WorldWideScience

Sample records for highly integrated design

  1. High Integrity Can Design Interfaces

    International Nuclear Information System (INIS)

    Shaber, E.L.

    1998-01-01

    The National Spent Nuclear Fuel Program is chartered with facilitating the disposition of DOE-owned spent nuclear fuel to allow disposal at a geologic repository. This is done through coordination with the repository program and by assisting DOE Site owners of SNF with needed information, standardized requirements, packaging approaches, etc. The High Integrity Can (HIC) will be manufactured to provide a substitute or barrier enhancement for normal fuel geometry and cladding. The can would be nested inside the DOE standardized canister which is designed to interface with the repository waste package. The HIC approach may provide the following benefits over typical canning approaches for DOE SNF. (a) It allows ready calculation and management of criticality issues for miscellaneous. (b) It segments and further isolates damaged or otherwise problem materials from normal SNF in the repository package. (c) It provides a very long term corrosion barrier. (d) It provides an extra internal pressure barrier for particulates, gaseous fission products, hydrogen, and water vapor. (e) It delays any potential release of fission products to the repository environment. (f) It maintains an additional level of fuel geometry control during design basis accidents, rock-fall, and seismic events. (g) When seal welded, it could provide the additional containment required for shipments involving plutonium content in excess of 20 Ci. (10 CFR 71.63.b) if integrated with an appropriate cask design. Long term corrosion protection is central to the HIC concept. The material selected for the HIC (Hastelloy C-22) has undergone extensive testing for repository service. The most severe theoretical interactions between iron, repository water containing chlorides and other repository construction materials have been tested. These expected chemical species have not been shown capable of corroding the selected HIC material. Therefore, the HIC should provide a significant barrier to DOE SNF dispersal

  2. High-frequency analog integrated circuit design

    CERN Document Server

    1995-01-01

    To learn more about designing analog integrated circuits (ICs) at microwave frequencies using GaAs materials, turn to this text and reference. It addresses GaAs MESFET-based IC processing. Describes the newfound ability to apply silicon analog design techniques to reliable GaAs materials and devices which, until now, was only available through technical papers scattered throughout hundred of articles in dozens of professional journals.

  3. The design of high performance weak current integrated amplifier

    International Nuclear Information System (INIS)

    Chen Guojie; Cao Hui

    2005-01-01

    A design method of high performance weak current integrated amplifier using ICL7650 operational amplifier is introduced. The operating principle of circuits and the step of improving amplifier's performance are illustrated. Finally, the experimental results are given. The amplifier has programmable measurement range of 10 -9 -10 -12 A, automatic zero-correction, accurate measurement, and good stability. (authors)

  4. Integrated design and manufacturing for the high speed civil transport

    Science.gov (United States)

    1993-01-01

    In June 1992, Georgia Tech's School of Aerospace Engineering was awarded a NASA University Space Research Association (USRA) Advanced Design Program (ADP) to address 'Integrated Design and Manufacturing for the High Speed Civil Transport (HSCT)' in its graduate aerospace systems design courses. This report summarizes the results of the five courses incorporated into the Georgia Tech's USRA ADP program. It covers AE8113: Introduction to Concurrent Engineering, AE4360: Introduction to CAE/CAD, AE4353: Design for Life Cycle Cost, AE6351: Aerospace Systems Design One, and AE6352: Aerospace Systems Design Two. AE8113: Introduction to Concurrent Engineering was an introductory course addressing the basic principles of concurrent engineering (CE) or integrated product development (IPD). The design of a total system was not the objective of this course. The goal was to understand and define the 'up-front' customer requirements, their decomposition, and determine the value objectives for a complex product, such as the high speed civil transport (HSCT). A generic CE methodology developed at Georgia Tech was used for this purpose. AE4353: Design for Life Cycle Cost addressed the basic economic issues for an HSCT using a robust design technique, Taguchi's parameter design optimization method (PDOM). An HSCT economic sensitivity assessment was conducted using a Taguchi PDOM approach to address the robustness of the basic HSCT design. AE4360: Introduction to CAE/CAD permitted students to develop and utilize CAE/CAD/CAM knowledge and skills using CATIA and CADAM as the basic geometric tools. AE6351: Aerospace Systems Design One focused on the conceptual design refinement of a baseline HSCT configuration as defined by Boeing, Douglas, and NASA in their system studies. It required the use of NASA's synthesis codes FLOPS and ACSYNT. A criterion called the productivity index (P.I.) was used to evaluate disciplinary sensitivities and provide refinements of the baseline HSCT

  5. Integrated Design

    DEFF Research Database (Denmark)

    Jørgensen, Michael; Nielsen, M. W.; Strømann-Andersen, Jakob Bjørn

    2011-01-01

    and describe the decision process. Specific attention is given to how the engineering input was presented and how it was able to facilitate the design development. Site and context, building shape, organization of functions and HVAC-systems were all included to obtain a complete picture of the building......, low-energy consumption, and high-quality indoor environment. We use this case study to investigate how technical knowledge about building performance can be integrated into the conceptual design stage. We have selected certain points during the design process that represented design challenges...

  6. IT Requirements Integration in High-Rise Construction Design Projects

    Science.gov (United States)

    Levina, Anastasia; Ilin, Igor; Esedulaev, Rustam

    2018-03-01

    The paper discusses the growing role of IT support for the operation of modern high-rise buildings, due to the complexity of managing engineering systems of buildings and the requirements of consumers for the IT infrastructure. The existing regulatory framework for the development of design documentation for construction, including high-rise buildings, is analyzed, and the lack of coherence in the development of this documentation with the requirements for the creation of an automated management system and the corresponding IT infrastructure is stated. The lack of integration between these areas is the cause of delays and inefficiencies both at the design stage and at the stage of putting the building into operation. The paper proposes an approach to coordinate the requirements of the IT infrastructure of high-rise buildings and design documentation for construction. The solution to this problem is possible within the framework of the enterprise architecture concept by coordinating the requirements of the IT and technological layers at the design stage of the construction.

  7. Suspended Integrated Strip-line Transition Design for Highly Integrated Radar Systems

    Science.gov (United States)

    2017-03-01

    technology. The measured results show good correlation to the simulated results with a return loss and insertion loss of less than 10 dB and greater...SSS); Suspended Integrated Strip-line (SISL) RF packaging; Ultra-wideband (UWB). Introduction The next generation of highly integrated radar...RF Circuit Design,” Second Edition, Pearson Education, 2009. 3. B. Ma, A. Chousseaud, and S. Toutain, “A new design of compact planar microstrip

  8. Integrated Circuit Design in US High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Geronimo, G. D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Christian, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bebek, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Garcia-Sciveres, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lippe, H. V. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Haller, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Grillo, AA [Univ. of California, Santa Cruz, CA (United States); Newcomer, M [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2013-07-10

    This whitepaper summarizes the status, plans, and challenges in the area of integrated circuit design in the United States for future High Energy Physics (HEP) experiments. It has been submitted to CPAD (Coordinating Panel for Advanced Detectors) and the HEP Community Summer Study 2013(Snowmass on the Mississippi) held in Minnesota July 29 to August 6, 2013. A workshop titled: US Workshop on IC Design for High Energy Physics, HEPIC2013 was held May 30 to June 1, 2013 at Lawrence Berkeley National Laboratory (LBNL). A draft of the whitepaper was distributed to the attendees before the workshop, the content was discussed at the meeting, and this document is the resulting final product. The scope of the whitepaper includes the following topics: Needs for IC technologies to enable future experiments in the three HEP frontiers Energy, Cosmic and Intensity Frontiers; Challenges in the different technology and circuit design areas and the related R&D needs; Motivation for using different fabrication technologies; Outlook of future technologies including 2.5D and 3D; Survey of ICs used in current experiments and ICs targeted for approved or proposed experiments; IC design at US institutes and recommendations for collaboration in the future.

  9. High School Engineering and Technology Education Integration through Design Challenges

    Science.gov (United States)

    Mentzer, Nathan

    2011-01-01

    This study contextualized the use of the engineering design process by providing descriptions of how each element in a design process was integrated in an eleventh grade industry and engineering systems course. The guiding research question for this inquiry was: How do students engage in the engineering design process in a course where technology…

  10. A High Integrity Can Design for Degraded Nuclear Fuel

    International Nuclear Information System (INIS)

    Holmes, P.A.

    1999-01-01

    A high integrity can (HIC), designed to meet the ASME Boiler and Pressure Vessel Code (Section III, Div. 3, static conditions) is proposed for the interim storage and repository disposal of Department of Energy (DOE) spent nuclear fuel. The HIC will be approximately 5 3/8 inches (134.38mm) in outside diameter with 1/4 inch (6.35mm) thick walls, and have a removable lid with a metallic seal that is capable of being welded shut. The opening of the can is approximately 4 3/8 inches (111.13mm). The HIC is primarily designed to contain items in the DOE SNF inventory that do not meet acceptance standards for direct disposal in a geologic repository. This includes fuel in the form of particulate dusts, sectioned pieces of fuel, core rubble, melted or degraded (non-intact) fuel elements, unclad uranium alloys, metallurgical specimens, and chemically reactive fuel components. The HIC is intended to act as a substitute cladding for the spent nuclear fuel, further isolate problematic materials, provide a long-term corrosion barrier, and add an extra internal pressure barrier to the waste package. The HIC will also delay potential fission product release and maintain geometry control for extended periods of time. For the entire disposal package to be licensed by the Nuclear Regulatory Commission, a HIC must effectively eliminate the disposal problems associated with problem SNF including the release of radioactive and/or reactive material and over pressurization of the HIC due to chemical reactions within the can. Two HICs were analyzed to envelop a range of can lengths between 42 and 101 inches. Using Abacus software, the HIC's were analyzed for end, side, and corner drops. Hastelloy C-22 was chosen based upon structural integrity, corrosion resistance, and neutron adsorption properties

  11. Integrated Design

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    1999-01-01

    A homepage on the internet with course material, lecture plan, student exercises, etc. Continuesly updated during the course Integrated Design (80402, 80403)......A homepage on the internet with course material, lecture plan, student exercises, etc. Continuesly updated during the course Integrated Design (80402, 80403)...

  12. An integrated framework for high level design of high performance signal processing circuits on FPGAs

    Science.gov (United States)

    Benkrid, K.; Belkacemi, S.; Sukhsawas, S.

    2005-06-01

    This paper proposes an integrated framework for the high level design of high performance signal processing algorithms' implementations on FPGAs. The framework emerged from a constant need to rapidly implement increasingly complicated algorithms on FPGAs while maintaining the high performance needed in many real time digital signal processing applications. This is particularly important for application developers who often rely on iterative and interactive development methodologies. The central idea behind the proposed framework is to dynamically integrate high performance structural hardware description languages with higher level hardware languages in other to help satisfy the dual requirement of high level design and high performance implementation. The paper illustrates this by integrating two environments: Celoxica's Handel-C language, and HIDE, a structural hardware environment developed at the Queen's University of Belfast. On the one hand, Handel-C has been proven to be very useful in the rapid design and prototyping of FPGA circuits, especially control intensive ones. On the other hand, HIDE, has been used extensively, and successfully, in the generation of highly optimised parameterisable FPGA cores. In this paper, this is illustrated in the construction of a scalable and fully parameterisable core for image algebra's five core neighbourhood operations, where fully floorplanned efficient FPGA configurations, in the form of EDIF netlists, are generated automatically for instances of the core. In the proposed combined framework, highly optimised data paths are invoked dynamically from within Handel-C, and are synthesized using HIDE. Although the idea might seem simple prima facie, it could have serious implications on the design of future generations of hardware description languages.

  13. Integrated Very High Frequency Switch Mode Power Supplies: Design Considerations

    DEFF Research Database (Denmark)

    Hertel, Jens Christian; Nour, Yasser; Knott, Arnold

    2017-01-01

    simulations. The required spiral inductors was modeled, and simulations show Q values of as high as 14 at a switching frequency of 250 MHz. Simulations of the converter show an efficiency of 55 % with a self oscillating gate drive. However the modeled inductor was not adequate for operating with the self...

  14. Integrated cost estimation methodology to support high-performance building design

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, Prasad; Greden, Lara; Eijadi, David; McDougall, Tom [The Weidt Group, Minnetonka (United States); Cole, Ray [Axiom Engineers, Monterey (United States)

    2007-07-01

    Design teams evaluating the performance of energy conservation measures (ECMs) calculate energy savings rigorously with established modelling protocols, accounting for the interaction between various measures. However, incremental cost calculations do not have a similar rigor. Often there is no recognition of cost reductions with integrated design, nor is there assessment of cost interactions amongst measures. This lack of rigor feeds the notion that high-performance buildings cost more, creating a barrier for design teams pursuing aggressive high-performance outcomes. This study proposes an alternative integrated methodology to arrive at a lower perceived incremental cost for improved energy performance. The methodology is based on the use of energy simulations as means towards integrated design and cost estimation. Various points along the spectrum of integration are identified and characterized by the amount of design effort invested, the scheduling of effort, and relative energy performance of the resultant design. It includes a study of the interactions between building system parameters as they relate to capital costs. Several cost interactions amongst energy measures are found to be significant.The value of this approach is demonstrated with alternatives in a case study that shows the differences between perceived costs for energy measures along various points on the integration spectrum. These alternatives show design tradeoffs and identify how decisions would have been different with a standard costing approach. Areas of further research to make the methodology more robust are identified. Policy measures to encourage the integrated approach and reduce the barriers towards improved energy performance are discussed.

  15. New design for photonic temporal integration with combined high processing speed and long operation time window.

    Science.gov (United States)

    Asghari, Mohammad H; Park, Yongwoo; Azaña, José

    2011-01-17

    We propose and experimentally prove a novel design for implementing photonic temporal integrators simultaneously offering a high processing bandwidth and a long operation time window, namely a large time-bandwidth product. The proposed scheme is based on concatenating in series a time-limited ultrafast photonic temporal integrator, e.g. implemented using a fiber Bragg grating (FBG), with a discrete-time (bandwidth limited) optical integrator, e.g. implemented using an optical resonant cavity. This design combines the advantages of these two previously demonstrated photonic integrator solutions, providing a processing speed as high as that of the time-limited ultrafast integrator and an operation time window fixed by the discrete-time integrator. Proof-of-concept experiments are reported using a uniform fiber Bragg grating (as the original time-limited integrator) connected in series with a bulk-optics coherent interferometers' system (as a passive 4-points discrete-time photonic temporal integrator). Using this setup, we demonstrate accurate temporal integration of complex-field optical signals with time-features as fast as ~6 ps, only limited by the processing bandwidth of the FBG integrator, over time durations as long as ~200 ps, which represents a 4-fold improvement over the operation time window (~50 ps) of the original FBG integrator.

  16. CMOS analog integrated circuits high-speed and power-efficient design

    CERN Document Server

    Ndjountche, Tertulien

    2011-01-01

    High-speed, power-efficient analog integrated circuits can be used as standalone devices or to interface modern digital signal processors and micro-controllers in various applications, including multimedia, communication, instrumentation, and control systems. New architectures and low device geometry of complementary metaloxidesemiconductor (CMOS) technologies have accelerated the movement toward system on a chip design, which merges analog circuits with digital, and radio-frequency components. CMOS: Analog Integrated Circuits: High-Speed and Power-Efficient Design describes the important tren

  17. An integral design strategy combining optical system and image processing to obtain high resolution images

    Science.gov (United States)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun

    2016-05-01

    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  18. Integrated design of MEMS

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Brissaud, Daniel

    2007-01-01

    Emerging technologies of Micro-Electromechanical Systems (MEMS) are applications such as airbag accelerometers. Micro-products present many physical differences from macro-products. Moreover, there is a high level of integration in multiple fields of physics with strongly coupled effects...... industrial immersion to propose a socio-technological description of the design process and MEMS design tools....

  19. High integrity new fuel elevator winch design for a European PWR

    International Nuclear Information System (INIS)

    Eccleston, M.J.

    1984-01-01

    This Paper gives a general description of the design of a high integrity winch, starting from the general requirements of the customer specification. It explains the design of a failsafe, self-sustaining mechanical winch brake that operates independently of the motor brake and allows for safe operation of the winch even in the event of motor brake failure. The Paper deals mainly with the development of the brake assembly, highlighting some of the problems met and showing how they were resolved. (author)

  20. High integrity new fuel elevator winch design for a European PWR

    Energy Technology Data Exchange (ETDEWEB)

    Eccleston, M.J. (GEC Energy Systems Ltd., Leicester (UK))

    1984-10-01

    This Paper gives a general description of the design of a high integrity winch, starting from the general requirements of the customer specification. It explains the design of a failsafe, self-sustaining mechanical winch brake that operates independently of the motor brake and allows for safe operation of the winch even in the event of motor brake failure. The Paper deals mainly with the development of the brake assembly, highlighting some of the problems met and showing how they were resolved.

  1. Design for High Performance, Low Power, and Reliable 3D Integrated Circuits

    CERN Document Server

    Lim, Sung Kyu

    2013-01-01

    This book describes the design of through-silicon-via (TSV) based three-dimensional integrated circuits.  It includes details of numerous “manufacturing-ready” GDSII-level layouts of TSV-based 3D ICs, developed with tools covered in the book. Readers will benefit from the sign-off level analysis of timing, power, signal integrity, and thermo-mechanical reliability for 3D IC designs.  Coverage also includes various design-for-manufacturability (DFM), design-for-reliability (DFR), and design-for-testability (DFT) techniques that are considered critical to the 3D IC design process. Describes design issues and solutions for high performance and low power 3D ICs, such as the pros/cons of regular and irregular placement of TSVs, Steiner routing, buffer insertion, low power 3D clock routing, power delivery network design and clock design for pre-bond testability. Discusses topics in design-for-electrical-reliability for 3D ICs, such as TSV-to-TSV coupling, current crowding at the wire-to-TSV junction and the e...

  2. Design of high performance mechatronics high-tech functionality by multidisciplinary system integration

    CERN Document Server

    Munnig Schmidt, R; Rankers, A

    2014-01-01

    Since they entered our world around the middle of the 20th century, the application of mechatronics has enhanced our lives with functionality based on the integration of electronics, control systems and electric drives.This book deals with the special class of mechatronics that has enabled the exceptional levels of accuracy and speed of high-tech equipment applied in the semiconductor industry, realising the continuous shrink in detailing of micro-electronics and MEMS.As well as the more frequently presented standard subjects of dynamics, motion control, electronics and electromechanics, this

  3. The design of high performance mechatronics high-tech functionality by multidisciplinary system integration

    CERN Document Server

    Munnig Schmidt, R; van Eijk, J

    2011-01-01

    Since they entered our world around the middle of the 20th century, the application of mechatronics has enhanced our lives with functionality based on the integration of electronics, control systems and electric drives. This book deals with the special class of mechatronics that has enabled the exceptional levels of accuracy and speed of high-tech equipment applied in the semiconductor industry, realising the continuous shrink in detailing of micro-electronics and MEMS. As well as the more frequently presented standard subjects of dynamics, motion control, electronics and electromechanics, thi

  4. The high integrity design and manufacture of the Heysham II/Torness gas baffle

    International Nuclear Information System (INIS)

    Armor, J.; Day, B.V.; White, C.M.

    1985-01-01

    The AGR design used on the Heysham II and Torness power stations requires a gas baffle which is essentially a steel pressure vessel for which one can demonstrate a high degree of integrity. The design, analytical, manufacturing, erection and testing processes which were undertaken to achieve the standard required of the completed assembly are discussed. To this end the vessels were manufactured in purpose-made shops and transported to site, leaving a minimum amount of work to be undertaken at site. Subsequent evaluation has shown a very low probability of failure compared with conventional steel pressure vessels. (author)

  5. Design of two digital radiation tolerant integrated circuits for high energy physics experiments data readout

    CERN Document Server

    Bonacini, Sandro

    2003-01-01

    High Energy Physics research (HEP) involves the design of readout electron- ics for its experiments, which generate a high radiation ¯eld in the detectors. The several integrated circuits placed in the future Large Hadron Collider (LHC) experiments' environment have to resist the radiation and carry out their normal operation. In this thesis I will describe in detail what, during my 10-months partic- ipation in the digital section of the Microelectronics group at CERN, I had the possibility to work on: - The design of a radiation-tolerant data readout digital integrated cir- cuit in a 0.25 ¹m CMOS technology, called \\the Kchip", for the CMS preshower front-end system. This will be described in Chapter 3. - The design of a radiation-tolerant SRAM integrated circuit in a 0.13 ¹m CMOS technology, for technology radiation testing purposes and fu- ture applications in the HEP ¯eld. The SRAM will be described in Chapter 4. All the work has carried out under the supervision and with the help of Dr. Kostas Klouki...

  6. Integrated structural design of nuclear power plants for high seismic areas

    International Nuclear Information System (INIS)

    Rieck, P.J.

    1979-01-01

    A design approach which structurally interconnects NPP buildings to be located in high seismic areas is described. The design evolution of a typical 600 MWe steel cylindrical containment PWR is described as the plant is structurally upgraded for higher seismic requirements, while maintaining the original plant layout. The plant design is presented as having separate reactor building and auxiliary structures for a low seismic area (0.20 g) and is structurally combined at the foundation for location in a higher seismic area (0.30 g). The evolution is completed by a fully integrated design which structurally connects the reactor building and auxiliary structures at superstructure elevations as well as foundation levels for location in very severe seismic risk areas (0.50 g). (orig.)

  7. High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design

    International Nuclear Information System (INIS)

    Manente, Giovanni

    2016-01-01

    Highlights: • Off-design model of a 390 MW_e three pressure combined cycle developed and validated. • The off-design model is used to evaluate different hybridization schemes with solar. • Power boosting and fuel saving with different design modifications are considered. • Maximum solar share of total electricity is only 1% with the existing equipment. • The maximum incremental solar radiation-to-electrical efficiency approaches 29%. - Abstract: The integration of solar energy into natural gas combined cycles has been successfully demonstrated in several integrated solar combined cycles since the beginning of this decade in many countries. There are many motivations that drive investments on integrated solar combined cycles which are primarily the repowering of existing power plants, the compliance with more severe environmental laws on emissions and the mitigation of risks associated with large solar projects. Integrated solar combined cycles are usually developed as brownfield facilities by retrofitting existing natural gas combined cycles and keeping the existing equipment to minimize costs. In this work a detailed off-design model of a 390 MW_e three pressure level natural gas combined cycle is built to evaluate different integration schemes of solar energy which either keep the equipment of the combined cycle unchanged or include new equipment (steam turbine, heat recovery steam generator). Both power boosting and fuel saving operation strategies are analyzed in the search for the highest annual efficiency and solar share. Results show that the maximum incremental power output from solar at design solar irradiance is limited to 19 MW_e without modifications to the existing equipment. Higher values are attainable only including a larger steam turbine. High solar radiation-to-electrical efficiencies in the range 24–29% can be achieved in the integrated solar combined cycle depending on solar share and extension of tube banks in the heat recovery

  8. Design and analysis of a highly-integrated CMOS power amplifier for RFID readers

    International Nuclear Information System (INIS)

    Gao Tongqiang; Zhang Chun; Chi Baoyong; Wang Zhihua

    2009-01-01

    To implement a fully-integrated on-chip CMOS power amplifier (PA) for RFID readers, the resonant frequency of each matching network is derived in detail. The highlight of the design is the adoption of a bonding wire as the output-stage inductor. Compared with the on-chip inductors in a CMOS process, the merit of the bondwire inductor is its high quality factor, leading to a higher output power and efficiency. The disadvantage of the bondwire inductor is that it is hard to control. A highly integrated class-E PA is implemented with 0.18-μm CMOS process. It can provide a maximum output power of 20 dBm and a 1 dB output power of 14.5 dBm. The maximum power-added efficiency (PAE) is 32.1%. Also, the spectral performance of the PA is analyzed for the specified RFID protocol.

  9. Design and analysis of a highly-integrated CMOS power amplifier for RFID readers

    Energy Technology Data Exchange (ETDEWEB)

    Gao Tongqiang [Department of Electronics, Tsinghua University, Beijing 100084 (China); Zhang Chun; Chi Baoyong; Wang Zhihua, E-mail: gtq03@mails.tsinghua.edu.c [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2009-06-01

    To implement a fully-integrated on-chip CMOS power amplifier (PA) for RFID readers, the resonant frequency of each matching network is derived in detail. The highlight of the design is the adoption of a bonding wire as the output-stage inductor. Compared with the on-chip inductors in a CMOS process, the merit of the bondwire inductor is its high quality factor, leading to a higher output power and efficiency. The disadvantage of the bondwire inductor is that it is hard to control. A highly integrated class-E PA is implemented with 0.18-mum CMOS process. It can provide a maximum output power of 20 dBm and a 1 dB output power of 14.5 dBm. The maximum power-added efficiency (PAE) is 32.1%. Also, the spectral performance of the PA is analyzed for the specified RFID protocol.

  10. Interdisciplinary design study of a high-rise integrated roof wind energy system

    Directory of Open Access Journals (Sweden)

    Moonen S.P.G.

    2012-10-01

    Full Text Available Today’s market in micro-wind turbines is in constant development introducing more efficient solutions for the future. Besides the private use of tower supported turbines, opportunities to integrate wind turbines in the built environment arise. The Integrated Roof Wind Energy System (IRWES presented in this work is a modular roof structure integrated on top of existing or new buildings. IRWES is build up by an axial array of skewed shaped funnels used for both wind inlet and outlet. This inventive use of shape and geometry leads to a converging air capturing inlet to create high wind mass flow and velocity toward a Vertical Axis Wind Turbine (VAWT in the center-top of the roof unit for the generation of a relatively high amount of energy. The scope of this research aims to make an optimized structural design of IRWES to be placed on top of the Vertigo building in Eindhoven; analysis of the structural performance; and impact to the existing structure by means of Finite Element Modeling (FEM. Results show that the obvious impact of wind pressure to the structural design is easily supported in different configurations of fairly simple lightweight structures. In particular, the weight addition to existing buildings remains minimal.

  11. Application of high efficiency and reliable 3D-designed integral shrouded blades to nuclear turbines

    International Nuclear Information System (INIS)

    Watanabe, Eiichiro; Ohyama, Hiroharu; Tashiro, Hikaru; Sugitani, Toshiro; Kurosawa, Masaru

    1998-01-01

    Mitsubishi Heavy Industries, Ltd. has recently developed new blades for nuclear turbines, in order to achieve higher efficiency and higher reliability. The 3D aerodynamic design for 41 inch and 46 inch blades, their one piece structural design (integral-shrouded blades: ISB), and the verification test results using a model steam turbine are described in this paper. The predicted efficiency and lower vibratory stress have been verified. Based on these 60Hz ISB, 50Hz ISB series are under development using 'the law of similarity' without changing their thermodynamic performance and mechanical stress levels. Our 3D-designed reaction blades which are used for the high pressure and low pressure upstream stages, are also briefly mentioned. (author)

  12. High-Payoff Space Transportation Design Approach with a Technology Integration Strategy

    Science.gov (United States)

    McCleskey, C. M.; Rhodes, R. E.; Chen, T.; Robinson, J.

    2011-01-01

    A general architectural design sequence is described to create a highly efficient, operable, and supportable design that achieves an affordable, repeatable, and sustainable transportation function. The paper covers the following aspects of this approach in more detail: (1) vehicle architectural concept considerations (including important strategies for greater reusability); (2) vehicle element propulsion system packaging considerations; (3) vehicle element functional definition; (4) external ground servicing and access considerations; and, (5) simplified guidance, navigation, flight control and avionics communications considerations. Additionally, a technology integration strategy is forwarded that includes: (a) ground and flight test prior to production commitments; (b) parallel stage propellant storage, such as concentric-nested tanks; (c) high thrust, LOX-rich, LOX-cooled first stage earth-to-orbit main engine; (d) non-toxic, day-of-launch-loaded propellants for upper stages and in-space propulsion; (e) electric propulsion and aero stage control.

  13. The Design of Integrated Information System for High Voltage Metering Lab

    Science.gov (United States)

    Ma, Yan; Yang, Yi; Xu, Guangke; Gu, Chao; Zou, Lida; Yang, Feng

    2018-01-01

    With the development of smart grid, intelligent and informatization management of high-voltage metering lab become increasingly urgent. In the paper we design an integrated information system, which automates the whole transactions from accepting instruments, make experiments, generating report, report signature to instrument claims. Through creating database for all the calibrated instruments, using two-dimensional code, integrating report templates in advance, establishing bookmarks and online transmission of electronical signatures, our manual procedures reduce largely. These techniques simplify the complex process of account management and report transmission. After more than a year of operation, our work efficiency improves about forty percent averagely, and its accuracy rate and data reliability are much higher as well.

  14. Design of a highly integrated video acquisition module for smart video flight unit development

    Science.gov (United States)

    Lebre, V.; Gasti, W.

    2017-11-01

    CCD and APS devices are widely used in space missions as instrument sensors and/or in Avionics units like star detectors/trackers. Therefore, various and numerous designs of video acquisition chains have been produced. Basically, a classical video acquisition chain is constituted of two main functional blocks: the Proximity Electronics (PEC), including detector drivers and the Analogue Processing Chain (APC) Electronics that embeds the ADC, a master sequencer and the host interface. Nowadays, low power technologies allow to improve the integration, radiometric performances and power budget optimisation of video units and to standardize video units design and development. To this end, ESA has initiated a development activity through a competitive process requesting the expertise of experienced actors in the field of high resolution electronics for earth observation and Scientific missions. THALES ALENIA SPACE has been granted this activity as a prime contractor through ESA contract called HIVAC that holds for Highly Integrated Video Acquisition Chain. This paper presents main objectives of the on going HIVAC project and focuses on the functionalities and performances offered by the usage of the under development HIVAC board for future optical instruments.

  15. Energy Productivity of the High Velocity Algae Raceway Integrated Design (ARID-HV)

    Energy Technology Data Exchange (ETDEWEB)

    Attalah, Said; Waller, Peter M.; Khawam, George; Ryan, Randy D.; Huesemann, Michael H.

    2015-06-03

    The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare the productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.

  16. MOS integrated circuit design

    CERN Document Server

    Wolfendale, E

    2013-01-01

    MOS Integral Circuit Design aims to help in the design of integrated circuits, especially large-scale ones, using MOS Technology through teaching of techniques, practical applications, and examples. The book covers topics such as design equation and process parameters; MOS static and dynamic circuits; logic design techniques, system partitioning, and layout techniques. Also featured are computer aids such as logic simulation and mask layout, as well as examples on simple MOS design. The text is recommended for electrical engineers who would like to know how to use MOS for integral circuit desi

  17. Design and implementation of interface units for high speed fiber optics local area networks and broadband integrated services digital networks

    Science.gov (United States)

    Tobagi, Fouad A.; Dalgic, Ismail; Pang, Joseph

    1990-01-01

    The design and implementation of interface units for high speed Fiber Optic Local Area Networks and Broadband Integrated Services Digital Networks are discussed. During the last years, a number of network adapters that are designed to support high speed communications have emerged. This approach to the design of a high speed network interface unit was to implement package processing functions in hardware, using VLSI technology. The VLSI hardware implementation of a buffer management unit, which is required in such architectures, is described.

  18. Design analysis report: high-integrity container for disposal of EPICOR-II prefilter liners

    International Nuclear Information System (INIS)

    Chapman, R.L.; Reno, H.W.

    1983-06-01

    A high-integrity container has been developed to (a) immobilize the EPIROC-II prefilter liners from Unit-2 of the Three Mile Island (TMI) Nuclear Power Station, and (b) protect possible future, inadvertent intruders from damaging radiation. The container is designed for disposal depths to 90 feet in either wet or dry subsurface conditions. A built-in vent system for each container will permit the release of gas and function as a water barrier at pressures reaching 45 psig. The container has outside dimensions of 62.5 inches diameter by 84 inches high, and is designed to ensure a 300-year functional life. Its design features multiple barriers that prevent corrosives from penetrating container walls. The multiple-barrier approach provides a 1204-year mean time to total failure, based on an assumed single-event-failure probability of 20%. The multiple-corrosion-barrier concept is supplemented by aluminum hydroxide, which reduces the chemical activity of corrosives potentially arising from chemical decomposition of organic resins in the EPICOR-II prefilter liner. Aluminum hydroxide, an effective amphoteric material, tends to neutralize both acids and bases. An epoxy seal between the lid and container body functions as a barrier against any loss of container contents. Two separate epoxy materials fill the space between the lid and container body; they form a seal, mechanically bonding the lid in place. After curing, this epoxy material has a greater strength than the concrete; thus, the concrete has to fail in order for the lid to loosen

  19. Integrated Structural Design Education

    DEFF Research Database (Denmark)

    Bjerregaard Jensen, Lotte; Almegaard, Henrik

    2011-01-01

    to EU legislation. And a successful engineering student must be prepared to work in the open-ended, multidisciplinary environment necessary to produce structures which comply with EIA demands. This paper describes an innovative course developed at the Technical University of Denmark which integrates...... landscaping and structural design. The integrated courses create a setting for learning about the design of large-scale structures and involve geometry, statics, computer simulation, graphical design and landscape architecture. Together, they educate engineers who can take part in the early design phases...... of a project, function well in design teams, and comply with EU EIA demands....

  20. Design, modeling and testing of integrated ring extractor for high resolution electrohydrodynamic (EHD) 3D printing

    International Nuclear Information System (INIS)

    Han, Yiwei; Dong, Jingyan

    2017-01-01

    This paper presents an integrated ring extractor design in electrohydrodynamic (EHD) printing, which can overcome the standoff height limitation in the EHD printing process, and improve printing capability for 3D structures. Standoff height in the EHD printing will affect printing processes and limit the height of the printed structure when the ground electrode is placed under the substrate. In this work, we designed and integrated a ring electrode with the printing nozzle to achieve a self-working printer head, which can start and maintain the printing process without the involvement of the substrate. We applied a FEA method to model the electric field potential distribution and strength to direct the ring extractor design, which provides a similar printing capability with the system using substrate as the ground electrode. We verified the ring electrode design by experiments, and those results from the experiments demonstrated a good match with results from the FEA simulation. We have characterized the printing processes using the integrated ring extractor, and successfully applied this newly designed ring extractor to print polycaprolactone (PCL) 3D structures. (paper)

  1. Sandia's experience in designing and implementing integrated high security physical protection systems

    International Nuclear Information System (INIS)

    Caskey, D.L.

    1986-01-01

    As DOE's lead laboratory for physical security, Sandia National Laboratories has had a major physical security program for over ten years. Activities have ranged from component development and evaluation, to full scale system design and implementation. This paper presents some of the lessons learned in designing and implementing state-of-the-art high security physical protection systems for a number of government facilities. A generic system design is discussed for illustration purposes. Sandia efforts to transfer technology to industry are described

  2. An integrated optimum design approach for high speed prop-rotors including acoustic constraints

    Science.gov (United States)

    Chattopadhyay, Aditi; Wells, Valana; Mccarthy, Thomas; Han, Arris

    1993-01-01

    The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop multilevel decomposition optimization process. The procedures involve the consideration of blade-aeroelastic aerodynamic performance, structural-dynamic design requirements, and acoustics. Further, since the design involves consideration of several different objective functions, multiobjective function formulation techniques are developed.

