonal plant, Alternanthera philoxeroides

    Directory of Open Access Journals (Sweden)

    Wen-Hua eYou

    2016-05-01

    Full Text Available Many notorious invasive plants are clonal, spreading mainly by vegetative propagules. Propagule pressure (the number of propagules may affect the establishment, growth and thus invasion success of these clonal plants, and such effects may also depend on habitat conditions. To understand how propagule pressure, habitat conditions and clonal integration affect the establishment and growth of the invasive clonal plants, an 8-week greenhouse with an invasive clonal plant, Alternanthera philoxeroides was conducted. High (five fragments or low (one fragment propagule pressure was established either in bare soil (open habitat or dense native vegetation of Jussiaea repens (vegetative habitat, with the stolon connections either severed from or connected to the relatively older ramets. High propagule pressure greatly increased the establishment and growth of A. philoxeroides, especially when it grew in vegetative habitats. Surprisingly, high propagule pressure significantly reduced the growth of individual plants of A. philoxeroides in open habitats, whereas it did not affect the individual growth in vegetative habitats. A shift in the intraspecific interaction on A. philoxeroides from competition in open habitats to facilitation in vegetative habitats may be the main reason. Moreover, clonal integration significantly improved the growth of A. philoxeroides only in open habitats, especially with low propagule pressure, whereas it had no effects on the growth and competitive ability of A. philoxeroides in vegetative habitats, suggesting that clonal integration may be of most important for A. philoxeroides to explore new open space and spread. These findings suggest that propagule pressure may be crucial for the invasion success of A. philoxeroides, and such an effect also depends on habitat conditions.

  2. Modeling invasive alien plant species in river systems: Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    Science.gov (United States)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G. W.; Egger, G.; Leuven, R. S. E. W.; Middelkoop, H.

    2017-08-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding interactions of invasive and native species and their combined effects on river dynamics is essential for developing cost-effective management strategies. However, numerical models for simulating long-term effects of these processes are lacking. This paper investigates how an invasive alien plant species affects native riparian vegetation and hydro-morphodynamics. A morphodynamic model has been coupled to a dynamic vegetation model that predicts establishment, growth and mortality of riparian trees. We introduced an invasive alien species with life-history traits based on Japanese Knotweed (Fallopia japonica), and investigated effects of low- and high propagule pressure on invasion speed, native vegetation and hydro-morphodynamic processes. Results show that high propagule pressure leads to a decline in native species cover due to competition and the creation of unfavorable native colonization sites. With low propagule pressure the invader facilitates native seedling survival by creating favorable hydro-morphodynamic conditions at colonization sites. With high invader abundance, water levels are raised and sediment transport is reduced during the growing season. In winter, when the above-ground invader biomass is gone, results are reversed and the floodplain is more prone to erosion. Invasion effects thus depend on seasonal above- and below ground dynamic vegetation properties and persistence of the invader, on the characteristics of native species it replaces, and the combined interactions with hydro-morphodynamics.

  3. Negative effect of litter of invasive weed Lantana camara on structure and composition of vegetation in the lower Siwalik Hills, northern India.

    Science.gov (United States)

    Singh, Harminder Pal; Batish, Daizy R; Dogra, Kuldip Singh; Kaur, Shalinder; Kohli, Ravinder Kumar; Negi, Anjana

    2014-06-01

    Lantana camara, an aromatic shrub, native to tropical America, was introduced into India for ornamental hedging, but later escaped and became a serious invasive weed. This study assessed the quantitative and qualitative status of plant community richness and diversity in areas invaded by L. camara in the Siwalik Hills (Himachal Pradesh, India), and explored allelopathy as a possible mechanism of interference. We measured species diversity, richness and evenness of the vegetation in areas invaded and uninvaded by L. camara. Allelopathic effects of L. camara rhizosphere soil and litter were assessed against two native plants-Achyranthes aspera (a herb) and Albizia lebbeck (a tree). Density, biomass and indices of diversity, richness and evenness were reduced by L. camara, indicating a significant alteration in composition and structure of native communities. Seedling growth of the test species was reduced in L. camara rhizosphere- and litter-amended soil. The inhibitory effect was ameliorated by the addition of activated charcoal, indicating the presence of organic inhibitors (quantified as phenolics) in the soil. Lantana invasion greatly reduces the density and diversity of the vegetation in the invaded area, and chemical interference of its litter plays an important role in invasion.

  4. Skin and plasma carotenoid response to a provided intervention diet high in vegetables and fruit: uptake and depletion kinetics

    Science.gov (United States)

    Background: Objective biomarkers are needed to assess adherence to vegetable and fruit intervention trials. Blood carotenoids are considered the best biomarker of vegetable and fruit intake but collecting blood is invasive and the analyses are relatively expensive for population studies. Resonance ...

  5. Vegetation response to invasive Tamarix control in southwestern U.S. rivers: a collaborative study including 416 sites.

    Science.gov (United States)

    González, Eduardo; Sher, Anna A; Anderson, Robert M; Bay, Robin F; Bean, Daniel W; Bissonnete, Gabriel J; Bourgeois, Bérenger; Cooper, David J; Dohrenwend, Kara; Eichhorst, Kim D; El Waer, Hisham; Kennard, Deborah K; Harms-Weissinger, Rebecca; Henry, Annie L; Makarick, Lori J; Ostoja, Steven M; Reynolds, Lindsay V; Robinson, W Wright; Shafroth, Patrick B

    2017-09-01

    Most studies assessing vegetation response following control of invasive Tamarix trees along southwestern U.S. rivers have been small in scale (e.g., river reach), or at a regional scale but with poor spatial-temporal replication, and most have not included testing the effects of a now widely used biological control. We monitored plant composition following Tamarix control along hydrologic, soil, and climatic gradients in 244 treated and 172 reference sites across six U.S. states. This represents the largest comprehensive assessment to date on the vegetation response to the four most common Tamarix control treatments. Biocontrol by a defoliating beetle (treatment 1) reduced the abundance of Tamarix less than active removal by mechanically using hand and chain-saws (2), heavy machinery (3) or burning (4). Tamarix abundance also decreased with lower temperatures, higher precipitation, and follow-up treatments for Tamarix resprouting. Native cover generally increased over time in active Tamarix removal sites, however, the increases observed were small and was not consistently increased by active revegetation. Overall, native cover was correlated to permanent stream flow, lower grazing pressure, lower soil salinity and temperatures, and higher precipitation. Species diversity also increased where Tamarix was removed. However, Tamarix treatments, especially those generating the highest disturbance (burning and heavy machinery), also often promoted secondary invasions of exotic forbs. The abundance of hydrophytic species was much lower in treated than in reference sites, suggesting that management of southwestern U.S. rivers has focused too much on weed control, overlooking restoration of fluvial processes that provide habitat for hydrophytic and floodplain vegetation. These results can help inform future management of Tamarix-infested rivers to restore hydrogeomorphic processes, increase native biodiversity and reduce abundance of noxious species. © 2017 by the

  6. Effects of nutrients on interaction between the invasive bidens pilosa the parasitic cusuta australis

    International Nuclear Information System (INIS)

    Yang, B.; Li, J.; Yan, M.

    2015-01-01

    Parasitic plants have been identified as potential biological agents to control invasive plants. Understanding the interaction between invasive plants and their novel natural enemies is important for understanding mechanisms underlying plant invasion success and thus taking measures to control invasion. We conducted a factorial experiment to test the interactive effects of nutrient addition (low vs. high) and parasitism (with vs. without Cuscuta australis) on the growth of the invasive Bidens pilosa. Parasitism significantly decreased leaf, stem and root biomass of the host invasive plant, and nutrient addition increased leaf and stem biomass of the host. A synergistic effect of parasitism and nutrient addition was found on stem and leaf biomass of the hosts. Nutrient addition significantly increased vegetative biomass of the parasitic plant and caused a more deleterious effect on the invasive host. Reproductive biomass of the parasitic plant was significantly positively related with net photosynthetic rate, light-utilisation efficiency and apparent carboxylation efficiency. Vegetative biomass and total biomass of the parasitic plants were significantly positively related with specific leaf area and the relative chlorophyll content of the host plant. The deleterious effect of the parasite on the growth of the host plant was significantly positively correlated with vegetative biomass of the parasitic plant. Nutrient addition increased the negative effect of the parasitic plant on the invasive host, indicating that the parasitic plant is potentially a biological control agent for the invasive plant even in the context of changing global resources. (author)

  7. Worldwide Alien Invasion: A Methodological Approach to Forecast the Potential Spread of a Highly Invasive Pollinator.

    Directory of Open Access Journals (Sweden)

    André L Acosta

    Full Text Available The ecological impacts of alien species invasion are a major threat to global biodiversity. The increasing number of invasion events by alien species and the high cost and difficulty of eradicating invasive species once established require the development of new methods and tools for predicting the most susceptible areas to invasion. Invasive pollinators pose serious threats to biodiversity and human activity due to their close relationship with many plants (including crop species and high potential competitiveness for resources with native pollinators. Although at an early stage of expansion, the bumblebee species Bombus terrestris is becoming a representative case of pollinator invasion at a global scale, particularly given its high velocity of invasive spread and the increasing number of reports of its impacts on native bees and crops in many countries. We present here a methodological framework of habitat suitability modeling that integrates new approaches for detecting habitats that are susceptible to Bombus terrestris invasion at a global scale. Our approach did not include reported invaded locations in the modeling procedure; instead, those locations were used exclusively to evaluate the accuracy of the models in predicting suitability over regions already invaded. Moreover, a new and more intuitive approach was developed to select the models and evaluate different algorithms based on their performance and predictive convergence. Finally, we present a comprehensive global map of susceptibility to Bombus terrestris invasion that highlights priority areas for monitoring.

  8. Effects of invasive plants on arthropods.

    Science.gov (United States)

    Litt, Andrea R; Cord, Erin E; Fulbright, Timothy E; Schuster, Greta L

    2014-12-01

    Non-native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer-reviewed literature to evaluate responses of arthropod communities and functional groups to non-native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty-two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web-building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to

  9. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    International Nuclear Information System (INIS)

    Rose, Peter; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-01-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables

  10. Vegetation extraction from high-resolution satellite imagery using the Normalized Difference Vegetation Index (NDVI)

    Science.gov (United States)

    AlShamsi, Meera R.

    2016-10-01

    Over the past years, there has been various urban development all over the UAE. Dubai is one of the cities that experienced rapid growth in both development and population. That growth can have a negative effect on the surrounding environment. Hence, there has been a necessity to protect the environment from these fast pace changes. One of the major impacts this growth can have is on vegetation. As technology is evolving day by day, there is a possibility to monitor changes that are happening on different areas in the world using satellite imagery. The data from these imageries can be utilized to identify vegetation in different areas of an image through a process called vegetation detection. Being able to detect and monitor vegetation is very beneficial for municipal planning and management, and environment authorities. Through this, analysts can monitor vegetation growth in various areas and analyze these changes. By utilizing satellite imagery with the necessary data, different types of vegetation can be studied and analyzed, such as parks, farms, and artificial grass in sports fields. In this paper, vegetation features are detected and extracted through SAFIY system (i.e. the Smart Application for Feature extraction and 3D modeling using high resolution satellite ImagerY) by using high-resolution satellite imagery from DubaiSat-2 and DEIMOS-2 satellites, which provide panchromatic images of 1m resolution and spectral bands (red, green, blue and near infrared) of 4m resolution. SAFIY system is a joint collaboration between MBRSC and DEIMOS Space UK. It uses image-processing algorithms to extract different features (roads, water, vegetation, and buildings) to generate vector maps data. The process to extract green areas (vegetation) utilize spectral information (such as, the red and near infrared bands) from the satellite images. These detected vegetation features will be extracted as vector data in SAFIY system and can be updated and edited by end-users, such as

  11. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.

    Science.gov (United States)

    Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando

    2016-01-01

    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. .

  12. Invasive crayfish in the Pacific Northwest

    Science.gov (United States)

    Pearl, Christopher A.; McCreary, Brome; Adams, Michael

    2011-01-01

    Invasive species directly threaten freshwater biodiversity, particularly in regions of high aquatic richness like the Pacific Northwest (PNW). Crayfish are among the most impactful of aquatic invasive species. Invasive crayfish are considered ecosystem engineers due to their ability to alter basic wetland properties, such as reducing vegetation and bank integrity and increasing turbidity. In areas where invasion is advanced, crayfish pose major economic and ecological problems. Crayfish have been widely introduced for aquaculture and can become established in a wide range of habitat conditions. They also may be spread by anglers who use them as bait. Several non-native crayfish are established in the PNW, but the extent of their invasion is not well known. At least two groups are known from scattered sites in the PNW, and both have proven problematic for native species in other parts of the world: Red swamp crayfish (Procambarus clarkii) and several members of the genus Orconectes. Both groups are native to areas of the eastern United States. Both are identified globally as invasives of high concern and appear on the Oregon Department of Fish and Wildlife's "10 Most Unwanted" and the U.S. Forest Service's "Primary Species of Concern" lists for stream systems in the PNW. Despite the presence of introduced crayfish in the PNW and their high potential for negative effects, the scope of their invasion and effects on aquatic systems are not well known. The U.S. Geological Survey (USGS), along with local groups and state agencies, is working to clarify crayfish distribution and to outline which basins may not yet be invaded. Other goals are to improve understanding of habitat associations of invasive crayfish and their potential effects on native crayfish.

  13. Allelopathic effects of invasive Eucalyptus camaldulensis on ...

    African Journals Online (AJOL)

    Eucalyptus camaldulensis Dehnh. (red river gum; Myrtaceae) is an invasive tree in riparian habitats of the Western Cape, South Africa, where it replaces indigenous vegetation and affects ecosystem functioning. These invasions lead to changes in river geomorphology and reduction in stream flow. The mechanisms that ...

  14. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure

  15. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands

    Directory of Open Access Journals (Sweden)

    Chelsea J Carey

    2015-05-01

    Full Text Available Global and regional environmental changes often co-occur, creating complex gradients of disturbance on the landscape. Soil microbial communities are an important component of ecosystem response to environmental change, yet little is known about how microbial structure and function respond to multiple disturbances, or whether multiple environmental changes lead to unanticipated interactive effects. Our study used experimental semi-arid grassland plots in a Mediterranean-climate to determine how soil microbial communities in a seasonally variable ecosystem respond to one, two, or three simultaneous environmental changes: exotic plant invasion, plant invasion + vegetation clipping (to simulate common management practices like mowing or livestock grazing, plant invasion + nitrogen (N fertilization, and plant invasion + clipping + N fertilization. We examined microbial community structure 5-6 years after plot establishment via sequencing of >1 million 16S rRNA genes. Abiotic soil properties (soil moisture, temperature, pH, and inorganic N and microbial functioning (nitrification and denitrification potentials were also measured and showed treatment-induced shifts, including altered NO3- availability, temperature, and nitrification potential. Despite these changes, bacterial and archaeal communities showed little variation in composition and diversity across treatments. Even communities in plots exposed to three interacting environmental changes were similar to those in restored native grassland plots. Historical exposure to large seasonal and inter-annual variations in key soil properties, in addition to prior site cultivation, may select for a functionally plastic or largely dormant microbial community, resulting in a microbial community that is structurally robust to single and multiple environmental changes.

  16. Highly efficient procedure for the transesterification of vegetable oil

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xuezheng; Gao, Shan; He, Mingyuan [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Yang, Jianguo [Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, Shanghai 200062 (China); Energy Institute, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2009-10-15

    The highly efficient procedure has been developed for the synthesis of biodiesel from vegetable oil and methanol. The KF/MgO has been selected as the most efficient catalyst for the reactions with the yield of 99.3%. Operational simplicity, without need of the purification of raw vegetable oil, low cost of the catalyst used, high activities, no saponification and reusability are the key features of this methodology. (author)

  17. Mapping invasive species and spectral mixture relationships with neotropical woody formations in southeastern Brazil

    Science.gov (United States)

    Amaral, Cibele H.; Roberts, Dar A.; Almeida, Teodoro I. R.; Souza Filho, Carlos R.

    2015-10-01

    Biological invasion substantially contributes to the increasing extinction rates of native vegetative species. The remote detection and mapping of invasive species is critical for environmental monitoring. This study aims to assess the performance of a Multiple Endmember Spectral Mixture Analysis (MESMA) applied to imaging spectroscopy data for mapping Dendrocalamus sp. (bamboo) and Pinus elliottii L. (slash pine), which are invasive plant species, in a Brazilian neotropical landscape within the tropical Brazilian savanna biome. The work also investigates the spectral mixture between these exotic species and the native woody formations, including woodland savanna, submontane and alluvial seasonal semideciduous forests (SSF). Visible to Shortwave Infrared (VSWIR) imaging spectroscopy data at one-meter spatial resolution were atmospherically corrected and subset into the different spectral ranges (VIS-NIR1: 530-919 nm; and NIR2-SWIR: 1141-2352 nm). The data were further normalized via continuum removal (CR). Multiple endmember selection methods, including Interactive Endmember Selection (IES), Endmember average root mean square error (EAR), Minimum average spectral angle (MASA) and Count-based (CoB) (collectively called EMC), were employed to create endmember libraries for the targeted vegetation classes. The performance of the MESMA was assessed at the pixel and crown scales. Statistically significant differences (α = 0.05) were observed between overall accuracies that were obtained at various spectral ranges. The infrared region (IR) was critical for detecting the vegetation classes using spectral data. The invasive species endmembers exhibited spectral patterns in the IR that were not observed in the native formations. Bamboo was characterized as having a high green vegetation (GV) fraction, lower non-photosynthetic vegetation (NPV) and a low shade fraction, while pine exhibited higher NPV and shade fractions. The invasive species showed a statistically

  18. Using vegetation structure estimates derived from multi-source remote sensing to predict dynamics of a semi-arid ecosystem in the western US

    Science.gov (United States)

    Shrestha, R.; Mitchell, J. J.; Glenn, N. F.; Flores, A. N.

    2014-12-01

    The distribution of species and vegetation types across the western US are expected to shift in response to climate change. Previous studies have documented the change in fire regime and the increasing fire-invasive grass cycle occurring in the western U.S. The change in vegetation structure due to climate change and invasive species alters the fuel load, making these ecosystems vulnerable to high-severity fire. Synergistic remote sensing data, such as hyperspectral data and high-resolution lidar, can be leveraged to capture the composition and structural variability of short-statured semiarid vegetation (e.g. sagebrush, annual grasses). We use a random-forests based fusion technique to integrate multi-source airborne data (hyperspectral and LiDAR) and generate spatially-explicit estimates of vegetation composition and structure (biomass, cover, density, height, LAI) and associated uncertainty across a climate and elevation gradient in southern Idaho. The results will be used to initialize an individual-based terrestrial biosphere model (Ecosystem Demography, ED2) and estimate structural dynamics under future scenarios. This study will provide a basis for understanding feedback mechanisms related to changing climate conditions, fire regimes and patterns of non-native plant invasion. The forthcoming field and remote sensing collection campaigns are also designed for parameterizing a dryland shrub plant functional type in the ED2 model.

  19. Invasive plants on disturbed Korean sand dunes

    Science.gov (United States)

    Kim, Kee Dae

    2005-01-01

    The sand dunes in coastal regions of South Korea are important ecosystems because of their small size, the rare species found in this habitat, and the beautiful landscapes they create. This study investigated the current vegetative status of sand dunes on three representative coasts of the Korean peninsula, and on the coasts of Cheju Island, and assessed the conditions caused by invasive plants. The relationships between the degree of invasion and 14 environmental variables were studied. Plots of sand dunes along line transects perpendicular to the coastal lines were established to estimate vegetative species coverage. TWINSPAN (Two-Way Indicator Species Analysis), CCA (Canonical Correspondence Analysis), and DCCA (Detrended Canonical Correspondence Analysis) were performed to classify communities on sand dunes and assess species composition variation. Carex kobomugi, Elymus mollis, and Vitex rotundifolia were found to be the dominant species plotted on the east, the west, and the peripheral coasts of Cheju Island, respectively. Vegetation on the south coast was totally extinct. The 19 communities, including representative C. kobomugi, C. kobomugi- Ixeris repens, C. kobomugi- Oenothera biennis, E. mollis, Lolium multiflorum- Calystegia soldanella, and V. rotundifolia- C. kobomugi, were all classified according to TWINSPAN. Oenothera biennis and L. multiflorum were exotics observed within these native communities. CCA showed that invasive native and exotic species distribution was segregated significantly, according to disturbance level, exotic species number, gravel, sand and silt contents, as well as vegetation size. It further revealed that human disturbance can strongly favor the settlement of invasive and exotic species. Restoration options to reduce exotic plants in the South Korean sand dune areas were found to be the introduction of native plant species from one sand dune into other sand dune areas, prohibition of building and the introduction of exotic

  20. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding.

    Science.gov (United States)

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics. © 2012 Blackwell Publishing Ltd.

  1. Object-based vegetation classification with high resolution remote sensing imagery

    Science.gov (United States)

    Yu, Qian

    Vegetation species are valuable indicators to understand the earth system. Information from mapping of vegetation species and community distribution at large scales provides important insight for studying the phenological (growth) cycles of vegetation and plant physiology. Such information plays an important role in land process modeling including climate, ecosystem and hydrological models. The rapidly growing remote sensing technology has increased its potential in vegetation species mapping. However, extracting information at a species level is still a challenging research topic. I proposed an effective method for extracting vegetation species distribution from remotely sensed data and investigated some ways for accuracy improvement. The study consists of three phases. Firstly, a statistical analysis was conducted to explore the spatial variation and class separability of vegetation as a function of image scale. This analysis aimed to confirm that high resolution imagery contains the information on spatial vegetation variation and these species classes can be potentially separable. The second phase was a major effort in advancing classification by proposing a method for extracting vegetation species from high spatial resolution remote sensing data. The proposed classification employs an object-based approach that integrates GIS and remote sensing data and explores the usefulness of ancillary information. The whole process includes image segmentation, feature generation and selection, and nearest neighbor classification. The third phase introduces a spatial regression model for evaluating the mapping quality from the above vegetation classification results. The effects of six categories of sample characteristics on the classification uncertainty are examined: topography, sample membership, sample density, spatial composition characteristics, training reliability and sample object features. This evaluation analysis answered several interesting scientific questions

  2. Invasive Species Biology, Control, and Research. Part 1: Kudzu (Pueraria montana)

    National Research Council Canada - National Science Library

    Guertin, Patrick J; Denight, Michael L; Gebhart, Dick L; Nelson, Linda

    2008-01-01

    ..., and damage to equipment and structures. Of the 11 plant species (or groups) identified by installations as uncontrolled vegetation, six were invasive plants, of which the two invasive plants most commonly identified were Kudzu (Pueraria montana...

  3. Animal ecosystem engineers modulate the diversity-invasibility relationship.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    Full Text Available Invasions of natural communities by non-indigenous species are currently rated as one of the most important global-scale threats to biodiversity. Biodiversity itself is known to reduce invasions and increase stability. Disturbances by ecosystem engineers affect the distribution, establishment, and abundance of species but this has been ignored in studies on diversity-invasibility relationships.We determined natural plant invasion into 46 plots varying in the number of plant species (1, 4, and 16 and plant functional groups (1, 2, 3, and 4 for three years beginning two years after the establishment of the Jena Experiment. We sampled subplots where earthworms were artificially added and others where earthworm abundance was reduced. We also performed a seed-dummy experiment to investigate the role of earthworms as secondary seed dispersers along a plant diversity gradient. Horizontal dispersal and burial of seed dummies were significantly reduced in subplots where earthworms were reduced in abundance. Seed dispersal by earthworms decreased with increasing plant species richness and presence of grasses but increased in presence of small herbs. These results suggest that dense vegetation inhibits the surface activity of earthworms. Further, there was a positive relationship between the number of earthworms and the number and diversity of invasive plants. Hence, earthworms decreased the stability of grassland communities against plant invasion.Invasibility decreased and stability increased with increasing plant diversity and, most remarkably, earthworms modulated the diversity-invasibility relationship. While the impacts of earthworms were unimportant in low diverse (low earthworm densities and high diverse (high floral structural complexity plant communities, earthworms decreased the stability of intermediate diverse plant communities against plant invasion. Overall, the results document that fundamental processes in plant communities like plant seed

  4. Symphyotrichum ciliatum an Invasive Species in the Romanian Flora – Contributions to the Knowledge of the Vegetative Organs Structure

    Directory of Open Access Journals (Sweden)

    Sârbu Anca

    2015-11-01

    Full Text Available Symphyotrichum ciliatum (Ledeb. G.L. Nesom is an adventive plant first reported in Romania in 1967, which has spread rapidly over the last few decades in Moldova, Muntenia and, more recently, in Transylvania. Although the species has been known for a while in Europe and Romania, there is no information about the anatomy of the vegetative organs of this invasive taxon. This paper presents a series of structural aspects of the vegetative body, of Symphyotrichum ciliatum collected from a sandy and salty substrate (Sacalin Island - Danube Delta. These demonstrate the ability of this plant to adapt to the environment and its capacity to achieve a wide spread. As such, although this plant is an annual species, the root and stem achieve secondary growth in their width, which offers robustness to the corm; the palisade tissue has an ecvifacial disposition which enhances efficiency in capturing light, especially on sandy soil that reflects light; there are aeriferous and aquiferous formations that ensure efficiency in adapting to a wet and relatively salty environment. These results are documented by original photographs of optical microscopy and a distribution map of the taxon in Romania as at 2011.

  5. Modern High Technology Solutions for Quality and Longterm Vegetable Preservation

    International Nuclear Information System (INIS)

    Nacheva, I.; Miteva, D.; Todorov, Y.; Loginovska, K.; Tsvetkov, Ts.

    2012-01-01

    In the publication the authors present the results of the applying of two modern technologies for long term and safe vegetable preservation – freeze-drying and gamma sterilization. The freeze-dried vegetables feature minimum moisture – from 2 – 5% and taste-aroma complex preserved to the highest degree. The carried out gamma sterilization ensures a high microbial purity of the vegetables and guarantees for their long term preservation - up to 5 years in polymer packing, under usual conditions

  6. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  7. Germination of vegetable seeds exposed to very high pressure

    International Nuclear Information System (INIS)

    Mori, Y; Yokota, S; Ono, F

    2012-01-01

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  8. Germination of vegetable seeds exposed to very high pressure

    Science.gov (United States)

    Mori, Y.; Yokota, S.; Ono, F.

    2012-07-01

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  9. Invasive Species Biology, Control, and Research. Part 2. Multiflora Rose (Rosa multiflora)

    National Research Council Canada - National Science Library

    Denight, Michael L; Guertin, Patrick J; Gebhart, Dick L; Nelson, Linda

    2008-01-01

    ..., and damage to equipment and structures. Of the 11 plant species (or groups) identified by installations as "uncontrolled vegetation," six were invasive plants, of which the two invasive plants most commonly identified were Kudzu (Pueraria montana...

  10. High pressure effects on fruits and vegetables

    OpenAIRE

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure treatment can be used for product modification through pressure gelatinization of starch and pressure denaturation of proteins. Key pressure–thermal treatment effects on vitamin, enzymes, flavor, co...

  11. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes

    Science.gov (United States)

    McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.

    2002-01-01

    The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

  12. Forecasting the impact of an invasive macrophyte species in the littoral zone through aquatic insect species composition

    Directory of Open Access Journals (Sweden)

    Hugo H. L. Saulino

    2017-11-01

    Full Text Available ABSTRACT Invasive macrophytes threaten freshwater ecosystem biodiversity. We analyzed the impact of the invasive white ginger lily (Hedychium coronarium J. König, Zingiberaceae on aquatic insect assemblages living in the littoral zone of a tropical reservoir. We took aquatic insect samples in the littoral zone on four main vegetal profile banks: white ginger monotypic bank, forest partially invaded, native macrophyte monotypic bank and riparian forest. At each vegetal bank, we measured abiotic variables such as dissolved oxygen, pH, water temperature and depth. We analyzed the aquatic insects through abundance, richness and Simpson diversity. We used the non-Metric Multidimensional Scaling (nMDS analysis to analyze the spatial distribution of each assemblage, and Analysis of similarities (ANOSIM to verify differences amongst dissimilarity distances. Additionally, we analyzed the main taxa associated with invasive macrophytes through indicator species analyses using IndVal index. We observed that the invasive macrophyte banks presented higher abundance of associated specimens, as well as lower dissimilarity of aquatic insect assemblages. Additionally, invasive macrophytes shifted the water pH and littoral depth of reservoir banks. The IndVal index indicated eight aquatic insects as indicator species. Labrundinia unicolor Silva, 2013, Ablabesmyia depaulai Neubern, 2013 and Diastatops Rambur, 1842 were indicator species on banks. We concluded that invasion of white ginger lily caused loss of shallow littoral habitat and altered the pH of the surrounding water probably by high decomposition rate and high production of plant biomass. We suggest the use of species of aquatic insects as indicator species to monitor white ginger lily impact in freshwater systems.

  13. Impact of Waste Materials and Organic Amendments on Soil Properties and Vegetative Performance

    Directory of Open Access Journals (Sweden)

    Steven L. McGeehan

    2012-01-01

    Full Text Available Waste materials, and materials derived from wastes, possess many characteristics that can improve soil fertility and enhance crop performance. These materials can be particularly useful as amendments to severely degraded soils associated with mining activities. This study evaluated biosolids, composts, log yard wastes, and two organic soil treatments for improved soil fertility and vegetative performance using side-by-side comparisons. Each plot was seeded with a standardized seed mix and evaluated for a series of soil chemical and physical parameters, total vegetation response, species diversity, ecological plant response, and invasion indices. All treatments were successful at improving soil fertility and promoting a self-sustaining vegetative cover. The level of available nitrogen had a strong impact on vegetative coverage, species distribution, and extent of unseeded vegetation. For example, high nitrogen treatments promoted a grass-dominated (low forb plant community with a low content of unseeded vegetation. In contrast, low nitrogen treatments promoted a more balanced plant community with a mixture of grass and forb species and greater susceptibility to unseeded vegetation establishment.

  14. High-density native-range species affects the invasive plant Chromolaena odorata more strongly than species from its invasive range.

    Science.gov (United States)

    Zheng, Yulong; Liao, Zhiyong

    2017-11-22

    Invasive plant species often form dense mono-dominant stands in areas they have invaded, while having only sparse distribution in their native ranges, and the reasons behind this phenomenon are a key point of research in invasive species biology. Differences in species composition between native and invasive ranges may contribute to the difference in distribution status. In this study, we found that the high-density condition had a more negative effect on C. odorata than the low-density condition when co-grown with neighbor plants from its native range in Mexico, while this pattern was not in evidence when it was grown with neighbors from its invasive range in China. Different competitive ability and coevolutionary history with C. odorata between native-range neighbors and invasive-range neighbors may lead to the inconsistent patterns.

  15. [Distribution pattern of riparian invasive plants in Luanhe Basin, North China and its relationship with environment].

    Science.gov (United States)

    Ren, Ying; He, Ping; Xu, Jie; Jia, Jiao

    2017-06-18

    In this study, the invasive plant species from the riparian vegetation in 56 sampling sites of Luanhe Basin were identified, and the correlations between their composition, spatial distribution and environmental factors were explored. In the basin, a total of 26 invasive species were registered, which belonged to 19 genera and 12 families, and 73.1% of them were annual plants. Asteraceae and Amaranthaceae were the two dominant families with the most invasive species, attributing to 50% of the total invasive species. Amaranthus retroflexus, Bidens frondosa and Chenopodium serotinum appeared with the highest frequencies. The number of invasive species and the invasive intensity at each site were significantly negatively correlated with the altitude. The distribution of invasive plants was significantly influenced by the intensity of human activities. The invasive plants were mainly distributed in the plain area, shallow mountainous area with many reservoirs, and the mountainous area with developed tourism around Chengde City, meanwhile, only few species with broad ecological amplitude existed in the plateau area. In general, species with higher invasive grades were mainly distributed in low and medium altitude areas below 400 m. Except for A. retroflexus, no high-grade invasive plants were discovered in high altitude area so far.

  16. Genetics, novel weapons and rhizospheric microcosmal signaling in the invasion of Phragmites australis.

    Science.gov (United States)

    Rudrappa, Thimmaraju; Bais, Harsh P

    2008-01-01

    Chemical communication and perception strategies between plants are highly sophisticated but are only partly understood. Among the different interactions, the suppressive interaction of a class of chemicals released by one plant through root exudates against the neighbouring plants (allelopathy) have been implicated in the invasiveness of many exotic weedy species. Phragmites australis (common reed) is one of the dominant colonizers of the North American wetland marshes and exhibits invasive behavior by virtually replacing the entire native vegetation in its niche. Recently, by adopting a systematic bioassay driven approach we elucidated the role of root derived allelopathy as one of the important mechanisms by which P. australis exerts its invasive behavior. Additionally, our recent preliminary data indicates the involvement of rhizobacterial signaling in the invasive success of P. australis. A better understanding of biochemical weaponry used by P. australis will aid scientists and technologists in addressing the impact of root secretions in invasiveness of weedy species and thus promote a more informed environmental stewardship.

  17. An unusual case of seed dispersal in an invasive aquatic; yellow flag iris (Iris pseudacorus)

    Science.gov (United States)

    Understanding reproductive mode of invasive plants can help managers plan more efficacious control. Invasive aquatics typically reproduce primarily through vegetative means. Yellow flag iris is an invasive plant species often growing as an emergent aquatic. There have been contradictory reports of i...

  18. Estimating Vegetation Rainfall Interception Using Remote Sensing Observations at Very High Resolution

    Science.gov (United States)

    Cui, Y.; Zhao, P.; Hong, Y.; Fan, W.; Yan, B.; Xie, H.

    2017-12-01

    Abstract: As an important compont of evapotranspiration, vegetation rainfall interception is the proportion of gross rainfall that is intercepted, stored and subsequently evaporated from all parts of vegetation during or following rainfall. Accurately quantifying the vegetation rainfall interception at a high resolution is critical for rainfall-runoff modeling and flood forecasting, and is also essential for understanding its further impact on local, regional, and even global water cycle dynamics. In this study, the Remote Sensing-based Gash model (RS-Gash model) is developed based on a modified Gash model for interception loss estimation using remote sensing observations at the regional scale, and has been applied and validated in the upper reach of the Heihe River Basin of China for different types of vegetation. To eliminate the scale error and the effect of mixed pixels, the RS-Gash model is applied at a fine scale of 30 m with the high resolution vegetation area index retrieved by using the unified model of bidirectional reflectance distribution function (BRDF-U) for the vegetation canopy. Field validation shows that the RMSE and R2 of the interception ratio are 3.7% and 0.9, respectively, indicating the model's strong stability and reliability at fine scale. The temporal variation of vegetation rainfall interception loss and its relationship with precipitation are further investigated. In summary, the RS-Gash model has demonstrated its effectiveness and reliability in estimating vegetation rainfall interception. When compared to the coarse resolution results, the application of this model at 30-m fine resolution is necessary to resolve the scaling issues as shown in this study. Keywords: rainfall interception; remote sensing; RS-Gash analytical model; high resolution

  19. Updated vegetation information in high resolution regional climate simulations using WRF

    DEFF Research Database (Denmark)

    Nielsen, Joakim Refslund; Dellwik, Ebba; Hahmann, Andrea N.

    Climate studies show that the frequency of heat wave events and above-average high temperatures during the summer months over Europe will increase in the coming decades. Such climatic changes and long-term meteorological conditions will impact the seasonal development of vegetation and ultimately...... modify the energy distribution at the land surface. In weather and climate models it is important to represent the vegetation variability accurately to obtain reliable results. The weather research and forecasting (WRF) model uses a green vegetation fraction (GVF) climatology to represent the seasonal...... or changes in management practice since it is derived more than twenty years ago. In this study, a new high resolution, high quality GVF product is applied in a WRF climate simulation over Denmark during the 2006 heat wave year. The new GVF product reflects the year 2006 and it was previously tested...

  20. Evaluation of Continuous VNIR-SWIR Spectra versus Narrowband Hyperspectral Indices to Discriminate the Invasive Acacia longifolia within a Mediterranean Dune Ecosystem

    Directory of Open Access Journals (Sweden)

    André Große-Stoltenberg

    2016-04-01

    Full Text Available Hyperspectral remote sensing is an effective tool to discriminate plant species, providing vast potential to trace plant invasions for ecological assessments. However, necessary baseline information for the use of remote sensing data is missing for many high-impact invaders. Furthermore, the identification of the suitable classification algorithms and spectral regions for successfully classifying species remains an open field of research. Here, we tested the separability of the invasive tree Acacia longifolia from adjacent exotic and native vegetation in a Natura 2000 protected Mediterranean dune ecosystem. We used continuous visible, near-infrared and short wave infrared (VNIR-SWIR data as well as vegetation indices at the leaf and canopy level for classification, comparing five different classification algorithms. We were able to successfully distinguish A. longifolia from surrounding vegetation based on vegetation indices. At the leaf level, radial-basis function kernel Support Vector Machine (SVM and Random Forest (RF achieved both a high Sensitivity (SVM: 0.83, RF: 0.78 and a high Positive Predicted Value (PPV (0.86, 0.83. At the canopy level, RF was the classifier with an optimal balance of Sensitivity (0.75 and PPV (0.75. The most relevant vegetation indices were linked to the biochemical parameters chlorophyll, water, nitrogen, and cellulose as well as vegetation cover, which is in line with biochemical and ecophysiological properties reported for A. longifolia. Our results highlight the potential to use remote sensing as a tool for an early detection of A. longifolia in Mediterranean coastal ecosystems.

  1. Alien plant invasions in European woodlands

    NARCIS (Netherlands)

    Wagner, Viktoria; Chytrý, Milan; Jiménez-Alfaro, Borja; Pergl, Jan; Hennekens, Stephan; Biurrun, Idoia; Knollová, Ilona; Berg, Christian; Vassilev, Kiril; Rodwell, John S.; Škvorc, Željko; Jandt, Ute; Ewald, Jörg; Jansen, Florian; Tsiripidis, Ioannis; Botta-Dukát, Zoltán; Casella, Laura; Attorre, Fabio; Rašomavičius, Valerijus; Ćušterevska, Renata; Schaminée, Joop H.J.; Brunet, Jörg; Lenoir, Jonathan; Svenning, Jens Christian; Kącki, Zygmunt; Petrášová-Šibíková, Mária; Šilc, Urban; García-Mijangos, Itziar; Campos, Juan Antonio; Fernández-González, Federico; Wohlgemuth, Thomas; Onyshchenko, Viktor; Pyšek, Petr

    2017-01-01

    Aim: Woodlands make up a third of European territory and carry out important ecosystem functions, yet a comprehensive overview of their invasion by alien plants has never been undertaken across this continent. Location: Europe. Methods: We extracted data from 251,740 vegetation plots stored in the

  2. Recent developments in high-quality drying of vegetables, fruits, and aquatic products.

    Science.gov (United States)

    Zhang, Min; Chen, Huizhi; Mujumdar, Arun S; Tang, Juming; Miao, Song; Wang, Yuchuan

    2017-04-13

    Fresh foods like vegetables, fruits, and aquatic products have high water activity and they are highly heat-sensitive and easily degradable. Dehydration is one of the most common methods used to improve food shelf-life. However, drying methods used for food dehydration must not only be efficient and economic but also yield high-quality products based on flavor, nutrients, color, rehydration, uniformity, appearance, and texture. This paper reviews some new drying technologies developed for dehydration of vegetables, fruits, and aquatic products. These include: infrared drying, microwave drying, radio frequency drying, electrohydrodynamic drying, etc., as well as hybrid drying methods combining two or more different drying techniques. A comprehensive review of recent developments in high-quality drying of vegetables, fruits and aquatic products is presented and recommendations are made for future research.

  3. Invasive plant architecture alters trophic interactions by changing predator abundance and behavior.

    Science.gov (United States)

    Pearson, Dean E

    2009-03-01

    As primary producers, plants are known to influence higher trophic interactions by initiating food chains. However, as architects, plants may bypass consumers to directly affect predators with important but underappreciated trophic ramifications. Invasion of western North American grasslands by the perennial forb, spotted knapweed (Centaurea maculosa), has fundamentally altered the architecture of native grassland vegetation. Here, I use long-term monitoring, observational studies, and field experiments to document how changes in vegetation architecture have affected native web spider populations and predation rates. Native spiders that use vegetation as web substrates were collectively 38 times more abundant in C. maculosa-invaded grasslands than in uninvaded grasslands. This increase in spider abundance was accompanied by a large shift in web spider community structure, driven primarily by the strong response of Dictyna spiders to C. maculosa invasion. Dictyna densities were 46-74 times higher in C. maculosa-invaded than native grasslands, a pattern that persisted over 6 years of monitoring. C. maculosa also altered Dictyna web building behavior and foraging success. Dictyna webs on C. maculosa were 2.9-4.0 times larger and generated 2.0-2.3 times higher total prey captures than webs on Achillea millefolium, their primary native substrate. Dictyna webs on C. maculosa also captured 4.2 times more large prey items, which are crucial for reproduction. As a result, Dictyna were nearly twice as likely to reproduce on C. maculosa substrates compared to native substrates. The overall outcome of C. maculosa invasion and its transformative effects on vegetation architecture on Dictyna density and web building behavior were to increase Dictyna predation on invertebrate prey >/=89 fold. These results indicate that invasive plants that change the architecture of native vegetation can substantially impact native food webs via nontraditional plant --> predator --> consumer

  4. Relationships between vegetation dynamics and hydroclimatic drivers in the northern high-latitude uplands

    Science.gov (United States)

    Wang, H.; Tetzlaff, D.; Buttle, J. M.; Carey, S. K.; Laudon, H.; McNamara, J. P.; Soulsby, C.; Spence, C.

    2015-12-01

    IPCC projections show that climate warming will be particularly high in northern high-latitude regions, which has profound ecohydrological implications: a small rise of temperature may result in lower water availability in summer due to less rainfall and more evapotranspiration, increase flooding risks by accelerating melting rates in spring, and more rain rather than snow in winter, etc. These impacts will affect vegetation communities by altering timing of the spring "green-up" and fall "senescence". Change in vegetation water use will feedback to atmospheric and hydrological cycles. Here, we report results from the PLATO "Plant-water interlinkages in northern uplands - mediation of climate change?" project where we investigate water uptake by plants and consequent water availability in northern regions along a cross-regional climate gradient to understand future responses to change in high-latitude uplands. Six sites in Sweden (Krycklan), Canada (Wolf Creek; Baker Creek; Dorset), Scotland (Girnock) and the USA (Dry Creek) span moisture and energy gradients found at high-latitudes. We are presenting preliminary results of vegetation phenology changes from 2000 to 2014 by analysing remote sensing vegetation indices. The relationship between vegetation phenology and climatic drivers (temperature and precipitation) is also investigated.

  5. Invasive pests—insects and diseases

    Science.gov (United States)

    Donald A. Duerr; Paul A. Mistretta

    2013-01-01

    Key FindingsNonnative pest species have increasing impacts in the South regardless of climate change, patterns of land ownership, or changes in the composition of vegetation.“New” nonnative invasive insects and diseases will have serious impacts on southern forests over the next 50 years. Some species such as emerald ash borer...

  6. Prescribed grazing for management of invasive vegetation in a hardwood forest understory

    Science.gov (United States)

    Ronald A. Rathfon; Songlin Fei; Jason Tower; Kenneth Andries; Michael. Neary

    2014-01-01

    Land managers considering prescribed grazing (PG) face a lack of information on animal stocking rates, timing of grazing, and duration of grazing to achieve desired conditions in natural ecosystems under invasion stress from a variety of nonnative invasive plant (NNIP) species. In this study we tested PG treatments using goats for reducing NNIP brush species and...

  7. Do traits of invasive species influence decomposition and soil respiration of disturbed ecosystems?

    Science.gov (United States)

    Wells, A. J.; Balster, N. J.

    2009-12-01

    Large-scale landscape disturbances typically alter the terrestrial carbon cycle leading to shifts in pools of soil carbon. Restoration of disturbed landscapes with prairie vegetation has thus been practiced with the intent of increasing carbon accrual in soils. However, since disturbed soils are prone to invasion by non-native invasive species, many ecological restorations have resulted in unexpected outcomes, which may be explained by differences in plant traits such as tissue quality and biomass allocation. Typically, the tissue of invasive species has lower C:N ratios relative to native species, and consequently, faster decomposition rates, which potentially can alter the balance in soil carbon. The primary objective of this research was to compare the effects of native prairie species versus non-native invasive species on the carbon cycling within a novel environment: a recently dewatered basin in southwestern Wisconsin following dam removal. We hypothesized that a higher invasive to native species ratio would result in faster litter decomposition and a higher rate of soil respiration. To test this hypothesis, we seeded newly exposed sediments with native prairie seeds in 2005, annually collected aboveground plant biomass (by species per plot), calculated decomposition rate of native and invasive litter (underneath both canopy types), and measured soil respiration during the growing season of 2009. After four years of seeding, the aboveground biomass of the native vegetation has increased significantly (p invasive species biomass has decreased from 459 to 296 g m-2. Senesced tissue from mixed native species had a higher C:N ratio, 27:1 (43% C: 1.6% N), than tissue from mixed invasive species, 24:1 (35% C: 1.5% N). However, after 7 months, we found that the rate of decomposition depended on both litter type and plant canopy type (p invasive plant tissue had a slightly faster decomposition rate than the native litter and this rate was elevated under invasive

  8. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method

    Science.gov (United States)

    Song, Wanjuan; Mu, Xihan; Ruan, Gaiyan; Gao, Zhan; Li, Linyuan; Yan, Guangjian

    2017-06-01

    Normalized difference vegetation index (NDVI) of highly dense vegetation (NDVIv) and bare soil (NDVIs), identified as the key parameters for Fractional Vegetation Cover (FVC) estimation, are usually obtained with empirical statistical methods However, it is often difficult to obtain reasonable values of NDVIv and NDVIs at a coarse resolution (e.g., 1 km), or in arid, semiarid, and evergreen areas. The uncertainty of estimated NDVIs and NDVIv can cause substantial errors in FVC estimations when a simple linear mixture model is used. To address this problem, this paper proposes a physically based method. The leaf area index (LAI) and directional NDVI are introduced in a gap fraction model and a linear mixture model for FVC estimation to calculate NDVIv and NDVIs. The model incorporates the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) model parameters product (MCD43B1) and LAI product, which are convenient to acquire. Two types of evaluation experiments are designed 1) with data simulated by a canopy radiative transfer model and 2) with satellite observations. The root-mean-square deviation (RMSD) for simulated data is less than 0.117, depending on the type of noise added on the data. In the real data experiment, the RMSD for cropland is 0.127, for grassland is 0.075, and for forest is 0.107. The experimental areas respectively lack fully vegetated and non-vegetated pixels at 1 km resolution. Consequently, a relatively large uncertainty is found while using the statistical methods and the RMSD ranges from 0.110 to 0.363 based on the real data. The proposed method is convenient to produce NDVIv and NDVIs maps for FVC estimation on regional and global scales.

  9. Applying ecological concepts to the management of widespread grass invasions [Chapter 7

    Science.gov (United States)

    Carla M. D' Antonio; Jeanne C. Chambers; Rhonda Loh; J. Tim Tunison

    2009-01-01

    The management of plant invasions has typically focused on the removal of invading populations or control of existing widespread species to unspecified but lower levels. Invasive plant management typically has not involved active restoration of background vegetation to reduce the likelihood of invader reestablishment. Here, we argue that land managers could benefit...

  10. The use of high altitude remote sensing in determining existing vegetation and monitoring ecological stress

    Science.gov (United States)

    Foster, K.; Garcia, A.

    1972-01-01

    High altitude color and multispectral black and white photography was used to survey existing vegetation and soil conditions on the Empire Ranch where large scale development will soon begin. Utilizing stereo pairs of the high altitude color photography, four vegetation classifications were discernable as a function of topography and foliage characteristics. In contrast to the undeveloped Ranch, the same photography was used to detect environmental changes in the Tucson metropolitan area as a result of rapid urbanization. The most prevalent change related to development is the removal of vegetation in high density areas to allow for housing starts. Erosion then occurs where vegetation has been removed.

  11. High resolution MR imaging of bladder cancer: new criteria for determining depth of wall invasion

    International Nuclear Information System (INIS)

    Suh, Chang Hae; Kressel, Herbert Y

    1993-01-01

    To establish new criteria to determine the depth of bladder cancer as well as to obtain the findings of each stage of bladder cancer we reviewed high resolution MR images of 18 bladder cancer patients including seven cases (26%) with superficial bladder wall invasion. All MR scans were done before biopsy or surgery. Multiple layers of the bladder wall (inner black, middle white, outer black) were demonstrated in 11 cases out of a total 18 cases. Thickening of the middle layer caused by tumor infiltration or edema of lamina propria was seen in 8 of 12 patients with stage T2 or greater, and was suggestive of superficial muscle invasion when multiple layers were demonstrated. Disruption of outer layer (as well as inner layer) and external protrusion of tumor itself were indicative of perivesical invasion. When multiple layers were not demonstrated, the depth of tumor invasion could not be judged. High resolution MR imaging can depict submucosal invasion, muscle invasion, and perivesical invasion secondary to bladder cancer

  12. Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: the Women's Healthy Eating and Living (WHEL) randomized trial.

    Science.gov (United States)

    Pierce, John P; Natarajan, Loki; Caan, Bette J; Parker, Barbara A; Greenberg, E Robert; Flatt, Shirley W; Rock, Cheryl L; Kealey, Sheila; Al-Delaimy, Wael K; Bardwell, Wayne A; Carlson, Robert W; Emond, Jennifer A; Faerber, Susan; Gold, Ellen B; Hajek, Richard A; Hollenbach, Kathryn; Jones, Lovell A; Karanja, Njeri; Madlensky, Lisa; Marshall, James; Newman, Vicky A; Ritenbaugh, Cheryl; Thomson, Cynthia A; Wasserman, Linda; Stefanick, Marcia L

    2007-07-18

    Evidence is lacking that a dietary pattern high in vegetables, fruit, and fiber and low in total fat can influence breast cancer recurrence or survival. To assess whether a major increase in vegetable, fruit, and fiber intake and a decrease in dietary fat intake reduces the risk of recurrent and new primary breast cancer and all-cause mortality among women with previously treated early stage breast cancer. Multi-institutional randomized controlled trial of dietary change in 3088 women previously treated for early stage breast cancer who were 18 to 70 years old at diagnosis. Women were enrolled between 1995 and 2000 and followed up through June 1, 2006. The intervention group (n = 1537) was randomly assigned to receive a telephone counseling program supplemented with cooking classes and newsletters that promoted daily targets of 5 vegetable servings plus 16 oz of vegetable juice; 3 fruit servings; 30 g of fiber; and 15% to 20% of energy intake from fat. The comparison group (n = 1551) was provided with print materials describing the "5-A-Day" dietary guidelines. Invasive breast cancer event (recurrence or new primary) or death from any cause. From comparable dietary patterns at baseline, a conservative imputation analysis showed that the intervention group achieved and maintained the following statistically significant differences vs the comparison group through 4 years: servings of vegetables, +65%; fruit, +25%; fiber, +30%, and energy intake from fat, -13%. Plasma carotenoid concentrations validated changes in fruit and vegetable intake. Throughout the study, women in both groups received similar clinical care. Over the mean 7.3-year follow-up, 256 women in the intervention group (16.7%) vs 262 in the comparison group (16.9%) experienced an invasive breast cancer event (adjusted hazard ratio, 0.96; 95% confidence interval, 0.80-1.14; P = .63), and 155 intervention group women (10.1%) vs 160 comparison group women (10.3%) died (adjusted hazard ratio, 0.91; 95

  13. The effect of High Pressure and High Temperature processing on carotenoids and chlorophylls content in some vegetables.

    Science.gov (United States)

    Sánchez, Celia; Baranda, Ana Beatriz; Martínez de Marañón, Iñigo

    2014-11-15

    The effect of High Pressure (HP) and High Pressure High Temperature (HPHT) processing on carotenoid and chlorophyll content of six vegetables was evaluated. In general, carotenoid content was not significantly influenced by HP or HPHT treatments (625 MPa; 5 min; 20, 70 and 117 °C). Regarding chlorophylls, HP treatment caused no degradation or slight increases, while HPHT processes degraded both chlorophylls. Chlorophyll b was more stable than chlorophyll a at 70 °C, but both of them were highly degraded at 117 °C. HPHT treatment at 117 °C provided products with a good retention of carotenoids and colour in the case of red vegetables. Even though the carotenoids also remained in the green vegetables, their chlorophylls and therefore their colour were so affected that milder temperatures need to be applied. As an industrial scale equipment was used, results will be useful for future industrial implementation of this technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Pinus contorta invasions increase wildfire fuel loads and may create a positive feedback with fire.

    Science.gov (United States)

    Taylor, Kimberley T; Maxwell, Bruce D; McWethy, David B; Pauchard, Aníbal; Nuñez, Martín A; Whitlock, Cathy

    2017-03-01

    Invasive plant species that have the potential to alter fire regimes have significant impacts on native ecosystems. Concern that pine invasions in the Southern Hemisphere will increase fire activity and severity and subsequently promote further pine invasion prompted us to examine the potential for feedbacks between Pinus contorta invasions and fire in Patagonia and New Zealand. We determined how fuel loads and fire effects were altered by P. contorta invasion. We also examined post-fire plant communities across invasion gradients at a subset of sites to assess how invasion alters the post-fire vegetation trajectory. We found that fuel loads and soil heating during simulated fire increase with increasing P. contorta invasion age or density at all sites. However, P. contorta density did not always increase post-fire. In the largest fire, P. contorta density only increased significantly post-fire where the pre-fire P. contorta density was above an invasion threshold. Below this threshold, P. contorta did not dominate after fire and plant communities responded to fire in a similar manner as uninvaded communities. The positive feedback observed at high densities is caused by the accumulation of fuel that in turn results in greater soil heating during fires and high P. contorta density post-fire. Therefore, a positive feedback may form between P. contorta invasions and fire, but only above an invasion density threshold. These results suggest that management of pine invasions before they reach the invasion density threshold is important for reducing fire risk and preventing a transition to an alternate ecosystem state dominated by pines and novel understory plant communities. © 2016 by the Ecological Society of America.

  15. Review of Invasive Riparian Trees that Impact USACE Ecosystem Restoration Projects

    Science.gov (United States)

    2016-08-01

    often release seeds in periods of stress , including periods when exposed to herbicides or mechanical disturbances. Such characteristics make this...Approved for public release ; distribution is unlimited. ERDC TN-EMRRP-SI-36 August 2016 Review of Invasive Riparian Trees that Impact USACE...various spatial control methods for woody invasive plant removal in densely vegetated riparian habitats. The USACE ecosystem restoration mission has

  16. Nitrate reductase activity (NRA in the invasive alien Fallopia japonica: seasonal variation, differences among habitats types, and comparison with native species

    Directory of Open Access Journals (Sweden)

    Damian Chmura

    2016-09-01

    Full Text Available Nitrate reductase activity (NRA was studied in the invasive alien plant F. japonica (Japanese knotweed during the vegetation season and among natural, semi-natural, and human-made habitats and compared with NRA in selected native species. NRA was measured directly in the field from the beginning of May until the beginning of October. NRA was much higher than in the plant’s native range, i.e., East Asia, and showed a high degree of variation over time with the highest values being reached at the stage of fast vegetative growth and at the beginning of fruiting. NRA was highest on dumping sites probably due to the high nitrogen input into soils and near traffic and the emission of NOx by vehicles. A comparison of the enzyme activity in four selected native plant species indicated that NRA in F. japonica was the highest with the exception of Urtica dioica, which exhibited a similar activity of the enzyme. A detailed comparison with this species showed that differences between these species on particular dates were influenced by differences in the phenology of both plants. The initial results that were obtained suggest that nitrogen pollution in an environment can contribute to habitat invasibility and a high level of NRA, which in addition to the many plant traits that are commonly accepted as characteristic of invasiveness features, may be an important factor that enhances invasion success.

  17. Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling.

    Science.gov (United States)

    Elgersma, Kenneth J; Ehrenfeld, Joan G; Yu, Shen; Vor, Torsten

    2011-11-01

    Plant invasions can have substantial consequences for the soil ecosystem, altering microbial community structure and nutrient cycling. However, relatively little is known about what drives these changes, making it difficult to predict the effects of future invasions. In addition, because most studies compare soils from uninvaded areas to long-established dense invasions, little is known about the temporal dependence of invasion impacts. We experimentally manipulated forest understory vegetation in replicated sites dominated either by exotic Japanese barberry (Berberis thunbergii), native Viburnums, or native Vacciniums, so that each vegetation type was present in each site-type. We compared the short-term effect of vegetation changes to the lingering legacy effects of the previous vegetation type by measuring soil microbial community structure (phospholipid fatty acids) and function (extracellular enzymes and nitrogen mineralization). We also replaced the aboveground litter in half of each plot with an inert substitute to determine if changes in the soil microbial community were driven by aboveground or belowground plant inputs. We found that after 2 years, the microbial community structure and function was largely determined by the legacy effect of the previous vegetation type, and was not affected by the current vegetation. Aboveground litter removal had only weak effects, suggesting that changes in the soil microbial community and nutrient cycling were driven largely by belowground processes. These results suggest that changes in the soil following either invasion or restoration do not occur quickly, but rather exhibit long-lasting legacy effects from previous belowground plant inputs.

  18. UNMANNED AERIAL VEHICLE (UAV) HYPERSPECTRAL REMOTE SENSING FOR DRYLAND VEGETATION MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Nancy F. Glenn; Jessica J. Mitchell; Matthew O. Anderson; Ryan C. Hruska

    2012-06-01

    UAV-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Idaho State University, Boise Center Aerospace Lab, were recently tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification. The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. Overall, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels. Future mapping efforts that leverage ground reference data, ultra-high spatial resolution photos and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass (Poa secunda), from invasives such as burr buttercup (Ranunculus testiculatus) and cheatgrass (Bromus tectorum).

  19. Vegetation change: a reunifying concept in plant ecology

    Czech Academy of Sciences Publication Activity Database

    Davis, M. A.; Pergl, Jan; Truscott, A.; Kollmann, J.; Bakker, J. P.; Domenech, R.; Prach, Karel; Prieur-Richard, A.; Veeneklaas, R. M.; Pyšek, Petr; del Moral, R.; Hobbs, R. J.; Collins, S. L.; Pickett, S. T. A.; Reich, P. B.

    2005-01-01

    Roč. 7, - (2005), s. 69-76 ISSN 1433-8319 R&D Projects: GA ČR(CZ) GA206/02/0617 Institutional research plan: CEZ:AV0Z60050516 Keywords : vegetation succession * climate change * plant invasions Subject RIV: EF - Botanics Impact factor: 3.053, year: 2005

  20. Enhanced shoot investment makes invasive plants exhibit growth advantages in high nitrogen conditions.

    Science.gov (United States)

    Liu, X A; Peng, Y; Li, J J; Peng, P H

    2018-03-12

    Resource amendments commonly promote plant invasions, raising concerns over the potential consequences of nitrogen (N) deposition; however, it is unclear whether invaders will benefit from N deposition more than natives. Growth is among the most fundamental inherent traits of plants and thus good invaders may have superior growth advantages in response to resource amendments. We compared the growth and allocation between invasive and native plants in different N regimes including controls (ambient N concentrations). We found that invasive plants always grew much larger than native plants in varying N conditions, regardless of growth- or phylogeny-based analyses, and that the former allocated more biomass to shoots than the latter. Although N addition enhanced the growth of invasive plants, this enhancement did not increase with increasing N addition. Across invasive and native species, changes in shoot biomass allocation were positively correlated with changes in whole-plant biomass; and the slope of this relationship was greater in invasive plants than native plants. These findings suggest that enhanced shoot investment makes invasive plants retain a growth advantage in high N conditions relative to natives, and also highlight that future N deposition may increase the risks of plant invasions.

  1. Antiulcer properties of fruits and vegetables: A mechanism based perspective.

    Science.gov (United States)

    Harsha, Choudhary; Banik, Kishore; Bordoloi, Devivasha; Kunnumakkara, Ajaikumar B

    2017-10-01

    Gastric ulcer is the damage caused to mucosal layer of the stomach under the action of various factors like high levels of acid and pepsin, invasion by Helicobacter pylori, etc. Although most cases have been controlled and the rate of ulcer occurrence has reduced over the last few decades, gastric ulcer still holds a prime concern today. A range of palliative medicines comprising proton pump inhibitors, H2 receptor antagonists, COX-2 inhibitors (coxibs) is widely in use and patients have also been administered with acid suppression therapies. But these remedies aggravate the condition of patients causing severe side effects, or rather impart temporary relief. Therefore, it is highly imperative to develop safe and effective therapies for the treatment of gastric ulcer. Nature provides us various fruits and vegetables that can combat gastric ulcer through multiple mechanisms; predominantly via antioxidant, anti-inflammatory, antisecretory, antimicrobial, anticholinergic and cytoprotective activity, inhibition of small intestinal propulsion etc. Various phytochemicals from fruits and vegetables such as phenolics, flavonoids, tannins and saponins play a vital role in the prevention and cure of gastric ulcer. This review is a compendium of all fruits and vegetables known for their profound antiulcer effect and their underlying mechanisms of action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Herbicides: an unexpected ally for native plants in the war against invasive species

    Science.gov (United States)

    Andrea Watts; Tim Harrington; Dave Peter

    2015-01-01

    Herbicides are primarily used for protecting agricultural crops from weeds and controlling vegetation competition in newly planted forest stands. Yet for over 40 years, they have also proven useful in controlling invasive plant species in natural areas. Nonnative invasive plant species, if not controlled, can displace native species and disrupt an ecosystem by changing...

  3. A human breast cell model of pre-invasive to invasive transition

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Rizki, Aylin; Weaver, Valerie M.; Lee, Sun-Young; Rozenberg, Gabriela I.; Chin, Koei; Myers, Connie A.; Bascom, Jamie L.; Mott, Joni D.; Semeiks, Jeremy R.; Grate, Leslie R.; Mian, I. Saira; Borowsky, Alexander D.; Jensen, Roy A.; Idowu, Michael O.; Chen, Fanqing; Chen, David J.; Petersen, Ole W.; Gray, Joe W.; Bissell, Mina J.

    2008-03-10

    A crucial step in human breast cancer progression is the acquisition of invasiveness. There is a distinct lack of human cell culture models to study the transition from pre-invasive to invasive phenotype as it may occur 'spontaneously' in vivo. To delineate molecular alterations important for this transition, we isolated human breast epithelial cell lines that showed partial loss of tissue polarity in three-dimensional reconstituted-basement membrane cultures. These cells remained non-invasive; however, unlike their non-malignant counterparts, they exhibited a high propensity to acquire invasiveness through basement membrane in culture. The genomic aberrations and gene expression profiles of the cells in this model showed a high degree of similarity to primary breast tumor profiles. The xenograft tumors formed by the cell lines in three different microenvironments in nude mice displayed metaplastic phenotypes, including squamous and basal characteristics, with invasive cells exhibiting features of higher grade tumors. To find functionally significant changes in transition from pre-invasive to invasive phenotype, we performed attribute profile clustering analysis on the list of genes differentially expressed between pre-invasive and invasive cells. We found integral membrane proteins, transcription factors, kinases, transport molecules, and chemokines to be highly represented. In addition, expression of matrix metalloproteinases MMP-9,-13,-15,-17 was up regulated in the invasive cells. Using siRNA based approaches, we found these MMPs to be required for the invasive phenotype. This model provides a new tool for dissection of mechanisms by which pre-invasive breast cells could acquire invasiveness in a metaplastic context.

  4. Uptake of radionuclides by vegetation at a High Arctic location

    International Nuclear Information System (INIS)

    Dowdall, M.; Gwynn, J.P.; Moran, C.; O'Dea, J.; Davids, C.; Lind, B.

    2005-01-01

    Radionuclide levels in vegetation from a High Arctic location were studied and compared to in situ soil concentrations. Levels of the anthropogenic radionuclide 137 Cs and the natural radionuclides 40 K, 238 U, 226 Ra and 232 Th are discussed and transfer factor (TF) values and aggregated transfer (Tag) values are calculated for vascular plants. Levels of 137 Cs in vegetation generally followed the order mosses > lichen > vascular plants. The uptake of 137 Cs in vascular plants showed an inverse relationship with the uptake of 40 K, with 137 Cs TF and Tag values generally higher than 40 K TF and Tag values. 40 K activity concentrations in all vegetation showed little correlation to associated soil concentrations, while the uptake of 238 U, 226 Ra and 232 Th by vascular and non-vascular plants was generally low. - Uptake of the anthropogenic radionuclide 137 Cs is highest for moss species

  5. Satellite-Based Assessment of the spatial extent of Aquatic Vegetation in Lake Victoria

    Science.gov (United States)

    Clark, W.; Aligeti, N.; Jeyaprakash, T.; Martins, M.; Stodghill, J.; Winstanley, H.

    2011-12-01

    Lake Victoria in Africa is the second largest freshwater lake in the world and is known for its abundance of aquatic wildlife. In particular over 200 different fish species are caught and sold by local fisherman. The lake is a major contributor to the local economy as a corridor of transportation, source of drinking water, and source of hydropower. However, the invasion of aquatic vegetation such as water hyacinth in the lake has disrupted each of these markets. Aquatic vegetation now covers a substantial area of the coastline blocking waterways, disrupting hydropower, hindering the collection of drinking water and decreasing the profitability of fishing. The vegetation serves as a habitat for disease carrying mosquitoes as well as snakes and snails that spread the parasitic disease bilharzia. The current control measures of invasive aquatic vegetation rely on biological, chemical and mechanical control. The objective of this study was to utilize remote sensing to map aquatic vegetation within Lake Victoria from 2000 to 2011. MODIS, Landsat 4-5TM, and Landsat 7-ETM imagery was employed to perform change detections in vegetation and identify the extent of aquatic vegetation throughout the years. The efficiency of containment efforts were evaluated and ideal time for application of such efforts were suggested. A methodology for aquatic vegetation surveillance was created. The results of this project were presented as a workshop to the Lake Victoria Fisheries Organization, SERVIR, and other partner organizations. The workshop provided instruction into the use of NASA and other satellite derived products. Time series animations of the spatial extent of aquatic vegetation within the lake were created. By identifying seasons of decreased aquatic vegetation, ideal times to employ control efforts were identified. SERVIR will subsequently utilize the methodologies and mapping results of this study to develop operational aquatic vegetation surveillance for Lake Victoria.

  6. Unconventional gas development facilitates plant invasions.

    Science.gov (United States)

    Barlow, Kathryn M; Mortensen, David A; Drohan, Patrick J; Averill, Kristine M

    2017-11-01

    Vegetation removal and soil disturbance from natural resource development, combined with invasive plant propagule pressure, can increase vulnerability to plant invasions. Unconventional oil and gas development produces surface disturbance by way of well pad, road, and pipeline construction, and increased traffic. Little is known about the resulting impacts on plant community assembly, including the spread of invasive plants. Our work was conducted in Pennsylvania forests that overlay the Marcellus and Utica shale formations to determine if invasive plants have spread to edge habitat created by unconventional gas development and to investigate factors associated with their presence. A piecewise structural equation model was used to determine the direct and indirect factors associated with invasive plant establishment on well pads. The model included the following measured or calculated variables: current propagule pressure on local access roads, the spatial extent of the pre-development road network (potential source of invasive propagules), the number of wells per pad (indicator of traffic density), and pad age. Sixty-one percent of the 127 well pads surveyed had at least one invasive plant species present. Invasive plant presence on well pads was positively correlated with local propagule pressure on access roads and indirectly with road density pre-development, the number of wells, and age of the well pad. The vast reserves of unconventional oil and gas are in the early stages of development in the US. Continued development of this underground resource must be paired with careful monitoring and management of surface ecological impacts, including the spread of invasive plants. Prioritizing invasive plant monitoring in unconventional oil and gas development areas with existing roads and multi-well pads could improve early detection and control of invasive plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Reproductive biology and early establishment of Pinus elliottii var. elliottii in Brazilian sandy coastal plain vegetation: implications for biological invasion

    Directory of Open Access Journals (Sweden)

    Fernando Campanhã Bechara

    2013-04-01

    Full Text Available Pinus is the most invasive woody taxon, exceeded only by herbaceous plants. This study reports the reproductive biology and early establishment of Pinus elliottii Engelm. var. elliottii, describing its invasive properties in a protected natural area of the Brazilian coastal sandy plains. We evaluated the seed germination and rain, longevity of seed viability and the initial dynamics of the seedlings of Pinus elliottii var elliottii through field and laboratory experiments. We recorded a continuous seed rain of about 204.0 viable seeds m- 2 per year, with a 90 % germination rate. The seeds exhibited a low longevity of viability in the soil and a dense, permanent seedling bank that may explain the high levels of pine invasion. The environmental impact caused by the pine's biological invasion suggests the recommendation for its immediate eradication, together with a restoration plan to restitute the native biodiversity gradually.

  8. Invasive plants often emanate from southern gardens

    Science.gov (United States)

    J.H. Miller; A. Miller

    2009-01-01

    Did you know that heavenly bamboo, thorny olive, English ivy, Boston fern, privets and many garden favorites are invading forests to their and thus our detriment? Garden clubs should band together to protect our natural vegetation against invasive plants that take over the habitat of the native flora. Often called non-native, exotic, or noxious weeds, they...

  9. High-latitude steppe vegetation and the mineral nutrition of Pleistocene herbivores

    Science.gov (United States)

    Davydov, S. P.; Davydova, A.; Makarevich, R.; Loranty, M. M.; Boeskorov, G.

    2014-12-01

    High-latitude steppes were widespread and zonal in the Late Pleistocene and formed a landscape basis for the Mammoth Biome. Now the patches of these steppes survived on steep slopes under southern aspects. These steppes serve as unique information sources about the Late Pleistocene "Mammoth" steppe. Numerous data obtained by palynological, carpological, and DNA analysis of plant remains from feces and stomach contents of Pleistocene herbivore mummies, as well as from buried soils and enclosing deposits show that they are similar to modern steppe plant assemblage in taxa composition. Plant's nutrient concentrations are of fundamental importance across Pleistocene grass-rich ecosystems because of their role in the support of large herbivores. The average weight of an adult mammoth skeleton (about 0.5 tons) and of a woolly rhinoceros (about 0.2 tons) clearly suggests this. Detailed studies on fossil bone remains showed mineral deficiency in large Pleistocene herbivores. A three-year study of ash and mineral contents of two types of relict steppe vegetation at the Kolyma Lowland, Arctic Siberia has been carried out. Nowadays refugia of similar vegetation are located not far (1 - 15km) from the Yedoma permafrost outcrops were abundant fossil remains are found. Dominant species of the steppe vegetation were sampled. Preliminary studies indicate that the ash-content varied 1.5-2 times in speceies of steppe herbs. The Ca, P, Mg, K element contents was higher for most steppe species than in the local herbaceous vegetation, especially in Ca and P. One of the most important elements of the mineral nutrition, the phosphorus, was always found in higher concentrations in the steppe vegetation than in plants of recently dominant landscapes of the study area. It should be noted that the mineral nutrient content of the modern steppe vegetation of Siberian Arctic is comparable to that of the recent zonal steppe of Transbaikal Region. This study supports the hypothesis that

  10. Effects of flood inundation and invasion by Phalaris arundinacea on nitrogen cycling in an Upper Mississippi River floodplain forest

    Science.gov (United States)

    Swanson, Whitney; DeJager, Nathan R.; Strauss, Eric A.; Thomsen, Meredith

    2017-01-01

    Although floodplains are thought to serve as important buffers against nitrogen (N) transport to aquatic systems, frequent flooding and high levels of nutrient availability also make these systems prone to invasion by exotic plant species. Invasive plants could modify the cycling and availability of nutrients within floodplains, with effects that could feedback to promote the persistence of the invasive species and impact N export to riverine and coastal areas. We examined the effect of flooding on soil properties and N cycling at a floodplain site in Pool 8 of the Upper Mississippi River with 2 plant communities: mature native forest (Acer saccharinum) and patches of an invasive grass (Phalaris arundinacea). Plots were established within each vegetation type along an elevation gradient and sampled throughout the summers of 2013 and 2014. Spatial trends in flooding resulted in higher soil organic matter, porosity, and total nitrogen and carbon in low elevations. Nutrient processes and NH4+ and NO3− availability, however, were best explained by vegetation type and time after flooding. Phalaris plots maintained higher rates of nitrification and higher concentrations of available NH4+ and NO3−. These results suggest that invasion by Phalarismay make nitrogen more readily available and could help to reinforce this species' persistence in floodplain wetlands. They also raise the possibility that Phalaris may decrease floodplain N storage capacity and influence downstream transport of N to coastal zones.

  11. Hydraulic and Vegetative Models of Historic Environmental Conditions Isolate the Role of Riparian Vegetation in Inducing Channel Change

    Science.gov (United States)

    Manners, R.; Schmidt, J. C.; Wheaton, J. M.

    2011-12-01

    An enduring question in geomorphology is the role of riparian vegetation in inducing or exacerbating channel narrowing. It is typically difficult to isolate the role of vegetation in causing channel narrowing, because narrowing typically occurs where there are changes in stream flow, sediment supply, the invasion of non-native vegetation, and sometimes climate change. Therefore, linkages between changes in vegetation communities and changes in channel form are often difficult to identify. We took a mechanistic approach to isolate the role of the invasive riparian shrub tamarisk (Tamarix spp) in influencing channel narrowing in the Colorado River basin. Detailed geomorphic reconstructions of two sites on the Yampa and Green Rivers, respectively, in Dinosaur National Monument show that channel narrowing has been progressive and that tamarisk encroachment has also occurred; at the same time, dams have been constructed, diversions increased, and spring snowmelt runoff has been occurring earlier in spring. We simulated hydraulic and sediment transport conditions during the two largest floods of record -- 1984 and 2011. Two-dimensional hydraulic models were built to reflect these conditions and allowed us to perform sensitivity tests to determine the dominant determinants of the observed patterns of erosion and deposition. Channel and floodplain topography were constrained through detailed stratigraphic analysis, including precise dating of deposits based on dating of buried tamarisk plants in a series of floodplain trenches and pits. We also used historical air photos to establish past channel topography. To parameterize the influence of riparian vegetation, we developed a model that links detailed terrestrial laser scan (TLS) measurements of stand structure and its corresponding hydraulic roughness at the patch scale to reach-scale riparian vegetation patterns determined from airborne LiDaR (ALS). This model, in conjunction with maps of the ages and establishment

  12. Optimal Treatment for Intermediate- and High-Risk, Nonmuscle-Invasive Bladder Cancer

    Directory of Open Access Journals (Sweden)

    A.P.M. van der Meijden

    2006-01-01

    Full Text Available According to clinical and pathological factors the prognosis of a patient with non-muscle invasive bladder tumors can be assessed. The prognosis is determined by the likelihood of recurrence(30-70% and/or progression to muscle invasive bladder cancer(1-15%.Trans urethral resection of bladder tumors remains the initial therapy but adjuvant intravesical instillations are necessary.All patients benefit from a single immediate post operative instillation with a chemotherapeutic agent and for low risk tumors this is the optimal therapy.Patients with intermediate and high risk tumors need more intravesical chemo-or immunotherapy. Chemotherapy reduces recurrences but not progression. Intravesical immunotherapy(BCG prevents or delays progression. Patients at high risk for progression may need upfront cystectomy.

  13. Shade treatment affects structure and recovery of invasive C4 African grass Echinochloa pyramidalis.

    Science.gov (United States)

    López Rosas, Hugo; Moreno-Casasola, Patricia; Espejel González, Verónica E

    2015-03-01

    Echinochloa pyramidalis (Lam.) Hitchc. & Chase is an African grass with C4 photosynthesis, high biomass production, and high vegetative propagation that is tolerant to grazing and able to grow in flooded and dry conditions. Thus, it is highly invasive in tropical freshwater marshes where it is intentionally planted by ranchers to increase cattle production. This invasion is reducing plant biodiversity by increasing the invader's aerial coverage, changing wetland hydrology and causing soil physicochemical changes such as vertical accretion. Reducing the dominance of this species and increasing the density of native wetland species is a difficult, expensive, and time-consuming process. We applied a series of disturbance treatments aimed at eliminating E. pyramidalis and recovering the native vegetation of a partially invaded freshwater marsh. Treatments included physical (cutting, soil disking, transplanting individuals of the key native species Sagittaria lancifolia subsp. media (Micheli) Bogin, and/or reducing light with shade mesh) and/or chemical (spraying Round-Up™ herbicide) disturbances. At the end of the experiment, four of the five treatments used were effective in increasing the cover and biomass of native species and reducing that of E. pyramidalis. The combination of these treatments should be used to generate a proposal for the restoration of tropical wetlands invaded by non-native grasses. A promising treatment is using soil disked to soften the soil and destroy belowground structures such as roots and rhizomes. This treatment would be more promising if combined with the use of shade cloth. If it is desirable not to impact the soil or if there is not enough budget to make an effort to include active restoration disking soil, the use of shade cloth will suffice, although the recovery of native vegetation will be slower.

  14. Control of invasive weeds with prescribed burning

    Science.gov (United States)

    DiTomaso, Joseph M.; Brooks, Matthew L.; Allen, Edith B.; Minnich, Ralph; Rice, Peter M.; Kyser, Guy B.

    2006-01-01

    Prescribed burning has primarily been used as a tool for the control of invasive late-season annual broadleaf and grass species, particularly yellow starthistle, medusahead, barb goatgrass, and several bromes. However, timely burning of a few invasive biennial broadleaves (e.g., sweetclover and garlic mustard), perennial grasses (e.g., bluegrasses and smooth brome), and woody species (e.g., brooms and Chinese tallow tree) also has been successful. In many cases, the effectiveness of prescribed burning can be enhanced when incorporated into an integrated vegetation management program. Although there are some excellent examples of successful use of prescribed burning for the control of invasive species, a limited number of species have been evaluated. In addition, few studies have measured the impact of prescribed burning on the long-term changes in plant communities, impacts to endangered plant species, effects on wildlife and insect populations, and alterations in soil biology, including nutrition, mycorrhizae, and hydrology. In this review, we evaluate the current state of knowledge on prescribed burning as a tool for invasive weed management.

  15. Satellite-based annual evaporation estimates of invasive alien plant ...

    African Journals Online (AJOL)

    ... of densely-invaded riparian areas is likely more pronounced. We concluded that the clearing of IAPs by the WFW programme has a positive effect on the availability of water resources through a reduction in ET. Keywords: invasive alien plants; indigenous vegetation; remote sensing; water use; evapotranspiration; SEBAL; ...

  16. Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions

    Science.gov (United States)

    Wilson, John R.U.; Gairifo, Carla; Gibson, Michelle R.; Arianoutsou, Margarita; Bakar, Baki B.; Baret, Stephane; Celesti-Grapow, Laura; DiTomaso, Joseph M.; Dufour-Dror, Jean-Marc; Kueffer, Christoph; Kull, Christian A.; Hoffman, John H.; Impson, Fiona A.C.; Loope, Lloyd L.; Marchante, Elizabete; Harchante, Helia; Moore, Joslin L.; Murphy, Daniel J.; Tassin, Jacques; Witt, Arne; Zenni, Rafael D.; Richardson, David M.

    2011-01-01

    Aim Many Australian Acacia species have been planted around the world, some are highly valued, some are invasive, and some are both highly valued and invasive. We review global efforts to minimize the risk and limit the impact of invasions in this widely used plant group. Location Global. Methods Using information from literature sources, knowledge and experience of the authors, and the responses from a questionnaire sent to experts around the world, we reviewed: (1) a generalized life cycle of Australian acacias and how to control each life stage, (2) different management approaches and (3) what is required to help limit or prevent invasions. Results Relatively few Australian acacias have been introduced in large numbers, but all species with a long and extensive history of planting have become invasive somewhere. Australian acacias, as a group, have a high risk of becoming invasive and causing significant impacts as determined by existing assessment schemes. Moreover, in most situations, long-lived seed banks mean it is very difficult to control established infestations. Control has focused almost exclusively on widespread invaders, and eradication has rarely been attempted. Classical biological control is being used in South Africa with increasing success. Main conclusions A greater emphasis on pro-active rather than reactive management is required given the difficulties managing established invasions of Australian acacias. Adverse effects of proposed new introductions can be minimized by conducting detailed risk assessments in advance, planning for on-going monitoring and management, and ensuring resources are in place for long-term mitigation. Benign alternatives (e.g. sterile hybrids) could be developed to replace existing utilized taxa. Eradication should be set as a management goal more often to reduce the invasion debt. Introducing classical biological control agents that have a successful track-record in South Africa to other regions and identifying new

  17. Predicting spread of invasive exotic plants into de-watered reservoirs following dam removal on the Elwha River, Olympic National Park, Washington

    Science.gov (United States)

    Woodward, Andrea; Torgersen, Christian E.; Chenoweth, Joshua; Beirne, Katherine; Acker, Steve

    2011-01-01

    The National Park Service is planning to start the restoration of the Elwha River ecosystem in Olympic National Park by removing two high head dams beginning in 2011. The potential for dispersal of exotic plants into dewatered reservoirs following dam removal, which would inhibit restoration of native vegetation, is of great concern. We focused on predicting long-distance dispersal of invasive exotic plants rather than diffusive spread because local sources of invasive species have been surveyed. We included the long-distance dispersal vectors: wind, water, birds, beavers, ungulates, and users of roads and trails. Using information about the current distribution of invasive species from two surveys, various geographic information system techniques and models, and statistical methods, we identified high-priority areas for Park staff to treat prior to dam removal, and areas of the dewatered reservoirs at risk after dam removal.

  18. Hyperspectral remote sensing of vegetation

    Science.gov (United States)

    Thenkabail, Prasad S.; Lyon, John G.; Huete, Alfredo

    2011-01-01

    Hyperspectral narrow-band (or imaging spectroscopy) spectral data are fast emerging as practical solutions in modeling and mapping vegetation. Recent research has demonstrated the advances in and merit of hyperspectral data in a range of applications including quantifying agricultural crops, modeling forest canopy biochemical properties, detecting crop stress and disease, mapping leaf chlorophyll content as it influences crop production, identifying plants affected by contaminants such as arsenic, demonstrating sensitivity to plant nitrogen content, classifying vegetation species and type, characterizing wetlands, and mapping invasive species. The need for significant improvements in quantifying, modeling, and mapping plant chemical, physical, and water properties is more critical than ever before to reduce uncertainties in our understanding of the Earth and to better sustain it. There is also a need for a synthesis of the vast knowledge spread throughout the literature from more than 40 years of research.

  19. Passive reestablishment of riparian vegetation following removal of invasive knotweed (Polygonum)

    Science.gov (United States)

    Shannon M. Claeson; Peter A. Bisson

    2013-01-01

    Japanese knotweed and congeners are invasive to North America and Europe and spread aggressively along rivers establishing dense monotypic stands, thereby reducing native riparian plant diversity, structure, and function. Noxious weed control programs attempt to eradicate the knotweed with repeated herbicide applications under the assumption that the system will...

  20. Intraspecies differenes in phenotypic plasticity: Invasive versus non-invasive populations of Ceratophyllum demersum

    DEFF Research Database (Denmark)

    Hyldgaard, Benita; Brix, Hans

    2012-01-01

    High phenotypic plasticity has been hypothesized to affect the invasiveness of plants, as high plasticity may enlarge the breath of environments in which the plants can survive and reproduce. Here we compare the phenotypic plasticity of invasive and non-invasive populations of the same species...... hypothesized that the phenotypic plasticity in fitness-related traits like growth and photosynthesis were higher in the invasive than in the non-invasive population. The invasive population acclimated to elevated temperatures through increased rates of photosynthesis (range: Pamb: 8–452 mol O2 g−1 DM h−1......-harvesting complex. Hence, the invasive population of C. demersum from New Zealand had higher phenotypic plasticity in response to temperature than the non-invasive Danish population. This might be the result of genetic evolution since its introduction to New Zealand five decades ago, but further studies are needed...

  1. Food safety issues of high pressure processed fruit/vegetable juices

    Czech Academy of Sciences Publication Activity Database

    Houška, M.; Strohalm, J.; Totušek, J.; Tříska, Jan; Vrchotová, Naděžda; Gabrovská, D.; Otová, B.; Gresová, P.

    2007-01-01

    Roč. 27, č. 1 (2007), s. 157-162 ISSN 0895-7959 R&D Projects: GA MZe QF3287 Institutional research plan: CEZ:AV0Z60870520 Keywords : Vegetable juices * High pressure processing * Food safety * Anti-mutagenic activity Subject RIV: GM - Food Processing Impact factor: 0.840, year: 2007

  2. Skin carotenoids as biomarker for vegetable and fruit intake: Validation of the reflection-spectroscopy based “Veggie Meter”

    Science.gov (United States)

    Skin is a relatively stable storage medium for carotenoids; non-invasive optical measurements of carotenoids in this tissue via Resonance Raman spectroscopy (RRS) serve as a non-invasive biomarker for fruit and vegetable (F/V) intake. The RRS method has been validated with HPLC-based measurements of...

  3. Updated vegetation information in high resolution WRF simulations

    DEFF Research Database (Denmark)

    Nielsen, Joakim Refslund; Dellwik, Ebba; Hahmann, Andrea N.

    2013-01-01

    modify the energy distribution at the land surface. In weather and climate models it is important to represent the vegetation variability accurately to obtain reliable results. The weather research and forecasting (WRF) model uses green vegetation fraction (GVF) time series to represent vegetation...... seasonality. The GVF of each grid cell is additionally used to scale other parameters such as LAI, roughness, emissivity and albedo within predefined intervals. However, the default GYP used by WRF does not reflect recent climatic changes or change in management practices since it was derived more than 20...

  4. Late Holocene Vegetation and Climate at the Mid Altitudes of the Western Himalaya

    Science.gov (United States)

    ROY, I.; Ranhotra, P. S.; Shekhar, M.; Bhattacharyya, A.; Agrawal, S.; Kumar, P.; Patil, S. K.; Pal, A. K.

    2017-12-01

    The palynological, stable carbon isotope and magnetic susceptibility studies of a 42 cm deep sedimentary core collected from palaeolacustrine deposit at the Nachiketa area ( 2,400 m amsl) near Uttarkashi of Western Himalaya provides the late Holocene vegetation and climatic scenario of the area. Between 3200 to 1650 cal yrs BP, the high susceptibility (χlf) values along with the good frequency of fern spores might indicate the prevailing moist conditions due to high summer monsoon with good influx of the sediments. However, the low pollen concentration between 3200 to 2680 cal years BP might be due to less ground vegetation cover or poor pollen preservation in the sediments. The well represented fern spores along with the other ground vegetation taxa in the period from 1650 cal yrs BP to 600 cal yrs BP also indicates the continuous prevalence of moist conditions that can be related with the globally known medieval warm period (MWP), supported by the δ13C values around -24‰ during this time and the high χLF values. Moreover, the good representation of Cyperaceae pollen suggests the in-filling of the lake followed by the invasion of ground vegetation viz. Cheno/Ams, Apiaceae, Poaceae etc. The good pollen frequency of broadleaved taxa viz. Quercus and Alnus also supports the moist conditions. Since 600 cal years BP the lowered χLF values signifies reduced input from the surrounding suggesting the filling of the lake. The marked increase in the pollen frequency of Cheno/Ams with low values of fern spores suggest less moist conditions with reduced summer monsoon that can be related to Little Ice Age (LIA) episode. Also the low negative δ13C values (around -21‰) indicates the less ground moisture supporting the C4 taxa. The Quercus and Alnus also reduced in their pollen presence. Whereas the Pinus pollen increased gradually since nearly before 410 cal years BP till recent showing the increased invasion of this taxa to near proximity of the area. The

  5. Investing in rangeland restoration in the Arid West, USA: countering the effects of an invasive weed on the long-term fire cycle.

    Science.gov (United States)

    Epanchin-Niell, Rebecca; Englin, Jeffrey; Nalle, Darek

    2009-01-01

    In large areas of the arid western United States, much of which are federally managed, fire frequencies and associated management costs are escalating as flammable, invasive cheatgrass (Bromus tectorum) increases its stronghold. Cheatgrass invasion and the subsequent increase in fire frequency result in the loss of native vegetation, less predictable forage availability for livestock and wildlife, and increased costs and risk associated with firefighting. Revegetation following fire on land that is partially invaded by cheatgrass can reduce both the dominance of cheatgrass and its associated high fire rate. Thus restoration can be viewed as an investment in fire-prevention and, if native seed is used, an investment in maintaining native vegetation on the landscape. Here we develop and employ a Markov model of vegetation dynamics for the sagebrush steppe ecosystem to predict vegetation change and management costs under different intensities and types of post-fire revegetation. We use the results to estimate the minimum total cost curves for maintaining native vegetation on the landscape and for preventing cheatgrass dominance. Our results show that across a variety of model parameter possibilities, increased investment in post-fire revegetation reduces long-term fire management costs by more than enough to offset the costs of revegetation. These results support that a policy of intensive post-fire revegetation will reduce long-term management costs for this ecosystem, in addition to providing environmental benefits. This information may help justify costs associated with revegetation and raise the priority of restoration in federal land budgets.

  6. Aldehyde dehydrogenase 1A1 circumscribes high invasive glioma cells and predicts poor prognosis

    Science.gov (United States)

    Xu, Sen-Lin; Liu, Sha; Cui, Wei; Shi, Yu; Liu, Qin; Duan, Jiang-Jie; Yu, Shi-Cang; Zhang, Xia; Cui, You-Hong; Kung, Hsiang-Fu; Bian, Xiu-Wu

    2015-01-01

    Glioma is the most aggressive brain tumor with high invasiveness and poor prognosis. More reliable, sensitive and practical biomarkers to reveal glioma high invasiveness remain to be explored for the guidance of therapy. We herein evaluated the diagnostic and prognostic value of aldehyde dehydrogenase 1A1 (ALDH1A1) in the glioma specimens from 237 patients, and found that ADLH1A1 was frequently overexpressed in the high-grade glioma (WHO grade III-IV) as compared to the low-grade glioma (WHO grade I-II) patients. The tumor cells with ALDH1A1 expression were more abundant in the region between tumor and the borderline of adjacent tissue as compared to the central part of the tumor. ALDH1A1 overexpression was associated with poor differentiation and dismal prognosis. Notably, the overall and disease-free survivals of the patients who had ALDH1A1+ tumor cells sparsely located in the adjacent tissue were much worse. Furthermore, ALDH1A1 expression was correlated with the “classical-like” (CL) subtype as we examined GBM specimens from 72 patients. Multivariate Cox regression analysis revealed that ALDH1A1 was an independent marker for glioma patients’ outcome. Mechanistically, both in vitro and in vivo studies revealed that ALDH1A1+ cells isolated from either a glioblastoma cell line U251 or primary glioblastoma cells displayed significant invasiveness, clonogenicity, and proliferation as compared to ALDH1A1- cells, due to increased levels of mRNA and protein for matrix metalloproteinase 2, 7 and 9 (MMP2, MMP7 and MMP9). These results indicate that ALDH1A1+ cells contribute to the progression of glioma including invasion, proliferation and poor prognosis, and suggest that targeting ALDH1A1 may have important implications for the treatment of highly invasive glioma. PMID:26101711

  7. Conservation of Sand Dune Vegetation in Coastal areas of the Valencian Region (Spain); Estado de conservacion de la vegetacion dunar en las costas de la comunidad Valenciana

    Energy Technology Data Exchange (ETDEWEB)

    Albertos, B.; San Miguel, E.; Draper, I.; Garilleti, R.; Lara, F.; Varela, J. M.

    2010-07-01

    The state of conservation of the coastal dune vegetation in Valencia region has been assessed within a survey of the vegetal communities present in these systems.The conservation status has been evaluated through a qualitative scale which integrates criteria such as dune extension, structure and diversity of the vegetal communities, level of ruderalization, presence of invasive species, and floristic rarity. Special attention has been paid to the usual aggressions to this type of ecosystem and the situation of the most aggressive invasive plants. (Author) 15 refs.

  8. Predicting summer site occupancy for an invasive species, the common brushtail possum (Trichosurus vulpecula, in an urban environment.

    Directory of Open Access Journals (Sweden)

    Amy L Adams

    Full Text Available Invasive species are often favoured in fragmented, highly-modified, human-dominated landscapes such as urban areas. Because successful invasive urban adapters can occupy habitat that is quite different from that in their original range, effective management programmes for invasive species in urban areas require an understanding of distribution, habitat and resource requirements at a local scale that is tailored to the fine-scale heterogeneity typical of urban landscapes. The common brushtail possum (Trichosurus vulpecula is one of New Zealand's most destructive invasive pest species. As brushtail possums traditionally occupy forest habitat, control in New Zealand has focussed on rural and forest habitats, and forest fragments in cities. However, as successful urban adapters, possums may be occupying a wider range of habitats. Here we use site occupancy methods to determine the distribution of brushtail possums across five distinguishable urban habitat types during summer, which is when possums have the greatest impacts on breeding birds. We collected data on possum presence/absence and habitat characteristics, including possible sources of supplementary food (fruit trees, vegetable gardens, compost heaps, and the availability of forest fragments from 150 survey locations. Predictive distribution models constructed using the programme PRESENCE revealed that while occupancy rates were highest in forest fragments, possums were still present across a large proportion of residential habitat with occupancy decreasing as housing density increased and green cover decreased. The presence of supplementary food sources was important in predicting possum occupancy, which may reflect the high nutritional value of these food types. Additionally, occupancy decreased as the proportion of forest fragment decreased, indicating the importance of forest fragments in determining possum distribution. Control operations to protect native birds from possum predation in

  9. Mapping invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR satellite imagery for decision support

    Science.gov (United States)

    Bourgeau-Chavez, Laura L.; Kowalski, Kurt P.; Carlson Mazur, Martha L.; Scarbrough, Kirk A.; Powell, Richard B.; Brooks, Colin N.; Huberty, Brian; Jenkins, Liza K.; Banda, Elizabeth C.; Galbraith, David M.; Laubach, Zachary M.; Riordan, Kevin

    2013-01-01

    The invasive variety of Phragmites australis (common reed) forms dense stands that can cause negative impacts on coastal Great Lakes wetlands including habitat degradation and reduced biological diversity. Early treatment is key to controlling Phragmites, therefore a map of the current distribution is needed. ALOS PALSAR imagery was used to produce the first basin-wide distribution map showing the extent of large, dense invasive Phragmites-dominated habitats in wetlands and other coastal ecosystems along the U.S. shore of the Great Lakes. PALSAR is a satellite imaging radar sensor that is sensitive to differences in plant biomass and inundation patterns, allowing for the detection and delineation of these tall (up to 5 m), high density, high biomass invasive Phragmites stands. Classification was based on multi-season ALOS PALSAR L-band (23 cm wavelength) HH and HV polarization data. Seasonal (spring, summer, and fall) datasets were used to improve discrimination of Phragmites by taking advantage of phenological changes in vegetation and inundation patterns over the seasons. Extensive field collections of training and randomly selected validation data were conducted in 2010–2011 to aid in mapping and for accuracy assessments. Overall basin-wide map accuracy was 87%, with 86% producer's accuracy and 43% user's accuracy for invasive Phragmites. The invasive Phragmites maps are being used to identify major environmental drivers of this invader's distribution, to assess areas vulnerable to new invasion, and to provide information to regional stakeholders through a decision support tool.

  10. Native plant community response to alien plant invasion and removal

    Directory of Open Access Journals (Sweden)

    Jara ANDREU

    2011-01-01

    Full Text Available Given the potential ecological impacts of invasive species, removal of alien plants has become an important management challenge and a high priority for environmental managers. To consider that a removal effort has been successful requires both, the effective elimination of alien plants and the restoration of the native plant community back to its historical composition and function. We present a conceptual framework based on observational and experimental data that compares invaded, non-invaded and removal sites to quantify invaders’ impacts and native plant recover after their removal. We also conduct a meta-analysis to quantitatively evaluate the impacts of plant invaders and the consequences of their removal on the native plant community, across a variety of ecosystems around the world. Our results that invasion by alien plants is responsible for a local decline in native species richness and abundance. Our analysis also provides evidence that after removal, the native vegetation has the potential to recover to a pre-invasion target state. Our review reveal that observational and experimental approaches are rarely used in concert, and that reference sites are scarcely employed to assess native species recovery after removal. However, we believe that comparing invaded, non-invaded and removal sites offer the opportunity to obtain scientific information with relevance for management.

  11. Chromosomal imbalance in the progression of high-risk non-muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Zieger, Karsten; Wiuf, Carsten; Jensen, Klaus Møller-Ernst; Ørntoft, Torben Falck; Dyrskjøt, Lars

    2009-01-01

    Non-muscle invasive bladder neoplasms with invasion of the lamina propria (stage T1) or high grade of dysplasia are at 'high risk' of progression to life-threatening cancer. However, the individual course is difficult to predict. Chromosomal instability (CI) is associated with high tumor stage and grade, and possibly with the risk of progression. To investigate the relationship between CI and subsequent disease progression, we performed a case-control-study of 125 patients with 'high-risk' non-muscle invasive bladder neoplasms, 67 with later disease progression, and 58 with no progression. Selection criteria were conservative (non-radical) resections and full prospective clinical follow-up (> 5 years). We investigated primary lesions in 59, and recurrent lesions in 66 cases. We used Affymetrix GeneChip ® Mapping 10 K and 50 K SNP microarrays to evaluate genome wide chromosomal imbalance (loss-of-heterozygosity and DNA copy number changes) in 48 representative tumors. DNA copy number changes of 15 key instability regions were further investigated using QPCR in 101 tumors (including 25 tumors also analysed on 50 K SNP microarrays). Chromosomal instability did not predict any higher risk of subsequent progression. Stage T1 and high-grade tumors had generally more unstable genomes than tumors of lower stage and grade (mostly non-primary tumors following a 'high-risk' tumor). However, about 25% of the 'high-risk' tumors had very few alterations. This was independent of subsequent progression. Recurrent lesions represent underlying field disease. A separate analysis of these lesions did neither reflect any difference in the risk of progression. Of specific chromosomal alterations, a possible association between loss of chromosome 8p11 and the risk of progression was found. However, the predictive value was limited by the heterogeneity of the changes. Chromosomal instability (CI) was associated with 'high risk' tumors

  12. Granivory of invasive, naturalized, and native plants in communities differentially susceptible to invasion.

    Science.gov (United States)

    Connolly, B M; Pearson, D E; Mack, R N

    2014-07-01

    Seed predation is an important biotic filter that can influence abundance and spatial distributions of native species through differential effects on recruitment. This filter may also influence the relative abundance of nonnative plants within habitats and the communities' susceptibility to invasion via differences in granivore identity, abundance, and food preference. We evaluated the effect of postdispersal seed predators on the establishment of invasive, naturalized, and native species within and between adjacent forest and steppe communities of eastern Washington, USA that differ in severity of plant invasion. Seed removal from trays placed within guild-specific exclosures revealed that small mammals were the dominant seed predators in both forest and steppe. Seeds of invasive species (Bromus tectorum, Cirsium arvense) were removed significantly less than the seeds of native (Pseudoroegneria spicata, Balsamorhiza sagittata) and naturalized (Secale cereale, Centaurea cyanus) species. Seed predation limited seedling emergence and establishment in both communities in the absence of competition in a pattern reflecting natural plant abundance: S. cereale was most suppressed, B. tectorum was least suppressed, and P. spicata was suppressed at an intermediate level. Furthermore, seed predation reduced the residual seed bank for all species. Seed mass correlated with seed removal rates in the forest and their subsequent effects on plant recruitment; larger seeds were removed at higher rates than smaller seeds. Our vegetation surveys indicate higher densities and canopy cover of nonnative species occur in the steppe compared with the forest understory, suggesting the steppe may be more susceptible to invasion. Seed predation alone, however, did not result in significant differences in establishment for any species between these communities, presumably due to similar total small-mammal abundance between communities. Consequently, preferential seed predation by small

  13. [Co-composting high moisture vegetable waste and flower waste in a sequential fed operation].

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-11-01

    Co-composting of high moisture vegetable wastes (celery and cabbage) and flower wastes (carnation) were studied in a sequential fed bed. The preliminary materials of composting were celery and carnation wastes. The sequential fed materials of composting were cabbage wastes and were fed every 4 days. Moisture content of mixture materials was between 60% and 70%. Composting was done in an aerobic static bed of composting based temperature feedback and control via aeration rate regulation. Aeration was ended when temperature of the pile was about 40 degrees C. Changes of composting of temperature, aeration rate, water content, organic matter, ash, pH, volume, NH4(+)-N, and NO3(-)-N were studied. Results show that co-composting of high moisture vegetable wastes and flower wastes, in a sequential fed aerobic static bed based temperature feedback and control via aeration rate regulation, can stabilize organic matter and removal water rapidly. The sequential fed operation are effective to overcome the difficult which traditional composting cannot applied successfully where high moisture vegetable wastes in more excess of flower wastes, such as Dianchi coastal.

  14. Vegetation Fraction Mapping with High Resolution Multispectral Data in the Texas High Plains

    Science.gov (United States)

    Oshaughnessy, S. A.; Gowda, P. H.; Basu, S.; Colaizzi, P. D.; Howell, T. A.; Schulthess, U.

    2010-12-01

    Land surface models use vegetation fraction to more accurately partition latent, sensible and soil heat fluxes from a partially vegetated surface as it affects energy and moisture exchanges between the earth’s surface and atmosphere. In recent years, there is interest to integrate vegetation fraction data into intelligent irrigation scheduling systems to avoid false positive signals to irrigate. Remote sensing can facilitate the collection of vegetation fraction information on individual fields over large areas in a timely and cost-effective manner. In this study, we developed and evaluated a set of vegetation fraction models using least square regression and artificial neural network (ANN) techniques using RapidEye satellite data (6.5 m spatial resolution and on-demand temporal resolution). Four images were acquired during the 2010 summer growing season, covering bare soil to full crop cover conditions, over the USDA-ARS-Conservation and Production Research Laboratory in Bushland, Texas [350 11' N, 1020 06' W; 1,170 m elevation MSL]. Spectral signatures were extracted from 25 ground truth locations with geographic coordinates. Vegetation fraction information was derived from digital photos taken at the time of image acquisition using a supervised classification technique. Comparison of performance statistics indicate that ANN performed slightly better than least square regression models.

  15. Impact of invasive Rosa rugosa on the arthropod fauna of Danish yellow dunes

    DEFF Research Database (Denmark)

    Elleriis, Pernille; Pedersen, Morten Lauge; Toft, Søren

    2015-01-01

    monospecific shrubbery rich in large flowers. We predicted faunal responses according to the changes in resource availability and environmental conditions promoted by this particular invasive plant: increased populations of flower-visiting insects and species of the phytophagous and detritivorous guilds...... and diversity and increased dominance in the rose patches, due to reductions among xerotherm species. The results indicate that considerable faunistic impoverishment of thermophilic dune specialist species can be expected in the future if R. rugosa is allowed to continue its invasion across the dune habitat.......We compared the arthropod fauna of Rosa rugosa patches to the adjacent native yellow dune vegetation by pitfall trapping in the National Park Thy at the Danish North Sea coast. R. rugosa changes the vegetation from a dune grassland (dominated by Ammophila arenaria) poor in flowering plants to a low...

  16. Vegetation mapping from high-resolution satellite images in the heterogeneous arid environments of Socotra Island (Yemen)

    Science.gov (United States)

    Malatesta, Luca; Attorre, Fabio; Altobelli, Alfredo; Adeeb, Ahmed; De Sanctis, Michele; Taleb, Nadim M.; Scholte, Paul T.; Vitale, Marcello

    2013-01-01

    Socotra Island (Yemen), a global biodiversity hotspot, is characterized by high geomorphological and biological diversity. In this study, we present a high-resolution vegetation map of the island based on combining vegetation analysis and classification with remote sensing. Two different image classification approaches were tested to assess the most accurate one in mapping the vegetation mosaic of Socotra. Spectral signatures of the vegetation classes were obtained through a Gaussian mixture distribution model, and a sequential maximum a posteriori (SMAP) classification was applied to account for the heterogeneity and the complex spatial pattern of the arid vegetation. This approach was compared to the traditional maximum likelihood (ML) classification. Satellite data were represented by a RapidEye image with 5 m pixel resolution and five spectral bands. Classified vegetation relevés were used to obtain the training and evaluation sets for the main plant communities. Postclassification sorting was performed to adjust the classification through various rule-based operations. Twenty-eight classes were mapped, and SMAP, with an accuracy of 87%, proved to be more effective than ML (accuracy: 66%). The resulting map will represent an important instrument for the elaboration of conservation strategies and the sustainable use of natural resources in the island.

  17. Soil Seed Bank Dynamics in Tithonia diversifolia Dominated Fallowland Vegetation in Ile-Ife Area of Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Samson Olajide OKE

    2009-12-01

    Full Text Available The soil seedbank of Tithonia diversifolia, an invasive species which dominates open waste fallowland vegetation was studied. Two different roadside sites which vary in extent of open waste land were selected.The species composition of the established vegetation was assessed in the two diferent sites. Twenty top soil samples were collected at five different distances (15 cm, 30 cm, 45 cm, 60 cm, and 75 cm inwards away from each main road in dry and rainy seasons and the seed bank composition was determined by greenhouse germination over a 6 month period. The similarity between the composition of the seed bank flora and that of the established vegetation was low. The least and the highest emerged seedlings density was recorded in the 15 metres and 75 metres respectively inwards away from the main road in both seasons. The results of the seedlings emergence is a reflection of the extent of open waste land dominated by the invasive species due to human disturbance (road construction on both sites. Overall results suggest that the emergence of the species from the soil seed bank may be due to the impact of the invasive species Tithonia diversifolia on other plant species in the study environment.

  18. Danger to biodiversity of High Tatras by spread of invasive plant species

    International Nuclear Information System (INIS)

    Strba, P.; Gogolakova, A.

    2010-01-01

    The aim of our work was to analyze the current status of invasive plant species - their generic representation of a current extension (horizontal and vertical extension). We have been working method inventory of species richness. Site was recorded on a tourist map and a GPS (Garmin). Populations of invasive plants are studied localities mostly small (a few individuals to hundreds of individuals), but at the high anthropogenic impacts (construction activity, excessive tourist traffic), by synantropization of habitats and concurrently with the impacts of climate change here can create important focal point of the country and pose a serious threat to biodiversity is very valuable ecosystems.

  19. The effects of a high-animal- and a high-vegetable-protein diet on mineral balance and bowel function of young men

    OpenAIRE

    Dokkum, W. van; Wesstra, A.; Luyken, R.; Hermus, R.J.J.

    1986-01-01

    Twelve young men were given for periods of 20 d, each of three mixed diets, namely a low-protein (LP) diet (9% total energy as protein, 67% of animal origin), a high-animal-protein (HA) diet (16% total energy as protein, 67% of animal origin) and a high-vegetable-protein (HV) diet (16% total energy as protein, 67% of vegetable origin). Retention of calcium, magnesium, iron, zinc and copper as well as various bowel function indices were investigated during each dietary period. Neither the HA d...

  20. Highly effective ionic liquids for biodiesel production from waste vegetable oils

    Directory of Open Access Journals (Sweden)

    Fathy A. Yassin

    2015-03-01

    Full Text Available As conventional energy sources deplete, the need for developing alternative energy resources which are environment friendly becomes more imperative. Vegetable oils are attracting increased interest in this purpose. The methanolysis of vegetable oil to produce a fatty acid methyl ester (FAME, i.e., biodiesel fuel was catalyzed by commercial ionic liquid and its chloride modification. The imidazolium chloride ionic liquid was frequently chosen for the synthesis of biodiesel. The dual-functionalized’ ionic liquid is prepared by a direct combination reaction between imidazolium cation and various metal chlorides such as CoCl2, CuCl2, NiCl2, FeCl3 and AlCl3. Imidazolium tetrachloroferrate was proved to be a selective catalyst for the methanolysis reaction at a yield of 97% when used at 1:10, catalyst: oil ratio for 8 h at 55 °C. Operational simplicity, reusability of the used catalyst for 8 times at least, high yields and no saponification are the key features of this methodology. The dynamic viscosity and density of the upgraded vegetable oil decreased from 32.1 cP and 0.9227 g/cm3 to 10.2 cP and 0.9044 g/cm3 respectively, compared to those of the base vegetable oil. The objective of this study was the synthesis and characterization of biodiesel using commercial ionic liquid and its chloride modification. The ionic liquid catalysts were characterized using FTIR, Raman spectroscopy, DSC, TG and UV.

  1. Strategies for preventing invasive plant outbreaks after prescribed fire in ponderosa pine forest

    Science.gov (United States)

    Symstad, Amy J.; Newton, Wesley E.; Swanson, Daniel J.

    2014-01-01

    Land managers use prescribed fire to return a vital process to fire-adapted ecosystems, restore forest structure from a state altered by long-term fire suppression, and reduce wildfire intensity. However, fire often produces favorable conditions for invasive plant species, particularly if it is intense enough to reveal bare mineral soil and open previously closed canopies. Understanding the environmental or fire characteristics that explain post-fire invasive plant abundance would aid managers in efficiently finding and quickly responding to fire-caused infestations. To that end, we used an information-theoretic model-selection approach to assess the relative importance of abiotic environmental characteristics (topoedaphic position, distance from roads), pre-and post-fire biotic environmental characteristics (forest structure, understory vegetation, fuel load), and prescribed fire severity (measured in four different ways) in explaining invasive plant cover in ponderosa pine forest in South Dakota’s Black Hills. Environmental characteristics (distance from roads and post-fire forest structure) alone provided the most explanation of variation (26%) in post-fire cover of Verbascum thapsus (common mullein), but a combination of surface fire severity and environmental characteristics (pre-fire forest structure and distance from roads) explained 36–39% of the variation in post-fire cover of Cirsium arvense (Canada thistle) and all invasives together. For four species and all invasives together, their pre-fire cover explained more variation (26–82%) in post-fire cover than environmental and fire characteristics did, suggesting one strategy for reducing post-fire invasive outbreaks may be to find and control invasives before the fire. Finding them may be difficult, however, since pre-fire environmental characteristics explained only 20% of variation in pre-fire total invasive cover, and less for individual species. Thus, moderating fire intensity or targeting areas

  2. An Invasive Clonal Plant Benefits from Clonal Integration More than a Co-Occurring Native Plant in Nutrient-Patchy and Competitive Environments

    Science.gov (United States)

    You, Wenhua; Fan, Shufeng; Yu, Dan; Xie, Dong; Liu, Chunhua

    2014-01-01

    Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides's biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits

  3. Modeling the Climate and Hydrological Controls of the Expansion of an Invasive Grass Over Southern Arizona

    Science.gov (United States)

    Mathias, A.; Niu, G.; Zeng, X.

    2013-12-01

    Climate change has an effect on the resilience of ecosystems and the occurrence of ecological perturbations (e.g. spread of invasive species, wildfires). Changes in vegetation in turn can interrupt regional scale climate patterns and alter the spatial and temporal propagation of ecological disturbances. Understanding the controls of vegetation change are essential for predicting future changes, and for setting conservation and restoration targets. Vegetation change in transition zones between ecological regions is a significant indicator of future shifts in the composition of neighboring plant communities. The Walnut Gulch Experimental Watershed is in a grassland-shrubland transition zone between the Sonoran and Chihuahuan Desert in Southern Arizona. During the past decade, at some sites the cover of the invasive Lehmann lovegrass (Eragrostis lehmanniana) drastically increased and the abundance of native vegetation decreased, causing a major decline in biodiversity. Focusing on a catchment scale (Kendall Site), we used an individual based vegetation model (ECOTONE) and a coupled vegetation-3D surface/subsurface hydrology model (ECOTONE-CATHY) to simulate vegetation change. We set up the models with soil and climatological data (NLDAS and AmeriFlux), incorporated initial conditions of species and biomass distribution and species parameters for the site. Using ECOTONE we tested our hypothesis that a combination of dry years and subsequent wet period caused Lehmann lovegass to have advantage over the natives. In ECOTONE species composition and species distribution of plant communities arise from dynamic interactions of individual plants with species specific traits through intra- and interspecific competition for resources (H2O, nitrogen) and their interaction with the environment (precipitation and temperature). Our results indicate that the competitive advantage of Lehmann lovegrass stems from its ability to withstand dryer conditions during establishment and due to

  4. High School Girl's Adherence to 5-a-Day Serving's Fruits and Vegetables: An Application Theory of Planned Behavior

    Directory of Open Access Journals (Sweden)

    Babak Moeini

    2014-09-01

    Full Text Available Introduction: One of the basics of healthy eating is five times consumption of fruits and vegetable a day. Given the importance of recognizing effective factors of consuming fruit and vegetable in this group, the present study aimed to investigate high school girl's adherence to five-time serving fruits and vegetables per day in Hamadan based on the theory of planned behavior application. Materials and Methods: This descriptive-analytical study was performed on 400 girl students from high schools of Hamadan recruited with a multistage cluster sampling method. Participants filled out questionnaires including demographic variables, the theory of planned behavior constructs and a fruit and vegetable consumption measure one week later. Data analysis was performed using SPSS-18 by Chi-square, Pearson correlation and Logistic regression. Results: Fruit and vegetable consumption by female students is 3.4 times daily. Among the demographic variables, family size, mother's education, father's occupation, household income, body mass index and type of school had significant associations with fruit and vegetable consumption (P<0.05. Behavioral intention predicted 35% of the variation in daily fruit and vegetable consumption. Moreover, subjective norms, perceived behavioral control and attitude were able to predict 32% of behavioral intention. Conclusion: Fruit and vegetable consumption in female students is inadequate. The theory of planned behavior may be a useful framework to design a 5-A-Day intervention for female students.

  5. [Determination of gossypol in edible vegetable oil with high performance liquid chromatography-tandem mass spectrometry].

    Science.gov (United States)

    Zhang, Wenhua; Huang, Chaoqun; Xie, Wen; Shen, Li

    2014-06-01

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the determination of gossypol in edible vegetable oil. The sample was extracted with ethyl alcohol by vortex-excited oscillation. The extract was cleaned up by 0.22 microm filter membrane and centrifuged for 5 min at 4 000 r/min after standing in a fridge at 4 degrees C for 30 min. The compound was separated on a C18 column (100 mm x 2.1 mm, 3.5 microm) with acetonitrile and 1% (v/v) formic acid aqueous solution as mobile phase. The detection of gossypol was carried out by LC-MS/MS with positive electrospray ionization under multiple reaction monitoring (MRM) mode using external standard method. The limits of quantification (S/N > 10) of gossypol in edible vegetable oil was 1 mg/kg. The recoveries were from 87.4% to 100% at the spiked levels of 1, 2, 200 mg/kg of gossypol in edible vegetable oil with the relative standard deviations (RSDs) between 3.9% and 12.2%. The method, with high sensitivity, good precision and high recovery, was suitable for the confirmation and quantification of gossypol residue in edible vegetable oil.

  6. Remote Sensing Analysis of Vegetation Recovery following Short-Interval Fires in Southern California Shrublands

    Science.gov (United States)

    Meng, Ran; Dennison, Philip E.; D’Antonio, Carla M.; Moritz, Max A.

    2014-01-01

    Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing “type conversion”. However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery. PMID:25337785

  7. Minimally-invasive treatment of high velocity intra-articular fractures of the distal tibia.

    LENUS (Irish Health Repository)

    Leonard, M

    2012-02-01

    The pilon fracture is a complex injury. The purpose of this study was to evaluate the outcome of minimally invasive techniques in management of these injuries. This was a prospective study of closed AO type C2 and C3 fractures managed by early (<36 hours) minimally invasive surgical intervention and physiotherapist led rehabilitation. Thirty patients with 32 intra-articular distal tibial fractures were treated by the senior surgeon (GK). Our aim was to record the outcome and all complications with a minimum two year follow-up. There were two superficial wound infections. One patient developed a non-union which required a formal open procedure. Another patient was symptomatic from a palpable plate inferiorly. An excellent AOFAS result was obtained in 83% (20\\/24) of the patients. Early minimally invasive reduction and fixation of complex high velocity pilon fractures gave very satisfactory results at a minimum of two years follow-up.

  8. High-performance liquid chromatography for determination of α-tocopherol in vegetables

    Directory of Open Access Journals (Sweden)

    Marcin Horbowicz

    2013-12-01

    Full Text Available A simple method for the determination of α-tocopherol in vegetables is described. The procedure consists of the following steps: saponification, extraction, silica-column clean-up, and high-performance liquid chromatography. Elution time for D, L-α-tocopherol was 9.0 min using a Zorbax Sil (250 x 4.6 mm column and an isocratic mobile phase of hexane-methanol (99.3 + 0.7, with a flow rate of 1 ml/min, and detection at 292 nm using a variable UV detector. The average recovery of α-tocopherol was 91.2%, and the minimum detectable amount was 0.1 mg/100 g of fresh vegetable tissue. This method is comparable to gas-chromatographic determination of α-tocopherol, but has fewer analytical steps and gives more reproducible results.

  9. Acacia saligna: an invasive species on the coast of Molise (southern Italy

    Directory of Open Access Journals (Sweden)

    Calabrese V

    2017-02-01

    Full Text Available Italy is one of the European countries most affected by biological invasions. In this study, we focused on the impact of Acacia saligna, an Australian invasive plant species, on the coastal ecosystem’s ecology and biodiversity along the sandy coasts of Molise (southern Italy. We analyzed data from 61 vegetation plots recorded in coastal pine forest and Mediterranean scrub habitats of Molise throughout the preparatory actions of the “LIFE Maestrale” project (NAT/IT/000262. In order to study the ecological impact of Acacia saligna comparing invaded and non-invaded areas, we first assigned the Ellenberg’s indicator values to each plant species, which were then used to relate the presence of Acacia saligna with ecological characteristics of sites through a generalized linear model (GLM. Our results showed a significant positive relationship between the presence of Acacia saligna and high levels of soil nutrients and, on the contrary, a negative relationship with the presence of mesophilic species, which are typical of the community interest habitats of pine forest (2270*. The use of ecological indicators is effective to pinpoint the ecological effects of biological invasions, as well as to evaluate habitat conservation state and to identify vulnerable native species.

  10. Vegetative regeneration of invasive Ludwigia cytotypes from clonal bud banks across resource gradients: colonizing diploid outperforms polyploid

    Science.gov (United States)

    Understanding functional traits that underlie the colonization of invasive plants is key to developing sustainable management strategies to curtail invasions at the establishment phase. Although common, recruitment of clonal plant species from bud banks is often overlooked but may be a key transiti...

  11. Late glacial vegetation and climate changes in the high mountains of Bulgaria (Southeast Europe)

    International Nuclear Information System (INIS)

    Bozilova, E.D.; Tonkov, S.B.

    2005-01-01

    Full text: The Late glacial vegetation history in the high mountains of Southern Bulgaria (Rila, Pirin, Western Rhodopes) is reconstructed by means of pollen analysis, plant macrofossils and radiocarbon dating of sediments from lakes and peat-bogs located between 1300 and 2200 m a.s.l. The vegetation response to the climate fluctuations after 13000 14 C yrs. BP in the Rila Mountains is bound for the first time to a detailed chronological framework. Two stadial and one interstadial phases are delimited analogous with the Oldest Dryas-Bolling/Allerod-Younger Dryas cycle for Western Europe. During the stadials mountain-steppe vegetation composed of Artemisia, Chenopodiaceae, Poaceae and other cold-resistant herbs dominated at high elevation with sparse stands of Pinus, Betula, and shrubland of Juniperus and Ephedra. The climate improvement in the interstadial resulted in the initial spread of deciduous and coniferous trees (Quercus, Tilia, Corylus, Carpinus, Abies, Picea) from their local refugia below 1000 m. The palaeoecological record from the climate deterioration during the Younger Dryas is documented in thin sections of the cores investigated. (author)

  12. Mechanical Harvesting Effectively Controls Young Typha spp. Invasion and Unmanned Aerial Vehicle Data Enhances Post-treatment Monitoring

    Directory of Open Access Journals (Sweden)

    Shane C. Lishawa

    2017-04-01

    Full Text Available The ecological impacts of invasive plants increase dramatically with time since invasion. Targeting young populations for treatment is therefore an economically and ecologically effective management approach, especially when linked to post-treatment monitoring to evaluate the efficacy of management. However, collecting detailed field-based post-treatment data is prohibitively expensive, typically resulting in inadequate documentation of the ecological effects of invasive plant management. Alternative approaches, such as remote detection with unmanned aerial vehicles (UAV, provide an opportunity to advance the science and practice of restoration ecology. In this study, we sought to determine the plant community response to different mechanical removal treatments to a dominant invasive wetland macrophyte (Typha spp. along an age-gradient within a Great Lakes coastal wetland. We assessed the post-treatment responses with both intensive field vegetation and UAV data. Prior to treatment, the oldest Typha stands had the lowest plant diversity, lowest native sedge (Carex spp. cover, and the greatest Typha cover. Following treatment, plots that were mechanically harvested below the surface of the water differed from unharvested control and above-water harvested plots for several plant community measures, including lower Typha dominance, lower native plant cover, and greater floating and submerged aquatic species cover. Repeated-measures analysis revealed that above-water cutting increased plant diversity and aquatic species cover across all ages, and maintained native Carex spp. cover in the youngest portions of Typha stands. UAV data revealed significant post-treatment differences in normalized difference vegetation index (NDVI scores, blue band reflectance, and vegetation height, and these remotely collected measures corresponded to field observations. Our findings suggest that both mechanically harvesting the above-water biomass of young Typha stands

  13. Modeling biomass competition and invasion in a schematic wetland

    Science.gov (United States)

    Ursino, N.

    2010-08-01

    Plants growing along hydrologic gradients adjust their biomass allocation and distribution in response to interspecific competition. Furthermore, susceptibility of a community to invasion is to some extent mediated by differences in growth habit, including root architecture and canopy hight. With reference to the study of a schematic wetland, the aim of this paper is (1) to test, via numerical modeling, the capacity of native plants to counteract an alien dominant species and cause eco-hydrological shifts of the ecosystem by changing their growth habit (e.g. allocating biomass below ground and by so doing changing the evapotranspiration locally) and (2) to test the impact on biodiversity of management practices that alter nutrient supply. The results demonstrated that unique combinations of vegetation types characterized by different growth habits may lead to different vegetation patterns under the same hydrologic forcing, and additionally, the vegetation patterns may change in response to major hydrological shifts, which could be related to diverse wetland management and restoration practices.

  14. Effects of Spartina alterniflora invasion on biogenic elements in a subtropical coastal mangrove wetland.

    Science.gov (United States)

    Yu, Xiaoqing; Yang, Jun; Liu, Lemian; Tian, Yuan; Yu, Zheng

    2015-02-01

    The invasion by exotic cordgrass (Spartina alterniflora) has become one of the most serious and challenging environmental and ecological problems in coastal China because it can have adverse effects on local native species, thereby changing ecosystem processes, functions, and services. In this study, 300 surface sediments were collected from 15 stations in the Jiulong River Estuary, southeast China, across four different seasons, in order to reveal the spatiotemporal variability of biogenic elements and their influencing factors in the subtropical coastal mangrove wetland. The biogenic elements including carbon, nitrogen, and sulfur (C, N, and S) were determined by an element analyzer, while the phosphorus (P) was determined by a flow injection analyzer. The concentrations of biogenic elements showed no significant differences among four seasons except total phosphorus (TP); however, our ANOVA analyses revealed a distinct spatial pattern which was closely related with the vegetation type and tidal level. Values of total carbon (TC) and total nitrogen (TN) in the surface sediment of mangrove vegetation zones were higher than those in the cordgrass and mudflat zones. The concentrations of TC, TN, TP, and total sulfur (TS) in the high tidal zones were higher than those in the middle and low tidal zones. Redundancy analysis (RDA) revealed that tidal level, vegetation type, and season had some significant influence on the distribution of biogenic elements in the Jiulong River Estuary, by explaining 18.2, 7.7, and 4.9 % of total variation in the four biogenic elements, respectively. In conclusion, S. alterniflora invasion had substantial effects on the distributions of biogenic elements in the subtropical coastal wetland. If regional changes in the Jiulong River Estuary are to persist and much of the mangrove vegetation was to be replaced by cordgrass, there would be significant decreases on the overall storage of C and N in this coastal zone. Therefore, the native

  15. Beyond theories of plant invasions: Lessons from natural landscapes

    Science.gov (United States)

    Stohlgren, Thomas J.

    2002-01-01

    There are a growing number of contrasting theories about plant invasions, but most are only weakly supported by small-scale field experiments, observational studies, and mathematical models. Among the most contentious theories is that species-rich habitats should be less vulnerable to plant invasion than species-poor sites, stemming from earlier theories that competition is a major force in structuring plant communities. Early ecologists such as Charles Darwin (1859) and Charles Elton (1958) suggested that a lack of intense interspecific competition on islands made these low-diversity habitats vulnerable to invasion. Small-scale field experiments have supported and contradicted this theory, as have various mathematical models. In contrast, many large-scale observational studies and detailed vegetation surveys in continental areas often report that species-rich areas are more heavily invaded than species-poor areas, but there are exceptions here as well. In this article, I show how these seemingly contrasting patterns converge once appropriate spatial and temporal scales are considered in complex natural environments. I suggest ways in which small-scale experiments, mathematical models, and large- scale observational studies can be improved and better integrated to advance a theoretically based understanding of plant invasions.

  16. Vegetable Production System (Veggie)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Vegetable Production System (Veggie) was developed to be a simple, easily stowed, high growth volume, low resource facility capable of producing fresh vegetables...

  17. Protected-area boundaries as filters of plant invasions.

    Science.gov (United States)

    Foxcroft, Llewellyn C; Jarošík, Vojtěch; Pyšek, Petr; Richardson, David M; Rouget, Mathieu

    2011-04-01

    Human land uses surrounding protected areas provide propagules for colonization of these areas by non-native species, and corridors between protected-area networks and drainage systems of rivers provide pathways for long-distance dispersal of non-native species. Nevertheless, the influence of protected-area boundaries on colonization of protected areas by invasive non-native species is unknown. We drew on a spatially explicit data set of more than 27,000 non-native plant presence records for South Africa's Kruger National Park to examine the role of boundaries in preventing colonization of protected areas by non-native species. The number of records of non-native invasive plants declined rapidly beyond 1500 m inside the park; thus, we believe that the park boundary limited the spread of non-native plants. The number of non-native invasive plants inside the park was a function of the amount of water runoff, density of major roads, and the presence of natural vegetation outside the park. Of the types of human-induced disturbance, only the density of major roads outside the protected area significantly increased the number of non-native plant records. Our findings suggest that the probability of incursion of invasive plants into protected areas can be quantified reliably. ©2010 Society for Conservation Biology.

  18. Assessment of Atmospheric Algorithms to Retrieve Vegetation in Natural Protected Areas Using Multispectral High Resolution Imagery

    Directory of Open Access Journals (Sweden)

    Javier Marcello

    2016-09-01

    Full Text Available The precise mapping of vegetation covers in semi-arid areas is a complex task as this type of environment consists of sparse vegetation mainly composed of small shrubs. The launch of high resolution satellites, with additional spectral bands and the ability to alter the viewing angle, offers a useful technology to focus on this objective. In this context, atmospheric correction is a fundamental step in the pre-processing of such remote sensing imagery and, consequently, different algorithms have been developed for this purpose over the years. They are commonly categorized as imaged-based methods as well as in more advanced physical models based on the radiative transfer theory. Despite the relevance of this topic, a few comparative studies covering several methods have been carried out using high resolution data or which are specifically applied to vegetation covers. In this work, the performance of five representative atmospheric correction algorithms (DOS, QUAC, FLAASH, ATCOR and 6S has been assessed, using high resolution Worldview-2 imagery and field spectroradiometer data collected simultaneously, with the goal of identifying the most appropriate techniques. The study also included a detailed analysis of the parameterization influence on the final results of the correction, the aerosol model and its optical thickness being important parameters to be properly adjusted. The effects of corrections were studied in vegetation and soil sites belonging to different protected semi-arid ecosystems (high mountain and coastal areas. In summary, the superior performance of model-based algorithms, 6S in particular, has been demonstrated, achieving reflectance estimations very close to the in-situ measurements (RMSE of between 2% and 3%. Finally, an example of the importance of the atmospheric correction in the vegetation estimation in these natural areas is presented, allowing the robust mapping of species and the analysis of multitemporal variations

  19. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas.

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    Full Text Available The Qinghai-Tibetan Plateau (QTP contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS Normalized Difference Vegetation Index (NDVI product based on turning points (TPs, which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost

  20. Riparian Vegetation Response to the March 2008 Short-Duration, High-Flow Experiment-Implications of Timing and Frequency of Flood Disturbance on Nonnative Plant Establishment Along the Colorado River Below Glen Canyon Dam

    Science.gov (United States)

    Ralston, Barbara E.

    2010-01-01

    Riparian plant communities exhibit various levels of diversity and richness. These communities are affected by flooding and are vulnerable to colonization by nonnative species. Since 1996, a series of three high-flow experiments (HFE), or water releases designed to mimic natural seasonal flooding, have been conducted at Glen Canyon Dam, Ariz., primarily to determine the effectiveness of using high flows to conserve sediment, a limited resource. These experiments also provide opportunities to examine the susceptibility of riparian plant communities to nonnative species invasions. The third and most recent HFE was conducted from March 5 to 9, 2008, and scientists with the U.S. Geological Survey's Grand Canyon Monitoring and Research Center examined the effects of high flows on riparian vegetation as part of the overall experiment. Total plant species richness, nonnative species richness, percent plant cover, percent organic matter, and total carbon measured from sediment samples were compared for Grand Canyon riparian vegetation zones immediately following the HFE and 6 months later. These comparisons were used to determine if susceptibility to nonnative species establishment varied among riparian vegetation zones and if the timing of the HFE affected nonnative plant establishment success. The 2008 HFE primarily buried vegetation rather than scouring it. Percent nonnative cover did not differ among riparian vegetation zones; however, in the river corridor affected by Glen Canyon Dam operations, nonnative species richness showed significant variation. For example, species richness was significantly greater immediately after and 6 months following the HFE in the hydrologic zone farthest away from the shoreline, the area that represents the oldest riparian zone within the post-dam riparian area. In areas closer to the river channel, tamarisk (Tamarix ramosissima X chinensis) seedling establishment occurred (tamarisk seed production, or in 1986, a year following several

  1. A comprehensive test of evolutionarily increased competitive ability in a highly invasive plant species

    Science.gov (United States)

    Joshi, Srijana; Gruntman, Michal; Bilton, Mark; Seifan, Merav; Tielbörger, Katja

    2014-01-01

    Background and Aims A common hypothesis to explain plants' invasive success is that release from natural enemies in the introduced range selects for reduced allocation to resistance traits and a subsequent increase in resources available for growth and competitive ability (evolution of increased competitive ability, EICA). However, studies that have investigated this hypothesis have been incomplete as they either did not test for all aspects of competitive ability or did not select appropriate competitors. Methods Here, the prediction of increased competitive ability was examined with the invasive plant Lythrum salicaria (purple loosestrife) in a set of common-garden experiments that addressed these aspects by carefully distinguishing between competitive effect and response of invasive and native plants, and by using both intraspecific and interspecific competition settings with a highly vigorous neighbour, Urtica dioica (stinging nettle), which occurs in both ranges. Key Results While the intraspecific competition results showed no differences in competitive effect or response between native and invasive plants, the interspecific competition experiment revealed greater competitive response and effect of invasive plants in both biomass and seed production. Conclusions The use of both intra- and interspecific competition experiments in this study revealed opposing results. While the first experiment refutes the EICA hypothesis, the second shows strong support for it, suggesting evolutionarily increased competitive ability in invasive populations of L. salicaria. It is suggested that the use of naturally co-occurring heterospecifics, rather than conspecifics, may provide a better evaluation of the possible evolutionary shift towards greater competitive ability. PMID:25301818

  2. The invasive species Ulex europaeus (Fabaceae) shows high dynamism in a fragmented landscape of south-central Chile.

    Science.gov (United States)

    Altamirano, Adison; Cely, Jenny Paola; Etter, Andrés; Miranda, Alejandro; Fuentes-Ramirez, Andres; Acevedo, Patricio; Salas, Christian; Vargas, Rodrigo

    2016-08-01

    Ulex europaeus (gorse) is an invasive shrub deemed as one of the most invasive species in the world. U. europaeus is widely distributed in the south-central area of Chile, which is considered a world hotspot for biodiversity conservation. In addition to its negative effects on the biodiversity of natural ecosystems, U. europaeus is one of the most severe pests for agriculture and forestry. Despite its importance as an invasive species, U. europaeus has been little studied. Although information exists on the potential distribution of the species, the interaction of the invasion process with the spatial dynamic of the landscape and the landscape-scale factors that control the presence or absence of the species is still lacking. We studied the spatial and temporal dynamics of the landscape and how these relate to U. europaeus invasion in south-central Chile. We used supervised classification of satellite images to determine the spatial distribution of the species and other land covers for the years 1986 and 2003, analysing the transitions between the different land covers. We used logistic regression for modelling the increase, decrease and permanence of U. europaeus invasion considering landscape variables. Results showed that the species covers only around 1 % of the study area and showed a 42 % reduction in area for the studied period. However, U. europaeus was the cover type which presented the greatest dynamism in the landscape. We found a strong relationship between changes in land cover and the invasion process, especially connected with forest plantations of exotic species, which promotes the displacement of U. europaeus. The model of gorse cover increase presented the best performance, and the most important predictors were distance to seed source and landscape complexity index. Our model predicted high spread potential of U. europaeus in areas of high conservation value. We conclude that proper management for this invasive species must take into account

  3. Assessment of mural invasion depth of gastric carcinoma with high-resolution compound sonographic imaging in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Hoon; Kim, Eun A; Yoon, Kwon Ha; Yun, Ki Jung; Kim, Jeong Ho; Won, Jong Jin [Wonkwang University School of Medicine, Iksan (Korea, Republic of)

    2002-11-01

    To evaluate whether the accuracy of invasion depth assessment in gastric carcinoma in vitro can be improved with high-resolution spatial compound sonographic imaging. In sixteen fresh gastric specimens obtained from patients with preoperatively biopsy proven gastric carcinoma, normal and lesional areas were scanned using conventional and compound imaging technique with a 15-MHz linear transducer. Two radiologists independently compared the sharpness and the contrast of images obtained with two different modes and determined the layers invaded by cancer with consensus. The invasion depths by images were compared with histopathologic results. The sharpness and the contrast in normal and lesional areas were significantly higher in compound imaging (p<0.01) than those in conventional imaging and interobserver agreement was over moderate, with k-value of 0.41 to 0.86. But the accuracy in invasion depth assessment was 68.8% (11/16) on conventional imaging and 75% (12/16) on compound imaging and non different significantly between two modes (p>0305). High-resolution spatial compound sonographic imaging has improved image quality, compared with conventional imaging, but the accuracy of invasion depth assessment in gastric carcinoma was not significantly different.

  4. Hydration of vegetable oils for high-grade Diesel fuel components; Hydrierung von Pflanzenoelen zu hochwertigen Dieselkraftstoffkomponenten

    Energy Technology Data Exchange (ETDEWEB)

    Endisch, M.; Olschar, M.; Kuchling, T. [TU Bergakademie Freiberg (Germany); Balfanz, U. [BP AG, Global Fuels Technology, Bochum (Germany)

    2008-07-01

    The legally regulated admixture of biogenic fuel components for diesel fuels are actually realized in Germany by an admixture of vegetable oil methylester (e.g. from rapeseed oil). The paper describes the hydration of vegetable oils as alternative to this procedure. Infrared and {sup 13}NMR spectroscopy were used to analyse the reaction kinetics for rapeseed, soy been and palm oil hydration. Experimental results of investigations under operational conditions using a continuous test facility and different vegetable oils identified the possibilities of this technology. The technology allows the high-yield production of diesel fuel components with certain numbers higher than average.

  5. Vegetative Regeneration Capacities of Five Ornamental Plant Invaders After Shredding

    Science.gov (United States)

    Monty, Arnaud; Eugène, Marie; Mahy, Grégory

    2015-02-01

    Vegetation management often involves shredding to dispose of cut plant material or to destroy the vegetation itself. In the case of invasive plants, this can represent an environmental risk if the shredded material exhibits vegetative regeneration capacities. We tested the effect of shredding on aboveground and below-ground vegetative material of five ornamental widespread invaders in Western Europe that are likely to be managed by cutting and shredding techniques: Buddleja davidii (butterfly bush, Scrophulariaceae), Fallopia japonica (Japanese knotweed, Polygonaceae), Spiraea × billardii Hérincq (Billard's bridewort, Rosaceae), Solidago gigantea (giant goldenrod, Asteraceae), and Rhus typhina L. (staghorn sumac, Anacardiaceae). We looked at signs of vegetative regeneration and biomass production, and analyzed the data with respect to the season of plant cutting (spring vs summer), the type of plant material (aboveground vs below-ground), and the shredding treatment (shredded vs control). All species were capable of vegetative regeneration, especially the below-ground material. We found differences among species, but the regeneration potential was generally still present after shredding despite a reduction of growth rates. Although it should not be excluded in all cases (e.g., destruction of giant goldenrod and staghorn sumac aboveground material), the use of a shredder to destroy woody alien plant material cannot be considered as a general management option without significant environmental risk.

  6. Urinary high molecular weight matrix metalloproteinases as non-invasive biomarker for detection of bladder cancer

    OpenAIRE

    Mohammed, Mohammed A; Seleim, Manar F; Abdalla, Mohga S; Sharada, Hayat M; Abdel Wahab, Abdel Hady A

    2013-01-01

    Background Matrix Metalloproteinases (MMPs) are key molecules for tumor growth, invasion and metastasis. Over-expression of different MMPs in tumor tissues can disturb the homeostasis and increase the level of various body fluids. Many MMPs including high molecular weights (HMWs) were detected in the urine of prostate and bladder cancer patients. Our aim here is to assess the usefulness of HMW MMPs as non invasive biomarkers in bilharzial bladder cancer in Egyptian patients. Methods The activ...

  7. Recovery of a soil under different vegetation one year after a high intensity wildfire

    Directory of Open Access Journals (Sweden)

    A. Martín

    2013-05-01

    Full Text Available Studies on soil recovery in fragile ecosystems following high intensity wildfires are scarce. The aim of the present investigation is to evaluate the impact of a high intensity wildfire in an ecosystem under different vegetation (shrubland and pinewood located at Vilardevós (Galicia, NW Spain and highly susceptible to suffer soil erosion due to the steep relief and high erositivity of the rainfall. Soil samples were collected from the A horizon (0-5 cm 1 year after the fire and soil quality was evaluated by analysis of several physical, chemical and biochemical properties measured in the fraction chemical properties > physical properties. The data also showed that the fire impact was different depending on the soil vegetation considered (shrubland and pinewood. Moreover, the data confirmed the slow soil recovery in this fragile ecosystem and, therefore, the need of adopting post-fire stabilisation and rehabilitation treatments in order to minimize the post-fire erosion and soil degradation.

  8. Fruits and vegetables (image)

    Science.gov (United States)

    A healthy diet includes adding vegetables and fruit every day. Vegetables like broccoli, green beans, leafy greens, zucchini, cauliflower, cabbage, carrots, and tomatoes are low in calories and high in fiber, vitamins, and minerals. ...

  9. High-nitrate vegetable diet increases plasma nitrate and nitrite concentrations and reduces blood pressure in healthy women.