  3. Materials and Process Design for High-Temperature Carburizing: Integrating Processing and Performance

    Energy Technology Data Exchange (ETDEWEB)

    D. Apelian

    2007-07-23

    The objective of the project is to develop an integrated process for fast, high-temperature carburizing. The new process results in an order of magnitude reduction in cycle time compared to conventional carburizing and represents significant energy savings in addition to a corresponding reduction of scrap associated with distortion free carburizing steels.

  4. Designing for Engagement: Using the ADDIE Model to Integrate High-Impact Practices into an Online Information Literacy Course

    OpenAIRE

    Amanda Nichols Hess; Katie Greer

    2016-01-01

    In this article, the authors share how a team of librarians used the ADDIE instructional design model to incorporate best practices in teaching and learning into an online, four-credit information literacy course. In this redesign process, the Association of American Colleges and Universities’ high-impact practices and e-learning best practices were integrated as scaffolds for course content. The authors' experience with this systematic process and the concepts of instructional design suggest...

  5. Design and Integrity Evaluation of High-temperature Piping Systems in the STELLA-2 Sodium Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seok-Kwon; Lee, Hyeong-Yeon; Eoh, JaeHyuk; Kim, Jong-Bum; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ju, Yong-Sun [KOASIS Inc., Daejeon (Korea, Republic of)

    2016-09-15

    In this study, elevated temperature design and integrity evaluation have been conducted using two different piping design codes for the high-temperature piping systems of sodium integral effect test loop for safety simulation and assessment(STELLA-2) being developed by KAERI(Korea Atomic Energy Research Institute). The design code of ASME B31.1 for power piping and French nuclear grade piping design guideline, RCC-MRx RD-3600 were applied, and conservatism of those codes was quantified based on the piping integrity evaluation results. The piping system of Model DHRS, Model IHTS and PSLS are to be installed in STELLA-2. The integrity evaluation results for the three piping systems according to the two design codes showed that integrity of the piping system was confirmed. As a code comparison result, ASME B31.1 was shown to be more conservative for sustained loads while RD-3600 was more conservative for thermal loads compared to B31.1.

  6. Integration of educational methods and physical settings: design guidelines for High/Scope methodology in pre-schools

    Directory of Open Access Journals (Sweden)

    Shirin Izadpanah

    2014-06-01

    Full Text Available Quality design and appropriate space organization in preschool settings can support preschool children's educational activities. Although the relationship between the well-being and development of children and physical settings has been emphasized by many early childhood researchers, there is still a need for theoretical design guidelines that are geared towards the improvement of this issue. This research focuses on High/Scope education and aims to shape a theoretical guideline that raises teachers' awareness about the potential of learning spaces and guides them to improve the quality of the physical spaces. To create a theoretical framework, reliable sources are investigated in the light of High/Scope education and the requirements of pre-school children educational spaces. Physical space characteristics, the preschool child's requirements and High/Scope methodology identified design inputs, design considerations and recommendations that shape the final guideline for spatial arrangement in a High/Scope setting are integrated. Discussions and suggestions in this research benefit both designers and High/ Scope teaching staff. Results help High/Scope teaching staff increase the quality of a space in an educational setting without having an architectural background. The theoretical framework of the research allows designers to consider key features and users' possible activities in High/ Scope settings and shape their designs accordingly.

  7. An Integrated Design Process

    DEFF Research Database (Denmark)

    Petersen, Mads Dines; Knudstrup, Mary-Ann

    2010-01-01

    Present paper is placed in the discussion about how sustainable measures are integrated in the design process by architectural offices. It presents results from interviews with four leading Danish architectural offices working with sustainable architecture and their experiences with it, as well...... as the requirements they meet in terms of how to approach the design process – especially focused on the early stages like a competition. The interviews focus on their experiences with working in multidisciplinary teams and using digital tools to support their work with sustainable issues. The interviews show...... the environmental measures cannot be discarded due to extra costs....

  8. Integrated Energy Design

    DEFF Research Database (Denmark)

    Brunsgaard, Camilla; Dvořáková, Pavla; Wyckmans, Annemie

    2014-01-01

    the development, it is essential that educational institutions foster professionals with such knowledge, skills and competences. An initiative toward this direction is the EUproject of IDES-EDU: “Master and Post-Graduate education and training in multi-disciplinary teams”. The paper describes the necessity...... of more integrated and cross-disciplinary approaches to building design through state-of-the-art of the building sector and educational initiatives in the participating countries in the project, and through theory of design processes. The paper also communicates the results of newly developed cross...

  9. Design and implementation of a high sensitivity fully integrated passive UHF RFID tag

    International Nuclear Information System (INIS)

    Li Shoucheng; Wang Xin'an; Lin Ke; Shen Jinpeng; Zhang Jinhai

    2014-01-01

    A fully integrated passive UHF RFID tag complying with the ISO18000-6B protocol is presented, which includes an analog front-end, a baseband processor, and an EEPROM memory. To extend the communication range, a high efficiency differential-drive CMOS rectifier is adopted. A novel high performance voltage limiter is used to provide a stable limiting voltage, with a 172 mV voltage variation against temperature variation and process dispersion. The dynamic band-enhancement technique is used in the regulator circuit to improve the regulating capacity. A rail-to-rail hysteresis comparator is adopted to demodulate the signal correctly in any condition. The whole transponder chip is implemented in a 0.18 μm CMOS process, with a die size of 900 × 800 μm 2 . Our measurement results show that the total power consumption of the tag chip is only 6.8 μW, with a sensitivity of −13.5 dBm (semiconductor integrated circuits)

  10. Transformation as a Design Process and Runtime Architecture for High Integrity Software

    Energy Technology Data Exchange (ETDEWEB)

    Bespalko, S.J.; Winter, V.L.

    1999-04-05

    We have discussed two aspects of creating high integrity software that greatly benefit from the availability of transformation technology, which in this case is manifest by the requirement for a sophisticated backtracking parser. First, because of the potential for correctly manipulating programs via small changes, an automated non-procedural transformation system can be a valuable tool for constructing high assurance software. Second, modeling the processing of translating data into information as a, perhaps, context-dependent grammar leads to an efficient, compact implementation. From a practical perspective, the transformation process should begin in the domain language in which a problem is initially expressed. Thus in order for a transformation system to be practical it must be flexible with respect to domain-specific languages. We have argued that transformation applied to specification results in a highly reliable system. We also attempted to briefly demonstrate that transformation technology applied to the runtime environment will result in a safe and secure system. We thus believe that the sophisticated multi-lookahead backtracking parsing technology is central to the task of being in a position to demonstrate the existence of HIS.

  11. Rational Design and Nanoscale Integration of Multi-Heterostructures as Highly Efficient Photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Xiangfeng [Univ. of California, Los Angeles, CA (United States)

    2017-11-03

    The central goal of this project is to design and synthesize complex multi-hetero-nanostructures and fundamental investigation of their potential as efficient and robust photocatalysts. Specifically, the project aims to develop a nanoscale light-harvesting antenna that can efficiently convert solar photon energy into excited electrons and holes, and integrate such antenna with efficient redox nanocatalysts that can harness the photo-generated carriers for productive electrochemical processes. Focusing on this central goal, we have investigated several potential light-harvesting antennas including: silicon nanowires, nitrogen-doped TiO2 nanowires and the emerging perovskite materials. We also devoted considerable effort in developing electrocatalysts including: hydrogen evolution reaction (HER) catalysts, oxygen evolution reaction (OER) catalysts and oxygen reduction reaction catalysts (ORR). In previous annual reports, we have described our effort in the synthesis and photoelectrochemical properties of silicon, TiO2, perovskite-based materials and heterostructures. Here, we focus our discussion on the recent effort in investigating charge transport dynamics in organolead halide perovskites, as well as carbon nanostructure and platinum nanostructure-based electrocatalysts for energy conversion and storage.

  12. Design and implementation of a highly integrated and automated in situ bioremediation system for petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Dey, J.C.; Rosenwinkel, P.; Norris, R.D.

    1996-01-01

    The proposed sale of an industrial property required that an environmental investigation be conducted as part of the property transfer agreement. The investigation revealed petroleum hydrocarbon compounds (PHCs) in the subsurface. Light nonaqueous phase liquids (LNAPLs) varsol (a gasoline like solvent), gasoline, and fuel oil were found across a three (3) acre area and were present as liquid phase PHCs, as dissolved phase PHCs, and as adsorbed phase PHCs in both saturated and unsaturated soils. Fuel oil was largely present in the unsaturated soils. Fuel oil was largely present in the unsaturated soils. Varsol represented the majority of the PHCs present. The presence of liquid phase PHCs suggested that any remedial action incorporate free phase recovery. The volatility of varsol and gasoline and the biodegradability of the PHCs present in the subsurface suggested that bioremediation, air sparging, and soil vapor extraction/bioventing were appropriate technologies for incorporation in a remedy. The imminent conversion of the impacted area to a retail facility required that any long term remedy be unobtrusive and require minimum activity across much of the impacted area. In the following sections the site investigation, selection and testing of remedial technologies, and design and implementation of an integrated and automated remedial system is discussed

  13. GLobal Integrated Design Environment

    Science.gov (United States)

    Kunkel, Matthew; McGuire, Melissa; Smith, David A.; Gefert, Leon P.

    2011-01-01

    The GLobal Integrated Design Environment (GLIDE) is a collaborative engineering application built to resolve the design session issues of real-time passing of data between multiple discipline experts in a collaborative environment. Utilizing Web protocols and multiple programming languages, GLIDE allows engineers to use the applications to which they are accustomed in this case, Excel to send and receive datasets via the Internet to a database-driven Web server. Traditionally, a collaborative design session consists of one or more engineers representing each discipline meeting together in a single location. The discipline leads exchange parameters and iterate through their respective processes to converge on an acceptable dataset. In cases in which the engineers are unable to meet, their parameters are passed via e-mail, telephone, facsimile, or even postal mail. The result of this slow process of data exchange would elongate a design session to weeks or even months. While the iterative process remains in place, software can now exchange parameters securely and efficiently, while at the same time allowing for much more information about a design session to be made available. GLIDE is written in a compilation of several programming languages, including REALbasic, PHP, and Microsoft Visual Basic. GLIDE client installers are available to download for both Microsoft Windows and Macintosh systems. The GLIDE client software is compatible with Microsoft Excel 2000 or later on Windows systems, and with Microsoft Excel X or later on Macintosh systems. GLIDE follows the Client-Server paradigm, transferring encrypted and compressed data via standard Web protocols. Currently, the engineers use Excel as a front end to the GLIDE Client, as many of their custom tools run in Excel.

  14. Optomecatronic design and integration of a high resolution equipment Berkut to the 1-meter class telescopes

    Science.gov (United States)

    Granados, R.; López, R.; Farah, Alejandro

    2014-07-01

    It is proposed the development and implementation of a High Speed Resolution Camera instrument. The basic principle of this technique is to take several pictures of short exposure using different filters of an astronomical object of interest . These images are subsequently processed using specialized software to remove aberrations from atmosphere and from the instrument itself such as blur and scintillation among others. In this paper are described electronic and control systems implemented for BERKUT instrument based on FPGA (Field Programmable Gate Array) generated with VHDL description. An UART communication, using serial protocol, is used with a friendly User Interface providing an easy way for the astronomer to choose between different lenses and different filters for capturing the images. All the movements are produced by stepper motors that are driven by a circuit that powers all the electronics. The camera and the lenses are placed into a linear positioner with the help of a stepper motor which give us repeatable movements for positioning these optical components. Besides it is planned to integrate in the same system a pipeline for image data reduction to have one sturdy system that could fulfill any astronomer needs in the usage of this technique. With this instrument we pretend to confirm the Hipparcos catalogue of binary stars besides finding exoplanets. This technique requires more simple optical equipment and it is less sensitive to environmental noise, making it cheaper and provides good quality and great resolution images for scientific purposes. This equipment will be installed on different 1-m class telescopes in Mexico1 and probably other countries which makes it a wide application instrument.

  15. ACHIEVING HIGH INTEGRITY OF PROCESS-CONTROL SOFTWARE BY GRAPHICAL DESIGN AND FORMAL VERIFICATION

    NARCIS (Netherlands)

    HALANG, WA; Kramer, B.J.

    The International Electrotechnical Commission is currently standardising four compatible languages for designing and implementing programmable logic controllers (PLCs). The language family includes a diagrammatic notation that supports the idea of software ICs to encourage graphical design

  16. Application to nuclear turbines of high-efficiency and reliable 3D-designed integral shrouded blades

    International Nuclear Information System (INIS)

    Watanabe, Eiichiro; Ohyama, Hiroharu; Tashiro, Hikaru; Sugitani, Toshio; Kurosawa, Masaru

    1999-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has recently developed new blades for nuclear turbines, in order to achieve higher efficiency and higher reliability. The three-dimensional aerodynamic design for 41-inch and 46-inch blades, their one piece structural design (integral shrouded blades: ISB), and the verification test results using a model steam turbine are described in this paper. The predicted efficiency and lower vibratory stress have been verified. On the basis of these 60 Hz ISB, 50 Hz ISB series are under development using 'the law of similarity' without changing their thermodynamic performance and mechanical stress levels. Our 3D-designed reaction blades which are used for the high pressure and low pressure upstream stages, are also briefly mentioned. (author)

  17. Structural integrity and its role in nuclear safety: recent UK advances in the development of high temperature design procedures

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1996-01-01

    This paper takes the liquid metal fast breeder reactor as an example and identifies those topics where research has had a role to play in providing improved design rules. Many of the previously adopted procedures contained large amounts of pessimism to allow for uncertainties in the prediction of long-term structural behaviour. The aim has therefore been to gain an improved physical insight into the phenomena which govern performance and to develope less restrictive procedures which, at the same time, guarantee the high standards of integrity which are required. (orig.)

  18. Design, Qualification and Integration Testing of the High-Temperature Resistance Temperature Device for Stirling Power System

    Science.gov (United States)

    Chan, Jack; Hill, Dennis H.; Elisii, Remo; White, Jonathan R.; Lewandowski, Edward J.; Oriti, Salvatore M.

    2015-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), developed from 2006 to 2013 under the joint sponsorship of the United States Department of Energy (DOE) and National Aeronautics and Space Administration (NASA) to provide a high-efficiency power system for future deep space missions, employed Sunpower Incorporated's Advanced Stirling Convertors (ASCs) with operating temperature up to 840 C. High-temperature operation was made possible by advanced heater head materials developed to increase reliability and thermal-to-mechanical conversion efficiency. During a mission, it is desirable to monitor the Stirling hot-end temperature as a measure of convertor health status and assist in making appropriate operating parameter adjustments to maintain the desired hot-end temperature as the radioisotope fuel decays. To facilitate these operations, a Resistance Temperature Device (RTD) that is capable of high-temperature, continuous long-life service was designed, developed and qualified for use in the ASRG. A thermal bridge was also implemented to reduce the RTD temperature exposure while still allowing an accurate projection of the ASC hot-end temperature. NASA integrated two flight-design RTDs on the ASCs and assembled into the high-fidelity Engineering Unit, the ASRG EU2, at Glenn Research Center (GRC) for extended operation and system characterization. This paper presents the design implementation and qualification of the RTD, and its performance characteristics and calibration in the ASRG EU2 testing.

  19. Integrated Modelling of an Unmanned High-Altitude Solar-Powered Aircraft for Control Law Design Analysis

    OpenAIRE

    Klöckner, Andreas; Leitner, Martin; Schlabe, Daniel; Looye, Gertjan

    2013-01-01

    Solar-powered high-altitude unmanned platforms are highly optimized and integrated aircraft. In order to account for the complex, multi-physical interactions between their systems, we propose using integrated simulation models throughout the aircraft’s life cycle. Especially small teams with limited ressources should benefit from this approach. In this paper, we describe our approach to an integrated model of the Electric High-Altitude Solar-Powered Aircraft ELHASPA. It includes aspects of th...

  20. Design and test results of a low-noise readout integrated circuit for high-energy particle detectors

    International Nuclear Information System (INIS)

    Zhang Mingming; Chen Zhongjian; Zhang Yacong; Lu Wengao; Ji Lijiu

    2010-01-01

    A low-noise readout integrated circuit for high-energy particle detector is presented. The noise of charge sensitive amplifier was suppressed by using single-side amplifier and resistors as source degeneration. Continuous-time semi-Gaussian filter is chosen to avoid switch noise. The peaking time of pulse shaper and the gain can be programmed to satisfy multi-application. The readout integrated circuit has been designed and fabricated using a 0.35 μm double-poly triple-metal CMOS technology. Test results show the functions of the readout integrated circuit are correct. The equivalent noise charge with no detector connected is 500-700 e in the typical mode, the gain is tunable within 13-130 mV/fC and the peaking time varies from 0.7 to 1.6 μs, in which the average gain is about 20.5 mV/fC, and the linearity reaches 99.2%. (authors)

  1. Designing for Engagement: Using the ADDIE Model to Integrate High-Impact Practices into an Online Information Literacy Course

    Directory of Open Access Journals (Sweden)

    Amanda Nichols Hess

    2016-12-01

    Full Text Available In this article, the authors share how a team of librarians used the ADDIE instructional design model to incorporate best practices in teaching and learning into an online, four-credit information literacy course. In this redesign process, the Association of American Colleges and Universities’ high-impact practices and e-learning best practices were integrated as scaffolds for course content. The authors' experience with this systematic process and the concepts of instructional design suggest that the ADDIE model can be used to achieve several different ends in information literacy instruction. First, it can provide a structure around which librarians can develop a variety of instructional interactions. Second, it can help librarians consider student engagement, learning, and assessment more intentionally. And third, it can help to marry information literacy-specific standards and other learning guidelines, such as high-impact practices and e-learning best practices. From the authors' experience, other academic librarians may find applications for instructional design constructs into their own teaching practices, both in online and face-to-face learning environments.

  2. Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications.

    Science.gov (United States)

    Hughes, Stephen R; Butt, Tauseef R; Bartolett, Scott; Riedmuller, Steven B; Farrelly, Philip

    2011-08-01

    The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly clone and express heterologous gene open reading frames in bacteria and yeast and to screen large numbers of expressed proteins for optimized function are an important technology for improving microbial strains for biofuel production. The process involves the production of full-length complementary DNA libraries as a source of plasmid-based clones to express the desired proteins in active form for determination of their functions. Proteins that were identified by high-throughput screening as having desired characteristics are overexpressed in microbes to enable them to perform functions that will allow more cost-effective and sustainable production of biofuels. Because the plasmid libraries are composed of several thousand unique genes, automation of the process is essential. This review describes the design and implementation of an automated integrated programmable robotic workcell capable of producing complementary DNA libraries, colony picking, isolating plasmid DNA, transforming yeast and bacteria, expressing protein, and performing appropriate functional assays. These operations will allow tailoring microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries. Published by Elsevier Inc.

  3. Development of an Integrated Process, Modeling and Simulation Platform for Performance-Based Design of Low-Energy and High IEQ Buildings

    Science.gov (United States)

    Chen, Yixing

    2013-01-01

    The objective of this study was to develop a "Virtual Design Studio (VDS)": a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. The VDS is intended to assist collaborating architects,…

  4. Future integrated design environments

    DEFF Research Database (Denmark)

    Christiansson, Per; Svidt, Kjeld; Sørensen, Kristian Birch

    2009-01-01

    and modeling of explicit and implicit end-user needs and requirements on both the building to be designed and the supporting design tools. The paper provides grounds to higher success rate in capture of explicit and implicit end user needs and requirements on functional performance in use and re...

  5. Computational Design Tools for Integrated Design

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2010-01-01

    In an architectural conceptual sketching process, where an architect is working with the initial ideas for a design, the process is characterized by three phases: sketching, evaluation and modification. Basically the architect needs to address three areas in the conceptual sketching phase......: aesthetical, functional and technical requirements. The aim of the present paper is to address the problem of a vague or not existing link between digital conceptual design tools used by architects and designers and engineering analysis and simulation tools. Based on an analysis of the architectural design...... process different digital design methods are related to tasks in an integrated design process....

  6. Integrated circuit design using design automation

    International Nuclear Information System (INIS)

    Gwyn, C.W.

    1976-09-01

    Although the use of computer aids to develop integrated circuits is relatively new at Sandia, the program has been very successful. The results have verified the utility of the in-house CAD design capability. Custom IC's have been developed in much shorter times than available through semiconductor device manufacturers. In addition, security problems were minimized and a saving was realized in circuit cost. The custom CMOS IC's were designed at less than half the cost of designing with conventional techniques. In addition to the computer aided design, the prototype fabrication and testing capability provided by the semiconductor development laboratory and microelectronics computer network allows the circuits to be fabricated and evaluated before the designs are transferred to the commercial semiconductor manufacturers for production. The Sandia design and prototype fabrication facilities provide the capability of complete custom integrated circuit development entirely within the ERDA laboratories

  7. High temperature structural integrity evaluation method and application studies by ASME-NH for the next generation reactor design

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, Jae Han

    2006-01-01

    The main purpose of this paper is to establish the high temperature structural integrity evaluating procedures for the next generation reactors, which are to be operated at over 500 .deg. C and for 60 years. To do this, comparison studies of the high temperature structural design codes and assessment procedures such as the ASME-NH (USA), RCC-MR (France), DDS (Japan), and R5 (UK) are carried out in view of the accumulated inelastic strain and the creep-fatigue damage evaluations. Also the application procedures of the ASME-NH rules with the actual thermal and structural analysis results are described in detail. To overcome the complexity and the engineering costs arising from a real application of the ASME-NH rules by hand, all the procedures established in this study such as the time-dependent primary stress limits, total accumulated creep ratcheting strain limits, and the creep-fatigue damage limits are computerized and implemented into the SIE ASME-NH program. Using this program, the selected high temperature structures subjected to two cycle types are evaluated and the parametric studies for the effects of the time step size, primary load, number of cycles, normal temperature for the creep damage evaluations and the effects of the load history on the creep ratcheting strain calculations are investigated

  8. Integrated Safety in Design

    DEFF Research Database (Denmark)

    Schultz, Casper Siebken; Jørgensen, Kirsten

    2014-01-01

    An on-going research project investigates the inclusion of health and safety considerations in the design phase as a means to achieve a higher level of health and safety in the construction industry. Moreover, the approach is coupled to the overall quality efforts. Two architectural firms and two...... consulting engineering firms are project participants. The hypothesis is that health and safety problems in execution can be prevented through better planning in the early stages of the construction processes and that accidents are prevented by providing safety. In the first stage of the research project...... a theoretical framework is developed from a combination of existing literature on health and safety and a mapping of existing practices based on interviews in all four companies. The interviews revealed that the basic knowledge on OHS among architects and engineers is limited. Also currently designers typically...

  9. Integrated Building Design

    DEFF Research Database (Denmark)

    Heiselberg, Per

    In the first half of the 20th century, HVAC systems and artificial lighting were developed to meet indoor comfort needs. Before the introduction of mechanical systems, climate - not building style or appearance - was the major determinant of building form. Comfort was achieved through passive means...... and architectural features built into the design. However, with the advent of new technologies, architects were no longer constrained by the need to ensure that buildings had ample daylighting, remained airy and cool in the summer and warm in the winter. Since HVAC systems and artificial lighting could satisfy...

  10. Virtual Design Studio (VDS) - Development of an Integrated Computer Simulation Environment for Performance Based Design of Very-Low Energy and High IEQ Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yixing [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Zhang, Jianshun [Syracuse Univ., NY (United States); Pelken, Michael [Syracuse Univ., NY (United States); Gu, Lixing [Univ. of Central Florida, Orlando, FL (United States); Rice, Danial [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Meng, Zhaozhou [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Semahegn, Shewangizaw [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Feng, Wei [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Ling, Francesca [Syracuse Univ., NY (United States); Shi, Jun [Building Energy and Environmental Systems Lab. (BEESL), Syracuse, NY (United States); Henderson, Hugh [CDH Energy, Cazenovia, NY (United States)

    2013-09-01

    Executive Summary The objective of this study was to develop a “Virtual Design Studio (VDS)”: a software platform for integrated, coordinated and optimized design of green building systems with low energy consumption, high indoor environmental quality (IEQ), and high level of sustainability. This VDS is intended to assist collaborating architects, engineers and project management team members throughout from the early phases to the detailed building design stages. It can be used to plan design tasks and workflow, and evaluate the potential impacts of various green building strategies on the building performance by using the state of the art simulation tools as well as industrial/professional standards and guidelines for green building system design. Engaged in the development of VDS was a multi-disciplinary research team that included architects, engineers, and software developers. Based on the review and analysis of how existing professional practices in building systems design operate, particularly those used in the U.S., Germany and UK, a generic process for performance-based building design, construction and operation was proposed. It distinguishes the whole process into five distinct stages: Assess, Define, Design, Apply, and Monitoring (ADDAM). The current VDS is focused on the first three stages. The VDS considers building design as a multi-dimensional process, involving multiple design teams, design factors, and design stages. The intersection among these three dimensions defines a specific design task in terms of “who”, “what” and “when”. It also considers building design as a multi-objective process that aims to enhance the five aspects of performance for green building systems: site sustainability, materials and resource efficiency, water utilization efficiency, energy efficiency and impacts to the atmospheric environment, and IEQ. The current VDS development has been limited to energy efficiency and IEQ performance, with particular focus

  11. Design of all-optical high-order temporal integrators based on multiple-phase-shifted Bragg gratings.

    Science.gov (United States)

    Asghari, Mohammad H; Azaña, José

    2008-07-21

    In exact analogy with their electronic counterparts, photonic temporal integrators are fundamental building blocks for constructing all-optical circuits for ultrafast information processing and computing. In this work, we introduce a simple and general approach for realizing all-optical arbitrary-order temporal integrators. We demonstrate that the N(th) cumulative time integral of the complex field envelope of an input optical waveform can be obtained by simply propagating this waveform through a single uniform fiber/waveguide Bragg grating (BG) incorporating N pi-phase shifts along its axial profile. We derive here the design specifications of photonic integrators based on multiple-phase-shifted BGs. We show that the phase shifts in the BG structure can be arbitrarily located along the grating length provided that each uniform grating section (sections separated by the phase shifts) is sufficiently long so that its associated peak reflectivity reaches nearly 100%. The resulting designs are demonstrated by numerical simulations assuming all-fiber implementations. Our simulations show that the proposed approach can provide optical operation bandwidths in the tens-of-GHz regime using readily feasible photo-induced fiber BG structures.

  12. Design Integration of Facilities Management

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2009-01-01

    One of the problems in the building industry is a limited degree of learning from experiences of use and operation of existing buildings. Development of professional facilities management (FM) can be seen as the missing link to bridge the gap between building operation and building design....... Strategies, methods and barriers for the transfer and integration of operational knowledge into the design process are discussed. Multiple strategies are needed to improve the integration of FM in design. Building clients must take on a leading role in defining and setting up requirements and procedures...... on literature studies and case studies from the Nordic countries in Europe, including research reflections on experiences from a main case study, where the author, before becoming a university researcher, was engaged in the client organization as deputy project director with responsibility for the integration...

  13. Novel aluminum near field transducer and highly integrated micro-nano-optics design for heat-assisted ultra-high-density magnetic recording

    International Nuclear Information System (INIS)

    Miao, Lingyun; Hsiang, Thomas Y; Stoddart, Paul R

    2014-01-01

    Heat-assisted magnetic recording (HAMR) has attracted increasing attention as one of the most promising future techniques for ultra-high-density magnetic recording beyond the current limit of 1 Tb in −2 . Localized surface plasmon resonance plays an important role in HAMR by providing a highly focused optical spot for heating the recording medium within a small volume. In this work, we report an aluminum near-field transducer (NFT) based on a novel bow-tie design. At an operating wavelength of 450 nm, the proposed transducer can generate a 35 nm spot size inside the magnetic recording medium, corresponding to a recording density of up to 2 Tb in −2 . A highly integrated micro-nano-optics design is also proposed to ensure process compatibility and corrosion-resistance of the aluminum NFT. Our work has demonstrated the feasibility of using aluminum as a plasmonic material for HAMR, with advantages of reduced cost and improved efficiency compared to traditional noble metals. (paper)

  14. Integration of design and inspection

    Science.gov (United States)

    Simmonds, William H.

    1990-08-01

    Developments in advanced computer integrated manufacturing technology, coupled with the emphasis on Total Quality Management, are exposing needs for new techniques to integrate all functions from design through to support of the delivered product. One critical functional area that must be integrated into design is that embracing the measurement, inspection and test activities necessary for validation of the delivered product. This area is being tackled by a collaborative project supported by the UK Government Department of Trade and Industry. The project is aimed at developing techniques for analysing validation needs and for planning validation methods. Within the project an experimental Computer Aided Validation Expert system (CAVE) is being constructed. This operates with a generalised model of the validation process and helps with all design stages: specification of product requirements; analysis of the assurance provided by a proposed design and method of manufacture; development of the inspection and test strategy; and analysis of feedback data. The kernel of the system is a knowledge base containing knowledge of the manufacturing process capabilities and of the available inspection and test facilities. The CAVE system is being integrated into a real life advanced computer integrated manufacturing facility for demonstration and evaluation.

  15. The Integrated Design Process (IDP)

    DEFF Research Database (Denmark)

    Hansen, Hanne Tine Ring; Knudstrup, Mary-Ann

    2005-01-01

    the different parameters and products can interact, and which consequences this would have on a project. The IDP does not ensure aesthetic or sustainable solutions, but it enables the designer to control the many parameters that must be considered and integrated in the project when creating more holistic...

  16. Man-machine design integration

    Energy Technology Data Exchange (ETDEWEB)

    Carrera, J.P. [Westinghouse Electric Corp., Monroeville, PA (United States). Nuclear Technology Div.; Haentjens, J. [Westinghouse Electric Corp., Brussels (Belgium). Nuclear Technology Div.

    1995-12-31

    The presentation overviews the bases for Man-Machine Interface (MMI) designs that are part of three other presentations during the same conference: Advanced Alarm Management System, Functional Displays and System for Emergency Procedure Execution Monitoring. The MMD group history, team and goals are summarized to give some context to the core of the MMD philosophy and integration. (10 refs., 5 figs.).

  17. Human Integration Design Processes (HIDP)

    Science.gov (United States)

    Boyer, Jennifer

    2014-01-01

    The purpose of the Human Integration Design Processes (HIDP) document is to provide human-systems integration design processes, including methodologies and best practices that NASA has used to meet human systems and human rating requirements for developing crewed spacecraft. HIDP content is framed around human-centered design methodologies and processes in support of human-system integration requirements and human rating. NASA-STD-3001, Space Flight Human-System Standard, is a two-volume set of National Aeronautics and Space Administration (NASA) Agency-level standards established by the Office of the Chief Health and Medical Officer, directed at minimizing health and performance risks for flight crews in human space flight programs. Volume 1 of NASA-STD-3001, Crew Health, sets standards for fitness for duty, space flight permissible exposure limits, permissible outcome limits, levels of medical care, medical diagnosis, intervention, treatment and care, and countermeasures. Volume 2 of NASASTD- 3001, Human Factors, Habitability, and Environmental Health, focuses on human physical and cognitive capabilities and limitations and defines standards for spacecraft (including orbiters, habitats, and suits), internal environments, facilities, payloads, and related equipment, hardware, and software with which the crew interfaces during space operations. The NASA Procedural Requirements (NPR) 8705.2B, Human-Rating Requirements for Space Systems, specifies the Agency's human-rating processes, procedures, and requirements. The HIDP was written to share NASA's knowledge of processes directed toward achieving human certification of a spacecraft through implementation of human-systems integration requirements. Although the HIDP speaks directly to implementation of NASA-STD-3001 and NPR 8705.2B requirements, the human-centered design, evaluation, and design processes described in this document can be applied to any set of human-systems requirements and are independent of reference

  18. Designing for Engagement: Using the ADDIE Model to Integrate High-Impact Practices into an Online Information Literacy Course

    Science.gov (United States)

    Nichols Hess, Amanda Kathryn; Greer, Katie

    2016-01-01

    In this article, the authors share how a team of librarians used the ADDIE instructional design model to incorporate best practices in teaching and learning into an online, four-credit information literacy course. In this redesign process, the Association of American Colleges and Universities' high-impact practices and e-learning best practices…

  19. Radiological controls integrated into design

    Energy Technology Data Exchange (ETDEWEB)

    Kindred, G.W. [Cleveland Electric Illuminating Co., Perry, OH (United States)

    1995-03-01

    Radiological controls are required by law in the design of commercial nuclear power reactor facilities. These controls can be relatively minor or significant, relative to cost. To ensure that radiological controls are designed into a project, the health physicist (radiological engineer) must be involved from the beginning. This is especially true regarding keeping costs down. For every radiological engineer at a nuclear power plant there must be fifty engineers of other disciplines. The radiological engineer cannot be an expert on every discipline of engineering. However, he must be knowledgeable to the degree of how a design will impact the facility from a radiological perspective. This paper will address how to effectively perform radiological analyses with the goal of radiological controls integrated into the design package.

  20. Integrated project delivery : The designer as integrator

    NARCIS (Netherlands)

    Wamelink, J.W.F.; Koolwijk, J.S.J.; van Doorn, A.J.

    2012-01-01

    Process innovation related to integrated project delivery is an important topic in the building industry. Studies on process innovation through the use of integrated contracts usually focus on contractors, and particularly on the possibility of forward integration into the building process. Three

  1. Design of a high-torque machine with two integrated motors axes reducing the electric vehicle consumption

    Directory of Open Access Journals (Sweden)

    M. Chaieb

    2008-03-01

    Full Text Available The motorization of electric vehicle needs to work at a constant power on a wide range of speed. In order to be able to satisfy these requirements, we describe in this paper a solution, which consists in modifying of a simple structure of a permanent magnet motor by a double rotor structure integrating two motor axes into the same machine. This article describes, then, a design methodology of a permanent magnet motor with double rotor, radial flux, and strong starting torque for electric vehicles. This work consists on the analytical dimensioning of the motor by taking into account several operation constraints followed by a modelling by the finite elements method. This study is followed by the comparison between this motor and a motor with one rotor. A global model of the motor- converter is developed for the purpose to answer several optimisation problems

  2. Design and realisation of integrated circuits for the readout of pixel sensors in high-energy physics and biomedical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Peric, I.

    2004-08-01

    Radiation tolerant pixel-readout chip for the ATLAS pixel detector has been designed, implemented in a deep-submicron CMOS technology and successfully tested. The chip contains readout-channels with complex analog and digital circuits. Chip for steering of the DEPFET active-pixel matrix has been implemented in a high-voltage CMOS technology. The chip contains channels which generate fast sequences of high-voltage signals. Detector containing this chip has been successfully tested. Pixel-readout test chip for an X-ray imaging pixel sensor has been designed, implemented in a CMOS technology and tested. Pixel-readout channels are able to simultaneously count the signals generated by passage of individual photons and to sum the total charge generated during exposure time. (orig.)

  3. Power management techniques for integrated circuit design

    CERN Document Server

    Chen, Ke-Horng

    2016-01-01

    This book begins with the premise that energy demands are directing scientists towards ever-greener methods of power management, so highly integrated power control ICs (integrated chip/circuit) are increasingly in demand for further reducing power consumption. * A timely and comprehensive reference guide for IC designers dealing with the increasingly widespread demand for integrated low power management * Includes new topics such as LED lighting, fast transient response, DVS-tracking and design with advanced technology nodes * Leading author (Chen) is an active and renowned contributor to the power management IC design field, and has extensive industry experience * Accompanying website includes presentation files with book illustrations, lecture notes, simulation circuits, solution manuals, instructors manuals, and program downloads.

  4. Structural integrity and its role in nuclear safety recent UK developments in the development of high temperature design procedures

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1991-01-01

    The structural design rules for the reactors which operate at high temperature are not yet well developed. There is not difficulty in producing the plants which meet the high standards required by nuclear industry. However, there are the issues to be resolved which are associated with the deterioration of components in service, in order to achieve the optimum use of materials and the reduction of capital costs. The safety of plants is not at risk since any deterioration is detected by in-service monitoring, nevertheless, there would be severe economic penalty, if a plant must be retired prematurely because the continuing safety could not be demonstrated. In this paper, a liquid metal fast breeder reactor is taken up as an example, and the topics in which research plays a role for providing improved design rules are identified. Shakedown interaction diagrams, the methods of analysis based on shakedown, inelastic analysis and constitutive equations, creep fatigue damage and thermal shock, thermal striping, welds, defect assessment and so on are discussed. (K.I.)

  5. Designing Critique for Knowledge Integration

    Science.gov (United States)

    Sato, Mie Elissa

    Generating explanations is central to science and has the potential to have a powerful impact on students' conceptual understanding in science instruction. However, improving conceptual understanding by generating explanations is a fraught affair: students may struggle with the sense of false clarity that may arise from generating explanations, fail to detect gaps in their understanding, and dismiss salient information that contradict their beliefs. Critiquing explanations has the potential to counteract these pitfalls by exposing students to alternative ideas to contrast with their own. This dissertation seeks to clarify how to design critique in technology-enhanced science instruction to support students in revising their explanations about scientific phenomena, and in doing so, refining their conceptual understanding. Using the Knowledge Integration framework, I revised two technology-enhanced curriculum units, Plate Tectonics and Global Climate Change, in a design partnership between teachers, researchers, and technologists. I conducted a series of studies with sixth-grade students to investigate the conditions under which guided critique of explanations can support revision. The pilot critique study investigated the impact of the revised Plate Tectonics unit on students' understanding of convection, as well as of a preliminary design of critique where students generated and applied their own criteria for what makes a good explanation in science. The guidance study explored how incorporating a complex selection task that features meta-explanatory criteria into critique supports students in distinguishing among different criteria, as well as how students use peer or expert guidance on their initial explanation during revision. The critique study investigated how designing critique with a complex selection task that features plausible alternative ideas and giving guidance on students' critiques support students in distinguishing among a range of relevant ideas

  6. Design Considerations for Proposed Fermilab Integrable RCS

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Valishev, Alexander

    2017-03-02

    Integrable optics is an innovation in particle accelerator design that provides strong nonlinear focusing while avoiding parametric resonances. One promising application of integrable optics is to overcome the traditional limits on accelerator intensity imposed by betatron tune-spread and collective instabilities. The efficacy of high-intensity integrable accelerators will be undergo comprehensive testing over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER). We propose an integrable Rapid-Cycling Synchrotron (iRCS) as a replacement for the Fermilab Booster to achieve multi-MW beam power for the Fermilab high-energy neutrino program. We provide a overview of the machine parameters and discuss an approach to lattice optimization. Integrable optics requires arcs with integer-pi phase advance followed by drifts with matched beta functions. We provide an example integrable lattice with features of a modern RCS - long dispersion-free drifts, low momentum compaction, superperiodicity, chromaticity correction, separate-function magnets, and bounded beta functions.

  7. Resonance integral calculations for high temperature reactors

    International Nuclear Information System (INIS)

    Blake, J.P.H.

    1960-02-01

    Methods of calculation of resonance integrals of finite dilution and temperature are given for both, homogeneous and heterogeneous geometries, together with results obtained from these methods as applied to the design of high temperature reactors. (author)

  8. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    Randle, D.C.

    2000-01-01

    The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I andC) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I andC and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I andC systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I andC systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored

  9. Integration of Educational Methods and Physical Settings: Design Guidelines for High/Scope Methodology in Pre-Schools

    Science.gov (United States)

    Izadpanah, Shirin; Günçe, Kaðan

    2014-01-01

    Quality design and appropriate space organization in preschool settings can support preschool children's educational activities. Although the relationship between the well-being and development of children and physical settings has been emphasized by many early childhood researchers, there is still a need for theoretical design guidelines that are…

  10. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    C.J. Fernado

    1998-01-01

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I andC) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I andC and will typically be integrated over a data communication network. The subsurface I andC systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures

  11. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Fernado

    1998-09-17

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that

  12. Integrated Radiation Analysis and Design Tools

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Radiation Analysis and Design Tools (IRADT) Project develops and maintains an integrated tool set that collects the current best practices, databases,...

  13. Integrated Multidisciplinary Design of High Pressure Multistage Compressor Systems (la Conception integree des compresseurs multi-etage a haute performance)

    Science.gov (United States)

    1998-09-01

    development ONERA and SNECMA and is described in [Nicoud, 91]. This methodology [ Karadimas , 1997]. The aim of all efforts method solves the Quasi-3D...computer power, 1994 2-11 BERTHILLIER, M., DUPONT, C., MONDAL, R., KARADIMAS , G. : New Ways for the Design the BARRAU, J.J. : Blade Forced Response

  14. Design of integral magnetic field sensor

    International Nuclear Information System (INIS)

    Ma Liang; Cheng Yinhui; Wu Wei; Li Baozhong; Zhou Hui; Li Jinxi; Zhu Meng

    2010-01-01

    Magnetic field is one of the important physical parameters in the measuring process of pulsed EMP. We researched on anti-interference and high-sensitivity measurement technique of magnetic field in this report. Semi rigid cables were to bent into ringed antenna so that the antenna was shielded from electric-field interference and had little inductance; In order to have high sensitivity, operational transconductance amplifier was used to produce an active integrator; We designed an optical-electronic transferring module to upgrade anti-interference capability of the magnetic-field measurement system. A measurement system of magnetic field was accomplished. The measurement system was composed of antenna, integrator, and optical-electric transferring module and so on. We calibrated the measurement system in coaxial TEM cell. It indicates that, the measurement system's respondence of rise time is up to 2.5 ns, and output width at 90%-maximum of the pulse is wider than 200 ns. (authors)

  15. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    The present work describes the ongoing development of high temperature PEM fuel cell systems fuelled by steam reformed methanol. Various fuel cell system solutions exist, they mainly differ depending on the desired fuel used. High temperature PEM (HTPEM) fuel cells offer the possibility of using...... methanol is converted to a hydrogen rich gas with CO2 trace amounts of CO, the increased operating temperatures allow the fuel cell to tolerate much higher CO concentrations than Nafion-based membranes. The increased tolerance to CO also enables the use of reformer systems with less hydrogen cleaning steps...... liquid fuels such as methanol, due to the increased robustness of operating at higher temperatures (160-180oC). Using liquid fuels such as methanol removes the high volume demands of compressed hydrogen storages, simplifies refueling, and enables the use of existing fuel distribution systems. The liquid...

  16. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  17. Integrating reliability analysis and design

    International Nuclear Information System (INIS)

    Rasmuson, D.M.

    1980-10-01

    This report describes the Interactive Reliability Analysis Project and demonstrates the advantages of using computer-aided design systems (CADS) in reliability analysis. Common cause failure problems require presentations of systems, analysis of fault trees, and evaluation of solutions to these. Results have to be communicated between the reliability analyst and the system designer. Using a computer-aided design system saves time and money in the analysis of design. Computer-aided design systems lend themselves to cable routing, valve and switch lists, pipe routing, and other component studies. At EG and G Idaho, Inc., the Applicon CADS is being applied to the study of water reactor safety systems

  18. Integrated design for space transportation system

    CERN Document Server

    Suresh, B N

    2015-01-01

    The book addresses the overall integrated design aspects of a space transportation system involving several disciplines like propulsion, vehicle structures, aerodynamics, flight mechanics, navigation, guidance and control systems, stage auxiliary systems, thermal systems etc. and discusses the system approach for design, trade off analysis, system life cycle considerations, important aspects in mission management, the risk assessment, etc. There are several books authored to describe the design aspects of various areas, viz., propulsion, aerodynamics, structures, control, etc., but there is no book which presents space transportation system (STS) design in an integrated manner. This book attempts to fill this gap by addressing systems approach for STS design, highlighting the integrated design aspects, interactions between various subsystems and interdependencies. The main focus is towards the complex integrated design to arrive at an optimum, robust and cost effective space transportation system. The orbit...

  19. Challenges of Aircraft Design Integration

    Science.gov (United States)

    2003-03-01

    predicted by the conceptual stick model and the full FEM of the Challenger wing without winglets . Advanced aerodynamic wing design methods To design wings...Piperni, E. Laurendeau Advanced Aerodynamics Bombardier Aerospace 400 CMte Vertu Road Dorval, Quebec, Canada, H4S 1Y9 Fassi.Kafyeke @notes.canadair.ca Tel...514) 855-7186 Abstract The design of a modern airplane brings together many disciplines: structures, aerodynamics , controls, systems, propulsion

  20. Passive solar offices: integrated design

    Energy Technology Data Exchange (ETDEWEB)

    Evans, B

    1992-05-06

    Passive solar design in out-of-town offices can remove the need for air-conditioning by making greater use of daylight and natural ventilation. To promote the use of passive solar energy a series of design studies are being run by the Energy Technology Support Unit on behalf of the Department of Energy. The three reported here are designs for out-of-town business buildings. Each is a hypothetical building designed to a realistic brief for an organisation taking the role of real client. (author).

  1. Laser and photonic systems design and integration

    CERN Document Server

    Nof, Shimon Y; Cheng, Gary J

    2014-01-01

    New, significant scientific discoveries in laser and photonic technologies, systems perspectives, and integrated design approaches can improve even further the impact in critical areas of challenge. Yet this knowledge is dispersed across several disciplines and research arenas. Laser and Photonic Systems: Design and Integration brings together a multidisciplinary group of experts to increase understanding of the ways in which systems perspectives may influence laser and photonic innovations and application integration.By bringing together chapters from leading scientists and technologists, ind

  2. Integrating product design into the supply chain

    DEFF Research Database (Denmark)

    Khan, Omera; Stolte, Terje; Creazza, Alessandro

    2016-01-01

    Purpose: The aim of the research is to illustrate how companies can create competitive capabilities through integration of product design into the supply chain. In doing so the paper reveals the challenges and the opportunities that companies face when integrating product design and supply chain...... of opportunities and challenges when integrating product design and the supply chain and subsequently a step-by-step guide is developed to address these. Practical Implications: The research provides key recommendations to companies on how to create competitive capabilities by integrating product design...... into the supply chain. Originality/Value: This paper provides novel insights to both practitioners and researchers. For practitioners detailed recommendations are given on how they can maximise benefits through integrating product design into the supply chain. The RBV has been harnessed to highlight how...

  3. Integrating product design into the supply chain

    DEFF Research Database (Denmark)

    Khan, Omera; Stolte, Terje; Creazza, Alessandro

    2016-01-01

    into the supply chain. Originality/Value: This paper provides novel insights to both practitioners and researchers. For practitioners detailed recommendations are given on how they can maximise benefits through integrating product design into the supply chain. The RBV has been harnessed to highlight how......Purpose: The aim of the research is to illustrate how companies can create competitive capabilities through integration of product design into the supply chain. In doing so the paper reveals the challenges and the opportunities that companies face when integrating product design and supply chain...... of opportunities and challenges when integrating product design and the supply chain and subsequently a step-by-step guide is developed to address these. Practical Implications: The research provides key recommendations to companies on how to create competitive capabilities by integrating product design...

  4. High-order passive photonic temporal integrators.

    Science.gov (United States)

    Asghari, Mohammad H; Wang, Chao; Yao, Jianping; Azaña, José

    2010-04-15

    We experimentally demonstrate, for the first time to our knowledge, an ultrafast photonic high-order (second-order) complex-field temporal integrator. The demonstrated device uses a single apodized uniform-period fiber Bragg grating (FBG), and it is based on a general FBG design approach for implementing optimized arbitrary-order photonic passive temporal integrators. Using this same design approach, we also fabricate and test a first-order passive temporal integrator offering an energetic-efficiency improvement of more than 1 order of magnitude as compared with previously reported passive first-order temporal integrators. Accurate and efficient first- and second-order temporal integrations of ultrafast complex-field optical signals (with temporal features as fast as approximately 2.5ps) are successfully demonstrated using the fabricated FBG devices.

  5. Integrated energy design of the building envelope

    Energy Technology Data Exchange (ETDEWEB)

    Vraa Nielsen, M.

    2012-07-01

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research project analysed how the implementation of technical knowledge early in the building design process can quantify the effect of a building's facades on its energy efficiency and indoor climate and thereby facilitate a more qualified design development. The project was structured in the following way: 1) the importance of integrating knowledge in the early stages of design, and how it can be done; 2) understanding the facade's typology; and 3) the complex notion of comfort. The project touched not only on the technical capabilities and requirements governing facade design, but also the process by which it takes place. This was done by applying the methodology of Integrated Energy Design (IED) and analysing its applicability in the design of facades. A major part of the project was an actual engagement in the architectural process to test out incorporating a consciousness about energy and comfort as part of a more holistic performance evaluation. The research project illustrates the great potential in taking passive properties into account through a geometrical optimisation inherent in the development of the architectural concept. It demonstrates that integration of technical knowledge at the early stages of design not only can qualify the geometrical processing, but also facilitate the design development of the facade. Thereby a more holistic performance optimisation can be obtained through parameters such as overall facade geometry and orientation, functional organisation, room height and depth, facade layout, window geometry and transparency, design of the window aperture, etc. Through the wide range of affiliated project involved in at the architectural firm over

  6. Integrating ergonomic knowledge into engineering design processes

    DEFF Research Database (Denmark)

    Hall-Andersen, Lene Bjerg

    Integrating ergonomic knowledge into engineering design processes has been shown to contribute to healthy and effective designs of workplaces. However, it is also well-recognized that, in practice, ergonomists often have difficulties gaining access to and impacting engineering design processes...... employed in the same company, constituted a supporting factor for the possibilities to integrate ergonomic knowledge into the engineering design processes. However, the integration activities remained discrete and only happened in some of the design projects. A major barrier was related to the business...... to the ergonomic ambitions of the clients. The ergonomists’ ability to navigate, act strategically, and compromise on ergonomic inputs is also important in relation to having an impact in the engineering design processes. Familiarity with the engineering design terminology and the setup of design projects seems...

  7. Decision-Based Design Integrating Consumer Preferences into Engineering Design

    CERN Document Server

    Chen, Wei; Wassenaar, Henk Jan

    2013-01-01

    Building upon the fundamental principles of decision theory, Decision-Based Design: Integrating Consumer Preferences into Engineering Design presents an analytical approach to enterprise-driven Decision-Based Design (DBD) as a rigorous framework for decision making in engineering design.  Once the related fundamentals of decision theory, economic analysis, and econometrics modelling are established, the remaining chapters describe the entire process, the associated analytical techniques, and the design case studies for integrating consumer preference modeling into the enterprise-driven DBD framework. Methods for identifying key attributes, optimal design of human appraisal experiments, data collection, data analysis, and demand model estimation are presented and illustrated using engineering design case studies. The scope of the chapters also provides: •A rigorous framework of integrating the interests from both producer and consumers in engineering design, •Analytical techniques of consumer choice model...

  8. Simulation Integrated Design for Logistics

    NARCIS (Netherlands)

    Veeke, H.P.M.

    2003-01-01

    The design of an innovative logistic system is a complex problem in the solution of which many disciplines are involved. Each discipline developed its own way of conceptual modeling for a logistic system based on a mono disciplinary perception. In essence this leads to a communication problem

  9. Analog circuit design designing high performance amplifiers

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.

  10. Semiconductors integrated circuit design for manufacturability

    CERN Document Server

    Balasinki, Artur

    2011-01-01

    Because of the continuous evolution of integrated circuit manufacturing (ICM) and design for manufacturability (DfM), most books on the subject are obsolete before they even go to press. That's why the field requires a reference that takes the focus off of numbers and concentrates more on larger economic concepts than on technical details. Semiconductors: Integrated Circuit Design for Manufacturability covers the gradual evolution of integrated circuit design (ICD) as a basis to propose strategies for improving return-on-investment (ROI) for ICD in manufacturing. Where most books put the spotl

  11. High performance bio-integrated devices

    Science.gov (United States)

    Kim, Dae-Hyeong; Lee, Jongha; Park, Minjoon

    2014-06-01

    In recent years, personalized electronics for medical applications, particularly, have attracted much attention with the rise of smartphones because the coupling of such devices and smartphones enables the continuous health-monitoring in patients' daily life. Especially, it is expected that the high performance biomedical electronics integrated with the human body can open new opportunities in the ubiquitous healthcare. However, the mechanical and geometrical constraints inherent in all standard forms of high performance rigid wafer-based electronics raise unique integration challenges with biotic entities. Here, we describe materials and design constructs for high performance skin-mountable bio-integrated electronic devices, which incorporate arrays of single crystalline inorganic nanomembranes. The resulting electronic devices include flexible and stretchable electrophysiology electrodes and sensors coupled with active electronic components. These advances in bio-integrated systems create new directions in the personalized health monitoring and/or human-machine interfaces.

  12. Integrated computer-aided design using minicomputers

    Science.gov (United States)

    Storaasli, O. O.

    1980-01-01

    Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), a highly interactive software, has been implemented on minicomputers at the NASA Langley Research Center. CAD/CAM software integrates many formerly fragmented programs and procedures into one cohesive system; it also includes finite element modeling and analysis, and has been interfaced via a computer network to a relational data base management system and offline plotting devices on mainframe computers. The CAD/CAM software system requires interactive graphics terminals operating at a minimum of 4800 bits/sec transfer rate to a computer. The system is portable and introduces 'interactive graphics', which permits the creation and modification of models interactively. The CAD/CAM system has already produced designs for a large area space platform, a national transonic facility fan blade, and a laminar flow control wind tunnel model. Besides the design/drafting element analysis capability, CAD/CAM provides options to produce an automatic program tooling code to drive a numerically controlled (N/C) machine. Reductions in time for design, engineering, drawing, finite element modeling, and N/C machining will benefit productivity through reduced costs, fewer errors, and a wider range of configuration.

  13. Three Course Connections: Integrated Event Design

    Science.gov (United States)

    Johnson, Corey W.; Pate, Joseph A.

    2013-01-01

    Integrated Event Design (IED) capitalizes on three distinct courses to achieve a blended course delivery: Event Management, Research and Evaluation (for undergraduate students), and Experiential Education (for graduate students). Through the use of an event management company metaphor that fully integrates the diverse curricular concepts, course…

  14. Integrated NTP Vehicle Radiation Design

    Science.gov (United States)

    Caffrey, Jarvis; Rodriquez, Mitchell

    2018-01-01

    The development of a nuclear thermal propulsion stage requires consideration for radiation emitted from the nuclear reactor core. Applying shielding mass is an effective mitigating solution, but a better alternative is to incorporate some mitigation strategies into the propulsion stage and crew habitat. In this way, the required additional mass is minimized and the mass that must be applied may in some cases be able to serve multiple purposes. Strategies for crew compartment shielding are discussed that reduce dose from both engine and cosmic sources, and in some cases may also serve to reduce life support risks by permitting abundant water reserves. Early consideration for integrated mitigation solutions in a crewed nuclear thermal propulsion (NTP) vehicle will enable reduced radiation burden from both cosmic and nuclear sources, improved thrust-to-weight ratio or payload capacity by reducing 'dead mass' of shielding, and generally support a more robust risk posture for a NTP-powered Mars mission by permitting shorter trip times and increased water reserves

  15. Integrated NTP Vehicle Radiation Design

    Science.gov (United States)

    Caffrey, Jarvis A.; Rodriquez, Mitchell A.

    2018-01-01

    The development of a nuclear thermal propulsion stage requires consideration for radiation emitted from the nuclear reactor core. Applying shielding mass is an effective mitigating solution, but a better alternative is to incorporate some mitigation strategies into the propulsion stage and crew habitat. In this way, the required additional mass is minimized and the mass that must be applied may in some cases be able to serve multiple purposes. Strategies for crew compartment shielding are discussed that reduce dose from both engine and cosmic sources, and in some cases may also serve to reduce life support risks by permitting abundant water reserves. Early consideration for integrated mitigation solutions in a crewed nuclear thermal propulsion (NTP) vehicle will enable reduced radiation burden from both cosmic and nuclear sources, improved thrust-to-weight ratio or payload capacity by reducing 'dead mass' of shielding, and generally support a more robust risk posture for a NTP-powered Mars mission by permitting shorter trip times and increased water reserves.

  16. An analog integrated circuit design laboratory

    OpenAIRE

    Mondragon-Torres, A.F.; Mayhugh, Jr.; Pineda de Gyvez, J.; Silva-Martinez, J.; Sanchez-Sinencio, E.

    2003-01-01

    We present the structure of an analog integrated circuit design laboratory to instruct at both, senior undergraduate and entry graduate levels. The teaching material includes: a laboratory manual with analog circuit design theory, pre-laboratory exercises and circuit design specifications; a reference web page with step by step instructions and examples; the use of mathematical tools for automation and analysis; and state of the art CAD design tools in use by industry. Upon completion of the ...

  17. Design and implementation of an integrated architecture for massive parallel data treatment of analogue signals supplied by silicon detectors of very high spatial resolution

    International Nuclear Information System (INIS)

    Michel, J.

    1993-02-01

    This doctorate thesis studies an integrated architecture designed to a parallel massive treatment of analogue signals supplied by silicon detectors of very high spatial resolution. The first chapter is an introduction presenting the general outline and the triggering conditions of the spectrometer. Chapter two describes the operational structure of a microvertex detector made of Si micro-plates associated to the measuring chains. Information preconditioning is related to the pre-amplification stage, to the pile-up effects and to the reduction in the time characteristic due to the high counting rates. The chapter three describes the architecture of the analogue delay buffer, makes an analysis of the intrinsic noise and presents the operational testings and input/output control operations. The fourth chapter is devoted to the description of the analogue pulse shape processor and gives also the testings and the corresponding measurements on the circuit. Finally, the chapter five deals with the simplest modeling of the entire conditioning chain. Also, the testings and measuring procedures are here discussed. In conclusion the author presents some prospects for improving the signal-to-noise ratio by summation of the de-convoluted micro-paths. 78 refs., 78 figs., 1 annexe

  18. Talk about high integrity container

    International Nuclear Information System (INIS)

    Luo Shanggeng

    2009-01-01

    The high integrity container (HIC) has been paid great attention to recently in China. The reason and the comparison of advantages and disadvantages are described in this article. The characteristics and fabrications of some foreign HIC and their test procedures have been introduced. Finally, some opinion and discussion related to develop HIC are put forward, too. (author)

  19. Aircraft System Design and Integration

    Directory of Open Access Journals (Sweden)

    D. P. Coldbeck

    2000-01-01

    Full Text Available In the 1980's the British aircraft industry changed its approach to the management of projects from a system where a project office would manage a project and rely on a series of specialist departments to support them to a more process oriented method, using systems engineering models, whose most outwardly visible signs were the introduction of multidisciplinary product teams. One of the problems with the old method was that the individual departments often had different priorities and projects would get uneven support. The change in the system was only made possible for complex designs by the electronic distribution of data giving instantaneous access to all involved in the project. In 1997 the Defence and Aerospace Foresight Panel emphasised the need for a system engineering approach if British industry was to remain competitive. The Royal Academy of Engineering recognised that the change in working practices also changed what was required of a chartered engineer and redefined their requirements in 1997 [1]. The result of this is that engineering degree courses are now judged against new criteria with more emphasis placed on the relevance to industry rather than on purely academic content. At the University of Glasgow it was realized that the students ought to be made aware of current working practices and that there ought to be a review to ensure that the degrees give students the skills required by industry. It was decided to produce a one week introduction course in systems engineering for Masters of Engineering (MEng students to be taught by both university lecturers and practitioners from a range of companies in the aerospace industry with the hope of expanding the course into a module. The reaction of the students was favourable in terms of the content but it seems ironic that the main criticism was that there was not enough discussion involving the students. This paper briefly describes the individual teaching modules and discusses the

  20. Teaching Process Design through Integrated Process Synthesis

    Science.gov (United States)

    Metzger, Matthew J.; Glasser, Benjamin J.; Patel, Bilal; Hildebrandt, Diane; Glasser, David

    2012-01-01

    The design course is an integral part of chemical engineering education. A novel approach to the design course was recently introduced at the University of the Witwatersrand, Johannesburg, South Africa. The course aimed to introduce students to systematic tools and techniques for setting and evaluating performance targets for processes, as well as…

  1. High Level of Integration in Integrated Disease Management Leads to Higher Usage in the e-Vita Study: Self-Management of Chronic Obstructive Pulmonary Disease With Web-Based Platforms in a Parallel Cohort Design.

    Science.gov (United States)

    Talboom-Kamp, Esther Pwa; Verdijk, Noortje A; Kasteleyn, Marise J; Harmans, Lara M; Talboom, Irvin Jsh; Numans, Mattijs E; Chavannes, Niels H

    2017-05-31

    Worldwide, nearly 3 million people die of chronic obstructive pulmonary disease (COPD) every year. Integrated disease management (IDM) improves disease-specific quality of life and exercise capacity for people with COPD, but can also reduce hospital admissions and hospital days. Self-management of COPD through eHealth interventions has shown to be an effective method to improve the quality and efficiency of IDM in several settings, but it remains unknown which factors influence usage of eHealth and change in behavior of patients. Our study, e-Vita COPD, compares different levels of integration of Web-based self-management platforms in IDM in three primary care settings. The main aim of this study is to analyze the factors that successfully promote the use of a self-management platform for COPD patients. The e-Vita COPD study compares three different approaches to incorporating eHealth via Web-based self-management platforms into IDM of COPD using a parallel cohort design. Three groups integrated the platforms to different levels. In groups 1 (high integration) and 2 (medium integration), randomization was performed to two levels of personal assistance for patients (high and low assistance); in group 3 there was no integration into disease management (none integration). Every visit to the e-Vita and Zorgdraad COPD Web platforms was tracked objectively by collecting log data (sessions and services). At the first log-in, patients completed a baseline questionnaire. Baseline characteristics were automatically extracted from the log files including age, gender, education level, scores on the Clinical COPD Questionnaire (CCQ), dyspnea scale (MRC), and quality of life questionnaire (EQ5D). To predict the use of the platforms, multiple linear regression analyses for the different independent variables were performed: integration in IDM (high, medium, none), personal assistance for the participants (high vs low), educational level, and self-efficacy level (General Self

  2. The materials programme for the high-temperature gas-cooled reactor in the Federal Republic of Germany: Status of the development of high-temperature materials, integrity concept, and design codes

    International Nuclear Information System (INIS)

    Nickel, H.; Bodmann, E.; Seehafer, H.J.

    1990-01-01

    During the last 15 years, the research and development of materials for high temperature gas-cooled reactor (HTGR) applications in the Federal Republic of Germany have been concentrated on the qualification of high-temperature structural alloys. Such materials are required for heat exchanger components of advanced HTGRs supplying nuclear process heat in the temperature range between 750 deg. and 950 deg. C. The suitability of the candidate alloys for service in the HTGR has been established, and continuing research is aimed at verification of the integrity of components over the envisaged service lifetimes. The special features of the HTGR which provide a high degree of safety are the use of ceramics for the core construction and the low power density of the core. The reactor integrity concept which has been developed is based on these two characteristics. Previously, technical guidelines and design codes for nuclear plants were tailored exclusively to light water reactor systems. An extensive research project was therefore initiated which led to the formulation of the basic principles on which a high temperature design code can be based. (author)

  3. DEMO port plug design and integration studies

    Science.gov (United States)

    Grossetti, G.; Boccaccini, L. V.; Cismondi, F.; Del Nevo, A.; Fischer, U.; Franke, T.; Granucci, G.; Hernández, F.; Mozzillo, R.; Strauß, D.; Tran, M. Q.; Vaccaro, A.; Villari, R.

    2017-11-01

    The EUROfusion Consortium established in 2014 and composed by European Fusion Laboratories, and in particular the Power Plant Physics and Technology department aims to develop a conceptual design for the Fusion DEMOnstration Power Plant, DEMO. With respect to present experimental machines and ITER, the main goals of DEMO are to produce electricity continuously for a period of about 2 h, with a net electrical power output of a few hundreds of MW, and to allow tritium self-sufficient breeding with an adequately high margin in order to guarantee its planned operational schedule, including all planned maintenance intervals. This will eliminate the need to import tritium fuel from external sources during operations. In order to achieve these goals, extensive engineering efforts as well as physics studies are required to develop a design that can ensure a high level of plant reliability and availability. In particular, interfaces between systems must be addressed at a very early phase of the project, in order to proceed consistently. In this paper we present a preliminary design and integration study, based on physics assessments for the EU DEMO1 Baseline 2015 with an aspect ratio of 3.1 and 18 toroidal field coils, for the DEMO port plugs. These aim to host systems like electron cyclotron heating launchers currently developed within the Work Package Heating and Current Drive that need an external radial access to the plasma and through in-vessel systems like the breeder blanket. A similar approach shown here could be in principle followed by other systems, e.g. other heating and current drive systems or diagnostics. The work addresses the interfaces between the port plug and the blanket considering the helium-cooled pebble bed and the water cooled lithium lead which are two of four breeding blanket concepts under investigation in Europe within the Power Plant Physics and Technology Programme: the required openings will be evaluated in terms of their impact onto the

  4. Integrating sustainability in interior design studio

    OpenAIRE

    Karslı, Umut Tuğlu

    2013-01-01

    Teaching methods on concept of sustainability are frequently searched in the interior architecture education. The purpose of this study is to propose a model for integrating sustainability in interior design studio. In this context, the first part of the research defines relationship between sustainability and interior architecture and determines sustainable interior design principles. In the second part, an interior design studio model is proposed and principles determined in the first part ...

  5. Behavioural design: A process for integrating behaviour change and design

    DEFF Research Database (Denmark)

    Cash, Philip; Hartlev, Charlotte Gram; Durazo, Christine Boysen

    2017-01-01

    Nudge, persuasion, and the influencing of human behaviour through design are increasingly important topics in design research and in the wider public consciousness. However, current theoretical approaches to behaviour change have yet to be operationalized this in design process support....... Specifically, there are few empirically grounded processes supporting designers in realising behaviour change projects. In response to this, 20 design projects from a case company are analysed in order to distil a core process for behavioural design. Results show a number of process stages and activities...... associated with project success, pointing to a new perspective on the traditional design process, and allowing designers to integrate key insights from behaviour change theory. Using this foundation we propose the Behavioural Design process....

  6. Integrated structure/control design - Present methodology and future opportunities

    Science.gov (United States)

    Weisshaar, T. A.; Newsom, J. R.; Zeiler, T. A.; Gilbert, M. G.

    1986-01-01

    Attention is given to current methodology applied to the integration of the optimal design process for structures and controls. Multilevel linear decomposition techniques proved to be most effective in organizing the computational efforts necessary for ISCD (integrated structures and control design) tasks. With the development of large orbiting space structures and actively controlled, high performance aircraft, there will be more situations in which this concept can be applied.

  7. Integrated plant information technology design support functionality

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Kim, Dae Jin; Barber, P. W.; Goland, D.

    1996-06-01

    This technical report was written as a result of Integrated Plant Information System (IPIS) feasibility study on CANDU 9 project which had been carried out from January, 1994 to March, 1994 at AECL (Atomic Energy Canada Limited) in Canada. From 1987, AECL had done endeavour to change engineering work process from paper based work process to computer based work process through CANDU 3 project. Even though AECL had a lot of good results form computerizing the Process Engineering, Instrumentation Control and Electrical Engineering, Mechanical Engineering, Computer Aided Design and Drafting, and Document Management System, but there remains the problem of information isolation and integration. On this feasibility study, IPIS design support functionality guideline was suggested by evaluating current AECL CAE tools, analyzing computer aided engineering task and work flow, investigating request for implementing integrated computer aided engineering and describing Korean request for future CANDU design including CANDU 9. 6 figs. (Author)

  8. Integrated plant information technology design support functionality

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Seung; Kim, Dae Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Barber, P W; Goland, D [Atomic Energy Canada Ltd., (Canada)

    1996-06-01

    This technical report was written as a result of Integrated Plant Information System (IPIS) feasibility study on CANDU 9 project which had been carried out from January, 1994 to March, 1994 at AECL (Atomic Energy Canada Limited) in Canada. From 1987, AECL had done endeavour to change engineering work process from paper based work process to computer based work process through CANDU 3 project. Even though AECL had a lot of good results form computerizing the Process Engineering, Instrumentation Control and Electrical Engineering, Mechanical Engineering, Computer Aided Design and Drafting, and Document Management System, but there remains the problem of information isolation and integration. On this feasibility study, IPIS design support functionality guideline was suggested by evaluating current AECL CAE tools, analyzing computer aided engineering task and work flow, investigating request for implementing integrated computer aided engineering and describing Korean request for future CANDU design including CANDU 9. 6 figs. (Author).

  9. Design of analog integrated circuits and systems

    CERN Document Server

    Laker, Kenneth R

    1994-01-01

    This text is designed for senior or graduate level courses in analog integrated circuits or design of analog integrated circuits. This book combines consideration of CMOS and bipolar circuits into a unified treatment. Also included are CMOS-bipolar circuits made possible by BiCMOS technology. The text progresses from MOS and bipolar device modelling to simple one and two transistor building block circuits. The final two chapters present a unified coverage of sample-data and continuous-time signal processing systems.

  10. Design Creativity: Future Directions for Integrated Visualisation

    Directory of Open Access Journals (Sweden)

    Jack Steven Goulding

    2015-11-01

    Full Text Available The Architecture, Engineering and Construction (AEC sectors are facing unprecedented challenges, not just with increased complexity of projects per se, but design-related integration. This requires stakeholders to radically re-think their existing business models (and thinking that underpins them, but also the technological challenges and skills required to deliver these projects. Whilst opponents will no doubt cite that this is nothing new as the sector as a whole has always had to respond to change; the counter to this is that design ‘creativity’ is now much more dependent on integration from day one. Given this, collaborative processes embedded in Building Information Modelling (BIM models have been proffered as a panacea solution to embrace this change and deliver streamlined integration. The veracity of design teams’ “project data” is increasingly becoming paramount - not only for the coordination of design, processes, engineering services, fabrication, construction, and maintenance; but more importantly, facilitate ‘true’ project integration and interchange – the actualisation of which will require firm consensus and commitment. This Special Issue envisions some of these issues, challenges and opportunities (from a future landscape perspective, by highlighting a raft of concomitant factors, which include: technological challenges, design visualisation and integration, future digital tools, new and anticipated operating environments, and training requirements needed to deliver these aspirations. A fundamental part of this Special Issue’s ‘call’ was to capture best practice in order to demonstrate how design, visualisation and delivery processes (and technologies affect the finished product viz: design outcome, design procedures, production methodologies and construction implementation. In this respect, the use of virtual environments are now particularly effective at supporting the design and delivery processes. In

  11. Integrated computer aided design simulation and manufacture

    OpenAIRE

    Diko, Faek

    1989-01-01

    Computer Aided Design (CAD) and Computer Aided Manufacture (CAM) have been investigated and developed since twenty years as standalone systems. A large number of very powerful but independent packages have been developed for Computer Aided Design,Aanlysis and Manufacture. However, in most cases these packages have poor facility for communicating with other packages. Recently attempts have been made to develop integrated CAD/CAM systems and many software companies a...