    Science.gov (United States)

    Ashworth, Ann; Mitchell, Klaus; Blackwell, Jamie R; Vanhatalo, Anni; Jones, Andrew M

    2015-10-01

    Epidemiological studies suggest that green leafy vegetables, which are high in dietary nitrate, are protective against CVD such as stroke. High blood pressure (BP) is a major risk factor for stroke and inorganic nitrate has been shown to reduce BP. The objective of the present study was to test the hypothesis that diets containing high-nitrate (HN) vegetables would increase plasma nitrate and nitrite concentrations and reduce BP in healthy women. A randomized, crossover trial, where participants received HN vegetables (HN diet) or avoided HN vegetables (Control diet) for 1 week. Before and after each intervention, resting BP and plasma nitrate and nitrite concentrations were measured. University of Exeter, UK. Nineteen healthy women (mean age 20 (sd 2) years; mean BMI 22·5 (sd 3·8) kg/m2). The HN diet significantly increased plasma nitrate concentration (before HN diet: mean 24·4 (sd 5·6) µmol/l; after HN diet: mean 61·0 (sd 44·1) µmol/l, Pdiet: mean 98 (sd 91) nmol/l; after HN diet: mean 185 (sd 34) nmol/l, Pdiet. The HN diet significantly reduced resting systolic BP (before HN diet: mean 107 (sd 9) mmHg; after HN diet: mean 103 (sd 6) mmHg, Pdiet (before Control diet: mean 106 (sd 8) mmHg; after Control diet: mean 106 (sd 8) mmHg). Consumption of HN vegetables significantly increased plasma nitrate and nitrite concentrations and reduced BP in normotensive women.

  10. Ecosystem and Community Responses to Rainfall Manipulations in Shrublands Depends on Dominant Vegetation Cover

    Science.gov (United States)

    Esch, E. H.; Lipson, D.; Kim, J. B.; Cleland, E. E.

    2014-12-01

    Southern California is predicted to face decreasing precipitation with increased interannual variability in the coming century. Native shrublands in this area are increasingly invaded by exotic annual grasses, though invasion dynamics can vary by rainfall scenario, with wet years generally associated with high invasion pressure. Interplay between rainfall and invasion scenarios can influence carbon stocks and community composition. Here we asked how invasion alters ecosystem and community responses in drought versus high rainfall scenarios, as quantified by community identity, biomass production, and the normalized difference vegetation index (NDVI). To do this, we performed a rainfall manipulation experiment with paired plots dominated either by native shrubs or exotic herbaceous species, subjected to treatments of 50%, 100%, or 150% of ambient rainfall. The study site was located in a coastal sage scrub ecosystem, with patches dominated by native shrubs and exotic grasses located in San Diego County, USA. During two growing seasons, we found that native, herbaceous biomass production was significantly affected by rainfall treatment (p<0.05 for both years), though was not affected by dominant community composition. Photosynthetic biomass production of shrub species also varied by treatment (p=0.035). Exotic biomass production showed a significant interaction between dominant community composition and rainfall treatment, and both individual effects (p<0.001 for all). NDVI showed similar results, but also indicated the importance of rainfall timing on overall biomass production between years. Community composition data showed certain species, of both native and exotic identities, segregating by treatment. These results indicate that exotic species are more sensitive to rainfall, and that increased rainfall may promote greater carbon storage in annual dominated communities when compared to shrub dominated communities in high rainfall years, but with drought, this

  11. A 30-year chronosequence of burned areas in Arizona: effects of wildfires on vegetation in Sonoran Desert Tortoise (Gopherus morafkai) habitats

    Science.gov (United States)

    Shryock, Daniel F.; Esque, Todd C.; Chen, Felicia C.

    2015-01-01

    Fire is widely regarded as a key evolutionary force in fire-prone ecosystems, with effects spanning multiple levels of organization, from species and functional group composition through landscape-scale vegetation structure, biomass, and diversity (Pausas and others, 2004; Bond and Keeley 2005; Pausas and Verdu, 2008). Ecosystems subjected to novel fire regimes may experience profound changes that are difficult to predict, including persistent losses of vegetation cover and diversity (McLaughlin and Bowers, 1982; Brown and Minnich, 1986; Brooks, 2012), losses to seed banks (Esque and others, 2010a), changes in demographic processes (Esque and others, 2004; DeFalco and others, 2010), increased erosion (Soulard and others, 2013), changes in nutrient availability (Esque and others, 2010b), increased dominance of invasive species (Esque and others, 2002; Brooks and others, 2004), and transitions to alternative community states (Davies and others, 2012). In the deserts of the Southwestern United States, fire size and frequency have increased substantially over the last several decades because of an invasive grass/fire feedback cycle (Schmid and Rogers, 1988; D’Antonio and Vitousek, 1992; Swantek and others, 1999; Brooks and Matchett, 2006; Esque and others, 2010a), in which invasive annual species are able to establish fuel loads capable of sustaining large-scale wildfires following years of high rainfall (Esque and Schwalbe, 2002). Native perennial vegetation is not well-adapted to fire in these environments, and widespread, physiognomically dominant species such as creosote bush (Larrea tridentata), Joshua tree (Yucca brevifolia), giant saguaro cactus (Carnegiea gigantea), and paloverde (Parkinsonia spp.) may be reduced or eliminated (Brown and Minnich, 1986; Esque and others, 2006; DeFalco and others, 2010), potentially affecting wildlife populations including the Sonoran and federally threatened Mojave Desert Tortoises (Gopherus morafkai and Gopherus agassizii

  12. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013

    DEFF Research Database (Denmark)

    Westergaard-Nielsen, Andreas; Lund, Magnus; Pedersen, Stine Højlund

    2017-01-01

    Climate-induced changes in vegetation phenology at northern latitudes are still poorly understood. Continued monitoring and research are therefore needed to improve the understanding of abiotic drivers. Here we used 14 years of time lapse imagery and climate data from high-Arctic Northeast...... days, resulting in an unchanged growing season length. Vegetation greenness, derived from the imagery, was correlated to primary productivity, showing that the imagery holds valuable information on vegetation productivity....

  13. Impact of plant invasions on functional diversity in the vegetation of Central Europe

    Czech Academy of Sciences Publication Activity Database

    Hejda, Martin; de Bello, Francesco

    2013-01-01

    Roč. 24, č. 5 (2013), s. 890-897 ISSN 1100-9233 R&D Projects: GA ČR GAP505/12/1296; GA ČR(CZ) GAP505/11/1112 Institutional support: RVO:67985939 Keywords : Invasive alien species * Native species * Functional similarity Subject RIV: EH - Ecology, Behaviour Impact factor: 3.372, year: 2013

  14. Comparative Outer Membrane Protein Analysis of High and Low-Invasive Strains of Cronobacter malonaticus

    Directory of Open Access Journals (Sweden)

    Maha A. Aldubyan

    2017-11-01

    Full Text Available Cronobacter are an important group of foodborne pathogens that has been linked to life-threatening infections in both infants and adults. The major infections associated with Cronobacter species are neonatal meningitis, necrotizing enterocolitis, and septicaemia. There are seven species in the Cronobacter genus, of which only three are of clinical importance; Cronobacter sakazakii, Cronobacter malonaticus, and Cronobacter turicensis. To date most studies have focussed on C. sakazakii as it is the major species associated with neonatal infections. However, recently C. malonaticus, in particular sequence type 7 (ST7, has been noted as being prevalent in adult infections and therefore warranting further investigation. In this study, eight strains of C. malonaticus ST7, that had been isolated from a wide range of sources and varied in their in vitro virulence, were chosen for proteomic analysis of their outer membrane proteins (OMPs. One-dimensional gel analysis revealed a ~29 kDa size band that was only present in the highly invasive strains. Subsequent mass spectrometric analysis identified several peptides that matched the flagellin protein. The presence of flagellin protein was confirmed in 2D gel spot. Mass spectrometry analysis of total OMPs revealed that the four highly invasive C. malonaticus strains expressed the main flagellum proteins that were absent from the four low invasive strains. These were the flagellar hook protein FlgE, flagellar hook-associated protein 1, flagellar hook-associated protein, flagellin, and flagellar hook-filament junction protein FlgL. This data indicates that C. malonaticus flagellar proteins may have an important role in the organism's invasion properties.

  15. Testing the Potential of Vegetation Indices for Land Use/cover Classification Using High Resolution Data

    Science.gov (United States)

    Karakacan Kuzucu, A.; Bektas Balcik, F.

    2017-11-01

    Accurate and reliable land use/land cover (LULC) information obtained by remote sensing technology is necessary in many applications such as environmental monitoring, agricultural management, urban planning, hydrological applications, soil management, vegetation condition study and suitability analysis. But this information still remains a challenge especially in heterogeneous landscapes covering urban and rural areas due to spectrally similar LULC features. In parallel with technological developments, supplementary data such as satellite-derived spectral indices have begun to be used as additional bands in classification to produce data with high accuracy. The aim of this research is to test the potential of spectral vegetation indices combination with supervised classification methods and to extract reliable LULC information from SPOT 7 multispectral imagery. The Normalized Difference Vegetation Index (NDVI), the Ratio Vegetation Index (RATIO), the Soil Adjusted Vegetation Index (SAVI) were the three vegetation indices used in this study. The classical maximum likelihood classifier (MLC) and support vector machine (SVM) algorithm were applied to classify SPOT 7 image. Catalca is selected region located in the north west of the Istanbul in Turkey, which has complex landscape covering artificial surface, forest and natural area, agricultural field, quarry/mining area, pasture/scrubland and water body. Accuracy assessment of all classified images was performed through overall accuracy and kappa coefficient. The results indicated that the incorporation of these three different vegetation indices decrease the classification accuracy for the MLC and SVM classification. In addition, the maximum likelihood classification slightly outperformed the support vector machine classification approach in both overall accuracy and kappa statistics.

  16. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma

    Science.gov (United States)

    Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron

    2016-01-01

    Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651

  17. Fibronectin Modulates Cell Adhesion and Signaling to Promote Single Cell Migration of Highly Invasive Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Grasieli de Oliveira Ramos

    Full Text Available Cell migration is regulated by adhesion to the extracellular matrix (ECM through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC. We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad, plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization.

  18. A comprehensive test of evolutionarily increased competitive ability in a highly invasive plant species.

    Science.gov (United States)

    Joshi, Srijana; Gruntman, Michal; Bilton, Mark; Seifan, Merav; Tielbörger, Katja

    2014-12-01

    A common hypothesis to explain plants' invasive success is that release from natural enemies in the introduced range selects for reduced allocation to resistance traits and a subsequent increase in resources available for growth and competitive ability (evolution of increased competitive ability, EICA). However, studies that have investigated this hypothesis have been incomplete as they either did not test for all aspects of competitive ability or did not select appropriate competitors. Here, the prediction of increased competitive ability was examined with the invasive plant Lythrum salicaria (purple loosestrife) in a set of common-garden experiments that addressed these aspects by carefully distinguishing between competitive effect and response of invasive and native plants, and by using both intraspecific and interspecific competition settings with a highly vigorous neighbour, Urtica dioica (stinging nettle), which occurs in both ranges. While the intraspecific competition results showed no differences in competitive effect or response between native and invasive plants, the interspecific competition experiment revealed greater competitive response and effect of invasive plants in both biomass and seed production. The use of both intra- and interspecific competition experiments in this study revealed opposing results. While the first experiment refutes the EICA hypothesis, the second shows strong support for it, suggesting evolutionarily increased competitive ability in invasive populations of L. salicaria. It is suggested that the use of naturally co-occurring heterospecifics, rather than conspecifics, may provide a better evaluation of the possible evolutionary shift towards greater competitive ability. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Spartina alterniflora alters ecosystem DMS and CH4 emissions and their relationship along interacting tidal and vegetation gradients within a coastal salt marsh in Eastern China

    Science.gov (United States)

    Wang, Jinxin; Wang, Jinshu

    2017-10-01

    Invasive Spartina alterniflora accumulates organic carbon rapidly and can utilize a wide range of potential precursors for dimethyl sulfide (DMS) production, as well as a wide variety of methanogenic substrates. Therefore, we predicted that S. alterniflora invasion would alter the relationships between DMS and methane (CH4) fluxes along the interacting gradients of tidal influence and vegetation, as well as the ecosystem-atmosphere exchange of DMS and CH4. In this study, we used static flux chambers to measure DMS and CH4 fluxes in August (growing season) and December (non-growing season) of 2013, along creek and vegetation transects in an Eastern Chinese coastal salt marsh. S. alterniflora invasion dramatically increased DMS and CH4 emission rates by 3.8-513.0 and 2.0-127.1 times the emission rates within non-vegetated regions and regions populated with native species, respectively, and significantly altered the spatial distribution of DMS and CH4 emissions. We also observed a substantial amount of variation in the DMS and CH4 fluxes along the elevation gradient in the salt marsh studied. A significant relationship between DMS and CH4 fluxes was observed, with the CH4 flux passively related to the DMS flux. The correlation between CH4 and DMS emissions along the vegetation transects was more significant than along the tidal creek. In the S. alterniflora salt marsh, the relationship between DMS and CH4 fluxes was more significant than within any other salt marsh. Additionally, CH4 emissions within the S. alterniflora salt marsh were more sensitive to the variation in DMS emissions than within any other vegetation zone. The spatial variability in the relationship observed between DMS and CH4 fluxes appears to be at least partly due to the alteration of substrates involved in DMS and CH4 by S. alterniflora invasion. In the S. alterniflora salt marsh, methanogenesis was more likely to be derived from non-competitive substrates than competitive substrates, but within

  20. Detection and monitoring of invasive exotic plants: a comparison of four sampling methods

    Science.gov (United States)

    Cynthia D. Huebner

    2007-01-01

    The ability to detect and monitor exotic invasive plants is likely to vary depending on the sampling method employed. Methods with strong qualitative thoroughness for species detection often lack the intensity necessary to monitor vegetation change. Four sampling methods (systematic plot, stratified-random plot, modified Whittaker, and timed meander) in hemlock and red...

  1. Invasion by Cordgrass Increases Microbial Diversity and Alters Community Composition in a Mangrove Nature Reserve

    Directory of Open Access Journals (Sweden)

    Min Liu

    2017-12-01

    Full Text Available Invasion by exotic plant species can alter ecosystem function and reduce native plant diversity, but relatively little is known about their effects on belowground microbial communities. Here we investigated the effects of exotic cordgrass (Spartina alterniflora invasion on the distribution of soil bacterial communities in a mangrove nature reserve of the Jiulong River Estuary, southeast China using high-throughput sequencing of 16S rRNA gene and multivariate statistical analysis. Our results showed that S. alterniflora invasion altered soil properties, and significantly increased soil bacterial taxa richness, primarily by stimulating an increase in conditionally rare or rare taxa, and changes in community composition and function. Abundant, conditionally rare and rare subcommunities exhibited similar response patterns to environment changes, with both conditionally rare and rare taxa showing a stronger response than abundant ones. Habitat generalists were detected among abundant, conditionally rare and rare taxa, whereas habitat specialists were only identified among conditionally rare taxa and rare taxa. In addition, we found that vegetation was the key factor driving these patterns. However, our comparative analysis indicated that both environmental selection, and neutral process, significantly contributed to soil bacterial community assembly. These results could improve the understanding of the microbial processes and mechanisms of cordgrass invasion, and offer empirical data of use in the restoration and management of the mangrove wetlands.

  2. Soil, Vegetation, and Seed Bank of a Sonoran Desert Ecosystem Along an Exotic Plant ( Pennisetum ciliare) Treatment Gradient

    Science.gov (United States)

    Abella, Scott R.; Chiquoine, Lindsay P.; Backer, Dana M.

    2013-10-01

    Ecological conditions following removal of exotic plants are a key part of comprehensive environmental management strategies to combat exotic plant invasions. We examined ecological conditions following removal of the management-priority buffelgrass ( Pennisetum ciliare) in Saguaro National Park of the North American Sonoran Desert. We assessed soil, vegetation, and soil seed banks on seven buffelgrass site types: five different frequencies of buffelgrass herbicide plus hand removal treatments (ranging from 5 years of annual treatment to a single year of treatment), untreated sites, and non-invaded sites, with three replicates for each of the seven site types. The 22 measured soil properties (e.g., pH) differed little among sites. Regarding vegetation, buffelgrass cover was low (≤1 % median cover), or absent, across all treated sites but was high (10-70 %) in untreated sites. Native vegetation cover, diversity, and composition were indistinguishable across site types. Species composition was dominated by native species (>93 % relative cover) across all sites except untreated buffelgrass sites. Most (38 species, 93 %) of the 41 species detected in soil seed banks were native, and native seed density did not differ significantly across sites. Results suggest that: (1) buffelgrass cover was minimal across treated sites; (2) aside from high buffelgrass cover in untreated sites, ecological conditions were largely indistinguishable across sites; (3) soil seed banks harbored ≥12 species that were frequent in the aboveground vegetation; and (4) native species dominated post-treatment vegetation composition, and removing buffelgrass did not result in replacement by other exotic species.

  3. Feasibility of Invasive Grass Detection in a Desertscrub Community Using Hyperspectral Field Measurements and Landsat TM Imagery

    Directory of Open Access Journals (Sweden)

    Stuart E. Marsh

    2011-10-01

    Full Text Available Invasive species’ phenologies often contrast with those of native species, representing opportunities for detection of invasive species with multi-temporal remote sensing. Detection is especially critical for ecosystem-transforming species that facilitate changes in disturbance regimes. The African C4 grass, Pennisetum ciliare, is transforming ecosystems on three continents and a number of neotropical islands by introducing a grass-fire cycle. However, previous attempts at discriminating P. ciliare in North America using multi-spectral imagery have been unsuccessful. In this paper, we integrate field measurements of hyperspectral plant species signatures and canopy cover with multi-temporal spectral analysis to identify opportunities for detection using moderate-resolution multi-spectral imagery. By applying these results to Landsat TM imagery, we show that multi-spectral discrimination of P. ciliare in heterogeneous mixed desert scrub is feasible, but only at high abundance levels that may have limited value to land managers seeking to control invasion. Much higher discriminability is possible with hyperspectral shortwave infrared imagery because of differences in non-photosynthetic vegetation in uninvaded and invaded landscapes during dormant seasons but these spectra are unavailable in multispectral sensors. Therefore, we recommend hyperspectral imagery for distinguishing invasive grass-dominated landscapes from uninvaded desert scrub.

  4. Vegetable and fruit consumption and the risk of hormone receptor-defined breast cancer in the EPIC cohort.

    Science.gov (United States)

    Emaus, Marleen J; Peeters, Petra H M; Bakker, Marije F; Overvad, Kim; Tjønneland, Anne; Olsen, Anja; Romieu, Isabelle; Ferrari, Pietro; Dossus, Laure; Boutron-Ruault, Marie Christine; Baglietto, Laura; Fortner, Renée T; Kaaks, Rudolf; Boeing, Heiner; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Masala, Giovanna; Pala, Valeria; Panico, Salvatore; Tumino, Rosario; Polidoro, Silvia; Skeie, Guri; Lund, Eiliv; Weiderpass, Elisabete; Quirós, J Ramón; Travier, Noémie; Sánchez, María-José; Chirlaque, Maria-Dolores; Ardanaz, Eva; Dorronsoro, Miren; Winkvist, Anna; Wennberg, Maria; Bueno-de-Mesquita, H Bas; Khaw, Kay-Tee; Travis, Ruth C; Key, Timothy J; Aune, Dagfinn; Gunter, Marc; Riboli, Elio; van Gils, Carla H

    2016-01-01

    The recent literature indicates that a high vegetable intake and not a high fruit intake could be associated with decreased steroid hormone receptor-negative breast cancer risk. This study aimed to investigate the association between vegetable and fruit intake and steroid hormone receptor-defined breast cancer risk. A total of 335,054 female participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort were included in this study (mean ± SD age: 50.8 ± 9.8 y). Vegetable and fruit intake was measured by country-specific questionnaires filled out at recruitment between 1992 and 2000 with the use of standardized procedures. Cox proportional hazards models were stratified by age at recruitment and study center and were adjusted for breast cancer risk factors. After a median follow-up of 11.5 y (IQR: 10.1-12.3 y), 10,197 incident invasive breast cancers were diagnosed [3479 estrogen and progesterone receptor positive (ER+PR+); 1021 ER and PR negative (ER-PR-)]. Compared with the lowest quintile, the highest quintile of vegetable intake was associated with a lower risk of overall breast cancer (HRquintile 5-quintile 1: 0.87; 95% CI: 0.80, 0.94). Although the inverse association was most apparent for ER-PR- breast cancer (ER-PR-: HRquintile 5-quintile 1: 0.74; 95% CI: 0.57, 0.96; P-trend = 0.03; ER+PR+: HRquintile 5-quintile 1: 0.91; 95% CI: 0.79, 1.05; P-trend = 0.14), the test for heterogeneity by hormone receptor status was not significant (P-heterogeneity = 0.09). Fruit intake was not significantly associated with total and hormone receptor-defined breast cancer risk. This study supports evidence that a high vegetable intake is associated with lower (mainly hormone receptor-negative) breast cancer risk. © 2016 American Society for Nutrition.

  5. Potential effects of elevated base flow and midsummer spike flow experiments on riparian vegetation along the Green River

    Science.gov (United States)

    Friedman, Jonathan M.

    2018-01-01

    The Upper Colorado River Endangered Fish Recovery Program has requested experimental flow releases from Flaming Gorge Dam for (1) elevated summer base flows to promote larval endangered Colorado pikeminnow, and (2) midsummer spike flows to disadvantage spawning invasive smallmouth bass. This white paper explores the effects of these proposed flow modifications on riparian vegetation and sediment deposition downstream along the Green River. Although modest in magnitude, the elevated base flows and possible associated reductions in magnitude or duration of peak flows would exacerbate a long-term trend of flow stabilization on the Green River that is already leading to proliferation of vegetation including invasive tamarisk along the channel and associated sediment deposition, channel narrowing and channel simplification. Midsummer spike flows could promote establishment of late-flowering plants like tamarisk. Because channel narrowing and simplification threaten persistence and quality of backwater and side channel features needed by endangered fish, the proposed flow modifications could lead to degradation of fish habitat. Channel narrowing and vegetation encroachment could be countered by increases in peak flows or reductions in base flows in some years and by prescription of rapid flow declines following midsummer spike flows. These strategies for reducing vegetation encroachment would need to be balanced with flow

  6. Successful treatment of azole-resistant invasive aspergillosis in a bottlenose dolphin with high-dose posaconazole

    Directory of Open Access Journals (Sweden)

    Paulien E. Bunskoek

    2017-06-01

    Full Text Available Invasive aspergillosis due to azole-resistant Aspergillus fumigatus is difficult to manage. We describe a case of azole-resistant invasive aspergillosis in a female bottlenose dolphin, who failed to respond to voriconazole and posaconazole therapy. As intravenous therapy was precluded, high dose posaconazole was initiated aimed at achieving trough levels exceeding 3 mg/l. Posaconazole serum levels of 3–9.5 mg/l were achieved without significant side-effects. Follow-up bronchoscopy and computed tomography showed complete resolution of the lesions.

  7. Invasive non-native species' provision of refugia for endangered native species.

    Science.gov (United States)

    Chiba, Satoshi

    2010-08-01

    The influence of non-native species on native ecosystems is not predicted easily when interspecific interactions are complex. Species removal can result in unexpected and undesired changes to other ecosystem components. I examined whether invasive non-native species may both harm and provide refugia for endangered native species. The invasive non-native plant Casuarina stricta has damaged the native flora and caused decline of the snail fauna on the Ogasawara Islands, Japan. On Anijima in 2006 and 2009, I examined endemic land snails in the genus Ogasawarana. I compared the density of live specimens and frequency of predation scars (from black rats [Rattus rattus]) on empty shells in native vegetation and Casuarina forests. The density of land snails was greater in native vegetation than in Casuarina forests in 2006. Nevertheless, radical declines in the density of land snails occurred in native vegetation since 2006 in association with increasing predation by black rats. In contrast, abundance of Ogasawarana did not decline in the Casuarina forest, where shells with predation scars from rats were rare. As a result, the density of snails was greater in the Casuarina forest than in native vegetation. Removal of Casuarina was associated with an increased proportion of shells with predation scars from rats and a decrease in the density of Ogasawarana. The thick and dense litter of Casuarina appears to provide refugia for native land snails by protecting them from predation by rats; thus, eradication of rats should precede eradication of Casuarina. Adaptive strategies, particularly those that consider the removal order of non-native species, are crucial to minimizing the unintended effects of eradication on native species. In addition, my results suggested that in some cases a given non-native species can be used to mitigate the impacts of other non-native species on native species.

  8. Vegetation cover, avoided erosion and water quality in high Andean wetlands, Yeso River Basin

    Science.gov (United States)

    León, Alejandro; Soto, Jorge; Seguel, Oscar; Pérez, Javier; Osses, Daniela; Leiva, Nicolás; Zerega, Linka

    2017-04-01

    Wetlands on the high Andes mountains near Santiago de Chile have been impacted by overgrazing and off-road tourists. We studied wetlands in El Yeso River basin. In February 2015 we established 36 exclusions and measured vegetation cover and height, biomass production in and out the exclusions starting in October. Water and undisturbed soil samples were collected. Data were analyzed statistically to estimate i) the recovery of vegetation, and ii) the influence of grazing and vehicle traffic on vegetation loss, and iii) impacts on soil and water quality. In areas with less intense traffic, the difference in vegetation coverage in and out the exclusions is 22% (± 11.4%); in areas with more intense traffic this difference is 16% (± 16%). Height of vegetation, in the less intense traffic areas, ranges from 6.25 cm (± 2.8) to 13.32 cm (± 6.3). With higher traffic it varies between 6.9 cm (± 3.1) and 13.6 cm (± 5.4). Biomass varies between 0.06 kg DM/m2 to 0.57 kg DM/m2 depending on botanical composition and date. After water circulates through the wetlands its content of nitrogen increases 37.33% to 0.37 mg N/l and the fecal coliforms 66.67% to 0.67 MPN/100 ml, because of cattle. On the contrary, turbidity decreases 20.67% to 0.21 UNT because sediments are captured by vegetation. We also estimated an avoided erosion rate, ranging between 1.23% and 31.87% (depending on the slope) due to the increase in coverage within the exclusions.

  9. Prevention and diagnosis of invasive fungal disease in high-risk patients within an integrative care pathway.

    Science.gov (United States)

    Barnes, Rosemary A; Stocking, Kate; Bowden, Sarah; Poynton, Matthew H; White, P Lewis

    2013-09-01

    The aim of this study was to assess the clinical utility of enhanced diagnostics on the management of invasive fungal disease in high risk patients within an integrated care pathway and to audit compliance and efficacy of antifungal prophylaxis. A cohort of 549 high risk haematology and stem-cell transplant recipients was followed over a 5 year period. The routine standard of care involved the use of antimould prophylaxis and a neutropenic care pathway utilizing twice weekly antigen and PCR testing. Prophylaxis with itraconazole was poorly tolerated and therapeutic levels could not be maintained. Antigen testing and PCR showed good clinical utility in the management of invasive aspergilosis with high sensitivity (98%) and negative predictive value (99.6%) when both tests were used together, allowing a diagnosis IA to be excluded and obviating the need for empirical antifungal agents. When used serially, multiple positive PCR and antigen test results enabled accurate diagnosis of IA with a specificity of 95% and a positive likelihood ratio of 11. Biomarkers preceded clinical signs in 85% of proven and probable invasive disease. The combination of both tests showed optimum clinical utility for the diagnosis and management of IA in this high risk group. Copyright © 2013 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  10. Recovery of South African fynbos vegetation following alien woody plant clearing and fire: implications for restoration

    CSIR Research Space (South Africa)

    Holmes, PM

    2000-12-01

    Full Text Available The recovery of fynbos vegetation after invasion by dense stands of alien trees, and clearing by either 'burn standing’,’ fell and burn', or 'fell, remove and burn' treatments, was investigated in two watersheds in the Western Cape Province, South...

  11. Effects of climate change on forest vegetation in the Northern Rockies Region [Chapter 6

    Science.gov (United States)

    Keane, Robert E.; Mahalovich, Mary Frances; Bollenbacher, Barry L.; Manning, Mary E.; Loehman, Rachel A.; Jain, Terrie B.; Holsinger, Lisa M.; Larson, Andrew J.; Webster, Meredith M.

    2018-01-01

    The projected rapid changes in climate will affect the unique vegetation assemblages of the Northern Rockies region in myriad ways, both directly through shifts in vegetation growth, mortality, and regeneration, and indirectly through changes in disturbance regimes and interactions with changes in other ecosystem processes, such as hydrology, snow dynamics, and exotic invasions (Bonan 2008; Hansen and Phillips 2015; Hansen et al. 2001; Notaro et al. 2007). These impacts, taken collectively, could change the way vegetation is managed by public land agencies in this area. Some species may be in danger of rapid decreases in abundance, while others may undergo range expansion (Landhäusser et al. 2010). New vegetation communities may form, while historical vegetation complexes may simply shift to other areas of the landscape or become rare. Juxtaposed with climate change concerns are the consequences of other land management policies and past activities, such as fire exclusion, fuels treatments, and grazing. A thorough assessment of the responses of vegetation to projected climate change is needed, along with an evaluation of the vulnerability of important species, communities, and vegetation-related resources that may be influenced by the effects, both direct and indirect, of climate change. This assessment must also account for past management actions and current vegetation conditions and their interactions with future climates.

  12. Comparison of hydrogenated vegetable shortening and nutritionally complete high fat diet on limited access-binge behavior in rats

    OpenAIRE

    Davis, Jon F.; Melhorn, Susan J.; Heiman, Justin U.; Tschöp, Matthias H.; Clegg, Deborah J.; Benoit, Stephen C.

    2007-01-01

    Previous studies have suggested that intermittent exposure to hydrogenated vegetable shortening yields a binge/compensate pattern of feeding in rats. The present study was designed to assess whether rats would exhibit similar patterns of intake when given intermittent access to a nutritionally complete high-fat diet. Four groups of rats received varying exposure to either hydrogenated vegetable shortening or high-fat diet for 8 consecutive weeks. Animals were given daily and intermittent acce...

  13. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    Science.gov (United States)

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  14. Flow cytometric monitoring of bacterioplankton phenotypic diversity predicts high population-specific feeding rates by invasive dreissenid mussels.

    Science.gov (United States)

    Props, Ruben; Schmidt, Marian L; Heyse, Jasmine; Vanderploeg, Henry A; Boon, Nico; Denef, Vincent J

    2018-02-01

    Species invasion is an important disturbance to ecosystems worldwide, yet knowledge about the impacts of invasive species on bacterial communities remains sparse. Using a novel approach, we simultaneously detected phenotypic and derived taxonomic change in a natural bacterioplankton community when subjected to feeding pressure by quagga mussels, a widespread aquatic invasive species. We detected a significant decrease in diversity within 1 h of feeding and a total diversity loss of 11.6 ± 4.1% after 3 h. This loss of microbial diversity was caused by the selective removal of high nucleic acid populations (29 ± 5% after 3 h). We were able to track the community diversity at high temporal resolution by calculating phenotypic diversity estimates from flow cytometry (FCM) data of minute amounts of sample. Through parallel FCM and 16S rRNA gene amplicon sequencing analysis of environments spanning a broad diversity range, we showed that the two approaches resulted in highly correlated diversity measures and captured the same seasonal and lake-specific patterns in community composition. Based on our results, we predict that selective feeding by invasive dreissenid mussels directly impacts the microbial component of the carbon cycle, as it may drive bacterioplankton communities toward less diverse and potentially less productive states. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Thirty years of change in the fynbos vegetation of the Cape of Good Hope Nature Reserve, South Africa

    Directory of Open Access Journals (Sweden)

    S. D. J. Privett

    2001-09-01

    Full Text Available This study used permanently marked 50 m: sites, surveyed at a 30 year interval, to provide a descriptive account of the temporal change in the fynbos vegetation of the Cape of Good Hope Nature Reserve. South Africa. Management records were used to examine the role of post-fire age. fire frequency and intensity, as well as biotic interactions (competition from overstorey proteoids and alien plants in influencing vegetation composition over this time period. The mean similarity in species composition of sites between surveys was 62%, indicating an average of nearly 40% turnover in species over the 30 year period. The main causes of this change included differences resulting from different stages in the post-fire succession as well as the impact of differential fire regimes (especially frequency effects. Competition from serotinous Proteaceae. which proved highly mobile after fire, as well as invasive Australian acacias also impacted on the composition of the vegetation over time. The study demonstrated that fynbos communities are temporally dynamic and that the changes over time in species composition are caused by a variety of processes. The study also provided evidence for the role of temporal diversity in contributing to the high species diversity in fynbos systems.

  16. Quantifying vegetation distribution and structure using high resolution drone-based structure-from-motion photogrammetry

    Science.gov (United States)

    Zhang, J.; Okin, G.

    2017-12-01

    Vegetation is one of the most important driving factors of different ecosystem processes in drylands. The structure of vegetation controls the spatial distribution of moisture and heat in the canopy and the surrounding area. Also, the structure of vegetation influences both airflow and boundary layer resistance above the land surface. Multispectral satellite remote sensing has been widely used to monitor vegetation coverage and its change; however, it can only capture 2D images, which do not contain the vertical information of vegetation. In situ observation uses different methods to measure the structure of vegetation, and their results are accurate; however, these methods are laborious and time-consuming, and susceptible to undersampling in spatial heterogeneity. Drylands are sparsely covered by short plants, which allows the drone fly at a relatively low height to obtain ultra-high resolution images. Structure-from-motion (SfM) is a photogrammetric method that was proved to produce 3D model based on 2D images. Drone-based remote sensing can obtain the multiangle images for one object, which can be used to constructed 3D models of vegetation in drylands. Using these images detected by the drone, the orthomosaics and digital surface model (DSM) can be built. In this study, the drone-based remote sensing was conducted in Jornada Basin, New Mexico, in the spring of 2016 and 2017, and three derived vegetation parameters (i.e., canopy size, bare soil gap size, and plant height) were compared with those obtained with field measurement. The correlation coefficient of canopy size, bare soil gap size, and plant height between drone images and field data are 0.91, 0.96, and 0.84, respectively. The two-year averaged root-mean-square error (RMSE) of canopy size, bare soil gap size, and plant height between drone images and field data are 0.61 m, 1.21 m, and 0.25 cm, respectively. The two-year averaged measure error (ME) of canopy size, bare soil gap size, and plant height

  17. Globally threatened vertebrates on islands with invasive species.

    Science.gov (United States)

    Spatz, Dena R; Zilliacus, Kelly M; Holmes, Nick D; Butchart, Stuart H M; Genovesi, Piero; Ceballos, Gerardo; Tershy, Bernie R; Croll, Donald A

    2017-10-01

    Global biodiversity loss is disproportionately rapid on islands, where invasive species are a major driver of extinctions. To inform conservation planning aimed at preventing extinctions, we identify the distribution and biogeographic patterns of highly threatened terrestrial vertebrates (classified by the International Union for Conservation of Nature) and invasive vertebrates on ~465,000 islands worldwide by conducting a comprehensive literature review and interviews with more than 500 experts. We found that 1189 highly threatened vertebrate species (319 amphibians, 282 reptiles, 296 birds, and 292 mammals) breed on 1288 islands. These taxa represent only 5% of Earth's terrestrial vertebrates and 41% of all highly threatened terrestrial vertebrates, which occur in vertebrates was available for 1030 islands (80% of islands with highly threatened vertebrates). Invasive vertebrates were absent from 24% of these islands, where biosecurity to prevent invasions is a critical management tool. On the 76% of islands where invasive vertebrates were present, management could benefit 39% of Earth's highly threatened vertebrates. Invasive mammals occurred in 97% of these islands, with Rattus sp. as the most common invasive vertebrate (78%; 609 islands). Our results provide an important baseline for identifying islands for invasive species eradication and other island conservation actions that reduce biodiversity loss.

  18. Modelling Hotspots for Invasive Alien Plants in India.

    Science.gov (United States)

    Adhikari, Dibyendu; Tiwary, Raghuvar; Barik, Saroj Kanta

    2015-01-01

    Identification of invasion hotspots that support multiple invasive alien species (IAS) is a pre-requisite for control and management of invasion. However, till recently it remained a methodological challenge to precisely determine such invasive hotspots. We identified the hotspots of alien species invasion in India through Ecological Niche Modelling (ENM) using species occurrence data from the Global Biodiversity Information Facility (GBIF). The predicted area of invasion for selected species were classified into 4 categories based on number of model agreements for a region i.e. high, medium, low and very low. About 49% of the total geographical area of India was predicted to be prone to invasion at moderate to high levels of climatic suitability. The intersection of anthropogenic biomes and ecoregions with the regions of 'high' climatic suitability was classified as hotspot of alien plant invasion. Nineteen of 47 ecoregions of India, harboured such hotspots. Most ecologically sensitive regions of India, including the 'biodiversity hotspots' and coastal regions coincide with invasion hotspots, indicating their vulnerability to alien plant invasion. Besides demonstrating the usefulness of ENM and open source data for IAS management, the present study provides a knowledge base for guiding the formulation of an effective policy and management strategy for controlling the invasive alien species.

  19. Genetic diversity in three invasive clonal aquatic species in New Zealand

    Directory of Open Access Journals (Sweden)

    Sorrell Brian K

    2010-06-01

    Full Text Available Abstract Background Elodea canadensis, Egeria densa and Lagarosiphon major are dioecious clonal species which are invasive in New Zealand and other regions. Unlike many other invasive species, the genetic variation in New Zealand is very limited. Clonal reproduction is often considered an evolutionary dead end, even though a certain amount of genetic divergence may arise due to somatic mutations. The successful growth and establishment of invasive clonal species may be explained not by adaptability but by pre-existing ecological traits that prove advantageous in the new environment. We studied the genetic diversity and population structure in the North Island of New Zealand using AFLPs and related the findings to the number of introductions and the evolution that has occurred in the introduced area. Results Low levels of genetic diversity were found in all three species and appeared to be due to highly homogeneous founding gene pools. Elodea canadensis was introduced in 1868, and its populations showed more genetic structure than those of the more recently introduced of E. densa (1946 and L. major (1950. Elodea canadensis and L. major, however, had similar phylogeographic patterns, in spite of the difference in time since introduction. Conclusions The presence of a certain level of geographically correlated genetic structure in the absence of sexual reproduction, and in spite of random human dispersal of vegetative propagules, can be reasonably attributed to post-dispersal somatic mutations. Direct evidence of such evolutionary events is, however, still insufficient.

  20. Genetic diversity in three invasive clonal aquatic species in New Zealand

    Science.gov (United States)

    2010-01-01

    Background Elodea canadensis, Egeria densa and Lagarosiphon major are dioecious clonal species which are invasive in New Zealand and other regions. Unlike many other invasive species, the genetic variation in New Zealand is very limited. Clonal reproduction is often considered an evolutionary dead end, even though a certain amount of genetic divergence may arise due to somatic mutations. The successful growth and establishment of invasive clonal species may be explained not by adaptability but by pre-existing ecological traits that prove advantageous in the new environment. We studied the genetic diversity and population structure in the North Island of New Zealand using AFLPs and related the findings to the number of introductions and the evolution that has occurred in the introduced area. Results Low levels of genetic diversity were found in all three species and appeared to be due to highly homogeneous founding gene pools. Elodea canadensis was introduced in 1868, and its populations showed more genetic structure than those of the more recently introduced of E. densa (1946) and L. major (1950). Elodea canadensis and L. major, however, had similar phylogeographic patterns, in spite of the difference in time since introduction. Conclusions The presence of a certain level of geographically correlated genetic structure in the absence of sexual reproduction, and in spite of random human dispersal of vegetative propagules, can be reasonably attributed to post-dispersal somatic mutations. Direct evidence of such evolutionary events is, however, still insufficient. PMID:20565861

  1. A review of fire effects on vegetation and soils in the Great Basin region: response and ecological site characteristics

    Science.gov (United States)

    Miller, Richard F.; Chambers, Jeanne C.; Pyke, David A.; Pierson, Fred B.; Williams, C. Jason

    2013-01-01

    This review synthesizes the state of knowledge on fire effects on vegetation and soils in semi-arid ecosystems in the Great Basin Region, including the central and northern Great Basin and Range, Columbia River Basin, and the Snake River Plain. We summarize available literature related to: (1) the effects of environmental gradients, ecological site, and vegetation characteristics on resilience to disturbance and resistance to invasive species; (2) the effects of fire on individual plant species and communities, biological soil crusts, seed banks, soil nutrients, and hydrology; and (3) the role of fire severity, fire versus fire surrogate treatments, and post-fire grazing in determining ecosystem response. From this, we identify knowledge gaps and present a framework for predicting plant successional trajectories following wild and prescribed fires and fire surrogate treatments. Possibly the three most important ecological site characteristics that influence a site’s resilience (ability of the ecological site to recover from disturbance) and resistance to invasive species are soil temperature/moisture regimes and the composition and structure of vegetation on the ecological site just prior to the disturbance event.

  2. Productive and vegetative behavior of olive cultivars in super high-density olive grove

    Directory of Open Access Journals (Sweden)

    Primo Proietti

    2015-02-01

    Full Text Available In recent years, there has been an increase in interest in super high-density (SHD olive (Olea europaea L. groves because they offer early entry into production, increased productivity and the possibility of using modified mechanical vine harvesters. This study was carried out in a young SHD olive grove to examine vegetative, histo-anatomical and productive characteristics and oil quality of the Spanish Arbequina and Italian Maurino and Leccino cultivars, characterized by low, low-to-medium and high vigor, respectively. Arbequina had low vigor and limited development in height and width, as well as a high leaf/wood ratio. Maurino had a canopy volume similar to that of Arbequina and, despite a great tendency to grow in height, had low vigor, a rather compact vegetative habitus, but good lighting in the canopy and high production efficiency. In Maurino, a greater palisade parenchyma height and a larger exposed lateral surface area of the palisade parenchyma cells were observed. In the fourth year after planting, fruit production of Arbequina was about 30 % less than Leccino and Maurino. The oil content on a dry weight basis was slightly higher in Arbequina and Maurino than in Leccino. Oil quality was good for all cultivars.

  3. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Science.gov (United States)

    Porada, Philipp; Lenton, Tim; Pohl, Alexandre; Weber, Bettina; Mander, Luke; Donnadieu, Yannick; Beer, Christian; Pöschl, Ulrich; Kleidon, Axel

    2017-04-01

    Early non-vascular vegetation in the Late Ordovician may have strongly increased chemical weathering rates of surface rocks at the global scale. This could have led to a drawdown of atmospheric CO2 and, consequently, a decrease in global temperature and an interval of glaciations. Under current climatic conditions, usually field or laboratory experiments are used to quantify enhancement of chemical weathering rates by non-vascular vegetation. However, these experiments are constrained to a small spatial scale and a limited number of species. This complicates the extrapolation to the global scale, even more so for the geological past, where physiological properties of non-vascular vegetation may have differed from current species. Here we present a spatially explicit modelling approach to simulate large-scale chemical weathering by non-vascular vegetation in the Late Ordovician. For this purpose, we use a process-based model of lichens and bryophytes, since these organisms are probably the closest living analogue to Late Ordovician vegetation. The model explicitly represents multiple physiological strategies, which enables the simulated vegetation to adapt to Ordovician climatic conditions. We estimate productivity of Ordovician vegetation with the model, and relate it to chemical weathering by assuming that the organisms dissolve rocks to extract phosphorus for the production of new biomass. Thereby we account for limits on weathering due to reduced supply of unweathered rock material in shallow regions, as well as decreased transport capacity of runoff for dissolved weathered material in dry areas. We simulate a potential global weathering flux of 2.8 km3 (rock) per year, which we define as volume of primary minerals affected by chemical transformation. Our estimate is around 3 times larger than today's global chemical weathering flux. Furthermore, chemical weathering rates simulated by our model are highly sensitive to atmospheric CO2 concentration, which implies

  4. Invasive mammals and habitat modification interact to generate unforeseen outcomes for indigenous fauna.

    Science.gov (United States)

    Norbury, Grant; Byrom, Andrea; Pech, Roger; Smith, James; Clarke, Dean; Anderson, Dean; Forrester, Guy

    2013-10-01

    Biotic invasions and habitat modification are two drivers of global change predicted to have detrimental impacts on the persistence of indigenous biota worldwide. Few studies have investigated how they operate synergistically to alter trophic interactions among indigenous and nonindigenous species in invaded ecosystems. We experimentally manipulated a suite of interacting invasive mammals, including top predators (cat Felis catus, ferret Mustela furo, stoat M. erminea), herbivores (rabbit Oryctolagus cuniculus, hare Lepus europaeus), and an insectivore (hedgehog Erinaceus europaeus occidentalis), and measured their effects on indigenous lizards and invertebrates and on an invasive mesopredator (house mouse Mus musculus). The work was carried out in a grassland/shrubland ecosystem that had been subjected to two types of habitat modification (widespread introduction of high-seed-producing pasture species, and areas of land use intensification by fertilization and livestock grazing). We also quantified food productivity for indigenous and invasive fauna by measuring pasture biomass, as well as seed and fruit production by grasses and shrubs. Indigenous fauna did not always increase following top-predator suppression: lizards increased on one of two sites; invertebrates did not increase on either site. Mesopredator release of mice was evident at the site where lizards did not increase, suggesting negative effects of mice on lizard populations. High mouse abundance occurred only on the predator-suppression site with regular production of pasture seed, indicating that this food resource was the main driver of mouse populations. Removal of herbivores increased pasture and seed production, which further enhanced ecological release of mice, particularly where pasture swards were overtopped by shrubs. An effect of landscape supplementation was also evident where nearby fertilized pastures boosted rabbit numbers and the associated top predators. Other studies have shown that

  5. Seed germination in relation to the invasiveness in spiny amaranth and edible amaranth in Xishuangbanna, SW China.

    Science.gov (United States)

    Ye, Juan; Wen, Bin

    2017-01-01

    Both spiny and edible amaranths (Amaranthus spinosus and A. tricolor) are exotic annuals in China that produce numerous small seeds every year. Spiny amaranth has become a successful invader and a troublesome weed in Xishuangbanna, but edible amaranth has not, although it is widely grown as a vegetable there. As seed germination is one of the most important life-stages contributing to the ability of a plant to become invasive, we conducted experiments to compare the effects of high temperature and water stress on seed germination in two varieties each of spiny amaranth and edible amaranth. Overall, the seeds of both amaranth species exhibited adaptation to high temperature and water stress, including tolerance to ground temperatures of 70°C for air-dried seeds, which is consistent with their behavior in their native ranges in the tropics. As expected, the invasive spiny amaranth seeds exhibited higher tolerance to both continuous and daily periodic high-temperature treatment at 45°C, and to imbibition-desiccation treatment, compared to edible amaranth seeds. Unexpectedly, edible amaranth seeds exhibited higher germination at extreme temperatures (10°C, 15°C, and 40°C), and at lower water potential (below -0.6 MPa). It is likely that cultivation of edible amaranth has selected seed traits that include rapid germination and germination under stressful conditions, either of which, under natural conditions, may result in the death of most germinating edible amaranth seeds and prevent them from becoming invasive weeds in Xishuangbanna. This study suggests that rapid germination and high germination under stress conditions-excellent seed traits for crops and for many invasive species-might be a disadvantage under natural conditions if these traits are asynchronous with natural local conditions that support successful germination.

  6. Seed germination in relation to the invasiveness in spiny amaranth and edible amaranth in Xishuangbanna, SW China.

    Directory of Open Access Journals (Sweden)

    Juan Ye

    Full Text Available Both spiny and edible amaranths (Amaranthus spinosus and A. tricolor are exotic annuals in China that produce numerous small seeds every year. Spiny amaranth has become a successful invader and a troublesome weed in Xishuangbanna, but edible amaranth has not, although it is widely grown as a vegetable there. As seed germination is one of the most important life-stages contributing to the ability of a plant to become invasive, we conducted experiments to compare the effects of high temperature and water stress on seed germination in two varieties each of spiny amaranth and edible amaranth. Overall, the seeds of both amaranth species exhibited adaptation to high temperature and water stress, including tolerance to ground temperatures of 70°C for air-dried seeds, which is consistent with their behavior in their native ranges in the tropics. As expected, the invasive spiny amaranth seeds exhibited higher tolerance to both continuous and daily periodic high-temperature treatment at 45°C, and to imbibition-desiccation treatment, compared to edible amaranth seeds. Unexpectedly, edible amaranth seeds exhibited higher germination at extreme temperatures (10°C, 15°C, and 40°C, and at lower water potential (below -0.6 MPa. It is likely that cultivation of edible amaranth has selected seed traits that include rapid germination and germination under stressful conditions, either of which, under natural conditions, may result in the death of most germinating edible amaranth seeds and prevent them from becoming invasive weeds in Xishuangbanna. This study suggests that rapid germination and high germination under stress conditions-excellent seed traits for crops and for many invasive species-might be a disadvantage under natural conditions if these traits are asynchronous with natural local conditions that support successful germination.

  7. Encouraging children to eat vegetables

    OpenAIRE

    Buh, Alenka

    2014-01-01

    It is important for children to maintain a healthy and balanced diet throughout their childhood and youth. Children tend to skip vegetables in their meals as they are not much liked; the tastes of vegetables are also highly specific and each individual has to get used to them by repeated tasting. The aim of this undergraduate thesis was to analyse how often children eat vegetables, which types of vegetables they like and which they do not, to determine if the executed method of pedagogica...

  8. A Probability Co-Kriging Model to Account for Reporting Bias and Recognize Areas at High Risk for Zebra Mussels and Eurasian Watermilfoil Invasions in Minnesota

    Directory of Open Access Journals (Sweden)

    Kaushi S. T. Kanankege

    2018-01-01

    Full Text Available Zebra mussels (ZMs (Dreissena polymorpha and Eurasian watermilfoil (EWM (Myriophyllum spicatum are aggressive aquatic invasive species posing a conservation burden on Minnesota. Recognizing areas at high risk for invasion is a prerequisite for the implementation of risk-based prevention and mitigation management strategies. The early detection of invasion has been challenging, due in part to the imperfect observation process of invasions including the absence of a surveillance program, reliance on public reporting, and limited resource availability, which results in reporting bias. To predict the areas at high risk for invasions, while accounting for underreporting, we combined network analysis and probability co-kriging to estimate the risk of ZM and EWM invasions. We used network analysis to generate a waterbody-specific variable representing boater traffic, a known high risk activity for human-mediated transportation of invasive species. In addition, co-kriging was used to estimate the probability of species introduction, using waterbody-specific variables. A co-kriging model containing distance to the nearest ZM infested location, boater traffic, and road access was used to recognize the areas at high risk for ZM invasions (AUC = 0.78. The EWM co-kriging model included distance to the nearest EWM infested location, boater traffic, and connectivity to infested waterbodies (AUC = 0.76. Results suggested that, by 2015, nearly 20% of the waterbodies in Minnesota were at high risk of ZM (12.45% or EWM (12.43% invasions, whereas only 125/18,411 (0.67% and 304/18,411 (1.65% are currently infested, respectively. Prediction methods presented here can support decisions related to solving the problems of imperfect detection, which subsequently improve the early detection of biological invasions.

  9. A Probability Co-Kriging Model to Account for Reporting Bias and Recognize Areas at High Risk for Zebra Mussels and Eurasian Watermilfoil Invasions in Minnesota.

    Science.gov (United States)

    Kanankege, Kaushi S T; Alkhamis, Moh A; Phelps, Nicholas B D; Perez, Andres M

    2017-01-01

    Zebra mussels (ZMs) ( Dreissena polymorpha ) and Eurasian watermilfoil (EWM) ( Myriophyllum spicatum ) are aggressive aquatic invasive species posing a conservation burden on Minnesota. Recognizing areas at high risk for invasion is a prerequisite for the implementation of risk-based prevention and mitigation management strategies. The early detection of invasion has been challenging, due in part to the imperfect observation process of invasions including the absence of a surveillance program, reliance on public reporting, and limited resource availability, which results in reporting bias. To predict the areas at high risk for invasions, while accounting for underreporting, we combined network analysis and probability co-kriging to estimate the risk of ZM and EWM invasions. We used network analysis to generate a waterbody-specific variable representing boater traffic, a known high risk activity for human-mediated transportation of invasive species. In addition, co-kriging was used to estimate the probability of species introduction, using waterbody-specific variables. A co-kriging model containing distance to the nearest ZM infested location, boater traffic, and road access was used to recognize the areas at high risk for ZM invasions (AUC = 0.78). The EWM co-kriging model included distance to the nearest EWM infested location, boater traffic, and connectivity to infested waterbodies (AUC = 0.76). Results suggested that, by 2015, nearly 20% of the waterbodies in Minnesota were at high risk of ZM (12.45%) or EWM (12.43%) invasions, whereas only 125/18,411 (0.67%) and 304/18,411 (1.65%) are currently infested, respectively. Prediction methods presented here can support decisions related to solving the problems of imperfect detection, which subsequently improve the early detection of biological invasions.

  10. Mapping presence and predicting phenological status of invasive buffelgrass in southern Arizona using MODIS, climate and citizen science observation data

    Science.gov (United States)

    Wallace, Cynthia S.A.; Walker, Jessica; Skirvin, Susan M.; Patrick-Birdwell, Caroline; Weltzin, Jake F.; Raichle, Helen

    2016-01-01

    The increasing spread and abundance of an invasive perennial grass, buffelgrass (Pennisetum ciliare), represents a critical threat to the native vegetation communities of the Sonoran desert in southern Arizona, USA, where buffelgrass eradication is a high priority for resource managers. Herbicidal treatment of buffelgrass is most effective when the vegetation is actively growing, but the remoteness of infestations and the erratic timing and length of the species’ growth periods confound effective treatment. The goal of our research is to promote buffelgrass management by using remote sensing data to detect where the invasive plants are located and when they are photosynthetically active. We integrated citizen scientist observations of buffelgrass phenology in the Tucson, Arizona area with PRISM precipitation data, eight-day composites of 250-m Moderate-resolution Imaging Spectroradiometer (MODIS) satellite imagery, and aerially-mapped polygons of buffelgrass presence to understand dynamics and relationships between precipitation and the timing and amount of buffelgrass greenness from 2011 to 2013. Our results show that buffelgrass responds quickly to antecedent rainfall: in pixels containing buffelgrass, higher correlations (R2 > 0.5) typically occur after two cumulative eight-day periods of rain, whereas in pixels dominated by native vegetation, four prior 8-day periods are required to reach that threshold. Using the new suite of phenometrics introduced here—Climate Landscape Response metrics—we accurately predicted the location of 49% to 55% of buffelgrass patches in Saguaro National Park. These metrics and the suggested guidelines for their use can be employed by resource managers to treat buffelgrass during optimal time periods.

  11. The influence of ungulates on non-native plant invasions in forests and rangelands: a review.

    Science.gov (United States)

    Catherine G. Parks; Michael J. Wisdom; John G. Kie

    2005-01-01

    Herbivory by wild and domestic ungulates can strongly influence vegetation composition and productivity in forest and range ecosystems. However, the role of ungulates as contributors to the establishment and spread of non-native invasive plants is not well known. Ungulates spread seeds through endozoochory (passing through an animal's digestive tract) or...

  12. A strategic study of the impact of invasive alien plants in the high ...

    African Journals Online (AJOL)

    The aim of this study was to develop a methodology to determine the impact of upland (non-riparian) invasive alien plants in the high rainfall catchments and riparian areas in all catchments on the total surface water yield available in each of the water management areas of South Africa. This would enable the Department of ...

  13. Life Cycle Assessment of a Highly Diverse Vegetable Multi-Cropping System in Fengqiu County, China

    Directory of Open Access Journals (Sweden)

    Li Li

    2018-03-01

    Full Text Available Agricultural biodiversity usually leads to greater sustainability in production practices. To understand the environmental implications of the development of village-level multi-cropping in rural China, we compared the environmental impact of a highly diverse vegetable multi-cropping system to a conventional wheat/maize rotation system based on the method of life cycle assessment (LCA. Using household level cultivation data, this study examined the gate-to-gate environmental impacts of on-site cultivation practices relating to the production of 10,000 nutrient equivalent units. Results show that vegetable multi-cropping resulted in decreased average land requirement, and diesel, water and electricity usage by 69.8%, 62.2%, 71.7%, and 63.4%, respectively, while average nitrogen (Total N, phosphorus (P2O5, and potassium (K2O usage in vegetable multi-cropping systems decreased by 16.3%, 42.1%, and 75.8%, respectively. Additional corresponding effects led to a decrease in the total global warming, eutrophication, and acidification potentials from external inputs by 21.6%, 16.7%, and 16.2% of the entire system, respectively. Moreover, the midpoint human toxicity potential from pesticide usage of the vegetable multi-cropping system was lower than that of the conventional system. However, the midpoint eco-toxicity potential from pesticide usage was higher due to certain highly toxic substances, and both human and eco-toxicity potentials from heavy metals were all higher by a few orders of magnitudes. Thus, to mitigate these detrimental consequences, some related measures are proposed for sustainable practices in the future implementation of multi-cropping systems.

  14. Temporal development of vegetation and geomorphology in a man-made beach-dune system by natural processes

    DEFF Research Database (Denmark)

    Vestergaard, Peter

    2006-01-01

    with F. rubra and the invasive alien Rosa rugosa. It was concluded, that the main trends in the geomorphological and vegetational development of the man-made beach-dune system is similar to the development in natural dunes. In the future, further accretion and seaward dune formation may be expected...

  15. Vegetation and soil at the terraces of the Dřevnice and the Morava rivers after flood

    Czech Academy of Sciences Publication Activity Database

    Šerá, Božena; Cudlín, Pavel; Dušek, L.; Hofman, J.

    2008-01-01

    Roč. 27, č. 4 (2008), s. 430-445 ISSN 1335-342X R&D Projects: GA ČR(CZ) GA103/99/1470 Institutional research plan: CEZ:AV0Z60870520 Keywords : flood * vegetation change * invasive plant * life strategy * soil parameter * soil contamination Subject RIV: EH - Ecology, Behaviour

  16. New gSSR and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species.

    Science.gov (United States)

    Meyer, Lucie; Causse, Romain; Pernin, Fanny; Scalone, Romain; Bailly, Géraldine; Chauvel, Bruno; Délye, Christophe; Le Corre, Valérie

    2017-01-01

    Ambrosia artemisiifolia L., (common ragweed), is an annual invasive and highly troublesome plant species originating from North America that has become widespread across Europe. New sets of genomic and expressed sequence tag (EST) based simple sequence repeats (SSRs) markers were developed in this species using three approaches. After validation, 13 genomic SSRs and 13 EST-SSRs were retained and used to characterize the genetic diversity and population genetic structure of Ambrosia artemisiifolia populations from the native (North America) and invasive (Europe) ranges of the species. Analysing the mating system based on maternal families did not reveal any departure from complete allogamy and excess homozygosity was mostly due the presence of null alleles. High genetic diversity and patterns of genetic structure in Europe suggest two main introduction events followed by secondary colonization events. Cross-species transferability of the newly developed markers to other invasive species of the Ambrosia genus was assessed. Sixty-five percent and 75% of markers, respectively, were transferable from A. artemisiifolia to Ambrosia psilostachya and Ambrosia tenuifolia. 40% were transferable to Ambrosia trifida, this latter species being seemingly more phylogenetically distantly related to A. artemisiifolia than the former two.

  17. CT evaluation of gastric cancer. Depth of tumor invasion and pancreas invasion

    International Nuclear Information System (INIS)

    Banba, Yoshihisa; Kanazawa, Tadayoshi; Seto, Hikaru

    1998-01-01

    To compare the internal structure of tumor and the contiguous organ configuration on computed tomography (CT) with the depth of tumor invasion on the pathological specimen. Sixty-four gastric cancers depicted on incremental dynamic CT were classified according to the internal structure of the tumor, and correlated with the depth of tumor invasion. In addition, the cancers were classified according to the contiguous pancreatic configuration, and correlated with the degree of pancreatic invasion. Eleven tumors with thickened gastric wall consisting of both a thick inner layer of high attenuation and a thin outer layer of low attenuation (two-layered tumor with a thin outer layer) did not invade the serosa: mucosa (n=5) and submucosa (n=6). Of 59 gastric cancers with a regular margin to the contiguous pancreas, pancreatic invasion was absent in 58 and present in one. Pancreatic invasion was present in all of five gastric cancers with an irregular margin. Our results indicate that two-layered gastric tumors with a thin outer layer never invade the serosa. Furthermore, pancreatic invasion is predicted only when the margin of the contiguous pancreas is irregular. (author)

  18. Plant invasions: Merging the concepts of species invasiveness and community invasibility

    Czech Academy of Sciences Publication Activity Database

    Richardson, D. M.; Pyšek, Petr

    2006-01-01

    Roč. 30, č. 3 (2006), s. 409-431 ISSN 0309-1333 Institutional research plan: CEZ:AV0Z60050516 Keywords : plant invasions * species invasiveness * community invasibility Subject RIV: EF - Botanics Impact factor: 1.278, year: 2006

  19. Non-invasive and high-sensitivity scanning detection of magnetic nanoparticles in animals using high-Tc scanning superconducting-quantum-interference-device biosusceptometry.

    Science.gov (United States)

    Chieh, J J; Hong, C Y

    2011-08-01

    Although magnetic nanoparticles (MNPs) have been widely applied to animals in biomedicine, MNPs within animals should be examined in real time, in vivo, and without bio-damaged possibility to evaluate whether the bio-function of MNPs is valid or to further controls the biomedicinal process because of accompanying complex problems such as MNPs distribution and MNPs biodegradation. The non-invasive and high-sensitivity scanning detection of MNPs in animals using ac susceptometry based on a high-T(c) superconducting quantum interference device (SQUID) is presented. The non-invasive results and biopsy results show good agreement, and two gold-standard biomedicine methods, Prussian blue stain and inductively coupled plasma, prove the magnetic results. This confirms that the future clinical diagnosis of bio-functional MNPs could be operated by using scanning SQUID biosusceptometry as conveniently as an ultrasonic probe.

  20. Responses of the soil fungal communities to the co-invasion of two invasive species with different cover classes.

    Science.gov (United States)

    Wang, C; Zhou, J; Liu, J; Jiang, K; Xiao, H; Du, D

    2018-01-01

    Soil fungal communities play an important role in the successful invasion of non-native species. It is common for two or more invasive plant species to co-occur in invaded ecosystems. This study aimed to determine the effects of co-invasion of two invasive species (Erigeron annuus and Solidago canadensis) with different cover classes on soil fungal communities using high-throughput sequencing. Invasion of E. annuus and/or S. canadensis had positive effects on the sequence number, operational taxonomic unit (OTU) richness, Shannon diversity, abundance-based cover estimator (ACE index) and Chao1 index of soil fungal communities, but negative effects on the Simpson index. Thus, invasion of E. annuus and/or S. canadensis could increase diversity and richness of soil fungal communities but decrease dominance of some members of these communities, in part to facilitate plant further invasion, because high soil microbial diversity could increase soil functions and plant nutrient acquisition. Some soil fungal species grow well, whereas others tend to extinction after non-native plant invasion with increasing invasion degree and presumably time. The sequence number, OTU richness, Shannon diversity, ACE index and Chao1 index of soil fungal communities were higher under co-invasion of E. annuus and S. canadensis than under independent invasion of either individual species. The co-invasion of the two invasive species had a positive synergistic effect on diversity and abundance of soil fungal communities, partly to build a soil microenvironment to enhance competitiveness of the invaders. The changed diversity and community under co-invasion could modify resource availability and niche differentiation within the soil fungal communities, mediated by differences in leaf litter quality and quantity, which can support different fungal/microbial species in the soil. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  1. The effects of a high-animal- and a high-vegetable-protein diet on mineral balance and bowel function of young men

    NARCIS (Netherlands)

    Dokkum, W. van; Wesstra, A.; Luyken, R.; Hermus, R.J.J.

    1986-01-01

    Twelve young men were given for periods of 20 d, each of three mixed diets, namely a low-protein (LP) diet (9% total energy as protein, 67% of animal origin), a high-animal-protein (HA) diet (16% total energy as protein, 67% of animal origin) and a high-vegetable-protein (HV) diet (16% total energy

  2. Self-reinforcing impacts of plant invasions change over time.

    Science.gov (United States)

    Yelenik, Stephanie G; D'Antonio, Carla M

    2013-11-28

    Returning native species to habitats degraded by biological invasions is a critical conservation goal. A leading hypothesis poses that exotic plant dominance is self-reinforced by impacts on ecosystem processes, leading to persistent stable states. Invaders have been documented to modify fire regimes, alter soil nutrients or shift microbial communities in ways that feed back to benefit themselves over competitors. However, few studies have followed invasions through time to ask whether ecosystem impacts and feedbacks persist. Here we return to woodland sites in Hawai'i Volcanoes National Park that were invaded by exotic C4 grasses in the 1960s, the ecosystem impacts of which were studied intensively in the 1990s. We show that positive feedbacks between exotic grasses and soil nitrogen cycling have broken down, but rather than facilitating native vegetation, the weakening feedbacks facilitate new exotic species. Data from the 1990s showed that exotic grasses increased nitrogen-mineralization rates by two- to fourfold, but were nitrogen-limited. Thus, the impacts of the invader created a positive feedback early in the invasion. We now show that annual net soil nitrogen mineralization has since dropped to pre-invasion levels. In addition, a seedling outplanting experiment that varied soil nitrogen and grass competition demonstrates that the changing impacts of grasses do not favour native species re-establishment. Instead, decreased nitrogen availability most benefits another aggressive invader, the nitrogen-fixing tree Morella faya. Long-term studies of invasions may reveal that ecosystem impacts and feedbacks shift over time, but that this may not benefit native species recovery.

  3. Tolerance to High Temperature Extremes in an Invasive Lace Bug, Corythucha ciliata (Hemiptera: Tingidae), in Subtropical China

    OpenAIRE

    Ju, Rui-Ting; Gao, Lei; Zhou, Xu-Hui; Li, Bo

    2013-01-01

    Biological invasions are predicted to be more frequent as climate change is increasing its positive impact on the prevalence of invasive exotic species. Success of insect invaders in different temperature zones is closely related to their tolerance to temperature extremes. In this study, we used an exotic lace bug (Corythucha ciliata) as the study organism to address the hypotheses that an insect species invading a subtropical zone from temperate regions has a high capacity to survive and ada...

  4. Woody structure facilitates invasion of woody plants by providing perches for birds.

    Science.gov (United States)

    Prather, Chelse M; Huynh, Andrew; Pennings, Steven C

    2017-10-01

    Woody encroachment threatens prairie ecosystems globally, and thus understanding the mechanisms that facilitate woody encroachment is of critical importance. Coastal tallgrass prairies along the Gulf Coast of the US are currently threatened by the spread of several species of woody plants. We studied a coastal tallgrass prairie in Texas, USA, to determine if existing woody structure increased the supply of seeds from woody plants via dispersal by birds. Specifically, we determined if (i) more seedlings of an invasive tree ( Tridacia sebifera ) are present surrounding a native woody plant ( Myrica cerifera ); (ii) wooden perches increase the quantity of seeds dispersed to a grassland; and (iii) perches alter the composition of the seed rain seasonally in prairie habitats with differing amounts of native and invasive woody vegetation, both underneath and away from artificial wooden perches. More T. sebifera seedlings were found within M. cerifera patches than in graminoid-dominated areas. Although perches did not affect the total number of seeds, perches changed the composition of seed rain to be less dominated by grasses and forbs. Specifically, 20-30 times as many seeds of two invasive species of woody plants were found underneath perches independent of background vegetation, especially during months when seed rain was highest. These results suggest that existing woody structure in a grassland can promote further woody encroachment by enhancing seed dispersal by birds. This finding argues for management to reduce woody plant abundance before exotic plants set seeds and argues against the use of artificial perches as a restoration technique in grasslands threatened by woody species.

  5. Multiscale influence of woody riparian vegetation on fluvial topography quantified with ground-based and airborne lidar

    Science.gov (United States)

    Bywater-Reyes, Sharon; Wilcox, Andrew C.; Diehl, Rebecca M.

    2017-06-01

    Coupling between riparian vegetation and river processes can result in the coevolution of plant communities and channel morphology. Quantifying biotic-abiotic interactions remains difficult because of the challenges in making and analyzing appropriately scaled observations. We measure the influence of woody vegetation on channel topography at the patch and reach scales in a sand bed, dryland river system (Santa Maria River, Arizona) with native Populus and invasive Tamarix. At the patch scale, we use ground-based lidar to relate plant morphology to "tail bars" formed in the lee of vegetation. We find vegetation roughness density (λf) to most influence tail-bar shape and size, suggesting coherent flow structures associated with roughness density are responsible for sediment deposition at this scale. Using airborne lidar, we test whether relationships between topography and vegetation morphology observed at the patch scale are persistent at the reach scale. We find that elevation of the channel (relative to the local mean) covaries with a metric of vegetation density, indicating analogous influences of vegetation density on topography across spatial scales. While these results are expected, our approach provides insight regarding interactions between woody riparian vegetation and channel topography at multiple scales, and a means to quantify such interactions for use in other field settings.

  6. The Invasive Plant Species Education Guide

    Science.gov (United States)

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  7. Invasive rats on tropical islands: Their population biology and impacts on native species

    Directory of Open Access Journals (Sweden)

    Grant A. Harper

    2015-01-01

    Full Text Available The three most invasive rat species, black or ship rat Rattus rattus, brown or Norway rats, R. norvegicus and Pacific rat, R. exulans have been incrementally introduced to islands as humans have explored the world’s oceans. They have caused serious deleterious effects through predation and competition, and extinction of many species on tropical islands, many of which are biodiversity hotspots. All three rat species are found in virtually all habitat types, including mangrove and arid shrub land. Black rats tend to dominate the literature but despite this the population biology of invasive rats, particularly Norway rats, is poorly researched on tropical islands. Pacific rats can often exceed population densities of well over 100 rats ha−1 and black rats can attain densities of 119 rats ha−1, which is much higher than recorded on most temperate islands. High densities are possibly due to high recruitment of young although the data to support this are limited. The generally aseasonally warm climate can lead to year-round breeding but can be restricted by either density-dependent effects interacting with resource constraints often due to aridity. Apparent adverse impacts on birds have been well recorded and almost all tropical seabirds and land birds can be affected by rats. On the Pacific islands, black rats have added to declines and extinctions of land birds caused initially by Pacific rats. Rats have likely caused unrecorded extinctions of native species on tropical islands. Further research required on invasive rats on tropical islands includes the drivers of population growth and carrying capacities that result in high densities and how these differ to temperate islands, habitat use of rats in tropical vegetation types and interactions with other tropical species, particularly the reptiles and invertebrates, including crustaceans.

  8. Species Distribution Model for Management of an Invasive Vine in Forestlands of Eastern Texas

    Directory of Open Access Journals (Sweden)

    Hsiao-Hsuan Wang

    2015-11-01

    Full Text Available Invasive plants decrease biodiversity, modify vegetation structure, and inhibit growth and reproduction of native species. Japanese honeysuckle (Lonicera japonica Thunb. is the most prevalent invasive vine in the forestlands of eastern Texas. Hence, we aimed to identify potential factors influencing the distribution of the species, quantify the relative importance of each factor, and test possible management strategies. We analyzed an extensive dataset collected as part of the Forest Inventory and Analysis Program of the United States Department of Agriculture (USDA Forest Service to quantify the range expansion of Japanese honeysuckle in the forestlands of eastern Texas from 2006 to 2011. We then identified potential factors influencing the likelihood of presence of Japanese honeysuckle using boosted regression trees. Our results indicated that the presence of Japanese honeysuckle on sampled plots almost doubled during this period (from 352 to 616 plots, spreading extensively, geographically. The probability of invasion was correlated with variables representing landscape conditions, climatic conditions, forest features, disturbance factors, and forest management activities. Habitats most at risk to invasion under current conditions occurred primarily in northeastern Texas, with a few invasion hotspots in the south. Estimated probabilities of invasion were reduced most by artificial site regeneration, with habitats most at risk again occurring primarily in northeastern Texas.

  9. The clinical pathologic research of invasive pituitary adenomas

    International Nuclear Information System (INIS)

    Guo Lingchuan; Zheng Yushuang; Wang Shouli; Hui Guozhen; Li Xiangdong

    2012-01-01

    Objective: To study the pathological morphologic characteristics of invasive pituitary tumor and the affect of vascularization to the tumor's invasion. Methods: One hundred and thirty cases of pituitary adenoma patients were divided into two groups, including invasive pituitary adenomas and non-invasive pituitary adenomas, and the clinical data of two groups were analysed and compared. Results : The difference was statistically significant between the invasive group and the non-invasive group in the incidence rate of pathological morphologic characteristics such as high nuclear cytoplasmic ratio, cell pleomorphism, nuclear atypia and nucleoli appearance (P<0.05); there were nuclear atypia and nucleolus margination in the invasive group through electron microscopy. And there was statistical significant difference in rate of MVD expression which was higher in the invasive group than that of noninvasive group (P<0.05). Conclusion: The pathological morphologic characteristics of pituitary tumor and the high expression of MVD are significantly reference valuable in tumor aggression diagnosis, which provides valuable indicators for early clinical diagnosis of tumor invasion. (authors)

  10. Quantifying BRDF Effects in Comparing Landsat-7 and AVIRIS Near-Simultaneous Acquisitions for Studies of High Plains Vegetation Cover

    Science.gov (United States)

    Goetz, A. F. H.; Heidebrecht, K. B.; Gutmann, E. D.; Warner, A. S.; Johnson, E. L.; Lestak, L. R.

    1999-01-01

    Approximately 100,000 sq. km of the High Plains of the central United States are covered by sand dunes and sand sheets deposited during the Holocene. Soil-dating evidence shows that there were at least four periods of dune reactivation during major droughts in the last 10,000 years. The dunes in this region are anchored by vegetation. We have undertaken a study of land-use change in the High Plains from 1985 to the present using Landsat 5 TM and Landsat 7 ETM+ images to map variation in vegetation cover during wet and dry years. Mapping vegetation cover of less than 20% is important in modeling potential surface reactivation since at this level the vegetation no longer sufficiently shields sandy surfaces from movement by wind. Landsat TM data have both the spatial resolution and temporal coverage to facilitate vegetation cover analysis for model development and verification. However, there is still the question of how accurate TM data are for the measurement of both growing and senescent vegetation in and and semi-arid regions. AVIRIS provides both high spectral resolution as well as high signal-to-noise ratio and can be used to test the accuracy of Landsat TM and ETM+ data. We have analyzed data from AVIRIS flown nearly concurrently with a Landsat 7 overpass. The comparison between an AVIRIS image swath of 11 km width subtending a 30 deg. angle and the same area covered by a 0.8 deg. angle from Landsat required accounting for the BRDF. A normalization technique using the ratio of the reflectances from registered AVIRIS and Landsat data proved superior to the techniques of column averaging on AVIRIS data alone published previously by Kennedy et al. This technique can be applied to aircraft data covering a wider swath angle than AVIRIS to develop BRDF responses for a wide variety of surfaces more efficiently than from ground measurements.

  11. Corruption, development and governance indicators predict invasive species risk from trade.

    Science.gov (United States)

    Brenton-Rule, Evan C; Barbieri, Rafael F; Lester, Philip J

    2016-06-15

    Invasive species have an enormous global impact, with international trade being the leading pathway for their introduction. Current multinational trade deals under negotiation will dramatically change trading partnerships and pathways. These changes have considerable potential to influence biological invasions and global biodiversity. Using a database of 47 328 interceptions spanning 10 years, we demonstrate how development and governance socio-economic indicators of trading partners can predict exotic species interceptions. For import pathways associated with vegetable material, a significantly higher risk of exotic species interceptions was associated with countries that are poorly regulated, have more forest cover and have surprisingly low corruption. Corruption and indicators such as political stability or adherence to rule of law were important in vehicle or timber import pathways. These results will be of considerable value to policy makers, primarily by shifting quarantine procedures to focus on countries of high risk based on their socio-economic status. Further, using New Zealand as an example, we demonstrate how a ninefold reduction in incursions could be achieved if socio-economic indicators were used to select trade partners. International trade deals that ignore governance and development indicators may facilitate introductions and biodiversity loss. Development and governance within countries clearly have biodiversity implications beyond borders. © 2016 The Author(s).

  12. High-latitude tree growth and satellite vegetation indices: Correlations and trends in Russia and Canada (1982-2008)

    Science.gov (United States)

    Berner, Logan T.; Beck, Pieter S. A.; Bunn, Andrew G.; Lloyd, Andrea H.; Goetz, Scott J.

    2011-03-01

    Vegetation in northern high latitudes affects regional and global climate through energy partitioning and carbon storage. Spaceborne observations of vegetation, largely based on the normalized difference vegetation index (NDVI), suggest decreased productivity during recent decades in many regions of the Eurasian and North American boreal forests. To improve interpretation of NDVI trends over forest regions, we examined the relationship between NDVI from the advanced very high resolution radiometers and tree ring width measurements, a proxy of tree productivity. We collected tree core samples from spruce, pine, and larch at 22 sites in northeast Russia and northwest Canada. Annual growth rings were measured and used to generate site-level ring width index (RWI) chronologies. Correlation analysis was used to assess the association between RWI and summer NDVI from 1982 to 2008, while linear regression was used to examine trends in both measurements. The correlation between NDVI and RWI was highly variable across sites, though consistently positive (r = 0.43, SD = 0.19, n = 27). We observed significant temporal autocorrelation in both NDVI and RWI measurements at sites with evergreen conifers (spruce and pine), though weak autocorrelation at sites with deciduous conifers (larch). No sites exhibited a positive trend in both NDVI and RWI, although five sites showed negative trends in both measurements. While there are technological and physiological limitations to this approach, these findings demonstrate a positive association between NDVI and tree ring measurements, as well as the importance of considering lagged effects when modeling vegetation productivity using satellite data.

  13. Remote sensing analysis of vegetation recovery following short-interval fires in Southern California shrublands.

    Science.gov (United States)

    Meng, Ran; Dennison, Philip E; D'Antonio, Carla M; Moritz, Max A

    2014-01-01

    Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing "type conversion". However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (<8 years) on chaparral recovery were evaluated by comparing areas that burned twice to adjacent areas burned only once. Twelve pairs of once- and twice-burned areas were compared using normalized burn ratio (NBR) distributions. Correlations between measures of recovery and explanatory factors (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery.

  14. Changes in composition, ecology and structure of high-mountain vegetation: a re-visitation study over 42 years.

    Science.gov (United States)

    Evangelista, Alberto; Frate, Ludovico; Carranza, Maria Laura; Attorre, Fabio; Pelino, Giovanni; Stanisci, Angela

    2016-01-27

    High-mountain ecosystems are increasingly threatened by climate change, causing biodiversity loss, habitat degradation and landscape modifications. However, very few detailed studies have focussed on plant biodiversity in the high mountains of the Mediterranean. In this study, we investigated the long-term changes that have occurred in the composition, structure and ecology of high-mountain vegetation in the central Apennines (Majella) over the last 42 years. We performed a re-visitation study, using historical and newly collected vegetation data to explore which ecological and structural features have been the most successful in coping with climatic changes. Vegetation changes were analysed by comparing geo-referenced phytosociological relevés collected in high-mountain habitats (dolines, gentle slopes and ridges) on the Majella massif in 1972 and in 2014. Composition analysis was performed by detrended correspondence analysis, followed by an analysis of similarities for statistical significance assessment and by similarity percentage procedure (SIMPER) for identifying which species indicate temporal changes. Changes in ecological and structural indicators were analysed by a permutational multivariate analysis of variance, followed by a post hoc comparison. Over the last 42 years, clear floristic changes and significant ecological and structural variations occurred. We observed a significant increase in the thermophilic and mesonitrophilic plant species and an increment in the frequencies of hemicryptophytes. This re-visitation study in the Apennines agrees with observations in other alpine ecosystems, providing new insights for a better understanding of the effects of global change on Mediterranean high-mountain biodiversity. The observed changes in floristic composition, the thermophilization process and the shift towards a more nutrient-demanding vegetation are likely attributable to the combined effect of higher temperatures and the increase in soil nutrients

  15. DEVELOPMENT OF AN INDEX OF ALIEN SPECIES INVASIVENESS: AN AID TO ASSESSING RIPARIAN VEGETATION CONDITION

    Science.gov (United States)

    Many riparian areas are invaded by alien plant species that negatively affect native species composition, community dynamics and ecosystem properties. We sampled vegetation along reaches of 31 low order streams in eastern Oregon, and characterized species assemblages at patch an...

  16. Influence of High-Pressure Processing on the Profile of Polyglutamyl 5-Methyltetrahydrofolate in Selected Vegetables

    Science.gov (United States)

    Wang, Chao; Riedl, Ken M.; Somerville, Jeremy; Balasubramaniam, V. M.; Schwartz, Steven J.

    2013-01-01

    In plants, folate occurs predominantly as 5-methyltetrahydrofolate (5MTHF) polyglutamyl forms. Differences in stability and bioavailability of food folate compared to synthetic folic acid have been attributed to the presence of the polyglutamyl chain. High-pressure processing (HPP) was tested for whether it might shorten polyglutamyl chains of 5MTHF species in fresh vegetables by enabling action of native γ-glutamylhydrolase (GGH). A validated ultrahigh-performance reversed-phase liquid chromatography–tandem mass spectrometry method using stable isotope as internal standard was applied for characterizing 5MTHF polyglutamyl profiles. HPP conditions included 300, 450, and 600 MPa at 30 °C for 0 or 5 min, and vegetables were vacuum-packed before treatment. Investigated vegetables included cauliflower (Brassica oleracea), baby carrots (Daucus carota), and carrot greens (D. carota). HPP treatment caused conversion of polyglutamyl 5MTHF species to short-chain and monoglutamyl forms. Maximal conversion of polyglutamyl folate to monoglutamyl folate occurred at the highest pressure/time combination investigated, 600 MPa/30 °C/5 min. Under this condition, cauliflower monoglutamyl folate increased nearly 4-fold, diglutamyl folate 32-fold, and triglutamyl folate 8-fold; carrot monoglutamyl increased 23-fold and diglutamyl 32-fold; and carrot greens monoglutamyl increased 2.5-fold and the diglutamyl form 19-fold. Although some folate degradation was observed at certain intermediate HPP conditions, total 5MTHF folate was largely preserved at 600 MPa/5 min. Thus, HPP of raw vegetables is a feasible strategy for enhancing vegetable monoglutamate 5MTHF. PMID:21770413

  17. High Vegetable Fats Intake Is Associated with High Resting Energy Expenditure in Vegetarians.

    Science.gov (United States)

    Montalcini, Tiziana; De Bonis, Daniele; Ferro, Yvelise; Carè, Ilaria; Mazza, Elisa; Accattato, Francesca; Greco, Marta; Foti, Daniela; Romeo, Stefano; Gulletta, Elio; Pujia, Arturo

    2015-07-17

    It has been demonstrated that a vegetarian diet may be effective in reducing body weight, however, the underlying mechanisms are not entirely clear. We investigated whether there is a difference in resting energy expenditure between 26 vegetarians and 26 non-vegetarians and the correlation between some nutritional factors and inflammatory markers with resting energy expenditure. In this cross-sectional study, vegetarians and non-vegetarians were matched by age, body mass index and gender. All underwent instrumental examinations to assess the difference in body composition, nutrient intake and resting energy expenditure. Biochemical analyses and 12 different cytokines and growth factors were measured as an index of inflammatory state. A higher resting energy expenditure was found in vegetarians than in non-vegetarians (p = 0.008). Furthermore, a higher energy from diet, fibre, vegetable fats intake and interleukin-β (IL-1β) was found between the groups. In the univariate and multivariable analysis, resting energy expenditure was associated with vegetarian diet, free-fat mass and vegetable fats (p vegetarian's diet, i.e., vegetable fats. Furthermore, we showed that IL-10 was positively associated with resting energy expenditure in this population.

  18. Invasive acacias experience higher ant seed removal rates at the invasion edges

    Directory of Open Access Journals (Sweden)

    D. Montesinos

    2012-06-01

    Full Text Available Seed dispersal is a key process for the invasion of new areas by exotic species. Introduced plants often take advantage of native generalist dispersers. Australian acacias are primarily dispersed by ants in their native range and produce seeds bearing a protein and lipid rich reward for ant mutualists (elaiosome. Nevertheless, the role of myrmecochory in the expansion of Australian acacias in European invaded areas is still not clear. We selected one European population of Acacia dealbata and another of A. longifolia and offered elaiosome-bearing and elaiosome-removed seeds to local ant communities. For each species, seeds were offered both in high-density acacia stands and in low-density invasion edges. For both acacia species, seed removal was significantly higher at the low-density edges. For A. longifolia, manual elimination of elaiosomes reduced the chance of seed removal by 80% in the low-density edges, whereas it made no difference on the high-density stands. For A. dealbata, the absence of elaiosome reduced seed removal rate by 52%, independently of the acacia density. Our data suggests that invasive acacias have found effective ant seed dispersers in Europe and that the importance of such dispersers is higher at the invasion edges.

  19. Monitoring of Vegetation Impact Due to Trampling on Cadillac Mountain Summit Using High Spatial Resolution Remote Sensing Data Sets

    Science.gov (United States)

    Kim, Min-Kook; Daigle, John J.

    2012-11-01

    Cadillac Mountain—the highest peak along the eastern seaboard of the United States—is a major tourist destination in Acadia National Park, Maine. Managing vegetation impact due to trampling on the Cadillac Mountain summit is extremely challenging because of the large number of visitors and the general open nature of landscape in this fragile subalpine environmental setting. Since 2000, more intensive management strategies—based on placing physical barriers and educational messages for visitors—have been employed to protect threatened vegetation, decrease vegetation impact, and enhance vegetation recovery in the vicinity of the summit loop trail. The primary purpose of this study was to evaluate the effect of the management strategies employed. For this purpose, vegetation cover changes between 2001 and 2007 were detected using multispectral high spatial resolution remote sensing data sets. A normalized difference vegetation index was employed to identify the rates of increase and decrease in the vegetation areas. Three buffering distances (30, 60, and 90 m) from the edges of the trail were used to define multiple spatial extents of the site, and the same spatial extents were employed at a nearby control site that had no visitors. No significant differences were detected between the mean rates of vegetation increase and decrease at the experimental site compared with a nearby control site in the case of a small spatial scale (≤30 m) comparison (in all cases P > 0.05). However, in the medium (≤60 m) and large (≤90 m) spatial scales, the rates of increased vegetation were significantly greater and rates of decreased vegetation significantly lower at the experimental site compared with the control site (in all cases P Management implications are explored in terms of the spatial strategies used to decrease the impact of trampling on vegetation.

  20. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.

    Science.gov (United States)

    Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed

    2014-11-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  1. Investigating population differentiation in a major African agricultural pest: evidence from geometric morphometrics and connectivity suggests high invasion potential.

    Science.gov (United States)

    Karsten, M; Addison, P; Jansen van Vuuren, B; Terblanche, J S

    2016-07-01

    The distribution, spatial pattern and population dynamics of a species can be influenced by differences in the environment across its range. Spatial variation in climatic conditions can cause local populations to undergo disruptive selection and ultimately result in local adaptation. However, local adaptation can be constrained by gene flow and may favour resident individuals over migrants-both are factors critical to the assessment of invasion potential. The Natal fruit fly (Ceratitis rosa) is a major agricultural pest in Africa with a history of island invasions, although its range is largely restricted to south east Africa. Across Africa, C. rosa is genetically structured into two clusters (R1 and R2), with these clusters occurring sympatrically in the north of South Africa. The spatial distribution of these genotypic clusters remains unexamined despite their importance for understanding the pest's invasion potential. Here, C. rosa, sampled from 22 South African locations, were genotyped at 11 polymorphic microsatellite loci and assessed morphologically using geometric morphometric wing shape analyses to investigate patterns of population structure and determine connectedness of pest-occupied sites. Our results show little to no intraspecific (population) differentiation, high population connectivity, high effective population sizes and only one morphological type (R2) within South Africa. The absence of the R1 morphotype at sites where it was previously found may be a consequence of differences in thermal niches of the two morphotypes. Overall, our results suggest high invasion potential of this species, that area-wide pest management should be undertaken on a country-wide scale, and that border control is critical to preventing further invasions. © 2016 John Wiley & Sons Ltd.

  2. Estimation of thorium intake due to consumption of vegetables by inhabitants of high background radiation area by INAA

    International Nuclear Information System (INIS)

    Sathyapriya, R.S.; Suma Nair; Prabhath, R.K.; Madhu Nair; Rao, D.D.

    2012-01-01

    A study was conducted to estimate the thorium concentration in locally grown vegetables in high background radiation area (HBRA) of southern coastal regions of India. Locally grown vegetables were collected from HBRA of southern coastal regions of India. Thorium concentration was quantified using instrumental neutron activation analysis. The samples were irradiated at CIRUS reactor and counted using a 40% relative efficiency HPGe detector coupled to MCA. The annual intake of thorium was evaluated using the consumption data provided by National Nutrition Monitoring Board. The daily intake of 232 Th from the four food categories (green leafy vegetables, others vegetables, roots and tubers, and fruits) ranged between 0.27 and 5.352 mBq d -1 . The annual internal dose due to ingestion of thorium from these food categories was 46.8 x 10 -8 for female and 58.6 x 10 -8 Sv y -1 for male. (author)

  3. Red Cedar Invasion Along the Missouri River, South Dakota: Cause and Consequence

    Science.gov (United States)

    Greene, S.; Knox, J. C.

    2012-12-01

    This research evaluates drivers of and ecosystem response to red cedar (Juniperus virginiana) invasion of riparian surfaces downstream of Gavin's Point Dam on the Missouri River. Gavin's Point Dam changed the downstream geomorphology and hydrology of the river and its floodplain by reducing scouring floods and flood-deposited sediment. The native cottonwood species (Populus deltoides) favors cleared surfaces with little to no competitors to establish. Now that there are infrequent erosive floods along the riparian surfaces to remove competitor seeds and seedlings, other vegetation is able to establish. Red cedar is invading the understory of established cottonwood stands and post-dam riparian surfaces. To assess reasons and spatial patterns for the recent invasion of red cedar, a stratified random sampling of soil, tree density and frequency by species, and tree age of 14 forest stands was undertaken along 59 river kilometers of riparian habitat. Soil particle size was determined using laser diffraction and tree ages were estimated from ring counts of tree cores. As an indicator of ecosystem response to invasion, we measured organic matter content in soil collected beneath red cedar and cottonwood trees at three different depths. Of 565 red cedars, only two trees were established before the dam was built. We applied a multiple regression model of red cedar density as a function of cottonwood density and percent sand (63-1000 microns in diameter) in StatPlus© statistical software. Cottonwood density and percent sand are strongly correlated with invasion of red cedar along various riparian surfaces (n = 59, R2 = 0.42, p-values cedar and cottonwood trees (p-value > 0.05 for all depths). These findings suggest that the dam's minimization of downstream high-stage flows opened up new habitat for red cedar to establish. Fluvial geomorphic surfaces reflect soil type and cottonwood density and, in turn, predict susceptibility of a surface to red cedar invasion. Nonetheless

  4. Estimation of the soil heat flux/net radiation ratio based on spectral vegetation indexes in high-latitude Arctic areas

    International Nuclear Information System (INIS)

    Jacobsen, A.; Hansen, B.U.

    1999-01-01

    The vegetation communities in the Arctic environment are very sensitive to even minor climatic variations and therefore the estimation of surface energy fluxes from high-latitude vegetated areas is an important subject to be pursued. This study was carried out in July-August and used micro meteorological data, spectral reflectance signatures, and vegetation biomass to establish the relation between the soil heat flux/net radiation (G / Rn) ratio and spectral vegetation indices (SVIs). Continuous measurements of soil temperature and soil heat flux were used to calculate the surface ground heat flux by use of conventional methods, and the relation to surface temperature was investigated. Twenty-seven locations were established, and six samples per location, including the measurement of the surface temperature and net radiation to establish the G/Rn ratio and simultaneous spectral reflectance signatures and wet biomass estimates, were registered. To obtain regional reliability, the locations were chosen in order to represent the different Arctic vegetation communities in the study area; ranging from dry tundra vegetation communities (fell fields and dry dwarf scrubs) to moist/wet tundra vegetation communities (snowbeds, grasslands and fens). Spectral vegetation indices, including the simple ratio vegetation index (RVI) and the normalized difference vegetation index (NDVI), were calculated. A comparison of SVIs to biomass proved that RVI gave the best linear expression, and NDVI the best exponential expression. A comparison of SVIs and the surface energy flux ratio G / Rn proved that NDVI gave the best linear expression. SPOT HRV images from July 1989 and 1992 were used to map NDVI and G / Rn at a regional scale. (author)

  5. Differentiating invasive and pre-invasive lung cancer by quantitative analysis of histopathologic images

    Science.gov (United States)

    Zhou, Chuan; Sun, Hongliu; Chan, Heang-Ping; Chughtai, Aamer; Wei, Jun; Hadjiiski, Lubomir; Kazerooni, Ella

    2018-02-01

    We are developing automated radiopathomics method for diagnosis of lung nodule subtypes. In this study, we investigated the feasibility of using quantitative methods to analyze the tumor nuclei and cytoplasm in pathologic wholeslide images for the classification of pathologic subtypes of invasive nodules and pre-invasive nodules. We developed a multiscale blob detection method with watershed transform (MBD-WT) to segment the tumor cells. Pathomic features were extracted to characterize the size, morphology, sharpness, and gray level variation in each segmented nucleus and the heterogeneity patterns of tumor nuclei and cytoplasm. With permission of the National Lung Screening Trial (NLST) project, a data set containing 90 digital haematoxylin and eosin (HE) whole-slide images from 48 cases was used in this study. The 48 cases contain 77 regions of invasive subtypes and 43 regions of pre-invasive subtypes outlined by a pathologist on the HE images using the pathological tumor region description provided by NLST as reference. A logistic regression model (LRM) was built using leave-one-case-out resampling and receiver operating characteristic (ROC) analysis for classification of invasive and pre-invasive subtypes. With 11 selected features, the LRM achieved a test area under the ROC curve (AUC) value of 0.91+/-0.03. The results demonstrated that the pathologic invasiveness of lung adenocarcinomas could be categorized with high accuracy using pathomics analysis.

  6. Ecophysiological responses of native and invasive grasses to simulated warming and drought

    Science.gov (United States)

    Ravi, S.; Law, D. J.; Wiede, A.; Barron-Gafford, G. A.; Breshears, D. D.; Dontsova, K.; Huxman, T. E.

    2011-12-01

    Climate models predict that many arid regions around the world - including the North American deserts - may become affected more frequently by recurrent droughts. At the same time, these regions are experiencing rapid vegetation transformations such as invasion by exotic grasses. Thus, understanding the ecophysiological processes accompanying exotic grass invasion in the context of rising temperatures and recurrent droughts is fundamental to global change research. Under ambient and warmer (+ 4° C) conditions inside the Biosphere 2 facility, we compared the ecophysiological responses (e.g. photosynthesis, stomatal conductance, pre-dawn leaf water potential, light & CO2 response functions, biomass) of a native grass - Heteropogan contortus (Tangle head) and an invasive grass - Pennisetum ciliare (Buffel grass) growing in single and mixed communities. Further, we monitored the physiological responses and mortality of these plant communities under moisture stress conditions, simulating a global change-type-drought. The results indicate that the predicted warming scenarios may enhance the invasibility of desert landscapes by exotic grasses. In this study, buffel grass assimilated more CO2 per unit leaf area and out-competed native grasses more efficiently in a warmer environment. However, scenarios involving a combination of drought and warming proved disastrous to both the native and invasive grasses, with drought-induced grass mortality occurring at much shorter time scales under warmer conditions.

  7. L-ascorbic acid losses in Kenyan vegetables during cooking as determined by high performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    N.M.N. Wekesa

    2001-06-01

    Full Text Available The loss of L-ascorbic acid (L-AA in 14 different cooked local vegetables found in Nairobi markets was determined by high performance liquid chromatography. The effect of quantity of water on the loss of L-AA during cooking was studied with cowpea leaves. It was found that more L-AA was lost when larger amount of water was used than when smaller amount was used. The effect of the sharpness of the knife on the loss of L-AA was studied with spinach. It was found that more loss of L-AA occurred when a blunt (edge thickness 0.08 cm knife was used for cutting the vegetables than when a sharp knife (edge thickness 0.04 cm was used during cooking. L-AA was also determined when vegetables were cooked in different size pieces (surface are >1 cm2

  8. Investigation of NPK in fertilized and unfertilized vegetables

    International Nuclear Information System (INIS)

    Deeba, F.; Butt, M.T.; Iqubal, K.; Shafiq, T.

    2010-01-01

    Contents of selected minerals and moisture in Ridge Gourd, Gourd and Brinjal vegetables, collected from house and market of different localities, were determined. In house vegetables from kitchen garden of PCSIR colony the moisture contents were high (90%) as compared to market vegetables of Taj Bagh, Railway workshop Mandy and Singpura Lahore Mandy was 87%, 86.5% and 87.5% respectively. Regarding nitrogen, nitrate, nitrite, phosphate, sodium and potassium was high in market vegetables as compared to house samples due to the accumulation of nutrients in soil and crop. (author)

  9. A highly invasive human glioblastoma pre-clinical model for testing therapeutics

    Directory of Open Access Journals (Sweden)

    Cao Brian

    2008-12-01

    Full Text Available Abstract Animal models greatly facilitate understanding of cancer and importantly, serve pre-clinically for evaluating potential anti-cancer therapies. We developed an invasive orthotopic human glioblastoma multiforme (GBM mouse model that enables real-time tumor ultrasound imaging and pre-clinical evaluation of anti-neoplastic drugs such as 17-(allylamino-17-demethoxy geldanamycin (17AAG. Clinically, GBM metastasis rarely happen, but unexpectedly most human GBM tumor cell lines intrinsically possess metastatic potential. We used an experimental lung metastasis assay (ELM to enrich for metastatic cells and three of four commonly used GBM lines were highly metastatic after repeated ELM selection (M2. These GBM-M2 lines grew more aggressively orthotopically and all showed dramatic multifold increases in IL6, IL8, MCP-1 and GM-CSF expression, cytokines and factors that are associated with GBM and poor prognosis. DBM2 cells, which were derived from the DBTRG-05MG cell line were used to test the efficacy of 17AAG for treatment of intracranial tumors. The DMB2 orthotopic xenografts form highly invasive tumors with areas of central necrosis, vascular hyperplasia and intracranial dissemination. In addition, the orthotopic tumors caused osteolysis and the skull opening correlated to the tumor size, permitting the use of real-time ultrasound imaging to evaluate antitumor drug activity. We show that 17AAG significantly inhibits DBM2 tumor growth with significant drug responses in subcutaneous, lung and orthotopic tumor locations. This model has multiple unique features for investigating the pathobiology of intracranial tumor growth and for monitoring systemic and intracranial responses to antitumor agents.

  10. Unprecedented carbon accumulation in mined soils: the synergistic effect of resource input and plant species invasion.

    Science.gov (United States)

    Silva, Lucas C R; Corrêa, Rodrigo S; Doane, Timothy A; Pereira, Engil I P; Horwath, William R

    2013-09-01

    Opencast mining causes severe impacts on natural environments, often resulting in permanent damage to soils and vegetation. In the present study we use a 14-year restoration chronosequence to investigate how resource input and spontaneous plant colonization promote the revegetation and reconstruction of mined soils in central Brazil. Using a multi-proxy approach, combining vegetation surveys with the analysis of plant and soil isotopic abundances (delta13C and delta15N) and chemical and physical fractionation of organic matter in soil profiles, we show that: (1) after several decades without vegetation cover, the input of nutrient-rich biosolids into exposed regoliths prompted the establishment of a diverse plant community (> 30 species); (2) the synergistic effect of resource input and plant colonization yielded unprecedented increases in soil carbon, accumulating as chemically stable compounds in occluded physical fractions and reaching much higher levels than observed in undisturbed ecosystems; and (3) invasive grasses progressively excluded native species, limiting nutrient availability, but contributing more than 65% of the total accumulated soil organic carbon. These results show that soil-plant feedbacks regulate the amount of available resources, determining successional trajectories and alternative stable equilibria in degraded areas undergoing restoration. External inputs promote plant colonization, soil formation, and carbon sequestration, at the cost of excluding native species. The introduction of native woody species would suppress invasive grasses and increase nutrient availability, bringing the system closer to its original state. However, it is difficult to predict whether soil carbon levels could be maintained without the exotic grass cover. We discuss theoretical and practical implications of these findings, describing how the combination of resource manipulation and management of invasive species could be used to optimize restoration strategies

  11. Glutathione S-transferase M1 and T1 gene polymorphisms with consumption of high fruit-juice and vegetable diet affect antioxidant capacity in healthy adults.

    Science.gov (United States)

    Yuan, Linhong; Zhang, Ling; Ma, Weiwei; Zhou, Xin; Ji, Jian; Li, Nan; Xiao, Rong

    2013-01-01

    To our knowledge, no data have yet shown the combined effects of GSTM1/GSTT1 gene polymorphisms with high consumption of a fruit and vegetable diet on the body's antioxidant capacity. A 2-wk dietary intervention in healthy participants was conducted to test the hypothesis that the antioxidant biomarkers in individuals with different glutathione-S-transferases (GST) genotypes will be different in response to a high fruit-juice and vegetable diet. In our study, 24 healthy volunteers with different GST genotypes (12 GSTM1+/GSTT1+ and 12 GSTM1-/GSTT1- participants) consumed a controlled diet high in fruit-juice and vegetables for 2 wk. Blood and first-void urine specimens were obtained at baseline, 1-wk, and 2-wk intervals. The antioxidant capacity-related biomarkers in blood and urine were observed and recorded at the scheduled times. Erythrocyte GST and glutathione reductase (GR) activities response to a high fruit-juice and vegetable diet are GST genotype-dependent. Two weeks on the high fruit-juice and vegetable diet increased GST and GR activities in the GSTM1+/GSTT1+ group (P juice and vegetable diet than GSTM1-/GSTT1- participants. The diet intervention was effective in enhancing glutathione peroxidase and catalase activities in all participants (P 0.05). The effects of a diet rich in fruit-juice and vegetables on antioxidant capacity were dependent on GSTM1/GSTT1 genotypes. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Invasive predators and global biodiversity loss.

    Science.gov (United States)

    Doherty, Tim S; Glen, Alistair S; Nimmo, Dale G; Ritchie, Euan G; Dickman, Chris R

    2016-10-04

    Invasive species threaten biodiversity globally, and invasive mammalian predators are particularly damaging, having contributed to considerable species decline and extinction. We provide a global metaanalysis of these impacts and reveal their full extent. Invasive predators are implicated in 87 bird, 45 mammal, and 10 reptile species extinctions-58% of these groups' contemporary extinctions worldwide. These figures are likely underestimated because 23 critically endangered species that we assessed are classed as "possibly extinct." Invasive mammalian predators endanger a further 596 species at risk of extinction, with cats, rodents, dogs, and pigs threatening the most species overall. Species most at risk from predators have high evolutionary distinctiveness and inhabit insular environments. Invasive mammalian predators are therefore important drivers of irreversible loss of phylogenetic diversity worldwide. That most impacted species are insular indicates that management of invasive predators on islands should be a global conservation priority. Understanding and mitigating the impact of invasive mammalian predators is essential for reducing the rate of global biodiversity loss.

  13. Mapping and characterizing the vegetation types of the Democratic Republic of Congo using SPOT VEGETATION time series

    Science.gov (United States)

    Vancutsem, C.; Pekel, J.-F.; Evrard, C.; Malaisse, F.; Defourny, P.

    2009-02-01

    The need for quantitative and accurate information to characterize the state and evolution of vegetation types at a national scale is widely recognized. This type of information is crucial for the Democratic Republic of Congo, which contains the majority of the tropical forest cover of Central Africa and a large diversity of habitats. In spite of recent progress in earth observation capabilities, vegetation mapping and seasonality analysis in equatorial areas still represent an outstanding challenge owing to high cloud coverage and the extent and limited accessibility of the territory. On one hand, the use of coarse-resolution optical data is constrained by performance in the presence of cloud screening and by noise arising from the compositing process, which limits the spatial consistency of the composite and the temporal resolution. On the other hand, the use of high-resolution data suffers from heterogeneity of acquisition dates, images and interpretation from one scene to another. The objective of the present study was to propose and demonstrate a semi-automatic processing method for vegetation mapping and seasonality characterization based on temporal and spectral information from SPOT VEGETATION time series. A land cover map with 18 vegetation classes was produced using the proposed method that was fed by ecological knowledge gathered from botanists and reference documents. The floristic composition and physiognomy of each vegetation type are described using the Land Cover Classification System developed by the FAO. Moreover, the seasonality of each class is characterized on a monthly basis and the variation in different vegetation indicators is discussed from a phenological point of view. This mapping exercise delivers the first area estimates of seven different forest types, five different savannas characterized by specific seasonality behavior and two aquatic vegetation types. Finally, the result is compared to two recent land cover maps derived from

  14. Comparison of total isothiocyanates content in vegetable juices during high pressure treatment, pasteurization and freezing

    Czech Academy of Sciences Publication Activity Database

    Tříska, Jan; Vrchotová, Naděžda; Houška, M.; Strohalm, J.

    2007-01-01

    Roč. 27, č. 1 (2007), s. 147-149 ISSN 0895-7959 R&D Projects: GA MZe(CZ) QF3287 Institutional research plan: CEZ:AV0Z60870520 Keywords : High-pressure treatments * Foods * Vegetable juices Subject RIV: GM - Food Processing Impact factor: 0.840, year: 2007

  15. MicroRNA and protein profiles in invasive versus non-invasive oral tongue squamous cell carcinoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Korvala, Johanna, E-mail: johanna.korvala@oulu.fi [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Jee, Kowan [Department of Pathology, University of Turku, Turku University Hospital, Turku (Finland); Department of Pathology, Haartman Institute, University of Helsinki, Helsinki (Finland); Porkola, Emmi [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Almangush, Alhadi [Department of Pathology, Haartman Institute, University of Helsinki, Helsinki (Finland); Mosakhani, Neda [Department of Pathology, HUSLAB, Helsinki (Finland); Bitu, Carolina [Cancer and Translational Medicine Research Unit, University of Oulu, The Medical Research Center Oulu, Oulu University Hospital, Aapistie 5A, 90014 Oulu (Finland); Cervigne, Nilva K. [Department of Oral Diagnosis, School of Dentistry, University of Campinas (UNICAMP), Av. Limeira, 901 – Bairro Areião, CEP: 13414-903 Piracicaba, São Paulo (Brazil); Department of Clinical and Pathology, Faculty of Medicine of Jundiai - FMJ, Jundiai, SP (Brazil); Zandonadi, Flávia S.; Meirelles, Gabriela V.; Leme, Adriana Franco Paes [Laboratório Nacional de Biociências, LNBio, CNPEM, Rua Giuseppe Máximo Scolfaro, 10.000, Polo II de Alta Tecnologia de Campinas, Campinas/SP, P.O.Box 6192, CEP 13083-970 Campinas, São Paulo (Brazil); Coletta, Ricardo D. [Department of Oral Diagnosis, School of Dentistry, University of Campinas (UNICAMP), Av. Limeira, 901 – Bairro Areião, CEP: 13414-903 Piracicaba, São Paulo (Brazil); and others

    2017-01-01

    Complex molecular pathways regulate cancer invasion. This study overviewed proteins and microRNAs (miRNAs) involved in oral tongue squamous cell carcinoma (OTSCC) invasion. The human highly aggressive OTSCC cell line HSC-3 was examined in a 3D organotypic human leiomyoma model. Non-invasive and invasive cells were laser-captured and protein expression was analyzed using mass spectrometry-based proteomics and miRNA expression by microarray. In functional studies the 3D invasion assay was replicated after silencing candidate miRNAs, miR-498 and miR-940, in invasive OTSCC cell lines (HSC-3 and SCC-15). Cell migration, proliferation and viability were also studied in the silenced cells. In HSC-3 cells, 67 proteins and 53 miRNAs showed significant fold-changes between non-invasive vs. invasive cells. Pathway enrichment analyses allocated “Focal adhesion” and “ECM-receptor interaction” as most important for invasion. Significantly, in HSC-3 cells, miR-498 silencing decreased the invasion area and miR-940 silencing reduced invasion area and depth. Viability, proliferation and migration weren’t significantly affected. In SCC-15 cells, down-regulation of miR-498 significantly reduced invasion and migration. This study shows HSC-3 specific miRNA and protein expression in invasion, and suggests that miR-498 and miR-940 affect invasion in vitro, the process being more influenced by mir-940 silencing in aggressive HSC-3 cells than in the less invasive SCC-15.

  16. Comparison of high-definition oscillometry -- a non-invasive technology for arterial blood pressure measurement -- with a direct invasive method using radio-telemetry in awake healthy cats.

    Science.gov (United States)

    Martel, Eric; Egner, Beate; Brown, Scott A; King, Jonathan N; Laveissiere, Arnaud; Champeroux, Pascal; Richard, Serge

    2013-12-01

    This study compared indirect blood pressure measurements using a non-invasive method, high-definition oscillometry (HDO), with direct measurements using a radio-telemetry device in awake cats. Paired measurements partitioned to five sub-ranges were collected in six cats using both methods. The results were analysed for assessment of correlation and agreement between the two methods, taking into account all pressure ranges, and with data separated in three sub-groups, low, normal and high ranges of systolic (SBP) and diastolic (DBP) blood pressure. SBP data displayed a mean correlation coefficient of 0.92 ± 0.02 that was reduced for low SBP. The agreement level evaluated from the whole data set was high and slightly reduced for low SBP values. The mean correlation coefficient of DBP was lower than for SBP (ie, 0.81 ± 0.02). The bias for DBP between the two methods was 22.3 ± 1.6 mmHg, suggesting that HDO produced lower values than telemetry. These results suggest that HDO met the validation criteria defined by the American College of Veterinary Internal Medicine consensus panel and provided a faithful measurement of SBP in conscious cats. For DBP, results suggest that HDO tended to underestimate DBP. This finding is clearly inconsistent with the good agreement reported in dogs, but is similar to outcomes achieved in marmosets and cynomolgus monkeys, suggesting that this is not related to HDO but is species related. The data support that the HDO is the first and only validated non-invasive blood pressure device and, as such, it is the only non-invasive reference technique that should be used in future validation studies.

  17. Application of High Power Ultrasound in Drying of Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Werner, Z.

    2010-04-01

    Full Text Available Ultrasound is a sound frequency in the range between 18 and 100 kHz that is above hearing of the human ear. High power ultrasound means application of intensities higher than 1 W cm–2 (usually in the range between I=10–1000Wcm–2. High power and low frequency ultrasound (f = 20 to 100 kHz is considered as “power ultrasound” because its application causes cavitation and is applied in the food industry. High power ultrasound is applied for degassing of liquid food, for induction of oxidation/reduction reactions, for extraction of enzymes and proteins, for inactivation of enzymes and induction of nucleation for crystallization. Ultrasound is anticipating heat transfer; it is used for emulsifying, sterilization, extraction, degassing, filtrating, drying and induction of oxidation. Conventional hot air drying is a very energy- and cost-intensive process. Drying is a simultaneous operation of heat and mass exchange that is followed by phase changes. Application of different pretreatments, like osmotic dehydration, ultrasound and ultrasound assisted osmotic dehydration has shown different effects on fruits and vegetables. When the high intensity acoustic energy is passing through solid material, it causes several fast and successive compressions and rarefactions with speeds that depend on the frequency applied. Thus, material is exposed to a series of exchangeable squeezing and relaxations, very like continuous squeezing and releasing of the sponge. This mechanism known as "rectified diffusion" is very important in acoustic drying and migration of water. Application of ultrasound as a pretreatment has shown great influence on reducing afterward hot air drying thereby reducing total drying time. It is also shown that pretreatment before drying facilitates better mass transfer and water diffusivity than osmotic dehydration. Quality of the product after drying is better because ultrasound pretreatment is applied at room temperature thus reducing

  18. Integrating Remote Sensing with Species Distribution Models; Mapping Tamarisk Invasions Using the Software for Assisted Habitat Modeling (SAHM).

    Science.gov (United States)

    West, Amanda M; Evangelista, Paul H; Jarnevich, Catherine S; Young, Nicholas E; Stohlgren, Thomas J; Talbert, Colin; Talbert, Marian; Morisette, Jeffrey; Anderson, Ryan

    2016-10-11

    Early detection of invasive plant species is vital for the management of natural resources and protection of ecosystem processes. The use of satellite remote sensing for mapping the distribution of invasive plants is becoming more common, however conventional imaging software and classification methods have been shown to be unreliable. In this study, we test and evaluate the use of five species distribution model techniques fit with satellite remote sensing data to map invasive tamarisk (Tamarix spp.) along the Arkansas River in Southeastern Colorado. The models tested included boosted regression trees (BRT), Random Forest (RF), multivariate adaptive regression splines (MARS), generalized linear model (GLM), and Maxent. These analyses were conducted using a newly developed software package called the Software for Assisted Habitat Modeling (SAHM). All models were trained with 499 presence points, 10,000 pseudo-absence points, and predictor variables acquired from the Landsat 5 Thematic Mapper (TM) sensor over an eight-month period to distinguish tamarisk from native riparian vegetation using detection of phenological differences. From the Landsat scenes, we used individual bands and calculated Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and tasseled capped transformations. All five models identified current tamarisk distribution on the landscape successfully based on threshold independent and threshold dependent evaluation metrics with independent location data. To account for model specific differences, we produced an ensemble of all five models with map output highlighting areas of agreement and areas of uncertainty. Our results demonstrate the usefulness of species distribution models in analyzing remotely sensed data and the utility of ensemble mapping, and showcase the capability of SAHM in pre-processing and executing multiple complex models.

  19. Integrating remote sensing with species distribution models; Mapping tamarisk invasions using the Software for Assisted Habitat Modeling (SAHM)

    Science.gov (United States)

    West, Amanda M.; Evangelista, Paul H.; Jarnevich, Catherine S.; Young, Nicholas E.; Stohlgren, Thomas J.; Talbert, Colin; Talbert, Marian; Morisette, Jeffrey; Anderson, Ryan

    2016-01-01

    Early detection of invasive plant species is vital for the management of natural resources and protection of ecosystem processes. The use of satellite remote sensing for mapping the distribution of invasive plants is becoming more common, however conventional imaging software and classification methods have been shown to be unreliable. In this study, we test and evaluate the use of five species distribution model techniques fit with satellite remote sensing data to map invasive tamarisk (Tamarix spp.) along the Arkansas River in Southeastern Colorado. The models tested included boosted regression trees (BRT), Random Forest (RF), multivariate adaptive regression splines (MARS), generalized linear model (GLM), and Maxent. These analyses were conducted using a newly developed software package called the Software for Assisted Habitat Modeling (SAHM). All models were trained with 499 presence points, 10,000 pseudo-absence points, and predictor variables acquired from the Landsat 5 Thematic Mapper (TM) sensor over an eight-month period to distinguish tamarisk from native riparian vegetation using detection of phenological differences. From the Landsat scenes, we used individual bands and calculated Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and tasseled capped transformations. All five models identified current tamarisk distribution on the landscape successfully based on threshold independent and threshold dependent evaluation metrics with independent location data. To account for model specific differences, we produced an ensemble of all five models with map output highlighting areas of agreement and areas of uncertainty. Our results demonstrate the usefulness of species distribution models in analyzing remotely sensed data and the utility of ensemble mapping, and showcase the capability of SAHM in pre-processing and executing multiple complex models.

  20. Ocorrência de Calotropis procera (Ait. R. Br. (Apocynaceae como espécie invasora de restinga Occurrence of Calotropis procera (Ait. R. Br. (Apocynaceae as an invasive species in restinga vegetation

    Directory of Open Access Journals (Sweden)

    Elisangela de Sousa Rangel

    2011-09-01

    Full Text Available Apesar de possuírem grande importância ao nível de conservação ambiental, existe no Brasil uma acentuada escassez de trabalhos relacionados às invasões biológicas em ambientes terrestres. As restingas, sobretudo, são ambientes extremamente susceptíveis a este tipo de ameaça. Este estudo teve como objetivo avaliar a ocorrência e a estrutura populacional da espécie exótica Calotropis procera na Restinga do Xexé, Farol de São Thomé, Campos dos Goytacazes, RJ. Uma varredura que abrangeu uma área de 126 ha (1400m x 900m foi realizada, sendo amostrado um total de 475 indivíduos, ou seja, uma média de 3,8 indivíduos por hectare. Para a avaliação da distribuição dos indivíduos num gradiente interior-praia, foram alocados três transectos (300m x 10m nesta direção. A amostragem nos transectos indicou a ocorrência de 28 indivíduos com altura > 50 cm e nenhum com altura Although invasive species are one of the main reasons for the loss of biodiversity, in Brazil there is little information about biological invasions in terrestrial ecosystems. Sandy coastal plain forests (restinga and shrubby vegetation are places extremely susceptible to this kind of threat. The goal of this work was to evaluate the occurrence of the exotic species Calotropis procera in the Restinga do Xexé, Farol de São Tomé, Campos dos Goytacazes, RJ, Brazil. A survey covering an area of 126 ha (1400 m x 900 m was carried out, where a total of 475 individuals were sampled (mean of 3.8 indiv.ha-1. To assess the spatial distribution and population structure of this species, three transects (300 m x 10 m were created, which were perpendicular to the vegetation gradient from interior to shoreline, and all individuals of C. procera were sampled. A total of 28 individuals > 50 cm tall were sampled, and no individuals < 50 cm tall were found in the three transects. The plants were restricted to areas with vestiges of human disturbance. The absence of seedling

  1. Does the globally invasive marine angiosperm, Halophila stipulacea, have high genetic diversity or unique mutations?

    Science.gov (United States)

    Chiquillo, K.; Campese, L.; Barber, P. H.; Willette, D. A.

    2016-02-01

    Seagrasses are important primary producers in many marine ecosystems, and support a wide diversity of marine life. However, invasive seagrasses like Halophila stipulacea can have pronounced negative impacts on an ecosystem by displacing native seagrasses and changing the community composition of the reef. Endemic to the Red Sea, Persian Gulf and Indian Ocean, Halophila stipulacea has become invasive in the Mediterranean and Caribbean Seas, presumably as a result of the opening of the Suez Canal and international ship traffic. However, it is unclear why this marine angiosperm has become invasive in parts of its range and not others. It is hypothesized that invasive forms may have evolved rapidly in response to natural selection in new and novel environments. Alternatively, genetic variation of introduced populations may be uniquely suited to thrive in regions where it is invasive. In this study, we use RAD next-generation sequencing to screen thousands of SNPs to investigate the genetic basis of adaptation in both native and invasive populations. We test whether genes under selection in the native range are the same as in the invasive range, or whether new genes have arisen with the invasion of each marine basin. The comparison of SNP frequencies unique among basins and environmental variables will aid in predicting new areas of invasion, assisting in improved management strategies to combat this invasive seagrass.

  2. Two non-invasive diagnostic tools for invasive aspergilosis: (1-3)-beta-D-glucan and the galactomannan assay.

    Science.gov (United States)

    Kelaher, Amy

    2006-01-01

    Invasive aspergillosis (IA) is a serious cause of morbidity and mortality among immunocompromised patients. Prompt and non-invasive methods for diagnosing IA are needed to improve the management of this life-threatening infection in patients with hematological disorders. In summary, this retrospective review of studies performed on the two assays finds that both assays have high sensitivity and specificity but are more useful when used together as a diagnostic strategy for patients with invasive aspergillosis.

  3. Classification of High-Mountain Vegetation Communities within a Diverse Giant Mountains Ecosystem Using Airborne APEX Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Adriana Marcinkowska-Ochtyra

    2018-04-01

    Full Text Available Mapping plant communities is a difficult and time consuming endeavor. Methods relying on field surveys deliver high quality data but are usually limited to relatively small areas. In this paper we apply airborne hyperspectral data to vegetation mapping in remote and hard to reach areas. We classified 22 vegetation communities in the Giant Mountains on 3.12-m Airborne Prism Experiment (APEX hyperspectral images, registered in 288 spectral bands (10 September 2012. As the classification algorithm, Support Vector Machines (SVM was used. APEX data were corrected geometrically and atmospherically, and three dimensionality reduction methods were performed to select the best dataset. As reference we used a non-forest vegetation map containing vegetation communities of Polish Karkonosze National Park from 2002, orthophotomap and field surveys data from 2013 to 2014. We obtained the post-classification maps of 22 vegetation communities, lakes and areas without any vegetation. Iterative accuracy assessment repeated 100 times was used to obtain the most objective results for individual communities. The median value of overall accuracy (OA was 84%. Fourteen out of twenty-four classes were classified of more than 80% of producer accuracy (PA and sixteen out of twenty-four of user accuracy (UA. APEX data and SVM with the use of iterative accuracy assessment are useful for the mountain communities classification. This can support both Polish and Czech national parks management by giving the information about diversity of communities in the whole transboundary area, helping with identification especially in changing environment caused by humans.

  4. Analysis of regional vegetation changes with medium and high resolution imagery

    Science.gov (United States)

    Marcello, J.; Eugenio, F.; Medina, A.

    2012-09-01

    The singular characteristics of the Canarian archipelago (Spain) and, in particular, of the Gran Canaria island have allowed the development of a unique biological richness. Almost half of its territory is protected to preserve the natural environment and, in consequence, the monitoring of vegetated regions plays an important role for regional administrations which aim to develop the corresponding policies for the conservation of such ecosystems. The Normalized Difference Vegetation Index (NDVI) is a common index applied for vegetation studies. It is important to emphasize that NDVI is sensor-dependent, and changes are affected by soil background, irradiance, solar position, atmospheric attenuation, season, hydric situation and climate of the area. So, a fixed threshold cannot be set, even for the same sensor or season, to properly segment vegetated areas. In this context, a robust methodology has been applied to ensure a reliable estimation of changes using the same sensor in multiple dates or different sensors. To that respect, a supervised procedure is presented consisting on the selection of different regions within each image to precisely map each cover with its associated NDVI values and, in consequence, obtain for each individual image the optimal threshold to properly segment vegetation without the need to perform the complex preprocessing required to estimate the ground reflectivity. On the other hand, fires are an important aspect of an ecosystem and their study, a fundamental task to perform a complete assessment of the environmental and economic damage. In our work we have also analyzed in detail the fire occurring during 2007 and precisely assessed the results.

  5. Invasive species in ass. Trifolio-Agrostietum stoloniferae Marković 1973 in Bačka (Serbia

    Directory of Open Access Journals (Sweden)

    Džigurski Dejana M.

    2014-01-01

    Full Text Available In the vegetation of meadows and pastures, due to climate changes and an inadequate and intensive use of hydromeliorative measures, invasive species play a significant role in the degradation of biodiversity. Secondary development of ass. Trifolio-Agrostietum stoloniferae Marković 1973 stands was observed in Bačka, in periodically flooded pastures. Floristic composition of these stands consists of 117 plant species, of which 94 grow in the Danube riverbank region and 97 around the Tisa river. According to the floristic analysis, Ambrosia artemisiifolia, Bellis perennis, Carduus nutans, Cirsium arvense, Eupatorium cannabinum, Linaria vulgaris, Lotus corniculatus, Lythrum salicaria, Rumex crispus, and Trifolium repens are characterized as invasive plants of the European region. Moreover, Ambrosia artemisiifolia, Eleusine indica and Xanthium spinosum, included in the List of invasive species in AP Vojvodina, are also present. Lythrum salicaria is regarded as one of the 100 most dangerous invasive alien species in the world. [Projekat Ministarstva nauke Republike Srbije, br. TR-31016: Improvement of Forage Crops Production on Fields and Grasslands

  6. The effects of sulforaphane on canine osteosarcoma proliferation and invasion.

    Science.gov (United States)

    Rizzo, V L; Levine, C B; Wakshlag, J J

    2017-09-01

    Recent evidence in in vitro and in vivo models suggests that sulforaphane (SFN), found in raw cruciferous vegetables, may have utility in chemoprevention, as an antineoplastic agent and as a free radical scavenger. The effects of SFN alone or with doxorubicin on cell viability were examined, as well as cell cycle kinetics, invasion capabilities and apoptosis in three canine osteosarcoma cell line (D17, OS 2.4 and HMPOS). Results showed that SFN could not induce cell death at potentially physiological concentrations (canine osteosarcoma. © 2016 John Wiley & Sons Ltd.

  7. Using high-resolution radar images to determine vegetation cover for soil erosion assessments.

    Science.gov (United States)

    Bargiel, D; Herrmann, S; Jadczyszyn, J

    2013-07-30

    Healthy soils are crucial for human well-being. Because soils are threatened worldwide, politicians recognize the need for soil protection. For example, the European Commission has launched the Thematic Strategy for Soil Protection, which requests the European member states to identify high risk areas for soil degradation. Most states use the Universal Soil Loss Equation (USLE) to assess soil erosion risk at the national scale. The USLE includes different factors, one of them is the vegetation cover and management factor (C factor). Modern satellite-based radar sensors now provide highly accurate vegetation cover data, enabling opportunities to improve the accuracy of the C factor. The presented study proves the suitability for C factor determination based on a multi-temporal classification of high-resolution radar images. Further USLE factors were derived from existing data sources (meteorological data, soil maps, digital elevation model) to conduct an USLE-based soil erosion assessment. The resulting map illustrates a qualitative assessment for soil erosion risk within a plot of about 7*12 km in an agricultural region in Poland that is very susceptible to soil erosion processes. A high erosion risk of more than 10 tonnes per ha and year was assessed to occur on 13.6% (646 ha) of the agricultural areas within the investigated plot. Further 7.8% (372 ha) of agricultural land is threaten by a medium risk of 5-10 tonnes per ha and year. Such a spatial information about areas of high or medium soil erosion risk are crucial for the development of strategies for the protection of soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. About rehabilitation of vegetation of disturbed ecosystems of the Semipalatinsk test sites

    International Nuclear Information System (INIS)

    Plisak, R.P.; Plisak, S.V.

    2005-01-01

    areas is characterized by: 1. slight influence of zonal conditions and steppe vegetation on primary stages of restorative succession; 2. under PED of γ-irradiation of 20-200 μR/h vegetation rehabilitation begins with invasion of weed species; 3. under high levels of chronic ionizing irradiation (PED of γ-irradiation 800-5000 μR/h and higher) vegetation rehabilitation is limited by level of radiation pollution; 4. on primary stages of vegetation rehabilitation leading role belongs to annuals, biennials, perennial rhizome herbs and cespitosehemi chrysophyte; 5. besides eurytopic weed plants species of local flora (xerophyte-steppe cespitose grasses, shrubs-petrophytes, in valleys of rivers and springs-mesophytes) participate in restoration of vegetation of technogene ecotopes; 6. great importance in the process of vegetation restoration belongs to herbs, role of shrubs is insignificant; 7. radiation pollution of damaged areas provokes decrease of specie diversity. 8. For restoration of vegetation of Semipalatinsk Test Sites it is necessary to conduct out; 9. rehabilitation of its territory (remove poured polluted material, remains of debris, fragments of military and technical objects, surface layer of polluted soils); 10. technical preparation of ground of the dumps (laying out, terracing), its biological re-cultivation (restoration of soils, fixing of fine earth on slopes of the dumps) and phyto melioration; 11. phyto remediation of soils of polluted areas

  9. Nuclear Kaiso expression is associated with high grade and triple-negative invasive breast cancer.

    Directory of Open Access Journals (Sweden)

    Jeroen F Vermeulen

    Full Text Available Kaiso is a BTB/POZ transcription factor that is ubiquitously expressed in multiple cell types and functions as a transcriptional repressor and activator. Little is known about Kaiso expression and localization in breast cancer. Here, we have related pathological features and molecular subtypes to Kaiso expression in 477 cases of human invasive breast cancer. Nuclear Kaiso was predominantly found in invasive ductal carcinoma (IDC (p = 0.007, while cytoplasmic Kaiso expression was linked to invasive lobular carcinoma (ILC (p = 0.006. Although cytoplasmic Kaiso did not correlate to clinicopathological features, we found a significant correlation between nuclear Kaiso, high histological grade (p = 0.023, ERα negativity (p = 0.001, and the HER2-driven and basal/triple-negative breast cancers (p = 0.018. Interestingly, nuclear Kaiso was also abundant in BRCA1-associated breast cancer (p<0.001 and invasive breast cancer overexpressing EGFR (p = 0.019. We observed a correlation between nuclear Kaiso and membrane-localized E-cadherin and p120-catenin (p120 (p<0.01. In contrast, cytoplasmic p120 strongly correlated with loss of E-cadherin and low nuclear Kaiso (p = 0.005. We could confirm these findings in human ILC cells and cell lines derived from conditional mouse models of ILC. Moreover, we present functional data that substantiate a mechanism whereby E-cadherin controls p120-mediated relief of Kaiso-dependent gene repression. In conclusion, our data indicate that nuclear Kaiso is common in clinically aggressive ductal breast cancer, while cytoplasmic Kaiso and a p120-mediated relief of Kaiso-dependent transcriptional repression characterize ILC.

  10. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages

    Science.gov (United States)

    Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka

    2018-04-01

    It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha-1 (B1), soil application of 2 kg B ha-1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results suggest

  11. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages.

    Science.gov (United States)

    Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka

    2018-04-12

    It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha -1 (B1), soil application of 2 kg B ha -1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results

  12. Evaluating impacts of fire management strategies on native and invasive plants using an individual-based model

    Science.gov (United States)

    Gangur, Alexander N.; Fill, Jennifer M.; Northfield, Tobin D.; van de Wiel, Marco

    2017-04-01

    The capacity for species to coexist and potentially exclude one another can broadly be attributed to drivers that influence fitness differences (such as competitive ability) and niche differences (such as environmental change). These drivers, and thus the determinants of coexistence they influence, can interact and fluctuate both spatially and temporally. Understanding the spatiotemporal variation in niche and fitness differences in systems prone to fluctuating drivers, such as fire, can help to inform the management of invasive species. In the Cape floristic region of South Africa, invasive Pinus pinaster seedlings are strong competitors in the post-burn environment of the fire-driven Fynbos vegetation. In this, system native Protea spp. are especially vulnerable to unseasonal burns, but seasonal prescribed (Summer) burns are thought to present a high safety risk. Together, these issues have limited the appeal of prescribed burn management as an alternative to costly manual eradication of P. pinaster. Using a spatially-explicit field-of-neighbourhood individual-based model, we represent the drivers of spatiotemporal variation in niche differences (driven by fire regimes) and fitness differences (driven by competitive ability). In doing so, we evaluate optimal fire management strategies to a) control invasive P. pinaster in the Cape floristic region of South Africa, while b) minimizing deleterious effects of management on native Protea spp. The scarcity of appropriate data for model calibration has been problematic for models in invasion biology, but we use recent advances in Approximate Bayesian Computing techniques to overcome this limitation. We present early conclusions on the viability of prescribed burn management to control P. pinaster in South Africa.

  13. Forty years of vegetation change on the Missouri River floodplain

    Science.gov (United States)

    Johnson, W. Carter; Dixon, Mark D.; Scott, Michael L.; Rabbe, Lisa; Larson, Gary; Volke, Malia; Werner, Brett

    2012-01-01

    Comparative inventories in 1969 and 1970 and in 2008 of vegetation from 30 forest stands downstream of Garrison Dam on the Missouri River in central North Dakota showed (a) a sharp decline in Cottonwood regeneration; (b) a strong compositional shift toward dominance by green ash; and (c) large increases in invasive understory species, such as smooth brome, reed canary grass, and Canada thistle. These changes, and others discovered during remeasurement, have been caused by a complex of factors, some related to damming (altered hydrologic and sediment regimes, delta formation, and associated wet-dry cycles) and some not (diseases and expansion of invasive plants). Dominance of green ash, however, may be short lived, given the likelihood that the emerald ash borer will arrive in the Dakotas in 5-10 years, with potentially devastating effects. The prospects for recovery of this valuable ecosystem, rich in ecosystem goods and services and in American history, are daunting.

  14. Invasive Candidiasis: An Overview from Taiwan

    Directory of Open Access Journals (Sweden)

    Sheng-Yuan Ruan

    2009-06-01

    Full Text Available Invasive candidiasis has emerged as an important nosocomial infection, especially in critically ill patients. We review the epidemiology of invasive candidiasis with an emphasis on data from Taiwan. An increasing incidence of candidemia became apparent from 1980 to the end of the 1990s, followed by relative stability. Crude mortality rates of patients with candidemia were in the range of 35% to 60%. Candida albicans remains the predominant cause of invasive candidiasis in Taiwan and accounts for more than 50% of all cases. Candida tropicalis, Candida glabrata and Candida parapsilosis are the three most common nonalbicansCandida species that cause invasive candidiasis. The above four Candida species account for more than 90% of invasive candidiasis in Taiwan. Overall, invasive Candida isolates have remained highly susceptible to fluconazole (> 90% susceptibility over the past two decades. However, periodic surveillance is needed to monitor antifungal resistance because reduced fluconazole susceptibility in non-albicans Candida is not an uncommon trend. Voriconazole and echinocandins continue to exhibit excellent in vitro activity against invasive Candida isolates.

  15. A comparison of effects of lard and hydrogenated vegetable shortening on the development of high-fat diet-induced obesity in rats.

    Science.gov (United States)

    Kubant, R; Poon, A N; Sánchez-Hernández, D; Domenichiello, A F; Huot, P S P; Pannia, E; Cho, C E; Hunschede, S; Bazinet, R P; Anderson, G H

    2015-12-14

    Obesity is associated with increased consumption and preference for dietary fat. Experimental models of fat-induced obesity use either lard or vegetable shortening. Yet, there are no direct comparisons of these commonly used fat sources, or the influence of their fatty acid composition, on the development of diet-induced obesity. To compare the effects of lard and hydrogenated vegetable-shortening diets, which differ in their fatty acid composition, on weight gain and the development of obesity and insulin resistance in rats. Male Wistar rats were fed ad libitum for 14 weeks high-fat diets containing either (1) high vegetable fat (HVF, 60 kcal% from vegetable shortening) or (2) high lard fat (HLF, 60 kcal% from lard). Rats fed normal-fat (NF, 16 kcal% from vegetable shortening) diet served as control. Body weight, food intake, adipose tissue mass, serum 25[OH]D3, glucose, insulin and fatty acid composition of diets were measured. Rats fed either of the two high-fat diets had higher energy intake, weight gain and fat accretion than rats fed normal-fat diet. However, rats fed the HLF diet consumed more calories and gained more weight and body fat with greater increases of 32% in total (158.5±8.2 vs 120.2±6.6 g, P<0.05), 30% in visceral (104.4±5.2 vs 80.3±4.2 g, P<0.05) and 36% in subcutaneous fat mass (54.1±3.6 vs 39.9±3.1 g, P<0.05), compared with rats fed the HVF diet. Higher visceral adiposity was positively correlated with serum insulin (r=0.376, P<0.05) and homeostatic model assessment insulin resistance (r=0.391, P<0.05). We conclude that lard-based high-fat diets accentuate the increase in weight gain and the development of obesity and insulin resistance more than hydrogenated vegetable-shortening diets. These results further point to the importance of standardizing fatty acid composition and type of fat used in determining outcomes of consuming high-fat diets.

  16. Diurnal and Seasonal Variations of Eddy-Covariance Carbon Dioxide Fluxes Above an Urban Wetland, Partitioned by Vegetation Cover

    Science.gov (United States)

    Schafer, K. V.; Duman, T.

    2017-12-01

    The New Jersey Meadowlands are an urban brackish marsh with a long history of human activity causing disturbances and alterations. Carbon emissions were measured from two sites in the Meadowlands, a natural site and a restored site, using eddy-covariance (EC) from 2014 to 2016. At each site, the EC towers were placed at the interface of two vegetation covers, allowing capturing this aspect of the wetland's heterogeneity. Using footprint modeling and light response curves we were able to partition measured fluxes between vegetation cover types and compare CO2 fluxes from patches of invasive versus native wetland vegetation communities. We show that further separating the data into seasonal and diurnal fluxes reveals patterns in CO2 fluxes that allow determining the nature of each vegetation cover as a source or sink for CO2. Our results also show that CO2 emissions from the restored wetland are significantly higher than the natural wetland. Areas of invasive Phragmites australis at the natural site had the lowest CO2 release rates during winter. These were consistently lower in magnitude than summer daytime uptake, therefore making this part of the wetland a CO2 sink. Areas planted with native Spartina alterniflora at the restored site had the largest uptake during daytime, therefore seemingly justifying restoration activities. However, they also had the highest emission rates during summer nighttime, and therefore the daily summer net uptake was not the highest compared with other vegetation covers. Furthermore, emissions from the restored site during winter were larger compared to the natural site, indicating that restoration activities might have led to a significant increase of carbon release from the wetland. Thus, during the study period the restored wetland acted as a carbon source.

  17. Fluid challenge: tracking changes in cardiac output with blood pressure monitoring (invasive or non-invasive).

    Science.gov (United States)

    Lakhal, Karim; Ehrmann, Stephan; Perrotin, Dominique; Wolff, Michel; Boulain, Thierry

    2013-11-01

    To assess whether invasive and non-invasive blood pressure (BP) monitoring allows the identification of patients who have responded to a fluid challenge, i.e., who have increased their cardiac output (CO). Patients with signs of circulatory failure were prospectively included. Before and after a fluid challenge, CO and the mean of four intra-arterial and oscillometric brachial cuff BP measurements were collected. Fluid responsiveness was defined by an increase in CO ≥10 or ≥15% in case of regular rhythm or arrhythmia, respectively. In 130 patients, the correlation between a fluid-induced increase in pulse pressure (Δ500mlPP) and fluid-induced increase in CO was weak and was similar for invasive and non-invasive measurements of BP: r² = 0.31 and r² = 0.29, respectively (both p area under the receiver-operating curve (AUC) of 0.82 (0.74-0.88), similar (p = 0.80) to that of non-invasive Δ500mlPP [AUC of 0.81 (0.73-0.87)]. Outside large gray zones of inconclusive values (5-23% for invasive Δ500mlPP and 4-35% for non-invasive Δ500mlPP, involving 35 and 48% of patients, respectively), the detection of responsiveness or unresponsiveness to fluid was reliable. Cardiac arrhythmia did not impair the performance of invasive or non-invasive Δ500mlPP. Other BP-derived indices did not outperform Δ500mlPP. As evidenced by large gray zones, BP-derived indices poorly reflected fluid responsiveness. However, in our deeply sedated population, a high increase in invasive pulse pressure (>23%) or even in non-invasive pulse pressure (>35%) reliably detected a response to fluid. In the absence of a marked increase in pulse pressure (<4-5%), a response to fluid was unlikely.

  18. Non-native earthworms promote plant invasion by ingesting seeds and modifying soil properties

    OpenAIRE

    Clause, J.; Forey, E.; Lortie, C. J.; Lambert, A. M.; Barot, Sébastien

    2015-01-01

    Earthworms can have strong direct effects on plant communities through consumption and digestion of seeds, however it is unclear how earthworms may influence the relative abundance and composition of plant communities invaded by non-native species. In this study, earthworms, seed banks, and the standing vegetation were sampled in a grassland of central California. Our objectives were i) to examine whether the abundances of non-native, invasive earthworm species and non-native grassland plant ...