  12. Integrated Energy Design of the Building Envelope

    DEFF Research Database (Denmark)

    Nielsen, Martin Vraa

    This thesis describes the outcome of the PhD project Integrated energy design of the building envelope carried out through a combination of scientific dissemination reported through peer-reviewed journals and a wide range of affiliated projects involved in at an architectural firm. The research...

  13. A new integrated microwave SQUID circuit design

    International Nuclear Information System (INIS)

    Erne, S.N.; Finnegan, T.F.

    1980-01-01

    In this paper we consider the design and operation of a planar thin-film rf-SQUID circuit which can be realized via microwave-integrated-circuit (MIC) techniques and which differs substantially from pervious microwave SQUID configurations involving either mechanical point-contact or cylindrical thin-film micro-bridge geometries. (orig.)

  14. Development of a metallic high integrity container

    International Nuclear Information System (INIS)

    Haelsig, R.T.

    1986-01-01

    Nuclear Packaging, a Pacific Nuclear Company, developed a metallic high integrity container (HIC) for the burial of low level radioactive waste. This class of container has received the most extensive review of any burial container licensed in the United States. It is also the first container that has been licensed to meet the requirements of Nuclear Regulatory Commission Regulations 10CFR61. The design and subsequent review considered 300 years corrosion at a depth of 55 feet with no degradation of container structural integrity. The design also included a technical requirement that the container possess a positive vent that would exclude moisture. The alloy that was selected, allows for significant flexibility in container size and configuration which is essential to accommodating the various waste forms. This allowed the development of containers in various sizes and with a variety of closures, that accommodate the internal dimensions of various shipping shields and help minimize radiation exposure during packaging operations. The material used in the metallic container is high corrosion resistant which reduces the need for strict chemical controls at the waste generating facility. This acts to ease the operational requirements in the treatment of several waste streams. The design result is a family of metallic High Integrity Containers (HIC)s that meet all the performance criteria imposed by the regulations, as well as provide a disposable waste container with good transportation efficiency and minimum operational constraints

  15. Design integration of liquid surface divertors

    International Nuclear Information System (INIS)

    Nygren, R.E.; Cowgill, D.F.; Ulrickson, M.A.; Nelson, B.E.; Fogarty, P.J.; Rognlien, T.D.; Rensink, M.E.; Hassanein, A.; Smolentsev, S.S.; Kotschenreuther, M.

    2004-01-01

    The US Enabling Technology Program in fusion is investigating the use of free flowing liquid surfaces facing the plasma. We have been studying the issues in integrating a liquid surface divertor into a configuration based upon an advanced tokamak, specifically the ARIES-RS configuration. The simplest form of such a divertor is to extend the flow of the liquid first wall into the divertor and thereby avoid introducing additional fluid streams. In this case, one can modify the flow above the divertor to enhance thermal mixing. For divertors with flowing liquid metals (or other electrically conductive fluids) MHD (magneto-hydrodynamics) effects are a major concern and can produce forces that redirect flow and suppress turbulence. An evaluation of Flibe (a molten salt) as a working fluid was done to assess a case in which the MHD forces could be largely neglected. Initial studies indicate that, for a tokamak with high power density, an integrated Flibe first wall and divertor does not seem workable. We have continued work with molten salts and replaced Flibe with Flinabe, a mixture of lithium, sodium and beryllium fluorides, that has some potential because of its lower melting temperature. Sn and Sn-Li have also been considered, and the initial evaluations on heat removal with minimal plasma contamination show promise, although the complicated 3D MHD flows cannot yet be fully modeled. Particle pumping in these design concepts is accomplished by conventional means (ports and pumps). However, trapping of hydrogen in these flowing liquids seems plausible and novel concepts for entrapping helium are also being studied

  16. Three-dimensional integrated circuit design

    CERN Document Server

    Xie, Yuan; Sapatnekar, Sachin S

    2009-01-01

    This book presents an overview of the field of 3D IC design, with an emphasis on electronic design automation (EDA) tools and algorithms that can enable the adoption of 3D ICs, and the architectural implementation and potential for future 3D system design. The aim of this book is to provide the reader with a complete understanding of: the promise of 3D ICs in building novel systems that enable the chip industry to continue along the path of performance scaling, the state of the art in fabrication technologies for 3D integration, the most prominent 3D-specific EDA challenges, along with solutio

  17. Responsive design high performance

    CERN Document Server

    Els, Dewald

    2015-01-01

    This book is ideal for developers who have experience in developing websites or possess minor knowledge of how responsive websites work. No experience of high-level website development or performance tweaking is required.

  18. Integral Monitored Retrievable Storage (MRS) Facility conceptual basis for design

    International Nuclear Information System (INIS)

    1985-10-01

    The purpose of the Conceptual Basis for Design is to provide a control document that establishes the basis for executing the conceptual design of the Integral Monitored Retrievable Storage (MRS) Facility. This conceptual design shall provide the basis for preparation of a proposal to Congress by the Department of Energy (DOE) for construction of one or more MRS Facilities for storage of spent nuclear fuel, high-level radioactive waste, and transuranic (TRU) waste. 4 figs., 25 tabs

  19. Approaches to Integrated Building Design Environments

    DEFF Research Database (Denmark)

    Bagger-Petersen, Susanne C; Andersen, Tom

    1996-01-01

    This report discusses functional requirements and specification which needs to be defined and fulfilled to initiate development of an integrated building design environment. The purpose is to outline specifications for further discussion and development. The report documents the first phase...... in an ongoing project at the Technical University of Denmark. The overall project objective is to provide a theoretically well-founded prototype of an integrated IT-system which can serve as a device of feedback from practice and as a test-bed for the developed concept and architecture....

  20. Implications of intelligent, integrated microsystems for product design and development

    International Nuclear Information System (INIS)

    MYERS, DAVID R.; MCWHORTER, PAUL J.

    2000-01-01

    Intelligent, integrated microsystems combine some or all of the functions of sensing, processing information, actuation, and communication within a single integrated package, and preferably upon a single silicon chip. As the elements of these highly integrated solutions interact strongly with each other, the microsystem can be neither designed nor fabricated piecemeal, in contrast to the more familiar assembled products. Driven by technological imperatives, microsystems will best be developed by multi-disciplinary teams, most likely within the flatter, less hierarchical organizations. Standardization of design and process tools around a single, dominant technology will expedite economically viable operation under a common production infrastructure. The production base for intelligent, integrated microsystems has elements in common with the mathematical theory of chaos. Similar to chaos theory, the development of microsystems technology will be strongly dependent on, and optimized to, the initial product requirements that will drive standardization--thereby further rewarding early entrants to integrated microsystem technology

  1. Nuclear integrated database and design advancement system

    International Nuclear Information System (INIS)

    Ha, Jae Joo; Jeong, Kwang Sub; Kim, Seung Hwan; Choi, Sun Young.

    1997-01-01

    The objective of NuIDEAS is to computerize design processes through an integrated database by eliminating the current work style of delivering hardcopy documents and drawings. The major research contents of NuIDEAS are the advancement of design processes by computerization, the establishment of design database and 3 dimensional visualization of design data. KSNP (Korea Standard Nuclear Power Plant) is the target of legacy database and 3 dimensional model, so that can be utilized in the next plant design. In the first year, the blueprint of NuIDEAS is proposed, and its prototype is developed by applying the rapidly revolutionizing computer technology. The major results of the first year research were to establish the architecture of the integrated database ensuring data consistency, and to build design database of reactor coolant system and heavy components. Also various softwares were developed to search, share and utilize the data through networks, and the detailed 3 dimensional CAD models of nuclear fuel and heavy components were constructed, and walk-through simulation using the models are developed. This report contains the major additions and modifications to the object oriented database and associated program, using methods and Javascript.. (author). 36 refs., 1 tab., 32 figs

  2. Design of Integrated Circuits Approaching Terahertz Frequencies

    DEFF Research Database (Denmark)

    Yan, Lei

    In this thesis, monolithic microwave integrated circuits(MMICs) are presented for millimeter-wave and submillimeter-wave or terahertz(THz) applications. Millimeter-wave power generation from solid state devices is not only crucial for the emerging high data rate wireless communications but also...... heterodyne receivers with requirements of room temperature operation, low system complexity, and high sensitivity, monolithic integrated Schottky diode technology is chosen for the implementation of submillimeterwave components. The corresponding subharmonic mixer and multiplier for a THz radiometer system...

  3. Cryogenic propellant management: Integration of design, performance and operational requirements

    Science.gov (United States)

    Worlund, A. L.; Jamieson, J. R., Jr.; Cole, T. W.; Lak, T. I.

    1985-01-01

    The integration of the design features of the Shuttle elements into a cryogenic propellant management system is described. The implementation and verification of the design/operational changes resulting from design deficiencies and/or element incompatibilities encountered subsequent to the critical design reviews are emphasized. Major topics include: subsystem designs to provide liquid oxygen (LO2) tank pressure stabilization, LO2 facility vent for ice prevention, liquid hydrogen (LH2) feedline high point bleed, pogo suppression on the Space Shuttle Main Engine (SSME), LO2 low level cutoff, Orbiter/engine propellant dump, and LO2 main feedline helium injection for geyser prevention.

  4. AP1000 design and construction integration

    International Nuclear Information System (INIS)

    Winters, James W.; Clelland, Jill A.

    2004-01-01

    Construction costs of commercial nuclear generating plants must be reduced in order to expand the future use of nuclear energy. Two of the drivers of plant construction costs are the cost of financing during the construction duration and the substantial amount of skilled craft labor hours needed on site during construction. The application of information technology (IT) has been used to understand and reduce both of these drivers by establishing parallel construction paths using modules and integrating construction sequence review into the design process. In a program sponsored by EPRI, Westinghouse has modeled the construction of AP1000 in '4D' to show its viability, to improve its logic, to improve the plant design for constructibility and overall to reduce time and risk in the construction schedule. The design of most of AP1000 was constrained to be a duplicate of AP600 except where components required expansion for the higher power level. As a result, the construction schedule for AP1000 is as mature and as robust as that for AP600. Two areas important to the construction of AP1000 did require some design work because they could not remain the same as AP1000. First, the turbine building had to be redesigned to accommodate the larger turbine and its support systems. Again, as much of the AP600 design and philosophy as possible was retained. The building required enlargement and the basemat, foundations, steel structure and structural modules required modification. As concrete, steel, and equipment were defined by the designers, they were matched to the original AP600 turbine building schedule. This forced designers to assemble files to be consistent with building assembly activities and to think about constructibility as they defined the final design. Second, the reinforcement structure within the concrete under and supporting the containment vessel required detail design. Westinghouse was fortunate to have the constructor Obayashi of Japan recommend a detailed

  5. Simulation of integrated beam experiment designs

    International Nuclear Information System (INIS)

    Grote, D.P.; Sharp, W.M.

    2004-01-01

    Simulation of designs of an Integrated Beam Experiment (IBX) class accelerator have been carried out. These simulations are an important tool for validating such designs. Issues such as envelope mismatch and emittance growth can be examined in a self-consistent manner, including the details of injection, accelerator transitions, long-term transport, and longitudinal compression. The simulations are three-dimensional and time-dependent, and begin at the source. They continue up through the end of the acceleration region, at which point the data is passed on to a separate simulation of the drift compression. Results are be presented

  6. An integral design of NHR-200

    International Nuclear Information System (INIS)

    Xue Dazhi; Li Jicai; Chang Dafeng

    1997-01-01

    Nuclear heating application has received a wide attention in China due to the favourable economic and environmental aspects. The Nuclear Heating Plant NHR-200 is seen to provide the required energy for district heating, industrial processes and seawater desalination for many sites in China and possibly abroad. The paper summarizes the technical description of the plant and give its main characteristics related to the integral design approach. (author)

  7. Integrated Design Tools for Embedded Control Systems

    NARCIS (Netherlands)

    Jovanovic, D.S.; Hilderink, G.H.; Broenink, Johannes F.; Karelse, F.

    2001-01-01

    Currently, computer-based control systems are still being implemented using the same techniques as 10 years ago. The purpose of this project is the development of a design framework, consisting of tools and libraries, which allows the designer to build high reliable heterogeneous real-time embedded

  8. TOWARDS TOTAL INTEGRATION IN DESIGN STUDIO

    Directory of Open Access Journals (Sweden)

    Shireesh A Deshpande

    2010-07-01

    Full Text Available Transmission of knowledge has been defined as “bringing the right knowledge by the right route at the right time to the right places.” In this context there is need to analyze the various pedagogical shifts associated with the decisive process of transmission and transaction of knowledge in design studio. Critical understanding of the importance of tangential knowledge and its integration within the design studio, leading to a comprehensive whole, is a significant aspect to be properly evolved and nourished in the studio. It can be argued that knowledge is not a substitute for architectural imagination but inadequate knowledge would handicap the general level of design. Being satisfied to manipulate formal configurations does not provide insights into the human experience. If the different types of knowledge that architecture requires are ignored, the profession will lose its credibility in the eyes of society. With the body of knowledge expanding diversely with the escalating wants of the user, and to further sustain the built environment with further progression, it’s quite certain to have an innovative design process that has a feel of antecedents yet is nourished by rationalism. Architectural Design is to an extent the yield of a creative process brought out through a refined approach, skill, and dexterity to suit the purpose. The assessors, the jury, or the teacher has created an aura of mystique around good design, without much explaining what good design is. Architectural education involves application of a theory of knowledge – what is known and how it is to be known. Nothing is taught unless it is learnt (Bono. Does the key to these issues lie in shifting from conventional mode to Total Integration Mode of Education?

  9. Design of Integrated Circuits Approaching Terahertz Frequencies

    OpenAIRE

    Yan, Lei; Johansen, Tom Keinicke

    2013-01-01

    In this thesis, monolithic microwave integrated circuits(MMICs) are presented for millimeter-wave and submillimeter-wave or terahertz(THz) applications. Millimeter-wave power generation from solid state devices is not only crucial for the emerging high data rate wireless communications but also important for driving THz signal sources. To meet the requirement of high output power, amplifiers based on InP double heterojunction bipolar transistor (DHBT) devices from the III-V Lab in Marcoussic,...

  10. Integrated airfoil and blade design method for large wind turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2014-01-01

    This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed...... with the objectives of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on a previous in-house designed airfoil family which was optimized at a Reynolds number...... of 3 million. A novel shape perturbation function is introduced to optimize the geometry based on the existing airfoils which simplifies the design procedure. The viscous/inviscid interactive code XFOIL is used as the aerodynamic tool for airfoil optimization at a Reynolds number of 16 million...

  11. High transition temperature superconducting integrated circuit

    International Nuclear Information System (INIS)

    DiIorio, M.S.

    1985-01-01

    This thesis describes the design and fabrication of the first superconducting integrated circuit capable of operating at over 10K. The primary component of the circuit is a dc SQUID (Superconducting QUantum Interference Device) which is extremely sensitive to magnetic fields. The dc SQUID consists of two superconductor-normal metal-superconductor (SNS) Josephson microbridges that are fabricated using a novel step-edge process which permits the use of high transition temperature superconductors. By utilizing electron-beam lithography in conjunction with ion-beam etching, very small microbridges can be produced. Such microbridges lead to high performance dc SQUIDs with products of the critical current and normal resistance reaching 1 mV at 4.2 K. These SQUIDs have been extensively characterized, and exhibit excellent electrical characteristics over a wide temperature range. In order to couple electrical signals into the SQUID in a practical fashion, a planar input coil was integrated for efficient coupling. A process was developed to incorporate the technologically important high transition temperature superconducting materials, Nb-Sn and Nb-Ge, using integrated circuit techniques. The primary obstacles were presented by the metallurgical idiosyncrasies of the various materials, such as the need to deposit the superconductors at elevated temperatures, 800-900 0 C, in order to achieve a high transition temperature

  12. Integration of Airfoil Design during the design of new blades

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, L.; Bottasso, L.; Croce, A. [Politecnico di Milano, Milan (Italy); Grasso, F. [ECN Wind Power, Petten (Netherlands)

    2013-09-15

    Despite the fact that the design of a new blade is a multidisciplinary task, often the different disciplines are combined together at later stage. Looking at the aerodynamic design, it is common practice design/select the airfoils first and then design the blade in terms of chord and twist based on the initial selection of the airfoils. Although this approach is quite diffused, it limits the potentialities of obtaining optimal performance. The present work is focused on investigating the benefits of designing the external shape of the blade including the airfoil shapes together with chord and twist. To accomplish this, a design approach has been developed, where an advanced gradient based optimization algorithm is able to control the shape of the blade. The airfoils described in the work are the NACA 4 digits, while the chord distribution and the twist distribution are described through Bezier curves. In this way, the complexity of the problem is limited while a versatile geometrical description is kept. After the details of the optimization scheme are illustrated, several numerical examples are shown, demonstrating the advantages in terms of performance and development time of integrating the design of the airfoils during the optimization of the blade.

  13. Designing High-Trust Organizations

    DEFF Research Database (Denmark)

    Jagd, Søren

    The specific problem considered in this paper is what are the key issues to consider for managers involved in designing high-trust organizations, a design problem still not properly explored. This paper intends to take the first step in filling this lacuna. In the paper, I first present...... the existing management and research literature on building high-trust organizations. Then I explore Alan Fox’s (1974) analysis of low-trust vs. high-trust dynamics which, I argue, may serve as a theoretically stronger basis for understanding the issues management have to consider when designing hightrust...... organizations...

  14. Conceptual design of inherently safe integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. I.; Chang, M. H.; Lee, D. J. and others

    1999-03-01

    The design concept of a 300 MWt inherently safe integral reactor(ISIR) for the propulsion of extra large and superhigh speed container ship was developed in this report. The scope and contents of this report are as follows : 1. The state of the art of the technology for ship-mounted reactor 2. Design requirements for ISIR 3. Fuel and core design 4. Conceptual design of fluid system 5. Conceptual design of reactor vessel assembly and primary components 6. Performance analyses and safety analyses. Installation of two ISIRs with total thermal power of 600MWt and efficiency of 21% is capable of generating shaft power of 126,000kW which is sufficient to power a container ship of 8,000TEU with 30knot cruise speed. Larger and speedier ship can be considered by installing 4 ISIRs. Even though the ISIR was developed for ship propulsion, it can be used also for a multi-purpose nuclear power plant for electricity generation, local heating, or seawater desalination by mounting on a movable floating barge. (author)

  15. Integrated airfoil and blade design method for large wind turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2013-01-01

    This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and tip speed ratio, the optimal airfoils are designed based on the local speed ratios. To achieve high power performance at low cost, the airfoils are designed...... with an objective of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on the previous in-house airfoil family which were optimized at a Reynolds number of 3...... million. A novel shape perturbation function is introduced to optimize the geometry on the existing airfoils and thus simplify the design procedure. The viscos/inviscid code Xfoil is used as the aerodynamic tool for airfoil optimization where the Reynolds number is set at 16 million with a free...

  16. Integrated Design Tools for Embedded Control Systems

    OpenAIRE

    Jovanovic, D.S.; Hilderink, G.H.; Broenink, Johannes F.; Karelse, F.

    2001-01-01

    Currently, computer-based control systems are still being implemented using the same techniques as 10 years ago. The purpose of this project is the development of a design framework, consisting of tools and libraries, which allows the designer to build high reliable heterogeneous real-time embedded systems in a very short time at a fraction of the present day costs. The ultimate focus of current research is on transformation control laws to efficient concurrent algorithms, with concerns about...

  17. Baseline integrated behavioural and biological assessment among most at-risk populations in six high-prevalence states of India: design and implementation challenges.

    Science.gov (United States)

    Saidel, Tobi; Adhikary, Rajatashuvra; Mainkar, Mandar; Dale, Jayesh; Loo, Virginia; Rahman, Motiur; Ramesh, Banadakoppa M; Paranjape, Ramesh S

    2008-12-01

    This paper presents key methodological approaches and challenges in implementing and analysing the first round of the integrated biobehavioural assessment of most-at-risk populations, conducted in conjunction with evaluation of Avahan, the India AIDS initiative. The survey collected data on HIV risk behaviours, sexually transmitted infections and HIV prevalence in 29 districts in six high-prevalence states of India. Groups included female sex workers and clients, men who have sex with men, injecting drug users and truck drivers. Strategies for overcoming some challenges of the large-scale surveys among vulnerable populations, including sampling hidden populations, involvement of the communities targeted by the survey, laboratory and quality control in remote, non-clinic field settings, and data analysis and data use are presented. Satisfying the need for protocols, guidelines and tools that allowed for sufficient standardization, while being tailored enough to fit diverse local situations on such a large scale, with so many implementing partners, emerged as a major management challenge. A major lesson from the first round is the vital importance of investing upfront time in tailoring the sampling methods, data collection instruments, and analysis plan to match measurement objectives. Despite the challenges, the integrated biobehavioural assessment was a huge achievement, and was largely successful in providing previously unavailable information about the HIV situation among populations that are critical to the curtailment of HIV spread in India. Lessons from the first round will be used to evolve the second round into an exercise with increased evaluative capability for Avahan.

  18. Integrated design of the SSC linac injector

    International Nuclear Information System (INIS)

    Evans, D.; Valiecnti, R.; Wood, F.

    1992-01-01

    The Ion Source, Low Energy Beam Transport (LEBT), and Radio Frequency Quadrupole (RFQ) of the Superconducting Super Collider (SSC) Linac act as a unit (referred to as the Linac Injector), the Ion Source and LEBT being cantilevered off of the RFQ. Immediately adjacent to both ends of the RFQ cavity proper are endwall chambers containing beam instrumentation and independently-operated vacuum isolation valves. The Linac Injector delivers 30 mA of H - beam at 2.5 MeV. This paper describes the design constraints imposed on the endwalls, aspects of the integration of the Ion Source and LEBT including attachment to the RFQ, maintainability and interchangeability of LEBTs, vacuum systems for each component, and the design of necessary support structure. (Author) 2 tab

  19. Integrated plasma control for high performance tokamaks

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Deranian, R.D.; Ferron, J.R.; Johnson, R.D.; LaHaye, R.J.; Leuer, J.A.; Penaflor, B.G.; Walker, M.L.; Welander, A.S.; Jayakumar, R.J.; Makowski, M.A.; Khayrutdinov, R.R.

    2005-01-01

    Sustaining high performance in a tokamak requires controlling many equilibrium shape and profile characteristics simultaneously with high accuracy and reliability, while suppressing a variety of MHD instabilities. Integrated plasma control, the process of designing high-performance tokamak controllers based on validated system response models and confirming their performance in detailed simulations, provides a systematic method for achieving and ensuring good control performance. For present-day devices, this approach can greatly reduce the need for machine time traditionally dedicated to control optimization, and can allow determination of high-reliability controllers prior to ever producing the target equilibrium experimentally. A full set of tools needed for this approach has recently been completed and applied to present-day devices including DIII-D, NSTX and MAST. This approach has proven essential in the design of several next-generation devices including KSTAR, EAST, JT-60SC, and ITER. We describe the method, results of design and simulation tool development, and recent research producing novel approaches to equilibrium and MHD control in DIII-D. (author)

  20. Development of metallic high integrity containers

    International Nuclear Information System (INIS)

    Temus, C.J.; Porter, S.A.; Kent, J.D.; Goetsch, S.D.

    1985-01-01

    This paper presents the development program for metallic high integrity containers (HIC's). The need for a high strength, thin walled HIC became apparent with the implementation of 10 CFR 61 in late 1983. The existing containers that were in use at that time were made of either low strength material (polyethylene) or bulky, heavy material (concrete). Neither of these materials met the need for a high strength, volume and weight efficient container that could survive the deep burial environment of sites such as Hanford, Washington. Various alloys were considered for corrosion resistance for a 300 year life, high strength and toughness, and elastic stability to meet the requirements of 10 CFR 61. The alloy allowed for great flexibility in design to accommodate various waste forms. The containers were developed in various sizes with several different closures designed to minimize operator exposure during the loading operation. These design features provide the industry with efficient, disposable packages for a wide variety of waste forms. The paper describes the analytical methodology and prototype test program. The analytical methods included finite element modeling of the burial conditions, prediction of drop performance,and elastic stability analysis. Prototype testing included leak tests and drop tests at various container orientations from heights of up to 25 feet

  1. Integrated safeguards and facility design and operations

    International Nuclear Information System (INIS)

    Tape, J.W.; Coulter, C.A.; Markin, J.T.; Thomas, K.E.

    1987-01-01

    The integration of safeguards functions to deter or detect unauthorized actions by an insider requires the careful communication and management of safeguards-relevant information on a timely basis. The traditional separation of safeguards functions into physical protection, materials control, and materials accounting often inhibits important information flows. Redefining the major safeguards functions as authorization, enforcement, and verification, and careful attention to management of information from acquisition to organization, to analysis, to decision making can result in effective safeguards integration. The careful inclusion of these ideas in facility designs and operations will lead to cost-effective safeguards systems. The safeguards authorization function defines, for example, personnel access requirements, processing activities, and materials movements/locations that are permitted to accomplish the mission of the facility. Minimizing the number of authorized personnel, limiting the processing flexibility, and maintaining up-to-date flow sheets will facilitate the detection of unauthorized activities. Enforcement of the authorized activities can be achieved in part through the use of barriers, access control systems, process sensors, and health and safety information. Consideration of safeguards requirements during facility design can improve the enforcement function. Verification includes the familiar materials accounting activities as well as auditing and testing of the other functions

  2. Designing TSVs for 3D Integrated Circuits

    CERN Document Server

    Khan, Nauman

    2013-01-01

    This book explores the challenges and presents best strategies for designing Through-Silicon Vias (TSVs) for 3D integrated circuits.  It describes a novel technique to mitigate TSV-induced noise, the GND Plug, which is superior to others adapted from 2-D planar technologies, such as a backside ground plane and traditional substrate contacts. The book also investigates, in the form of a comparative study, the impact of TSV size and granularity, spacing of C4 connectors, off-chip power delivery network, shared and dedicated TSVs, and coaxial TSVs on the quality of power delivery in 3-D ICs. The authors provide detailed best design practices for designing 3-D power delivery networks.  Since TSVs occupy silicon real-estate and impact device density, this book provides four iterative algorithms to minimize the number of TSVs in a power delivery network. Unlike other existing methods, these algorithms can be applied in early design stages when only functional block- level behaviors and a floorplan are available....

  3. Applied Integrated Design in Composite UAV Development

    Science.gov (United States)

    Vasić, Zoran; Maksimović, Stevan; Georgijević, Dragutin

    2018-04-01

    This paper presents a modern approach to integrated development of Unmanned Aerial Vehicle made of laminated composite materials from conceptual design, through detail design, strength and stiffness analyses, definition and management of design and production data, detailed tests results and other activities related to development of laminated composite structures with main of its particularities in comparison to metal structures. Special attention in this work is focused to management processes of product data during life cycle of an UAV and experimental tests of its composite wing. Experience shows that the automation management processes of product data during life cycle, as well as processes of manufacturing, are inevitable if a company wants to get cheaper and quality composite aircraft structures. One of the most effective ways of successful management of product data today is Product Life cycle Management (PLM). In terms of the PLM, a spectrum of special measures and provisions has to be implemented when defining fiber-reinforced composite material structures in comparison to designing with metals which is elaborated in the paper.

  4. Analog integrated circuits design for processing physiological signals.

    Science.gov (United States)

    Li, Yan; Poon, Carmen C Y; Zhang, Yuan-Ting

    2010-01-01

    Analog integrated circuits (ICs) designed for processing physiological signals are important building blocks of wearable and implantable medical devices used for health monitoring or restoring lost body functions. Due to the nature of physiological signals and the corresponding application scenarios, the ICs designed for these applications should have low power consumption, low cutoff frequency, and low input-referred noise. In this paper, techniques for designing the analog front-end circuits with these three characteristics will be reviewed, including subthreshold circuits, bulk-driven MOSFETs, floating gate MOSFETs, and log-domain circuits to reduce power consumption; methods for designing fully integrated low cutoff frequency circuits; as well as chopper stabilization (CHS) and other techniques that can be used to achieve a high signal-to-noise performance. Novel applications using these techniques will also be discussed.

  5. High-frequency and microwave circuit design

    CERN Document Server

    Nelson, Charles

    2007-01-01

    An integral part of any communications system, high-frequency and microwave design stimulates major progress in the wireless world and continues to serve as a foundation for the commercial wireless products we use every day. The exceptional pace of advancement in developing these systems stipulates that engineers be well versed in multiple areas of electronics engineering. With more illustrations, examples, and worked problems, High-Frequency and Microwave Circuit Design, Second Edition provides engineers with a diverse body of knowledge they can use to meet the needs of this rapidly progressi

  6. Lightweight structure design for wind energy by integrating nanostructured materials

    International Nuclear Information System (INIS)

    Li, Ying; Lu, Jian

    2014-01-01

    Highlights: • Integrate high-strength nano-materials into lightweight design. • Lightweight design scheme for wind turbine tower application. • Expand the bending formulae for tapered tubular structures with varying thickness. • We rewrite the Secant Formula for a tapered beam under eccentric compression. - Abstract: Wind power develops very fast nowadays with high expectation. Although at the mean time, the use of taller towers, however, smacks head-on into the issue of transportability. The engineering base and computational tools have to be developed to match machine size and volume. Consequently the research on the light weight structures of tower is carrying out in the main countries which are actively developing wind energy. This paper reports a new design scheme of light weight structure for wind turbine tower. This design scheme is based on the integration of the nanostructured materials produced by the Surface Mechanical Attrition Treatment (SMAT) process. The objective of this study is to accomplish the weight reduction by optimizing the wall thickness of the tapered tubular structure. The basic methods include the identification of the critical zones and the distribution of the high strength materials according to different necessities. The equivalent strength or stiffness design method and the high strength material properties after SMAT process are combined together. Bending and buckling are two main kinds of static loads concerned in consideration. The study results reveal that there is still enough margin for weight reduction in the traditional wind turbine tower design

  7. Integrating conceptualizations of experience into the interaction design process

    DEFF Research Database (Denmark)

    Dalsgaard, Peter

    2010-01-01

    From a design perspective, the increasing awareness of experiential aspects of interactive systems prompts the question of how conceptualizations of experience can inform and potentially be integrated into the interaction design process. This paper presents one approach to integrating theoretical...

  8. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    The Basis for Design established the functional requirements and design criteria for an Integral Monitored Retrievable Storage (MRS) facility. The MRS Facility design, described in this report, is based on those requirements and includes all infrastructure, facilities, and equipment required to routinely receive, unload, prepare for storage, and store spent fuel (SF), high-level waste (HLW), and transuranic waste (TRU), and to decontaminate and return shipping casks received by both rail and truck. The facility is complete with all supporting facilities to make the MRS Facility a self-sufficient installation

  9. The GOTTHARD charge integrating readout detector: design and characterization

    International Nuclear Information System (INIS)

    Mozzanica, A; Bergamaschi, A; Dinapoli, R; Greiffenberg, D; Henrich, B; Johnson, I; Valeria, R; Schmitt, B; Xintian, S; Graafsma, H; Lohmann, M

    2012-01-01

    A charge integrating readout ASIC (Application Specific Integrated Circuit) for silicon strip sensors has been developed at PSI in collaboration with DESY. The goal of the project is to provide a charge integrating readout system able to cope with the pulsed beam of XFEL machines and at the same time to retain the high dynamic range and single photon resolution performances typical for photon counting systems. The ASIC, designed in IBM 130 nm CMOS technology, takes advantage of its three gain stages with automatic stage selection to achieve a dynamic range of 10000 12 keV photons and a noise better than 300 e.n.c.. The 4 analog outputs of the ASIC are optimized for speed, allowing frame rates higher than 1 MHz, without compromises on linearity and noise performances. This work presents the design features of the ASIC, and reports the characterization results of the chip itself.

  10. Integrated seismic design of structure and control systems

    CERN Document Server

    Castaldo, Paolo

    2014-01-01

    The structural optimization procedure presented in this book makes it possible to achieve seismic protection through integrated structural/control system design. In particular, it is explained how slender structural systems with a high seismic performance can be achieved through inclusion of viscous and viscoelastic dampers as an integral part of the system. Readers are provided with essential introductory information on passive structural control and passive energy dissipation systems. Dynamic analyses of both single and multiple degree of freedom systems are performed in order to verify the achievement of pre-assigned performance targets, and it is explained how the optimal integrated design methodology, also relevant to retrofitting of existing buildings, should be applied. The book illustrates how structural control research is opening up new possibilities in structural forms and configurations without compromising structural performance.

  11. Integrated design of SIGMA uranium enrichment plants

    International Nuclear Information System (INIS)

    Rivarola, Martin E.; Brasnarof, Daniel O.

    1999-01-01

    In the present work, we describe a preliminary analysis of the design feedbacks in a Uranium Enrichment Plant, using the SIGMA concept. Starting from the result of this analysis, a computer code has been generated, which allows finding the optimal configurations of plants, for a fixed production rate. The computer code developed includes the model of the Thermohydraulic loop of a SIGMA module. The model contains numerical calculations of the main components of the circuit. During the calculations, the main components are dimensioned, for a posterior cost compute. The program also makes an estimation of the enrichment gain of the porous membrane, for each separation stage. Once the dimensions of the main components are known, using the enrichment cascade calculation, the capital and operation costs of the plant could be determined. At this point it is simple to calculate a leveled cost of the Separative Work Unit (SWU). A numerical optimizer is also included in the program. This optimizer finds the optimal cascade configuration, for a given set of design parameters. The whole-integrated program permits to investigate in detail the feedback in the component design. Therefore, the sensibility of the more relevant parameters can be computed, with respect of the economical variables of the plant. (author)

  12. Biomedical data integration in computational drug design and bioinformatics.

    Science.gov (United States)

    Seoane, Jose A; Aguiar-Pulido, Vanessa; Munteanu, Cristian R; Rivero, Daniel; Rabunal, Juan R; Dorado, Julian; Pazos, Alejandro

    2013-03-01

    In recent years, in the post genomic era, more and more data is being generated by biological high throughput technologies, such as proteomics and transcriptomics. This omics data can be very useful, but the real challenge is to analyze all this data, as a whole, after integrating it. Biomedical data integration enables making queries to different, heterogeneous and distributed biomedical data sources. Data integration solutions can be very useful not only in the context of drug design, but also in biomedical information retrieval, clinical diagnosis, system biology, etc. In this review, we analyze the most common approaches to biomedical data integration, such as federated databases, data warehousing, multi-agent systems and semantic technology, as well as the solutions developed using these approaches in the past few years.

  13. Toward integrated design of waste management technologies

    International Nuclear Information System (INIS)

    Carnes, S.A.; Wolfe, A.K.

    1994-01-01

    Implementation of waste management technologies has been hindered by the intervention of diverse interests. Relying on a perceived history of inadequate and improper management, operations, and technological design, critics have stymied the implementation of scientifically and governmentally approved technologies and facilities, leading to a critical shortage of hazardous, mixed, and radioactive waste management capacity. The research and development (R ampersand D) required to identify technologies that are simultaneously (1) scientifically valid, (2) economically sound, and (3) publicly acceptable must necessarily address, in an integrated and interdisciplinary manner, these three criteria and how best to achieve the integration of stakeholders early in the technology implementation process (i.e., R ampersand D, demonstration, and commercialization). The goal of this paper is to initiate an identification of factors likely to render radioactive and hazardous waste management technologies publicly acceptable and to provide guidance on how technological R ampersand D might be revised to enhance the acceptability of alternative waste management technologies. Principal among these factors are the equitable distribution of costs, risks, and benefits of waste management policies and technologies, the equitable distribution of authority for making waste management policy and selecting technologies for implementation, and the equitable distribution of responsibility for resolving waste management problems. Stakeholder participation in assessing the likely distribution of these factors and mitigative mechanisms to enhance their equitable distribution, together with stakeholder participation in policy and technology R ampersand D, as informed by stakeholder assessments, should enhance the identification of acceptable policies and technologies

  14. Integrated Design Validation: Combining Simulation and Formal Verification for Digital Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Lun Li

    2006-04-01

    Full Text Available The correct design of complex hardware continues to challenge engineers. Bugs in a design that are not uncovered in early design stages can be extremely expensive. Simulation is a predominantly used tool to validate a design in industry. Formal verification overcomes the weakness of exhaustive simulation by applying mathematical methodologies to validate a design. The work described here focuses upon a technique that integrates the best characteristics of both simulation and formal verification methods to provide an effective design validation tool, referred as Integrated Design Validation (IDV. The novelty in this approach consists of three components, circuit complexity analysis, partitioning based on design hierarchy, and coverage analysis. The circuit complexity analyzer and partitioning decompose a large design into sub-components and feed sub-components to different verification and/or simulation tools based upon known existing strengths of modern verification and simulation tools. The coverage analysis unit computes the coverage of design validation and improves the coverage by further partitioning. Various simulation and verification tools comprising IDV are evaluated and an example is used to illustrate the overall validation process. The overall process successfully validates the example to a high coverage rate within a short time. The experimental result shows that our approach is a very promising design validation method.

  15. Design Development and Verification of a System Integrated Modular PWR

    International Nuclear Information System (INIS)

    Kim, S.-H.; Kim, K. K.; Chang, M. H.; Kang, C. S.; Park, G.-C.

    2002-01-01

    An advanced PWR with a rated thermal power of 330 MW has been developed at the Korea Atomic Energy Research Institute (KAERI) for a dual purpose: seawater desalination and electricity generation. The conceptual design of SMART ( System-Integrated Modular Advanced ReacTor) with a desalination system was already completed in March of 1999. The basic design for the integrated nuclear desalination system is currently underway and will be finished by March of 2002. The SMART co-generation plant with the MED seawater desalination process is designed to supply forty thousand (40,000) tons of fresh water per day and ninety (90) MW of electricity to an area with approximately a ten thousand (100,000) population or an industrialized complex. This paper describes advanced design features adopted in the SMART design and also introduces the design and engineering verification program. In the beginning stage of the SMART development, top-level requirements for safety and economics were imposed for the SMART design features. To meet the requirements, highly advanced design features enhancing the safety, reliability, performance, and operability are introduced in the SMART design. The SMART consists of proven KOFA (Korea Optimized Fuel Assembly), helical once-through steam generators, a self-controlled pressurizer, control element drive mechanisms, and main coolant pumps in a single pressure vessel. In order to enhance safety characteristics, innovative design features adopted in the SMART system are low core power density, large negative Moderator Temperature Coefficient (MTC), high natural circulation capability and integral arrangement to eliminate large break loss of coolant accident, etc. The progression of emergency situations into accidents is prevented with a number of advanced engineered safety features such as passive residual heat removal system, passive emergency core cooling system, safeguard vessel, and passive containment over-pressure protection. The preliminary

  16. A Quasi-Experimental Control Group Design Study to Determine the Effect of Integrating Character Education into a High School Social Studies Curriculum through Storytelling

    Science.gov (United States)

    Long, Russell L.

    2014-01-01

    The purpose of this study was to offer evidence for the development of student character through the integration of historical storytelling into a social studies classroom. A quasi-experimental study was conducted to determine the effect of character education through historical storytelling integrated into a United States history curriculum on…

  17. Safety design integrated in the Building Delivery System

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2012-01-01

    phases of the building delivery system by using the principle of the lean construction modelling. The method for the research was to go through the lean construction building delivery system step by step and create a normative description of what to do, when to do and how to do to fully integration...... of safety in each process. The group of participants who created the description had a high experience in a combination of research, safety and health in general and especial in construction and knowledge of the lean construction processes both from the clients perspective as well as from the designers...... and the consultants. The result is a concept and guideline including control schemes for how to integrate safety design in the lean construction building delivery system including what to do and when. The concept has been tested in an educational context and found useful by the designers. The practical value...

  18. Argentinean integrated small reactor design and scale economy analysis of integrated reactor

    International Nuclear Information System (INIS)

    Florido, P. C.; Bergallo, J. E.; Ishida, M. V.

    2000-01-01

    This paper describes the design of CAREM, which is Argentinean integrated small reactor project and the scale economy analysis results of integrated reactor. CAREM project consists on the development, design and construction of a small nuclear power plant. CAREM is an advanced reactor conceived with new generation design solutions and standing on the large experience accumulated in the safe operation of Light Water Reactors. The CAREM is an indirect cycle reactor with some distinctive and characteristic features that greatly simplify the reactor and also contribute to a highly level of safety: integrated primary cooling system, self pressurized, primary cooling by natural circulation and safety system relying on passive features. For a fully doupled economic evaluation of integrated reactors done by IREP (Integrated Reactor Evaluation Program) code transferred to IAEA, CAREM have been used as a reference point. The results shows that integrated reactors become competitive with power larger than 200MWe with Argentinean cheapest electricity option. Due to reactor pressure vessel construction limit, low pressure drop steam generator are used to reach power output of 200MWe for natural circulation. For forced circulation, 300MWe can be achieved. (author)

  19. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Kim, K. Y.

    2002-03-01

    In general, small and medium-sized integral reactors adopt new technology such as passive and inherent safety concepts to minimize the necessity of power source and operator actions, and to provide the automatic measures to cope with any accidents. Specifically, such reactors are often designed with a lower core power density and with soluble boron free concept for system simplification. Those reactors require ultra long cycle operation for higher economical efficiency. This cycle length requirement is one of the important factors in the design of burnable absorbers as well as assurance of shutdown margin. Hence, both computer code system and design methodology based on the today's design technology for the current commercial reactor cores require intensive improvement for the small and medium-sized soluble boron free reactors. New database is also required for the development of this type of reactor core. Under these technical requirements, conceptual design of small integral reactor SMART has been performed since July 1997, and recently completed under the long term nuclear R and D program. Thus, the final objectives of this work is design and development of an integral reactor core and development of necessary indigenous design technology. To reach the goal of the 2nd stage R and D program for basic design of SMART, design bases and requirements adequate for ultra long cycle and soluble boron free concept are established. These bases and requirements are satisfied by the core loading pattern. Based on the core loading pattern, nuclear, and thermal and hydraulic characteristics are analyzed. Also included are fuel performance analysis and development of a core protection and monitoring system that is adequate for the soluble boron free core of an integral reactor. Core shielding design analysis is accomplished, too. Moreover, full scope interface data are produced for reactor safety and performance analyses and other design activities. Nuclear, thermal and

  20. Microwave Integrated Circuit Amplifier Designs Submitted to Qorvo for Fabrication with 0.09-micron High Electron Mobility Transistors (HEMTs) using 2-mil Gallium Nitride (GaN) on Silicon Carbide (SiC)

    Science.gov (United States)

    2016-03-01

    ARL-TN-0743 ● MAR 2016 US Army Research Laboratory Microwave Integrated Circuit Amplifier Designs Submitted to Qorvo for...originator. ARL-TN-0743 ● MAR 2016 US Army Research Laboratory Microwave Integrated Circuit Amplifier Designs Submitted to Qorvo...To) October 2015–January 2016 4. TITLE AND SUBTITLE Microwave Integrated Circuit Amplifier Designs Submitted to Qorvo for Fabrication with 0.09

  1. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  2. Computer graphics application in the engineering design integration system

    Science.gov (United States)

    Glatt, C. R.; Abel, R. W.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Stewart, W. A.

    1975-01-01

    The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design.

  3. CMOS analog integrated circuit design technology; CMOS anarogu IC sekkei gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, H.; Fujisawa, A. [Fuji Electric Co. Ltd., Tokyo (Japan)

    2000-08-10

    In the field of the LSI (large scale integrated circuit) in rapid progress toward high integration and advanced functions, CAD (computer-aided design) technology has become indispensable to LSI development within a short period. Fuji Electric has developed design technologies and automatic design system to develop high-quality analog ICs (integrated circuits), including power supply ICs. within a short period. This paper describes CMOS (complementary metal-oxide semiconductor) analog macro cell, circuit simulation, automatic routing, and backannotation technologies. (author)

  4. High-integrity databases for helicopter operations

    Science.gov (United States)

    Pschierer, Christian; Schiefele, Jens; Lüthy, Juerg

    2009-05-01

    Helicopter Emergency Medical Service missions (HEMS) impose a high workload on pilots due to short preparation time, operations in low level flight, and landings in unknown areas. The research project PILAS, a cooperation between Eurocopter, Diehl Avionics, DLR, EADS, Euro Telematik, ESG, Jeppesen, the Universities of Darmstadt and Munich, and funded by the German government, approached this problem by researching a pilot assistance system which supports the pilots during all phases of flight. The databases required for the specified helicopter missions include different types of topological and cultural data for graphical display on the SVS system, AMDB data for operations at airports and helipads, and navigation data for IFR segments. The most critical databases for the PILAS system however are highly accurate terrain and obstacle data. While RTCA DO-276 specifies high accuracies and integrities only for the areas around airports, HEMS helicopters typically operate outside of these controlled areas and thus require highly reliable terrain and obstacle data for their designated response areas. This data has been generated by a LIDAR scan of the specified test region. Obstacles have been extracted into a vector format. This paper includes a short overview of the complete PILAS system and then focus on the generation of the required high quality databases.

  5. Architectures for Green-Field Supply Chain Integration: Supply Chain Integration Design

    OpenAIRE

    Radanliev, Petar

    2015-01-01

    This paper applied case study research to design architectures for green-field supply chain integration. The integration design is based on a case study of a supply chain integration of 5 companies, operating in different, but supply chain complimenting industry sectors. The case study research is applied to design and validate the architectures in a real world scenario. The supply\\ud chain integration architectures enable the conversion of individual into integrated strategies. The architect...

  6. Applying recursive numerical integration techniques for solving high dimensional integrals

    International Nuclear Information System (INIS)

    Ammon, Andreas; Genz, Alan; Hartung, Tobias; Jansen, Karl; Volmer, Julia; Leoevey, Hernan

    2016-11-01

    The error scaling for Markov-Chain Monte Carlo techniques (MCMC) with N samples behaves like 1/√(N). This scaling makes it often very time intensive to reduce the error of computed observables, in particular for applications in lattice QCD. It is therefore highly desirable to have alternative methods at hand which show an improved error scaling. One candidate for such an alternative integration technique is the method of recursive numerical integration (RNI). The basic idea of this method is to use an efficient low-dimensional quadrature rule (usually of Gaussian type) and apply it iteratively to integrate over high-dimensional observables and Boltzmann weights. We present the application of such an algorithm to the topological rotor and the anharmonic oscillator and compare the error scaling to MCMC results. In particular, we demonstrate that the RNI technique shows an error scaling in the number of integration points m that is at least exponential.

  7. Applying recursive numerical integration techniques for solving high dimensional integrals

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, Andreas [IVU Traffic Technologies AG, Berlin (Germany); Genz, Alan [Washington State Univ., Pullman, WA (United States). Dept. of Mathematics; Hartung, Tobias [King' s College, London (United Kingdom). Dept. of Mathematics; Jansen, Karl; Volmer, Julia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Leoevey, Hernan [Humboldt Univ. Berlin (Germany). Inst. fuer Mathematik

    2016-11-15

    The error scaling for Markov-Chain Monte Carlo techniques (MCMC) with N samples behaves like 1/√(N). This scaling makes it often very time intensive to reduce the error of computed observables, in particular for applications in lattice QCD. It is therefore highly desirable to have alternative methods at hand which show an improved error scaling. One candidate for such an alternative integration technique is the method of recursive numerical integration (RNI). The basic idea of this method is to use an efficient low-dimensional quadrature rule (usually of Gaussian type) and apply it iteratively to integrate over high-dimensional observables and Boltzmann weights. We present the application of such an algorithm to the topological rotor and the anharmonic oscillator and compare the error scaling to MCMC results. In particular, we demonstrate that the RNI technique shows an error scaling in the number of integration points m that is at least exponential.

  8. Ground Vehicle System Integration (GVSI) and Design Optimization Model

    National Research Council Canada - National Science Library

    Horton, William

    1996-01-01

    This report documents the Ground Vehicle System Integration (GVSI) and Design Optimization Model GVSI is a top-level analysis tool designed to support engineering tradeoff studies and vehicle design optimization efforts...

  9. Integration of design applications with building models

    DEFF Research Database (Denmark)

    Eastman, C. M.; Jeng, T. S.; Chowdbury, R.

    1997-01-01

    This paper reviews various issues in the integration of applications with a building model... (Truncated.)......This paper reviews various issues in the integration of applications with a building model... (Truncated.)...

  10. Analog Integrated Circuit Design for Spike Time Dependent Encoder and Reservoir in Reservoir Computing Processors

    Science.gov (United States)

    2018-01-01

    HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. FOR THE CHIEF ENGINEER : / S / / S...bridged high-performance computing, nanotechnology , and integrated circuits & systems. 15. SUBJECT TERMS neuromorphic computing, neuron design, spike...multidisciplinary effort encompassed high-performance computing, nanotechnology , integrated circuits, and integrated systems. The project’s architecture was

  11. Future demands highly integrated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mangler, Andreas [Rutronik Elektronische Bauelemente GmbH, Ispringen (Germany). Strategic Marketing

    2010-07-01

    The future energy supply with a high number of decentral power plants depends on the use of innovative system technology. It is a precondition for a well-functioning grid and power management over all voltage levels. (orig.)

  12. Designing interaction behaviour in service-oriented enterprise application integration

    NARCIS (Netherlands)

    Dirgahayu, T.; Quartel, Dick; van Sinderen, Marten J.

    In this paper we present an approach for designing interaction behaviour in service-oriented enterprise application integration. The approach enables business analysts to actively participate in the design of an integration solution. In this way, we expect that the solution meets its integration

  13. Integral Design methodology for Industrial Collaboration Design of Sustainable Industrial Flexible Demountable buildings

    NARCIS (Netherlands)

    Zeiler, W.; Quanjel, E.M.C.J.; Bauer, M.; Lima, C.

    2007-01-01

    Starting in 1998 from developing and designing their own office Kropman, a major Dutch Building Services contractor, developed a new methodology for structuring and documenting integral design processes. Integral design is meant to integrate the different disciplines involved in the building design

  14. Trends in integrated circuit design for particle physics experiments

    International Nuclear Information System (INIS)

    Atkin, E V

    2017-01-01

    Integrated circuits are one of the key complex units available to designers of multichannel detector setups. A whole number of factors makes Application Specific Integrated Circuits (ASICs) valuable for Particle Physics and Astrophysics experiments. Among them the most important ones are: integration scale, low power dissipation, radiation tolerance. In order to make possible future experiments in the intensity, cosmic, and energy frontiers today ASICs should provide new level of functionality at a new set of constraints and trade-offs, like low-noise high-dynamic range amplification and pulse shaping, high-speed waveform sampling, low power digitization, fast digital data processing, serialization and data transmission. All integrated circuits, necessary for physical instrumentation, should be radiation tolerant at an earlier not reached level (hundreds of Mrad) of total ionizing dose and allow minute almost 3D assemblies. The paper is based on literary source analysis and presents an overview of the state of the art and trends in nowadays chip design, using partially own ASIC lab experience. That shows a next stage of ising micro- and nanoelectronics in physical instrumentation. (paper)

  15. Integrated network design and scheduling problems :

    Energy Technology Data Exchange (ETDEWEB)

    Nurre, Sarah G.; Carlson, Jeffrey J.

    2014-01-01

    We consider the class of integrated network design and scheduling problems. These problems focus on selecting and scheduling operations that will change the characteristics of a network, while being speci cally concerned with the performance of the network over time. Motivating applications of INDS problems include infrastructure restoration after extreme events and building humanitarian distribution supply chains. While similar models have been proposed, no one has performed an extensive review of INDS problems from their complexity, network and scheduling characteristics, information, and solution methods. We examine INDS problems under a parallel identical machine scheduling environment where the performance of the network is evaluated by solving classic network optimization problems. We classify that all considered INDS problems as NP-Hard and propose a novel heuristic dispatching rule algorithm that selects and schedules sets of arcs based on their interactions in the network. We present computational analysis based on realistic data sets representing the infrastructures of coastal New Hanover County, North Carolina, lower Manhattan, New York, and a realistic arti cial community CLARC County. These tests demonstrate the importance of a dispatching rule to arrive at near-optimal solutions during real-time decision making activities. We extend INDS problems to incorporate release dates which represent the earliest an operation can be performed and exible release dates through the introduction of specialized machine(s) that can perform work to move the release date earlier in time. An online optimization setting is explored where the release date of a component is not known.

  16. Flexible heat pipes with integrated bioinspired design

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2015-02-01

    Full Text Available In this work we report the facile fabrication and performance evaluation of flexible heat pipes that have integrated bioinspired wick structures and flexible polyurethane polymer connector design between the copper condenser and evaporator. Inside the heat pipe, a bioinspired superhydrophilic strong-base-oxidized copper mesh with multi-scale micro/nano-structures was used as the wicking material and deionized water was selected as working fluid. Thermal resistances of the fabricated flexible heat pipes charged with different filling ratios were measured under thermal power inputs ranging from 2 W to 12 W while the device was bent at different angles. The fabricated heat pipes with a 30% filling ratio demonstrated a low thermal resistance less than 0.01 K/W. Compared with the vertically oriented straight heat pipes, bending from 30° up to 120° has negligible influence on the heat-transfer performance. Furthermore, repeated heating tests indicated that the fabricated flexible heat pipes have consistent and reliable heat-transfer performance, thus would have important applications for advanced thermal management in three dimensional and flexible electronic devices.

  17. Integral Design workshops: organization, structure and testing

    OpenAIRE

    Zeiler, W Wim; Savanovic, P Perica

    2010-01-01

    The purpose of this paper is to achieve an understanding of design activities in the context of building design. The starting point is an overview of design research and design methodology. From the insights gained by this analysis of design in this specific context, we present an 'organization structure and design' workshop approach for collaborative multi-discipline design management. The workshops set-up, used to implement and to test the approach, are presented as well as the experiences ...

  18. Two high accuracy digital integrators for Rogowski current transducers

    Science.gov (United States)

    Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua

    2014-01-01

    The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.

  19. Integral Design workshops: organization, structure and testing

    NARCIS (Netherlands)

    Zeiler, W.; Savanovic, P.

    2010-01-01

    The purpose of this paper is to achieve an understanding of design activities in the context of building design. The starting point is an overview of design research and design methodology. From the insights gained by this analysis of design in this specific context, we present an ‘organization

  20. Designing Integrated Product- Service System Solutions in Manufacturing Industries

    DEFF Research Database (Denmark)

    Costa, Nina; Patrício, Lia; Morelli, Nicola

    2015-01-01

    Manufacturing firms are increasingly evolving towards the design of integrated product-service solutions but servitization literature does not provide specific guidance on how to design these integrated solutions. Building upon ProductService System (PSS) and Service Design (SD) approaches...... how it brings new insights to manufacturing companies moving to a service, value cocreation perspective....

  1. Integrating advanced facades into high performance buildings

    International Nuclear Information System (INIS)

    Selkowitz, Stephen E.

    2001-01-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  2. Building Integrated Design Practice under the Concept of Sustainable Development

    Science.gov (United States)

    Liu, Xuexin

    2018-03-01

    With the continuous development of social economy, people are more demanding for architecture. Some advanced design concepts are gradually applied to the design of buildings. Under the concept of sustainable development, building integration design has also been widely used to promote the rapid development of architectural design. Integrated design concepts and sustainable development concepts play an important role to meet people’s requirements. This article will explore the concept of sustainable development under the concept of integrated architectural design and practice analysis, propose appropriate measures.

  3. Integrated design approach of the pebble bed modular using models

    International Nuclear Information System (INIS)

    Venter, P.J.

    2005-01-01

    The Pebble Bed Modular Reactor (PBMR) is the first pebble bed reactor that will be utilised in a high temperature direct Brayton cycle configuration. This implies that there are a number of unique features in the PBMR that extend from the German experience base. One of the challenges in the design of the PBMR is managing the integrated design process between the designers, the physicists and the analysts. This integrated design process is managed through model-based development work. Three-dimensional CAD models are constructed of the components and parts in the reactor. From the CAD models, CFD models, neutronic models, shielding models, FEM models and other thermodynamic models are derived. These models range from very simple models to extremely detailed and complex models. The models are used in legacy software as well as commercial off-the-shelf software. The different models are also used in code-to-code comparisons to verify the results. This paper will briefly discuss the different models and the interaction between the models, showing the iterative design process that is used in the development of the reactor at PBMR. (author)

  4. Integrated Intelligent Modeling, Design and Control of Crystal Growth Processes

    National Research Council Canada - National Science Library

    Prasad, V

    2000-01-01

    .... This MURI program took an integrated approach towards modeling, design and control of crystal growth processes and in conjunction with growth and characterization experiments developed much better...

  5. Strategic Mobility 21: Integrated Tracking System Analysis and Concept Design

    National Research Council Canada - National Science Library

    Mallon, Lawrence G; Savacool, Edwin

    2007-01-01

    ... (ITS). This ITS design document identifies the technical and functional requirements for developing, procuring, and integrating components of an ITS capable of supporting an inland regional port, multi...

  6. High temperature fusion reactor design

    International Nuclear Information System (INIS)

    Harkness, S.D.; dePaz, J.F.; Gohar, M.Y.; Stevens, H.C.

    1979-01-01

    Fusion energy may have unique advantages over other systems as a source for high temperature process heat. A conceptual design of a blanket for a 7 m tokamak reactor has been developed that is capable of producing 1100 0 C process heat at a pressure of approximately 10 atmospheres. The design is based on the use of a falling bed of MgO spheres as the high temperature heat transfer system. By preheating the spheres with energy taken from the low temperature tritium breeding part of the blanket, 1086 MW of energy can be generated at 1100 0 C from a system that produces 3000 MW of total energy while sustaining a tritium breeding ratio of 1.07. The tritium breeding is accomplished using Li 2 O modules both in front of (6 cm thick) and behind (50 cm thick) the high temperature ducts. Steam is used as the first wall and front tritium breeding module coolant while helium is used in the rear tritium breeding region. The system produces 600 MW of net electricity for use on the grid

  7. The design features of integrated modular water reactor (IMR)

    International Nuclear Information System (INIS)

    Kanagawa, T.; Goto, M.; Usui, S.; Suzuta, T.; Serizawa, A.; Kunugi, T.; Yamauchi, T.; Itoh, G.; Matsumura, T.

    2004-01-01

    Small-to-medium-sized (300-600 MWe) reactors are required for the electric power market in the near future (2010-2030). The main theme in the development of small-to-medium-sized reactor is how to realize competitive cost against other energy sources. As measures to this disadvantage, greatly simplified and small-scale design is needed. From such point of view, Integrated Modular Water Reactor (IMR), whose electric output power is 350 MWe, adopts integrated and high temperature two-phase natural circulation system for the primary system. In this design, main coolant pipes, a pressurizer, and reactor coolant pumps are not needed, and the sizes of the reactor vessel and steam generators are minimized. Additionally, to enhance the economy of the whole plant, fluid systems, and Instrumentation and Control systems of IMR have also been reviewed to make them simplest and smallest taking the advantage of the IMR concept and the state of the art technologies. For example, the integrated primary system and the stand-alone direct heat removal system make the safety system very simple, i.e., no injection, no containment spray, no emergency AC power, etc. The chemical and volume control system is also simplified by eliminating the boron control system and the seal water system of reactor coolant pumps. In this paper, the status of the IMR development and the outline of the IMR design efforts to achieve the simplest and smallest plant are presented. (authors)

  8. Hermeneutics framework: integration of design rationale and optimizing software modules

    NARCIS (Netherlands)

    Aksit, Mehmet; Malakuti Khah Olun Abadi, Somayeh

    To tackle the evolution challenges of adaptive systems, this paper argues on the necessity of hermeneutic approaches that help to avoid too early elimination of design alternatives. This visionary paper proposes the Hermeneutics Framework, which computationally integrates a design rationale

  9. Process Variations and Probabilistic Integrated Circuit Design

    CERN Document Server

    Haase, Joachim

    2012-01-01

    Uncertainty in key parameters within a chip and between different chips in the deep sub micron era plays a more and more important role. As a result, manufacturing process spreads need to be considered during the design process.  Quantitative methodology is needed to ensure faultless functionality, despite existing process variations within given bounds, during product development.   This book presents the technological, physical, and mathematical fundamentals for a design paradigm shift, from a deterministic process to a probability-orientated design process for microelectronic circuits.  Readers will learn to evaluate the different sources of variations in the design flow in order to establish different design variants, while applying appropriate methods and tools to evaluate and optimize their design.  Trains IC designers to recognize problems caused by parameter variations during manufacturing and to choose the best methods available to mitigate these issues during the design process; Offers both qual...

  10. Collaborative integral design of active roofs

    NARCIS (Netherlands)

    Zeiler, W.; Quanjel, E.M.C.J.; Borsboom, W.A.

    2009-01-01

    The application of photo-voltaic elements is the most economical on the roof. Still this often leads to severe problems due to poor coordination of all the design and practical aspects involved. This paper describes the research methodology, based on Methodical Design, as used in a design approach

  11. Global design of an active integrated antenna for millimeter wave

    OpenAIRE

    Marzolf, Eric; Drissi, M’hamed

    2001-01-01

    An active integrated antenna working in the millimeter wave has been realized in a monolithic process. The concept of active integrated antenna is first introduced, then the design of the integrated circuit based on a global approach, following electromagnetic and circuit simulations, is presented. The obtained performances of the active antenna are discussed and compared to a passive one.

  12. Design of 3D integrated circuits and systems

    CERN Document Server

    Sharma, Rohit

    2014-01-01

    Three-dimensional (3D) integration of microsystems and subsystems has become essential to the future of semiconductor technology development. 3D integration requires a greater understanding of several interconnected systems stacked over each other. While this vertical growth profoundly increases the system functionality, it also exponentially increases the design complexity. Design of 3D Integrated Circuits and Systems tackles all aspects of 3D integration, including 3D circuit and system design, new processes and simulation techniques, alternative communication schemes for 3D circuits and sys

  13. Advanced Concept Architecture Design and Integrated Analysis (ACADIA)

    Science.gov (United States)

    2017-11-03

    1 Advanced Concept Architecture Design and Integrated Analysis (ACADIA) Submitted to the National Institute of Aerospace (NIA) on...Research Report 20161001 - 20161030 Advanced Concept Architecture Design and Integrated Analysis (ACADIA) W911NF-16-2-0229 8504Cedric Justin, Youngjun

  14. The Exploration of Green Architecture Design Integration Teaching Mode

    Science.gov (United States)

    Shuang, Liang; Yibin, Han

    2016-01-01

    With the deepening of the concept of green building design, the course of university education gradually exposed many problems in the teaching of architectural design theory; based on the existing mode of teaching and combined with the needs of architectural design practice it proposed the "integrated" method of green building design. It…

  15. EPR design tools. Integrated data processing tools

    International Nuclear Information System (INIS)

    Kern, R.

    1997-01-01

    In all technical areas, planning and design have been supported by electronic data processing for many years. New data processing tools had to be developed for the European Pressurized Water Reactor (EPR). The work to be performed was split between KWU and Framatome and laid down in the Basic Design contract. The entire plant was reduced to a logical data structure; the circuit diagrams and flowsheets of the systems were drafted, the central data pool was established, the outlines of building structures were defined, the layout of plant components was planned, and the electrical systems were documented. Also building construction engineering was supported by data processing. The tasks laid down in the Basic Design were completed as so-called milestones. Additional data processing tools also based on the central data pool are required for the phases following after the Basic Design phase, i.e Basic Design Optimization; Detailed Design; Management; Construction, and Commissioning. (orig.) [de

  16. Integrated Design as an Evolutive Transdisciplinary Strategy

    OpenAIRE

    Bujar Bajçinovci; Florina Jerliu

    2016-01-01

    New challenges should stimulate new research, in order to provide better and higher quality of life. The essence of transdisciplinary design consists of different professions closely related to architectural design aiming for better and qualitative solutions, which with new findings exceed the usual and conventional disciplinary boundaries. Incentive mechanism for lateral thinking in the design process is accomplished when all the team members overcome a conventional barrier, in creating fund...

  17. Integrated security systems design a complete reference for building enterprise-wide digital security systems

    CERN Document Server

    Norman, Thomas L

    2014-01-01

    Integrated Security Systems Design, 2nd Edition, is recognized as the industry-leading book on the subject of security systems design. It explains how to design a fully integrated security system that ties together numerous subsystems into one complete, highly coordinated, and highly functional system. With a flexible and scalable enterprise-level system, security decision makers can make better informed decisions when incidents occur and improve their operational efficiencies in ways never before possible. The revised edition covers why designing an integrated security system is essential a

  18. Accurate Complex Systems Design: Integrating Serious Games with Petri Nets

    Directory of Open Access Journals (Sweden)

    Kirsten Sinclair

    2016-03-01

    Full Text Available Difficulty understanding the large number of interactions involved in complex systems makes their successful engineering a problem. Petri Nets are one graphical modelling technique used to describe and check proposed designs of complex systems thoroughly. While automatic analysis capabilities of Petri Nets are useful, their visual form is less so, particularly for communicating the design they represent. In engineering projects, this can lead to a gap in communications between people with different areas of expertise, negatively impacting achieving accurate designs.In contrast, although capable of representing a variety of real and imaginary objects effectively, behaviour of serious games can only be analysed manually through interactive simulation. This paper examines combining the complementary strengths of Petri Nets and serious games. The novel contribution of this work is a serious game prototype of a complex system design that has been checked thoroughly. Underpinned by Petri Net analysis, the serious game can be used as a high-level interface to communicate and refine the design.Improvement of a complex system design is demonstrated by applying the integration to a proof-of-concept case study.   

  19. Integrated magnetics design for HF-link power converters

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper deals with the design of integrated magnetics for HF-link converters, where the two integrated magnetic components on the same core do not necessarily belong to the same voltage loop. Depending on the specific HF-link converter topology, the proposed integrated magnetics can either alleviate the derivation of independent auxiliary supply voltages from the main transformer or integrate other magnetic structures, thus saving board space and cutting costs. (au)

  20. Integrating Mediators and Moderators in Research Design

    Science.gov (United States)

    MacKinnon, David P.

    2011-01-01

    The purpose of this article is to describe mediating variables and moderating variables and provide reasons for integrating them in outcome studies. Separate sections describe examples of moderating and mediating variables and the simplest statistical model for investigating each variable. The strengths and limitations of incorporating mediating…

  1. Assessing the Value of High-Quality Care for Work-Associated Carpal Tunnel Syndrome in a Large Integrated Health Care System: Study Design.

    Science.gov (United States)

    Conlon, Craig; Asch, Steven; Hanson, Mark; Avins, Andrew; Levitan, Barbara; Roth, Carol; Robbins, Michael; Dworsky, Michael; Seabury, Seth; Nuckols, Teryl

    2016-01-01

    Little is known about quality of care for occupational health disorders, although it may affect worker health and workers' compensation costs. Carpal tunnel syndrome (CTS) is a common work-associated condition that causes substantial disability. To describe the design of a study that is assessing quality of care for work-associated CTS and associations with clinical outcomes and costs. Prospective observational study of 477 individuals with new workers' compensation claims for CTS without acute trauma who were treated at 30 occupational health clinics from 2011 to 2013 and followed for 18 months. Timing of key clinical events, adherence to 45 quality measures, changes in scores on the Boston Carpal Tunnel Questionnaire and 12-item Short Form Health Survey Version 2 (SF-12v2), and costs associated with medical care and disability. Two hundred sixty-seven subjects (56%) received a diagnosis of CTS and had claims filed around the first visit to occupational health, 104 (22%) received a diagnosis before that visit and claim, and 98 (21%) received a diagnosis or had claims filed after that visit. One hundred seventy-eight (37%) subjects had time off work, which started around the time of surgery in 147 (83%) cases and lasted a median of 41 days (interquartile range = 42 days). The timing of diagnosis varied, but time off work was generally short and related to surgery. If associations of quality of care with key medical, economic, and quality-of-life outcomes are identified for work-associated CTS, systematic efforts to evaluate and improve quality of medical care for this condition are warranted.

  2. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  3. Design Tools for Integrated Asynchronous Electronic Circuits

    National Research Council Canada - National Science Library

    Martin, Alain

    2003-01-01

    ..., simulation, verification, at the logical and physical levels. Situs has developed a business model for the commercialization of the CAD tools, and has designed the prototype of the tool suite based on this business model and the Caltech approach...

  4. Integrated Approach to Industrial Packaging Design

    Science.gov (United States)

    Vorobeva, O.

    2017-11-01

    The article reviews studies in the field of industrial packaging design. The major factors which influence technological, ergonomic, economic and ecological features of packaging are established. The main modern trends in packaging design are defined, the principles of marketing communications and their influence on consumers’ consciousness are indicated, and the function of packaging as a transmitter of brand values is specified. Peculiarities of packaging technology and printing techniques in modern printing industry are considered. The role of designers in the stage-by-stage development of the construction, form and graphic design concept of packaging is defined. The examples of authentic packaging are given and the mention of the tetrahedron packaging history is made. At the end of the article, conclusions on the key research aspects are made.