  19. Tentative type test of a non-invasive high-voltage meter with respect to the quantity of practical peak voltage

    International Nuclear Information System (INIS)

    Peixoto, J.G.P.; Selbach, H.J.; Kramer, H.M.; Lange, B.

    2001-04-01

    In Working Group 3 of Sub-committee 62C of the international electrotechnical commission (IEC) a new project is underway [1] with the objective of specifying requirements for the performance characteristics of instruments for the non-invasive measurement of the X-ray tube voltage in diagnostic radiology. In this draft the X-ray tube voltage is specified in terms of the practical peak voltage [2]. The objective of the present work is to perform a tentative type test, based on the ''Requirements for Instruments for Non-invasive Measurements of the X-ray Tube Voltage'' defined in the IEC draft, with a commercially available non-invasive high-voltage meter. The instrument was modified so that the practical peak voltage can be measured. It is shown that the instrument, with the modifications made, is suitable for the non-invasive measurement of the practical peak voltage between 50 kV and 150 kV within the required limits of variation of the response. (orig.)

  20. The role of habitat factors in successful invasion of alien plant Acer negundo in riparian zones.

    Science.gov (United States)

    Sikorski, Piotr; Sikorska, Daria

    2016-04-01

    thickness (r2=0,35 i r3=0,35) become limiting factors to the plants development. The diversity of shoot age increases with the bars age (r=0,78), but the new emerging shoots are suckers rather than newly established seedlings. The removal of ash-leaved maple in the early development stage is ineffective as this is a period when high number of seedlings develop. The removal at the later stage leads to damage done to sensitive herbaceous vegetation which is developed by then. Management of the invasive ash-leaved maple should be held on sand bars older than 10 years, the moment the competition of other trees and shrubs reduces the establishment of new seedlings. Removal of trees of diameter bigger than 10 cm will impair the plants expansion with minimal damage done to the habitat.

  1. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Pieter S A; Goetz, Scott J, E-mail: pbeck@whrc.org [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States)

    2011-10-15

    To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen-deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.

  2. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences

    International Nuclear Information System (INIS)

    Beck, Pieter S A; Goetz, Scott J

    2011-01-01

    To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen-deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.

  3. Few effects of invasive plants Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea on soil physical and chemical properties.

    Science.gov (United States)

    Stefanowicz, Anna M; Stanek, Małgorzata; Nobis, Marcin; Zubek, Szymon

    2017-01-01

    Biological invasions are an important problem of human-induced changes at a global scale. Invasive plants can modify soil nutrient pools and element cycling, creating feedbacks that potentially stabilize current or accelerate further invasion, and prevent re-establishment of native species. The aim of this study was to compare the effects of Reynoutria japonica, Rudbeckia laciniata and Solidago gigantea, invading non-forest areas located within or outside river valleys, on soil physical and chemical parameters, including soil moisture, element concentrations, organic matter content and pH. Additionally, invasion effects on plant species number and total plant cover were assessed. The concentrations of elements in shoots and roots of invasive and native plants were also measured. Split-plot ANOVA revealed that the invasions significantly reduced plant species number, but did not affect most soil physical and chemical properties. The invasions decreased total P concentration and increased N-NO 3 concentration in soil in comparison to native vegetation, though the latter only in the case of R. japonica. The influence of invasion on soil properties did not depend on location (within- or outside valleys). The lack of invasion effects on most soil properties does not necessarily imply the lack of influence of invasive plants, but may suggest that the direction of the changes varies among replicate sites and there are no general patterns of invasion-induced alterations for these parameters. Tissue element concentrations, with the exception of Mg, did not differ between invasive and native plants, and were not related to soil element concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic data from Landsat and MODIS BRDF/albedo product

    Science.gov (United States)

    Climate warming over the past half century has led to observable changes in vegetation phenology and growing season length; which can be measured globally using remote sensing derived vegetation indices. Previous studies in mid- and high northern latitude systems show temperature driven earlier spri...

  5. Investigation on the Patterns of Global Vegetation Change Using a Satellite-Sensed Vegetation Index

    Directory of Open Access Journals (Sweden)

    Ainong Li

    2010-06-01

    Full Text Available The pattern of vegetation change in response to global change still remains a controversial issue. A Normalized Difference Vegetation Index (NDVI dataset compiled by the Global Inventory Modeling and Mapping Studies (GIMMS was used for analysis. For the period 1982–2006, GIMMS-NDVI analysis indicated that monthly NDVI changes show homogenous trends in middle and high latitude areas in the northern hemisphere and within, or near, the Tropic of Cancer and Capricorn; with obvious spatio-temporal heterogeneity on a global scale over the past two decades. The former areas featured increasing vegetation activity during growth seasons, and the latter areas experienced an even greater amplitude in places where precipitation is adequate. The discussion suggests that one should be cautious of using the NDVI time-series to analyze local vegetation dynamics because of its coarse resolution and uncertainties.

  6. Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems

    Science.gov (United States)

    Knutson, Kevin C.; Pyke, David A.; Wirth, Troy A.; Arkle, Robert S.; Pilliod, David S.; Brooks, Matthew L.; Chambers, Jeanne C.; Grace, James B.

    2014-01-01

    1. Invasive annual grasses alter fire regimes in shrubland ecosystems of the western USA, threatening ecosystem function and fragmenting habitats necessary for shrub-obligate species such as greater sage-grouse. Post-fire stabilization and rehabilitation treatments have been administered to stabilize soils, reduce invasive species spread and restore or establish sustainable ecosystems in which native species are well represented. Long-term effectiveness of these treatments has rarely been evaluated. 2. We studied vegetation at 88 sites where aerial or drill seeding was implemented following fires between 1990 and 2003 in Great Basin (USA) shrublands. We examined sites on loamy soils that burned only once since 1970 to eliminate confounding effects of recurrent fire and to assess soils most conducive to establishment of seeded species. We evaluated whether seeding provided greater cover of perennial seeded species than burned–unseeded and unburned–unseeded sites, while also accounting for environmental variation. 3. Post-fire seeding of native perennial grasses generally did not increase cover relative to burned–unseeded areas. Native perennial grass cover did, however, increase after drill seeding when competitive non-natives were not included in mixes. Seeding non-native perennial grasses and the shrub Bassia prostrata resulted in more vegetative cover in aerial and drill seeding, with non-native perennial grass cover increasing with annual precipitation. Seeding native shrubs, particularly Artemisia tridentata, did not increase shrub cover or density in burned areas. Cover of undesirable, non-native annual grasses was lower in drill seeded relative to unseeded areas, but only at higher elevations. 4. Synthesis and applications. Management objectives are more likely to be met in high-elevation or precipitation locations where establishment of perennial grasses occurred. On lower and drier sites, management objectives are unlikely to be met with seeding alone

  7. Relative growth rates of three woody legumes: implications in the process of ecological invasion

    Directory of Open Access Journals (Sweden)

    J. A. Crisóstomo

    2007-03-01

    Full Text Available Acacia longifolia, an Australian leguminous tree, is one of the main invasive plant species in the coast of Portugal and a major threat to the native vegetation in the Reserva Natural das Dunas de São Jacinto. With the establishment of this exotic species, other native woody leguminous species such as Cytisus grandiflorus and Ulex europaeus have been displaced from their original areas. Several factors are involved in the process of biological invasion by exotic species. Plant physiology and development, characteristic of each species, can give certain advantages in the establishment and colonization of new areas. We tested if there are differences in the Relative Growth Rate (RGR of the exotic and native species because this could be relevant in the first stages of the invasion process. Our results showed that A. longifolia was the species with lowest RGR. Therefore, other factors apart from RGR might explain the invasion of coastal dunes by this species. We propose that A. longifolia might be a better competitor than the two native legumes and that this process might be mediated by the interaction with soil organisms.

  8. ERBB2 mutations associated with solid variant of high-grade invasive lobular breast carcinomas.

    Science.gov (United States)

    Deniziaut, Gabrielle; Tille, Jean Christophe; Bidard, François-Clément; Vacher, Sophie; Schnitzler, Anne; Chemlali, Walid; Trémoulet, Laurence; Fuhrmann, Laetitia; Cottu, Paul; Rouzier, Roman; Bièche, Ivan; Vincent-Salomon, Anne

    2016-11-08

    ERBB2 and ERBB3 somatic gain-of-function mutations, which may be targeted by anti-ERBB2 therapies, were reported by high-throughput sequencing studies in 1% and 2% of invasive breast cancers respectively. Our study aims to determine ERBB2 and ERBB3 mutations frequencies in grade 3 and/or ERBB2-positive invasive lobular breast carcinomas (ILC). All the 529 ILC surgically-excised registered at Institut Curie in the years 2005 to 2008 were reviewed. Thirty-nine grade 3 ERBB2-negative ILC and 16 ERBB2-positive ILC were retrieved and subjected to Sanger sequencing of the ERBB2 and ERBB3 activation mutation hotspots (ERBB2: exons 8, 17, 19, 20, 21; ERBB3: exons 3, 6, 7, 8). Among the 39 grade 3 ERBB2-negative ILC, six tumors were found to have at least one detectable ERBB2 activating mutation (incidence rate: 15%, 95%CI [4%-27%]). No ERBB2 mutation was found among the 16 ERBB2-positive ILC. No ERBB3 mutation was found in any of the 55 ILC. ERBB2 mutations were statistically associated with solid ILC features (p=0.01). Survival analyses showed no significant prognostic impact of ERBB2 mutations. Our study demonstrates that high grade ERBB2-negative ILC display a high frequency of ERBB2 mutations, and should be subjected to systematic genetic screening.

  9. ROOT VEGETABLES, BREEDING TRENDS, RESULTS

    Directory of Open Access Journals (Sweden)

    M. I. Fedorova

    2017-01-01

    Full Text Available The main advantage of root vegetables is their unique specificity and high economic importance. The benefits and medicinal properties of root vegetables being highly demanded by the market requirements to the commodity are highlighted in the article. The main directions of breeding program for root vegetable crops, including species of Apiaceae family with carrot, parsnips; Chenopodioideae family with red beet; Brassicaceae family with radish, Daikon, Raphanus sativus L. var. lobo Sazonova & Stank, turnip and rutabaga. Initial breeding accessions of carrot, red beet, radish, Daikon, Raphanus sativus L. var. lobo Sazonova & Stank, turnip and rutabaga have been selected out to be used for breeding program for heterosis. The mf and ms breeding lines were developed, and with the use of them the new gene pool was created. Variety supporting breeding program and methods were also proposed. 

  10. Invasion and spreading of Cabomba caroliniana revealed by RAPD markers

    Science.gov (United States)

    Jin, Xiaofeng; Ding, Bingyang; Gao, Shuqin; Jiang, Weimei

    2005-12-01

    Applying randomly amplified polymorphic DNA (RAPD), the genetic variation of Cabomba caroliniana Gray (cabomba or fanwort), a new alien plant in China, was analyzed in this paper. Total 143 bands, including 47 polymorphic bands, were amplified from 23 primers in 20 samples. The sampling distance was large, but its genetic diversity was low. The main results were that: (1) Cabomba, which grew and dispersed mainly in fragment, was an abundant and dominant species in freshwater, and its main dispersal mechanism was vegetative reproduction (2) Cabomba was originally introduced into China as an aquarium submerged plant. Somehow, those discarded cabomba became invasive species in the areas of Hangzhou, Shanghai, and Meicheng, and other places. (3) Although the level of genetic diversity in cabomba was low, their rapid dispersion and propagation could seriously harm to local aquatic community. Therefore, specific measure should be used to control cabomba from uncontrolled spreading and damage to local vegetation communities.

  11. Expression of cancer-associated fibroblast-related proteins differs between invasive lobular carcinoma and invasive ductal carcinoma.

    Science.gov (United States)

    Park, Cheol Keun; Jung, Woo Hee; Koo, Ja Seung

    2016-08-01

    Cancer-associated fibroblasts (CAFs) are classified into various functional subtypes such as fibroblast activation protein-α (FAP-α), fibroblast specific protein-1 (FSP-1), platelet-derived growth factor receptor-α (PDGFR-α), and PDGFR-β. In this study, we compared the expression of CAF-related proteins in invasive lobular carcinoma (ILC) with those in invasive carcinoma of no special type (NST) and assessed the implications of the differences observed. Using tissue microarrays of 104 ILC and 524 invasive carcinoma (NST) cases, immunohistochemistry for CAF-related proteins [podoplanin, prolyl 4-hydroxylase, FAP-α, FSP-1/S100A4, PDGFR-α, PDGFR-β, and chondroitin sulfate proteoglycan (NG2)] was conducted. In invasive carcinoma (NST), tumor cells expressed a high level of PDGFR-α, whereas ILC tumor cells expressed high levels of podoplanin, prolyl 4-hydroxylase, FAP-α, and FSP-1/S100A4. In stromal cells of invasive carcinoma (NST), high expression levels of prolyl 4-hydroxylase, PDGFR-α, and NG2 were observed, whereas ILC stromal cells expressed high levels of FAP-α, FSP-1/S100A4, and PDGFR-β. In ILC, tumoral FSP-1/S100A4 positivity was associated with higher Ki-67 labeling index (p = 0.010) and non-luminal A type cancer (p = 0.014). Stromal PDGFR-α positivity was associated with lymph node metastasis (p = 0.011). On survival analysis of entire cases, tumoral FSP-1/S100A4 positivity (p = 0.002), stromal podoplanin positivity (p = 0.041), and stromal FSP-1/S100A4 negativity (p = 0.041) were associated with shorter disease-free survival; only tumoral FSP-1/S100A4 positivity (p = 0.044) was associated with shorter overall survival. In ILC, the expression of FAP-α and FSP-1/S100A4 was higher in both tumor and stromal cells than that observed in invasive carcinoma (NST). These results indicate that CAFs are a potential target in ILC treatment.

  12. Improving dynamic global vegetation model (DGVM) simulation of western U.S. rangelands vegetation seasonal phenology and productivity

    Science.gov (United States)

    Kerns, B. K.; Kim, J. B.; Day, M. A.; Pitts, B.; Drapek, R. J.

    2017-12-01

    Ecosystem process models are increasingly being used in regional assessments to explore potential changes in future vegetation and NPP due to climate change. We use the dynamic global vegetation model MAPSS-Century 2 (MC2) as one line of evidence for regional climate change vulnerability assessments for the US Forest Service, focusing our fine tuning model calibration from observational sources related to forest vegetation. However, there is much interest in understanding projected changes for arid rangelands in the western US such as grasslands, shrublands, and woodlands. Rangelands provide many ecosystem service benefits and local rural human community sustainability, habitat for threatened and endangered species, and are threatened by annual grass invasion. Past work suggested MC2 performance related to arid rangeland plant functional types (PFT's) was poor, and the model has difficulty distinguishing annual versus perennial grasslands. Our objectives are to increase the model performance for rangeland simulations and explore the potential for splitting the grass plant functional type into annual and perennial. We used the tri-state Blue Mountain Ecoregion as our study area and maps of potential vegetation from interpolated ground data, the National Land Cover Data Database, and ancillary NPP data derived from the MODIS satellite. MC2 historical simulations for the area overestimated woodland occurrence and underestimated shrubland and grassland PFT's. The spatial location of the rangeland PFT's also often did not align well with observational data. While some disagreement may be due to differences in the respective classification rules, the errors are largely linked to MC2's tree and grass biogeography and physiology algorithms. Presently, only grass and forest productivity measures and carbon stocks are used to distinguish PFT's. MC2 grass and tree productivity simulation is problematic, in particular grass seasonal phenology in relation to seasonal patterns

  13. Non- invasive in vivo analysis of a murine aortic graft using high resolution ultrasound microimaging

    International Nuclear Information System (INIS)

    Rowinska, Zuzanna; Zander, Simone; Zernecke, Alma; Jacobs, Michael; Langer, Stephan; Weber, Christian; Merx, Marc W.; Koeppel, Thomas A.

    2012-01-01

    Introduction: As yet, murine aortic grafts have merely been monitored histopathologically. The aim of our study was to examine how these grafts can be monitored in vivo and non-invasively by using high-resolution ultrasound microimaging to evaluate function and morphology. A further aim was to prove if this in vivo monitoring can be correlated to immunohistological data that indicates graft integrity. Methods: Murine infrarenal aortic isografts were orthotopically transplanted into 14 female mice (C57BL/6-Background) whereas a group of sham-operated animals (n = 10) served as controls. To assess the graft morphology and hemodynamics, we examined the mice over a post-operative period of 8 weeks with a sophisticated ultrasound system (Vevo 770, Visual Sonics). Results: The non-invasive graft monitoring was feasible in all transplanted mice. We could demonstrate a regular post-transplant graft function and morphology, such as anterior/posterior wall displacement and wall thickness. Mild alterations of anterior wall motion dynamics could only be observed at the site of distal graft anastomosis (8 weeks after grafting (transplant vs. sham mice: 0.02 mm ± 0.01 vs. 0.03 mm ± 0.01, p < 0.05). However, the integrity of the entire graft wall could be confirmed by histopathological evaluation of the grafts. Conclusions: With regard to graft patency, function and morphology, high resolution ultrasound microimaging has proven to be a valuable tool for longitudinal, non-invasive, in vivo graft monitoring in this murine aortic transplantation model. Consequently, this experimental animal model provides an excellent basis for molecular and pharmacological studies using genetically engineered mice.

  14. Climate change and spatial distribution of vegetation in Colombia

    Directory of Open Access Journals (Sweden)

    Juan Carlos Alarcon Hincapie

    2013-12-01

    Full Text Available Vegetation change under two climate change scenarios in different periods of the 21st Century are modeled for Colombia. Vegetation for the years 1970 to 2000 was reproduced using the Holdridge model with climate data with a spatial resolution of 900 meters. The vegetation types that occupied the most territory were sub-humid tropical forest, tropical dry forest and Andean wet forest. These results were validated by comparing with the Colombian ecosystem map (SINA, 2007, which confirmed a high degree of similarity between the modeled spatial vegetation patterns and modern ecosystem distributions. Future vegetation maps were simulated using data generated by a regional climate model under two scenarios (A2 and B2; IPCC, 2007 for the periods 2011-2040 and 2070-2100. Based on our predictions high altitude vegetation will convert to that of lower altitudes and drier provinces with the most dramatic change occurring in the A2 scenario from 2070-2100. The most affected areas are the páramo and other high Andean vegetation types, which in the timeframe of the explored scenarios will disappear by the middle of the 21st Century.

  15. Variation of strontium stable isotope ratios and origins of strontium in Japanese vegetables and comparison with Chinese vegetables.

    Science.gov (United States)

    Aoyama, Keisuke; Nakano, Takanori; Shin, Ki-Cheol; Izawa, Atsunobu; Morita, Sakie

    2017-12-15

    To evaluate the utility of 87 Sr/ 86 Sr ratio for determining the geographical provenance of vegetables, we compared 87 Sr/ 86 Sr ratios and Sr concentrations in five vegetable species grown in Japan and China, and we also examined the relationships between 87 Sr/ 86 Sr ratios in vegetables, the soil-exchangeable pool, irrigation water, and fertilizer from 20 Japanese agricultural areas. The vegetable 87 Sr/ 86 Sr ratios in Japan were similar for all species within a given agricultural area, but tended to be low in northeast Japan and high in southwest Japan. The median 87 Sr/ 86 Sr ratio in Japanese vegetables was similar to that in fertilizer, suggesting that in addition to rock-derived Sr, vegetables contain Sr derived from fertilizers. In most cases, the 87 Sr/ 86 Sr ratios for the Japanese and Chinese vegetables differed by approximately 0.710. Linear discriminant analysis using both 87 Sr/ 86 Sr and the Sr concentration allowed more accurate discrimination between vegetables from the two countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Monitoring the Invasion of Spartina alterniflora Using Multi-source High-resolution Imagery in the Zhangjiang Estuary, China

    Directory of Open Access Journals (Sweden)

    Mingyue Liu

    2017-05-01

    Full Text Available Spartina alterniflora (S. alterniflora is one of the most harmful invasive plants in China. Google Earth (GE, as a free software, hosts high-resolution imagery for many areas of the world. To explore the use of GE imagery for monitoring S. alterniflora invasion and developing an understanding of the invasion process of S. alterniflora in the Zhangjiang Estuary, the object-oriented method and visual interpretation were applied to GE, SPOT-5, and Gaofen-1 (GF-1 images. In addition, landscape metrics of S. alterniflora patches adjacent to mangrove forests were calculated and mangrove gaps were recorded by checking whether S. alterniflora exists. The results showed that from 2003–2015, the areal extent of S. alterniflora in the Zhangjiang Estuary increased from 57.94 ha to 116.11 ha, which was mainly converted from mudflats and moved seaward significantly. Analyses of the S. alterniflora expansion patterns in the six subzones indicated that the expansion trends varied with different environmental circumstances and human activities. Land reclamation, mangrove replantation, and mudflat aquaculture caused significant losses of S. alterniflora. The number of invaded gaps increased and S. alterniflora patches adjacent to mangrove forests became much larger and more aggregated during 2003–2015 (the class area increased from 12.13 ha to 49.76 ha and the aggregation index increased from 91.15 to 94.65. We thus concluded that S. alterniflora invasion in the Zhangjiang Estuary had seriously increased and that measures should be taken considering the characteristics shown in different subzones. This study provides an example of applying GE imagery to monitor invasive plants and illustrates that this approach can aid in the development of governmental policies employed to control S. alterniflora invasion.

  17. Causes of spring vegetation growth trends in the northern mid–high latitudes from 1982 to 2004

    International Nuclear Information System (INIS)

    Mao Jiafu; Shi Xiaoying; Thornton, Peter E; Piao Shilong; Wang Xuhui

    2012-01-01

    The Community Land Model version 4 (CLM4) is applied to explore the spatial–temporal patterns of spring (April–May) vegetation growth trends over the northern mid–high latitudes (NMH) (>25°N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI–temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experience temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO 2 . Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity. (letter)

  18. Causes of spring vegetation greenness trends in the northern mid-high latitudes from 1982 to 2004

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jiafu [ORNL; Shi, Xiaoying [ORNL; Thornton, Peter E [ORNL; Shilong, Dr. Piao [Peking University; Xuhui, Dr. Wang [Peking University

    2012-01-01

    The Community Land Model version 4 (CLM4) is applied to explore the spatial temporal patterns of spring (April May) vegetation growth trends over the northern mid high latitudes (NMH) (>25 N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experience temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO2. Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity.

  19. Use of AIRSAR to identify woody shrub invasion and other indicators of desertification in the Jornada LTER

    Science.gov (United States)

    Musick, H. Brad; Schaber, Gerald G.; Breed, Carol S.

    1995-01-01

    The replacement of semidesert grassland by woody shrubland is a widespread form of desertification. This change in physiognomy and species composition tends to sharply reduce the productivity of the land for grazing by domestic livestock, increase soil erosion and reduce soil fertility, and greatly alter many other aspects of ecosystem structure and functioning. Remote sensing methods are needed to assess and monitor shrubland encroachment. Detection of woody shrubs at low density would provide a particularly useful baseline on which to access changes, because an initially low shrub density often tends to increase even after cessation of the disturbance (e.g., overgrazing, drought, or fire suppression) responsible for triggering the initial stages of the invasion (Grover and Musick, 1990). Limited success has been achieved using optical remote sensing. In contrast to other forms of desertification, biomass does not consistently decrease with a shift from grassland to shrubland. Estimation of green vegetation amount (e.g., by NDVI) is thus of limited utility, unless the shrubs and herbaceous plants differ consistently in phenology and the area can be viewed during a season when only one of these is green. The objective of this study was to determine if the potential sensitivity of active microwave remote sensing to vegetation structure could be used to assess the degree of shrub invasion of grassland. Polarimetric Airborne Synthetic Aperture Radar (AIRSAR) data were acquired for a semiarid site containing varied mixtures of shrubs and herbaceous vegetation and compared with ground observations of vegetation type and other landsurface characteristics. In this preliminary report we examine the response of radar backscatter intensity to shrub density. The response of other multipolarization parameters will be examined in future work.

  20. High Vegetable Fats Intake Is Associated with High Resting Energy Expenditure in Vegetarians

    Directory of Open Access Journals (Sweden)

    Tiziana Montalcini

    2015-07-01

    Full Text Available It has been demonstrated that a vegetarian diet may be effective in reducing body weight, however, the underlying mechanisms are not entirely clear. We investigated whether there is a difference in resting energy expenditure between 26 vegetarians and 26 non-vegetarians and the correlation between some nutritional factors and inflammatory markers with resting energy expenditure. In this cross-sectional study, vegetarians and non-vegetarians were matched by age, body mass index and gender. All underwent instrumental examinations to assess the difference in body composition, nutrient intake and resting energy expenditure. Biochemical analyses and 12 different cytokines and growth factors were measured as an index of inflammatory state. A higher resting energy expenditure was found in vegetarians than in non-vegetarians (p = 0.008. Furthermore, a higher energy from diet, fibre, vegetable fats intake and interleukin-β (IL-1β was found between the groups. In the univariate and multivariable analysis, resting energy expenditure was associated with vegetarian diet, free-fat mass and vegetable fats (p < 0.001; Slope in statistic (B = 4.8; β = 0.42. After adjustment for cytokines, log10 interleukin-10 (IL-10 still correlated with resting energy expenditure (p = 0.02. Resting energy expenditure was positively correlated with a specific component of the vegetarian’s diet, i.e., vegetable fats. Furthermore, we showed that IL-10 was positively associated with resting energy expenditure in this population.

  1. Review of Alternative Management Options of Vegetable Crop Residues to Reduce Nitrate Leaching in Intensive Vegetable Rotations

    Directory of Open Access Journals (Sweden)

    Laura Agneessens

    2014-12-01

    Full Text Available Vegetable crop residues take a particular position relative to arable crops due to often large amounts of biomass with a N content up to 200 kg N ha−1 left behind on the field. An important amount of vegetable crops are harvested during late autumn and despite decreasing soil temperatures during autumn, high rates of N mineralization and nitrification still occur. Vegetable crop residues may lead to considerable N losses through leaching during winter and pose a threat to meeting water quality objectives. However, at the same time vegetable crop residues are a vital link in closing the nutrient and organic matter cycle of soils. Appropriate and sustainable management is needed to harness the full potential of vegetable crop residues. Two fundamentally different crop residue management strategies to reduce N losses during winter in intensive vegetable rotations are reviewed, namely (i on-field management options and modifications to crop rotations and (ii removal of crop residues, followed by a useful and profitable application.

  2. Expression of Lipid Metabolism-Related Proteins Differs between Invasive Lobular Carcinoma and Invasive Ductal Carcinoma.

    Science.gov (United States)

    Cha, Yoon Jin; Kim, Hye Min; Koo, Ja Seung

    2017-01-23

    We comparatively investigated the expression and clinical implications of lipid metabolism-related proteins in invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) of the breast. A total of 584 breast cancers (108 ILC and 476 IDC) were subjected to tissue microarray and immunohistochemical analysis for lipid metabolism-related proteins including hormone-sensitive lipase (HSL), perilipin A, fatty acid binding protein (FABP)4, carnitine palmitoyltransferase (CPT)-1, acyl-CoA oxidase 1, and fatty acid synthetase (FASN). HSL, perilipin A, and FABP4 expression (all p invasive cancers, HSL and FABP4 were highly expressed in luminal A-type ILC ( p cancers, HSL and FABP4 were more highly expressed in ILC ( p < 0.001). Univariate analysis found associations of shorter disease-free survival with CPT-1 positivity ( p = 0.004) and acyl-CoA oxidase 1 positivity ( p = 0.032) and of shorter overall survival with acyl-CoA oxidase 1 positivity ( p = 0.027). In conclusion, ILC and IDC exhibited different immunohistochemical lipid metabolism-related protein expression profiles. Notably, ILC exhibited high HSL and FABP4 and low perilipin A expression.

  3. Stages of change to increase fruit and vegetable intake and its relationships with fruit and vegetable intake and related psychosocial factors.

    Science.gov (United States)

    Chee Yen, Wong; Mohd Shariff, Zalilah; Kandiah, Mirnalini; Mohd Taib, Mohd Nasir

    2014-06-01

    Understanding individual's intention, action and maintenance to increase fruit and vegetable intake is an initial step in designing nutrition or health promotion programs. This study aimed to determine stages of change to increase fruit and vegetable intake and its relationships with fruit and vegetable intake, self-efficacy, perceived benefits and perceived barriers. This cross-sectional study was conducted among 348 public university staff in Universiti Putra Malaysia. A pre-tested self-administered questionnaire and two days 24-hour diet recall were used. Half of the respondents (50%) were in preparation stage, followed by 43% in action/maintenance, 7% in pre-contemplation/contemplation stages. Respondents in action/maintenance stages had significantly higher self-efficacy (F = 9.17, P diet high in fruits and vegetables in order to promote healthy changes in having high fruit and vegetable intake.

  4. Removal of radioactivity and safe vegetables cultivation from highly radioactivity polluted soil in Fukushima using photosynthetic bacteria

    International Nuclear Information System (INIS)

    Sasaki, Kei; Okagawa, Masakazu; Takeno, Kenji; Shinkawa, Hidenori; Sasaki, Ken

    2015-01-01

    The soil pollution caused by radioactive substances released from the accident of TEPCO Fukushima Daiichi Nuclear Power Station has been still serious interference against agricultural reconstruction. This study used the soil contaminated with high radioactivity (13,602∼87,181 Bq/kg) in Namie Town, Fukushima Prefecture, and performed decontamination using photosynthetic bacteria in a simple outdoor practical test using a 60 L container. Using the soil after decontamination, the authors cultivated vegetables such as komatsuna (Japanese mustard spinach), and bok choy, the results of which are reported. As photosynthetic bacteria, Rhodobacter shaerodes SSI species was used. This paper describes the cultivation method of bacteria, preparation method of immobilization grain, decontamination method, and cultivation method of vegetables. As a result of the experiment, the decontamination efficient of the soil was between 59.5 to 73.3%, and cultured vegetables passed the edible reference value (edible criteria for infants: 50 Bq/kg FW), which was the success of the experiment. (A.O.)

  5. Golden Gate National Recreation Area Vegetation Inventory Project

    Data.gov (United States)

    California Natural Resource Agency — High resolution vegetation polygons mapped by the National Park Service. The vegetation units of this map were determined through stereoscopic interpretation of...

  6. Use of UAVs for Remote Measurement of Vegetation Canopy Variables

    Science.gov (United States)

    Rango, A.; Laliberte, A.; Herrick, J.; Steele, C.; Bestelmeyer, B.; Chopping, M. J.

    2006-12-01

    Remote sensing with different sensors has proven useful for measuring vegetation canopy variables at scales ranging from landscapes down to individual plants. For use at landscape scales, such as desert grasslands invaded by shrubs, it is possible to use multi-angle imagery from satellite sensors, such as MISR and CHRIS/Proba, with geometric optical models to retrieve fractional woody plant cover. Vegetation community states can be mapped using visible and near infrared ASTER imagery at 15 m resolution. At finer scales, QuickBird satellite imagery with approximately 60 cm resolution and piloted aircraft photography with 25-80 cm resolution can be used to measure shrubs above a critical size. Tests conducted with the QuickBird data in the Jornada basin of southern New Mexico have shown that 87% of all shrubs greater than 2 m2 were detected whereas only about 29% of all shrubs less than 2 m2 were detected, even at these high resolutions. Because there is an observational gap between satellite/aircraft measurements and ground observations, we have experimented with Unmanned Aerial Vehicles (UAVs) producing digital photography with approximately 5 cm resolution. We were able to detect all shrubs greater than 2 m2, and we were able to map small subshrubs indicative of rangeland deterioration, as well as remnant grass patches, for the first time. None of these could be identified on the 60 cm resolution data. Additionally, we were able to measure canopy gaps, shrub patterns, percent bare soil, and vegetation cover over mixed rangeland vegetation. This approach is directly applicable to rangeland health monitoring, and it provides a quantitative way to assess shrub invasion over time and to detect the depletion or recovery of grass patches. Further, if the UAV images have sufficient overlap, it may be possible to exploit the stereo viewing capabilities to develop a digital elevation model from the orthophotos, with a potential for extracting canopy height. We envision two

  7. High-resolution mapping of wetland vegetation biomass and distribution with L-band radar in southeastern coastal Louisiana

    Science.gov (United States)

    Thomas, N. M.; Simard, M.; Byrd, K. B.; Windham-Myers, L.; Castaneda, E.; Twilley, R.; Bevington, A. E.; Christensen, A.

    2017-12-01

    Louisiana coastal wetlands account for approximately one third (37%) of the estuarine wetland vegetation in the conterminous United States, yet the spatial distribution of their extent and aboveground biomass (AGB) is not well defined. This knowledge is critical for the accurate completion of national greenhouse gas (GHG) inventories. We generated high-resolution baselines maps of wetland vegetation extent and biomass at the Atchafalaya and Terrebonne basins in coastal Louisiana using a multi-sensor approach. Optical satellite data was used within an object-oriented machine learning approach to classify the structure of wetland vegetation types, offering increased detail over currently available land cover maps that do not distinguish between wetland vegetation types nor account for non-permanent seasonal changes in extent. We mapped 1871 km2 of wetlands during a period of peak biomass in September 2015 comprised of flooded forested wetlands and leaf, grass and emergent herbaceous marshes. The distribution of aboveground biomass (AGB) was mapped using JPL L-band Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). Relationships between time-series radar imagery and field data collected in May 2015 and September 2016 were derived to estimate AGB at the Wax Lake and Atchafalaya deltas. Differences in seasonal biomass estimates reflect the increased AGB in September over May, concurrent with periods of peak biomass and the onset of the vegetation growing season, respectively. This method provides a tractable means of mapping and monitoring biomass of wetland vegetation types with L-band radar, in a region threatened with wetland loss under projections of increasing sea-level rise and terrestrial subsidence. Through this, we demonstrate a method that is able to satisfy the IPCC 2013 Wetlands Supplement requirement for Tier 2/Tier 3 reporting of coastal wetland GHG inventories.

  8. [Invasive yeast infections in neutropenic patients].

    Science.gov (United States)

    Ruiz Camps, Isabel; Jarque, Isidro

    2016-01-01

    Invasive fungal diseases caused by yeasts still play an important role in the morbidity and mortality in neutropenic patients with haematological malignancies. Although the overall incidence of invasive candidiasis has decreased due to widespread use of antifungal prophylaxis, the incidence of non-Candida albicans Candida species is increasing compared with that of C.albicans, and mortality of invasive candidiasis continues to be high. In addition, there has been an increase in invasive infections caused by an array of uncommon yeasts, including species of the genus Malassezia, Rhodotorula, Trichosporon and Saprochaete, characterised by their resistance to echinocandins and poor prognosis. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. River floodplain vegetation classification using multi-temporal high-resolution colour infrared UAV imagery.

    NARCIS (Netherlands)

    van Iersel, W.K.; Straatsma, M.W.; Addink, E.A.; Middelkoop, H.

    2016-01-01

    To evaluate floodplain functioning, monitoring of its vegetation is essential. Although airborne imagery is widely applied for this purpose, classification accuracy (CA) remains low for grassland (< 88%) and herbaceous vegetation (<57%) due to the spectral and structural similarity of these

  10. Vegetation of the Landfill Supíkovice (Olomouc Region, Czech Republic

    Directory of Open Access Journals (Sweden)

    Cimalová Šárka

    2016-03-01

    Full Text Available The paper presents the results of floristic and vegetation analyses of the landfill Supíkovice. Ruderal, segetal and meadow vegetation units were recorded in June 2015. The most interesting findings were threatened weed species growing in decontamination patches on loamy and nutrient-poor soils in the central part of the landfill. Dianthus armeria (C4a and Filago arvensis (C3 are listed in the national Red List of the Czech Republic. Moreover, these taxa were evaluated in the same category of rarity on the regional level. Apart from the above mentioned, Centaurea cyanus (C4a and Papaver dubium (C4a, registered only in the regional Red List of vascular plants of the Moravian-Silesian Region (see methods, were found. Besides threatened species, relatively small populations of invasive taxa as Erigeron annuus, Impatiens parviflora or Reynoutria sp., were also recorded on the landfill Supíkovice.

  11. Assessing food allergy risks from residual peanut protein in highly refined vegetable oil

    NARCIS (Netherlands)

    Blom, W.M.; Kruizinga, A.G.; Rubingh, C.M.; Remington, B.C.; Crevel, R.W.R.; Houben, G.F.

    2017-01-01

    Refined vegetable oils including refined peanut oil are widely used in foods. Due to shared production processes, refined non-peanut vegetable oils can contain residual peanut proteins. We estimated the predicted number of allergic reactions to residual peanut proteins using probabilistic risk

  12. East African Cenozoic vegetation history.

    Science.gov (United States)

    Linder, Hans Peter

    2017-11-01

    The modern vegetation of East Africa is a complex mosaic of rainforest patches; small islands of tropic-alpine vegetation; extensive savannas, ranging from almost pure grassland to wooded savannas; thickets; and montane grassland and forest. Here I trace the evolution of these vegetation types through the Cenozoic. Paleogene East Africa was most likely geomorphologically subdued and, as the few Eocene fossil sites suggest, a woodland in a seasonal climate. Woodland rather than rainforest may well have been the regional vegetation. Mountain building started with the Oligocene trap lava flows in Ethiopia, on which rainforest developed, with little evidence of grass and none of montane forests. The uplift of the East African Plateau took place during the middle Miocene. Fossil sites indicate the presence of rainforest, montane forest and thicket, and wooded grassland, often in close juxtaposition, from 17 to 10 Ma. By 10 Ma, marine deposits indicate extensive grassland in the region and isotope analysis indicates that this was a C 3 grassland. In the later Miocene rifting, first of the western Albertine Rift and then of the eastern Gregory Rift, added to the complexity of the environment. The building of the high strato-volcanos during the later Mio-Pliocene added environments suitable for tropic-alpine vegetation. During this time, the C 3 grassland was replaced by C 4 savannas, although overall the extent of grassland was reduced from the mid-Miocene high to the current low level. Lake-level fluctuations during the Quaternary indicate substantial variation in rainfall, presumably as a result of movements in the intertropical convergence zone and the Congo air boundary, but the impact of these fluctuations on the vegetation is still speculative. I argue that, overall, there was an increase in the complexity of East African vegetation complexity during the Neogene, largely as a result of orogeny. The impact of Quaternary climatic fluctuation is still poorly understood

  13. Invasive species information networks: Collaboration at multiple scales for prevention, early detection, and rapid response to invasive alien species

    Science.gov (United States)

    Simpson, Annie; Jarnevich, Catherine S.; Madsen, John; Westbrooks, Randy G.; Fournier, Christine; Mehrhoff, Les; Browne, Michael; Graham, Jim; Sellers, Elizabeth A.

    2009-01-01

    Accurate analysis of present distributions and effective modeling of future distributions of invasive alien species (IAS) are both highly dependent on the availability and accessibility of occurrence data and natural history information about the species. Invasive alien species monitoring and detection networks (such as the Invasive Plant Atlas of New England and the Invasive Plant Atlas of the MidSouth) generate occurrence data at local and regional levels within the United States, which are shared through the US National Institute of Invasive Species Science. The Inter-American Biodiversity Information Network's Invasives Information Network (I3N), facilitates cooperation on sharing invasive species occurrence data throughout the Western Hemisphere. The I3N and other national and regional networks expose their data globally via the Global Invasive Species Information Network (GISIN). International and interdisciplinary cooperation on data sharing strengthens cooperation on strategies and responses to invasions. However, limitations to effective collaboration among invasive species networks leading to successful early detection and rapid response to invasive species include: lack of interoperability; data accessibility; funding; and technical expertise. This paper proposes various solutions to these obstacles at different geographic levels and briefly describes success stories from the invasive species information networks mentioned above. Using biological informatics to facilitate global information sharing is especially critical in invasive species science, as research has shown that one of the best indicators of the invasiveness of a species is whether it has been invasive elsewhere. Data must also be shared across disciplines because natural history information (e.g. diet, predators, habitat requirements, etc.) about a species in its native range is vital for effective prevention, detection, and rapid response to an invasion. Finally, it has been our

  14. Associations between parenting styles and children's fruit and vegetable intake.

    Science.gov (United States)

    Alsharairi, Naser A; Somerset, Shawn M

    2015-01-01

    This study investigated associations between children's fruit and vegetable intake and their parents' parenting style (i.e., authoritative: high warmth-high control; authoritarian: low warmth-high control; permissive: high warmth-low control; and disengaged: low warmth-low control). Data from the Longitudinal Study of Australian Children K cohort, comprising approximately 5,000 children, were used for analyses in wave 1 (4-5 years), wave 2 (6-7 years), and wave 3 (8-9 years). Fruit and vegetable intake patterns were extracted through exploratory factor analysis. Boys with authoritarian mothers were found less likely to consume fruits and vegetables at 6-9 years. Children of both genders with authoritative and permissive fathers, and girls with authoritative mothers at 4-5 years were found most likely to consume fruits and vegetables two and four years later. Exploring possible mechanisms underlying such associations may lead to interventions aimed at increasing children's consumption of fruits and vegetables.

  15. [Differences of vegetation phenology monitoring by remote sensing based on different spectral vegetation indices.

    Science.gov (United States)

    Zuo, Lu; Wang, Huan Jiong; Liu, Rong Gao; Liu, Yang; Shang, Rong

    2018-02-01

    Vegetation phenology is a comprehensive indictor for the responses of terrestrial ecosystem to climatic and environmental changes. Remote sensing spectrum has been widely used in the extraction of vegetation phenology information. However, there are many differences between phenology extracted by remote sensing and site observations, with their physical meaning remaining unclear. We selected one tile of MODIS data in northeastern China (2000-2014) to examine the SOS and EOS differences derived from the normalized difference vegetation index (NDVI) and the simple ratio vegetation index (SR) based on both the red and near-infrared bands. The results showed that there were significant differences between NDVI-phenology and SR-phenology. SOS derived from NDVI averaged 18.9 days earlier than that from SR. EOS derived from NDVI averaged 19.0 days later than from SR. NDVI-phenology had a longer growing season. There were significant differences in the inter-annual variation of phenology from NDVI and SR. More than 20% of the pixel SOS and EOS derived from NDVI and SR showed the opposite temporal trend. These results caused by the seasonal curve characteristics and noise resistance differences of NDVI and SR. The observed data source of NDVI and SR were completely consistent, only the mathematical expressions were different, but phenology results were significantly different. Our results indicated that vegetation phenology monitoring by remote sensing is highly dependent on the mathematical expression of vegetation index. How to establish a reliable method for extracting vegetation phenology by remote sensing needs further research.

  16. VEGETATION MAPPING IN WETLANDS

    Directory of Open Access Journals (Sweden)

    F. PEDROTTI

    2004-01-01

    Full Text Available The current work examines the main aspects of wetland vegetation mapping, which can be summarized as analysis of the ecological-vegetational (ecotone gradients; vegetation complexes; relationships between vegetation distribution and geomorphology; vegetation of the hydrographic basin lo which the wetland in question belongs; vegetation monitoring with help of four vegetation maps: phytosociological map of the real and potential vegetation, map of vegetation dynamical tendencies, map of vegetation series.

  17. [Evaluation of the results of high-speed handpiece and minimally invasive extraction in impacted mandibular third molar extraction].

    Science.gov (United States)

    Yang, Ying-yang; DU, Sheng-nan; Lv, Zong-kai

    2015-08-01

    To compare the results of high-speed handpiece and minimally invasive extraction in impacted mandibular third molar extraction. From May 2011 to May 2014, 83 patients undergoing impacted mandibular third molar extraction were enrolled into the study and randomly divided into 2 groups: 42 patients in group A (experimental group) and 41 patients in group B (control group). Group B underwent extraction with traditional method and group A underwent high-speed handpiece and minimally invasive extraction of the impacted mandibular third molar. The occurrences of the root fracture, gingival laceration, tooth mobility, lingual bone plate fracture, jaw fracture and dislocation of temporomandibular joint during operation and lower lip numbness, dry socket, facial swelling and limitation of mouth opening after operation were observed and compared between 2 groups. The operation time, integrity of extraction sockets, VAS pain score and satisfaction from patients were collected and compared. SPSS 19.0 software package was used for statistical analysis. The occurrences of root fracture, gingival laceration, tooth mobility, lingual bone plate fracture, jaw fracture, and dislocation of temporomandibular joint during operation in group A significantly decreased compared with group B (Pextraction sockets, VAS pain scores and satisfaction scores in group A improved significantly compared with group B (Phandpiece and minimally invasive extraction should be widely used in impacted mandibular third molar extraction, due to the advantages of simple operation, high efficiency, minimal trauma, and few perioperative complications.

  18. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Michael; Moseley, Robert

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.

  19. Vegetation description, rare plant inventory, and vegetation monitoring for Craig Mountain, Idaho

    International Nuclear Information System (INIS)

    Mancuso, M.; Moseley, R.

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals

  20. Use of Plastic Mulch for Vegetable Production

    OpenAIRE

    Maughan, Tiffany; Drost, Dan

    2016-01-01

    Plastic mulches are used commercially for both vegetables and small fruit crops. Vegetable crops well suited for production with plastic mulch are typically high value row crops. This fact sheet describes the advantages, disadvantages, installation, and planting considerations. It includes sources for plastic and equipment.

  1. Seasonal and spatial variability of polychlorinated biphenyls (PCBs) in vegetation and cow milk from a high altitude pasture in the Italian Alps

    Energy Technology Data Exchange (ETDEWEB)

    Tato, Liliana [Department of Biology, University of Milan, Via Celoria 26, Milan, I-20133 (Italy); Tremolada, Paolo, E-mail: paolo.tremolada@unimi.it [Department of Biology, University of Milan, Via Celoria 26, Milan, I-20133 (Italy); Ballabio, Cristiano [Department of Environmental and Land Sciences, University of Milano-Bicocca, Piazza Della Scienza 1, Milan, I-20126 (Italy); Guazzoni, Niccolo; Parolini, Marco; Caccianiga, Marco; Binelli, Andrea [Department of Biology, University of Milan, Via Celoria 26, Milan, I-20133 (Italy)

    2011-10-15

    The seasonal and spatial variability of polychlorinated biphenyls (PCBs) in vegetation and cow milk was studied in a high altitude pasture in the Alps (1900 m a.s.l.). PCB contamination in vegetation shows a concentration peak in June, which is mainly interpreted as the consequence of a temporary PCB enrichment of the air layer above the ground due to net emission fluxes from the soil. A three compartment dynamic model was developed to test this hypothesis. The North/South enrichment factor in the vegetation was 1.5-1.6 for penta- and hexa-substituted congeners and 1.7 for hepta- and octa-PCBs, according to the effect of temperature on compounds having higher K{sub oa} values. Milk concentrations followed the vegetation seasonal trend. The congener abundance in milk is in agreement with the biotransformation susceptibility, absorption efficiency and residence time of the different congeners in dairy cows. - Highlights: > A PCB peak in vegetation was found at the end of June. > Higher PCB concentrations in vegetation were found in the Northern aspect. > A temperature-dependent bioaccumulation process was found in the vegetation. > A direct transfer of PCBs was found from vegetation to dairy milk. > Carry-over ratios and bioaccumulation factors were calculated for dairy cow. - In a mountain pasture, PCBs concentrations in vegetation were found to be related to emission flux from soil and to the mean temperature of the site, and a direct transfer to milk was also observed.

  2. Canopy Modeling of Aquatic Vegetation: Construction of Submerged Vegetation Index

    Science.gov (United States)

    Ma, Z.; Zhou, G.

    2018-04-01

    The unique spectral characteristics of submerged vegetation in wetlands determine that the conventional terrestrial vegetation index cannot be directly employed to species identification and parameter inversion of submerged vegetation. Based on the Aquatic Vegetation Radiative Transfer model (AVRT), this paper attempts to construct an index suitable for submerged vegetation, the model simulated data and a scene of Sentinel-2A image in Taihu Lake, China are utilized for assessing the performance of the newly constructed indices and the existent vegetation indices. The results show that the angle index composed by 525 nm, 555 nm and 670 nm can resist the effects of water columns and is more sensitive to vegetation parameters such as LAI. Furthermore, it makes a well discrimination between submerged vegetation and water bodies in the satellite data. We hope that the new index will provide a theoretical basis for future research.

  3. Fruit and Vegetable Consumption and Mortality

    DEFF Research Database (Denmark)

    Leenders, Max; Sluijs, Ivonne; Ros, Martine M

    2013-01-01

    % CI: 0.70, 1.54), and with a preventable proportion of 2.95%. This association was driven mainly by cardiovascular disease mortality (for the highest quartile, hazard ratio = 0.85, 95% CI: 0.77, 0.93). Stronger inverse associations were observed for participants with high alcohol consumption or high...... body mass index and suggested in smokers. Inverse associations were stronger for raw than for cooked vegetable consumption. These results support the evidence that fruit and vegetable consumption is associated with a lower risk of death....

  4. Utility and reliability of non-invasive muscle function tests in high-fat-fed mice.

    Science.gov (United States)

    Martinez-Huenchullan, Sergio F; McLennan, Susan V; Ban, Linda A; Morsch, Marco; Twigg, Stephen M; Tam, Charmaine S

    2017-07-01

    What is the central question of this study? Non-invasive muscle function tests have not been validated for use in the study of muscle performance in high-fat-fed mice. What is the main finding and its importance? This study shows that grip strength, hang wire and four-limb hanging tests are able to discriminate the muscle performance between chow-fed and high-fat-fed mice at different time points, with grip strength being reliable after 5, 10 and 20 weeks of dietary intervention. Non-invasive tests are commonly used for assessing muscle function in animal models. The value of these tests in obesity, a condition where muscle strength is reduced, is unclear. We investigated the utility of three non-invasive muscle function tests, namely grip strength (GS), hang wire (HW) and four-limb hanging (FLH), in C57BL/6 mice fed chow (chow group, n = 48) or a high-fat diet (HFD group, n = 48) for 20 weeks. Muscle function tests were performed at 5, 10 and 20 weeks. After 10 and 20 weeks, HFD mice had significantly reduced GS (in newtons; mean ± SD: 10 weeks chow, 1.89 ± 0.1 and HFD, 1.79 ± 0.1; 20 weeks chow, 1.99 ± 0.1 and HFD, 1.75 ± 0.1), FLH [in seconds per gram body weight; median (interquartile range): 10 weeks chow, 2552 (1337-4964) and HFD, 1230 (749-1994); 20 weeks chow, 2048 (765-3864) and HFD, 1036 (717-1855)] and HW reaches [n; median (interquartile range): 10 weeks chow, 4 (2-5) and HFD, 2 (1-3); 20 weeks chow, 3 (1-5) and HFD, 1 (0-2)] and higher falls [n; median (interquartile range): 10 weeks chow, 0 (0-2) and HFD, 3 (1-7); 20 weeks chow, 1 (0-4) and HFD, 8 (5-10)]. Grip strength was reliable in both dietary groups [intraclass correlation coefficient (ICC) = 0.5-0.8; P tests are valuable and reliable tools for assessment of muscle strength and function in high-fat-fed mice. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  5. The effects of a high-animal- and a high-vegetable-protein diet on mineral balance and bowel function of young men.

    Science.gov (United States)

    Van Dokkum, W; Wesstra, A; Luyken, R; Hermus, R J

    1986-09-01

    1. Twelve young men were given for periods of 20 d, each of three mixed diets, namely a low-protein (LP) diet (9% total energy as protein, 67% of animal origin), a high-animal-protein (HA) diet (16% total energy as protein, 67% of animal origin) and a high-vegetable-protein (HV) diet (16% total energy as protein, 67% of vegetable origin). Retention of calcium, magnesium, iron, zinc and copper as well as various bowel function indices were investigated during each dietary period. 2. Neither the HA diet nor the HV diet changed the retention of the minerals considerably. Only Fe balance decreased significantly on the HV diet. 3. Substituting the HV diet for the HA diet resulted in significant increases in faecal wet weight (17 g/d), defaecation frequency (0.12 stools/d), faecal volatile fatty acids (2.6 mmol/d) and a decrease in faecal bile acids (128 mumol/d). 4. It is concluded that a HV diet, rather than a HA diet is to be recommended with respect to bowel function, whereas the HV diet does not necessarily have a significant influence on mineral retention.

  6. Decomposition of vegetation growing on metal mine waste

    Energy Technology Data Exchange (ETDEWEB)

    Williams, S T; McNeilly, T; Wellington, E M.H.

    1977-01-01

    Aspects of the decomposition of metal tolerant vegetation growing on mine waste containing high concentrations of lead and zinc were studied and compared with those on an adjacent uncontaminated site. High concentrations of Pb and, to a lesser extent, Zn, accumulated in metal-tolerant grass. Retarded decomposition of this vegetation as compared with that on the uncontaminated site was indicated by a greater accumulation of litter, less humus formation, reduced soil urease activity and smaller microbial and microfaunal populations. Some evidence for increased metal tolerance in microbes from the mine waste was obtained. Concentrations of lead tolerated under laboratory conditions were much lower than those extracted from the mine waste and its vegetation, probably due to the lack of an accurate method for assessing the availability of lead in soil and vegetation.

  7. High expression of PTBP1 promote invasion of colorectal cancer by alternative splicing of cortactin.

    Science.gov (United States)

    Wang, Zhi-Na; Liu, Dan; Yin, Bin; Ju, Wen-Yi; Qiu, Hui-Zhong; Xiao, Yi; Chen, Yuan-Jia; Peng, Xiao-Zhong; Lu, Chong-Mei

    2017-05-30

    Polypyrimidine tract-binding protein 1 (PTBP1) involving in almost all steps of mRNA regulation including alternative splicing metabolism during tumorigenesis due to its RNA-binding activity. Initially, we found that high expressed PTBP1 and poor prognosis was interrelated in colorectal cancer (CRC) patients with stages II and III CRC, which widely different in prognosis and treatment, by immunohistochemistry. PTBP1 was also upregulated in colon cancer cell lines. In our study, knockdown of PTBP1 by siRNA transfection decreased cell proliferation and invasion in vitro. Denovirus shRNA knockdown of PTBP1 inhibited colorectal cancer growth in vivo. Furthermore, PTBP1 regulates alternative splicing of many target genes involving in tumorgenesis in colon cancer cells. We confirmed that the splicing of cortactin exon 11 which was only contained in cortactin isoform-a, as a PTBP1 target. Knockdown of PTBP1 decreased the expression of cortactin isoform-a by exclusion of exon 11. Also the mRNA levels of PTBP1 and cortactin isoform-a were cooperatively expressed in colorectal cancer tissues. Knocking down cortactin isoform-a significantly decreased cell migration and invasion in colorectal cancer cells. Overexpression of cortactin isoform-a could rescue PTBP1-knockdown effect of cell motility. In summary the study revealed that PTBP1 facilitates colorectal cancer migration and invasion activities by inclusion of cortactin exon 11.

  8. Water quality function of an extensive vegetated roof.

    Science.gov (United States)

    Todorov, Dimitar; Driscoll, Charles T; Todorova, Svetoslava; Montesdeoca, Mario

    2018-06-01

    In this paper we present the results of a four-year study of water quality in runoff from an extensive, sedum covered, vegetated roof on an urban commercial building. Monitoring commenced seven months after the roof was constructed, with the first growing season. Stormwater drainage quality function of the vegetated roof was compared to a conventional (impermeable, high-albedo) membrane roof in addition to paired measurements of wet and bulk depositions at the study site. We present concentrations and fluxes of nutrients and major solutes. We discuss seasonal and year-to-year variation in water quality of drainage from the vegetated roof and how it compares with atmospheric deposition and drainage from the impermeable roof. Drainage waters from the vegetated roof exhibited a high concentration of nutrients compared to atmospheric deposition, particularly during the warm temperature growing season. However, nutrient losses were generally low because of the strong retention of water by the vegetated roof. There was marked variation in the retention of nutrients by season due to variations in concentrations in drainage from the vegetated roof. The vegetated roof was a sink of nitrogen, total phosphorus and chloride, and a source of phosphate and dissolved inorganic and organic carbon. Chloride exhibited elevated inputs and leaching during the winter. The drainage from the vegetated and impermeable roofs met the United States Environmental Protection Agency freshwater standards for all parameters, except for total phosphorus. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Study of microbiological background of herbal ingredients and dairy-vegetable compositions

    Directory of Open Access Journals (Sweden)

    D. V. Kharitonov

    2016-01-01

    Full Text Available The rates of microbiological safety of powdery vegetables, vegetable-milk compositions, compound desserts have been studied. No pathogenic germs (incl. salmonella, Escherichia coli, yeast, nonspore-forming bacteria B cereus have been detected in powdery vegetable samples. The number of mesophilic aerobic and facultative anaerobic microorganisms as well as amount of molds does not exceed safety index normalized by the legislation. Proteolytic microorganisms compose the basic microflora of powdery vegetables. Microbiological background of vegetable and milk basis is characterized by the presence of microorganisms differed by different resistance to the medium conditions – рН value, presence of oxygen and high temperatures impact. Enrichment of milk base by vegetable components necessitates to adjust the thermal effect regimes prescribed for milk treatment without additional ingredients. Introduction of vegetable ingredients into milk base is accompanied by polysemantic effect of high temperatures on microorganisms of polycomponent milk – vegetable base. On the one hand introduction of vegetable raw material into milk enhances inhibitory temperature effect on microbial cells due to transition of the medium рН into sour side; on the other hand presence of vegetable raw material particles protects microorganisms against sensitive effect of high temperature. Microflora of vegetable-milk compositions after heat treatment as well as ready-made desserts on their base was presented by spore-forming bacillus the number of which is correlated by their number in the initial raw material. In order to choose the optimal regime of heat treatment all processes running during heat treatment and particularly microbiological and physical-chemical degradation of polysaccharides of vegetables cell structures.

  10. Analysis of relation between geomorphologic processes and alpine vegetation in the high mountain landscape (Tatry Mts.)

    International Nuclear Information System (INIS)

    Boltiziar, M.

    2003-01-01

    The aim was to present some information about starting of high mountains ecological monitoring and its first partial results. The research is focused on a long-term observation of vegetation changes (species composition, species spatial distribution) in relation to geomorphic processes and geo-relief attributes at meso- and micro-scale of landscape. We established in 2002 for this purpose six permanent plots (4 x 4 m) in the selected localities of High and Belianske Tatras Mts. (Author)

  11. Habitat structure modified by an invasive grass enhances inundation withstanding in a salt-marsh wolf spider

    OpenAIRE

    Pétillon, J.; Lambeets, K.; Montaigne, W.; Maelfait, J.-P.; Bonte, D.

    2010-01-01

    Vegetation and underground structures are known to influence flood avoidance and flood resistance in invertebrates. In bimonthly-flooded European salt marshes, recent invasions by the nitrophilous grass Elymus athericus strongly modified usual habitat structure, notably by the production of a deep litter layer. Consequently, invaded habitats provide more interstitial spaces that may act as a refuge during flood events. By using both controlled and field designs, we tested whether invaded habi...

  12. MR imaging in tumor invasion of the chest wall

    International Nuclear Information System (INIS)

    Bittner, R.C.; Lang, P.; Schorner, W.; Sander, B.; Weiss, T.; Loddenkemper, R.; Kaiser, D.; Felix, R.

    1989-01-01

    The authors have used MR imaging to study 22 patients who had intrathoracic, pleura-related malignancies and whose CT findings had suggested chest wall invasion. ECG-gated T1- and T2-weighted spin-echo sequences were used in all patients. Additionally, in 10 patients an ungated, multisection, gradient-echo sequence was used, which was repeated after intravenous administration of Gd-DTPA in five patients. Surgery confirmed chest wall invasion in 19 patients. CT showed tumor invasion only in 14 of these 19 patients. MR imaging showed high-signal-intensity lesion within chest wall and pleura in T2-weighted and Gd-DTPA-enhanced T1-weighted images as the typical pattern of chest wall invasion in all 19 patients. Two of the three patients with pleural inflammation and without chest wall invasion had high-signal-intensity pleural lesions, but none of these lesions were within the chest wall

  13. Recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers

    DEFF Research Database (Denmark)

    Andersen, Lars Dyrskjøt; Zieger, Karsten; Ørntoft, Torben Falck

    2007-01-01

    individually contributed to the management of the disease. However, the development of high-throughput techniques for simultaneous assessment of a large number of markers has allowed classification of tumors into clinically relevant molecular subgroups beyond those possible by pathological classification. Here......Bladder cancer is the fifth most common neoplasm in industrialized countries. Due to frequent recurrences of the superficial form of this disease, bladder cancer ranks as one of the most common cancers. Despite the description of a large number of tumor markers for bladder cancers, none have......, we review the recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers....

  14. The Hydromechanics of Vegetation for Slope Stabilization

    Science.gov (United States)

    Mulyono, A.; Subardja, A.; Ekasari, I.; Lailati, M.; Sudirja, R.; Ningrum, W.

    2018-02-01

    Vegetation is one of the alternative technologies in the prevention of shallow landslide prevention that occurs mostly during the rainy season. The application of plant for slope stabilization is known as bioengineering. Knowledge of the vegetative contribution that can be considered in bioengineering was the hydrological and mechanical aspects (hydromechanical). Hydrological effect of the plant on slope stability is to reduce soil water content through transpiration, interception, and evapotranspiration. The mechanical impact of vegetation on slope stability is to stabilize the slope with mechanical reinforcement of soils through roots. Vegetation water consumption varies depending on the age and density, rainfall factors and soil types. Vegetation with high ability to absorb water from the soil and release into the atmosphere through a transpiration process will reduce the pore water stress and increase slope stability, and vegetation with deep root anchoring and strong root binding was potentially more significant to maintain the stability of the slope.

  15. Amnesia and vegetative abnormalities after irradiation treatment. A case study

    International Nuclear Information System (INIS)

    Christianson, S.Aa.; Neppe, V.; Hoffman, H.

    1994-01-01

    This paper describes a case of a patient (GX) with a brain tumour in the third ventricle who developed a syndrome of amnestic disorder and vegetative abnormalities (hyperphagia, oligodipsia) after irradiation treatment that followed brain surgery. The patient shows an extremely poor long-term memory on both visually and verbally presented material, and of autobiographical events occurring after the onset of the illness, but some preserved memory functions on short-term memory tasks, semantic memory tasks, and implicit memory tasks. Given the onset of symptoms only after irradiation (a memory deficit in particular), and the non-invasive nature of the surgery, the probable etiology is post-irradiation syndrome. (au) (27 refs.)

  16. Amnesia and vegetative abnormalities after irradiation treatment. A case study

    Energy Technology Data Exchange (ETDEWEB)

    Christianson, S.Aa. (Departments of Psychology, University of Stockholm (Sweden)); Neppe, V. (Department of Psychology, University of Washington, Seattle (United States)); Hoffman, H. (Department of Psychology, Pacific Neuropsychiatric Institute, University of Washington, Settle (United States))

    1994-11-01

    This paper describes a case of a patient (GX) with a brain tumour in the third ventricle who developed a syndrome of amnestic disorder and vegetative abnormalities (hyperphagia, oligodipsia) after irradiation treatment that followed brain surgery. The patient shows an extremely poor long-term memory on both visually and verbally presented material, and of autobiographical events occurring after the onset of the illness, but some preserved memory functions on short-term memory tasks, semantic memory tasks, and implicit memory tasks. Given the onset of symptoms only after irradiation (a memory deficit in particular), and the non-invasive nature of the surgery, the probable etiology is post-irradiation syndrome. (au) (27 refs.).

  17. Restoration treatments in urban park forests drive long-term changes in vegetation trajectories.

    Science.gov (United States)

    Johnson, Lea R; Handel, Steven N

    2016-04-01

    Municipalities are turning to ecological restoration of urban forests as a measure to improve air quality, ameliorate urban heat island effects, improve storm water infiltration, and provide other social and ecological benefits. However, community dynamics following urban forest restoration treatments are poorly documented. This study examines the long-term effects of ecological restoration undertaken in New York City, New York, USA, to restore native forest in urban park natural areas invaded by woody non-native plants that are regional problems. In 2009 and 2010, we sampled vegetation in 30 invaded sites in three large public parks that were restored 1988-1993, and 30 sites in three large parks that were similarly invaded but had not been restored. Data from these matched plots reveal that the restoration treatment achieved its central goals. After 15-20 years, invasive species removal followed by native tree planting resulted in persistent structural and compositional shifts, significantly lower invasive species abundance, a more complex forest structure, and greater native tree recruitment. Together, these findings indicate that successional trajectories of vegetation dynamics have diverged between restored forests and invaded forests that were not restored. In addition, the data suggest that future composition of these urban forest patches will be novel assemblages. Restored and untreated sites shared a suite of shade-intolerant, quickly-growing tree species that colonize disturbed sites, indicating that restoration treatments created sites hospitable for germination and growth of species adapted to high light conditions and disturbed soils. These findings yield an urban perspective on the use of succession theory in ecological restoration. Models of ecological restoration developed in more pristine environments must be modified for use in cities. By anticipating both urban disturbances and ecological succession, management of urban forest patches can be

  18. Vegetation dynamics and dynamic vegetation science

    NARCIS (Netherlands)

    Van der Maarel, E

    1996-01-01

    his contribution presents a review of the development of the study of vegetation dynamics since 1979, in the framework of a jubilee meeting on progress in the study of vegetation. However, an exhaustive review is both impossible and unnecessary. It is impossible within the few pages available

  19. Mechanisms of vegetation-induced channel narrowing of an unregulated canyon river: Results from a natural field-scale experiment

    Science.gov (United States)

    Manners, Rebecca B.; Schmidt, John C.; Scott, Michael L.

    2014-04-01

    The lower Yampa River in Yampa Canyon, western Colorado serves as a natural, field-scale experiment, initiated when the invasive riparian plant, tamarisk (Tamarix spp.), colonized an unregulated river. In response to tamarisk's rapid invasion, the channel narrowed by 6% in the widest reaches since 1961. Taking advantage of this unique setting, we reconstructed the geomorphic and vegetation history in order to identify the key mechanisms for which, in the absence of other environmental perturbations, vegetation alters fluvial processes that result in a narrower channel. From our reconstruction, we identified a distinct similarity in the timing and magnitude of tamarisk encroachment and channel change, albeit with a lag in the channel response, thus suggesting tamarisk as the driving force. Within a decade of establishment, tamarisk effectively trapped sediment and, as a result, increased floodplain construction rates. Increasing tamarisk coverage over time also reduced the occurrence of floodplain stripping. Tamarisk recruitment was driven by both hydrologic and hydraulic variables, and the majority of tamarisk plants (84%) established below the stage of the 2-year flood. Thus, upon establishment nearly all plants regularly interact with the flow and sediment transport field. Our analyses were predicated on the hypothesis that the flow regime of the Yampa River was stationary, and that only the riparian vegetation community had changed. While not heavily impacted by water development, we determined that some aspects of the flow regime have shifted. However, this shift, which involved the clustering in time of extremely wet and dry years, did not influence fluvial processes directly. Instead these changes directly impacted riparian vegetation and changes in vegetation cover, in turn, altered fluvial processes. Today, the rate of channel change and new tamarisk recruitment is small. We believe that the rapid expansion of tamarisk and related floodplain construction

  20. Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes.

    Directory of Open Access Journals (Sweden)

    Mary Alldred

    Full Text Available Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.

  1. Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes.

    Science.gov (United States)

    Alldred, Mary; Baines, Stephen B; Findlay, Stuart

    2016-01-01

    Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.

  2. Vegetation survey: a new focus for Applied Vegetation Science

    NARCIS (Netherlands)

    Chytry, M.; Schaminee, J.H.J.; Schwabe, A.

    2011-01-01

    Vegetation survey is an important research agenda in vegetation science. It defines vegetation types and helps understand differences among them, which is essential for both basic ecological research and applications in biodiversity conservation and environmental monitoring. In this editorial, we

  3. Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.

    Directory of Open Access Journals (Sweden)

    Richard R Rodrigues

    Full Text Available The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum, another by a shrub (Rhamnus davurica, and the third by a tree (Ailanthus altissima. The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME. Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that

  4. Determination of Radium transfer factor from soil to vegetables by Gamma spectrometry in high levels of natural radiation areas of Ramsar

    International Nuclear Information System (INIS)

    Reza-nejad, F.