  5. Integration of MGDS design into the licensing process

    International Nuclear Information System (INIS)

    1997-12-01

    This paper presents an overview of how the Mined Geologic Disposal System (MGDS) design for a potential repository is integrated into the licensing process. The integration process employs a two-told approach: (1) ensure that the MGDS design complies with applicable Nuclear Regulatory Commission (NRC) licensing requirements, and (2) ensure that the MGDS design is appropriately reflected in a license application that is acceptable to the NRC for performing acceptance and compliance reviews

  6. Integrated circuits, and design and manufacture thereof

    Science.gov (United States)

    Auracher, Stefan; Pribbernow, Claus; Hils, Andreas

    2006-04-18

    A representation of a macro for an integrated circuit layout. The representation may define sub-circuit cells of a module. The module may have a predefined functionality. The sub-circuit cells may include at least one reusable circuit cell. The reusable circuit cell may be configured such that when the predefined functionality of the module is not used, the reusable circuit cell is available for re-use.

  7. Design and integration of a hydrogen storage on metallic hydrides

    International Nuclear Information System (INIS)

    Botzung, M.

    2008-01-01

    This work presents a hydrogen storage system using metal hydrides for a Combined Heat and Power (CHP) system. Hydride storage technology has been chosen due to project specifications: high volumetric capacity, low pressures (≤ 3.5 bar) and low temperatures (≤ 75 C: fuel cell temperature). During absorption, heat from hydride generation is dissipated by fluid circulation. An integrated plate-fin type heat exchanger has been designed to obtain good compactness and to reach high absorption/desorption rates. At first, the storage system has been tested in accordance with project specifications (absorption 3.5 bar, desorption 1.5 bar). Then, the hydrogen charge/discharge times have been decreased to reach system limits. System design has been used to simulate thermal and mass comportment of the storage tank. The model is based on the software Fluent. We take in consideration heat and mass transfers in the porous media during absorption/desorption. The hydride thermal and mass behaviour has been integrated in the software. The heat and mass transfers experimentally obtained have been compared to results calculated by the model. The influence of experimental and numerical parameters on the model behaviour has also been explored. (author) [fr

  8. Safety design integrated in the building delivery system

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten

    2013-01-01

    . The purpose of this article is to demonstrate how safety and health can be integrated in the design phases integrated in the management delivery systems within construction, The method for the research was to go through the building delivery system step by step and create a normative description of what, when......In construction, it is important to view safety and health as an integrated part of the way that “designers” are working. The designers cowers architects, constructors, engineers and others who carry out their consulting services in the design phase of a construction project. The philosophy...... and how to fully integrate safety in each part of the process. The result is a concept and guideline including control forms for how to integrate safety design in the Building Delivery System plus what to do and when. The concept has been tested in an educational context. The practical value...

  9. Reactor protection system design using application specific integrated circuits

    International Nuclear Information System (INIS)

    Battle, R.E.; Bryan, W.L.; Kisner, R.A.; Wilson, T.L. Jr.

    1992-01-01

    Implementing reactor protection systems (RPS) or other engineering safeguard systems with application specific integrated circuits (ASICs) offers significant advantages over conventional analog or software based RPSs. Conventional analog RPSs suffer from setpoints drifts and large numbers of discrete analog electronics, hardware logic, and relays which reduce reliability because of the large number of potential failures of components or interconnections. To resolve problems associated with conventional discrete RPSs and proposed software based RPS systems, a hybrid analog and digital RPS system implemented with custom ASICs is proposed. The actual design of the ASIC RPS resembles a software based RPS but the programmable software portion of each channel is implemented in a fixed digital logic design including any input variable computations. Set point drifts are zero as in proposed software systems, but the verification and validation of the computations is made easier since the computational logic an be exhaustively tested. The functionality is assured fixed because there can be no future changes to the ASIC without redesign and fabrication. Subtle error conditions caused by out of order evaluation or time dependent evaluation of system variables against protection criteria are eliminated by implementing all evaluation computations in parallel for simultaneous results. On- chip redundancy within each RPS channel and continuous self-testing of all channels provided enhanced assurance that a particular channel is available and faults are identified as soon as possible for corrective actions. The use of highly integrated ASICs to implement channel electronics rather than the use of discrete electronics greatly reduces the total number of components and interconnections in the RPS to further increase system reliability. A prototype ASIC RPS channel design and the design environment used for ASIC RPS systems design is discussed

  10. Novel integrated design framework for radio frequency quadrupoles

    International Nuclear Information System (INIS)

    Jolly, Simon; Easton, Matthew; Lawrie, Scott; Letchford, Alan; Pozimski, Jürgen; Savage, Peter

    2014-01-01

    A novel design framework for Radio Frequency Quadrupoles (RFQs), developed as part of the design of the FETS RFQ, is presented. This framework integrates several previously disparate steps in the design of RFQs, including the beam dynamics design, mechanical design, electromagnetic, thermal and mechanical modelling and beam dynamics simulations. Each stage of the design process is described in detail, including the various software options and reasons for the final software suite selected. Results are given for each of these steps, describing how each stage affects the overall design process, with an emphasis on the resulting design choices for the FETS RFQ

  11. Integrating 3D modeling, photogrammetry and design

    CERN Document Server

    Foster, Shaun

    2014-01-01

    This book looks at the convergent nature of technology and its relationship to the field of photogrammetry and 3D design. This is a facet of a broader discussion of the nature of technology itself and the relationship of technology to art, as well as an examination of the educational process. In the field of technology-influenced design-based education it is natural to push for advanced technology, yet within a larger institution the constraints of budget and adherence to tradition must be accepted. These opposing forces create a natural balance; in some cases constraints lead to greater creat

  12. Integrated Energy Design in Master Planning

    DEFF Research Database (Denmark)

    Strømann-Andersen, Jakob Bjørn

    This PhD thesis considers urban structure and buildings in an energy correlation and use the knowledge to design energy- and comfort-optimized cities and buildings. The parameters are: the structure of nature, the city and the landscape, both in terms of geometry and interrelationships and in terms...... in character as daylight is taken into account. Furthermore the results suggest that there are limits to urban densification (200-300%) as an energy optimization strategy. The solar energy and daylight potential should be considered, and indeed protected, as a common resource in urban design. The most...

  13. Material constraints on high-speed design

    Science.gov (United States)

    Bucur, Diana; Militaru, Nicolae

    2015-02-01

    Current high-speed circuit designs with signal rates up to 100Gbps and above are implying constraints for dielectric and conductive materials and their dependence of frequency, for component elements and for production processes. The purpose of this paper is to highlight through various simulation results the frequency dependence of specific parameters like insertion and return loss, eye diagrams, group delay that are part of signal integrity analyses type. In low-power environment designs become more complex as the operation frequency increases. The need for new materials with spatial uniformity for dielectric constant is a need for higher data rates circuits. The fiber weave effect (FWE) will be analyzed through the eye diagram results for various dielectric materials in a differential signaling scheme given the fact that the FWE is a phenomenon that affects randomly the performance of the circuit on balanced/differential transmission lines which are typically characterized through the above mentioned approaches. Crosstalk between traces is also of concern due to propagated signals that have tight rise and fall times or due to high density of the boards. Criteria should be considered to achieve maximum performance of the designed system requiring critical electronic properties.

  14. High-Resolution Integrated Optical System

    Science.gov (United States)

    Prakapenka, V. B.; Goncharov, A. F.; Holtgrewe, N.; Greenberg, E.

    2017-12-01

    Raman and optical spectroscopy in-situ at extreme high pressure and temperature conditions relevant to the planets' deep interior is a versatile tool for characterization of wide range of properties of minerals essential for understanding the structure, composition, and evolution of terrestrial and giant planets. Optical methods, greatly complementing X-ray diffraction and spectroscopy techniques, become crucial when dealing with light elements. Study of vibrational and optical properties of minerals and volatiles, was a topic of many research efforts in past decades. A great deal of information on the materials properties under extreme pressure and temperature has been acquired including that related to structural phase changes, electronic transitions, and chemical transformations. These provide an important insight into physical and chemical states of planetary interiors (e.g. nature of deep reservoirs) and their dynamics including heat and mass transport (e.g. deep carbon cycle). Optical and vibrational spectroscopy can be also very instrumental for elucidating the nature of the materials molten states such as those related to the Earth's volatiles (CO2, CH4, H2O), aqueous fluids and silicate melts, planetary ices (H2O, CH4, NH3), noble gases, and H2. The optical spectroscopy study performed concomitantly with X-ray diffraction and spectroscopy measurements at the GSECARS beamlines on the same sample and at the same P-T conditions would greatly enhance the quality of this research and, moreover, will provide unique new information on chemical state of matter. The advanced high-resolution user-friendly integrated optical system is currently under construction and expected to be completed by 2018. In our conceptual design we have implemented Raman spectroscopy with five excitation wavelengths (266, 473, 532, 660, 946 nm), confocal imaging, double sided IR laser heating combined with high temperature Raman (including coherent anti-Stokes Raman scattering) and

  15. On the Integration of Digital Design and Analysis Tools

    DEFF Research Database (Denmark)

    Klitgaard, Jens; Kirkegaard, Poul Henning

    2006-01-01

    The aim of this research is to look into integrated digital design and analysis tools in order to find out if it is suited for use by architects and designers or only by specialists and technicians - and if not, then to look at what can be done to make them more available to architects and design...

  16. Model reduction in integrated controls-structures design

    Science.gov (United States)

    Maghami, Peiman G.

    1993-01-01

    It is the objective of this paper to present a model reduction technique developed for the integrated controls-structures design of flexible structures. Integrated controls-structures design problems are typically posed as nonlinear mathematical programming problems, where the design variables consist of both structural and control parameters. In the solution process, both structural and control design variables are constantly changing; therefore, the dynamic characteristics of the structure are also changing. This presents a problem in obtaining a reduced-order model for active control design and analysis which will be valid for all design points within the design space. In other words, the frequency and number of the significant modes of the structure (modes that should be included) may vary considerably throughout the design process. This is also true as the locations and/or masses of the sensors and actuators change. Moreover, since the number of design evaluations in the integrated design process could easily run into thousands, any feasible order-reduction method should not require model reduction analysis at every design iteration. In this paper a novel and efficient technique for model reduction in the integrated controls-structures design process, which addresses these issues, is presented.

  17. Food product design. An integrated approach

    NARCIS (Netherlands)

    Linnemann, A.R.; Boekel, van M.A.J.S.

    2007-01-01

    This book explains how to apply barrier technology in food production to improve product stability and the possibilities of modelling and statistics in food product design are elaborated. Attention is given to Life Cycle Assessment as a method to determine the environmental impact of a food from

  18. Thinking Tracks for Integrated Systems Design

    NARCIS (Netherlands)

    Bonnema, Gerrit Maarten; Denkena, B.; Gausemeijer, J.; Scholz-Reiter, B.

    2012-01-01

    The paper investigates systems thinking and systems engineering. After a short literature review, the paper presents, as a means for systems thinking, twelve thinking tracks. The tracks can be used as creativity starter, checklist, and as means to investigate effects of design decisions taken early

  19. Progress in high index contrast integrated optics

    NARCIS (Netherlands)

    Baets, R.G.F.; Bienstman, P.; Bogaerts, W.; Brouckaert, J.; De Backere, P.; Dumon, P.; Roelkens, G.; Scheerlinck, S.; Smit, M.K.; Taillaert, D.; Van Campenhout, J.; Van Laere, F.; Thourhout, Van D.

    2007-01-01

    A large fraction of the recent innovation in integrated optics is enabled by the use of high index contrast structures and devices. The strong confinement achievable in such devices allows for dramatic performance benefits and downscaling. In this paper the progress in this field is reviewed.

  20. Integration of Design and Control through Model Analysis

    DEFF Research Database (Denmark)

    Russel, Boris Mariboe; Henriksen, Jens Peter; Jørgensen, Sten Bay

    2002-01-01

    A systematic computer aided analysis of the process model is proposed as a pre-solution step for integration of design and control problems. The process model equations are classified in terms of balance equations, constitutive equations and conditional equations. Analysis of the phenomena models...... (structure selection) issues for the integrated problems are considered. (C) 2002 Elsevier Science Ltd. All rights reserved....... representing the constitutive equations identify the relationships between the important process and design variables, which help to understand, define and address some of the issues related to integration of design and control. Furthermore, the analysis is able to identify a set of process (control) variables...

  1. Workspace design: Integrating ergonomics into the design of production systems

    DEFF Research Database (Denmark)

    Broberg, Ole

    2006-01-01

    The work practice of ergonomists in workplace-making processes was studied by a socio-technical framework. This resulted in the term ‘political reflective navigator’ as a conceptualization of the identified work practice and competencies. In order to strengthen the impact of ergonomists it was fo......The work practice of ergonomists in workplace-making processes was studied by a socio-technical framework. This resulted in the term ‘political reflective navigator’ as a conceptualization of the identified work practice and competencies. In order to strengthen the impact of ergonomists...... it was found that new ways and tools for influencing the design of production systems are needed. The concept of workspace design and ‘staging the workspace design’ is suggested as a new framework for seeing and guiding ergonomists when taking part in design of workplaces and production systems....

  2. ASIC design used in high energy physics experiments

    International Nuclear Information System (INIS)

    Zhang Hongyu; Lin Tao; Wu Ling; Zhao jingwei; Gu Shudi

    1997-01-01

    The author introduces an ASIC (Application Specific Integrated Circuit) design environment based on PC. Some design tools used in such environment are also introduced. A kind of ASIC chip used in high energy physics experiment, weighting mean timer, is being developed now

  3. High Quality Data for Grid Integration Studies

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew; Draxl, Caroline; Sengupta, Manajit; Hodge, Bri-Mathias

    2017-01-22

    As variable renewable power penetration levels increase in power systems worldwide, renewable integration studies are crucial to ensure continued economic and reliable operation of the power grid. The existing electric grid infrastructure in the US in particular poses significant limitations on wind power expansion. In this presentation we will shed light on requirements for grid integration studies as far as wind and solar energy are concerned. Because wind and solar plants are strongly impacted by weather, high-resolution and high-quality weather data are required to drive power system simulations. Future data sets will have to push limits of numerical weather prediction to yield these high-resolution data sets, and wind data will have to be time-synchronized with solar data. Current wind and solar integration data sets are presented. The Wind Integration National Dataset (WIND) Toolkit is the largest and most complete grid integration data set publicly available to date. A meteorological data set, wind power production time series, and simulated forecasts created using the Weather Research and Forecasting Model run on a 2-km grid over the continental United States at a 5-min resolution is now publicly available for more than 126,000 land-based and offshore wind power production sites. The National Solar Radiation Database (NSRDB) is a similar high temporal- and spatial resolution database of 18 years of solar resource data for North America and India. The need for high-resolution weather data pushes modeling towards finer scales and closer synchronization. We also present how we anticipate such datasets developing in the future, their benefits, and the challenges with using and disseminating such large amounts of data.

  4. Integrated differential high-voltage transmitting circuit for CMUTs

    DEFF Research Database (Denmark)

    Llimos Muntal, Pere; Larsen, Dennis Øland; Farch, Kjartan

    2015-01-01

    In this paper an integrated differential high-voltage transmitting circuit for capacitive micromachined ultrasonic transducers (CMUTs) used in portable ultrasound scanners is designed and implemented in a 0.35 μm high-voltage process. Measurements are performed on the integrated circuit in order...... to assess its performance. The circuit generates pulses at differential voltage levels of 60V, 80V and 100 V, a frequency up to 5MHz and a measured driving strength of 1.75 V/ns with the CMUT connected. The total on-chip area occupied by the transmitting circuit is 0.18 mm2 and the power consumption...

  5. Blue green component and integrated urban design

    Directory of Open Access Journals (Sweden)

    Stanković Srđan M.

    2016-01-01

    Full Text Available This paper aims to demonstrate the hidden potential of blue green components, in a synergetic network, not as separate systems, like used in past. The innovative methodology of the project Blue Green Dream is presented through examples of good practice. A new approach in the project initiate thoughtful planning and remodeling of the settlement for the modern man. Professional and scientific public is looking for way to create more healthy and stimulating place for living. However, offered integrative solutions still remain out of urban and architectural practice. Tested technologies in current projects confirmed measurability of innovative approaches and lessons learned. Scientific and professional contributions are summarized in master's and doctoral theses that have been completed or are in process of writing.

  6. Slide layout and integrated design (SLIDE) program

    International Nuclear Information System (INIS)

    Roberts, S.G.

    1975-01-01

    SLIDE is a FORTRAN IV program for producing 35 mm color slides on the Control Data CYBER-74. SLIDE interfaces with the graphics package, DISSPLA, on the CYBER-74. It was designed so that persons with no previous computer experience can easily and quickly generate their own textual 35 mm color slides for verbal presentations. SLIDE's features include seven different colors, five text sizes, ten tab positions, and two page sizes. As many slides as desired may be produced during any one run of the program. Each slide is designed to represent an 8 1 / 2 in. x 11 in. or an 11 in. x 8 1 / 2 in. page. The input data cards required to run the SLIDE program and the program output are described. Appendixes contain a sample program run showing input, output, and the resulting slides produced and a FORTRAN listing of the SLIDE program. (U.S.)

  7. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  8. Designing with ethnography : an integrative approach to CSCW design

    NARCIS (Netherlands)

    Iqbal, Rahat; James, A.; Gatward, R.

    2005-01-01

    This paper presents a part of wider research endeavor within the field of Computer Supported Cooperative Work (CSCW) to leverage the use of ethnography for systems design. It investigates the role of ethnography in the development of CSCW systems and its relevance to real world problems,

  9. Two-dimensional integrated Z-pinch ICF design simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lash, J.S.

    1999-07-01

    The dynamic hohlraum ICF concept for a Z-pinch driver utilizes the imploding wire array collision with a target to produce a radiation history suitable for driving an embedded inertial confinement fusion (ICF) capsule. This target may consist of various shaped layers of low-density foams or solid-density materials. The use of detailed radiation magneto-hydrodynamic (RMHD) modeling is required for understanding and designing these complex systems. Critical to producing credible simulations and designs is inclusion of the Rayleigh-Taylor unstable wire-array dynamics; the bubble and spike structure of the collapsing sheath may yield regions of low-opacity enhancing radiation loss as well as introduce non-uniformities in the capsule's radiation drive. Recent improvements in LASNEX have allowed significant progress to be made in the modeling of unstable z-pinch implosions. Combining this with the proven ICF capsule design capabilities of LASNEX, the authors now have the modeling tools to produce credible, fully-integrated ICF dynamic hohlraum simulations. They present detailed two-dimensional RMHD simulations of recent ICF dynamic hohlraum experiments on the Sandia Z-machine as well as design simulations for the next-generation Z-pinch facility and future high-yield facility.

  10. Two-dimensional integrated Z-pinch ICF design simulations

    International Nuclear Information System (INIS)

    Lash, J.S.

    1999-01-01

    The dynamic hohlraum ICF concept for a Z-pinch driver utilizes the imploding wire array collision with a target to produce a radiation history suitable for driving an embedded inertial confinement fusion (ICF) capsule. This target may consist of various shaped layers of low-density foams or solid-density materials. The use of detailed radiation magneto-hydrodynamic (RMHD) modeling is required for understanding and designing these complex systems. Critical to producing credible simulations and designs is inclusion of the Rayleigh-Taylor unstable wire-array dynamics; the bubble and spike structure of the collapsing sheath may yield regions of low-opacity enhancing radiation loss as well as introduce non-uniformities in the capsule's radiation drive. Recent improvements in LASNEX have allowed significant progress to be made in the modeling of unstable z-pinch implosions. Combining this with the proven ICF capsule design capabilities of LASNEX, the authors now have the modeling tools to produce credible, fully-integrated ICF dynamic hohlraum simulations. They present detailed two-dimensional RMHD simulations of recent ICF dynamic hohlraum experiments on the Sandia Z-machine as well as design simulations for the next-generation Z-pinch facility and future high-yield facility

  11. Strategic Mobility 21: Integrated Tracking System Analysis and Concept Design

    National Research Council Canada - National Science Library

    Mallon, Lawrence G; Savacool, Edwin

    2007-01-01

    .... This design document supports the SM21 efforts in developing a dual-use multi-modal node at the Southern California Logistics Airport in Victorville, CA that will be supported by an Integrated Tracking System...

  12. Sensitivity Analysis for Design Optimization Integrated Software Tools, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposed project is to provide a new set of sensitivity analysis theory and codes, the Sensitivity Analysis for Design Optimization Integrated...

  13. On the logistics effects of integrated product and package design

    DEFF Research Database (Denmark)

    Bramklev, Caroline; Hansen, Claus Thorp

    2007-01-01

    obtaining error-free deliveries, saving costs and avoiding quality problems. Thus, the authors of this paper see a challenge in developing the theory and methodology for Integrated Product and Package Design. In this paper we take a first step in this direction. Firstly, we have carried out a broad review...... of literature, which shows that there is a need for research into Integrated Product and Package Design. Secondly, we have analysed three cases from industrial practice, which show that a conscious and integrated design of product and package has positive logistics effects, whereas neglecting this issue might...... result in higher costs and quality problems. On the basis of these cases we have made an initial cross-case analysis, which indicates that it is possible to develop the terminology and methodology for Integrated Product and Package Design....

  14. Integration of case study approach, project design and computer ...

    African Journals Online (AJOL)

    Integration of case study approach, project design and computer modeling in managerial accounting education ... Journal of Fundamental and Applied Sciences ... in the Laboratory of Management Accounting and Controlling Systems at the ...

  15. Conceptual design of main coolant pump for integral reactor SMART

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Seok; Kim, Jong In; Kim, Min Hwan [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    The conceptual design for MCP to be installed in the integral reactor SMART was carried out. Canned motor pump was adopted in the conceptual design of MCP. Three-dimensional modeling was performed to visualize the conceptual design of the MCP and to check interferences between the parts. The theoretical design procedure for the impeller was developed. The procedures for the flow field and structural analysis of impeller was also developed to assess the design validity and to verify its structural integrity. A computer program to analyze the dynamic characteristics of the rotor shaft of MCP was developed. The rotational speed sensor was designed and its performance test was conducted to verify the possibility of operation. A prototypes of the canned motor was manufactured and tested to confirm the validity of the design concept. The MCP design concept was also investigated for fabricability by establishing the manufacturing procedures. 41 refs., 96 figs., 10 tabs. (Author)

  16. Integrating computer programs for engineering analysis and design

    Science.gov (United States)

    Wilhite, A. W.; Crisp, V. K.; Johnson, S. C.

    1983-01-01

    The design of a third-generation system for integrating computer programs for engineering and design has been developed for the Aerospace Vehicle Interactive Design (AVID) system. This system consists of an engineering data management system, program interface software, a user interface, and a geometry system. A relational information system (ARIS) was developed specifically for the computer-aided engineering system. It is used for a repository of design data that are communicated between analysis programs, for a dictionary that describes these design data, for a directory that describes the analysis programs, and for other system functions. A method is described for interfacing independent analysis programs into a loosely-coupled design system. This method emphasizes an interactive extension of analysis techniques and manipulation of design data. Also, integrity mechanisms exist to maintain database correctness for multidisciplinary design tasks by an individual or a team of specialists. Finally, a prototype user interface program has been developed to aid in system utilization.

  17. Design dis-integration Silent, Partial, and Disparate Design

    OpenAIRE

    Stevens, John; Moultrie, James; Crilly, Nathan

    2009-01-01

    Michael Porter’s frameworks for analysing and planning competitive differentiation (Porter 1980, 1985) are established ‘textbook’ tools, widely taught to business students today. As the claim of design’s strategic importance is increasingly heard, we ask where does design fit in established strategy thinking? This paper documents a proposed conceptual model based on Porter’s value chain model for strategic planning. The concept outlined is the result of the first stage of a larger study of ...

  18. Implementing Integrated Multicultural Instructional Design in Management Education

    Science.gov (United States)

    Schultz, Jennifer L.; Higbee, Jeanne L.

    2011-01-01

    This purpose of this paper is to summarize the principles of integrated multicultural instructional design (IMID; Higbee, Goff, & Schultz, in press; Higbee, Schultz, & Goff, 2010) and present specific strategies for incorporating IMID in management education. The primary goal of IMID is to promote the integration of multicultural content…

  19. Highly integrated electronics for the star TPC

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, A.A.; Bieser, F.; Hearn, W.; Kleinfelder, S.; Merrick, T.; Millaud, J.; Noggle, T.; Rai, G.; Ritter, H.G.; Wieman, H. [Lawrence Berkeley Laboratory, CA (United States)

    1991-12-31

    The concept for the STAR TPC front-end electronics is presented and the progress toward the development of a fully integrated solution is described. It is the goal of the R+D program to develop the complete electronics chain for the STAR central TPC detector at RHIC. It is obvious that solutions chosen e.g. for ALEPH are not adequate for the 150000 channels that need to be instrumented for readout. It will be necessary to perform all the signal processing, digitization and multiplexing directly on the detector in order to reduce per channel cost and the amount of cabling necessary to read out the information. We follow the approach chosen by the EOS TPC project, where the readout electronics on the detector consists of an integrated preamplifier, a hybrid shaping amplifier, an integrated switched capacitor array and a highly multiplexed ADC. The STAR electronics will be further integrated so that approximately 16 channels of the preamplifier, the shaper, the analog store and the ADC will be contained in two integrated circuits located directly on the pad plane.

  20. Study on integrated design and analysis platform of NPP

    International Nuclear Information System (INIS)

    Lu Dongsen; Gao Zuying; Zhou Zhiwei

    2001-01-01

    Many calculation software have been developed to nuclear system's design and safety analysis, such as structure design software, fuel design and manage software, thermal hydraulic analysis software, severe accident simulation software, etc. This study integrates those software to a platform, develops visual modeling tool for Retran, NGFM90. And in this platform, a distribution calculation method is also provided for couple calculation between different software. The study will improve the design and analysis of NPP

  1. Integral design of active energy roofs

    NARCIS (Netherlands)

    Quanjel, E.M.C.J.

    2006-01-01

    A wide variety of new products, such as photovoltaic (PV) systems and solar collectors, roof lights, ventilation devices, insulation and safety devices, is finding its way into the roofing industry. As a result many problems occurred, resulting in poor quality, unsafe working conditions and high

  2. Integrated design strategy for product life-cycle management

    Science.gov (United States)

    Johnson, G. Patrick

    2001-02-01

    Two major trends suggest new considerations for environmentally conscious manufacturing (ECM) -- the continuation of dematerialization and the growing trend toward goods becoming services. A diversity of existing research could be integrated around those trends in ways that can enhance ECM. Major research-based achievements in information, computation, and communications systems, sophisticated and inexpensive sensing capabilities, highly automated and precise manufacturing technologies, and new materials continue to drive the phenomenon of dematerialization - the reduction of the material and energy content of per capita GDP. Knowledge is also growing about the sociology, economics, mathematics, management and organization of complex socio-economic systems. And that has driven a trend towards goods evolving into services. But even with these significant trends, the value of material, energy, information and human resources incorporated into the manufacture, use and disposal of modern products and services often far exceeds the benefits realized. Multi-disciplinary research integrating these drivers with advances in ECM concepts could be the basis for a new strategy of production. It is argued that a strategy of integrating information resources with physical and human resources over product life cycles, together with considering products as streams of service over time, could lead to significant economic payoff. That strategy leads to an overall design concept to minimize costs of all resources over the product life cycle to more fully capture benefits of all resources incorporated into modern products. It is possible by including life cycle monitoring, periodic component replacement, re-manufacture, salvage and human factor skill enhancement into initial design.

  3. Engineering and industrial design : an integrated interdisciplinary design theory

    OpenAIRE

    Brezing, Alexander Nikolaus; Löwer, Manuel

    2009-01-01

    It is generally accepted that superior products result from a balanced consideration of both “technology” and “aesthetic design”. Nonetheless, the gap between the two professions of the “design engineer“ and the “industrial designer“ has not been bridged since their origination in the course of industrialization [7]. One possible approach to enhance the collaboration of both disciplines is to teach the basics of the respective other’s. In Germany, the main work following this approach of tryi...

  4. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    Energy Technology Data Exchange (ETDEWEB)

    DR. Stephen Croft; Mr. David Martancik; Dr. Brian Young; Dr. Patrick MJ Chard; Dr. Robert J Estop; Sheila Melton; Gaetano J. Arnone

    2003-01-13

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nuclide and isotopic compositions Assay of high density matrices (both high-Z and high moderator contents)Correction for radioactive material physical form - such as self shielding or multiplication effects due to large accumulations of radioactive materials.Calibration with a minimal set of reference standards and representative matrices.THis document summarizes the conceptual design parameters of the IBIS and indicates areas key to the success of the project where development is to be centered. The work presented here is a collaborative effort between scientific staff within Canberra and within the NIS-6 group at LANL.

  5. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    International Nuclear Information System (INIS)

    Croft, Stephen; Martancik, David; Young, Brian; Chard MJ, Patrick; Estop J, Robert; Sheila Melton; Arnone, Gaetano J.

    2003-01-01

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nuclide and isotopic compositions Assay of high density matrices (both high-Z and high moderator contents)Correction for radioactive material physical form - such as self shielding or multiplication effects due to large accumulations of radioactive materials.Calibration with a minimal set of reference standards and representative matrices.THis document summarizes the conceptual design parameters of the IBIS and indicates areas key to the success of the project where development is to be centered. The work presented here is a collaborative effort between scientific staff within Canberra and within the NIS-6 group at LANL

  6. Fully integrated CMOS pixel detector for high energy particles

    International Nuclear Information System (INIS)

    Vanstraelen, G.; Debusschere, I.; Claeys, C.; Declerck, G.

    1989-01-01

    A novel type of position and energy sensitive, monolithic pixel array with integrated readout electronics is proposed. Special features of the design are a reduction of the number of output channels and of the amount of output data, and the use of transistors on the high resistivity silicon. The number of output channels for the detector array is reduced by handling in parallel a number of pixels, chosen as a function of the time resolution required for the system, and by the use of an address decoder. A further reduction of data is achieved by reading out only those pixels which have been activated. The pixel detector circuit will be realized in a 3 μm p-well CMOS process, which is optimized for the full integration of readout electronics and detector diodes on high resistivity Si. A retrograde well is formed by means of a high energy implantation, followed by the appropriate temperature steps. The optimization of the well shape takes into account the high substrate bias applied during the detector operation. The design is largely based on the use of MOS transistors on the high resistivity silicon itself. These have proven to perform as well as transistors on standard doped substrate. The basic building elements as well as the design strategy of the integrated pixel detector are presented in detail. (orig.)

  7. Integration of rocket turbine design and analysis through computer graphics

    Science.gov (United States)

    Hsu, Wayne; Boynton, Jim

    1988-01-01

    An interactive approach with engineering computer graphics is used to integrate the design and analysis processes of a rocket engine turbine into a progressive and iterative design procedure. The processes are interconnected through pre- and postprocessors. The graphics are used to generate the blade profiles, their stacking, finite element generation, and analysis presentation through color graphics. Steps of the design process discussed include pitch-line design, axisymmetric hub-to-tip meridional design, and quasi-three-dimensional analysis. The viscous two- and three-dimensional analysis codes are executed after acceptable designs are achieved and estimates of initial losses are confirmed.

  8. Integral design small nuclear power plant UNITHERM

    International Nuclear Information System (INIS)

    Adamovich, L. A.; Grechko, G. I.; Ulasevich, V. K.; Shishkin, V. A.

    1995-01-01

    The need to erect expensive energy transmission lines to these places demands to use independent local energy sources. Therefore, a reasonable alternative to the plants fired fossil fuel, mostly hydrocarbon fuel, may come from the nuclear power plants (NPP) of relatively small capacity which are nonattended, shipped to the site by large-assembled modules and completely withdrawable from the site during decommissioning. Application of NPPs for power and heat supply may prove to be cost-efficient and rather positive from social and ecological point of view. UNITHERM NPP belongs to such energy sources and may be used for heat and power supply. Heat can be provided both as hot water and superheated steam. The consumers are able to specify heat/energy supply ratio. NPP design provides for independent energy supply to the consumers and the possibility to disconnect each of them without disruption of operation of the others. Thermal hydraulic diagram of UNITHERM NPP provides for the use of three interconnected, process circuits. The consumers of thermal energy (turbogenerator unit and boilers of the central heating unit) are arranged in the last circuit

  9. An integrated approach to route selection in slurry pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Betinol, Roy G.; Altmann, Nara [Brass Chile S.A., Santiago (Chile)

    2009-12-19

    The pressure to get engineering projects done and constructed as fast as possible in order to take advantage of the high prices in metals and petrochemicals has been driving companies to skip the conceptual phase and go straight into basic engineering with cost estimates in the level of 15% accuracy. By-passing early engineering and demanding higher cost estimating accuracy is a contradiction. In most cases, savings made on capital investment is much higher had money been spent in conceptual studies which allow for the optimal solution to be found. This paper reviews one of the key aspects in conceptual engineering of slurry pipeline designs: route selection. This activity is often overlooked, causing capital cost and operating difficulties to rise unnecessarily. This paper describes and gives example on how an integrated client/engineering company's approach to route selection can produce significant savings in pipeline construction and operating costs. (author)

  10. Development of integrated platform for computational material design

    Energy Technology Data Exchange (ETDEWEB)

    Kiyoshi, Matsubara; Kumi, Itai; Nobutaka, Nishikawa; Akifumi, Kato [Center for Computational Science and Engineering, Fuji Research Institute Corporation (Japan); Hideaki, Koike [Advance Soft Corporation (Japan)

    2003-07-01

    The goal of our project is to design and develop a problem-solving environment (PSE) that will help computational scientists and engineers develop large complicated application software and simulate complex phenomena by using networking and parallel computing. The integrated platform, which is designed for PSE in the Japanese national project of Frontier Simulation Software for Industrial Science, is defined by supporting the entire range of problem solving activity from program formulation and data setup to numerical simulation, data management, and visualization. A special feature of our integrated platform is based on a new architecture called TASK FLOW. It integrates the computational resources such as hardware and software on the network and supports complex and large-scale simulation. This concept is applied to computational material design and the project 'comprehensive research for modeling, analysis, control, and design of large-scale complex system considering properties of human being'. Moreover this system will provide the best solution for developing large and complicated software and simulating complex and large-scaled phenomena in computational science and engineering. A prototype has already been developed and the validation and verification of an integrated platform will be scheduled by using the prototype in 2003. In the validation and verification, fluid-structure coupling analysis system for designing an industrial machine will be developed on the integrated platform. As other examples of validation and verification, integrated platform for quantum chemistry and bio-mechanical system are planned.