    2000-01-01

    One of the most important and prevalent radioactive contaminants in the environment is radium-226 from uranium-238 decay series. This radionuclide after entering in to the food chain, especially through consumed drinking water and vegetables is transferred to man. In order to determine the transfer factor of 226 Ra from soil to veg tables and to assess the effective dose due to ingestion of vegetables by the critical group of Talesh-Mahaleh which is one of the high levels natural radiation areas of Ramsar, more than 90 samples of soil, seed and vegetable were collected and analysed by gamma spectrometry using a High Purity Germanium detector coupled to a Canberra Mca-series 100. The concentrations of 226 Ra were determined by 609 KeV photopeak of bismuth-214 in secular equilibrium with 226 Ra. Concentrations of 226 Ra in dried soil samples were ranged from a minimum of 733 ± 25 to a maximum of 45100 ± 37 Bq Kg -1 . The maximum and minimum transfer factor of 226 Ra were determined in leafy and root vegetables respectively. The average transfer factor of 226 RA were calculated 1.2 * 10 -2 for all 14 kind of vegetables. The results indicated that by increasing the 226 Ra concentration in substrate, the uptake of this radionuclide has exponentially increased while, the transfer factors were decreased. Also there is a positive correlation between uptake of 226 Ra and Ca in vegetable. The highest and lowest ratio of 226 Ra/Ca were measured 127.8 Bq Kg -1 and 8 Bq Kg -1 and 8 Bq Kg -1 in carrot and tomato samples respectively. The effective dose resulting from 226 Ra due to consumption of vegetables for critical group was 51.6 μ Sv a -1 which is 13 times more than average of effective dose resulting from this radionuclide due to intake of all kind of foods and water in background region

  5. Riboflavin at high doses enhances lung cancer cell proliferation, invasion, and migration.

    Science.gov (United States)

    Yang, Hui-ting; Chao, Pei-chun; Yin, Mei-chin

    2013-02-01

    The influence of riboflavin (vitamin B(2) ) upon growth, invasion, and migration in non-small cell lung cancer cell lines was evaluated. Riboflavin at 1, 10, 25, 50, 100, 200, or 400 μmol/L was added into A549, H3255, or Calu-6 cells. The effects of this compound upon level and/or expression of reactive oxygen species (ROS), inflammatory cytokines, intercellular adhesion molecule (ICAM)-1, fibronectin, matrix metalloproteinase (MMP)-9, MMP-2, focal adhesion kinase (FAK), nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) were examined. Results showed that riboflavin at test doses did not affect the level of ROS and glutathione. Riboflavin at 200 and 400 μmol/L significantly enhanced cell growth in test lung cancer cell lines, and at 400 μmol/L significantly increased the release of interleukin-6, tumor necrosis factor-alpha, and vascular endothelial growth factor. This agent at 200 and 400 μmol/L also upregulated protein production of ICAM-1, fibronectin, MMP-9, MMP-2, NF-κB p50, p-p38 MAPK, and FAK; and at 400 μmol/L enhanced invasion and migration in test cell lines. These findings suggested that riboflavin at high doses might promote lung cancer progression. © 2013 Institute of Food Technologists®

  6. High carriage of adherent invasive E. coli in wildlife and healthy individuals.

    Science.gov (United States)

    Rahmouni, Oumaïra; Vignal, Cécile; Titécat, Marie; Foligné, Benoît; Pariente, Benjamin; Dubuquoy, Laurent; Desreumaux, Pierre; Neut, Christel

    2018-01-01

    Adherent invasive Escherichia coli (AIEC) are suspected to be involved in the pathogenesis of inflammatory bowel diseases. Since AIEC was first described in 1999, despite important progress on its genomic and immune characterizations, some crucial questions remain unanswered, such as whether there exists a natural reservoir, or whether there is asymptomatic carriage. The ECOR collection, including E. coli strains isolated mainly from the gut of healthy humans and animals, constitutes an ideal tool to investigate AIEC prevalence in healthy condition. A total of 61 E. coli strains were examined for characteristics of AIEC. The adhesion, invasion and intramacrophage replication capabilities (AIEC phenotype) of 61 intestinal E. coli strains were determined. The absence of virulence-associated diarrheagenic E. coli pathotypes (EPEC, ETEC, EIEC, EHEC, DAEC, EAEC), and uropathogenic E. coli was checked. Out of 61 intestinal strains, 13 (21%) exhibit the AIEC phenotype, 7 are from human origin and 6 are from animal origin. Prevalence of AIEC strains is about 24 and 19% in healthy humans and animals respectively. These strains are highly genetically diverse as they are distributed among the main described phylogroups. Among E. coli strains from the ECOR collection, we also detected strains able to detach I-407 cells. Our study described for the first time AIEC strains isolated from the feces of healthy humans and animals.

  7. Biofilm formation enhances Helicobacter pylori survivability in vegetables.

    Science.gov (United States)

    Ng, Chow Goon; Loke, Mun Fai; Goh, Khean Lee; Vadivelu, Jamuna; Ho, Bow

    2017-04-01

    To date, the exact route and mode of transmission of Helicobacter pylori remains elusive. The detection of H. pylori in food using molecular approaches has led us to postulate that the gastric pathogen may survive in the extragastric environment for an extended period. In this study, we show that H. pylori prolongs its survival by forming biofilm and micro-colonies on vegetables. The biofilm forming capability of H. pylori is both strain and vegetable dependent. H. pylori strains were classified into high and low biofilm formers based on their highest relative biofilm units (BU). High biofilm formers survived longer on vegetables compared to low biofilm formers. The bacteria survived better on cabbage compared to other vegetables tested. In addition, images captured on scanning electron and confocal laser scanning microscopes revealed that the bacteria were able to form biofilm and reside as micro-colonies on vegetable surfaces, strengthening the notion of possible survival of H. pylori on vegetables for an extended period of time. Taken together, the ability of H. pylori to form biofilm on vegetables (a common food source for human) potentially plays an important role in its survival, serving as a mode of transmission of H. pylori in the extragastric environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    International Nuclear Information System (INIS)

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference

  9. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference.

  10. School-level factors associated with increased fruit and vegetable consumption among students in California middle and high schools.

    Science.gov (United States)

    Gosliner, Wendi

    2014-09-01

    This study assessed associations between selective school-level factors and students' consumption of fruits and vegetables at school. Better understanding of school factors associated with increased produce consumption is especially important, as students are served more produce items at school. This cross-sectional study included 5439 seventh- and ninth-grade students from 31 schools in California in 2010. Multilevel regression models estimated whether the odds of consuming fruits or vegetables at school among students eating the school lunch were associated with the length of the lunch period, quality/variety of produce options, or other factors. A longer lunch period was associated with increased odds of a student eating fruits (odds ratio [OR] = 1.40) and vegetables (OR = 1.54) at school. Better fruit quality increased the odds of a student consuming fruit (OR = 1.44). Including a salad bar and involving students in food service decisions increased a student's odds of consuming vegetables (OR = 1.48 and OR = 1.34, respectively). This study suggests that institutional factors in schools are positively associated with middle and high school students' consumption of produce items at school. Additional efforts to structure school meal environments to enhance students' consumption of produce items can benefit students' nutrition and health. © 2014, American School Health Association.

  11. Wind dispersal of alien plant species into remnant natural vegetation from adjacent agricultural fields

    Directory of Open Access Journals (Sweden)

    Chika Egawa

    2017-07-01

    Full Text Available Knowledge regarding the seed dispersal of alien species is crucial to manage invasion risk in fragmented natural habitats. Focusing on wind dispersal, this study assessed the spatial and quantitative extents to which a remnant natural fen receives the seeds of alien species dispersed from adjacent hay meadows in Hokkaido, northern Japan. I established a total of 80 funnel seed traps in the fen at distances of 1, 2, 5, 10, 20, 30, 50, and 100 m from the meadows. The proportion of alien species in the seed rain at each distance was quantified, and the 99th-percentile dispersal distance from the meadows was estimated for each alien species by constructing dispersal kernels. Despite the presence of a marginal ditch and an elevational difference between the fen and the meadows, five alien species, including four grasses that do not have modified seed structures for wind dispersal, dispersed their seeds into the fen. These alien species accounted for up to 65.9% of the seed rain in terms of quantity. The 99th-percentile dispersal distances of the alien species ranged from 3.8 m to 309.3 m, and these distances were longer than the values predicted on the basis of their functional traits, such as terminal velocity. The results of this study demonstrated that numerous seeds of farmland-derived alien species were transported into the remnant vegetation via wind dispersal, and that simple predictions of dispersal distance based on functional traits could underestimate the potential area that alien species can reach. Continuous management both in farmland (to reduce seed escape and in remnant vegetation (to prevent the establishment of alien species is necessary to protect native vegetation from biological invasion in agricultural landscapes.

  12. Removal of Pb2+ from Water by Synthesized Tannin Resins from Invasive South African Trees

    Directory of Open Access Journals (Sweden)

    Bamidele J. Okoli

    2018-05-01

    Full Text Available Contamination of water by Pb 2 + and the threat of invasive vegetation affects the quality and quantity of water accessible to all life forms and has become a primary concern to South Africa and the world at large. This paper synthesized, characterized, and evaluated the resins from tannin-rich invasive Acacia species as an environmentally benign Pb 2 + adsorbent. The analysis of the pore volume and surface area of the resins reveals a small pore dimension of 9 × 10−3 cc/g and large surface area (2.31–8.65 m2/g, presenting suitable physical parameters for adsorption of Pb 2 + . Langmuir model offers the best correlation data at pH 6 with maximum monolayer coverage capacity of 189.30, 105.70 and 98.82 mg/g for silver, black and green wattle tannin resins in aqueous solutions, respectively. The kinetic data suitably fits into a pseudo-second-order model, with the Dubinin–Radushkevich adsorption energy (E ≤ 7.07 KJ/mol and intra-particle diffusion model confirming an associated physisorption process within the bio-sorption system. The thermogravimetric analysis (TGA and Fourier-transform infrared (FT-IR data of the resins were informative of the high thermal stability and chelating functionality such as -OH and -NH2 responsible for the removal of Pb 2 + . All the resins showed good adsorption characteristics while silver wattle tannin resin has the best adsorption capacity compared to black and green wattle tannin resins. This study provides a prototype adsorbent from invasive plants for the removal of Pb 2 + in water.

  13. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil

    Directory of Open Access Journals (Sweden)

    Li Benkai

    2016-08-01

    Full Text Available Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL. This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grinding temperature, and energy ratio coefficient of MQL grinding were compared among the seven vegetable oil types. Results revealed that (1 castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient; (2 palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient; (3 MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil; (4 viscosity significantly influences grinding force and grinding temperature to a greater extent than fatty acid varieties and contents in vegetable oils; (5 although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less viscous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature; (6 saturated fatty acid is a more efficient lubricant than unsaturated fatty acid; and (7 a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7% energy

  14. Byssus Structure and Protein Composition in the Highly Invasive Fouling Mussel Limnoperna fortunei

    Directory of Open Access Journals (Sweden)

    Shiguo Li

    2018-04-01

    Full Text Available Biofouling mediated by byssus adhesion in invasive bivalves has become a global environmental problem in aquatic ecosystems, resulting in negative ecological and economic consequences. Previous studies suggested that mechanisms responsible for byssus adhesion largely vary among bivalves, but it is poorly understood in freshwater species. Understanding of byssus structure and protein composition is the prerequisite for revealing these mechanisms. Here, we used multiple methods, including scanning electron microscope, liquid chromatography–tandem mass spectrometry, transcriptome sequencing, real-time quantitative PCR, inductively coupled plasma mass spectrometry, to investigate structure, and protein composition of byssus in the highly invasive freshwater mussel Limnoperna fortunei. The results indicated that the structure characteristics of adhesive plaque, proximal and distal threads were conducive to byssus adhesion, contributing to the high biofouling capacity of this species. The 3,4-dihydroxyphenyl-α-alanine (Dopa is a major post-transnationally modification in L. fortunei byssus. We identified 16 representative foot proteins with typical repetitive motifs and conserved domains by integrating transcriptomic and proteomic approaches. In these proteins, Lfbp-1, Lffp-2, and Lfbp-3 were specially located in foot tissue and highly expressed in the rapid byssus formation period, suggesting the involvement of these foot proteins in byssus production and adhesion. Multiple metal irons, including Ca2+, Mg2+, Zn2+, Al3+, and Fe3+, were abundant in both foot tissue and byssal thread. The heavy metals in these irons may be directly accumulated by L. fortunei from surrounding environments. Nevertheless, some metal ions (e.g., Ca2+ corresponded well with amino acid preferences of L. fortunei foot proteins, suggesting functional roles of these metal ions by interacting with foot proteins in byssus adhesion. Overall, this study provides structural and

  15. Genetically high plasma vitamin C, intake of fruit and vegetables, and risk of ischemic heart disease and all-cause mortality

    DEFF Research Database (Denmark)

    Kobylecki, Camilla J; Afzal, Shoaib; Davey Smith, George

    2015-01-01

    BACKGROUND: High intake of fruit and vegetables as well as high plasma vitamin C concentrations have been associated with low risk of ischemic heart disease in prospective studies, but results from randomized clinical trials have been inconsistent. OBJECTIVE: We tested the hypothesis...... that genetically high concentrations of plasma vitamin C, such as with high intake of fruit and vegetables, are associated with low risk of ischemic heart disease and all-cause mortality. DESIGN: We used a Mendelian randomization approach and genotyped for solute carrier family 23 member 1 (SLC23A1) rs33972313...... in the sodium-dependent vitamin C transporter 1 in 97,203 white individuals of whom 10,123 subjects had ischemic heart disease, and 8477 subjects died. We measured plasma vitamin C in 3512 individuals and included dietary information on 83,256 individuals. RESULTS: The SLC23A1 rs33972313 G allele was associated...

  16. Mitigating Uncertainty from Vegetation Spatial Complexity with Highly Portable Lidar

    Science.gov (United States)

    Paynter, I.; Schaaf, C.; Peri, F.; Saenz, E. J.; Genest, D.; Strahler, A. H.; Li, Z.

    2015-12-01

    To fully utilize the excellent spatial coverage and temporal resolution offered by satellite resources for estimating ecological variables, fine-scale observations are required for comparison, calibration and validation. Lidar instruments have proved effective in estimating the properties of vegetation components of ecosystems, but they are often challenged by occlusion, especially in structurally complex and spatially fragmented ecosystems such as tropical forests. Increasing the range of view angles, both horizontally and vertically, by increasing the number of scans, can mitigate occlusion. However these scans must occur within the window of temporal stability for the ecosystem and vegetation property being measured. The Compact Biomass Lidar (CBL) is a TLS optimized for portability and scanning speed, developed and operated by University of Massachusetts Boston. This 905nm wavelength scanner achieves an angular resolution of 0.25 degrees at a rate of 33 seconds per scan. The ability to acquire many scans within narrow windows of temporal stability for ecological variables has facilitated the more complete investigation of ecosystem structural characteristics, and their expression as a function of view angle. The lightweight CBL has facilitated the use of alternative deployment platforms including towers, trams and masts, allowing analysis of the vertical structure of ecosystems, even in highly enclosed environments such as the sub-canopy of tropical forests where aerial vehicles cannot currently operate. We will present results from view angle analyses of lidar surveys of tropical rainforest in La Selva, Costa Rica where the CBL was deployed at heights up to 10m in Carbono long-term research plots utilizing a portable mast, and on a 25m stationary tower; and temperate forest at Harvard Forest, Massachusetts, USA, where the CBL has been deployed biannually at long-term research plots of hardwood and hemlock, as well as at heights of up to 25m utilizing a

  17. MONITORING PHENOLOGY OF FLOODPLAIN GRASSLAND AND HERBACEOUS VEGETATION WITH UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    W. K. van Iersel

    2016-06-01

    Full Text Available River restoration projects, which aim at improved flood safety and increased ecological value, have resulted in more heterogeneous vegetation. However, they also resulted in increasing hydraulic roughness, which leads to higher flood water levels during peak discharges. Due to allowance of vegetation development and succession, both ecological and hydraulic characteristics of the floodplain change more rapidly over time. Monitoring of floodplain vegetation has become essential to document and evaluate the changing floodplain characteristics and associated functioning. Extraction of characteristics of low vegetation using single-epoch remote sensing data, however, remains challenging. The aim of this study was to (1 evaluate the performance of multi-temporal, high-spatial-resolution UAV imagery for extracting temporal vegetation height profiles of grassland and herbaceous vegetation in floodplains and (2 to assess the relation between height development and NDVI changes. Vegetation height was measured six times during one year in 28 field plots within a single floodplain. UAV true-colour and false-colour imagery of the floodplain were recorded coincidently with each field survey. We found that: (1 the vertical accuracy of UAV normalized digital surface models (nDSMs is sufficiently high to obtain temporal height profiles of low vegetation over a growing season, (2 vegetation height can be estimated from the time series of nDSMs, with the highest accuracy found for combined imagery from February and November (RMSE = 29-42 cm, (3 temporal relations between NDVI and observed vegetation height show different hysteresis behaviour for grassland and herbaceous vegetation. These results show the high potential of using UAV imagery for increasing grassland and herbaceous vegetation classification accuracy.

  18. Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants

    Science.gov (United States)

    Davenport, K. D.; Williams, K. E.; Ullmann, B. D.; Gustin, M. C.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1delta could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.

  19. The distribution of submersed aquatic vegetation and water lettuce in the fresh and oligohaline tidal Potomac River, 2007

    Science.gov (United States)

    Campbell, Sarah Hunter; Rybicki, Nancy B.; Schenk, Edward R.

    2015-01-01

    Surveys documenting the composition of species of submersed aquatic vegetation (SAV) have been conducted in the Potomac River for decades. These surveys can help managers assess the proportion of native and exotic plants in the river or can be used to determine relationships between native and exotic plants, environmental conditions, and wildlife. SAV coverage increased from 2005 to 2007 throughout the fresh and oligohaline study area. The 2007 survey documented here determined that eleven species of SAV were present. The abundance of the exotic species Hydrilla verticillata (hydrilla) was relatively low, and species diversity was relatively high compared to previous years. The survey also revealed a new population of the invasive, floating aquatic plant Pistia stratiotes (water lettuce). In 2007, water lettuce, the latest exotic aquatic plant to be found in the fresh to oligohaline portion of the Potomac River, was most abundant in Mattawoman Creek, Charles County, Maryland. However, it was not observed in the fresh to oligohaline portion of the Potomac River in the summer of 2008. An understanding of the distribution of SAV species and factors governing the abundance of native and invasive aquatic species is enhanced by long-term surveys.

  20. Two-step microextraction combined with high performance liquid chromatographic analysis of pyrethroids in water and vegetable samples.

    Science.gov (United States)

    Mukdasai, Siriboon; Thomas, Chunpen; Srijaranai, Supalax

    2014-03-01

    Dispersive liquid microextraction (DLME) combined with dispersive µ-solid phase extraction (D-µ-SPE) has been developed as a new approach for the extraction of four pyrethroids (tetramethrin, fenpropathrin, deltamethrin and permethrin) prior to the analysis by high performance liquid chromatography (HPLC) with UV detection. 1-Octanol was used as the extraction solvent in DLME. Magnetic nanoparticles (Fe3O4) functionalized with 3-aminopropyl triethoxysilane (APTS) were used as the dispersive in DLME and as the adsorbent in D-µ-SPE. The extracted pyrethroids were separated within 30 min using isocratic elution with acetonitrile:water (72:28). The factors affecting the extraction efficiency were investigated. Under the optimum conditions, the enrichment factors were in the range of 51-108. Linearity was obtained in the range 0.5-400 ng mL(-1) (tetramethrin) and 5-400 ng mL(-1) (fenpropathrin, deltamethrin and permethrin) with the correlation coefficients (R(2)) greater than 0.995. Detection limits were 0.05-2 ng mL(-1) (water samples) and 0.02-2.0 ng g(-1) (vegetable samples). The relative standard deviations of peak area varied from 1.8 to 2.5% (n=10). The extraction recoveries of the four pyrethroids in field water and vegetable samples were 91.7-104.5%. The proposed method has high potential for use as a sensitive method for determination of pyrethroid residues in water and vegetable samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Characterization of high molecular weight cadmium species in contaminated vegetable food

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K.; Kastenholz, B. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Chemie und Dynamik der Geosphaere 7: Angewandte Physikalische Chemie; Ji, G. [Bonn Univ. (Germany). Lehrstuhl fuer Lebensmittelwissenschaft und Lebensmittelchemie

    2000-10-01

    Spinach and radish grown from seeds were each contaminated with 4 different amounts of cadmium. After a cell breakdown of the eatable parts and centrifugation of the resulting homogenates all supernatants (cytosols) were separated by gel permeation chromatography (GPC). The size-range of the GPC method used was about 20-8000 kDa for globular proteins. The high molecular weight (HMW-Cd-SP, 150-700 kDa) and the low molecular weight Cd species (LMW-Cd-SP, < 150 kDa) in all plant cytosols eluted at about the same retention volume by GPC. The most important Cd binding form in the cytosols of all plants was found to be HMW-Cd-SP. The Cd elution maxima were detected in the range of about 200 kDa. The Cd determinations were performed with ET-AAS by means of matrix modifier. By incubating chosen cytosols with a proteinase before the GPC it was verified that the HMW-Cd-SP in both vegetables are Cd proteins. The molar proportions protein/Cd were about 2-6 in the respective GPC fractions of the HMW-Cd-SP of the highest contaminated plants. The GPC fractions of the HMW-Cd-SP of spinach and radish were further separated by a preparative, native and continuous polyacrylamide gel electrophoresis (PAGE) method. At pH 8 the species were negatively charged, had only a small UV-absorption at 280 nm and showed a very similar elution behavior in all analyzed cytosols. Therefore, we suppose that the HMW-Cd-SP of these two different vegetable foodstuffs have a very similar chemical structure. (orig.)

  2. Serving vegetables first: A strategy to increase vegetable consumption in elementary school cafeterias.

    Science.gov (United States)

    Elsbernd, S L; Reicks, M M; Mann, T L; Redden, J P; Mykerezi, E; Vickers, Z M

    2016-01-01

    Vegetable consumption in the United States is low despite the wealth of evidence that vegetables play an important role in reducing risk of various chronic diseases. Because eating patterns developed in childhood continue through adulthood, we need to form healthy eating habits in children. The objective of this study was to determine if offering vegetables before other meal components would increase the overall consumption of vegetables at school lunch. We served kindergarten through fifth-grade students a small portion (26-33 g) of a raw vegetable (red and yellow bell peppers) while they waited in line to receive the rest of their lunch meal. They then had the options to take more of the bell peppers, a different vegetable, or no vegetable from the lunch line. We measured the amount of each vegetable consumed by each child. Serving vegetables first greatly increased the number of students eating vegetables. On intervention days most of the vegetables consumed came from the vegetables-first portions. Total vegetable intake per student eating lunch was low because most students chose to not eat vegetables, but the intervention significantly increased this value. Serving vegetables first is a viable strategy to increase vegetable consumption in elementary schools. Long-term implementation of this strategy may have an important impact on healthy eating habits, vegetable consumption, and the health consequences of vegetable intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Potential toxicity of some traditional leafy vegetables consumed in ...

    African Journals Online (AJOL)

    Traditional leafy vegetables are those plants whose leaves or aerial parts have been integrated in a community's culture for use as food over a long span of time. These vegetables are highly recommended due to their relatively high nutritional value compared to the introduced varieties, and are also important in food ...

  4. Ascorbic acid is the only bioactive that is better preserved by high hydrostatic pressure than by thermal treatment of a vegetable beverage.

    Science.gov (United States)

    Barba, Francisco J; Esteve, Maria J; Frigola, Ana

    2010-09-22

    Variations in levels of antioxidant compounds (ascorbic acid, total phenolics, and total carotenoids), total antioxidant capacity, and color changes in a vegetable (tomato, green pepper, green celery, onion, carrot, lemon, and olive oil) beverage treated by high hydrostatic pressure (HHP) were evaluated in this work. The effects of HHP treatment, four different pressures (100, 200, 300, and 400 MPa) and four treatment times for each pressure (from 120 to 540 s) were compared with those of thermal treatment (90-98 °C for 15 and 21 s). High pressure treatment retained significantly more ascorbic acid in the vegetable beverage than thermal treatment. However, no significant changes in total phenolics were observed between HHP treated and thermally processed vegetable beverage and unprocessed beverage. Color changes (a*, b*, L, chroma, h°, and ΔE) were less for pressurized beverage than thermally treated samples compared with unprocessed beverage.

  5. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic.

    Directory of Open Access Journals (Sweden)

    Grzegorz Skrzypek

    Full Text Available Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle. Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard. The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.

  6. Snowmelt in a High Latitude Mountain Catchment: Effect of Vegetation Cover and Elevation

    Science.gov (United States)

    Pomeroy, J. W.; Essery, R. L.; Ellis, C. R.; Hedstrom, N. R.; Janowicz, R.; Granger, R. J.

    2004-12-01

    The energetics and mass balance of snowpacks in the premelt and melt period were compared from three elevation bands in a high latitude mountain catchment, Wolf Creek Research Basin, Yukon. Elevation is strongly correlated with vegetation cover and in this case the three elevation bands (low, middle, high) correspond to mature spruce forest, dense shrub tundra and sparse tundra (alpine). Measurements of radiation, ground heat flux, snow depth, snowfall, air temperature, wind speed were made on a half-hourly basis at the three elevations for a 10 year period. Sondes provided vertical gradients of air temperature, humidity, wind speed and air pressure. Snow depth and density surveys were conducted monthly. Comparisons of wind speed, air temperature and humidity at three elevations show that the expected elevational gradients in the free atmosphere were slightly enhanced just above the surface canopies, but that the climate at the snow surface was further influenced by complex canopy effects. Premelt snow accumulation was strongly affected by intercepted snow in the forest and blowing snow sublimation in the sparse tundra but not by the small elevational gradients in snowfall. As a result the maximum premelt SWE was found in the mid-elevation shrub tundra and was roughly double that of the sparse tundra or forest. Minimum variability of SWE was observed in the forest and shrub tundra (CV=0.25) while in the sparse tundra variability doubled (CV=0.5). Snowmelt was influenced by differences in premelt accumulation as well as differences in the net energy fluxes to snow. Elevation had a strong effect on the initiation of melt with the forest melt starting on average 16 days before the shrub tundra and 19 days before the sparse tundra. Mean melt rates showed a maximum in middle elevations and increased from 860 kJ/day in the forest to 1460 kJ/day in the sparse tundra and 2730 kJ/day in the shrub tundra. The forest canopy reduced melt while the shrub canopy enhanced it

  7. Monitoring the Invasion of Spartina alterniflora Using Very High Resolution Unmanned Aerial Vehicle Imagery in Beihai, Guangxi (China

    Directory of Open Access Journals (Sweden)

    Huawei Wan

    2014-01-01

    Full Text Available Spartina alterniflora was introduced to Beihai, Guangxi (China, for ecological engineering purposes in 1979. However, the exceptional adaptability and reproductive ability of this species have led to its extensive dispersal into other habitats, where it has had a negative impact on native species and threatens the local mangrove and mudflat ecosystems. To obtain the distribution and spread of Spartina alterniflora, we collected HJ-1 CCD imagery from 2009 and 2011 and very high resolution (VHR imagery from the unmanned aerial vehicle (UAV. The invasion area of Spartina alterniflora was 357.2 ha in 2011, which increased by 19.07% compared with the area in 2009. A field survey was conducted for verification and the total accuracy was 94.0%. The results of this paper show that VHR imagery can provide details on distribution, progress, and early detection of Spartina alterniflora invasion. OBIA, object based image analysis for remote sensing (RS detection method, can enable control measures to be more effective, accurate, and less expensive than a field survey of the invasive population.

  8. Invasion of Old World Phragmites australis in the New World: precipitation and temperature patterns combined with human influences redesign the invasive niche

    DEFF Research Database (Denmark)

    Guo, Wen-Yong; Lambertini, Carla; Li, Xiu-Zhen

    2013-01-01

    niches. We suggest that an increase in precipitation in the 20(th) century, global warming and human-made habitats have shaped the invasive niches of the two lineages in the New World. However, as the invasions are on-going and human and natural disturbances occur concomitantly, the future distribution....... australis (Haplotype M and Med) in both their native and introduced ranges using environmental niche models (ENMs) to assess (i) whether a niche shift accompanied the invasions in the New World; (ii) the role of biologically relevant climatic variables and human influence in the process of invasion...... for temperature fluctuations and increased precipitation. The introduced Med lineage has enlarged its original subtropical niche to the tropics-subtropics, invading regions with a high annual mean temperature (> c. 10 °C) and high precipitation in the driest period. Human influence is an important factor for both...

  9. Tolerance to high temperature extremes in an invasive lace bug, Corythucha ciliata (Hemiptera: Tingidae, in subtropical China.

    Directory of Open Access Journals (Sweden)

    Rui-Ting Ju

    Full Text Available Biological invasions are predicted to be more frequent as climate change is increasing its positive impact on the prevalence of invasive exotic species. Success of insect invaders in different temperature zones is closely related to their tolerance to temperature extremes. In this study, we used an exotic lace bug (Corythucha ciliata as the study organism to address the hypotheses that an insect species invading a subtropical zone from temperate regions has a high capacity to survive and adapt to high temperatures, and that its thermal tolerance plays an important role in determining its seasonal abundance and geographic distribution. To test these hypotheses, the effects of heat shock on the survival and reproduction of C. ciliata adults were assessed in the laboratory. Adults were exposed to 26 (control, 35, 37, 39, 41, 43, and 45°C for 2 h, and then were transferred to 26°C. Heat-shock temperatures ranging from 35 to 41°C did not significantly affect survival pattern, longevity, and fecundity of adults, but heat shock at 43 and 45°C significantly reduced these traits. Exposing parent females to heat-shock treatments from 35 to 41°C did not significantly affect the hatching rate of their eggs, survival of the nymphs, and the proportion of female F(1 progeny, while no progeny were produced with treatments of 43 and 45°C. The results indicate that C. ciliata can tolerate high temperatures less than 41°C, which may contribute to its expansion into the lower latitudes in China where its hosts (Platanus trees are widely planted. Our findings have important implications for predicting seasonal abundance and understanding invasion mechanisms of this important urban invader under climate change.

  10. Tolerance to high temperature extremes in an invasive lace bug, Corythucha ciliata (Hemiptera: Tingidae), in subtropical China.

    Science.gov (United States)

    Ju, Rui-Ting; Gao, Lei; Zhou, Xu-Hui; Li, Bo

    2013-01-01

    Biological invasions are predicted to be more frequent as climate change is increasing its positive impact on the prevalence of invasive exotic species. Success of insect invaders in different temperature zones is closely related to their tolerance to temperature extremes. In this study, we used an exotic lace bug (Corythucha ciliata) as the study organism to address the hypotheses that an insect species invading a subtropical zone from temperate regions has a high capacity to survive and adapt to high temperatures, and that its thermal tolerance plays an important role in determining its seasonal abundance and geographic distribution. To test these hypotheses, the effects of heat shock on the survival and reproduction of C. ciliata adults were assessed in the laboratory. Adults were exposed to 26 (control), 35, 37, 39, 41, 43, and 45°C for 2 h, and then were transferred to 26°C. Heat-shock temperatures ranging from 35 to 41°C did not significantly affect survival pattern, longevity, and fecundity of adults, but heat shock at 43 and 45°C significantly reduced these traits. Exposing parent females to heat-shock treatments from 35 to 41°C did not significantly affect the hatching rate of their eggs, survival of the nymphs, and the proportion of female F(1) progeny, while no progeny were produced with treatments of 43 and 45°C. The results indicate that C. ciliata can tolerate high temperatures less than 41°C, which may contribute to its expansion into the lower latitudes in China where its hosts (Platanus trees) are widely planted. Our findings have important implications for predicting seasonal abundance and understanding invasion mechanisms of this important urban invader under climate change.

  11. Simulating sub-Milankovitch climate variations associated with vegetation dynamics

    Directory of Open Access Journals (Sweden)

    E. Tuenter

    2007-01-01

    Full Text Available Climate variability at sub-Milankovitch periods (between 2 and 15 kyr is studied in a set of transient simulations with a coupled atmosphere/ocean/vegetation model of intermediate complexity (CLIMBER-2. Focus is on the region influenced by the African and Asian summer monsoon. Pronounced variations at periods of about 10 kyr (Asia and Africa and about 5 kyr (Asia are found in the monsoonal runoff in response to the precessional forcing. In the model this is due to the following mechanism. For low summer insolation (precession maximum precipitation is low and desert expands at the expense of grass, while for high insolation (precession minimum precipitation is high and the tree fraction increases also reducing the grass fraction. This induces sub-Milankovitch variations in the grass fraction and associated variations in the water holding capacity of the soil. The runoff does not exhibit sub-Milankovitch variability when vegetation is kept fixed. High-latitude vegetation also exhibits sub-Milankovitch variability under both obliquity and precessional forcing. We thus hypothesize that sub-Milankovitch variability can occur due to the dynamic response of the vegetation. However, this mechanism should be further tested with more sophisticated climate/vegetation models.

  12. Radio frequency energy for non-invasive and minimally invasive skin tightening.

    Science.gov (United States)

    Mulholland, R Stephen

    2011-07-01

    This article reviews the non-invasive and minimally invasive options for skin tightening, focusing on peer-reviewed articles and presentations and those technologies with the most proven or promising RF non-excisional skin-tightening results for excisional surgeons. RF has been the mainstay of non-invasive skin tightening and has emerged as the "cutting edge" technology in the minimally invasive skin-tightening field. Because these RF skin-tightening technologies are capital equipment purchases with a significant cost associated, this article also discusses some business issues and models that have proven to work in the plastic surgeon's office for non-invasive and minimally invasive skin-tightening technologies. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. High mortality of Zostera marina under high temperature regimes but minor effects of the invasive macroalgae Gracilaria vermiculophylla

    DEFF Research Database (Denmark)

    Höffle, Hannes; Thomsen, M.S.; Holmer, M.

    2011-01-01

    The present study tested for density-dependent effects of the invasive drift macroalgae Gracilaria vermiculophylla (Ohmi) Papenfuss on growth and survival of the native eelgrass, Zostera marina L., under different temperature levels. Three weeks laboratory experiments were conducted in Odense......, Denmark, combining three algae densities (control, low 1.9 kg WW m2, high 4.5 kg WW m2) with typical Danish summer temperatures (18 C) and elevated temperatures (21 C and 27 C). There was a significant effect of temperature on shoot survival with on average 68% mortality in the high temperature treatment...... but almost no mortality at the two lower temperatures. The higher mortality was probably caused by high sulphide levels in the sediment pore water (0.6 mmol l1 at 18 C compared to 3.7 mmol l1 at 27 C). Above-ground growth of the surviving shoots was also significantly affected by temperature, with leaf...

  14. Simulating the Holocene climate evolution at northern high latitudes using a coupled atmosphere-sea ice-ocean-vegetation model

    NARCIS (Netherlands)

    Renssen, H.; Goosse, H.; Fichefet, T.; Brovkin, V.; Driesschaert, E.; Wolk, F.

    2005-01-01

    The response of the climate at high northern latitudes to slowly changing external forcings was studied in a 9,000-year long simulation with the coupled atmosphere-sea ice-ocean-vegetation model ECBilt-CLIO-VECODE. Only long-term changes in insolation and atmospheric CO

  15. Predator control promotes invasive dominated ecological states.

    Science.gov (United States)

    Wallach, Arian D; Johnson, Christopher N; Ritchie, Euan G; O'Neill, Adam J

    2010-08-01

    Invasive species are regarded as one of the top five drivers of the global extinction crisis. In response, extreme measures have been applied in an attempt to control or eradicate invasives, with little success overall. We tested the idea that state shifts to invasive dominance are symptomatic of losses in ecosystem resilience, due to the suppression of apex predators. This concept was investigated in Australia where the high rate of mammalian extinctions is largely attributed to the destructive influence of invasive species. Intensive pest control is widely applied across the continent, simultaneously eliminating Australia's apex predator, the dingo (Canis lupus dingo). We show that predator management accounts for shifts between two main ecosystem states. Lethal control fractures dingo social structure and leads to bottom-up driven increases in invasive mesopredators and herbivores. Where control is relaxed, dingoes re-establish top-down regulation of ecosystems, allowing for the recovery of biodiversity and productivity.

  16. Analysis of Post-Fire Vegetation Recovery in the Mediterranean Basin using MODIS Derived Vegetation Indices

    Science.gov (United States)

    Hawtree, Daniel; San Miguel, Jesus; Sedano, Fernando; Kempeneers, Pieter

    2010-05-01

    The Mediterranean basin region is highly susceptible to wildfire, with approximately 60,000 individual fires and half a million ha of natural vegetation burnt per year. Of particular concern in this region is the impact of repeated wildfires on the ability of natural lands to return to a pre-fire state, and of the possibility of desertification of semi-arid areas. Given these concerns, understanding the temporal patterns of vegetation recovery is important for the management of environmental resources in the region. A valuable tool for evaluating these recovery patterns are vegetation indices derived from remote sensing data. Previous research on post-fire vegetation recovery conducted in this region has found significant variability in recovery times across different study sites. It is unclear what the primary variables are affecting the differences in the rates of recovery, and if any geographic patterns of behavior exist across the Mediterranean basin. This research has primarily been conducted using indices derived from Landsat imagery. However, no extensive analysis of vegetation regeneration for large regions has been published, and assessment of vegetation recovery on the basis of medium-spatial resolution imagery such as that of MODIS has not yet been analyzed. This study examines the temporal pattern of vegetation recovery in a number of fire sites in the Mediterranean basin, using data derived from MODIS 16 -day composite vegetation indices. The intent is to develop a more complete picture of the temporal sequence of vegetation recovery, and to evaluate what additional factors impact variations in the recovery sequence. In addition, this study evaluates the utility of using MODIS derived vegetation indices for regeneration studies, and compares the findings to earlier studies which rely on Landsat data. Wildfires occurring between the years 2000 and 2004 were considered as potential study sites for this research. Using the EFFIS dataset, all wildfires

  17. Oscillations in a simple climate–vegetation model

    Directory of Open Access Journals (Sweden)

    J. Rombouts

    2015-05-01

    Full Text Available We formulate and analyze a simple dynamical systems model for climate–vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate–vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various timescales is discussed.

  18. Oscillations in a simple climate-vegetation model

    Science.gov (United States)

    Rombouts, J.; Ghil, M.

    2015-05-01

    We formulate and analyze a simple dynamical systems model for climate-vegetation interaction. The planet we consider consists of a large ocean and a land surface on which vegetation can grow. The temperature affects vegetation growth on land and the amount of sea ice on the ocean. Conversely, vegetation and sea ice change the albedo of the planet, which in turn changes its energy balance and hence the temperature evolution. Our highly idealized, conceptual model is governed by two nonlinear, coupled ordinary differential equations, one for global temperature, the other for vegetation cover. The model exhibits either bistability between a vegetated and a desert state or oscillatory behavior. The oscillations arise through a Hopf bifurcation off the vegetated state, when the death rate of vegetation is low enough. These oscillations are anharmonic and exhibit a sawtooth shape that is characteristic of relaxation oscillations, as well as suggestive of the sharp deglaciations of the Quaternary. Our model's behavior can be compared, on the one hand, with the bistability of even simpler, Daisyworld-style climate-vegetation models. On the other hand, it can be integrated into the hierarchy of models trying to simulate and explain oscillatory behavior in the climate system. Rigorous mathematical results are obtained that link the nature of the feedbacks with the nature and the stability of the solutions. The relevance of model results to climate variability on various timescales is discussed.

  19. Greenhouse design for vegetable production in subtropical climate in Taiwan

    NARCIS (Netherlands)

    Hemming, S.; Speetjens, S.L.; Wang, D.; Tsay, J.R.

    2014-01-01

    In Taiwan open field vegetable production is threatened by subtropical climatic disasters, such as high wind speeds and heavy rainfall, which can cause the destruction of whole crops. Next to that vegetable production is threatened by pests and diseases resulting a high need for pesticides.

  20. Vegetation growth patterns on six rock-covered UMTRA Project disposal cells

    International Nuclear Information System (INIS)

    1992-02-01

    This study assessed vegetation growth patterns, the potential impacts of vegetation growth on disposal cell cover integrity, and possible measures that could be taken to monitor and/or control plant growth, where necessary, on six Uranium Mill Tailings Remedial Action (UMTRA) Project rock-covered disposal cells. A large-scale invasion of volunteer plants was observed on the Shiprock and Burrell disposal cells. Plant growth at the South Clive, Green River, and Tuba City disposal cells was sparse except for the south rock apron and south slope of the Tuba City disposal cell, where windblown sand had filled up part of the rock cover and plant growth was observed. The rock-covered topslope of the Collins Ranch disposal cell was intentionally covered with topsoil and vegetated. Plant roots growing on the disposal cells are changing the characteristics of the cover by drying out the radon barrier, encouraging the establishment of soil-building processes in the bedding and radon barrier layers, creating channels in the radon barrier, and facilitating ecological succession, which could lead to the establishment of additional deep-rooted plants on the disposal cells. If left unchecked, plant roots would reach the tailings at the Burrell and Collins Ranch disposal cells within a few years, likely resulting in the transport of contaminants out of the cells

  1. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision and hobbyist unmanned aerial vehicles

    Science.gov (United States)

    Dandois, J. P.; Ellis, E. C.

    2013-12-01

    High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing system enabling routine and inexpensive aerial 3D measurements of canopy structure and spectral attributes, with properties similar to those of LIDAR, but with RGB (red-green-blue) spectral attributes for each point, enabling high frequency observations within a single growing season. This 'Ecosynth' methodology applies photogrammetric ''Structure from Motion'' computer vision algorithms to large sets of highly overlapping low altitude (USA. Ecosynth canopy height maps (CHMs) were strong predictors of field-measured tree heights (R2 0.63 to 0.84) and were highly correlated with a LIDAR CHM (R 0.87) acquired 4 days earlier, though Ecosynth-based estimates of aboveground biomass densities included significant errors (31 - 36% of field-based estimates). Repeated scanning of a 0.25 ha forested area at six different times across a 16 month period revealed ecologically significant dynamics in canopy color at different heights and a structural shift upward in canopy density, as demonstrated by changes in vertical height profiles of point density and relative RGB brightness. Changes in canopy relative greenness were highly correlated (R2 = 0.88) with MODIS NDVI time series for the same area and vertical differences in canopy color revealed the early green up of the dominant canopy species, Liriodendron tulipifera, strong evidence that Ecosynth time series measurements capture vegetation structural and spectral dynamics at the spatial scale of individual trees. Observing canopy phenology in 3D at high temporal resolutions represents a breakthrough in forest ecology. Inexpensive user-deployed technologies for

  2. Osmotic dehydration of fruits and vegetables: a review

    OpenAIRE

    Yadav, Ashok Kumar; Singh, Satya Vir

    2012-01-01

    The main cause of perishability of fruits and vegetables are their high water content. To increase the shelf life of these fruits and vegetables many methods or combination of methods had been tried. Osmotic dehydration is one of the best and suitable method to increase the shelf life of fruits and vegetables. This process is preferred over others due to their vitamin and minerals, color, flavor and taste retention property. In this review different methods, treatments, optimization and effec...

  3. Species groups occupying different trophic levels respond differently to the invasion of semi-natural vegetation by Solidago canadensis

    NARCIS (Netherlands)

    Groot, de M.; Kleijn, D.; Jogan, N.

    2007-01-01

    We studied the impact of the invasive plant species Solidago canadensis on the species richness of vascular plants and the abundance, species richness and diversity of butterflies, hoverflies and carabid beetles in herbaceous semi-natural habitats near Ljubljana, Slovenia. The species groups were

  4. Biological effects of fruit and vegetables.

    Science.gov (United States)

    Dragsted, Lars O; Krath, Britta; Ravn-Haren, Gitte; Vogel, Ulla B; Vinggaard, Anne Marie; Bo Jensen, Per; Loft, Steffen; Rasmussen, Salka E; Sandstrom, The late BrittMarie; Pedersen, Anette

    2006-02-01

    A strong and persistent effect of plant-derived foods on the prevention of lifestyle diseases has emerged from observational studies. Several groups of constituents in plants have been identified as potentially health promoting in animal studies, including cholesterol-lowering factors, antioxidants, enzyme inducers, apoptosis inducers etc. In human intervention studies the dose levels achieved tend to be lower than the levels found to be effective in animals and sampling from target organs is often not possible. A controlled dietary human intervention study was performed with forty-three volunteers, providing 600 g fruit and vegetables/d or in the controls a carbohydrate-rich drink to balance energy intake. Surrogate markers of oxidative damage to DNA, protein and lipids, enzymic defence and lipid metabolism were determined in blood and urine. It was found that a high intake of fruit and vegetables tends to increase the stability of lipids towards oxidative damage. Markers of oxidative enzymes indicate a steady increase in glutathione peroxidase (GPX1) activity in erythrocytes during intervention with fruit and vegetables but there is no effect on GPX1 transcription levels in leucocytes. No change occurs in glutathione-conjugating or -reducing enzyme activities in erythrocytes or plasma, and there are no effects on the transcription of genes involved in phase 2 enzyme induction or DNA repair in leucocytes. Fruit and vegetable intake decreases the level of total cholesterol and LDL-cholesterol, but does not affect sex hormones. In conclusion, it has been shown that total cholesterol and LDL-cholesterol, markers of peripheral lipid oxidation, and erythrocyte GPX1 activity are affected by high intakes of fruit and vegetables. This finding provides support for a protective role of dietary fruit and vegetables against CVD.

  5. The effects of gap size and disturbance type on invasion of wet pine savanna by cogongrass, Imperata cylindrica (Poaceae)

    Science.gov (United States)

    King, S.E.; Grace, J.B.

    2000-01-01

    Cogongrass is a nonindigenous species perceived to threaten native communities of the southeastern United States through modification of species composition and alteration of community processes. To examine how gap size and disturbance type influence the invasion of wet pine savannas by cogongrass, we performed three field experiments to evaluate the response of cogongrass seeds and transplanted seedlings to four different gap sizes, four types of site disturbance, and recent burning of savanna vegetation. Cogongrass germinated, survived, and grew in all gap sizes, from 0 to 100 cm in diameter. Similarly, disturbance type had no effect on germination or seedling and transplant survival. Tilling, however, significantly enhanced transplanted seedling growth, resulting in a tenfold increase in biomass over the other disturbance types. Seedling survival to 1 and 2 mo was greater in burned savanna than unburned savanna, although transplant survival and growth were not affected by burning. Results of this study suggest that cogongrass can germinate, survive, and grow in wet pine savanna communities regardless of gap size or type of disturbance, including burning. Burning of savanna vegetation may enhance establishment by improving early seedling survival, and soil disturbance can facilitate invasion of cogongrass by enhancing plant growth.

  6. Unravelling long-term vegetation change patterns in a binational watershed using multitemporal land cover data and historical photography

    Science.gov (United States)

    Villarreal, Miguel L.; Norman, Laura M.; Webb, Robert H.; Boyer, Diane E.; Turner, Raymond M.

    2011-01-01

    A significant amount of research conducted in the Sonoran Desert of North America has documented, both anecdotally and empirically, major vegetation changes over the past century due to human land use activities. However, many studies lack coincidental landscape-scale data characterizing the spatial and temporal manifestation of these changes. Vegetation changes in a binational (USA and Mexico) watershed were documented using a series of four land cover maps (1979-2009) derived from multispectral satellite imagery. Cover changes are compared to georeferenced, repeat oblique photographs dating from the late 19th century to present. Results indicate the expansion of grassland over the past 20 years following nearly a century of decline. Historical repeat photography documents early-mid 20th century mesquite invasions, but recent land cover data and rephotography demonstrate declines in xeroriparian/riparian mesquite communities in recent decades. These vegetation changes are variable over the landscape and influenced by topography and land management.

  7. Accumulation and health risk of heavy metals in vegetables from harmless and organic vegetable production systems of China.

    Science.gov (United States)

    Chen, Yong; Hu, Wenyou; Huang, Biao; Weindorf, David C; Rajan, Nithya; Liu, Xiaoxiao; Niedermann, Silvana

    2013-12-01

    Heavy metal accumulation in vegetables is a growing concern for public health. Limited studies have elucidated the heavy metal accumulation characteristics and health risk of different vegetables produced in different facilities such as greenhouses and open-air fields and under different management modes such as harmless and organic. Given the concern over the aforementioned factors related to heavy metal accumulation, this study selected four typical greenhouse vegetable production bases, short-term harmless greenhouse vegetable base (SHGVB), middle-term harmless greenhouse vegetable base (MHGVB), long-term harmless greenhouse vegetable base (LHGVB), and organic greenhouse vegetable base (OGVB), in Nanjing City, China to study heavy metal accumulation in different vegetables and their associated health risks. Results showed that soils and vegetables from SHGVB and OGVB apparently accumulated fewer certain heavy metals than those from other bases, probably due to fewer planting years and special management, respectively. Greenhouse conditions significantly increased certain soil heavy metal concentrations relative to open-air conditions. However, greenhouse conditions did not significantly increase concentrations of As, Cd, Cu, Hg, and Zn in leaf vegetables. In fact, under greenhouse conditions, Pb accumulation was effectively reduced. The main source of soil heavy metals was the application of large amounts of low-grade fertilizer. There was larger health risk for producers' children to consume vegetables from the three harmless vegetable bases than those of residents' children. The hazard index (HI) over a large area exceeded 1 for these two kinds of children in the MHGVB and LHGVB. There was also a slight risk in the SHGVB for producers' children solely. However, the HI of the whole area of the OGVB for two kinds of children was below 1, suggesting low risk of heavy metal exposure through the food chain. Notably, the contribution rate of Cu and Zn to the HI were

  8. The risk of establishment of aquatic invasive species: joining invasibility and propagule pressure.

    Science.gov (United States)

    Leung, Brian; Mandrak, Nicholas E

    2007-10-22

    Invasive species are increasingly becoming a policy priority. This has spurred researchers and managers to try to estimate the risk of invasion. Conceptually, invasions are dependent both on the receiving environment (invasibility) and on the ability to reach these new areas (propagule pressure). However, analyses of risk typically examine only one or the other. Here, we develop and apply a joint model of invasion risk that simultaneously incorporates invasibility and propagule pressure. We present arguments that the behaviour of these two elements of risk differs substantially--propagule pressure is a function of time, whereas invasibility is not--and therefore have different management implications. Further, we use the well-studied zebra mussel (Dreissena polymorpha) to contrast predictions made using the joint model to those made by separate invasibility and propagule pressure models. We show that predictions of invasion progress as well as of the long-term invasion pattern are strongly affected by using a joint model.

  9. Comparative anatomy of invasive and non-invasive species in the ...

    African Journals Online (AJOL)

    The foliar and stem micromorphological study of the invasive and non-invasive species were undertaken using Light Microscope (LM). The occurrence of vessels in the pillar of the abundant sclerenchyma tissues are important component of the skeletal system in the invasive species. The prominent tiles of parenchymatous ...

  10. Field Spectroscopy in the VNIR-SWIR Region to Discriminate between Mediterranean Native Plants and Exotic-Invasive Shrubs Based on Leaf Tannin Content

    Directory of Open Access Journals (Sweden)

    Jan Rudolf Karl Lehmann

    2015-01-01

    Full Text Available The invasive shrub, Acacia longifolia, native to southeastern Australia, has a negative impact on vegetation and ecosystem functioning in Portuguese dune ecosystems. In order to spectrally discriminate A. longifolia from other non-native and native species, we developed a classification model based on leaf reflectance spectra (350–2500 nm and condensed leaf tannin content. High variation of leaf tannin content is common for Mediterranean shrub and tree species, in particular between N-fixing and non-N-fixing species, as well as within the genus, Acacia. However, variation in leaf tannin content has not been studied in coastal dune ecosystems in southwest Portugal. We hypothesized that condensed tannin concentration varies significantly across species, further allowing for distinguishing invasive, nitrogen-fixing A. longifolia from other vegetation based on leaf spectral reflectance data. Spectral field measurements were carried out using an ASD FieldSpec FR spectroradiometer attached to an ASD leaf clip in order to collect 750 in situ leaf reflectance spectra of seven frequent plant species at three study sites in southwest Portugal. We applied partial least squares (PLS regression to predict the obtained leaf reflectance spectra of A. longifolia individuals to their corresponding tannin concentration. A. longifolia had the lowest tannin concentration of all investigated species. Four wavelength regions (675–710 nm, 1060–1170 nm, 1360–1450 nm and 1630–1740 nm were identified as being highly correlated with tannin concentration. A spectra-based classification model of the different plant species was calculated using a principal component analysis-linear discriminant analysis (PCA-LDA. The best prediction of A. longifolia was achieved by using wavelength regions between 1360–1450 nm and 1630–1740 nm, resulting in a user’s accuracy of 98.9%. In comparison, selecting the entire wavelength range, the best user accuracy only reached 86

  11. Consumption of a High Quantity and a Wide Variety of Vegetables Are Predicted by Different Food Choice Motives in Older Adults from France, Italy and the UK.

    Science.gov (United States)

    Appleton, Katherine M; Dinnella, Caterina; Spinelli, Sara; Morizet, David; Saulais, Laure; Hemingway, Ann; Monteleone, Erminio; Depezay, Laurence; Perez-Cueto, Frederico J A; Hartwell, Heather

    2017-08-23

    Consumption of a high quantity and wide variety of vegetables is currently recommended for health. Dietary variety can be low, however, particularly for older adults. This study investigated the affective factors associated with the quantity and variety of vegetables consumed by older adults in France, Italy and the UK. Adults aged 65 years plus completed questionnaires on self-reported vegetable intake (quantity and variety), liking for vegetables, attitudes towards intake, and demographic variables. In 497 older adults (France, n = 187, Italy, n = 152, UK, n = 158), higher quantities of vegetables consumed were associated with a higher age, affluence score and liking for vegetables, and a lower importance in consumption of familiarity (smallest β = 0.11, p = 0.03). Greater variety was associated with a higher liking and importance of health benefits, and a lower importance of familiarity (smallest β = -0.11, p foods in vegetable consumption, and a particular role for concern for health benefits in the consumption of a greater variety of vegetables.

  12. Unintended consequences of invasive predator control in an Australian forest: overabundant wallabies and vegetation change.

    Directory of Open Access Journals (Sweden)

    Nick Dexter

    Full Text Available Over-abundance of native herbivores is a problem in many forests worldwide. The abundance of native macropod wallabies is extremely high at Booderee National Park (BNP in south-eastern Australia. This has occurred because of the reduction of exotic predators through an intensive baiting program, coupled with the absence of other predators. The high density of wallabies at BNP may be inhibiting the recruitment of many plant species following fire-induced recruitment events. We experimentally examined the post-fire response of a range of plant species to browsing by wallabies in a forest heavily infested with the invasive species, bitou bush Chrysanthemoides monilifera. We recorded the abundance and size of a range of plant species in 18 unfenced (browsed and 16 fenced (unbrowsed plots. We found the abundance and size of bitou bush was suppressed in browsed plots compared to unbrowsed plots. Regenerating seedlings of the canopy or middle storey tree species Eucalyptus pilularis, Acacia implexa, Allocasuarina littoralis, Breynia oblongifolia and Banksia integrifolia were either smaller or fewer in number in grazed plots than treatment plots as were the vines Kennedia rubicunda, Glycine tabacina and Glycine clandestina. In contrast, the understorey fern, Pteridium esculentum increased in abundance in the browsed plots relative to unbrowsed plots probably because of reduced competition with more palatable angiosperms. Twelve months after plots were installed the community structure of the browsed and unbrowsed plots was significantly different (P = 0.023, Global R = 0.091. The relative abundance of C. monilifera and P. esculentum contributed most to the differences. We discuss the possible development of a low diversity bracken fern parkland in Booderee National Park through a trophic cascade, similar to that caused by overabundant deer in the northern hemisphere. We also discuss its implications for broad scale fox control in southern

  13. Simulations of Vegetation Impacts on Arctic Climate

    Science.gov (United States)

    Bonfils, C.; Phillips, T. J.; Riley, W. J.; Post, W. M.; Torn, M. S.

    2009-12-01

    Because global warming disproportionately influences high-latitude climate, changes in arctic vegetation are in progress. These land-cover changes include redistribution of local vegetation types as well as northward migration of lower-latitude species in response to the increasing warming. The resulting displacement of low-lying tundra vegetation by shrubs and trees darkens the surface, thus accelerating regional warming. As participants in the U.S. Department of Energy IMPACTS Project, we are investigating the potential for abrupt arctic climatic change resulting from such variations in vegetation, among other mechanisms. To estimate the relative magnitudes of effects to be expected from changes in high-latitude land cover, we are conducting several numerical experiments with the Community Climate System Model (CCSM). These experiments include: 1) A “present-day-climate” control experiment with current atmospheric greenhouse-gas concentrations and climatological monthly sea surface temperatures and sea ice extents prescribed, and with “standard” CLM plant functional types (PFTs) specified; 2) A “changed-vegetation-type” experiment that is the same as 1), except that the “standard” PFTs are augmented by additional vegetation types (forbs, sedges, shrubs, mosses, and lichens) that are not presently represented in CLM. This experiment will require information on the location, fractional cover, and physiological parameterizations of these new PFTs. 3) A “changed-vegetation-extent experiment” that is the same as 2), except that the spatial extents of selected PFTs (e.g. shrubs or boreal forest PFTs) are shifted northward from their present locations in the CLM. We will report on the atmospheric climate and land-surface feedbacks associated with these vegetation changes, with emphasis on local and regional surface energy and moisture fluxes and near-surface temperature, humidity, and clouds. Acknowledgments This work was performed under the auspices

  14. Temporal reflectance changes in vegetables

    DEFF Research Database (Denmark)

    Dissing, Bjørn Skovlund; Clemmensen, Line Katrine Harder; Ersbøll, Bjarne Kjær

    2009-01-01

    Quality control in the food industry is often performed by measuring various chemical compounds of the food involved. We propose an imaging concept for acquiring high quality multispectral images to evaluate changes of carrots and celeriac over a period of 14 days. Properties originating...... in the surface chemistry of vegetables may be captured in an integrating sphere illumination which enables the creation of detailed surface chemistry maps with a good combination of spectral and spatial resolutions. Prior to multispectral image recording, the vegetables were prefried and frozen at -30Â......°C for four months. During the 14 days of image recording, the vegetables were kept at +5°C in refrigeration. In this period, surface changes and thereby reflectance properties were very subtle. To describe this small variation we employed advanced statistical techniques to search a large featurespace...

  15. [Co-composting of high-moisture vegetable waste and flower waste in a batch operation].

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng

    2003-09-01

    Co-composting of different mixture made of vegetable waste and flower waste were studied. The first stage of composting was aerobic static bed based temperature feedback in a batch operation and control via aeration rate regulation. The second stage was window composting. The total composting period was 45 days. About the station of half of celery and half of carnation, the pile was insulated and temperatures of at least 55 degrees C were maintained for about 11 days. The highest temperature was up to 65 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 64.2% to 46.3% and organic matter was degraded from 74.7% to 55.6% during composting. The value of pH was had stable at 7. Analysis of maturity and nutrition of compost show that end-products of composting were bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste and flower waste can get high quality compost by optimizing composting process during 45 days. Composting can decrease non-point resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.

  16. Pre shipping dip treatments using soap, natural oils, and Isaria fumosorosea: potential biopesticides for mitigating the spread of whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) invasive insects on ornamental plants

    Science.gov (United States)

    The whitefly Bemisia tabaci (Hemiptera: Aleyodidae) is an invasive insect pest affecting different crops including vegetables, fruits, cereals, and ornamentals. The efficacy of some products such as commercial soap, natural oils and Preferal® (based on the entomopathogenic fungus Isaria fumosorosea ...

  17. Integrated Gis-remote sensing processing applied to vegetation ...

    African Journals Online (AJOL)

    A remotely sensed digital image of SPOT by its linear enhancement on a large memory, high speed, and digital electronic computer revealed from false colour composite that vegetation is expressed as red. Further processing of SPOT digital image for arithmetic banding of Normalized Differential Vegetation Index (NDVI) ...

  18. Smartphone-assisted minimally invasive neurosurgery.

    Science.gov (United States)

    Mandel, Mauricio; Petito, Carlo Emanuel; Tutihashi, Rafael; Paiva, Wellingson; Abramovicz Mandel, Suzana; Gomes Pinto, Fernando Campos; Ferreira de Andrade, Almir; Teixeira, Manoel Jacobsen; Figueiredo, Eberval Gadelha

    2018-03-13

    OBJECTIVE Advances in video and fiber optics since the 1990s have led to the development of several commercially available high-definition neuroendoscopes. This technological improvement, however, has been surpassed by the smartphone revolution. With the increasing integration of smartphone technology into medical care, the introduction of these high-quality computerized communication devices with built-in digital cameras offers new possibilities in neuroendoscopy. The aim of this study was to investigate the usefulness of smartphone-endoscope integration in performing different types of minimally invasive neurosurgery. METHODS The authors present a new surgical tool that integrates a smartphone with an endoscope by use of a specially designed adapter, thus eliminating the need for the video system customarily used for endoscopy. The authors used this novel combined system to perform minimally invasive surgery on patients with various neuropathological disorders, including cavernomas, cerebral aneurysms, hydrocephalus, subdural hematomas, contusional hematomas, and spontaneous intracerebral hematomas. RESULTS The new endoscopic system featuring smartphone-endoscope integration was used by the authors in the minimally invasive surgical treatment of 42 patients. All procedures were successfully performed, and no complications related to the use of the new method were observed. The quality of the images obtained with the smartphone was high enough to provide adequate information to the neurosurgeons, as smartphone cameras can record images in high definition or 4K resolution. Moreover, because the smartphone screen moves along with the endoscope, surgical mobility was enhanced with the use of this method, facilitating more intuitive use. In fact, this increased mobility was identified as the greatest benefit of the use of the smartphone-endoscope system compared with the use of the neuroendoscope with the standard video set. CONCLUSIONS Minimally invasive approaches

  19. A meta-analysis of trait differences between invasive and non-invasive plant species

    OpenAIRE

    van Kleunen, Mark; Weber, Ewald; Fischer, Markus

    2010-01-01

    A major aim in ecology is identifying determinants of invasiveness. We performed a meta-analysis of 117 field or experimental-garden studies that measured pair-wise trait differences of a total of 125 invasive and 196 non-invasive plant species in the invasive range of the invasive species. We tested whether invasiveness is associated with performance-related traits (physiology, leaf-area allocation, shoot allocation, growth rate, size and fitness), and whether such associations depend on typ...

  20. Expression of Lipid Metabolism-Related Proteins Differs between Invasive Lobular Carcinoma and Invasive Ductal Carcinoma

    Directory of Open Access Journals (Sweden)

    Yoon Jin Cha

    2017-01-01

    Full Text Available We comparatively investigated the expression and clinical implications of lipid metabolism-related proteins in invasive lobular carcinoma (ILC and invasive ductal carcinoma (IDC of the breast. A total of 584 breast cancers (108 ILC and 476 IDC were subjected to tissue microarray and immunohistochemical analysis for lipid metabolism-related proteins including hormone-sensitive lipase (HSL, perilipin A, fatty acid binding protein (FABP4, carnitine palmitoyltransferase (CPT-1, acyl-CoA oxidase 1, and fatty acid synthetase (FASN. HSL, perilipin A, and FABP4 expression (all p < 0.001 differed significantly: HSL and FABP4 were more frequently present in ILC, whereas perilipin A was more frequently detected in IDC. Among all invasive cancers, HSL and FABP4 were highly expressed in luminal A-type ILC (p < 0.001 and perilipin A in luminal A-type IDC (p = 0.007. Among luminal B-type cancers, HSL and FABP4 were more highly expressed in ILC (p < 0.001. Univariate analysis found associations of shorter disease-free survival with CPT-1 positivity (p = 0.004 and acyl-CoA oxidase 1 positivity (p = 0.032 and of shorter overall survival with acyl-CoA oxidase 1 positivity (p = 0.027. In conclusion, ILC and IDC exhibited different immunohistochemical lipid metabolism-related protein expression profiles. Notably, ILC exhibited high HSL and FABP4 and low perilipin A expression.

  1. Heavy Metals Accumulation Characteristics of Vegetables in Hangzhou City, China

    Directory of Open Access Journals (Sweden)

    GU Yan-qing

    2015-08-01

    Full Text Available A field survey of heavy metal concentrations in soils and vegetables grown in 30 vegetable farmlands of Hangzhou City were carried out. Through calculating the bioconcentration factor(BCFand transfer factor(TFfor different heavy metals(Cu, Zn, Cd, Cr and Pbin 27 kinds of different vegetables which belong to leafy vegetables, root vegetables or eggplant fruit vegetables, assessing their accumulation characteristics of heavy metals according to the differences of the bio-concentration factor, the reasonable proposals were put forward to optimize the planting structure of vegetables in mild and middle-level heavy metal contamination soils. The experimental results were as follows: In soils with mild and middle-level heavy metal contamination, leafy vegetables, such as crown daisy, cabbage, celery and Chinese long cabbage, had relatively low enrichment ability of heavy metals, so as the root and fruit vegetables like white radish, carrot, tomatoes, hence these vegetables could be planted preferentially. In contrast, some kinds of vegetables, including white amaranth, red amaranth, tatsoi, broccoli, gynura, brassica juncea and lettuce of leafy vegetables, lactuca sativa, taro, red radish and cherry radish of rhizome vegetables and sweet pepper of fruit vegetables, had relatively high accumulation ability of heavy metal, which should be avoided to be planted in soils with mild and middle-level heavy metal contamination.

  2. Frozen Nature - A high-alpine ice core record reveals fire and vegetation dynamics in Western Europe over the past millennium

    Science.gov (United States)

    Brügger, S.; Gobet, E.; Sigl, M.; Osmont, D.; Schwikowski, M.; Tinner, W.

    2017-12-01

    Wild fires are an ecological disturbance agent across ecosystems, driving vegetation dynamics and resulting in disruption of habitats (Moritz et al. 2014).We analyze pollen and spores as proxies for vegetation composition, structure and agricultural activity, microscopic charcoal as a proxy for fire activity, and spheroidal carbonaceous particles (SCPs or soots) as a proxy for fossil fuel combustion which preserve in ice cores over millennia (Eichler et al. 2011).Our high-alpine ice core (4452 m a.s.l.) from Colle Gnifetti, Swiss Alps is located in the center of Western Europe, thus allowing to assess vegetation and societal responses to climatic change and wildfire disturbance on a subcontinental scale. The record covers the last millennium with an excellent chronological control (Jenk et al. 2009, Sigl et al. 2009), particularly over the most recent 200 years - the period that experienced important climatic changes and an increasing globalization of economy.The Colle Gnifetti record reflects large scale impacts such as extreme weather, societal innovations, agricultural crises and pollution of the industrial period in Western Europe. Pollution tracers occur in the record as early as 1750 AD and coincide with the shift to large-scale maize production in Northern Italy and with increased fire activity. Our multiproxy record may allow desentagling the role of climate and humans for vegetation composition and biomass burning. The attribution of causes may significantly advance our understanding of future vegetation and fire dynamics under global change conditions. To our knowledge we present the first long-term high-resolution palynological record of a high elevation ice core in Europe.REFERENCESEichler et al. (2011): An ice-core based history of Siberian forest fires since AD 1250. Quaternary Science Reviews, 30(9), 1027-1034.Jenk et al. (2009): A novel radiocarbon dating technique applied to an ice core from the Alps indicating late Pleistocene ages. Journal of

  3. Successful treatment of azole-resistant invasive aspergillosis in a bottlenose dolphin with high-dose posaconazole

    NARCIS (Netherlands)

    P.E. Bunskoek (Paulien); S. Seyedmousavi (Seyedmojtaba); S. Gans (Steven); van Vierzen, P.B.J. (Peter B.J.); W.J. Melchers (Willem); C.E. van Elk; J.W. Mouton (Johan); P.E. Verweij (Paul)

    2017-01-01

    textabstractInvasive aspergillosis due to azole-resistant Aspergillus fumigatus is difficult to manage. We describe a case of azole-resistant invasive aspergillosis in a female bottlenose dolphin, who failed to respond to voriconazole and posaconazole therapy. As intravenous therapy was precluded,

  4. Association between educational level and vegetable use in nine European countries

    NARCIS (Netherlands)

    Prättälä, Ritva; Hakala, Samu; Roskam, Albert-Jan R.; Roos, Eva; Helmert, Uwe; Klumbiene, Jurate; van Oyen, Herman; Regidor, Enrique; Kunst, Anton E.

    2009-01-01

    OBJECTIVE: The relationship of socio-economic status and vegetable consumption is examined in nine European countries. The aim is to analyse whether the pattern of socio-economic variation with regard to vegetable consumption is similar in all studied countries with high v. low vegetable

  5. The contribution of vegetation to riverbed morphology (Invited)

    Science.gov (United States)

    Bertoldi, W.; Gurnell, A. M.

    2010-12-01

    The occurrence, form and species composition of riparian and aquatic vegetation are all strongly affected by the flow energy regime, sediment calibre and dimensions of river systems. In this paper, we build on field examples to conceptualise how interactions between vegetation and fluvial processes may affect river form across a gradient of river types from high-energy gravel-bed braided rivers to lowland single-thread silt-bed rivers. We explore how different vegetation types (e.g. riparian trees, shrubs, emergent macrophytes), and in some cases particular plant species, can produce similar impacts on the bed topography of rivers of different size, because of their effect on sediment transport flux and sediment cohesion, and a resultant positive feedback that increases the bar or bank height. We illustrate these concepts using two case studies representing extremes of river size and energy. Field and remotely sensed data are used to identify and quantify impacts of vegetation density on the bed morphology of the >1km wide, gravel-bed, braided Tagliamento River (Italy). Analysis of airborne LiDAR data is used to compute a highly detailed digital elevation model, along with data on tree height and density. The comparison between reaches with different tree height and density clearly shows the active role of vegetation in determining river pattern and form, with tree growth rate being the main parameter determining the vegetation effect. Analysis of field measurements of flow patterns and mechanical properties of emergent aquatic macrophytes on the <10m wide, silt-bed, single-thread River Blackwater (England) illustrate the close correspondence of the bed topography with vegetation structures, with position along an energy gradient dictating changes in the structure of the vegetation-bed morphology interaction.

  6. Terrestrial animals as invasive species and as species at risk from invasions

    Science.gov (United States)

    Deborah M. Finch; Dean Pearson; Joseph Wunderle; Wayne Arendt

    2010-01-01

    Including terrestrial animal species in the invasive species strategy plan is an important step in invasive species management. Invasions by nonindigenous species threaten nearly 50 percent of imperiled native species in the United States and are the Nation's second leading cause of species endangerment. Invasion and conversion of native habitats by exotic species...

  7. Study of melanoma invasion by FTIR spectroscopy

    Science.gov (United States)

    Yang, Y.; Sulé-Suso, J.; Sockalingum, G. D.

    2008-02-01

    Compared to other forms of skin cancer, a malignant melanoma has a high risk of spreading to other parts of the body. Melanoma invasion is a complex process involving changes in cell-extracellular matrix (ECM) interaction and cell-cell interactions. To fully understand the factors which control the invasion process, a human skin model system was reconstructed. HBL (a commercially available cell line) melanoma cells were seeded on a skin model with and without the presence of keratinocytes and/or fibroblasts. After 14 days culture, the skin specimens were fixed, parafin embedded and cut into 7 µm sections. The de-parafinised sections were investigated by synchrotron Fourier transformed infrared (FTIR) microspectroscopy to study skin cell invasion behaviour. The advantage of using FTIR is its ability to obtain the fingerprint information of the invading cells in terms of protein secondary structure in comparison to non-invading cells and the concentration of the enzyme (matrix-metalloproteinase) which digests protein matrix, near the invading cells. With aid of the spectral mapping images, it is possible to pinpoint the cells in non-invasion and invasion area and analyse the respective spectra. It has been observed that the protein bands in cells and matrix shifted between non-invasive and invasive cells in the reconstructed skin model. We hypothesise that by careful analysis of the FTIR data and validation by other models, FTIR studies can reveal information on which type of cells and proteins are involved in melanoma invasion. Thus, it is possible to trace the cell invasion path by mapping the spectra along the interface of cell layer and matrix body by FTIR spectroscopy.

  8. Post-fire vegetation recovery in Portugal based on spot/vegetation data

    Science.gov (United States)

    Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2010-04-01

    A procedure is presented that allows identifying large burned scars and the monitoring of vegetation recovery in the years following major fire episodes. The procedure relies on 10-day fields of Maximum Value Composites of Normalized Difference Vegetation Index (MVC-NDVI), with a 1 km×1 km spatial resolution obtained from the VEGETATION instrument. The identification of fire scars during the extremely severe 2003 fire season is performed based on cluster analysis of NDVI anomalies that persist during the vegetative cycle of the year following the fire event. Two regions containing very large burned scars were selected, located in Central and Southwestern Portugal, respectively, and time series of MVC-NDVI analysed before the fire events took place and throughout the post-fire period. It is shown that post-fire vegetation dynamics in the two selected regions may be characterised based on maps of recovery rates as estimated by fitting a monoparametric model of vegetation recovery to MVC-NDVI data over each burned scar. Results indicated that the recovery process in the region located in Central Portugal is mostly related to fire damage rather than to vegetation density before 2003, whereas the latter seems to have a more prominent role than vegetation conditions after the fire episode, e.g. in the case of the region in Southwestern Portugal. These differences are consistent with the respective predominant types of vegetation. The burned area located in Central Portugal is dominated by Pinus Pinaster whose natural regeneration crucially depends on the destruction of seeds present on the soil surface during the fire, whereas the burned scar in Southwestern Portugal was populated by Eucalyptus that may quickly re-sprout from buds after fire. Besides its simplicity, the monoparametric model of vegetation recovery has the advantage of being easily adapted to other low-resolution satellite data, as well as to other types of vegetation indices.

  9. Effects of Telecoupling on Global Vegetation Dynamics

    Science.gov (United States)

    Viña, A.; Liu, J.

    2016-12-01

    With the ever increasing trend in telecoupling processes, such as international trade, all countries around the world are becoming more interdependent. However, the effects of this growing interdependence on vegetation (e.g., shifts in the geographic extent and distribution) remain unknown even though vegetation dynamics are crucially important for food production, carbon sequestration, provision of other ecosystem services, and biodiversity conservation. In this study we evaluate the effects of international trade on the spatio-temporal trajectories of vegetation at national and global scales, using vegetation index imagery collected over more than three decades by the Advanced Very High Resolution Radiometer (AVHRR) satellite sensor series together with concurrent national and international data on international trade (and its associated movement of people, goods, services and information). The spatio-temporal trajectories of vegetation are obtained using the scale of fluctuation technique, which is based on the decomposition of the AVHRR image time series to obtain information on its spatial dependence structure over time. Similar to the correlation length, the scale of fluctuation corresponds to the range over which fluctuations in the vegetation index are spatially correlated. Results indicate that global vegetation has changed drastically over the last three decades. These changes are not uniform across space, with hotspots in active trading countries. This study not only has direct implications for understanding global vegetation dynamics, but also sheds important insights on the complexity of human-nature interactions across telecoupled systems.

  10. [Co-composting of high moisture vegetable waste, flower waste and chicken litter in pilot scale].

    Science.gov (United States)

    Zhang, Xiangfeng; Wang, Hongtao; Nie, Yongfeng; Qiu, Xiangyang

    2003-03-01

    Co-composting of different mixture made of vegetable waste, flower waste and chicken litter were studied. The first stage of composting was aerobic static bed based temperature feedback and control via aeration rate regulation. The second stage was window composting. At first stage, the pile was insulated and temperatures of at least 55 degrees C were maintained for a minimum of 3 days. The highest temperature was up to 73.3 degrees C. This is enough to kill pathogens. Moisture of pile decreased from 75% to 56% and organic matter was degraded from 65% to 50% during composting. The value of pH was stable at 8. Analysis of maturity and nutrition of compost showed that end-products of composting ware bio-stable and had abundant nutrition. This shows that co-composting of vegetable waste, flower waste and chicken litter can get high quality compost by optimizing composting process during 45 days. Composting can decrease nonpoint resource of organic solid waste by recycling nutrition to soil and improve fertility of soil.

  11. Modelling plant invasion pathways in protected areas under climate change: implication for invasion management

    Directory of Open Access Journals (Sweden)

    C.-J. Wang

    2017-12-01

    Full Text Available Global climate change may enable invasive plant species (IPS to invade protected areas (PAs, but plant invasion on a global scale has not yet been explicitly addressed. Here, we mapped the potential invasion pathways for IPS in PAs across the globe and explored potential factors determining the pathways of plant invasion under climate change. We used species distribution modelling to estimate the suitable habitats of 386 IPS and applied a corridor analysis to compute the potential pathways of IPS in PAs under climate change. Subsequently, we analysed the potential factors affecting the pathways in PAs. According to our results, the main potential pathways of IPS in PAs are in Europe, eastern Australia, New Zealand, southern Africa, and eastern regions of South America and are strongly influenced by changes in temperature and precipitation. Protected areas can play an important role in preventing and controlling the spread of IPS under climate change. This is due to the fact that measures are taken to monitor climate change in detail, to provide effective management near or inside PAs, and to control the introduction of IPS with a high capacity for natural dispersal. A review of conservation policies in PAs is urgently needed.

  12. The Impact of the Rise in Vegetable Prices on Vegetable Producer Behavior–Based on the survey of vegetable producers in Jiayu, Hubei Province

    Directory of Open Access Journals (Sweden)

    Liu Pan

    2015-01-01

    Full Text Available In order to study the impact of the rise in prices of vegetables on vegetable producers, and to increase the revenue of vegetable producers, this paper does a survey by anonymous sampling questionnaire. Results shows that: most vegetable growers think that vegetable prices should rise and would continue to rise, and that vegetable prices would increase their revenue, thus in the coming year they would expand the planting scale of vegetable variety whose increase rate is the largest in this year. But because of the increase of logistics costs and production costs, some farmers benefit very little from the rising trend of vegetable prices. Most farmers expect too much in the trend estimation of the prices of vegetables and also lack of planning and forward-looking in production, thus the planting area of single variety is often decided by the market of previous year. According to analysis of the impact of the rise in vegetable prices on vegetable producer behavior, this paper gives the following suggestions to increase revenue of vegetable producers: change the mode of thinking, improve rural information platform, and increase capital investment for vegetable production base.

  13. Assessment of pesticide residues on selected vegetables of Pakistan

    International Nuclear Information System (INIS)

    Khan, M.S.; Shah, M.M.

    2011-01-01

    The present study was conducted to determine the pesticide residues on selected summer vegetables. Five vegetables were grown with three replicates in a split plot randomized complete block design. Pesticides were sprayed on vegetables thrice at regular intervals each after 15 days. At maturity the pesticides residues were extracted from edible and leaf portions using anhydrous sodium sulfate and ethyl acetate while adsorption chromatography technique was used for cleanup. The extracts were subjected to high performance liquid chromatography (HPLC) for separation and analysis of the compounds. Significant differences (p<0.05) were found in the pesticides residues on edible portions whereas highly significant differences (p<0.001) were observed for the leafy portions. The residual level of cypermethrin was highest (16.2 mg kg/sup -1/) in edible portion of bitter gourd, while Lambdacyhalothrin and Mancozeb residues were detected high (4.50 mg kg/sup -1/, 6.26 mg kg/sup -1/) in edible portion of bitter gourd and Cucumber respectively. Cypermethrin residues were high (1.86 mg kg/sup -1/) in Okra leaves. Mancozeb and Lambdacyhalothrin residual level was high (1.23 mg kg/sup -1/, and 0.0002 mg kg/sup -1/) in chili and tomato leaves. Cypermethrin residues were readily detected in edible and leaf portion of the selected vegetables. (author)

  14. Invasion of Ureaplasma diversum in Hep-2 cells

    Directory of Open Access Journals (Sweden)

    Braga Antonio

    2010-03-01

    Full Text Available Abstract Background Understanding mollicutes is challenging due to their variety and relationship with host cells. Invasion has explained issues related to their opportunistic role. Few studies have been done on the Ureaplasma diversum mollicute, which is detected in healthy or diseased bovine. The invasion in Hep-2 cells of four clinical isolates and two reference strains of their ureaplasma was studied by Confocal Laser Scanning Microscopy and gentamicin invasion assay. Results The isolates and strains used were detected inside the cells after infection of one minute without difference in the arrangement for adhesion and invasion. The adhesion was scattered throughout the cells, and after three hours, the invasion of the ureaplasmas surrounded the nuclear region but were not observed inside the nuclei. The gentamicin invasion assay detected that 1% of the ATCC strains were inside the infected Hep-2 cells in contrast to 10% to the clinical isolates. A high level of phospholipase C activity was also detected in all studied ureaplasma. Conclusions The results presented herein will help better understand U. diversum infections, aswell as cellular attachment and virulence.

  15. Global threats from invasive alien species in the twenty-first century and national response capacities

    Science.gov (United States)

    Early, Regan; Bradley, Bethany A.; Dukes, Jeffrey S.; Lawler, Joshua J.; Olden, Julian D.; Blumenthal, Dana M.; Gonzalez, Patrick; Grosholz, Edwin D.; Ibañez, Ines; Miller, Luke P.; Sorte, Cascade J. B.; Tatem, Andrew J.

    2016-01-01

    Invasive alien species (IAS) threaten human livelihoods and biodiversity globally. Increasing globalization facilitates IAS arrival, and environmental changes, including climate change, facilitate IAS establishment. Here we provide the first global, spatial analysis of the terrestrial threat from IAS in light of twenty-first century globalization and environmental change, and evaluate national capacities to prevent and manage species invasions. We find that one-sixth of the global land surface is highly vulnerable to invasion, including substantial areas in developing economies and biodiversity hotspots. The dominant invasion vectors differ between high-income countries (imports, particularly of plants and pets) and low-income countries (air travel). Uniting data on the causes of introduction and establishment can improve early-warning and eradication schemes. Most countries have limited capacity to act against invasions. In particular, we reveal a clear need for proactive invasion strategies in areas with high poverty levels, high biodiversity and low historical levels of invasion. PMID:27549569

  16. Invasive Species Science Branch: research and management tools for controlling invasive species

    Science.gov (United States)

    Reed, Robert N.; Walters, Katie D.

    2015-01-01

    Invasive, nonnative species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like “biological wildfires,” they can quickly spread and affect nearly all terrestrial and aquatic ecosystems. Invasive species have become one of the greatest environmental challenges of the 21st century in economic, environmental, and human health costs, with an estimated effect in the United States of more than $120 billion per year. Managers of the Department of the Interior and other public and private lands often rank invasive species as their top resource management problem. The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. To disseminate this information, branch scientists are developing platforms to share invasive species information with DOI cooperators, other agency partners, and the public. From these and other data, branch scientists are constructing models to understand and predict invasive species distributions for more effective management. The branch also has extensive herpetological and population biology expertise that is applied to harmful reptile invaders such as the Brown Treesnake on Guam and Burmese Python in Florida.

  17. Floristic composition and vegetation analysis in Hail region north of central Saudi Arabia.

    Science.gov (United States)

    El-Ghanim, Wafaa M; Hassan, Loutfy M; Galal, Tarek M; Badr, Abdelfattah

    2010-04-01

    In this study, 19 sites representing different habitats in Hail region were regularly visited for two years, in each site 2-5 stands were selected for investigating floristic composition and vegetation types in the area. A total of 124 species representing 34 families were recorded. The family Asteraceae is represented by the highest number of species (21 species) followed by the Poaceae (17 species) and the Brassicaceae (10 species) whereas, 15 families including Acanthaceae, Convolvulaceae, Moraceae, Nyctaginaceae and Primulaceae, are represented by a single species each. Chronological analysis of the vegetation in the area revealed the domination of Saharo-Sindian elements in the wild vegetations and of weedy species in the cultivated plots. Therophytes and chamaephytes are the dominating life forms of the vegetation spectra; therophytes represent 49.20% and chamaephytes represent 29.00% of the total species in the study area. Application of TWINISPAN and DECORANA classification and ordination techniques to the data produced seven vegetation groups. Ruderal habitats comprised two small groups A and F dominated by Phragmites australis and Imperata cylindrical (A), Euphorbia peplus and Sisymbrium irio (F), respectively. Two vegetation groups (B and G) have been recognized in the mountains and slopes dominated by Launaea mucronata, Trigonella stellata (B) and Ficus palmate and Fagonia bruguieri (G). Other two groups (C and E) inhabit the desert and mountainous wadies; these are represented by Gymnocarpos decandrus and Ochradenus baccatus (C) and Senecio glaucus subsp. coronopifolius and Rumex equisetiforme (E). On the other hand, one group (D) inhabits the cultivated plots and is represented by Plantago albicans and Rumex vesicarius, the last group also includes species restricted to the sand dune habitat of the Al-Nafud desert north of Hail city and represented by Calligonum polygonoides and Halyxolon salicornicum. The vegetation analysis indicated the invasion of

  18. Floristic composition and vegetation analysis in Hail region north of central Saudi Arabia

    Science.gov (United States)

    El-Ghanim, Wafaa M.; Hassan, Loutfy M.; Galal, Tarek M.; Badr, Abdelfattah

    2010-01-01

    In this study, 19 sites representing different habitats in Hail region were regularly visited for two years, in each site 2–5 stands were selected for investigating floristic composition and vegetation types in the area. A total of 124 species representing 34 families were recorded. The family Asteraceae is represented by the highest number of species (21 species) followed by the Poaceae (17 species) and the Brassicaceae (10 species) whereas, 15 families including Acanthaceae, Convolvulaceae, Moraceae, Nyctaginaceae and Primulaceae, are represented by a single species each. Chronological analysis of the vegetation in the area revealed the domination of Saharo-Sindian elements in the wild vegetations and of weedy species in the cultivated plots. Therophytes and chamaephytes are the dominating life forms of the vegetation spectra; therophytes represent 49.20% and chamaephytes represent 29.00% of the total species in the study area. Application of TWINISPAN and DECORANA classification and ordination techniques to the data produced seven vegetation groups. Ruderal habitats comprised two small groups A and F dominated by Phragmites australis and Imperata cylindrical (A), Euphorbia peplus and Sisymbrium irio (F), respectively. Two vegetation groups (B and G) have been recognized in the mountains and slopes dominated by Launaea mucronata, Trigonella stellata (B) and Ficus palmate and Fagonia bruguieri (G). Other two groups (C and E) inhabit the desert and mountainous wadies; these are represented by Gymnocarpos decandrus and Ochradenus baccatus (C) and Senecio glaucus subsp. coronopifolius and Rumex equisetiforme (E). On the other hand, one group (D) inhabits the cultivated plots and is represented by Plantago albicans and Rumex vesicarius, the last group also includes species restricted to the sand dune habitat of the Al-Nafud desert north of Hail city and represented by Calligonum polygonoides and Halyxolon salicornicum. The vegetation analysis indicated the invasion

  19. Comparison of sampling strategies for object-based classification of urban vegetation from Very High Resolution satellite images

    Science.gov (United States)

    Rougier, Simon; Puissant, Anne; Stumpf, André; Lachiche, Nicolas

    2016-09-01

    Vegetation monitoring is becoming a major issue in the urban environment due to the services they procure and necessitates an accurate and up to date mapping. Very High Resolution satellite images enable a detailed mapping of the urban tree and herbaceous vegetation. Several supervised classifications with statistical learning techniques have provided good results for the detection of urban vegetation but necessitate a large amount of training data. In this context, this study proposes to investigate the performances of different sampling strategies in order to reduce the number of examples needed. Two windows based active learning algorithms from state-of-art are compared to a classical stratified random sampling and a third combining active learning and stratified strategies is proposed. The efficiency of these strategies is evaluated on two medium size French cities, Strasbourg and Rennes, associated to different datasets. Results demonstrate that classical stratified random sampling can in some cases be just as effective as active learning methods and that it should be used more frequently to evaluate new active learning methods. Moreover, the active learning strategies proposed in this work enables to reduce the computational runtime by selecting multiple windows at each iteration without increasing the number of windows needed.

  20. Invasive Candidiasis

    Science.gov (United States)

    ... Waterborne, and Environmental Diseases Mycotic Diseases Branch Invasive Candidiasis Recommend on Facebook Tweet Share Compartir Global Emergence ... antifungal drugs. Learn more about C. auris Invasive candidiasis is an infection caused by a yeast (a ...

  1. Temporal and spatial variation of habitat conditions in the zonation of vegetation in the late stages of lake overgrowth

    Directory of Open Access Journals (Sweden)

    Stanisław Kłosowski

    2014-01-01

    Full Text Available The water and substrate properties in the vegetation zones characteristic of the late stages of lake overgrowth were determined. It was demonstrated that the spatial distribution of plant communities conformed with the spatial gradient of habitat conditions. With regard to water properties the largest differences between the zones were found in Mg2+, Ca2+, electrolytic conductivity and NH4+. In the case of substrate the zones differed significantly in Ca2+, total Fe and organic matter content. The water properties varied greatly during the vegetative season in the successive zones. The temporal changes often proceeded at a different level of a given component or factor in most zones. The differences between the zones were, however, maintained. It appears that the plant communities can alter their habitats to a large extent. In the lake studied, the invasion of raised and transitional bog vegetation was observed. The process of dystrophy proceeded from the terrestrialized peripheral parts of the lake to the centre of the lake.

  2. The evolution of invasiveness in garden ants.

    Directory of Open Access Journals (Sweden)

    Sylvia Cremer

    Full Text Available It is unclear why some species become successful invaders whilst others fail, and whether invasive success depends on pre-adaptations already present in the native range or on characters evolving de-novo after introduction. Ants are among the worst invasive pests, with Lasius neglectus and its rapid spread through Europe and Asia as the most recent example of a pest ant that may become a global problem. Here, we present the first integrated study on behavior, morphology, population genetics, chemical recognition and parasite load of L. neglectus and its non-invasive sister species L. turcicus. We find that L. neglectus expresses the same supercolonial syndrome as other invasive ants, a social system that is characterized by mating without dispersal and large networks of cooperating nests rather than smaller mutually hostile colonies. We conclude that the invasive success of L. neglectus relies on a combination of parasite-release following introduction and pre-adaptations in mating system, body-size, queen number and recognition efficiency that evolved long before introduction. Our results challenge the notion that supercolonial organization is an inevitable consequence of low genetic variation for chemical recognition cues in small invasive founder populations. We infer that low variation and limited volatility in cuticular hydrocarbon profiles already existed in the native range in combination with low dispersal and a highly viscous population structure. Human transport to relatively disturbed urban areas thus became the decisive factor to induce parasite release, a well established general promoter of invasiveness in non-social animals and plants, but understudied in invasive social insects.

  3. The Evolution of Invasiveness in Garden Ants

    Science.gov (United States)

    Cremer, Sylvia; Ugelvig, Line V.; Drijfhout, Falko P.; Schlick-Steiner, Birgit C.; Steiner, Florian M.; Seifert, Bernhard; Hughes, David P.; Schulz, Andreas; Petersen, Klaus S.; Konrad, Heino; Stauffer, Christian; Kiran, Kadri; Espadaler, Xavier; d'Ettorre, Patrizia; Aktaç, Nihat; Eilenberg, Jørgen; Jones, Graeme R.; Nash, David R.; Pedersen, Jes S.; Boomsma, Jacobus J.

    2008-01-01

    It is unclear why some species become successful invaders whilst others fail, and whether invasive success depends on pre-adaptations already present in the native range or on characters evolving de-novo after introduction. Ants are among the worst invasive pests, with Lasius neglectus and its rapid spread through Europe and Asia as the most recent example of a pest ant that may become a global problem. Here, we present the first integrated study on behavior, morphology, population genetics, chemical recognition and parasite load of L. neglectus and its non-invasive sister species L. turcicus. We find that L. neglectus expresses the same supercolonial syndrome as other invasive ants, a social system that is characterized by mating without dispersal and large networks of cooperating nests rather than smaller mutually hostile colonies. We conclude that the invasive success of L. neglectus relies on a combination of parasite-release following introduction and pre-adaptations in mating system, body-size, queen number and recognition efficiency that evolved long before introduction. Our results challenge the notion that supercolonial organization is an inevitable consequence of low genetic variation for chemical recognition cues in small invasive founder populations. We infer that low variation and limited volatility in cuticular hydrocarbon profiles already existed in the native range in combination with low dispersal and a highly viscous population structure. Human transport to relatively disturbed urban areas thus became the decisive factor to induce parasite release, a well established general promoter of invasiveness in non-social animals and plants, but understudied in invasive social insects. PMID:19050762

  4. Recent developments in the food quality detected by non-invasive nuclear magnetic resonance technology.

    Science.gov (United States)

    Fan, Kai; Zhang, Min

    2018-02-16

    Nuclear magnetic resonance (NMR) is a rapid, accurate and non-invasive technology and widely used to detect the quality of food, particularly to fruits and vegetables, meat and aquatic products. This review is a survey of recent developments in experimental results for the quality of food on various NMR technologies in processing and storage over the past decade. Following a discussion of the quality discrimination and classification of food, analysis of food compositions and detection of physical, chemical, structural and microbiological properties of food are outlined. Owing to high cost, low detection limit and sensitivity, the professional knowledge involved and the safety issues related to the maintenance of the magnetic field, so far the practical applications are limited to detect small range of food. In order to promote applications for a broader range of foods further research and development efforts are needed to overcome the limitations of NMR in the detection process. The needs and opportunities for future research and developments are outlined.

  5. Mineral composition of non-conventional leafy vegetables.

    Science.gov (United States)

    Barminas, J T; Charles, M; Emmanuel, D

    1998-01-01

    Six non-conventional leafy vegetables consumed largely by the rural populace of Nigeria were analyzed for mineral composition. Mineral contents appeared to be dependent on the type of vegetables. Amaranthus spinosus and Adansonia digitata leaves contained the highest level of iron (38.4 mg/100 g and 30.6 mg/100 g dw, respectively). These values are low compared to those for common Nigerian vegetables but higher than those for other food sources. All the vegetables contained high levels of calcium compared to common vegetables, thus they could be a rich source of this mineral. Microelement content of the leaves varied appreciably. Zinc content was highest in Moringa oleifera, Adansonia digitata and Cassia tora leaves (25.5 mg/100 g, 22.4 mg/100 g and 20.9 mg/100 g dw, respectively) while the manganese content was comparatively higher in Colocasia esculenta. The concentrations of the mineral elements in the vegetables per serving portion are presented and these values indicate that the local vegetables could be valuable and important contributors in the diets of the rural and urban people of Nigeria. The mean daily intake of P, Mg, Ca, Fe, Cu and Zn were lower than their recommended dietary allowances (RDAs). However, the manganese daily intake was found not to differ significantly (p = 0.05) from the RDA value.

  6. Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales.

    Science.gov (United States)

    Austin, Åsa N; Hansen, Joakim P; Donadi, Serena; Eklöf, Johan S

    2017-01-01

    Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer) and spatial scales (local and regional), using causal modeling based on data from a field survey along the central Swedish Baltic Sea coast. The two best-fitting regional-scale models both suggested that in spring, high cover of vegetation reduces water turbidity. In summer, the relationships differed between the two models; in the first model high vegetation cover reduced turbidity; while in the second model reduction of summer turbidity by high vegetation cover in spring had a positive effect on summer vegetation which suggests a positive feedback of vegetation on itself. Nitrogen load had a positive effect on turbidity in both seasons, which was comparable in strength to the effect of vegetation on turbidity. To assess whether the effect of vegetation was primarily caused by sediment stabilization or a reduction of phytoplankton, we also tested models where turbidity was replaced by phytoplankton fluorescence or sediment-driven turbidity. The best-fitting regional-scale models suggested that high sediment-driven turbidity in spring reduces vegetation cover in summer, which in turn has a negative effect on sediment-driven turbidity in summer, indicating a potential positive feedback of sediment-driven turbidity on itself. Using data at the local scale, few relationships were significant, likely due to the influence of unmeasured variables and/or spatial heterogeneity. In summary, causal modeling based on data from a large-scale field survey suggested that aquatic vegetation can reduce turbidity at regional scales, and that high

  7. Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales.

    Directory of Open Access Journals (Sweden)

    Åsa N Austin

    Full Text Available Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer and spatial scales (local and regional, using causal modeling based on data from a field survey along the central Swedish Baltic Sea coast. The two best-fitting regional-scale models both suggested that in spring, high cover of vegetation reduces water turbidity. In summer, the relationships differed between the two models; in the first model high vegetation cover reduced turbidity; while in the second model reduction of summer turbidity by high vegetation cover in spring had a positive effect on summer vegetation which suggests a positive feedback of vegetation on itself. Nitrogen load had a positive effect on turbidity in both seasons, which was comparable in strength to the effect of vegetation on turbidity. To assess whether the effect of vegetation was primarily caused by sediment stabilization or a reduction of phytoplankton, we also tested models where turbidity was replaced by phytoplankton fluorescence or sediment-driven turbidity. The best-fitting regional-scale models suggested that high sediment-driven turbidity in spring reduces vegetation cover in summer, which in turn has a negative effect on sediment-driven turbidity in summer, indicating a potential positive feedback of sediment-driven turbidity on itself. Using data at the local scale, few relationships were significant, likely due to the influence of unmeasured variables and/or spatial heterogeneity. In summary, causal modeling based on data from a large-scale field survey suggested that aquatic vegetation can reduce turbidity at regional scales

  8. Genome-wide single nucleotide polymorphisms (SNPs) for a model invasive ascidian Botryllus schlosseri.

    Science.gov (United States)

    Gao, Yangchun; Li, Shiguo; Zhan, Aibin

    2018-04-01

    Invasive species cause huge damages to ecology, environment and economy globally. The comprehensive understanding of invasion mechanisms, particularly genetic bases of micro-evolutionary processes responsible for invasion success, is essential for reducing potential damages caused by invasive species. The golden star tunicate, Botryllus schlosseri, has become a model species in invasion biology, mainly owing to its high invasiveness nature and small well-sequenced genome. However, the genome-wide genetic markers have not been well developed in this highly invasive species, thus limiting the comprehensive understanding of genetic mechanisms of invasion success. Using restriction site-associated DNA (RAD) tag sequencing, here we developed a high-quality resource of 14,119 out of 158,821 SNPs for B. schlosseri. These SNPs were relatively evenly distributed at each chromosome. SNP annotations showed that the majority of SNPs (63.20%) were located at intergenic regions, and 21.51% and 14.58% were located at introns and exons, respectively. In addition, the potential use of the developed SNPs for population genomics studies was primarily assessed, such as the estimate of observed heterozygosity (H O ), expected heterozygosity (H E ), nucleotide diversity (π), Wright's inbreeding coefficient (F IS ) and effective population size (Ne). Our developed SNP resource would provide future studies the genome-wide genetic markers for genetic and genomic investigations, such as genetic bases of micro-evolutionary processes responsible for invasion success.

  9. A Case of Invasive Pneumococcal Infection with Septic Shock and Rare Complications

    Directory of Open Access Journals (Sweden)

    John R. Woytanowski

    2017-01-01

    Full Text Available Invasive pneumococcus is a serious illness with potentially devastating outcomes. A 64-year-old female with a medical history of psoriatic arthritis and diabetes was transferred from an outside hospital for ventilator dependent respiratory failure and altered mental status. She initially presented with worsening back pain and was found to have leukocytosis with bandemia and acute renal failure but she was in septic shock upon arrival to our tertiary care center. Her blood cultures grew Streptococcus pneumoniae and MRI of the brain revealed pus within the posterior lateral ventricles and multiple infarcts. MRI of the spine revealed a psoas abscess. Transesophageal echocardiogram revealed mitral valve vegetation and her right eye developed endogenous endophthalmitis. She was treated with intravenous and intravitreal antibiotics and underwent drainage of the abscess with no improvement in mental status. Repeat imaging revealed multiple new thalamic, basal ganglia, and parietal lobe infarcts likely from septic emboli. After a protracted ICU stay, the patient’s family opted for comfort care. The incidence of invasive pneumococcal infections has declined rapidly since the advent of antibiotics and vaccines. With the growing incidence of antibiotic resistance as well as the emergence of new immunomodulating drugs for various pathologies, there is a concern that invasive infections will reemerge. Ventriculitis and endogenous endophthalmitis are very rare complications of pneumococcal bacteremia.

  10. Internalisation of microbes in vegetables: microbial load of Ghanaian vegetables and the relationship with different water sources of irrigation.

    Science.gov (United States)

    Donkor, Eric S; Lanyo, R; Kayang, Boniface B; Quaye, Jonathan; Edoh, Dominic A

    2010-09-01

    The occurrence of pathogens in the internal parts of vegetables is usually associated with irrigation water or contaminated soil and could pose risk to consumers as the internalised pathogens are unaffected by external washing. This study was carried out to assess the rate of internalisation of microbes in common Ghanaian vegetables. Standard microbiological methods were employed in microbial enumeration of vegetables collected at the market and farm levels, as well as irrigation water and soil samples. The overall mean counts of vegetables were 4.0 x 10(3) cfu g(-1); 8.1 x 10(2) cfu g(-1); 2.0 x 10(2) cfu g(-1); 3.5 x 10(2) cfu g(-1) for total bacteria, coliform counts, faecal coliform counts and yeast counts, respectively. The rate of internalisation of coliforms in vegetables irrigated with stream/well water was 2.7 times higher than those irrigated with pipe water. The mean coliform counts (4.7 x 10(7) cfu g(-1)) and faecal coliform counts (1.8 x 10(6) cfu g(-1)) of soil samples were similar to those of stream water suggesting both sources exerted similar contamination rates on the vegetables. Generally, there were no significant variations between the rates of internalisation of microbes at the market and farm levels at p vegetables mainly occurred at the farm level. The study has shown that microbial contamination of vegetables in Ghana is not limited to the external surface, but internal vegetable parts could harbour high microbial loads and pose risk to consumers. Safety practices associated with the commodity should therefore not be limited to external washing only. There is the additional need of heating vegetables to eliminate microbes both externally and internally before consumption.

  11. Sensory determinants of stated liking for vegetable names and actual liking for canned vegetables

    DEFF Research Database (Denmark)

    Dinnella, Caterina; Morizet, David; Masi, Camilla

    2016-01-01

    tastes (sweet, umami), delicate flavour and bright appealing colour. A second group of highly disliked vegetables consists of cauliflowers and broccoli, characterized by disliked sensations such as bitter taste and objectionable flavour. Internal Preference Maps from actual liking scores indicate...

  12. Regular, high, and moderate intake of vegetables rich in antioxidants may reduce cataract risk in Central African type 2 diabetics

    Directory of Open Access Journals (Sweden)

    Mvitu M

    2012-06-01

    Full Text Available Moise Mvitu,1 Benjamin Longo-Mbenza,2 Dieudonné Tulomba,3 Augustin Nge31Department of Ophthalmology, University of Kinshasa, Democratic Republic of Congo; 2Faculty of Health Sciences, Walter Sisulu University, South Africa; 3Biostatistics Unit, Lomo Medical Center and Heart of Africa Center of Cardiology, Kinshasa, Democratic Republic of CongoBackground: Antioxidant nutrients found in popularly consumed vegetables, including red beans, are thought to prevent diabetic complications. In this study, we assessed the frequency and contributing factors of intake of fruits and vegetables rich in antioxidants, and we determined their impact on the prevention of diabetes-related cataract extraction.Methods: This was a cross-sectional study, run in Congo among 244 people with type 2 diabetes mellitus. An intake of ≥three servings of vegetables rich in antioxidants/day, intake of red beans, consumption of fruit, and cataract extraction were considered as dependent variables.Results: No patient reported a fruit intake. Intake of red beans was reported by 64 patients (26.2%, while 77 patients (31.6% reported ≥three servings of vegetables rich in antioxidants. High socioeconomic status (OR = 2.3; 95% CI: 1.1–12.5; P = 0.030 and moderate alcohol intake (OR = 4; 95% CI: 1.1–17.4; P = 0.049 were the independent determinants of eating ≥three servings of vegetables rich in antioxidants. Red beans intake (OR = 0.282; 95% CI: 0.115–0.687; P > 0.01 and eating ≥three servings of vegetables rich in antioxidants (OR = 0.256; 95% CI: 0.097–0.671; P = 0.006 were identified as independent and protective factors against the presence of cataracts (9.8% n = 24, whereas type 2 diabetes mellitus duration ≥3 years was the independent risk factor for cataract extraction (OR = 6.3; 95% CI: 2.1–19.2; P > 0.001 in the model with red beans intake and OR = 7.1; 95% CI: 2.3–22.2; P > 0.001 in the model with ≥three servings of vegetables rich in antioxidants

  13. A highly articulated robotic surgical system for minimally invasive surgery.

    Science.gov (United States)

    Ota, Takeyoshi; Degani, Amir; Schwartzman, David; Zubiate, Brett; McGarvey, Jeremy; Choset, Howie; Zenati, Marco A

    2009-04-01

    We developed a novel, highly articulated robotic surgical system (CardioARM) to enable minimally invasive intrapericardial therapeutic delivery through a subxiphoid approach. We performed preliminary proof of concept studies in a porcine preparation by performing epicardial ablation. CardioARM is a robotic surgical system having an articulated design to provide unlimited but controllable flexibility. The CardioARM consists of serially connected, rigid cyclindrical links housing flexible working ports through which catheter-based tools for therapy and imaging can be advanced. The CardioARM is controlled by a computer-driven, user interface, which is operated outside the operative field. In six experimental subjects, the CardioARM was introduced percutaneously through a subxiphoid access. A commercial 5-French radiofrequency ablation catheter was introduced through the working port, which was then used to guide deployment. In all subjects, regional ("linear") left atrial ablation was successfully achieved without complications. Based on these preliminary studies, we believe that the CardioARM promises to enable deployment of a number of epicardium-based therapies. Improvements in imaging techniques will likely facilitate increasingly complex procedures.

  14. Computed tomography versus invasive coronary angiography

    DEFF Research Database (Denmark)

    Napp, Adriane E.; Haase, Robert; Laule, Michael

    2017-01-01

    Objectives: More than 3.5 million invasive coronary angiographies (ICA) are performed in Europe annually. Approximately 2 million of these invasive procedures might be reduced by noninvasive tests because no coronary intervention is performed. Computed tomography (CT) is the most accurate...... angiography (ICA) is the reference standard for detection of CAD.• Noninvasive computed tomography angiography excludes CAD with high sensitivity.• CT may effectively reduce the approximately 2 million negative ICAs in Europe.• DISCHARGE addresses this hypothesis in patients with low-to-intermediate pretest...

  15. Vegetation response of a dry shrubland community to feral goat management on the island of Moloka‘i, Hawai‘i

    Science.gov (United States)

    Jacobi, James D.; Stock, Jonathan

    2017-12-14

    The Hawaiian Islands are well known for their unique ecosystem assemblages that have a high proportion of endemic flora and fauna. However, since human colonization of this archipelago—starting with the arrival of Polynesian sailors approximately 1,200 years ago, and particularly following western contact in 1778—thousands of non-native species have been introduced to the Islands and many of these alien species have had severe impacts on the native ecosystems. Particularly damaging to these ecosystems are large mammals, including goats (Capra hircus), pigs (Sus scrofa), cattle (Bos taurus), deer (Axis axis and Odocoileus hemionus), and sheep (Ovis spp.), which are collectively referred to here as ungulates; they cause extensive damage to the native vegetation by their browsing, grazing, and trampling. Similar impacts have been documented elsewhere, including New Zealand and many other island ecosystems.Previous studies in Hawai‘i have utilized fenced exclosures to assess the impacts of feral or wild ungulates on vegetation and the recovery potential for the native plant communities by comparing plant community composition, structure, and cover inside the fenced area (without ungulates) over time to the vegetation condition outside of the protection of the fence. In some cases, the native vegetation recovered once the animals were removed. However, in other situations alien plants were more competitive and dominated the revegetation process after the impacts of ungulates had been reduced or eliminated.This report describes the response of a highly degraded lowland dry habitat plant community located on the south slope of east Moloka‘i, Hawai‘i, to reduction of browsing and grazing impacts caused by feral goats. For this study, vegetation response inside a fenced exclosure was compared to vegetation change in the area outside of the fence that was still accessible to goats. This study is part of the larger U.S. Geological Survey Ridge-to-Reef (USGS-R2R

  16. Who cites who in the invasion zoo: insights from an analysis of the most highly cited papers in invasion ecology

    Czech Academy of Sciences Publication Activity Database

    Pyšek, Petr; Richardson, D. M.; Jarošík, Vojtěch

    2006-01-01

    Roč. 78, - (2006), s. 437-468 ISSN 0032-7786 Institutional research plan: CEZ:AV0Z60050516 Keywords : citation analysis * biological invasions * Web of Science Subject RIV: EF - Botanics Impact factor: 2.119, year: 2006

  17. Predicting Treatment Windows for Invasive Buffelgrass in Southern Arizona using MODIS and Climate Data

    Science.gov (United States)

    Wallace, C.; Weltzin, J. F.; Skirvin, S. M.; Patrick-Birdwell, C.; Raichle, H.

    2014-12-01

    The increasing spread and abundance of an invasive perennial grass, buffelgrass (Pennisetum ciliare), represents an important shift in the vegetation composition of the Sonoran Desert in southern Arizona. Buffelgrass out-competes native species and alters fire regimes, and its control and management is a high-priority issue for resource managers who seek to preserve the unique and iconic Sonoran Desert flora. Herbicidal treatment of buffelgrass is most effective when the vegetation is actively growing; however, the erratic timing and length of active buffelgrass growth periods in southern Arizona confound effective management decision-making. The goal of our research is to enable the strategic application of buffelgrass herbicide by using remote sensing data to detect when and where buffelgrass is photosynthetically active. We integrated ground-based observations of buffelgrass phenology (green-up and senescence) in the Tucson, Arizona area with climate information and Moderate-resolution Imaging Spectroradiometer (MODIS) satellite imagery at 250m spatial and both 8-day and 16-day composite temporal resolution to understand dynamics, relationships and resonance between these disparate datasets during 2011 to 2013. Fourier harmonics analysis was used to derive land surface phenology (LSP) metrics from MODIS Enhanced Vegetation Index (EVI) greenness data and to quantify the temporal patterns of the climate and phenophase abundance datasets. Regression analyses and statistical tests were used to identify correlations between temporal patterns of the data sets. Our results reveal strong correlations between the observed greenness of in-situ buffelgrass and satellite LSP metrics, confirming that MODIS-EVI data can be a useful indicator of active buffelgrass growth at multiple scales. The analysis also reveals strong harmonics between precipitation and greenness, but with a lagged response, suggesting that precipitation can be a predictor of the location and intensity of

  18. Does competition for phosphate supply explain the invasion pattern of Elodea species?

    Science.gov (United States)

    Thiébaut, Gabrielle

    2005-09-01

    Two invasive aquatic plants, Elodea canadensis and Elodea nuttallii, occurred in north-eastern France. In this study, we examine the influence of phosphorus availability in soft water streams to explain the invasion pattern of exotic species (E. nuttallii and E. canadensis) compared to native plants (Callitriche platycarpa, Ranunculus peltatus). Total phosphorus was measured in these four aquatic macrophytes. Sediment total phosphorus and water-soluble reactive phosphorus were also analysed each season in 2001. Phosphorus content in the two invasive species and in R. peltatus was higher than in C. platycarpa. Elodea species are adapted to the seasonal phosphorus fluctuations as well as R. peltatus and exhibited high phosphorus storage ability. The high fluctuation availability of resources in space or/and time favoured the spread of the invasive plants and confirms the theory of invasibility of Davis et al. [2000. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 88, 528-534]. The eutrophication process increases the invasibility of E. nuttallii's, while inducing competition between E. nuttallii and native macrophyte species.

  19. Assessment of early-stage optic nerve invasion in retinoblastoma using high-resolution 1.5 Tesla MRI with surface coils: a multicentre, prospective accuracy study with histopathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Brisse, Herve J. [Institut Curie, Department of Radiology, Paris (France); Institut CURIE, Imaging Department, Paris (France); Graaf, Pim de; Rodjan, Firazia; Jong, Marcus C. de; Castelijns, Jonas A. [VU University Medical Center, Department of Radiology, Amsterdam (Netherlands); Galluzzi, Paolo [Neuroimaging and Neurointerventional Unit (NINT) Azienda Ospedaliera e Universitaria Senese, Siena (Italy); Cosker, Kristel; Savignoni, Alexia [Institut Curie, Department of Biostatistics, Paris (France); Maeder, Philippe [Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Department of Radiology, Lausanne (Switzerland); Goericke, Sophia [University Hospital Essen, Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Aerts, Isabelle [Institut Curie, Department of Pediatric Oncology, Paris (France); Desjardins, Laurence [Institut Curie, Department of Ophthalmology, Paris (France); Moll, Annette C. [VU University Medical Center, Department of Ophthalmology, Amsterdam (Netherlands); Hadjistilianou, Theodora [Azienda Ospedaliera Universitaria Senese, Department of Ophthalmology, Siena (Italy); Toti, Paolo [University of Siena, Department of Medical Biotechnologies, Pathology Unit, Siena (Italy); Valk, Paul van der [VU University Medical Center, Department of Pathology, Amsterdam (Netherlands); Sastre-Garau, Xavier [Institut Curie, Department of Biopathology, Paris (France); Collaboration: European Retinoblastoma Imaging Collaboration (ERIC)

    2015-05-01

    To assess the accuracy of high-resolution (HR) magnetic resonance imaging (MRI) in diagnosing early-stage optic nerve (ON) invasion in a retinoblastoma cohort. This IRB-approved, prospective multicenter study included 95 patients (55 boys, 40 girls; mean age, 29 months). 1.5-T MRI was performed using surface coils before enucleation, including spin-echo unenhanced and contrast-enhanced (CE) T1-weighted sequences (slice thickness, 2 mm; pixel size <0.3 x 0.3 mm{sup 2}). Images were read by five neuroradiologists blinded to histopathologic findings. ROC curves were constructed with AUC assessment using a bootstrap method. Histopathology identified 41 eyes without ON invasion and 25 with prelaminar, 18 with intralaminar and 12 with postlaminar invasion. All but one were postoperatively classified as stage I by the International Retinoblastoma Staging System. The accuracy of CE-T1 sequences in identifying ON invasion was limited (AUC = 0.64; 95 % CI, 0.55 - 0.72) and not confirmed for postlaminar invasion diagnosis (AUC = 0.64; 95 % CI, 0.47 - 0.82); high specificities (range, 0.64 - 1) and negative predictive values (range, 0.81 - 0.97) were confirmed. HR-MRI with surface coils is recommended to appropriately select retinoblastoma patients eligible for primary enucleation without the risk of IRSS stage II but cannot substitute for pathology in differentiating the first degrees of ON invasion. (orig.)

  20. Understanding invasion history and predicting invasive niches using genetic sequencing technology in Australia: case studies from Cucurbitaceae and Boraginaceae.

    Science.gov (United States)

    Shaik, Razia S; Zhu, Xiaocheng; Clements, David R; Weston, Leslie A

    2016-01-01

    Part of the challenge in dealing with invasive plant species is that they seldom represent a uniform, static entity. Often, an accurate understanding of the history of plant introduction and knowledge of the real levels of genetic diversity present in species and populations of importance is lacking. Currently, the role of genetic diversity in promoting the successful establishment of invasive plants is not well defined. Genetic profiling of invasive plants should enhance our understanding of the dynamics of colonization in the invaded range. Recent advances in DNA sequencing technology have greatly facilitated the rapid and complete assessment of plant population genetics. Here, we apply our current understanding of the genetics and ecophysiology of plant invasions to recent work on Australian plant invaders from the Cucurbitaceae and Boraginaceae. The Cucurbitaceae study showed that both prickly paddy melon ( Cucumis myriocarpus ) and camel melon ( Citrullus lanatus ) were represented by only a single genotype in Australia, implying that each was probably introduced as a single introduction event. In contrast, a third invasive melon, Citrullus colocynthis , possessed a moderate level of genetic diversity in Australia and was potentially introduced to the continent at least twice. The Boraginaceae study demonstrated the value of comparing two similar congeneric species; one, Echium plantagineum , is highly invasive and genetically diverse, whereas the other, Echium vulgare , exhibits less genetic diversity and occupies a more limited ecological niche. Sequence analysis provided precise identification of invasive plant species, as well as information on genetic diversity and phylogeographic history. Improved sequencing technologies will continue to allow greater resolution of genetic relationships among invasive plant populations, thereby potentially improving our ability to predict the impact of these relationships upon future spread and better manage invaders

  1. Nutrient composition of climbing and prostrate vegetable cowpea ...

    African Journals Online (AJOL)

    The study evaluated the nutrient content of different accessions of two vegetable cowpea genotypes. The mineral content of the vegetable cowpea accessions were high. Potassium content of the accessions of the climbing genotype “Akidi enu” ranged from 1.25 to 1.52% with a mean value of 1.43 ± 0.13% while in the ...

  2. New options for conversion of vegetable oils to alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A.; Kara, H. [Selcuk University, Konya (Turkey). Department of Chemical Engineering

    2006-05-15

    Biodiesel from transesterification of vegetable oils is an excellent alternative fuel. There is, however, a need to develop a direct process for conversion of vegetable oils into gasoline-competitive biodiesel and other petroleum products. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The purpose of the transesterification process is to lower the viscosity of vegetable oil. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, whereas methyl esters of vegetable oils are slightly more viscous. The methyl esters are more volatile than those of the vegetable oils. Conversion of vegetable oils to useful fuels involves the pyrolysis and catalytic cracking of the oils into lower molecular products. Pyrolysis produces more biogasoline than biodiesel fuel. Soap pyrolysis products of vegetable oils can be used as alternative diesel engine fuel. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. Zinc chloride catalyst contributed greatly to high amounts of hydrocarbons in the liquid product. The yield of ZnCl2 catalytic conversion of the soybean oil reached the maximum 79.9% at 660 K. (author)

  3. Contamination pathways of spore-forming bacteria in a vegetable cannery.

    Science.gov (United States)

    Durand, Loïc; Planchon, Stella; Guinebretiere, Marie-Hélène; André, Stéphane; Carlin, Frédéric; Remize, Fabienne

    2015-06-02

    Spoilage of low-acid canned food during prolonged storage at high temperatures is caused by heat resistant thermophilic spores of strict or facultative bacteria. Here, we performed a bacterial survey over two consecutive years on the processing line of a French company manufacturing canned mixed green peas and carrots. In total, 341 samples were collected, including raw vegetables, green peas and carrots at different steps of processing, cover brine, and process environment samples. Thermophilic and highly-heat-resistant thermophilic spores growing anaerobically were counted. During vegetable preparation, anaerobic spore counts were significantly decreased, and tended to remain unchanged further downstream in the process. Large variation of spore levels in products immediately before the sterilization process could be explained by occasionally high spore levels on surfaces and in debris of vegetable combined with long residence times in conditions suitable for growth and sporulation. Vegetable processing was also associated with an increase in the prevalence of highly-heat-resistant species, probably due to cross-contamination of peas via blanching water. Geobacillus stearothermophilus M13-PCR genotypic profiling on 112 isolates determined 23 profile-types and confirmed process-driven cross-contamination. Taken together, these findings clarify the scheme of contamination pathway by thermophilic spore-forming bacteria in a vegetable cannery. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Vegetation geographical patterns as a key to the past, with emphasis on the dry vegetation types of South Africa

    Directory of Open Access Journals (Sweden)

    M. J. A. Werger

    1983-11-01

    Full Text Available Southern Africa is characterized by a highly diversified vegetational cover with extremes as contrasting as desert, tropical forest, alpine grassland, or mediterranean type scrub, and many other types in between. This vegetational pattern is strongly correlated to the climatological pattern. It is therefore likely that past changes in climate can still be partly traced in the vegetational pattern, particularly in geographical anomalies, and that study of these patterns provides complementary evidence to palynological research. The following anomalies in the vegetational pattern are briefly discussed: 1. island-wise occurrence of Afro-montane vegetation on mesic, sheltered sites in the southern Sudano- Zambezian Region, in particular in the Highveld grassland/False Karoo transition area; 2. similar westward occurrence of Sudano-Zambezian scrub patches in the Karoo-Namib Region near the Orange/Vaal confluence; 3. scattered occurrence of Sudano-Zambezian woody species in a matrix of Karoo-Namib vegetation in the marginal Karoo-Namib Region; 4. island-wise occurrence of frost-tolerant, dry, karroid dwarf shrub vegetation of predominantly C,-plants on isolated peaks in the winter rainfall area of Namaqualand; 5. peculiar patchy distribution of some succulents in wide areas of climatically rather homogeneous, succulent dwarf shrub vegetation of predominantly CAM-plants in the escarpment area of Namaqualand. a pattern reminiscent of that in many Cape fynbos species. Interpretation of these patterns logically leads to the conclusion that these result from a previously wetter, a previously cooler, or a previously wetter and cooler climate, respectively, over the parts of southern Africa under discussion. This conclusion is compared with published palynological views.

  5. Mapping Aquatic Vegetation in a Tropical Wetland Using High Spatial Resolution Multispectral Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Timothy G. Whiteside

    2015-09-01

    Full Text Available Vegetation plays a key role in the environmental function of wetlands. The Ramsar-listed wetlands of the Magela Creek floodplain in Northern Australia are identified as being at risk from weeds, fire and climate change. In addition, the floodplain is a downstream receiving environment for the Ranger Uranium Mine. Accurate methods for mapping wetland vegetation are required to provide contemporary baselines of annual vegetation dynamics on the floodplain to assist with analysing any potential change during and after minesite rehabilitation. The aim of this study was to develop and test the applicability of geographic object-based image analysis including decision tree classification to classify WorldView-2 imagery and LiDAR-derived ancillary data to map the aquatic vegetation communities of the Magela Creek floodplain. Results of the decision tree classification were compared against a Random Forests classification. The resulting maps showed the 12 major vegetation communities that exist on the Magela Creek floodplain and their distribution for May 2010. The decision tree classification method provided an overall accuracy of 78% which was significantly higher than the overall accuracy of the Random Forests classification (67%. Most of the error in both classifications was associated with confusion between spectrally similar classes dominated by grasses, such as Hymenachne and Pseudoraphis. In addition, the extent of the sedge Eleocharis was under-estimated in both cases. This suggests the method could be useful for mapping wetlands where statistical-based supervised classifications have achieved less than satisfactory results. Based upon the results, the decision tree method will form part of an ongoing operational monitoring program.

  6. Effectiveness of prescribed fire to re-establish sagebrush vegetation and ecohydrologic function on woodland-encroached sagebrush steppe, Great Basin, USA

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Kormos, P.; Al-Hamdan, O. Z.; Nouwakpo, S.; Weltz, M.; Vega, S.; Lindsay, K.

    2017-12-01

    Range expansion of pinyon (Pinus spp.) and juniper (Juniperus spp.) conifers into sagebrush steppe (Artemisia spp.) communities has imperiled a vast domain in the western US. Encroachment of sagebrush ecosystems by pinyon and juniper conifers has negative ramifications to ecosystem structure and function and delivery of goods and services. Scientists, land management agencies, and private land owners throughout the western US are challenged with selecting from a suite of options to reduce pinyon and juniper woody fuels and re-establish sagebrush steppe structure and function. This study evaluated the effectiveness of prescribed fire to re-establish sagebrush vegetation and ecohydrologic function over a 9 yr period. Nine years post-fire hydrologic and erosion responses reflect the combination of pre-fire site conditions, perennial grass recruitment, delayed litter cover, and inherent site characteristics. Burning initially increased bare ground, runoff, and erosion for well-vegetated areas underneath tree and shrub canopies, but had minimal impact on hydrology and erosion for degraded interspaces between plants. The degraded interspaces were primarily bare ground and exhibited high runoff and erosion rates prior to burning. Initial fire effects persisted for two years, but increased productivity of grasses improved hydrologic function of interspaces over the full 9 yr period. At the hillslope scale, grass recruitment in the intercanopy between trees reduced runoff from rainsplash, sheetflow, and concentrated overland flow at one site, but did not reduce the high levels of runoff and erosion from a more degraded site. In areas formerly occupied by trees (tree zones), burning increased invasive annual grass cover due to fire removal of limited native perennial plants and competition for resources. The invasive annual grass cover had no net effect on runoff and erosion from tree zones however. Runoff and erosion increased in tree zones at the more degraded site due to

  7. Liquid chromatography-high resolution mass spectrometry for the analysis of phytochemicals in vegetal-derived food and beverages.

    Science.gov (United States)

    La Barbera, Giorgia; Capriotti, Anna Laura; Cavaliere, Chiara; Montone, Carmela Maria; Piovesana, Susy; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2017-10-01

    The recent years witnessed a change in the perception of nutrition. Diet does not only provide nutrients to meet the metabolic requirements of the body, but it also constitutes an active way for the consumption of compounds beneficial for human health. Fruit and vegetables are an excellent source of such compounds, thus the growing interest in characterizing phytochemical sources, structures and activities. Given the interest for phytochemicals in food, the development of advanced and suitable analytical techniques for their identification is fundamental for the advancement of food research. In this review, the state of the art of phytochemical research in food plants is described, starting from sample preparation, throughout extract clean-up and compound separation techniques, to the final analysis, considering both qualitative and quantitative investigations. In this regard, from an analytical point of view, fruit and vegetable extracts are complex matrices, which greatly benefit from the use of modern hyphenated techniques, in particular from the combination of high performance liquid chromatography separation and high resolution mass spectrometry, powerful tools which are being increasingly used in the recent years. Therefore, selected applications to real samples are presented and discussed, in particular for the analysis of phenols, polyphenols and phenolic acids. Finally, some hot points are discussed, such as waste characterization for high value-compounds recovery and the untargeted metabolomics approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect.

    Science.gov (United States)

    Swann, Abigail L; Fung, Inez Y; Levis, Samuel; Bonan, Gordon B; Doney, Scott C

    2010-01-26

    Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is up to 1.5 times larger than the forcing due to albedo change from the forest. Furthermore, the greenhouse warming by additional water vapor melts sea-ice and triggers a positive feedback through changes in ocean albedo and evaporation. Land surface albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice.

  9. Overlooking the smallest matter: viruses impact biological invasions.

    Science.gov (United States)

    Faillace, Cara A; Lorusso, Nicholas S; Duffy, Siobain

    2017-04-01

    Parasites and pathogens have recently received considerable attention for their ability to affect biological invasions, however, researchers have largely overlooked the distinct role of viruses afforded by their unique ability to rapidly mutate and adapt to new hosts. With high mutation and genomic substitution rates, RNA and single-stranded DNA (ssDNA) viruses may be important constituents of invaded ecosystems, and could potentially behave quite differently from other pathogens. We review evidence suggesting that rapidly evolving viruses impact invasion dynamics in three key ways: (1) Rapidly evolving viruses may prevent exotic species from establishing self-sustaining populations. (2) Viruses can cause population collapses of exotic species in the introduced range. (3) Viruses can alter the consequences of biological invasions by causing population collapses and extinctions of native species. The ubiquity and frequent host shifting of viruses make their ability to influence invasion events likely. Eludicating the viral ecology of biological invasions will lead to an improved understanding of the causes and consequences of invasions, particularly as regards establishment success and changes to community structure that cannot be explained by direct interspecific interactions among native and exotic species. © 2017 John Wiley & Sons Ltd/CNRS.

  10. Induced mutations in highly heterozygous vegetatively propagated grasses

    International Nuclear Information System (INIS)

    Powell, J.B.

    1976-01-01

    Experience with mutation induction of turf and forage grasses indicates that much progress can be achieved by this method. More than 300 mutations have been produced in our laboratory in the cultivars Tifgreen and Tifdwarf bermudagrass (Cynodon sp.). In the Tifway and Tifcote bermudagrasses we have demonstrated similar mutation responses. The first three clones are triploids and Tifcote is a probable tetraploid. No seeds are set on these clones. Two clones of bermudagrass, Coastal and Coastcross-1, occupy millions of hectares in the USA. Both are mutable and are known to be hybrids with 36 chromosomes. Biotypes of dallisgrass (Paspalum dilatatum Poir.) exist with 40 and 50 chromosomes and reproduce as sexual and obligate apomictic forms. Gamma-ray and thermal-neutron treatment of seed of these biotypes produced mutants that maintained the maternal characteristics in subsequent generations. Bahiagrass (Paspalum notatum Fluegge) also has sexual and apomictic biotypes. Some success was indicated for increased seed set by mutagen treatment. Kentucky bluegrass (Poa pratensis L.) is a facultative apomict with varying numbers of chromosomes in different cultivars. Gamma-ray mutagen treatment of rhizomes produced numerous mutations for plant type and disease reaction. Most mutations perpetuate themselves through the seed. The characteristic in common with all these grasses is their heterozygosity, which is maintained by the vegetative propagation or apomictic mode of reproduction. The experience in using ionizing radiation to induce heritable changes in these vegetatively propagated grasses is one of considerable success. Mutation rates in some of these irradiated grasses exceeded 65% and aberrant plants with characteristics previously never observed were found. Numerous hemizygous and heterozygous loci seem to be a sensitive target for mutagens. (author)

  11. Effects of non-invasive neurostimulation on craving: a meta-analysis

    NARCIS (Netherlands)

    Jansen, Jochem M.; Daams, Joost G.; Koeter, Maarten W. J.; Veltman, Dick J.; van den Brink, Wim; Goudriaan, Anna E.

    2013-01-01

    This meta-analysis was conducted to evaluate the available evidence regarding the effects of non-invasive neurostimulation of the dorsolateral prefrontal cortex (DLPFC), on craving in substance dependence and craving for high palatable food. Non-invasive neurostimulation techniques were restricted

  12. Effects of non-invasive neurostimulation on craving: A meta-analysis

    NARCIS (Netherlands)

    Jansen, J.M.; Daams, J.G.; Koeter, M.W.; Veltman, D.J.; van den Brink, W.; Goudriaan, A.E.

    2013-01-01

    This meta-analysis was conducted to evaluate the available evidence regarding the effects of non-invasive neurostimulation of the dorsolateral prefrontal cortex (DLPFC), on craving in substance dependence and craving for high palatable food. Non-invasive neurostimulation techniques were restricted

  13. European Vegetation Archive (EVA): an integrated database of European vegetation plots

    DEFF Research Database (Denmark)

    Chytrý, M; Hennekens, S M; Jiménez-Alfaro, B

    2015-01-01

    vegetation- plot databases on a single software platform. Data storage in EVA does not affect on-going independent development of the contributing databases, which remain the property of the data contributors. EVA uses a prototype of the database management software TURBOVEG 3 developed for joint management......The European Vegetation Archive (EVA) is a centralized database of European vegetation plots developed by the IAVS Working Group European Vegetation Survey. It has been in development since 2012 and first made available for use in research projects in 2014. It stores copies of national and regional...... data source for large-scale analyses of European vegetation diversity both for fundamental research and nature conservation applications. Updated information on EVA is available online at http://euroveg.org/eva-database....

  14. The vegetation of Yucca Mountain: Description and ecology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-29

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot.

  15. The vegetation of Yucca Mountain: Description and ecology

    International Nuclear Information System (INIS)

    1996-01-01

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot

  16. Conspecific plasticity and invasion: invasive populations of Chinese tallow (Triadica sebifera) have performance advantage over native populations only in low soil salinity.

    Science.gov (United States)

    Chen, Leiyi; Tiu, Candice J; Peng, Shaolin; Siemann, Evan

    2013-01-01

    Global climate change may increase biological invasions in part because invasive species may have greater phenotypic plasticity than native species. This may be especially important for abiotic stresses such as salt inundation related to increased hurricane activity or sea level rise. If invasive species indeed have greater plasticity, this may reflect genetic differences between populations in the native and introduced ranges. Here, we examined plasticity of functional and fitness-related traits of Chinese tallow (Triadica sebifera) populations from the introduced and native ranges that were grown along a gradient of soil salinity (control: 0 ppt; Low: 5 ppt; Medium: 10 ppt; High: 15 ppt) in a greenhouse. We used both norm reaction and plasticity index (PIv) to estimate the conspecific phenotypic plasticity variation between invasive and native populations. Overall, invasive populations had higher phenotypic plasticity of height growth rate (HGR), aboveground biomass, stem biomass and specific leaf area (SLA). The plasticity Index (PIv) of height growth rate (HGR) and SLA each were higher for plants from invasive populations. Absolute performance was always comparable or greater for plants from invasive populations versus native populations with the greatest differences at low stress levels. Our results were consistent with the "Master-of-some" pattern for invasive plants in which the fitness of introduced populations was greater in more benign conditions. This suggests that the greater conspecific phenotypic plasticity of invasive populations compared to native populations may increase invasion success in benign conditions but would not provide a potential interspecific competitive advantage in higher salinity soils that may occur with global climate change in coastal areas.

  17. Nitrate Determination of Vegetables in Varzeghan City, North-western Iran

    Directory of Open Access Journals (Sweden)

    Parviz Nowrouz

    2012-12-01

    Full Text Available Background: Vegetables play an important role in human nutrition. Nitrate content is a signifi-cant quality criterion to determine characteristic of vegetables. About 80% of nitrate intake in human is from vegetables and fruits. High dietary intake of nitrate is seen as an undesirable be-cause of its association with gastric cancer and infantile methemoglobinemia. Varzeghan, North-western Iran is one of the cities with high Age-standardized incidence rates (ASR of gastric can-cer in Iran. Currently, in Varzeghan there is no available and accurate information describing ni-trate concentration as one of the important risk factors of vegetables for human consumption.Methods: In this cross sectional study totally 11 types of vegetables (cabbage, lettuce, spinach, parsley, coriander, dill, leek, fenugreek, tarragon, fumitory and mint from several different green-grocery of Varzeghan were collected in spring (April and autumn (November and December 2011 and their nitrate contents were analyzed.Results: Mean nitrate contents at the above noted fresh vegetables were 161, 781, 83, 707, 441,501, 1702, 684, 805, 772 and 191 mg NO3-kg-1 respectively. In none of the 11 fresh vegetablesnitrate content were not more than established limitations.Conclusion: Nitrate concentrations were below of others reported at different countries. The mean concentration of nitrate at all vegetables in autumn was higher than in spring significantly.

  18. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species [v1; ref status: indexed, http://f1000r.es/33c

    Directory of Open Access Journals (Sweden)

    Heike Zimmermann

    2014-05-01

    Full Text Available Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density remain poorly understood. Invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the abundance of invasive species may be partly explained by the level of human activity or landscape maintenance, with intermediate levels of human activity providing optimal conditions for high abundance. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important additional or complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability.

  19. Invasion thresholds and the evolution of nonequilibrium virulence.

    Science.gov (United States)

    Bull, James J; Ebert, Dieter

    2008-02-01

    The enterprise of virulence management attempts to predict how social practices and other factors affect the evolution of parasite virulence. These predictions are often based on parasite optima or evolutionary equilibria derived from models of host-parasite dynamics. Yet even when such models accurately capture the parasite optima, newly invading parasites will typically not be at their optima. Here we show that parasite invasion of a host population can occur despite highly nonoptimal virulence. Fitness improvements soon after invasion may proceed through many steps with wide changes in virulence, because fitness depends on transmission as well as virulence, and transmission improvements can overwhelm nonoptimal virulence. This process is highly sensitive to mutation supply and the strength of selection. Importantly, the same invasion principle applies to the evolution of established parasites, whenever mutants arise that overcome host immunity/resistance. A host population may consequently experience repeated invasions of new parasite variants and possible large shifts in virulence as it evolves in an arms race with the parasite. An experimental study of phage lysis time and examples of mammalian viruses matching some of these characteristics are reviewed.

  20. Feasibility of minimally invasive radical prostatectomy in prostate cancer patients with high prostate-specific antigen. Feasibility and 1-year outcomes

    International Nuclear Information System (INIS)

    Do, M.; Ragavan, N.; Dietel, A.; Liatsikos, E.; Stolzenburg, J.U.; Anderson, C.; McNeill, A.

    2012-01-01

    Urologists are cautious to offer minimally invasive radical prostatectomy in prostate cancer patients with high prostate-specific antigen (and therefore anticipated to have locally advanced or metastatic disease) because of concerns regarding lack of complete cure after minimally invasive radical prostatectomy and of worsening of continence if adjuvant radiotherapy is used. A retrospective review of our institutional database was carried out to identify patients with prostate specific antigen (PSA) ≥20 ng/mL who underwent minimally invasive radical prostatectomy between January 2002 and October 2010. Intraoperative, pathological, functional and short-term oncological outcomes were assessed. Overall, 233 patients met study criteria and were included in the analysis. The median prostate-specific antigen and prostate size were 28.5 ng/mL and 47 mL, respectively. Intraoperative complications were the following: rectal injury (0.86%) and blood transfusion (1.7%). Early postoperative complications included prolonged (>6 days) catheterization (9.4%), hematoma (4.7%), deep venous thrombosis (0.86%) and lymphocele (5.1%). Late postoperative complications included cerebrovascular accident (0.4%) and anastomotic stricture (0.8%). Pathology revealed poorly differentiated cancer in 48.9%, pT3/pT4 disease in 55.8%, positive margins in 28.3% and lymph node disease in 20.2% of the cases. Adverse pathological findings were more frequent in patients with prostate-specific antigen >40 ng/mL and (or) in those with locally advanced disease (pT3/pT4). In 62.2% of the cases, adjuvant radiotherapy was used. At 1-year follow up, 80% of patients did not show evidence of biochemical recurrence and 98.8% of them had good recovery of continence. Minimally invasive radical prostatectomy might represent a reasonable option in prostate cancer patients with high prostate-specific antigen as a part of a multimodality treatment approach. (author)

  1. Invasive Salmonella Infections in Areas of High and Low Malaria Transmission Intensity in Tanzania

    Science.gov (United States)

    Biggs, Holly M.; Lester, Rebecca; Nadjm, Behzad; Mtove, George; Todd, Jim E.; Kinabo, Grace D.; Philemon, Rune; Amos, Ben; Morrissey, Anne B.; Reyburn, Hugh; Crump, John A.