  11. Development of integrated platform for computational material design

    International Nuclear Information System (INIS)

    Kiyoshi, Matsubara; Kumi, Itai; Nobutaka, Nishikawa; Akifumi, Kato; Hideaki, Koike

    2003-01-01

    The goal of our project is to design and develop a problem-solving environment (PSE) that will help computational scientists and engineers develop large complicated application software and simulate complex phenomena by using networking and parallel computing. The integrated platform, which is designed for PSE in the Japanese national project of Frontier Simulation Software for Industrial Science, is defined by supporting the entire range of problem solving activity from program formulation and data setup to numerical simulation, data management, and visualization. A special feature of our integrated platform is based on a new architecture called TASK FLOW. It integrates the computational resources such as hardware and software on the network and supports complex and large-scale simulation. This concept is applied to computational material design and the project 'comprehensive research for modeling, analysis, control, and design of large-scale complex system considering properties of human being'. Moreover this system will provide the best solution for developing large and complicated software and simulating complex and large-scaled phenomena in computational science and engineering. A prototype has already been developed and the validation and verification of an integrated platform will be scheduled by using the prototype in 2003. In the validation and verification, fluid-structure coupling analysis system for designing an industrial machine will be developed on the integrated platform. As other examples of validation and verification, integrated platform for quantum chemistry and bio-mechanical system are planned

  12. Integration of fragment screening and library design.

    Science.gov (United States)

    Siegal, Gregg; Ab, Eiso; Schultz, Jan

    2007-12-01

    With more than 10 years of practical experience and theoretical analysis, fragment-based drug discovery (FBDD) has entered the mainstream of the pharmaceutical and biotech industries. An array of biophysical techniques has been used to detect the weak interaction between a fragment and the target. Each technique presents its own requirements regarding the fragment collection and the target; therefore, in order to optimize the potential of FBDD, the nature of the target should be a driving factor for simultaneous development of both the library and the screening technology. A roadmap is now available to guide fragment-to-lead evolution when structural information is available. The next challenge is to apply FBDD to targets for which high-resolution structural information is not available.

  13. The Application of Integrated Design System for HTR-PM Design

    International Nuclear Information System (INIS)

    Qi Shi; Xiaojing Kang

    2014-01-01

    SmartPlant Enterprise(SPE) developed by Intergraph from America is a new generation integrated solution for engineering design. Combined with the application in a nuclear engineering, this paper introduced the composition and the data flow of Integrated Design System established by SPE, analyzed the advantages and the insufficiency, and provided the direction of continuous improvement. (author)

  14. Formative Assessment Design for PDA Integrated Ecology Observation

    Science.gov (United States)

    Hung, Pi-Hsia; Lin, Yu-Fen; Hwang, Gwo-Jen

    2010-01-01

    Ubiquitous computing and mobile technologies provide a new perspective for designing innovative outdoor learning experiences. The purpose of this study is to propose a formative assessment design for integrating PDAs into ecology observations. Three learning activities were conducted in this study. An action research approach was applied to…

  15. Integrating ergonomics into engineering design: The role of objects

    DEFF Research Database (Denmark)

    Hall-Andersen, Lene Bjerg; Broberg, Ole

    2014-01-01

    The objective of this study was to explore the role of objects in integrating ergonomic knowledge in engineering design processes. An engineering design case was analyzed using the theoretical concepts of boundary objects and intermediary objects: Boundary objects facilitate collaboration between...

  16. Developing an Integrated Design Strategy for Chip Layout Optimization

    NARCIS (Netherlands)

    Wits, Wessel Willems; Jauregui Becker, Juan Manuel; van Vliet, Frank Edward; te Riele, G.J.

    2011-01-01

    This paper presents an integrated design strategy for chip layout optimization. The strategy couples both electric and thermal aspects during the conceptual design phase to improve chip performances; thermal management being one of the major topics. The layout of the chip circuitry is optimized

  17. Integration of Design and Control Through Model Analysis

    DEFF Research Database (Denmark)

    Russel, Boris Mariboe; Henriksen, Jens Peter; Jørgensen, Sten Bay

    2000-01-01

    of the phenomena models representing the process model identify the relationships between the important process and design variables, which help to understand, define and address some of the issues related to integration of design and control issues. The model analysis is highlighted through examples involving...... processes with mass and/or energy recycle. (C) 2000 Elsevier Science Ltd. All rights reserved....

  18. Design Process for Integrated Concepts with Responsive Building Elements

    DEFF Research Database (Denmark)

    Aa, Van der A.; Heiselberg, Per

    2008-01-01

    An integrated building concept is a prerequisite to come to an energy efficient building with a good and healthy IAQ indoor comfort. A design process that defines the targets and boundary conditions in the very first stage of the design and guarantees them until the building is finished and used...... is needed. The hard question is however: how to make the right choice of the combination of individual measures from building components and building services elements. Within the framework of IEA-ECBCS Annex 44 research has been conducted about the design process for integrated building concepts...

  19. Consequence Based Design. An approach for integrating computational collaborative models (Integrated Dynamic Models) in the building design phase

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer

    relies on various advancements in the area of integrated dynamic models. It also relies on the application and test of the approach in practice to evaluate the Consequence based design and the use of integrated dynamic models. As a result, the Consequence based design approach has been applied in five...... and define new ways to implement integrated dynamic models for the following project. In parallel, seven different developments of new methods, tools and algorithms have been performed to support the application of the approach. The developments concern: Decision diagrams – to clarify goals and the ability...... affect the design process and collaboration between building designers and simulationists. Within the limits of applying the approach of Consequence based design to five case studies, followed by documentation based on interviews, surveys and project related documentations derived from internal reports...

  20. A design approach for integrating thermoelectric devices using topology optimization

    International Nuclear Information System (INIS)

    Soprani, S.; Haertel, J.H.K.; Lazarov, B.S.; Sigmund, O.; Engelbrecht, K.

    2016-01-01

    Highlights: • The integration of a thermoelectric (TE) cooler into a robotic tool is optimized. • Topology optimization is suggested as design tool for TE integrated systems. • A 3D optimization technique using temperature dependent TE properties is presented. • The sensitivity of the optimization process to the boundary conditions is studied. • A working prototype is constructed and compared to the model results. - Abstract: Efficient operation of thermoelectric devices strongly relies on the thermal integration into the energy conversion system in which they operate. Effective thermal integration reduces the temperature differences between the thermoelectric module and its thermal reservoirs, allowing the system to operate more efficiently. This work proposes and experimentally demonstrates a topology optimization approach as a design tool for efficient integration of thermoelectric modules into systems with specific design constraints. The approach allows thermal layout optimization of thermoelectric systems for different operating conditions and objective functions, such as temperature span, efficiency, and power recovery rate. As a specific application, the integration of a thermoelectric cooler into the electronics section of a downhole oil well intervention tool is investigated, with the objective of minimizing the temperature of the cooled electronics. Several challenges are addressed: ensuring effective heat transfer from the load, minimizing the thermal resistances within the integrated system, maximizing the thermal protection of the cooled zone, and enhancing the conduction of the rejected heat to the oil well. The design method incorporates temperature dependent properties of the thermoelectric device and other materials. The 3D topology optimization model developed in this work was used to design a thermoelectric system, complete with insulation and heat sink, that was produced and tested. Good agreement between experimental results and

  1. Conductus makes high-Tc integrated circuit

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This paper reports that researchers at Conductus have successfully demonstrated what the company says is the world's first integrated circuit containing active devices made from high-temperature superconductors. The circuit is a SQUID magnetometer made from seven layers of material: three layers of yttrium-barium-copper oxide, two layers of insulating material, a seed layer to create grain boundaries for the Josephson junctions, and a layer of silver for making electrical contact to the device. The chip also contains vias, or pathways that make a superconducting contact between the superconducting layers otherwise separated by insulators. Conductus had previously announced the development of a SQUID magnetometer that featured a SQUID sensor and a flux transformer manufactured on separate chips. What makes this achievement important is that the company was able to put both components on the same chip, thus creating a simple integrated circuit on a single chip. This is still a long way from conventional semiconductor technology, with as many as a million components per chip, or even the sophisticated low-Tc superconducting chips made by the Japanese, but the SQUID magnetometer demonstrates all the elements and techniques necessary to build more complex high-temperature superconductor integrated circuits, making this an important first step

  2. System 80+ integrated design of a complete plant

    International Nuclear Information System (INIS)

    Turk, R.S.; Stamm, S.L.; Fox, W.A.

    1992-01-01

    In 1985, ABB-Combustion Engineering Nuclear Power (ABB-CENP) and elements of Duke Power Company [now Duke Engineering ampersand Services (DE ampersand S)] joined forces under the aegis of the Electric Power Research Institute (EPRI) Advanced Light Water Reactor (ALWR) Program to develop, with the sponsoring utilities, the design requirements for the next generation of nuclear power plants. With support from the US Department of Energy, ABB-CENP and DE ampersand S again teamed up the following year to initiate a project to design and license the System 80+ standard plant design, an advanced pressurized water reactor that meets these utility requirements. A distinguishing feature of the System 80+ standard design is that it is an essentially complete plant, predesigned and prelicensed to ensure rapid and economical construction. This is in stark contrast to typical prior conduct, where the reactor vendor offered only the nuclear steam supply system and the plant was built on a design-as-you-go basis with constant pressure to release individual elements of the plant design for construction or procurement as soon as possible. Now, however, the design process can be integrated over the total plant, ensuring that the goals set for ALWRs can be met. This integrated design process is manifested in several ways: (1) broad-based participation during the design process by involving designers, analysts, suppliers, constructors, and operators; (2) use of probabilistic risk assessment (PRA) as a design tool to aid in evaluating design features on a total-plant basis; (3) application of human factors engineering methods to a total plant distributed control system to improve the human-machine interface in the design; and (4) use of computer-aided design to enhance assessment of interactions and impacts of all aspects of the total plant. Each of these aspects of integrated plant design is discussed in this paper

  3. Development of core design and analyses technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  4. Development of core design and analyses technology for integral reactor

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Lee, C. C.; Song, J. S. and others

    1999-03-01

    Integral reactors are developed for the applications such as sea water desalination, heat energy for various industries, and power sources for large container ships. In order to enhance the inherent and passive safety features, low power density concept is chosen for the integral reactor SMART. Moreover, ultra-longer cycle and boron-free operation concepts are reviewed for better plant economy and simple design of reactor system. Especially, boron-free operation concept brings about large difference in core configurations and reactivity controls from those of the existing large size commercial nuclear power plants and also causes many differences in the safety aspects. The ultimate objectives of this study include detailed core design of a integral reactor, development of the core design system and technology, and finally acquisition of the system design certificate. The goal of the first stage is the conceptual core design, that is, to establish the design bases and requirements suitable for the boron-free concept, to develop a core loading pattern, to analyze the nuclear, thermal and hydraulic characteristics of the core and to perform the core shielding design. Interface data for safety and performance analyses including fuel design data are produced for the relevant design analysis groups. Nuclear, thermal and hydraulic, shielding design and analysis code systems necessary for the core conceptual design are established through modification of the existing design tools and newly developed methodology and code modules. Core safety and performance can be improved by the technology development such as boron-free core optimization, advaned core monitoring and operational aid system. Feasiblity study on the improvement of the core protection and monitoring system will also contribute toward core safety and performance. Both the conceptual core design study and the related technology will provide concrete basis for the next design phase. This study will also

  5. Spacecraft System Integration and Test: SSTI Lewis critical design audit

    Science.gov (United States)

    Brooks, R. P.; Cha, K. K.

    1995-01-01

    The Critical Design Audit package is the final detailed design package which provides a comprehensive description of the SSTI mission. This package includes the program overview, the system requirements, the science and applications activities, the ground segment development, the assembly, integration and test description, the payload and technology demonstrations, and the spacecraft bus subsystems. Publication and presentation of this document marks the final requirements and design freeze for SSTI.

  6. An integrated 3D design, modeling and analysis resource for SSC detector systems

    International Nuclear Information System (INIS)

    DiGiacomo, N.J.; Adams, T.; Anderson, M.K.; Davis, M.; Easom, B.; Gliozzi, J.; Hale, W.M.; Hupp, J.; Killian, K.; Krohn, M.; Leitch, R.; Lajczok, M.; Mason, L.; Mitchell, J.; Pohlen, J.; Wright, T.

    1989-01-01

    Integrated computer aided engineering and design (CAE/CAD) is having a significant impact on the way design, modeling and analysis is performed, from system concept exploration and definition through final design and integration. Experience with integrated CAE/CAD in high technology projects of scale and scope similar to SSC detectors leads them to propose an integrated computer-based design, modeling and analysis resource aimed specifically at SSC detector system development. The resource architecture emphasizes value-added contact with data and efficient design, modeling and analysis of components, sub-systems or systems with fidelity appropriate to the task. They begin with a general examination of the design, modeling and analysis cycle in high technology projects, emphasizing the transition from the classical islands of automation to the integrated CAE/CAD-based approach. They follow this with a discussion of lessons learned from various attempts to design and implement integrated CAE/CAD systems in scientific and engineering organizations. They then consider the requirements for design, modeling and analysis during SSC detector development, and describe an appropriate resource architecture. They close with a report on the status of the resource and present some results that are indicative of its performance. 10 refs., 7 figs

  7. Digital integrated circuit design using Verilog and SystemVerilog

    CERN Document Server

    Mehler, Ronald W

    2014-01-01

    For those with a basic understanding of digital design, this book teaches the essential skills to design digital integrated circuits using Verilog and the relevant extensions of SystemVerilog. In addition to covering the syntax of Verilog and SystemVerilog, the author provides an appreciation of design challenges and solutions for producing working circuits. The book covers not only the syntax and limitations of HDL coding, but deals extensively with design problems such as partitioning and synchronization, helping you to produce designs that are not only logically correct, but will actually

  8. Parametric design and analysis framework with integrated dynamic models

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer

    2014-01-01

    of building energy and indoor environment, are generally confined to late in the design process. Consequence based design is a framework intended for the early design stage. It involves interdisciplinary expertise that secures validity and quality assurance with a simulationist while sustaining autonomous...... control with the building designer. Consequence based design is defined by the specific use of integrated dynamic modeling, which includes the parametric capabilities of a scripting tool and building simulation features of a building performance simulation tool. The framework can lead to enhanced...

  9. Integrated Design Process in Problem-Based Learning

    DEFF Research Database (Denmark)

    Knudstrup, Mary-Ann

    2004-01-01

    This article reports and reflects on the learning achievements and the educational experiences in connection with the first years of the curriculum in Architecture at Aalborg University ?s Civil Engineer Education in Architecture & Design. In the article I will focus on the learning activity and ...... the students need in order to concentrate, mobilize creativity and find the personal design language which is a precondition for making good architecture....... and the method that are developed during the semester when working with an Integrated Design Process combining architecture, design, functional aspects, energy consumption, indoor environment, technology, and construction. I will emphasize the importance of working with different tools in the design process, e...

  10. Integrating Thermal Tools Into the Mechanical Design Process

    Science.gov (United States)

    Tsuyuki, Glenn T.; Siebes, Georg; Novak, Keith S.; Kinsella, Gary M.

    1999-01-01

    The intent of mechanical design is to deliver a hardware product that meets or exceeds customer expectations, while reducing cycle time and cost. To this end, an integrated mechanical design process enables the idea of parallel development (concurrent engineering). This represents a shift from the traditional mechanical design process. With such a concurrent process, there are significant issues that have to be identified and addressed before re-engineering the mechanical design process to facilitate concurrent engineering. These issues also assist in the integration and re-engineering of the thermal design sub-process since it resides within the entire mechanical design process. With these issues in mind, a thermal design sub-process can be re-defined in a manner that has a higher probability of acceptance, thus enabling an integrated mechanical design process. However, the actual implementation is not always problem-free. Experience in applying the thermal design sub-process to actual situations provides the evidence for improvement, but more importantly, for judging the viability and feasibility of the sub-process.

  11. Application specific integrated circuit for high temperature oil well applications

    Energy Technology Data Exchange (ETDEWEB)

    Fallet, T.; Gakkestad, J.; Forre, G.

    1994-12-31

    This paper describes the design of an integrated BiCMOS circuit for high temperature applications. The circuit contains Pierce oscillators with automatic gain control, and measurements show that it is operating up to 266{sup o}C. The relative frequency variation up to 200 {sup o}C is less than 60 ppm caused mainly by the crystal element itself. 4 refs., 7 figs.

  12. Development of mechanical design technology for integral reactor

    International Nuclear Information System (INIS)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were set up, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  13. Development of mechanical design technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn

    1999-03-01

    While Korean nuclear reactor strategy seems to remain focused on the large capacity power generation, it is expected that demand of small and medium size reactor will arise for multi-purpose application such as small capacity power generation, co-generation and sea water desalination. With this in mind, an integral reactor SMART is under development. Design concepts, system layout and types of equipment of integral reactor are significantly different from those of loop type reactor. Conceptual design development of mechanical structures of integral reactor SMART is completed through the first stage of the project. Efforts were endeavored for the establishment of design basis and evaluation of applicable codes and standards. Design and functional requirements of major structural components were setup, and three dimensional structural modelling of SMART reactor vessel assembly was prepared. Also, maintenance and repair scheme as well as preliminary fabricability evaluation were carried out. Since small integral reactor technology includes sensitive technologies and know-how's, it is hard to achieve systematic and comprehensive technology transfer from nuclear-advanced countries. Thus, it is necessary to develop the related design technology and to verify the adopted methodologies through test and experiments in order to assure the structural integrity of reactor system. (author)

  14. Integrating Safeguards and Security with Safety into Design

    International Nuclear Information System (INIS)

    Bean, Robert S.; Hockert, John W.; Hebditch, David J.

    2009-01-01

    There is a need to minimize security risks, proliferation hazards, and safety risks in the design of new nuclear facilities in a global environment of nuclear power expansion, while improving the synergy of major design features and raising operational efficiency. In 2008, the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) launched the Next Generation Safeguards Initiative (NGSI) covering many safeguards areas. One of these, launched by NNSA with support of the DOE Office of Nuclear Energy, was a multi-laboratory project, led by the Idaho National Laboratory (INL), to develop safeguards by design. The proposed Safeguards-by-Design (SBD) process has been developed as a structured approach to ensure the timely, efficient, and cost effective integration of international safeguards and other nonproliferation barriers with national material control and accountability, physical security, and safety objectives into the overall design process for the nuclear facility lifecycle. A graded, iterative process was developed to integrate these areas throughout the project phases. It identified activities, deliverables, interfaces, and hold points covering both domestic regulatory requirements and international safeguards using the DOE regulatory environment as exemplar to provide a framework and guidance for project management and integration of safety with security during design. Further work, reported in this paper, created a generalized SBD process which could also be employed within the licensed nuclear industry and internationally for design of new facilities. Several tools for integrating safeguards, safety, and security into design are discussed here. SBD appears complementary to the EFCOG TROSSI process for security and safety integration created in 2006, which focuses on standardized upgrades to enable existing DOE facilities to meet a more severe design basis threat. A collaborative approach is suggested.

  15. Design of an integrated I and C system

    International Nuclear Information System (INIS)

    Lee, C. K.; Oh, I. S.; Kim, D. H.

    2004-08-01

    The final goal of this project is to develop an integrated I and C systems, and through this project the localized equipment and systems being developed should secure the safety, the reliability, their applicability and technical competitiveness. As well, the technical interfaces among sub-projects should be maintained for integration. The results of this project are as following ; 1. Development of an integrated I and C system architecture: Development of the design concepts for KNICS and the design requirements for each I and C system, Development of the design requirements of control systems based on DCS, Design of the communication systems, Design of the interface signals among systems and analysis of traffic load for networks, Conceptual design of measuring and monitoring systems, Review of the structure of computer systems for information processing, Development of architectures for each system and KOICS 2. Technological integration and management of projects: Development of evaluation criteria for DCS and network systems, Evaluation of the DCS prototype, Design review of KNICS protection system, Review of the functions and design requirements of I and C systems in NPP, Analysis of the I and C system H/W in NPP and the APR1400 I and C system design, Review of the technology criteria and the regulatory trend for licensing issues, Extracting items for preparing the technical description of I and C systems, a part of proposal to invitation to bid (ITB), Planning for KNICS to be of practical use The results of this project will be applied as design bases during the development of 2nd phase KNICS. As well it is expected that the results of this project will be finally applied for the technical self-reliance of component design and manufacturing of NPP I and C systems

  16. CopperCore Service Integration, Integrating IMS Learning Design and IMS Question and Test Interoperability

    NARCIS (Netherlands)

    Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; Van Rosmalen, Peter; Koper, Rob

    2006-01-01

    Vogten, H., Martens, H., Nadolski, R., Tattersall, C., Rosmalen, van, P., Koper, R., (2006). CopperCore Service Integration, Integrating IMS Learning Design and IMS Question and Test Interoperability. Proceedings of the 6th IEEE International Conference on Advanced Learning Technologies (pp.

  17. Integrating IMS Learning Design and IMS Question and Test Interoperability using CopperCore Service Integration

    NARCIS (Netherlands)

    Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; Van Rosmalen, Peter; Koper, Rob

    2006-01-01

    Please, cite this publication as: Vogten, H., Martens, H., Nadolski, R., Tattersall, C., van Rosmalen, P., & Koper, R. (2006). Integrating IMS Learning Design and IMS Question and Test Interoperability using CopperCore Service Integration. Proceedings of International Workshop in Learning Networks

  18. Requirements of Integrated Design Teams While Evaluating Advanced Energy Retrofit Design Options in Immersive Virtual Environments

    Directory of Open Access Journals (Sweden)

    Xue Yang

    2015-12-01

    Full Text Available One of the significant ways to save energy use in buildings is to implement advanced energy retrofits in existing buildings. Improving energy performance of buildings through advanced energy retrofitting requires a clear understanding of the cost and energy implications of design alternatives from various engineering disciplines when different retrofit options are considered. The communication of retrofit design alternatives and their energy implications is essential in the decision-making process, as it affects the final retrofit selections and hence the energy efficiency of the retrofitted buildings. The objective of the research presented here was to identify a generic list of information requirements that are needed to be shared and collectively analyzed by integrated design teams during advanced energy retrofit design review meetings held in immersive settings. While identifying such requirements, the authors used an immersive environment based iterative requirements elicitation approach. The technology was used as a means to better identify the information requirements of integrated design teams to be analyzed as a group. This paper provides findings on information requirements of integrated design teams when evaluating retrofit options in immersive virtual environments. The information requirements were identified through interactions with sixteen experts in design and energy modeling domain, and validated with another group of participants consisting of six design experts who were experienced in integrated design processes. Industry practitioners can use the findings in deciding on what information to share with integrated design team members during design review meetings that utilize immersive virtual environments.

  19. A design approach for integrating thermoelectric devices using topology optimization

    DEFF Research Database (Denmark)

    Soprani, Stefano; Haertel, Jan Hendrik Klaas; Lazarov, Boyan Stefanov

    2016-01-01

    Efficient operation of thermoelectric devices strongly relies on the thermal integration into the energy conversion system in which they operate. Effective thermal integration reduces the temperature differences between the thermoelectric module and its thermal reservoirs, allowing the system...... to operate more efficiently. This work proposes and experimentally demonstrates a topology optimization approach as a design tool for efficient integration of thermoelectric modules into systems with specific design constraints. The approach allows thermal layout optimization of thermoelectric systems...... for different operating conditions and objective functions, such as temperature span, efficiency, and power recoveryrate. As a specific application, the integration of a thermoelectric cooler into the electronics section ofa downhole oil well intervention tool is investigated, with the objective of minimizing...

  20. An integrated high performance fastbus slave interface

    International Nuclear Information System (INIS)

    Christiansen, J.; Ljuslin, C.

    1992-01-01

    A high performance Fastbus slave interface ASIC is presented. The Fastbus slave integrated circuit (FASIC) is a programmable device, enabling its direct use in many different applications. The FASIC acts as an interface between Fastbus and a 'standard' processor/memory bus. It can work stand-alone or together with a microprocessor. A set of address mapping windows can map Fastbus addresses to convenient memory addresses and at the same time act as address decoding logic. Data rates of 100 MBytes/s to Fastbus can be obtained using an internal FIFO buffer in the FASIC. (orig.)

  1. DESIGN OF INFORMATION MANAGEMENT SYSTEM OF VERTICALLY INTEGRATED AGRICULTURAL HOLDINGS

    Directory of Open Access Journals (Sweden)

    Александр Витальевич ШМАТКО

    2015-05-01

    Full Text Available The paper deals with an approach to the design and development of information systems for the management and optimization of the organizational structure of vertically integrated agricultural holdings. A review of the problems of building and improving the organizational structure of vertically integrated agricultural holding is made. A method of constructing a discrete model management structure agricultural holding, which minimizes the costs associated with attracting applicants to work, is proposed.

  2. Integration of educational methods and physical settings: Design ...

    African Journals Online (AJOL)

    ... setting without having an architectural background. The theoretical framework of the research allows designers to consider key features and users' possible activities in High/ Scope settings and shape their designs accordingly. Keywords: daily activity; design; High/Scope education; interior space; teaching method ...

  3. Grid integration impacts on wind turbine design and development

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Cutululis, Nicolaos Antonio; Sørensen, Poul Ejnar

    2009-01-01

    This paper presents an overall perspective on contemporary issues like wind power plants and grid integration. The purpose is to present and discuss the impacts of emerging new grid connection requirements on modern wind turbines. The grid integration issue has caused several new challenges......, the grid integration aspect has also an effect on wind turbines' role in the power system, on wind turbine technologies' survival on the market, as well as on the wind turbines' loads. Over the last years, it became obviously, that there it is an increasing need for design and research of wind turbines...... to the wind turbine design and development. The survival of different wind turbine concepts and controls is strongly conditioned by their ability to comply with stringent grid connection requirements, imposed by utility companies. Beside its impact on the mechanical design and control of wind turbines...

  4. Availability objectives integration to design. The CIDEM approach

    International Nuclear Information System (INIS)

    Degrave, C.; Martin-Onraet, M.

    1994-01-01

    Considering the operation experience feedback from its nuclear park and from foreign parks, and considering new approaches and design tools such as concurrent engineering, total quality, etc., EDF (Electricite de France) has decided to start the CIDEM approach (integration of availability, operating experience feedback and maintenance into design), an analytical and systematical study process for new projects (REP2000 (or PWR2000)), in order to optimize as much as possible the design phase while integrating maintenance, availability and safety objectives, with the view of a minimized kWh cost. This process, already used in other industries, employs concepts such as RAM (Reliability Availability Maintainability), RCM (Reliability Centered Maintenance) and ILS (Integrated Logistic Support). The availability and maintenance scheduling studies for the REP2000 project are detailed. 10 fig., 6 tab

  5. Design and evaluation of an integrated safeguards system: principles

    International Nuclear Information System (INIS)

    Markin, J.T.; Coulter, C.A.; Gutmacher, R.G.; Whitty, W.J.

    1984-07-01

    An integrated safeguards system is defined as a collection of safeguards activities in which system components are coordinated to meet safeguards objectives efficiently within constraints imposed by safeguards resources, facility operations, potential adversaries, and regulatory requirements. This paper describes principles for designing and evaluating an integrated safeguards system that consists of four parts: (1) a problem definition phase that specifies resources and constraints composing the problem boundary values; (2) a system analysis/synthesis phase that describes how to select and integrate safeguards activities for efficient attainment of system objectives; (3) a system evaluation/optimization phase that defines measures of safeguards performance and develops methods for evaluating them; and (4) a decision-making phase that develops principles for selecting admissible designs and preference-ordering designs. 6 references, 4 figures, 5 tables

  6. Design and evaluation of an integrated safeguards system: principles

    International Nuclear Information System (INIS)

    Markin, J.T.; Coulter, C.A.; Gutmacher, R.G.; Whitty, W.J.

    1984-01-01

    An integrated safeguards system is defined as a collection of safeguards activities in which system components are coordinated to meet safeguards objectives efficiently within constraints imposed by safeguards resources, facility operations, potential adversaries, and regulatory requirements. This paper describes principles for designing and evaluating an integrated safeguards system that consists of four parts: a problem definition phase that specifies resources and constraints composing the problem boundary values, a system analysis/synthesis phase that describes how to select and integrate safeguards activities for efficient attainment of system objectives, a system evaluation/optimization phase that defines measures of safeguards performance and develops methods for evaluating them, and a decision-making phase that develops principles for selecting admissible designs and preference-ordering designs

  7. Development of economically viable, highly integrated, highly modular SEGIS architecture.

    Energy Technology Data Exchange (ETDEWEB)

    Enslin, Johan (Petra Solar, Inc., South Plainfield, NJ); Hamaoui, Ronald (Petra Solar, Inc., South Plainfield, NJ); Gonzalez, Sigifredo; Haddad, Ghaith (Petra Solar, Inc., South Plainfield, NJ); Rustom, Khalid (Petra Solar, Inc., South Plainfield, NJ); Stuby, Rick (Petra Solar, Inc., South Plainfield, NJ); Kuran, Mohammad (Petra Solar, Inc., South Plainfield, NJ); Mark, Evlyn (Petra Solar, Inc., South Plainfield, NJ); Amarin, Ruba (Petra Solar, Inc., South Plainfield, NJ); Alatrash, Hussam (Petra Solar, Inc., South Plainfield, NJ); Bower, Ward Isaac; Kuszmaul, Scott S.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali

    2012-03-01

    Initiated in 2008, the SEGIS initiative is a partnership involving the U.S. DOE, Sandia National Laboratories, private sector companies, electric utilities, and universities. Projects supported under the initiative have focused on the complete-system development of solar technologies, with the dual goal of expanding renewable PV applications and addressing new challenges of connecting large-scale solar installations in higher penetrations to the electric grid. Petra Solar, Inc., a New Jersey-based company, received SEGIS funds to develop solutions to two of these key challenges: integrating increasing quantities of solar resources into the grid without compromising (and likely improving) power quality and reliability, and moving the design from a concept of intelligent system controls to successful commercialization. The resulting state-of-the art technology now includes a distributed photovoltaic (PV) architecture comprising AC modules that not only feed directly into the electrical grid at distribution levels but are equipped with new functions that improve voltage stability and thus enhance overall grid stability. This integrated PV system technology, known as SunWave, has applications for 'Power on a Pole,' and comes with a suite of technical capabilities, including advanced inverter and system controls, micro-inverters (capable of operating at both the 120V and 240V levels), communication system, network management system, and semiconductor integration. Collectively, these components are poised to reduce total system cost, increase the system's overall value and help mitigate the challenges of solar intermittency. Designed to be strategically located near point of load, the new SunWave technology is suitable for integration directly into the electrical grid but is also suitable for emerging microgrid applications. SunWave was showcased as part of a SEGIS Demonstration Conference at Pepco Holdings, Inc., on September 29, 2011, and is presently

  8. Integrated Design and Implementation of Embedded Control Systems with Scilab.

    Science.gov (United States)

    Ma, Longhua; Xia, Feng; Peng, Zhe

    2008-09-05

    Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly timeconsuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.

  9. Integrated Design and Implementation of Embedded Control Systems with Scilab

    Directory of Open Access Journals (Sweden)

    Zhe Peng

    2008-09-01

    Full Text Available Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly timeconsuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.

  10. The computational design of Geological Disposal Technology Integration System

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Iwamoto, Hiroshi; Kobayashi, Shigeki; Neyama, Atsushi; Endo, Shuji; Shindo, Tomonori

    2002-03-01

    In order to develop 'Geological Disposal Technology Integration System' that is intended to systematize as knowledge base for fundamental study, the computational design of an indispensable database and image processing function to 'Geological Disposal Technology Integration System' was done, the prototype was made for trial purposes, and the function was confirmed. (1) Database of Integration System which systematized necessary information and relating information as an examination of a whole of repository composition and managed were constructed, and the system function was constructed as a system composed of image processing, analytical information management, the repository component management, and the system security function. (2) The range of the data treated with this system and information was examined, the design examination of the database structure was done, and the design examination of the image processing function of the data preserved in an integrated database was done. (3) The prototype of the database concerning a basic function, the system operation interface, and the image processing function was manufactured to verify the feasibility of the 'Geological Disposal Technology Integration System' based on the result of the design examination and the function was confirmed. (author)

  11. Design and control of integrated chromatography column sequences.

    Science.gov (United States)

    Andersson, Niklas; Löfgren, Anton; Olofsson, Marianne; Sellberg, Anton; Nilsson, Bernt; Tiainen, Peter

    2017-07-01

    To increase the productivity in biopharmaceutical production, a natural step is to introduce integrated continuous biomanufacturing which leads to fewer buffer and storage tanks, smaller sizes of integrated unit operations, and full automation of the operation. The main contribution of this work is to illustrate a methodology for design and control of a downstream process based on integrated column sequences. For small scale production, for example, pre-clinical studies, integrated column sequences can be implemented on a single chromatography system. This makes for a very efficient drug development platform. The proposed methodology is composed of four steps and is governed by a set of tools, that is presented, that makes the transition from batch separations to a complete integrated separation sequence as easy as possible. This methodology, its associated tools and the physical implementation is presented and illustrated on a case study where the target protein is separated from impurities through an integrated four column sequence. This article shows that the design and control of an integrated column sequence was successfully implemented for a tertiary protein separation problem. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:923-930, 2017. © 2017 American Institute of Chemical Engineers.

  12. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This report presents a summary design description of the Conceptual Design for an Integral Monitored Retrievable Storage (MRS) Facility, as prepared by The Ralph M. Parsons Company under an A-E services contract with the Richland Operations Office of the Department of Energy. More detailed design requirements and design data are set forth in the Basis for Design and Design Report, bound under separate cover and available for reference by those desiring such information. The design data provided in this Design Report Executive Summary, the Basis for Design, and the Design Report include contributions by the Waste Technology Services Division of Westinghouse Electric Corporation (WEC), which was responsible for the development of the waste receiving, packaging, and storage systems, and Golder Associates Incorporated (GAI), which supported the design development with program studies. The MRS Facility design requirements, which formed the basis for the design effort, were prepared by Pacific Northwest Laboratory for the US Department of Energy, Richland Operations Office, in the form of a Functional Design Criteria (FDC) document, Rev. 4, August 1985. 9 figs., 6 tabs

  13. Enhancement of high density polyethylene high integrity containers at a low level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Sauer, R.E.; Wong, O.P.

    1989-01-01

    High integrity containers (HIC) made of high density polyethylene (HDPE) have been used for disposal in South Carolina since the late seventies. With the recent definitive position taken by the NRC on the suitability of these containers for disposal, alternative means of assuring the structural integrity of the containers for the long term became necessary. The authors' company has developed an utilized reinforced concrete caissons at the Hanford, Washington site as an additional barrier and structural element to assure the long term high integrity function of the current HDPE HIC's also known as Poly HIC's on the market. This paper outlines the background of the HIC's in question, the NRC positions and ruling, and presents technical bases for the applicability of appropriately designed concrete overpacks to augment the structural integrity of HIC's

  14. Challenges and opportunities in integration of design and control

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted

    2015-01-01

    Process synthesis and design of plant operation are related topics but current industrial practice solves these problems sequentially. The implication of this sequential strategy may result in design of processing systems which are very hard to control. This paper presents a discussion on drivers...... for an integrated approach and outlines the challenges in formulation of such a multi-objective synthesis problem. This discussion is viewed in relation to some of the changing trends in the industry. Significant results have been published which in different ways seek to handle the integrated problem. Further...

  15. A Novel Analog Integrated Circuit Design Course Covering Design, Layout, and Resulting Chip Measurement

    Science.gov (United States)

    Lin, Wei-Liang; Cheng, Wang-Chuan; Wu, Chen-Hao; Wu, Hai-Ming; Wu, Chang-Yu; Ho, Kuan-Hsuan; Chan, Chueh-An

    2010-01-01

    This work describes a novel, first-year graduate-level analog integrated circuit (IC) design course. The course teaches students analog circuit design; an external manufacturer then produces their designs in three different silicon chips. The students, working in pairs, then test these chips to verify their success. All work is completed within…

  16. Design criteria of integrated reactors based on transients

    International Nuclear Information System (INIS)

    Zanocco, P.; Gimenez, M.; Delmastro, D.