    2014-01-01

    Background. The epidemiology of Salmonella Typhi and invasive nontyphoidal Salmonella (NTS) differs, and prevalence of these pathogens among children in sub-Saharan Africa may vary in relation to malaria transmission intensity. Methods. We compared the prevalence of bacteremia among febrile pediatric inpatients aged 2 months to 13 years recruited at sites of high and low malaria endemicity in Tanzania. Enrollment at Teule Hospital, the high malaria transmission site, was from June 2006 through May 2007, and at Kilimanjaro Christian Medical Centre (KCMC), the low malaria transmission site, from September 2007 through August 2008. Automated blood culture, malaria microscopy with Giemsa-stained blood films, and human immunodeficiency virus testing were performed. Results. At Teule, 3639 children were enrolled compared to 467 at KCMC. Smear-positive malaria was detected in 2195 of 3639 (60.3%) children at Teule and 11 of 460 (2.4%) at KCMC (P < .001). Bacteremia was present in 336 of 3639 (9.2%) children at Teule and 20 of 463 (4.3%) at KCMC (P < .001). NTS was isolated in 162 of 3639 (4.5%) children at Teule and 1 of 463 (0.2%) at KCMC (P < .001). Salmonella Typhi was isolated from 11 (0.3%) children at Teule and 6 (1.3%) at KCMC (P = .008). With NTS excluded, the prevalence of bacteremia at Teule was 5.0% and at KCMC 4.1% (P = .391). Conclusions. Where malaria transmission was intense, invasive NTS was common and Salmonella Typhi was uncommon, whereas the inverse was observed at a low malaria transmission site. The relationship between these pathogens, the environment, and the host is a compelling area for further research. PMID:24336909

  2. Epidemiology and treatment approaches in management of invasive fungal infections

    Directory of Open Access Journals (Sweden)

    Kriengkauykiat J, Ito JI

    2011-05-01

    Full Text Available Jane Kriengkauykiat1,2, James I Ito2, Sanjeet S Dadwal21Department of Pharmacy, 2Division of Infectious Diseases, City of Hope, Duarte, CA, USAAbstract: Over the past 20 years, the number of invasive fungal infections has continued to persist, due primarily to the increased numbers of patients subjected to severe immunosuppression. Despite the development of more active, less toxic antifungal agents and the standard use of antifungal prophylaxis, invasive fungal infections (especially invasive mold infections continue to be a significant factor in hematopoietic cell and solid organ transplantation outcomes, resulting in high mortality rates. Since the use of fluconazole as standard prophylaxis in the hematopoietic cell transplantation setting, invasive candidiasis has come under control, but no mold-active antifungal agent (except for posaconazole in the setting of acute myelogenous leukemia and myelodysplastic syndrome has been shown to improve the survival rate over fluconazole. With the advent of new azole and echinocandin agents, we have seen the emergence of more azole-resistant and echinocandin-resistant fungi. The recent increase in zygomycosis seen in the hematopoietic cell transplantation setting may be due to the increased use of voriconazole. This has implications for the empiric approach to pulmonary invasive mold infections when zygomycosis cannot be ruled out. It is imperative that an amphotericin B product, an antifungal that has never developed resistance in over 50 years, be initiated. The clinical presentations of invasive mold infections and invasive candidiasis can be nonspecific and the diagnostic tests insensitive, so a high index of suspicion and immediate initiation of empiric therapy is required. Unfortunately, our currently available serologic tests do not predict infection ahead of disease, and, therefore cannot be used to initiate "preemptive" therapy. Also, the Aspergillus galactomannan test gives a false negative

  3. Climatic drivers of vegetation based on wavelet analysis

    Science.gov (United States)

    Claessen, Jeroen; Martens, Brecht; Verhoest, Niko E. C.; Molini, Annalisa; Miralles, Diego

    2017-04-01

    Vegetation dynamics are driven by climate, and at the same time they play a key role in forcing the different bio-geochemical cycles. As climate change leads to an increase in frequency and intensity of hydro-meteorological extremes, vegetation is expected to respond to these changes, and subsequently feed back on their occurrence. This response can be analysed using time series of different vegetation diagnostics observed from space, in the optical (e.g. Normalised Difference Vegetation Index (NDVI), Solar Induced Fluorescence (SIF)) and microwave (Vegetation Optical Depth (VOD)) domains. In this contribution, we compare the climatic drivers of different vegetation diagnostics, based on a monthly global data-cube of 24 years at a 0.25° resolution. To do so, we calculate the wavelet coherence between each vegetation-related observation and observations of air temperature, precipitation and incoming radiation. The use of wavelet coherence allows unveiling the scale-by-scale response and sensitivity of the diverse vegetation indices to their climatic drivers. Our preliminary results show that the wavelet-based statistics prove to be a suitable tool for extracting information from different vegetation indices. Going beyond traditional methods based on linear correlations, the application of wavelet coherence provides information about: (a) the specific periods at which the correspondence between climate and vegetation dynamics is larger, (b) the frequencies at which this correspondence occurs (e.g. monthly or seasonal scales), and (c) the time lag in the response of vegetation to their climate drivers, and vice versa. As expected, areas of high rainfall volumes are characterised by a strong control of radiation and temperature over vegetation. Furthermore, precipitation is the most important driver of vegetation variability over short terms in most regions of the world - which can be explained by the rapid response of leaf development towards available water content

  4. Lack of effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 fatty acids on intestinal peptide release and adipokines in healthy female subjects

    Directory of Open Access Journals (Sweden)

    Ingunn Naverud

    2016-08-01

    Full Text Available Peptides released from the small intestine and colon regulate short-term food intake by suppressing appetite and inducing satiety. Intake of marine omega-3 (n-3 fatty acids from fish and fish oils is associated with beneficial health effects, whereas the relation between intake of the vegetable n-3 fatty acid α-linolenic acid and diseases is less clear. The aim of the present study was to investigate the postprandial effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 fatty acids with their different unsaturated fatty acid composition on intestinal peptide release and the adipose tissue. Fourteen healthy lean females consumed three test meals with different fat quality in a fixed order. The test meal consisted of three cakes enriched with coconut fat, linseed oil and a combination of linseed and cod liver oil. The test days were separated by two weeks. Fasting and postprandial blood samples at three and six hours after intake were analysed. A significant postprandial effect was observed for cholecystokinin, peptide YY, glucose-dependent insulinotropic polypeptide, amylin and insulin which increased, while leptin decreased postprandially independent of the fat composition in the high-fat meal. In conclusion, in healthy, young, lean females, an intake of a high-fat meal enriched with n-3 fatty acids from different origin stimulates intestinal peptide release without any difference between the different fat compositions.

  5. SR-XRF imaging of Cs highly accumulated in vegetables

    International Nuclear Information System (INIS)

    Nakai, Izumi; Oda, Nahoko; Terada, Yasuko

    2011-01-01

    Accumulation of Cs in vegetables was studied with regard to the remediation of radioactive Cs from a nuclear plant accident in Fukushima. It was found that Brassica oleracea var. capitata, Brassica campestris var. perviridis, and Lactuca sativa accumulated Cs to a level of more than 10000 ppm (dry weight) when they were cultivated in 1 mM Cs solution. Two-dimensional distributions of Cs were revealed by SR-XRF imaging showing a homogeneous distribution of Cs in the plant bodies. (author)

  6. Seasonal moisture fluctuations four species of pocosin vegetation

    Science.gov (United States)

    George W. Wendel; Theodore G. Storey

    1962-01-01

    During the most severe burning conditions practically all of the living understory vegetation on pocosins may be consumed by fire (9). Even under less severe conditions leaves and branch tips are readily consumed. Whether the moisture content in the living vegetation is high, as it is in the spring, or low, as in the winter, exerts a strong influence on fuel...

  7. Are invasive plants more competitive than native conspecifics? Patterns vary with competitors

    Science.gov (United States)

    Zheng, Yulong; Feng, Yulong; Valiente-Banuet, Alfonso; Li, Yangping; Liao, Zhiyong; Zhang, Jiaolin; Chen, Yajun

    2015-10-01

    Invasive plants are sometimes considered to be more competitive than their native conspecifics, according to the prediction that the invader reallocates resources from defense to growth due to liberation of natural enemies [‘Evolution of Increased Competitive Ability’ (EICA) hypothesis]. However, the differences in competitive ability may depend on the identity of competitors. In order to test the effects of competitors, Ageratina adenophora plants from both native and invasive ranges competed directly, and competed with native residents from both invasive (China) and native (Mexico) ranges respectively. Invasive A. adenophora plants were more competitive than their conspecifics from native populations when competing with natives from China (interspecific competition), but not when competing with natives from Mexico. Invasive A. adenophora plants also showed higher competitive ability when grown in high-density monoculture communities of plants from the same population (intrapopulation competition). In contrast, invasive A. adenophora plants showed lower competitive ability when competing with plants from native populations (intraspecific competition). Our results indicated that in the invasive range A. adenophora has evolved to effectively cope with co-occurring natives and high density environments, contributing to invasion success. Here, we showed the significant effects of competitors, which should be considered carefully when testing the EICA hypothesis.

  8. Lead pollution of road-side vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Quinche, J P; Zuber, R; Bovay, E

    1969-01-01

    In Switzerland, investigations have been made in 1967/1968 concerning the distribution of lead issued from the antiknocking additive of petrol. Observations show that the deposits in meadows in the immediate surrounding (first meter) of roads and highways with high traffic density were especially high (50-100 ppm in dry matter). The pollution is still perceptible even as far as 50 meters from the road. Moreover, during the summer (July and August), a second zone of high lead accumulation (more than 100 ppm) was detected 50 to 100 m from the road, particularly along the highways. This probably is caused by certain climatic conditions and the increase of traffic volume. With regard to fruits, only the downy species (e.g. apricots, peaches) retain some quantities of lead on their skin. Vegetables with large leaves, e.g. lettuce, spinach, and particularly vegetables with definite dissected foliage, such as fennel and parsley, may accumulate relatively high quantities of lead. According to some authors, up to 50 percent of these deposits may be eliminated by washing with water. Conversely, root vegetables (e.g. carrots, onions) do not show a perceptible lead contamination. Likewise the flesh of fruits is not markedly polluted by lead. Trials with foddering milk cows using hay harvested along a highway are not yet analyzed. The results from these trials should permit determining the proportion of lead which remains in the tissues (meat etc.) or passes over into the milk.

  9. Significant impacts of nutrient enrichment on High Arctic vegetation and soils despite two decades of recovery

    Science.gov (United States)

    Street, L. E.; Burns, N. R.; Woodin, S. J.

    2012-04-01

    We re-visit a unique field manipulation study in Svalbard to assess the long-term recovery of plant species composition, leaf tissue chemistry and total ecosystem carbon storage from nutrient enrichment. The experiment was established in 1991. The original aim was to quantify the 'critical load' of nitrogen (N) for tundra; that is, the minimum rate of N deposition affecting ecosystem structure and function. Dissolved N was applied to heath vegetation, both alone and in combination with phosphorous (P), during the growing season over three years. The rates of N addition were lower than in most other nutrient manipulation studies, and were designed to represent typical rates of deposition in the Scottish highlands (50 kg N ha-1 yr-1) and maximum deposition rates experienced in the Arctic (10 kg N ha-1 yr-1). Significant changes in shrub cover, the greenness and N content of the moss layer, and the extent of ecosystem N saturation had occurred by the end of the treatment period. After 18 years of recovery without further treatment, we assessed primary productivity using CO2 flux measurements, and the 'greenness' of vegetation using the Normalised Difference Vegetation Index. We made destructive measurements of above- and below-ground carbon and nutrient stocks, quantified species composition and sampled leaf tissue for chemical analysis. Total carbon storage in organic soils and vegetation was c. 40 % lower in the plots treated with 50 kg N ha-1 yr-1 compared to controls. Species composition in N treated plots also differed significantly, but there was no clear treatment effect on primary productivity. Where 50 kg N ha-1 yr-1 was applied in combination with P (at 5 kg P ha-1 yr-1 ), organic carbon storage was c. 70 % greater than controls, the vegetation was greener, and primary productivity higher. Effects of the treatments were also still clearly apparent in moss tissue nutrient status, even at the lower nitrogen application rate. Our results imply that the effects

  10. An emerging crisis across northern prairie refuges: Prevalence of invasive plants and a plan for adaptive management

    Science.gov (United States)

    Grant, T.A.; Flanders-Wanner, B.; Shaffer, T.L.; Murphy, R.K.; Knutsen, G.A.

    2009-01-01

    In the northern Great Plains, native prairies managed by the U.S. Fish and Wildlife Service (Service) can be pivotal in conservation of North America's biological diversity. From 2002 to 2006, we surveyed 7,338 belt transects to assess the general composition of mixed-grass and tallgrass prairie vegetation across five "complexes" (i.e., administrative groupings) of national wildlife refuges managed by the Service in North Dakota and South Dakota. Native grasses and forbs were common (mean frequency of occurrence 47%-54%) on two complexes but uncommon (4%-13%) on two others. Conversely, an introduced species of grass, smooth brome (Bromus inermis), accounted for 45% to 49% of vegetation on two complexes and another species, Kentucky bluegrass (Poa pratensis) accounted for 27% to 36% of the vegetation on three of the complexes. Our data confirm prior suspicions of widespread invasion by introduced species of plants on Service-owned tracts of native prairie, changes that likely stem in part from a common management history of little or no disturbance (e.g., defoliation by grazing or fire). However, variability in the degree and type of invasion among prairie tracts suggests that knowledge of underlying causes (e.g., edaphic or climatic factors, management histories) could help managers more effectively restore prairies. We describe an adaptive management approach to acquire such knowledge while progressing with restoration. More specifically, we propose to use data from inventories of plant communities on Service-owned prairies to design and implement, as experiments, optimal restoration strategies. We will then monitor these experiments and use the results to refine future strategies. This comprehensive, process-oriented approach should yield reliable and robust recommendations for restoration and maintenance of native prairies in the northern Great Plains. 2009 by the Board of Regents of the University of Wisconsin System.

  11. Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Wang, Kun; Zhang, Li; Qiu, Yubao; Ji, Lei; Tian, Feng; Wang, Cuizhen; Wang, Zhiyong

    2013-01-01

    Understanding the relationships between snow and vegetation is important for interpretation of the responses of alpine ecosystems to climate changes. The Qinghai-Tibetan Plateau is regarded as an ideal area due to its undisturbed features with low population and relatively high snow cover. We used 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) datasets during 2001–2010 to examine the snow–vegetation relationships, specifically, (1) the influence of snow melting date on vegetation green-up date and (2) the effects of snow cover duration on vegetation greenness. The results showed that the alpine vegetation responded strongly to snow phenology (i.e., snow melting date and snow cover duration) over large areas of the Qinghai-Tibetan Plateau. Snow melting date and vegetation green-up date were significantly correlated (p growth was influenced by different seasonal snow cover durations (SCDs) in different regions. Generally, the December–February and March–May SCDs played a significantly role in vegetation growth, both positively and negatively, depending on different water source regions. Snow's positive impact on vegetation was larger than the negative impact.

  12. EFFECTS OF CARVEDILOL AND METOPROLOL ON VEGETATIVE REGULATION OF HEART AND MICROCIRCULATION IN PATIENTS WITH HYPERTENSION AND HIGH BODY MASS

    Directory of Open Access Journals (Sweden)

    A. R. Kiselev

    2016-01-01

    Full Text Available Aim. To study effects of carvedilol and metoprolol on vegetative regulation of heart and microcirculatory vessels in patients with arterial hypertension (HT of 1-2 degrees and high body mass/obesity.Material and methods. Patients with HT of 1-2 degrees (n=25; aged 51±8 y.o. were included in the study. Registration of 0,1 Hz-fluctuations in heart rhythm variability and microcirculation change was performed during passive orthostatic test at spontaneous breath (duration of each test stage 10 min. Synchronization of 0,1 Hz-rhythms was estimated by calculation of phases difference and a numerical measure of synchronization. Frequency estimations of heart rhythm variability spectrum were performed in high and low frequency ranges additionaly.Results. Carvedilol and metoprolol have the comparable antihypertensive effect and influence on vegetative regulation of cardiovascular system in patients with HT. Both drugs have negative influence on synchronization of 0,1 Hz-rhythms in initially high systolic blood pressure level (>150 mm Hg.Conclusion. Carvedilol and metoprolol have comparable influence on synchronization of 0,1 Hz-rhythms in cardiovascular system.

  13. Cutaneous Squamous Cell Carcinoma with Invasion through Ear Cartilage

    Directory of Open Access Journals (Sweden)

    Julie Boisen

    2016-01-01

    Full Text Available Cutaneous squamous cell carcinoma of the ear represents a high-risk tumor location with an increased risk of metastasis and local tissue invasion. However, it is uncommon for these cancers to invade through nearby cartilage. Cartilage invasion is facilitated by matrix metalloproteases, specifically collagenase 3. We present the unusual case of a 76-year-old man with an auricular squamous cell carcinoma that exhibited full-thickness perforation of the scapha cartilage. Permanent sections through the eroded cartilage confirmed tumor invasion extending to the posterior ear skin.

  14. Grinding temperature and energy ratio coe cient in MQL grinding of high-temperature nickel-base alloy by using di erent vegetable oils as base oil

    Institute of Scientific and Technical Information of China (English)

    Li Benkai; Li Changhe; Zhang Yanbin; Wang Yaogang; Jia Dongzhou; Yang Min

    2016-01-01

    Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grind-ing temperature, and energy ratio coefficient of MQL grinding were compared among the seven veg-etable oil types. Results revealed that (1) castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient;(2) palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient;(3) MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil;(4) viscosity significantly influences grinding force and grinding tem-perature to a greater extent than fatty acid varieties and contents in vegetable oils;(5) although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less vis-cous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature;(6) saturated fatty acid is a more efficient lubricant than unsaturated fatty acid;and (7) a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 °C grinding temperature, and 42.7%energy ratio coefficient

  15. Micafungin in the treatment of invasive candidiasis and invasive aspergillosis

    Directory of Open Access Journals (Sweden)

    Nathan P Wiederhold

    2009-01-01

    Full Text Available Nathan P Wiederhold1, Jason M Cota2, Christopher R Frei11University of Texas at Austin College of Pharmacy, Austin, Texas, USA; 2University of the Incarnate Word Feik School of Pharmacy, San Antonio, Texas, USAAbstract: Micafungin is an echinocandin antifungal agent available for clinical use in Japan, Europe, and the United States. Through inhibition of β-1,3-glucan production, an essential component of the fungal cell wall, micafungin exhibits potent antifungal activity against key pathogenic fungi, including Candida and Aspergillus species, while contributing minimal toxicity to mammalian cells. This activity is maintained against polyene and azole-resistant isolates. Pharmacokinetic and pharmacodynamic studies have demonstrated linear kinetics both in adults and children with concentration-dependent activity observed both in vitro and in vivo. Dosage escalation studies have also demonstrated that doses much higher than those currently recommended may be administered without serious adverse effects. Clinically, micafungin has been shown to be efficacious for the treatment of invasive candidiasis and invasive aspergillosis. Furthermore, the clinical effectiveness of micafungin against these infections occurs without the drug interactions that occur with the azoles and the nephrotoxicity observed with amphotericin B formulations. This review will focus on the pharmacology, clinical microbiology, mechanisms of resistance, safety, and clinical efficacy of micafungin in the treatment of invasive candidiasis and invasive aspergillosis.Keywords: micafungin, echinocandin, Candida, Aspergillus, invasive candidiasis, invasive aspergillosis

  16. Peculiarities and opportunities of restoration of vegetation of experimental ground 'Experimental field' of Semipalatinsk Test Site

    International Nuclear Information System (INIS)

    Plisak, R.P.; Plisak, S. V.

    2003-01-01

    Full text: Geo-botanical researches at experimental ground 'Experimental field' of Semipalatinsk Test Site were conducted out in 1994-2000. 26 ground and 87 air nuclear tests were conducted out at the territory in 1949-1962. It is found that for deluvial-proluvial plain: High level of radiation pollution of soils in the epicentre of nuclear explosions is limiting factor for vegetation rehabilitation. Under level of PED of γ-irradiation 14,000-16,000 μR/h vegetation restoration has not begun until now. Only single individuals of Artemisia frigida appear under PED of γ-irradiation 10,000-13,000 μR/h. Rarefied plant aggregations constituted by annual-biennial weed species appear under PED of γ-irradiation 3,600-8,000 μR/h. Natural rehabilitation of vegetation occurs more intensively under PED of γ-irradiation of 60-200 μR/h. Vegetation aggregations close to initial zonal coenosis develop in these conditions. It is found that for tumulose: Vegetation restoration on the tops of hills starts with invasion of weed species. Plant aggregations with predominance of Caragana pumila, tyhedra distachya develop on accumulations of fine earth in cracks of mountain rocks. Lichens and mosses assimilate outcrops of mountain rocks. 2. Plant aggregations with predominance of Spiraea hypericifoia, Caragana pumila, Artemisia frigida develop on the upper parts of slopes of hills. Craters of nuclear explosions have not been assimilated by higher plants yet. Rarefied plant aggregations constituted by Psathyrostachys juncea, Artemisia frigida appear in the lower parts of slopes of hills. Single individuals of Medicago falcata, Galium ruthenicum, Melilotus dentatus are found on sides of explosion craters. Vegetation rehabilitates slowly trenches on gentle slopes of hills. Following measures are necessary for intensification of the process of restoration of vegetation destroyed and damaged by nuclear explosions: To clean slopes of hills from numerous fragment of metallic and plastic

  17. A comparison of non-invasive versus invasive methods of ...

    African Journals Online (AJOL)

    Puneet Khanna

    for Hb estimation from the laboratory [total haemoglobin mass (tHb)] and arterial blood gas (ABG) machine (aHb), using ... A comparison of non-invasive versus invasive methods of haemoglobin estimation in patients undergoing intracranial surgery. 161 .... making decisions for blood transfusions based on these results.

  18. Alien invasive birds.

    Science.gov (United States)

    Brochier, B; Vangeluwe, D; van den Berg, T

    2010-08-01

    A bird species is regarded as alien invasive if it has been introduced, intentionally or accidentally, to a location where it did not previously occur naturally, becomes capable of establishing a breeding population without further intervention by humans, spreads and becomes a pest affecting the environment, the local biodiversity, the economy and/or society, including human health. European Starling (Sturnus vulgaris), Common Myna (Acridotheres tristis) and Red-vented Bulbul (Pycnonotus cafer) have been included on the list of '100 of the World's Worst Invasive Alien Species', a subset of the Global Invasive Species Database. The 'Delivering Alien Invasive Species Inventories for Europe' project has selected Canada Goose (Branta canadensis), Ruddy Duck (Oxyura jamaicensis), Rose-ringed Parakeet (Psittacula krameri) and Sacred Ibis (Threskiornis aethiopicus) as among 100 of the worst invasive species in Europe. For each of these alien bird species, the geographic range (native and introduced range), the introduction pathway, the general impacts and the management methods are presented.

  19. A novel non-invasive diagnostic sampling technique for cutaneous leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Yasaman Taslimi

    2017-07-01

    Full Text Available Accurate diagnosis of cutaneous leishmaniasis (CL is important for chemotherapy and epidemiological studies. Common approaches for Leishmania detection involve the invasive collection of specimens for direct identification of amastigotes by microscopy and the culturing of promastigotes from infected tissues. Although these techniques are highly specific, they require highly skilled health workers and have the inherent risks of all invasive procedures, such as pain and risk of bacterial and fungal super-infection. Therefore, it is essential to reduce discomfort, potential infection and scarring caused by invasive diagnostic approaches especially for children. In this report, we present a novel non-invasive method, that is painless, rapid and user-friendly, using sequential tape strips for sampling and isolation of DNA from the surface of active and healed skin lesions of CL patients. A total of 119 patients suspected of suffering from cutaneous leishmaniasis with different clinical manifestations were recruited and samples were collected both from their lesions and from uninfected areas. In addition, 15 fungal-infected lesions and 54 areas of healthy skin were examined. The duration of sampling is short (less than one minute and species identification by PCR is highly specific and sensitive. The sequential tape stripping sampling method is a sensitive, non-invasive and cost-effective alternative to traditional diagnostic assays and it is suitable for field studies as well as for use in health care centers.

  20. Post-fire vegetation recovery in Portugal based ewline on spot/vegetation data

    Directory of Open Access Journals (Sweden)

    C. Gouveia

    2010-04-01

    Full Text Available A procedure is presented that allows identifying large burned scars and the monitoring of vegetation recovery in the years following major fire episodes. The procedure relies on 10-day fields of Maximum Value Composites of Normalized Difference Vegetation Index (MVC-NDVI, with a 1 km×1 km spatial resolution obtained from the VEGETATION instrument. The identification of fire scars during the extremely severe 2003 fire season is performed based on cluster analysis of NDVI anomalies that persist during the vegetative cycle of the year following the fire event. Two regions containing very large burned scars were selected, located in Central and Southwestern Portugal, respectively, and time series of MVC-NDVI analysed before the fire events took place and throughout the post-fire period. It is shown that post-fire vegetation dynamics in the two selected regions may be characterised based on maps of recovery rates as estimated by fitting a monoparametric model of vegetation recovery to MVC-NDVI data over each burned scar. Results indicated that the recovery process in the region located in Central Portugal is mostly related to fire damage rather than to vegetation density before 2003, whereas the latter seems to have a more prominent role than vegetation conditions after the fire episode, e.g. in the case of the region in Southwestern Portugal. These differences are consistent with the respective predominant types of vegetation. The burned area located in Central Portugal is dominated by Pinus Pinaster whose natural regeneration crucially depends on the destruction of seeds present on the soil surface during the fire, whereas the burned scar in Southwestern Portugal was populated by Eucalyptus that may quickly re-sprout from buds after fire. Besides its simplicity, the monoparametric model of vegetation recovery has the advantage of being easily adapted to other low-resolution satellite data, as well as to other types of vegetation

  1. Conspecific plasticity and invasion: invasive populations of Chinese tallow (Triadica sebifera have performance advantage over native populations only in low soil salinity.

    Directory of Open Access Journals (Sweden)

    Leiyi Chen

    Full Text Available Global climate change may increase biological invasions in part because invasive species may have greater phenotypic plasticity than native species. This may be especially important for abiotic stresses such as salt inundation related to increased hurricane activity or sea level rise. If invasive species indeed have greater plasticity, this may reflect genetic differences between populations in the native and introduced ranges. Here, we examined plasticity of functional and fitness-related traits of Chinese tallow (Triadica sebifera populations from the introduced and native ranges that were grown along a gradient of soil salinity (control: 0 ppt; Low: 5 ppt; Medium: 10 ppt; High: 15 ppt in a greenhouse. We used both norm reaction and plasticity index (PIv to estimate the conspecific phenotypic plasticity variation between invasive and native populations. Overall, invasive populations had higher phenotypic plasticity of height growth rate (HGR, aboveground biomass, stem biomass and specific leaf area (SLA. The plasticity Index (PIv of height growth rate (HGR and SLA each were higher for plants from invasive populations. Absolute performance was always comparable or greater for plants from invasive populations versus native populations with the greatest differences at low stress levels. Our results were consistent with the "Master-of-some" pattern for invasive plants in which the fitness of introduced populations was greater in more benign conditions. This suggests that the greater conspecific phenotypic plasticity of invasive populations compared to native populations may increase invasion success in benign conditions but would not provide a potential interspecific competitive advantage in higher salinity soils that may occur with global climate change in coastal areas.

  2. Invasion of Old World Phragmites australis in the New World: precipitation and temperature patterns combined with human influences redesign the invasive niche.

    Science.gov (United States)

    Guo, Wen-Yong; Lambertini, Carla; Li, Xiu-Zhen; Meyerson, Laura A; Brix, Hans

    2013-11-01

    After its introduction into North America, Euro-Asian Phragmites australis became an aggressive invasive wetland grass along the Atlantic coast of North America. Its distribution range has since expanded to the middle, south and southwest of North America, where invasive P. australis has replaced millions of hectares of native plants in inland and tidal wetlands. Another P. australis invasion from the Mediterranean region is simultaneously occurring in the Gulf region of the United States and some countries in South America. Here, we analysed the occurrence records of the two Old World invasive lineages of P. australis (Haplotype M and Med) in both their native and introduced ranges using environmental niche models (ENMs) to assess (i) whether a niche shift accompanied the invasions in the New World; (ii) the role of biologically relevant climatic variables and human influence in the process of invasion; and (iii) the current potential distribution of these two lineages. We detected local niche shifts along the East Coast of North America and the Gulf Coast of the United States for Haplotype M and around the Mississippi Delta and Florida of the United States for Med. The new niche of the introduced Haplotype M accounts for temperature fluctuations and increased precipitation. The introduced Med lineage has enlarged its original subtropical niche to the tropics-subtropics, invading regions with a high annual mean temperature (> ca. 10 °C) and high precipitation in the driest period. Human influence is an important factor for both niches. We suggest that an increase in precipitation in the 20th century, global warming and human-made habitats have shaped the invasive niches of the two lineages in the New World. However, as the invasions are ongoing and human and natural disturbances occur concomitantly, the future distribution ranges of the two lineages may diverge from the potential distribution ranges detected in this study. © 2013 John Wiley & Sons Ltd.

  3. Water and Energy Balance in Response to the Removal of Invasive Phragmites Australis in a Riparian Wetland

    Science.gov (United States)

    Mykleby, P.; Lenters, J. D.; Cutrell, G. J.; Herrman, K.; Istanbulluoglu, E.; Scott, D.

    2011-12-01

    Vegetation plays an important role in the surface energy and water balance of wetlands. Transpiration from phreatophytes, in particular, withdraws water directly from groundwater, often impacting streamflow rates in adjacent tributaries. In the Republican River basin of the Central Plains (USA), streamflow has declined significantly in the past 30-40 years. Invasive vegetation species (such as Phragmites australis) have been removed from portions of the riparian corridor in an effort to halt or reverse the downward trend in streamflow. In this study, we investigated the energy and water balance of a P. australis-dominated riparian wetland in south-central Nebraska to assess the potential effectiveness of such an approach. Evapotranspiration (ET) rates were measured during two growing seasons - one being 2009, when the P. australis was at full growth, and the other during 2010, after the vegetation had been sprayed with herbicide (and remained only as dead, standing biomass). Energy balance measurements at the field site included net radiation, heat storage rates in the canopy, soil, and standing water, and sensible heat flux, which was measured using a large-aperture scintillometer (LAS). Latent heat flux (i.e., ET) was calculated as a residual of the energy balance, and comparisons were made between the two growing seasons. As a result of the spraying of the P. australis vegetation, season-mean ET rates dropped from 4.4 mm day-1 in 2009 to 3.0 mm day-1 in 2010. This decrease in ET was associated with a large increase in sensible heat flux, which more than doubled between the two years (from 33 W m-2 in 2009 to 76 W m-2 in 2010). Meteorological conditions at the site were slightly different from one year to the next, but the differences were not large enough to account for the dramatic changes in latent and sensible heat flux that were observed. We conclude, therefore, that the majority of the ~30% decrease in ET (and ~130% increase in sensible heat flux) was the

  4. Broad-Scale Environmental Conditions Responsible for Post-Fire Vegetation Dynamics

    OpenAIRE

    Casady, Grant M.; Marsh, Stuart E.

    2010-01-01

    Ecosystem response to disturbance is influenced by environmental conditions at a number of scales. Changes in climate have altered fire regimes across the western United States, and have also likely altered spatio-temporal patterns of post-fire vegetation regeneration. Fire occurrence data and a vegetation index (NDVI) derived from the NOAA Advanced Very High Resolution Radiometer (AVHRR) were used to monitor post-fire vegetation from 1989 to 2007. We first investigated differences in post-fi...

  5. Food safety and bioavailability evaluations of four vegetables grown in the highly arsenic-contaminated soils on the Guandu Plain of northern Taiwan.

    Science.gov (United States)

    Su, Shaw-Wei; Tsui, Chun-Chih; Lai, Hung-Yu; Chen, Zueng-Sang

    2014-04-14

    Arsenic contamination in a large area of agricultural fields on the Guandu Plain of northern Taiwan was confirmed in a survey conducted in 2006, but research concerning the relationship between bioavailable As concentrations in contaminated soils and crop production in Taiwan is not available. Pot experiments were conducted to examine the growth and accumulation of As in four vegetable crops grown in As-contaminated soils and to assess As intake through consumption. The phytotoxic effects of As in soils were not shown in the pot experiments in which vegetable crops were grown in soils contaminated with different As levels in situ collected from Guandu Plain (120-460 mg/kg) or artificially spiked As-contaminated soils (50-170 mg/kg). Experimental results showed that the bioavailable As extracted with 0.5M NaHCO3 from soils can be used to estimate As concentrations in vegetables. The As concentrations in the vegetables were compared with data shown in the literature and As limits calculated from drinking water standards and the provisional tolerance weekly intake (PTWI) of inorganic As established by the Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). Although the As levels in the vegetables were not high and the bioavailability of As in the soils was quite low, long-term consumption may result in higher As intake in the human body.

  6. Uptake of naturally occurring radioisotopes by vegetation in a region of high radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Mahon, D C; Mathewes, R W [Simon Fraser Univ., Burnaby, British Columbia (Canada)

    1983-05-01

    The accumulation of four naturally occurring radionuclides of the sup(238)U series, uranium, sup(226)Ra, sup(210)Pb and sup(210)Po, in 15 species of native plants was investigated. Of the plants sampled some accumulated, but none concentrated uranium or sup(226)Ra. Grouseberry (Vaccinium scoparium Leiberg) appeared to concentrate sup(210)Pb and sup(210)Po. There were marked seasonal variations in the accumulation of uranium by grass (Calamagrostis rubescens Buckl.), and of sup(210)Pb and sup(210)Po by grass and fireweed (Epilobium angustifolium L.). High positive correlations between soil and vegetation radionuclide content were found for uranium in fireweed and grouseberry in spring, sup(226)Ra in willow (Salix scouleriana L.) in spring, and uranium in fireweed in summer.

  7. Non-small cell lung cancer: Whole-lesion histogram analysis of the apparent diffusion coefficient for assessment of tumor grade, lymphovascular invasion and pleural invasion.

    Science.gov (United States)

    Tsuchiya, Naoko; Doai, Mariko; Usuda, Katsuo; Uramoto, Hidetaka; Tonami, Hisao

    2017-01-01

    Investigating the diagnostic accuracy of histogram analyses of apparent diffusion coefficient (ADC) values for determining non-small cell lung cancer (NSCLC) tumor grades, lymphovascular invasion, and pleural invasion. We studied 60 surgically diagnosed NSCLC patients. Diffusion-weighted imaging (DWI) was performed in the axial plane using a navigator-triggered single-shot, echo-planar imaging sequence with prospective acquisition correction. The ADC maps were generated, and we placed a volume-of-interest on the tumor to construct the whole-lesion histogram. Using the histogram, we calculated the mean, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of ADC, skewness, and kurtosis. Histogram parameters were correlated with tumor grade, lymphovascular invasion, and pleural invasion. We performed a receiver operating characteristics (ROC) analysis to assess the diagnostic performance of histogram parameters for distinguishing different pathologic features. The ADC mean, 10th, 25th, 50th, 75th, 90th, and 95th percentiles showed significant differences among the tumor grades. The ADC mean, 25th, 50th, 75th, 90th, and 95th percentiles were significant histogram parameters between high- and low-grade tumors. The ROC analysis between high- and low-grade tumors showed that the 95th percentile ADC achieved the highest area under curve (AUC) at 0.74. Lymphovascular invasion was associated with the ADC mean, 50th, 75th, 90th, and 95th percentiles, skewness, and kurtosis. Kurtosis achieved the highest AUC at 0.809. Pleural invasion was only associated with skewness, with the AUC of 0.648. ADC histogram analyses on the basis of the entire tumor volume are able to stratify NSCLCs' tumor grade, lymphovascular invasion and pleural invasion.

  8. Selection of High Oil Yielding Trees of Millettia pinnata (L.) Panigrahi, Vegetative Propagation and Growth in the Field

    OpenAIRE

    Ni Luh Arpiwi; I Made Sutha Negara; I Nengah Simpen

    2017-01-01

    Millettia pinnata (L.) Panigrahi is a potential legume tree that produces seed oil for biodiesel feedstock. The initial step for raising a large-scale plantation of the species is selection of high oil yielding trees from the natural habitat. This is followed by vegetative propagation of the selected trees and then testing the growth of the clone in the field. The aim of the present study was to select high-oil yielding trees of M. pinnata, to propagate the selected trees by budding and to e...

  9. Increasing fruits and vegetables in midlife women: a feasibility study.

    Science.gov (United States)

    Gunn, Caroline A; Weber, Janet L; Coad, Jane; Kruger, Marlena C

    2013-07-01

    The positive link between bone health and fruit/vegetable consumption has been attributed to the lower renal acid load of a diet high in alkaline-forming fruit/vegetables. Other important dietary determinants of bone health include micronutrients and bioactives found in fruit/vegetables. We hypothesized that increased intake of fruit/vegetables to 9 or more servings a day would lower net endogenous acid production (NEAP) significantly (~20 mEq/d) and increase urine pH (0.5 pH units). This 8-week feasibility study investigated if 21 midlife women (age, 40-65 years) currently consuming 5 or less servings a day of fruit/vegetables could increase their intake to 9 or more servings a day to substantially lower NEAP and include specific vegetables daily. Three-day diet diaries were completed at baseline and the end of the study and assessed for NEAP (estimated) and number of servings from all food groups. Urine pH dipsticks were provided for the participants to assess and record their fasting urine pH daily (second void). Seventy-six percent of women achieved the study aim, which was to increase to 9 or more servings of fruit/vegetables for at least 5 d/wk. There was a reduction in the number of bread/cereal servings. Net endogenous acid production (estimated) was reduced significantly, with a mean urine pH increase of 0.68 pH units (95% confidence interval, 0.46-1.14); however, daily urine pH measures showed high variability. This study demonstrated that a group of midlife women can change their diet for 8 weeks by significantly increasing fruit/vegetable servings and include specific "bone friendly" vegetables daily, resulting in a significant decrease in estimated dietary NEAP and an increase in urine pH. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Synergy Between Pathogen Release and Resource Availability in Plant Invasion

    Science.gov (United States)

    Why do some exotic plant species become invasive? Two common hypotheses, increased resource availability and enemy release, may more effectively explain invasion if they favor the same species, and therefore act in concert. This would be expected if plant species adapted to high levels of available ...

  11. First Brazilian patent for dielectric vegetable oil for transformers; Primeira patente brasileira de oleo dieletrico vegetal para transformadores

    Energy Technology Data Exchange (ETDEWEB)

    Carioca, Jose O.B.; Carvalho, Paulo C.M.; Correa, Raimundo G.C.; Bernardo, Francisco A.B. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil); Coelho Junior, Luiz G. [2 Companhia Energetica do Ceara (COELCE), Fortaleza, CE (Brazil); Abreu, Rosa F.A. [Universidade Estadual do Ceara (UECE), Fortaleza, CE (Brazil)

    2008-07-01

    The present paper discuss the development of different insulating oils for electric power transformers during the last hundred years and analyze comparatively the potential for the use of vegetable oils as a source for green dielectric oils, due to its high level of biodegradability, nontoxic, material compatibility, good electric strength and insulation properties, long-term oxidative and thermal stability, relatively low pour point and reasonable cost. Based on these premises, the authors developed a new type of insulating fluid based on Brazilian vegetable oils never used before for this purpose. This product is competitive with similar and patented products developed from canola and soya vegetable oils. Recently a new patent related with the process for the production of this fluid was submitted to the World Industrial Property Organization - WIPO. (author)

  12. MMP28 (epilysin) as a novel promoter of invasion and metastasis in gastric cancer

    International Nuclear Information System (INIS)

    Jian, Pan; Yanfang, Tao; Zhuan, Zhou; Jian, Wang; Xueming, Zhu; Jian, Ni

    2011-01-01

    The purpose of this study was to investigate invasion and metastasis related genes in gastric cancer. The transwell migration assay was used to select a highly invasive sub-line from minimally invasive parent gastric cancer cells, and gene expression was compared using a microarray. MMP28 upregulation was confirmed using qRT-PCR. MMP28 immunohistochemistry was performed in normal and gastric cancer specimens. Invasiveness and tumor formation of stable cells overexpressing MMP28 were tested in vitro and in vivo. MMP28 was overexpressed in the highly invasive sub-cell line. Immunohistochemistry revealed MMP28 expression was markedly increased in gastric carcinoma relative to normal epithelia, and was significantly associated with depth of tumor invasion, lymph node metastasis and poorer overall survival. Ectopic expression of MMP28 indicated MMP28 promoted tumor cell invasion in vitro and increased gastric carcinoma metastasis in vivo. This study indicates MMP28 is frequently overexpressed during progression of gastric carcinoma, and contributes to tumor cell invasion and metastasis. MMP28 may be a novel therapeutic target for prevention and treatment of metastases in gastric cancer

  13. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany.

    Science.gov (United States)

    Antoniadis, Vasileios; Shaheen, Sabry M; Boersch, Judith; Frohne, Tina; Du Laing, Gijs; Rinklebe, Jörg

    2017-01-15

    Although soil contamination by potentially toxic elements (PTEs) in Europe has a history of many centuries, related problems are often considered as having been dealt with due to the enforcement of tight legislations. However, there are many unsolved issues. We aimed to assess PTE levels in highly contaminated soils and in garden edible vegetables using human health risk indices in order to evaluate the availability and mobilization of arsenic (As), copper (Cu), manganese (Mn), mercury (Hg), lead (Pb), and zinc (Zn). In four gardens in Germany, situated on, or in the vicinity of, a mine dump area, we planted beans (Phaseolus vulgaris ssp. nanus), carrots (Daucus sativus) and lettuce (Lactuca sativa ssp. capitata). We examined soil-to-plant mobilization of elements using transfer coefficient (TC), as well as soil contamination using contamination factor (CF), enrichment factor (EF), and bioaccumulation index (I geo ). In addition, we tested two human health risk assessment indices: Soil-induced hazard quotient (HQ S ) (representing the "direct soil ingestion" pathway), and vegetable-induced hazard quotient (HQ V ) (representing the "vegetable intake" pathway). The studied elements were highly elevated in the soils. The values in garden 2 were especially high (e.g., Pb: 13789.0 and Hg: 36.8 mg kg -1 ) and largely exceeded the reported regulation limits of 50 (for As), 40 (Cu), 400 (Pb), 150 (Zn), and 5 (Hg) mg kg -1 . Similarly, element concentrations were very high in the grown vegetables. The indices of CF, EF and I geo were enhanced even to levels that are rarely reported in the literature. Specifically, garden 2 indicated severe contamination due to multi-element deposition. The contribution of each PTE to the total of measured HQ S revealed that Pb was the single most important element causing health risk (contributing up to 77% to total HQ S ). Lead also posed the highest risk concerning vegetable consumption, contributing up to 77% to total HQ V . The

  14. Effects of riparian vegetation development in a restored lowland stream

    NARCIS (Netherlands)

    Vargas-Luna, A.; Crosato, A.; Hoitink, A.J.F.; Groot, J.; Uijttewaal, W.S.J.

    2016-01-01

    This paper presents the morphodynamic effects of riparian vegetation growth in a lowland restored stream. Hydrological series, high-resolution bathymetric data and aerial photographs are combined in the study. The vegetation root system was found to assert a strong control on soil stabilization,

  15. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Koteen, Laura E; Harte, John [Energy and Resources Group, 310 Barrows Hall, University of California, Berkeley, CA 94720 (United States); Baldocchi, Dennis D, E-mail: lkoteen@berkeley.edu [Department of Environmental Science, Policy and Management, 137 Mulford Hall, University of California, Berkeley, CA 94720 (United States)

    2011-10-15

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  16. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    International Nuclear Information System (INIS)

    Koteen, Laura E; Harte, John; Baldocchi, Dennis D

    2011-01-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  17. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Science.gov (United States)

    Koteen, Laura E.; Baldocchi, Dennis D.; Harte, John

    2011-10-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  18. Minimally invasive orthognathic surgery.

    Science.gov (United States)

    Resnick, Cory M; Kaban, Leonard B; Troulis, Maria J

    2009-02-01

    Minimally invasive surgery is defined as the discipline in which operative procedures are performed in novel ways to diminish the sequelae of standard surgical dissections. The goals of minimally invasive surgery are to reduce tissue trauma and to minimize bleeding, edema, and injury, thereby improving the rate and quality of healing. In orthognathic surgery, there are two minimally invasive techniques that can be used separately or in combination: (1) endoscopic exposure and (2) distraction osteogenesis. This article describes the historical developments of the fields of orthognathic surgery and minimally invasive surgery, as well as the integration of the two disciplines. Indications, techniques, and the most current outcome data for specific minimally invasive orthognathic surgical procedures are presented.

  19. Prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Che K

    2017-02-01

    Full Text Available Keying Che,1,* Yang Zhao,2,3,* Xiao Qu,1 Zhaofei Pang,1 Yang Ni,4 Tiehong Zhang,4 Jiajun Du,1,5 Hongchang Shen4 1Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 2Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Collaborative Innovation Center of Cancer Medicine, Fudan University Shanghai Cancer Center, 3Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 4Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, 5Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People’s Republic of China *These authors contributed equally to this work Purpose: Gastric carcinoma (GC is a highly aggressive cancer and one of the leading causes of cancer-related deaths worldwide. Histopathological evaluation pertaining to invasiveness is likely to provide additional information in relation to patient outcome. In this study, we aimed to evaluate the prognostic significance of tumor budding and single cell invasion in gastric adenocarcinoma.Materials and methods: Hematoxylin and eosin-stained slides generated from 296 gastric adenocarcinoma patients with full clinical and pathological and follow-up information were systematically reviewed. The patients were grouped on the basis of tumor budding, single cell invasion, large cell invasion, mitotic count, and fibrosis. The association between histopathological parameters, different classification systems, and overall survival (OS was statistically analyzed.Results: Among the 296 cases that were analyzed, high-grade tumor budding was observed in 49.0% (145 of them. Single cell invasion and large cell invasion were observed in 62.8% (186 and 16.9% (50 of the cases, respectively. Following univariate analysis, patients with high-grade tumor budding had shorter OS than those with low-grade tumor budding (hazard ratio [HR]: 2.260, P<0

  20. Holocene vegetation and climate changes in the central Mediterranean inferred from a high-resolution marine pollen record (Adriatic Sea

    Directory of Open Access Journals (Sweden)

    N. Combourieu-Nebout

    2013-09-01

    Full Text Available The high-resolution multiproxy study of the Adriatic marine core MD 90-917 provides new insights to reconstruct vegetation and regional climate changes over the southcentral Mediterranean during the Younger Dryas (YD and Holocene. Pollen records show the rapid forest colonization of the Italian and Balkan borderlands and the gradual installation of the Mediterranean association during the Holocene. Quantitative estimates based on pollen data provide Holocene precipitations and temperatures in the Adriatic Sea using a multi-method approach. Clay mineral ratios from the same core reflect the relative contributions of riverine (illite and smectite and eolian (kaolinite contributions to the site, and thus act as an additional proxy with which to evaluate precipitation changes in the Holocene. Vegetation climate reconstructions show the response to the Preboreal oscillation (PBO, most likely driven by changes in temperature and seasonal precipitation, which is linked to increasing river inputs from Adriatic rivers recorded by increase in clay mineral contribution to marine sediments. Pollen-inferred temperature declines during the early–mid Holocene, then increases during the mid–late Holocene, similar to southwestern Mediterranean climatic patterns during the Holocene. Several short vegetation and climatic events appear in the record, indicating the sensitivity of vegetation in the region to millennial-scale variability. Reconstructed summer precipitation shows a regional maximum (170–200 mm between 8000 and 7000 similar to the general pattern across southern Europe. Two important shifts in vegetation occur at 7700 cal yr BP (calendar years before present and between 7500 and 7000 cal yr BP and are correlated with increased river inputs around the Adriatic Basin respectively from the northern (7700 event and from the central Adriatic borderlands (7500–7000 event. During the mid-Holocene, the wet summers lead to permanent moisture all year

  1. Influences of N-fixing and non-N-fixing vegetation and invasive fish on water chemistry of Hawaiian anchialine ponds

    Science.gov (United States)

    B. D. Dudley; Richard MacKenzie; T. S. Sakihara; H. Dulaiova; C. A. Waters; Flint Hughes; R. Ostertag

    2014-01-01

    In coastal waters, it remains unclear how terrestrial invasive species might alter nutrient availability and thus affect bottom-up control of primary production. Anchialine ponds are tidal- and groundwater-fed coastal water bodies without surface connections that provide convenient model systems in which to examine terrestrial to aquatic nutrient flow. To investigate...

  2. Placing invasive species management in a spatiotemporal context.

    Science.gov (United States)

    Baker, Christopher M; Bode, Michael

    2016-04-01

    Invasive species are a worldwide issue, both ecologically and economically. A large body of work focuses on various aspects of invasive species control, including how to allocate control efforts to eradicate an invasive population as cost effectively as possible: There are a diverse range of invasive species management problems, and past mathematical analyses generally focus on isolated examples, making it hard to identify and understand parallels between the different contexts. In this study, we use a single spatiotemporal model to tackle the problem of allocating control effort for invasive species when suppressing an island invasive species, and for long-term spatial suppression projects. Using feral cat suppression as an illustrative example, we identify the optimal resource allocation for island and mainland suppression projects. Our results demonstrate how using a single model to solve different problems reveals similar characteristics of the solutions in different scenarios. As well as illustrating the insights offered by linking problems through a spatiotemporal model, we also derive novel and practically applicable results for our case studies. For temporal suppression projects on islands, we find that lengthy projects are more cost effective and that rapid control projects are only economically cost effective when population growth rates are high or diminishing returns on control effort are low. When suppressing invasive species around conservation assets (e.g., national parks or exclusion fences), we find that the size of buffer zones should depend on the ratio of the species growth and spread rate.

  3. Modelling post-fire vegetation recovery in Portugal

    Science.gov (United States)

    Bastos, A.; Gouveia, C. M.; Dacamara, C. C.; Trigo, R. M.

    2011-12-01

    Wildfires in Mediterranean Europe have been increasing in number and extension over the last decades and constitute one of the major disturbances of these ecosystems. Portugal is the country with more burnt area in the last decade and the years of 2003 and 2005 were particularly devastating, the total burned areas of 425 000 and 338 000 ha being several times higher than the corresponding average. The year of 2005 further coincided with one of the most severe droughts since early 20th century. Due to different responses of vegetation to diverse fire regimes and to the complexity of landscape structures, fires have complex effects on vegetation recovery. Remote sensing has revealed to be a powerful tool in studying vegetation dynamics and in monitoring post-fire vegetation recovery, which is crucial to land-management and to prevent erosion. The main goals of the present work are (i) to assess the accuracy of a vegetation recovery model previously developed by the authors; (ii) to assess the model's performance, namely its sensitivity to initial conditions, to the temporal length of the input dataset and to missing data; (iii) to study vegetation recovery over two selected areas that were affected by two large wildfire events in the fire seasons of 2003 and 2005, respectively. The study relies on monthly values of NDVI over 11 years (1998-2009), at 1 km × 1 km spatial resolution, as obtained by the VEGETATION instrument. According to results from sensitivity analysis, the model is robust and able to provide good estimations of recovery times of vegetation when the regeneration process is regular, even when missing data is present. In respect to the two selected burnt scars, results indicate that fire damage is a determinant factor of regeneration, as less damaged vegetation recovers more rapidly, which is mainly justified by the high coverage of Pinus pinaster over the area, and by the fact that coniferous forests tend to recover slower than transitional woodland

  4. Be-7 concentration in garden and wild vegetables in Japan

    International Nuclear Information System (INIS)

    Nobuhiko Ito; Iwao Kunugijama; Yoshinori Furukawa.

    1996-01-01

    Beryllium-7 is a natural radionuclide produced by cosmic rays. Be-7 is found vividly in the atmosphere, so the concentrations in airborne particles were analyzed by many investigators. It is known that airborne particles with Be-7 in the atmosphere fall slowly to the ground and adhere to plant surface. However, Be-7 concentrations of foods were not measured too much. So we measured Be-7 concentrations of garden vegetables, wild vegetables, grasses, beef and milk, and calculated internal exposure dose from Be-7. Beryllium-7 concentrations of plant samples are shown. Beryllium-7 concentrations of garden vegetables were from 0.2 to 25.3 Bq/kg, and concentrations of wild vegetables were from 0.8 to 23.5 Bq/kg. There is no difference in Be-7 concentrations between garden vegetables and wild vegetables. Leaf vegetables have almost higher concentration of Be-7. Though Matteuccia Struthiopteris and Pteridium aquilinum are ferns, their eatable stages are sprouts. The relationship between surface area and Be-7 concentration in some vegetable leaves gathered simultaneously at the same farm is shown. Beryllium-7 concentrations of leaves correlate significantly with the surface area/weight ratios. What high concentration vegetables have proportionately broad leaves suggests that atmospheric Be-7 particles adhere to surface of leaves. (author)

  5. Semi-Dried Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Gamze Uysal Seçkin

    2015-12-01

    Full Text Available Since ancient times, the preservation of fruit and vegetables is an ancient method of drying. Sun drying method has been used more widely. In general, consumer-ready products are dried fruits, while the dried vegetables are the foods subjected to the rehydration processes such as boiling, heating and baking before consumption. In recent years, new products with high eating quality have been attempted to achieve without losing characteristic of raw material. With the improving of food technology, using developed methods (pH reduction with reducing aw, slight heating, preservatives use etc. as protective agent, and using a combination of a low rate as an alternative to traditional food preservation process, products have been obtained without changing original characteristics of food. ‘Semi-dried 'or 'medium moist 'products with little difference between the taste and texture of the product with a damp have gained importance in recent years in terms of consumer preferences. Vegetables or fruits, which have water activity levels between 0.50 and 0.95 and the moisture content of between 26% and 60%, are called 'medium moist fruit or vegetables'. Two different manufacturing process to obtain a semi-dried or intermediate moisture products are applied. First, fully dried fruits and vegetables to be rehydrated with water are brought to the desired level of their moisture content. Second, in the first drying process, when the product moisture content is reduced to the desired level, the drying process is finished. The semi-dried products are preferred by consumers because they have a softer texture in terms of eating quality and like fresh products texture.

  6. Multispectral Imaging of Wok-Fried Vegetables

    DEFF Research Database (Denmark)

    Clemmensen, Line Katrine Harder; Dissing, Bjørn Skovlund; Hyldig, Grethe

    2012-01-01

    Quality control in the food industry is often performed by measuring various chemical compounds in the food involved. The authors propose an imaging concept for acquiring high-quality multispectral images to evaluate optical reflection changes in carrots and celeriac over a period of 14 days....... For comparison, sensory analysis was performed on the same samples. Prior to multispectral image recording, the vegetables were prefried and frozen at -30 °C for 4 months. During the 14 days of image recording, the vegetables were kept at +5 °C. In this period, surface changes and thereby reflectance properties...

  7. Method of producing vegetable puree

    DEFF Research Database (Denmark)

    2004-01-01

    A process for producing a vegetable puree, comprising the sequential steps of: a)crushing, chopping or slicing the vegetable into pieces of 1 to 30 mm; b) blanching the vegetable pieces at a temperature of 60 to 90°C; c) contacted the blanched vegetable pieces with a macerating enzyme activity; d......) blending the macerated vegetable pieces and obtaining a puree....

  8. Plant invasions in China: an emerging hot topic in invasion science

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2012-12-01

    Full Text Available China has shown a rapid economic development in recent decades, and several drivers of this change are known to enhance biological invasions, a major cause of biodiversity loss. Here we review the current state of research on plant invasions in China by analyzing papers referenced in the ISI Web of Knowledge. Since 2001, the number of papers has increased exponentially, indicating that plant invasions in China are an emerging hot topic in invasion science. The analyzed papers cover a broad range of methodological approaches and research topics. While more that 250 invasive plant species with negative impacts have been reported from China, only a few species have been considered in more than a handful of papers (in order of decreasing number of references: Spartina alterniflora, Ageratina adenophora, Mikania micrantha, Alternanthera philoxeroides, Solidago canadensis, Eichhornia crassipes. Yet this selection might rather reflect the location of research teams than the most invasive plant species in China. Considering the previous achievements in China found in our analysis research in plant invasions could be expanded by (1 compiling comprehensive lists of non-native plant species at the provincial and national scales and to include species that are native to one part of China but non-native to others in these lists; (2 strengthening pathways studies (primary introduction to the country, secondary releases within the country to enhance prevention and management; and (3 assessing impacts of invasive species at different spatial scales (habitats, regions and in relation to conservation resources.

  9. Application of Satellite Solar-Induced Chlorophyll Fluorescence to Understanding Large-Scale Variations in Vegetation Phenology and Function Over Northern High Latitude Forests

    Science.gov (United States)

    Jeong, Su-Jong; Schimel, David; Frankenberg, Christian; Drewry, Darren T.; Fisher, Joshua B.; Verma, Manish; Berry, Joseph A.; Lee, Jung-Eun; Joiner, Joanna

    2016-01-01

    This study evaluates the large-scale seasonal phenology and physiology of vegetation over northern high latitude forests (40 deg - 55 deg N) during spring and fall by using remote sensing of solar-induced chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI) and observation-based estimate of gross primary productivity (GPP) from 2009 to 2011. Based on GPP phenology estimation in GPP, the growing season determined by SIF time-series is shorter in length than the growing season length determined solely using NDVI. This is mainly due to the extended period of high NDVI values, as compared to SIF, by about 46 days (+/-11 days), indicating a large-scale seasonal decoupling of physiological activity and changes in greenness in the fall. In addition to phenological timing, mean seasonal NDVI and SIF have different responses to temperature changes throughout the growing season. We observed that both NDVI and SIF linearly increased with temperature increases throughout the spring. However, in the fall, although NDVI linearly responded to temperature increases, SIF and GPP did not linearly increase with temperature increases, implying a seasonal hysteresis of SIF and GPP in response to temperature changes across boreal ecosystems throughout their growing season. Seasonal hysteresis of vegetation at large-scales is consistent with the known phenomena that light limits boreal forest ecosystem productivity in the fall. Our results suggest that continuing measurements from satellite remote sensing of both SIF and NDVI can help to understand the differences between, and information carried by, seasonal variations vegetation structure and greenness and physiology at large-scales across the critical boreal regions.

  10. A true minimally invasive approach for cochlear implantation: high accuracy in cranial base navigation through flat-panel-based volume computed tomography.

    Science.gov (United States)

    Majdani, Omid; Bartling, Soenke H; Leinung, Martin; Stöver, Timo; Lenarz, Minoo; Dullin, Christian; Lenarz, Thomas

    2008-02-01

    High-precision intraoperative navigation using high-resolution flat-panel volume computed tomography makes feasible the possibility of minimally invasive cochlear implant surgery, including cochleostomy. Conventional cochlear implant surgery is typically performed via mastoidectomy with facial recess to identify and avoid damage to vital anatomic landmarks. To accomplish this procedure via a minimally invasive approach--without performing mastoidectomy--in a precise fashion, image-guided technology is necessary. With such an approach, surgical time and expertise may be reduced, and hearing preservation may be improved. Flat-panel volume computed tomography was used to scan 4 human temporal bones. A drilling channel was planned preoperatively from the mastoid surface to the round window niche, providing a margin of safety to all functional important structures (e.g., facial nerve, chorda tympani, incus). Postoperatively, computed tomographic imaging and conventional surgical exploration of the drilled route to the cochlea were performed. All 4 specimens showed a cochleostomy located at the scala tympani anterior inferior to the round window. The chorda tympani was damaged in 1 specimen--this was preoperatively planned as a narrow facial recess was encountered. Using flat-panel volume computed tomography for image-guided surgical navigation, we were able to perform minimally invasive cochlear implant surgery defined as a narrow, single-channel mastoidotomy with cochleostomy. Although this finding is preliminary, it is technologically achievable.

  11. Foodborne pathogens and their risk exposure factors associated with farm vegetables in Rwanda

    NARCIS (Netherlands)

    Ssemanda, James Noah; Reij, Martine W.; Middendorp, van Gerrieke; Bouw, El; Plaats, van der Rozemarijn; Franz, Eelco; Muvunyi, Claude Mambo; Bagabe, Mark Cyubahiro; Zwietering, Marcel H.; Joosten, Han

    2018-01-01

    In this study, we tested farm vegetables and agricultural water for the presence of foodborne pathogens, and evaluated farming practices of vegetable farms in Rwanda. Farm vegetable samples were found to be contaminated with foodborne pathogens at considerably high rate (overall 15/99 = 15%).

  12. Evaluation of different shadow detection and restoration methods and their impact on vegetation indices using UAV high-resolution imageries over vineyards

    Science.gov (United States)

    Aboutalebi, M.; Torres-Rua, A. F.; McKee, M.; Kustas, W. P.; Nieto, H.

    2017-12-01

    Shadows are an unavoidable component of high-resolution imagery. Although shadows can be a useful source of information about terrestrial features, they are a hindrance for image processing and lead to misclassification errors and increased uncertainty in defining surface reflectance properties. In precision agriculture activities, shadows may affect the performance of vegetation indices at pixel and plant scales. Thus, it becomes necessary to evaluate existing shadow detection and restoration methods, especially for applications that makes direct use of pixel information to estimate vegetation biomass, leaf area index (LAI), plant water use and stress, chlorophyll content, just to name a few. In this study, four high-resolution imageries captured by the Utah State University - AggieAir Unmanned Aerial Vehicle (UAV) system flown in 2014, 2015, and 2016 over a commercial vineyard located in the California for the USDA-Agricultural Research Service Grape Remote sensing Atmospheric Profile and Evapotranspiration Experiment (GRAPEX) Program are used for shadow detection and restoration. Four different methods for shadow detection are compared: (1) unsupervised classification, (2) supervised classification, (3) index-based method, and (4) physically-based method. Also, two different shadow restoration methods are evaluated: (1) linear correlation correction, and (2) gamma correction. The models' performance is evaluated over two vegetation indices: normalized difference vegetation index (NDVI) and LAI for both sunlit and shadowed pixels. Histogram and analysis of variance (ANOVA) are used as performance indicators. Results indicated that the performance of the supervised classification and the index-based method are better than other methods. In addition, there is a statistical difference between the average of NDVI and LAI on the sunlit and shadowed pixels. Among the shadow restoration methods, gamma correction visually works better than the linear correlation

  13. A method for climate and vegetation reconstruction through the inversion of a dynamic vegetation model

    Energy Technology Data Exchange (ETDEWEB)

    Garreta, Vincent; Guiot, Joel; Hely, Christelle [CEREGE, UMR 6635, CNRS, Universite Aix-Marseille, Europole de l' Arbois, Aix-en-Provence (France); Miller, Paul A.; Sykes, Martin T. [Lund University, Department of Physical Geography and Ecosystems Analysis, Geobiosphere Science Centre, Lund (Sweden); Brewer, Simon [Universite de Liege, Institut d' Astrophysique et de Geophysique, Liege (Belgium); Litt, Thomas [University of Bonn, Paleontological Institute, Bonn (Germany)

    2010-08-15

    Climate reconstructions from data sensitive to past climates provide estimates of what these climates were like. Comparing these reconstructions with simulations from climate models allows to validate the models used for future climate prediction. It has been shown that for fossil pollen data, gaining estimates by inverting a vegetation model allows inclusion of past changes in carbon dioxide values. As a new generation of dynamic vegetation model is available we have developed an inversion method for one model, LPJ-GUESS. When this novel method is used with high-resolution sediment it allows us to bypass the classic assumptions of (1) climate and pollen independence between samples and (2) equilibrium between the vegetation, represented as pollen, and climate. Our dynamic inversion method is based on a statistical model to describe the links among climate, simulated vegetation and pollen samples. The inversion is realised thanks to a particle filter algorithm. We perform a validation on 30 modern European sites and then apply the method to the sediment core of Meerfelder Maar (Germany), which covers the Holocene at a temporal resolution of approximately one sample per 30 years. We demonstrate that reconstructed temperatures are constrained. The reconstructed precipitation is less well constrained, due to the dimension considered (one precipitation by season), and the low sensitivity of LPJ-GUESS to precipitation changes. (orig.)

  14. Updated 2016 EAU Guidelines on Muscle-invasive and Metastatic Bladder Cancer

    NARCIS (Netherlands)

    Witjes, J.A.; Lebret, T.; Comperat, E.M.; Cowan, N.C.; Santis, M. de; Bruins, H.M.; Hernandez, V.; Espinos, E.L.; Dunn, J.; Rouanne, M.; Neuzillet, Y.; Veskimae, E.; Heijden, A.G. van der; Gakis, G.; Ribal, M.J.

    2017-01-01

    CONTEXT: Invasive bladder cancer is a frequently occurring disease with a high mortality rate despite optimal treatment. The European Association of Urology (EAU) Muscle-invasive and Metastatic Bladder Cancer (MIBC) Guidelines are updated yearly and provides information to optimise diagnosis,

  15. Isorhapontigenin (ISO) Inhibits Invasive Bladder Cancer Formation In Vivo and Human Bladder Cancer Invasion In Vitro by Targeting STAT1/FOXO1 Axis.

    Science.gov (United States)

    Jiang, Guosong; Wu, Amy D; Huang, Chao; Gu, Jiayan; Zhang, Liping; Huang, Haishan; Liao, Xin; Li, Jingxia; Zhang, Dongyun; Zeng, Xingruo; Jin, Honglei; Huang, Haojie; Huang, Chuanshu

    2016-07-01

    Although our most recent studies have identified Isorhapontigenin (ISO), a novel derivative of stilbene that isolated from a Chinese herb Gnetum cleistostachyum, for its inhibition of human bladder cancer growth, nothing is known whether ISO possesses an inhibitory effect on bladder cancer invasion. Thus, we addressed this important question in current study and discovered that ISO treatment could inhibit mouse-invasive bladder cancer development following bladder carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) exposure in vivo We also found that ISO suppressed human bladder cancer cell invasion accompanied by upregulation of the forkhead box class O 1 (FOXO1) mRNA transcription in vitro Accordingly, FOXO1 was profoundly downregulated in human bladder cancer tissues and was negatively correlated with bladder cancer invasion. Forced expression of FOXO1 specifically suppressed high-grade human bladder cancer cell invasion, whereas knockdown of FOXO1 promoted noninvasive bladder cancer cells becoming invasive bladder cancer cells. Moreover, knockout of FOXO1 significantly increased bladder cancer cell invasion and abolished the ISO inhibition of invasion in human bladder cancer cells. Further studies showed that the inhibition of Signal transducer and activator of transcription 1 (STAT1) phosphorylation at Tyr701 was crucial for ISO upregulation of FOXO1 transcription. Furthermore, this study revealed that metalloproteinase-2 (MMP-2) was a FOXO1 downstream effector, which was also supported by data obtained from mouse model of ISO inhibition BBN-induced mouse-invasive bladder cancer formation. These findings not only provide a novel insight into the understanding of mechanism of bladder cancer's propensity to invasion, but also identify a new role and mechanisms underlying the natural compound ISO that specifically suppresses such bladder cancer invasion through targeting the STAT1-FOXO1-MMP-2 axis. Cancer Prev Res; 9(7); 567-80. ©2016 AACR. ©2016 American

  16. Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management

    Science.gov (United States)

    Tucker, Compton; Puma, Michael

    2015-01-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  17. Emergent properties of climate-vegetation feedbacks in the North American Monsoon Macrosystem

    Science.gov (United States)

    Mathias, A.; Niu, G.; Zeng, X.

    2012-12-01

    The ability of ecosystems to adapt naturally to climate change and associated disturbances (e.g. wildfires, spread of invasive species) is greatly affected by the stability of feedback interactions between climate and vegetation. In order to study climate-vegetation interactions, such as CO2 and H2O exchange in the North American Monsoon System (NAMS), we plan to couple a community land surface model (NoahMP or CLM) used in regional climate models (WRF) with an individual based, spatially explicit vegetation model (ECOTONE). Individual based modeling makes it possible to link individual plant traits with properties of plant communities. Community properties, such as species composition and species distribution arise from dynamic interactions of individual plants with each other, and with their environment. Plants interact with each other through intra- and interspecific competition for resources (H2O, nitrogen), and the outcome of these interactions depends on the properties of the plant community and the environment itself. In turn, the environment is affected by the resulting change in community structure, which may have an impact on the drivers of climate change. First, we performed sensitivity tests of ECOTONE to assess its ability to reproduce vegetation distribution in the NAMS. We compared the land surface model and ECOTONE with regard to their capability to accurately simulate soil moisture, CO2 flux and above ground biomass. For evaluating the models we used the eddy-correlation sensible and latent heat fluxes, CO2 flux and observations of other climate and environmental variables (e.g. soil temperature and moisture) from the Santa Rita experimental range. The model intercomparison helped us understand the advantages and disadvantages of each model, providing us guidance for coupling the community land surface model (NoahMP or CLM) with ECOTONE.

  18. Hieracium sylvularum (Asteraceae in the Mordovia State Nature Reserve: invasive plant or historical heritage of the flora?

    Directory of Open Access Journals (Sweden)

    Anatoliy A. Khapugin

    2017-11-01

    Full Text Available Protected Areas are considered as one of the most appropriate tool for biodiversity conservation. However, invasion of alien species is one of the main and widely known problems of these territories. Therefore, the timely detection and prevention of the invasive species dispersal is one of the main tasks of researchers in Protected Areas. The European species Hieracium sylvularum was found in the Mordovia State Nature Reserve in 2012. In the following years, new locations have been discovered there. That is why the main traits of the ecology and biology, invasiveness level of the alien species were studied. An investigation of the five known H. sylvularum locations has been carried out in the Mordovia Reserve. Attention has been paid to the age-structure of the populations, the accompanying floras' composition and morphometrical parameters of the generative individuals. The environmental conditions of habitats were revealed and compared using phytoindication methods. The mass and germination of seeds, harvested on different locations, were studied. The results indicate that H. sylvularum is not an invasive species. This alien plant is able to reproduce primarily vegetatively. Probably, the population area can extend gradually on each location. Seed dispersal is difficult due to low germinability of seeds, despite of their significant number per plant. Based on obtained results, dry and semi-dry light lichen-moss-Pinus-forests have a higher invasibility by H. sylvularum. Therefore, perhaps, its new locations may be found especially in these habitats. Annual monitoring of the currently known locations of this alien plant is necessary in the Mordovia State Nature Reserve.

  19. A New Method for Post-introduction Risk Assessment of Biological Invasions Among Introduced Shrubs in Developing Countries.

    Science.gov (United States)

    Seburanga, J L; Bizuru, E; Mwavu, E N; Kampungu, K G; Gatesire, T; Kaplin, B A

    2016-03-01

    Risk-assessment methods are useful in collecting data that can help decision making to prevent the introduction of new species that have the potential of invading as well as in management of established taxa. Not only the complexity and unaffordability of available pre-introduction risk-assessment models make them rarely or inconsistently applied in the least-developed countries, but also there is lack of tools to assess the status of already introduced plant species. In this study, an affordable and rapid method of assessment of invasiveness among introduced plant species was developed and tested in Rwanda. This method defines three invasion stages (potential, effective, and suppressive invaders) and four levels of risk assessment: post-introduction assessment of species inherent invasive potential (Level 1), post-establishment assessment of species capacity of regeneration (Level 2), post-naturalization assessment of species range of occurrence and ability for long-distance dispersal (Level 3), and post-naturalization assessment of species ability to outcompete other plants in the community and transform the landscape (Level 4). A review of invasive species in Rwanda was developed through desk review, examination of herbarium records, and vegetation surveys. This method should be applicable in other countries that lack the means for a more conventional scientific investigation or under any circumstance where a quick and inexpensive assessment is needed. The method could be useful to environmental managers for timely intervention with strategies specific to different stages of invasion (post-introduction, post-establishment, or post-naturalization) and allocate resources accordingly.

  20. Biodiversity of Terrestrial Vegetation during Past Warm Periods

    Science.gov (United States)

    Davies-Barnard, T.; Valdes, P. J.; Ridgwell, A.

    2016-12-01

    Previous modelling studies of vegetation have generally used a small number of plant functional types to understand how the terrestrial biosphere responds to climate changes. Whilst being useful for understanding first order climate feedbacks, this climate-envelope approach makes a lot of assumptions about past vegetation being very similar to modern. A trait-based method has the advantage for paleo modelling in that there are substantially less assumptions made. In a novel use of the trait-based dynamic vegetation model JeDi, forced with output from climate model HadCM3, we explore past biodiversity and vegetation carbon changes. We use JeDi to model an optimal 2000 combinations of fifteen different traits to enable assessment of the overall level of biodiversity as well as individual growth strategies. We assess the vegetation shifts and biodiversity changes in past greenhouse periods to better understand the impact on the terrestrial biosphere. This work provides original insights into the response of vegetation and terrestrial carbon to climate and hydrological changes in high carbon dioxide climates over time, including during the Late Permian and Cretaceous. We evaluate how the location of biodiversity hotspots and species richness in past greenhouse climates is different to the present day.