    1999-01-01

    A new tendency in integrated reactors conceptual design is to include safety criteria through accident analysis. In this work, the effect of design parameters in a Loss of Heat Sink transient using design maps is analyzed. Particularly, geometry related parameters and reactivity coefficients are studied. Also the effect of primary relief/safety valve during the transient is evaluated. A design map for valve area vs. coolant density reactivity coefficient is obtained. A computer code (HUARPE) is developed in order to simulate these transients. Coolant, steam dome, pressure vessel structures and core models are implemented. This code is checked against TRAC with satisfactory results. (author)

  17. Toshiba integrated information system for design of nuclear power plants

    International Nuclear Information System (INIS)

    Abe, Yoko; Kawamura, Hirobumi; Sasaki, Norio; Takasaka, Kiyoshi

    1993-01-01

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plants and has been introducing Computer Aided Engineering (CAE). Up to the present, TOSHIBA has been developing computer systems which support each field of design and applying them to the design of nuclear power plants. The new design support system has been developed to integrate each of those systems in order to realize much greater improvement in accuracy and increase of reliability in design using state-of-the-art computer technology

  18. Integrating design and purchasing [in nuclear engineering] with Ingecad

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Ingecad was developed by the Ingevision division of Framatome to overcome deficiencies in traditional computer-aided design. It was developed for nuclear power project engineering around the principle of the shared management of a common database, thus making it possible to integrate several engineering disciplines. The multiuser database is managed and accessed by the different application softwares, corresponding to particular aspects of the engineering task: electrical and process control schematics; plant piping design; pressurized equipment design etc. The use of a common database ensures coherence between the different engineering disciplines, particularly between the process engineering, the plant layout design, the piping, and the instrumentation and control engineering. (author)

  19. How an Integrative STEM Curriculum Can Benefit Students in Engineering Design Practices

    Science.gov (United States)

    Fan, Szu-Chun; Yu, Kuang-Chao

    2017-01-01

    STEM-oriented engineering design practice has become recognized increasingly by technology education professionals in Taiwan. This study sought to examine the effectiveness of the application of an integrative STEM approach within engineering design practices in high school technology education in Taiwan. A quasi-experimental study was conducted…

  20. Landing Gear Integration in Aircraft Conceptual Design. Revision

    Science.gov (United States)

    Chai, Sonny T.; Mason, William H.

    1997-01-01

    The design of the landing gear is one of the more fundamental aspects of aircraft design. The design and integration process encompasses numerous engineering disciplines, e.g., structure, weights, runway design, and economics, and has become extremely sophisticated in the last few decades. Although the design process is well-documented, no attempt has been made until now in the development of a design methodology that can be used within an automated environment. As a result, the process remains to be a key responsibility for the configuration designer and is largely experience-based and graphically-oriented. However, as industry and government try to incorporate multidisciplinary design optimization (MDO) methods in the conceptual design phase, the need for a more systematic procedure has become apparent. The development of an MDO-capable design methodology as described in this work is focused on providing the conceptual designer with tools to help automate the disciplinary analyses, i.e., geometry, kinematics, flotation, and weight. Documented design procedures and analyses were examined to determine their applicability, and to ensure compliance with current practices and regulations. Using the latest information as obtained from industry during initial industry survey, the analyses were in terms modified and expanded to accommodate the design criteria associated with the advanced large subsonic transports. Algorithms were then developed based on the updated analysis procedures to be incorporated into existing MDO codes.

  1. The challenge of integrating evidence-based design.

    Science.gov (United States)

    Martin, Caren S

    2009-01-01

    This paper discusses the integration of evidence-based design (EBD) into the design process as an innovation, illuminates the significance and progress of the diffusion of this innovation, and identifies EBD advocates and the consequences of meeting the EBD challenge. A free tool for engaging in EBD is explored. Healthcare designers are leading the EBD charge, because their clients depend on it. But not all designers engage in EBD, because it may be beyond the resources of a firm or outside its culture. However, as with other meaningful design innovations, designers who do not practice EBD could fall by the wayside. EBD is a product of the diffusion of the innovation of evidence-based medicine. The academy (i.e., the collective of institutions of higher education), design organizations, design communities, and the media all contribute to the diffusion of EBD. However, the quantity, quality, and understandability of evidence continue to challenge its broad adoption. InformeDesign®, a free, Internet-based tool, presents information to designers in a concise, understandable way. Firms must invest in EBD incrementally as a value-added component of design to meet current and future challenges. It is important for designers to realize that engaging in EBD is not a rejection of creativity, but a means by which to elevate their design solutions. ©2009 VENDOME GROUP, LLC

  2. Barriers and Challenges in the Integrated Design Process Approcach

    DEFF Research Database (Denmark)

    Knudstrup, Mary-Ann

    2006-01-01

    ABSTRACT: In the future, it will be a huge challenge to make sustainable building design by using a more holistic and innovative approach in order to be able to decrease or reduce the use of energy for heating and cooling in new building projects. This is seen in the perspective of the Kyoto agre....... It also describes the barriers and the challenges that must be overcome when trying to cross the borders between the two fields of engineering and architecture to design sustainable architecture....... agreement for reducing the global heating. This paper will briefly present the method of the Integrated Design Process, IDP [1]. It describes the background and means for developing a new method for designing integrated architecture in an interdisciplinary approach between architecture and engineering...

  3. Design and development of small and medium integral reactor core

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Chang, M. H.; Lee, C. C.; Song, J. S.; Cho, B. O.; Kim, K. Y.; Kim, S. J.; Park, S. Y.; Lee, K. B.; Lee, C. H.; Chun, T. H.; Oh, D. S.; In, W. K.; Kim, H. K.; Lee, C. B.; Kang, H. S.; Song, K. N.

    1997-07-01

    Recently, the role of small and medium size integral reactors is remarkable in the heat applications rather than the electrical generations. Such a range of possible applications requires extensive used of inherent safety features and passive safety systems. It also requires ultra-longer cycle operations for better plant economy. Innovative and evolutionary designs such as boron-free operations and related reactor control methods that are necessary for simple reactor system design are demanded for the small and medium reactor (SMR) design, which are harder for engineers to implement in the current large size nuclear power plants. The goals of this study are to establish preliminary design criteria, to perform the preliminary conceptual design and to develop core specific technology for the core design and analysis for System-integrated Modular Advanced ReacTor (SMART) of 330 MWt power. Based on the design criteria of the commercial PWR's, preliminary design criteria will be set up. Preliminary core design concept is going to be developed for the ultra-longer cycle and boron-free operation and core analysis code system is constructed for SMART. (author). 100 refs., 40 tabs., 92 figs

  4. The Mixed Waste Management Facility. Design basis integrated operations plan (Title I design)

    International Nuclear Information System (INIS)

    1994-12-01

    The Mixed Waste Management Facility (MWMF) will be a fully integrated, pilotscale facility for the demonstration of low-level, organic-matrix mixed waste treatment technologies. It will provide the bridge from bench-scale demonstrated technologies to the deployment and operation of full-scale treatment facilities. The MWMF is a key element in reducing the risk in deployment of effective and environmentally acceptable treatment processes for organic mixed-waste streams. The MWMF will provide the engineering test data, formal evaluation, and operating experience that will be required for these demonstration systems to become accepted by EPA and deployable in waste treatment facilities. The deployment will also demonstrate how to approach the permitting process with the regulatory agencies and how to operate and maintain the processes in a safe manner. This document describes, at a high level, how the facility will be designed and operated to achieve this mission. It frequently refers the reader to additional documentation that provides more detail in specific areas. Effective evaluation of a technology consists of a variety of informal and formal demonstrations involving individual technology systems or subsystems, integrated technology system combinations, or complete integrated treatment trains. Informal demonstrations will typically be used to gather general operating information and to establish a basis for development of formal demonstration plans. Formal demonstrations consist of a specific series of tests that are used to rigorously demonstrate the operation or performance of a specific system configuration

  5. Integral Engine Inlet Particle Separator. Volume 2. Design Guide

    Science.gov (United States)

    1975-08-01

    herein will be used in the design of integral inlet particle separators for future Army aircraft gas turbine engines. Apprupriate technical personnel...into the comprensor at some future date. 5. A typical scavenge vane design Js; shown in Figures 85 and 86. The important features of the scavenge...service passageweys, for cooling of oil, and for directing sand and air into the scroll. Orientetion of the vanes is set by collection efficiency

  6. IFMIF target and test cell - design and integration

    International Nuclear Information System (INIS)

    Heinzel, V.

    2007-01-01

    The International Fusion Material Irradiation Facility (IFMIF) aims at the qualification of appropriate materials for a Demonstration Fusion Power Plant (DEMO) to a fluence of up to 150 dpa (displacement per atom) at a DEMO typical neutron spectrum. It comprises two accelerators each providing a deuteron beam with 125 mA and 40 MeV. The deuterons strike a lithium target and create via stripping reactions neutrons. The neutrons are mainly forward directed into the High-Flux-Test-Module (HFTM). The Medium Flux-Test-Modules (MFTM) and the Low-Flux-Test-Modules (LFTM) are arranged in beam direction behind. In the HFTM a damage rate in steel of more than 20 dpa/fpy (displacement per atome per full power year) will be provide in a volume of 0.5 litre. The neutron spectrum is prone to produce helium and tritium in steel like in the first wall of a DEMO reactor. The Medium- Flux-Test-Modules are designed for creep fatigues in situ and tritium release test. The test modules are cooled with helium. The target is a lithium jet with a free surface towards the deuteron beams. The jet follows a concave curved so called back wall. Centrifugal forces increase the static pressure, which prevents lithium boiling at the beam tube pressure and the power release of 10 MW due to the deuteron beams. The target and Test Cell (TTC) houses the target and the test modules as well as the lithium supply tubes and a quench tank into which the lithium splashes after the target. The lithium containing components have a temperature of 250 to 350 C. Nuclear reactions mainly in beam direction contribute to heat releases in TTC components. The TTC is filled with a noble gas with almost atmospheric pressure. Natural convection transfers heat to the walls but also mitigates temperature peaks. The Forschungszentrum Karlsruhe (FZK) has developed or validated tools for: - The extended Monte Carlo Code McDeLicious for calculations of the neutron source term, dpa rates in the material specimens, activation

  7. Integrating rock mechanics issues with repository design through design process principles and methodology

    International Nuclear Information System (INIS)

    Bieniawski, Z.T.

    1996-01-01

    A good designer needs not only knowledge for designing (technical know-how that is used to generate alternative design solutions) but also must have knowledge about designing (appropriate principles and systematic methodology to follow). Concepts such as open-quotes design for manufactureclose quotes or open-quotes concurrent engineeringclose quotes are widely used in the industry. In the field of rock engineering, only limited attention has been paid to the design process because design of structures in rock masses presents unique challenges to the designers as a result of the uncertainties inherent in characterization of geologic media. However, a stage has now been reached where we are be able to sufficiently characterize rock masses for engineering purposes and identify the rock mechanics issues involved but are still lacking engineering design principles and methodology to maximize our design performance. This paper discusses the principles and methodology of the engineering design process directed to integrating site characterization activities with design, construction and performance of an underground repository. Using the latest information from the Yucca Mountain Project on geology, rock mechanics and starter tunnel design, the current lack of integration is pointed out and it is shown how rock mechanics issues can be effectively interwoven with repository design through a systematic design process methodology leading to improved repository performance. In essence, the design process is seen as the use of design principles within an integrating design methodology, leading to innovative problem solving. In particular, a new concept of open-quotes Design for Constructibility and Performanceclose quotes is introduced. This is discussed with respect to ten rock mechanics issues identified for repository design and performance

  8. Achieving integration in mixed methods designs-principles and practices.

    Science.gov (United States)

    Fetters, Michael D; Curry, Leslie A; Creswell, John W

    2013-12-01

    Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs-exploratory sequential, explanatory sequential, and convergent-and through four advanced frameworks-multistage, intervention, case study, and participatory. Integration at the methods level occurs through four approaches. In connecting, one database links to the other through sampling. With building, one database informs the data collection approach of the other. When merging, the two databases are brought together for analysis. With embedding, data collection and analysis link at multiple points. Integration at the interpretation and reporting level occurs through narrative, data transformation, and joint display. The fit of integration describes the extent the qualitative and quantitative findings cohere. Understanding these principles and practices of integration can help health services researchers leverage the strengths of mixed methods. © Health Research and Educational Trust.

  9. Aerodynamic design on high-speed trains

    Science.gov (United States)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  10. On CAD-integrated Structural Topology and Design Optimization

    DEFF Research Database (Denmark)

    Olhoff, Niels; Bendsøe, M.P.; Rasmussen, John

    1991-01-01

    Concepts underlying an interactive CAD-based engineering design optimization system are developed, and methods of optimizing the topology, shape and sizing of mechanical components are presented. These methods are integrated in the system, and the method for determining the optimal topology is used...

  11. Designing the Distributed Model Integration Framework – DMIF

    NARCIS (Netherlands)

    Belete, Getachew F.; Voinov, Alexey; Morales, Javier

    2017-01-01

    We describe and discuss the design and prototype of the Distributed Model Integration Framework (DMIF) that links models deployed on different hardware and software platforms. We used distributed computing and service-oriented development approaches to address the different aspects of

  12. Overview of design issues in product-integrated Photovoltaics

    NARCIS (Netherlands)

    Apostolou, G.; Reinders, Angelina H.M.E.

    2014-01-01

    This paper presents an overview of the design features and characteristics of photovoltaic (PV)-powered products based on a literature study on product-integrated PV and an analysis of 90 PV-powered products executed during 2011–2013. The aim of this paper is to provide insight into the current

  13. Design and control of integrated styrene aniline production plant

    NARCIS (Netherlands)

    Partenie, O.; Van der Last, V.; Sorin Bildea, C.; Altimari, P.

    2009-01-01

    This paper illustrates the operational difficulties arising from simultaneously performing exothermic and endothermic reactions, and demonstrates that a plant can be built and safely operated by integrating the design and plantwide control issues. The behaviour of reactor – separation – recycle

  14. Human-Centered Design as an Integrating Discipline

    Directory of Open Access Journals (Sweden)

    Guy André Boy

    2017-02-01

    Full Text Available What is research today? Good research has to be indexed within appropriate mechanisms to be visible, considered and finally useful. These mechanisms are based on quantitative research methods and codes that are often very academic. Consequently, they impose rigorous constraints on the way results should be obtained and presented. In addition, everything people learn in academia needs to be graded. This leads to standard packaging of what should be learned and results in making people executants and not creators nor inventors. In other words, this academic standardization precludes freedom for innovation. This paper proposes Human-Centered Design (HCD as a solution to override these limitations and roadblocks. HCD involves expertise, experience, participation, modeling and simulation, complexity analysis and qualitative research. What is education today? Education is organized in silos with little attempt to integrate individual academic disciplines. Large system integration is almost never learned in engineering schools, and Human- Systems Integration (HSI even less. Instead, real-life problemsolving requires integration skills. What is design research? We often hear that design has nothing to do with research, and conversely. Putting design and research together, as complementary disciplines, contributes to combine creativity, rigorous demonstration and validation. This is somehow what HCD is about.

  15. Optical System Design and Integration of the Mercury Laser Altimeter

    Science.gov (United States)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  16. Integrating ergonomics into engineering design: the role of objects.

    Science.gov (United States)

    Hall-Andersen, Lene Bjerg; Broberg, Ole

    2014-05-01

    The objective of this study was to explore the role of objects in integrating ergonomic knowledge in engineering design processes. An engineering design case was analyzed using the theoretical concepts of boundary objects and intermediary objects: Boundary objects facilitate collaboration between different knowledge domains, while the aim of an intermediary object is to circulate knowledge and thus produce a distant effect. Adjustable layout drawings served as boundary objects and had a positive impact on the dialog between an ergonomist and designers. An ergonomic guideline document was identified as an intermediary object. However, when the ergonomic guidelines were circulated in the design process, only some of the guidelines were transferred to the design of the sterile processing plant. Based on these findings, recommendations for working with objects in design processes are included. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. An integrated high performance Fastbus slave interface

    International Nuclear Information System (INIS)

    Christiansen, J.; Ljuslin, C.

    1993-01-01

    A high performance CMOS Fastbus slave interface ASIC (Application Specific Integrated Circuit) supporting all addressing and data transfer modes defined in the IEEE 960 - 1986 standard is presented. The FAstbus Slave Integrated Circuit (FASIC) is an interface between the asynchronous Fastbus and a clock synchronous processor/memory bus. It can work stand-alone or together with a 32 bit microprocessor. The FASIC is a programmable device enabling its direct use in many different applications. A set of programmable address mapping windows can map Fastbus addresses to convenient memory addresses and at the same time act as address decoding logic. Data rates of 100 MBytes/sec to Fastbus can be obtained using an internal FIFO in the FASIC to buffer data between the two buses during block transfers. Message passing from Fastbus to a microprocessor on the slave module is supported. A compact (70 mm x 170 mm) Fastbus slave piggy back sub-card interface including level conversion between ECL and TTL signal levels has been implemented using surface mount components and the 208 pin FASIC chip

  18. ITER design, integration and assembly studies assisted by virtual reality

    Energy Technology Data Exchange (ETDEWEB)

    Keller, D., E-mail: delphine.keller@cea.fr [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); ITER Organization, Route de Vinon-sur-Verdon, F-13115 St-Paul-Lez-Durance (France); Doceul, L.; Ferlay, F.; Jiolat, G. [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Cordier, J.J.; Kuehn, I.; Manfreo, B.; Reich, J. [ITER Organization, Route de Vinon-sur-Verdon, F-13115 St-Paul-Lez-Durance (France)

    2013-10-15

    Highlights: ► VR technologies applied to Fusion enable to better and faster understand integration issues. ► Problems are solved and validated on a numerical mock up. ► Integration and accessibility issues can be identified in the earliest design. ► VR technologies are very helpful for assembly and maintenance operation simulations. ► New tools for real time simulations of hands-on operations are currently under development. -- Abstract: In a project like ITER where schedule, resources and cost is continuously optimized, emphasis has to be put on developing long lead items first while keeping other designs very low in definition. Hence, at a particular stage of the project, several components have to coexist in the integrated system while handling different level of maturity. Therefore, all the difficulty consists in managing the interfaces between all these components and to minimize the risk of design changes on the most advanced components. As a future exploitant, ITER is in charge of managing these interfaces and to ensure that maintenance of especially safety important class components (SIC) is feasible. These operation and maintenance constraints have to be taken into account since the earliest design of the components itselves. In this context, CEA IRFM is taking the benefit of using its virtual reality (VR) platform and simulation tools to assist ITER Organization in improving the efficiency of the inconsistencies identification and the machine sub-system design optimization. Currently, two contracts are on-going: the first one concerns the cryostat and in-vessel components; the second one concerns the overall Tokamak (TKM) and diagnostic buildings. This paper describes how VR tools applied to fusion and especially to ITER can help design and Integration with taking into account assembly and maintenance requirements at early stage in the design of complex systems.

  19. ITER design, integration and assembly studies assisted by virtual reality

    International Nuclear Information System (INIS)

    Keller, D.; Doceul, L.; Ferlay, F.; Jiolat, G.; Cordier, J.J.; Kuehn, I.; Manfreo, B.; Reich, J.

    2013-01-01

    Highlights: ► VR technologies applied to Fusion enable to better and faster understand integration issues. ► Problems are solved and validated on a numerical mock up. ► Integration and accessibility issues can be identified in the earliest design. ► VR technologies are very helpful for assembly and maintenance operation simulations. ► New tools for real time simulations of hands-on operations are currently under development. -- Abstract: In a project like ITER where schedule, resources and cost is continuously optimized, emphasis has to be put on developing long lead items first while keeping other designs very low in definition. Hence, at a particular stage of the project, several components have to coexist in the integrated system while handling different level of maturity. Therefore, all the difficulty consists in managing the interfaces between all these components and to minimize the risk of design changes on the most advanced components. As a future exploitant, ITER is in charge of managing these interfaces and to ensure that maintenance of especially safety important class components (SIC) is feasible. These operation and maintenance constraints have to be taken into account since the earliest design of the components itselves. In this context, CEA IRFM is taking the benefit of using its virtual reality (VR) platform and simulation tools to assist ITER Organization in improving the efficiency of the inconsistencies identification and the machine sub-system design optimization. Currently, two contracts are on-going: the first one concerns the cryostat and in-vessel components; the second one concerns the overall Tokamak (TKM) and diagnostic buildings. This paper describes how VR tools applied to fusion and especially to ITER can help design and Integration with taking into account assembly and maintenance requirements at early stage in the design of complex systems

  20. The design of a compact integral medium size PWR

    International Nuclear Information System (INIS)

    Shirvan, Koroush; Hejzlar, Pavel; Kazimi, Mujid S.

    2012-01-01

    Highlights: ► We model the IRIS reactor in RELAP5 and VIPRE codes. ► We use Printed Circuit Heat Exchangers and internally and externally cooled fuel pins in IRIS. ► We increase the IRIS power by 50% and demonstrate adequate safety performance. ► We show significant potential gain in economics for any integral PWR reactor design. - Abstract: Integral reactors have been proposed in recent years as a means to eliminate loss of coolant events, and reduce the number of large vessels of a nuclear power plant. In this paper the focus on how to further increase the power that can be derived from a given vessel volume. The example is applied to the International Reactor Innovative and Secure (IRIS), a medium size, light water reactor rated at 1000 MWt. The IRIS is an integral design containing all pumps and steam generators along with a traditional PWR core inside the reactor vessel. IRIS was designed with 8 Once-Through Helically Coiled Steam Generators (OTHSG), located above the core, in an annular region between the riser and the pressure vessel wall. This work examines ideas to increase its power output in the same vessel size while maintaining or improving the safety margins. The combination of Printed Circuit Heat Exchangers (PCHE) and Internally and EXternally cooled Annular Fuel (IXAF) is proposed to implement such improvement in otherwise the reference IRIS design. Safety implications of such steam generator and fuel design changes for the same reactor size are examined, under both steady state and transients, using the RELAP5 and VIPRE codes. It is found that the IRIS reactor power can be increased by 50% by using the PCHE and IXAF. The proposed design is found to be less expensive per unit electric power produced, these improvements and analyses can be applied to any integral reactor design.

  1. Integration of Multifidelity Multidisciplinary Computer Codes for Design and Analysis of Supersonic Aircraft

    Science.gov (United States)

    Geiselhart, Karl A.; Ozoroski, Lori P.; Fenbert, James W.; Shields, Elwood W.; Li, Wu

    2011-01-01

    This paper documents the development of a conceptual level integrated process for design and analysis of efficient and environmentally acceptable supersonic aircraft. To overcome the technical challenges to achieve this goal, a conceptual design capability which provides users with the ability to examine the integrated solution between all disciplines and facilitates the application of multidiscipline design, analysis, and optimization on a scale greater than previously achieved, is needed. The described capability is both an interactive design environment as well as a high powered optimization system with a unique blend of low, mixed and high-fidelity engineering tools combined together in the software integration framework, ModelCenter. The various modules are described and capabilities of the system are demonstrated. The current limitations and proposed future enhancements are also discussed.

  2. Ship Design and Construction. An Integrated University Course

    DEFF Research Database (Denmark)

    Andersen, Poul; Jensen, Jørgen Juncher

    1996-01-01

    This paper describes an integrated course in design and construction of merchant ships taught at the Department of Naval Architecture andOffshore Engineering, the Technical University of Denmark. During the course, the students make a preliminary design of a ship of selected type and also design...... its engine room. The teaching combines lectures with laboratory work at the drawing tables and computer terminals. During the summer holiday, sea time on board ships of the relevant types are offered. Experienced naval architects from shipyards and ship consultancies give lectures and instructions...

  3. NSSS Component Control System Design of Integral Reactor

    International Nuclear Information System (INIS)

    Lee, Joon Koo; Kwon, Ho Je; Jeong, Kwong Il; Park, Heui Youn; Koo, In Soo

    2005-01-01

    MMIS(Man Machine Interface System) of an integral reactor is composed of a Control Room, Plant Protection System, Control System and Monitoring System which are related with the overall plant operation. MMIS is being developed with a new design concept and digital technology to reduce the Human Factor Error and improve the systems' safety, reliability and availability. And CCS(component control system) is also being developed with a new design concept and digital hardware technology A fully digitalized system and design concept are introduced in the NSSS CCS

  4. Preliminary design concepts of an advanced integral reactor

    International Nuclear Information System (INIS)

    Moon, Kap S.; Lee, Doo J.; Kim, Keung K.; Chang, Moon H.; Kim, Si H.

    1997-01-01

    An integral reactor on the basis of PWR technology is being conceptually developed at KAERI. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts of the reactor to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway for confirming the technical adoption of those concepts to the rector design. The power output of the reactor will be in the range of 100MWe to 600MWe which is relatively small compared to the existing loop type reactors. The detailed analysis to assure the design concepts is in progress. (author). 3 figs, 1 tab

  5. Analysis and Evaluation of Statistical Models for Integrated Circuits Design

    Directory of Open Access Journals (Sweden)

    Sáenz-Noval J.J.

    2011-10-01

    Full Text Available Statistical models for integrated circuits (IC allow us to estimate the percentage of acceptable devices in the batch before fabrication. Actually, Pelgrom is the statistical model most accepted in the industry; however it was derived from a micrometer technology, which does not guarantee reliability in nanometric manufacturing processes. This work considers three of the most relevant statistical models in the industry and evaluates their limitations and advantages in analog design, so that the designer has a better criterion to make a choice. Moreover, it shows how several statistical models can be used for each one of the stages and design purposes.

  6. Computer-integrated design and information management for nuclear projects

    International Nuclear Information System (INIS)

    Gonzalez, A.; Martin-Guirado, L.; Nebrera, F.

    1987-01-01

    Over the past seven years, Empresarios Agrupados has been developing a comprehensive, computer-integrated system to perform the majority of the engineering, design, procurement and construction management activities in nuclear, fossil-fired as well as hydro power plant projects. This system, which is already in a production environment, comprises a large number of computer programs and data bases designed using a modular approach. Each software module, dedicated to meeting the needs of a particular design group or project discipline, facilitates the performance of functional tasks characteristic of the power plant engineering process

  7. Strategically Integrated Design – Helping Brands to Keep Their Promises

    Directory of Open Access Journals (Sweden)

    Krohn Michael

    2015-11-01

    Full Text Available Many companies incorporate design into their processes much too late and work sequentially instead of in an integrated manner. If, however, the important conceptual, technical or market-relevant decisions have already been made and the product or service is almost ready for launch, then design “cosmetics” will not help much. Design creates images that stick in your mind, and if these images are thought out at the last minute, there’s a risk that they will not optimally promote the overall brand image.

  8. Evaluation of Embedded System Component Utilized in Delivery Integrated Design Project Course

    Science.gov (United States)

    Junid, Syed Abdul Mutalib Al; Hussaini, Yusnira; Nazmie Osman, Fairul; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul

    2018-03-01

    This paper reports the evaluation of the embedded system component utilized in delivering the integrated electronic engineering design project course. The evaluation is conducted based on the report project submitted as to fulfil the assessment criteria for the integrated electronic engineering design project course named; engineering system design. Six projects were assessed in this evaluation. The evaluation covers the type of controller, programming language and the number of embedded component utilization as well. From the evaluation, the C-programming based language is the best solution preferred by the students which provide them flexibility in the programming. Moreover, the Analog to Digital converter is intensively used in the projects which include sensors in their proposed design. As a conclusion, in delivering the integrated design project course, the knowledge over the embedded system solution is very important since the high density of the knowledge acquired in accomplishing the project assigned.

  9. Development of mechanical design technology for integral reactor

    International Nuclear Information System (INIS)

    Park, Keun Bae; Choi, Suhn; Kim, Kang Soo; Kim, Tae Wan; Jeong, Kyeong Hoon; Lee, Gyu Mahn; Kim, Jong Wook; Choi, Woo Seok

    2002-03-01

    This report is the final documentation of the 'Development of Mechanical Design Technology for Integral Reactor' which describes the design activities including reactor vessel assembly structural modelling, normal operation and transient analysis, preparation of design specification, major component stress analysis, evaluation of structural integrity, review of fabricability, maintenance and repair scheme, etc. To establish the design requirements and applicable codes and standards, each GDC criterion was reviewed regarding the SMART structural characteristics and design status, and then the applicability and point of issues were evaluated. To accomodate the result of the core optimization program, modification of pressure vessel and reactor internal components were carried out. SG nozzles were rearranged to penetrate the pressure vessel wall instead of the annular cover. Coolant flow path through the MCP impeller was revised and the adjacent structures were modified. Dynamic analysis model was developed reflecting all the structural changes to perform the seismic and BLPB analysis. Fracture mechanics evaluation on the structural integrity of the reactor pressure vessel was also conducted. Besides, equipment maintenance and replacement plan including the refueling scheme was discussed to confirm the embodiment of SMART through construction and operation

  10. An Integrated Methodology for Emulsified Formulated Product Design

    DEFF Research Database (Denmark)

    Mattei, Michele

    are mixed together to determine the desired emulsified product. They are still mainly designed and analysed through trial - and - error based exper- imental techniques, therefore a systematic approach , integrating model-based as well a s experiment - based techniques, for design of these products could......The consumer oriented chemical based products are used every day by millions of people. They are structured products constituted of numerous chemicals, and many of them, especially household and personal care products, are emulsions where active ingredients, solvents, additives and surfactants...... significantly reduce both time and cost connected to product development by doing only the necessary experi- ments , and ensuring chances for innovation . The main contribution of this project i s the development of an integrated methodology for the design of emulsified formulated products. The methodology...

  11. AFC-Enabled Simplified High-Lift System Integration Study

    Science.gov (United States)

    Hartwich, Peter M.; Dickey, Eric D.; Sclafani, Anthony J.; Camacho, Peter; Gonzales, Antonio B.; Lawson, Edward L.; Mairs, Ron Y.; Shmilovich, Arvin

    2014-01-01

    The primary objective of this trade study report is to explore the potential of using Active Flow Control (AFC) for achieving lighter and mechanically simpler high-lift systems for transonic commercial transport aircraft. This assessment was conducted in four steps. First, based on the Common Research Model (CRM) outer mold line (OML) definition, two high-lift concepts were developed. One concept, representative of current production-type commercial transonic transports, features leading edge slats and slotted trailing edge flaps with Fowler motion. The other CRM-based design relies on drooped leading edges and simply hinged trailing edge flaps for high-lift generation. The relative high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations for steady flow. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. Conceptual design integration studies for the AFC-enhanced high-lift systems were conducted with a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. These design trades identify AFC performance targets that need to be met to produce economically feasible ERA-0003-like concepts with lighter and mechanically simpler high-lift designs that match the performance of conventional high-lift systems. Finally, technical challenges are identified associated with the application of AFC-enabled highlift systems to modern transonic commercial transports for future technology maturation efforts.

  12. An integrated computer aided system for integrated design of chemical processes

    DEFF Research Database (Denmark)

    Gani, Rafiqul; Hytoft, Glen; Jaksland, Cecilia

    1997-01-01

    In this paper, an Integrated Computer Aided System (ICAS), which is particularly suitable for solving problems related to integrated design of chemical processes; is presented. ICAS features include a model generator (generation of problem specific models including model simplification and model ...... form the basis for the toolboxes. The available features of ICAS are highlighted through a case study involving the separation of binary azeotropic mixtures. (C) 1997 Elsevier Science Ltd....

  13. Coupling Ideality of Integrated Planar High-Q Microresonators

    Science.gov (United States)

    Pfeiffer, Martin H. P.; Liu, Junqiu; Geiselmann, Michael; Kippenberg, Tobias J.

    2017-02-01

    Chip-scale optical microresonators with integrated planar optical waveguides are useful building blocks for linear, nonlinear, and quantum-optical photonic devices alike. Loss reduction through improving fabrication processes results in several integrated microresonator platforms attaining quality (Q ) factors of several millions. Beyond the improvement of the quality factor, the ability to operate the microresonator with high coupling ideality in the overcoupled regime is of central importance. In this regime, the dominant source of loss constitutes the coupling to a single desired output channel, which is particularly important not only for quantum-optical applications such as the generation of squeezed light and correlated photon pairs but also for linear and nonlinear photonics. However, to date, the coupling ideality in integrated photonic microresonators is not well understood, in particular, design-dependent losses and their impact on the regime of high ideality. Here we investigate design-dependent parasitic losses described by the coupling ideality of the commonly employed microresonator design consisting of a microring-resonator waveguide side coupled to a straight bus waveguide, a system which is not properly described by the conventional input-output theory of open systems due to the presence of higher-order modes. By systematic characterization of multimode high-Q silicon nitride microresonator devices, we show that this design can suffer from low coupling ideality. By performing 3D simulations, we identify the coupling to higher-order bus waveguide modes as the dominant origin of parasitic losses which lead to the low coupling ideality. Using suitably designed bus waveguides, parasitic losses are mitigated with a nearly unity ideality and strong overcoupling (i.e., a ratio of external coupling to internal resonator loss rate >9 ) are demonstrated. Moreover, we find that different resonator modes can exchange power through the coupler, which, therefore

  14. New ways of integrating material knowledge into the design process

    DEFF Research Database (Denmark)

    Højris, Anders; Nielsen, Louise Møller

    2013-01-01

    – based on technical performance, no longer apply. Accordingly the approach in this paper is to view information and knowledge about materials through the perspective of organizational memory and technology brokering. This paper is build upon two cases from the German based design studio: designaffairs...... libraries and thereby access to information on new material possibilities has also changed the way designers integrate knowledge about materials into the design process. This means that the traditional design process model, where the selection of materials takes place after the design of form and function...... in order to help clients to find the right material among hundreds of samples. Furthermore a number of material libraries have also been developed into online database, which provides detailed information about new material and makes the information accessible from almost everywhere. The access to material...

  15. The integrated design of the ITER magnets and their auxiliary systems

    International Nuclear Information System (INIS)

    Huget, M.

    1999-01-01

    The magnet system design for the International Thermonuclear Experimental Reactor (ITER) has reached a high degree of integration to meet performance and operation requirements, including reliability and maintainability, in a cost effective manner. This paper identifies the requirements of long inductive burn time, large number of tokamak pulses, operational flexibility for the poloidal field (PF) system, magnet reliability and the cost constraints as the main design drivers. Key features of the magnet system which stem from these design drivers are described, together with interfaces and integration aspects of certain auxiliary systems. (author)

  16. The integrated design of the ITER magnets and their auxiliary systems

    International Nuclear Information System (INIS)

    Huguet, M.

    2001-01-01

    The magnet system design for the International Thermonuclear Experimental Reactor (ITER) has reached a high degree of integration to meet performance and operation requirements, including reliability and maintainability, in a cost effective manner. This paper identifies the requirements of long inductive burn time, large number of tokamak pulses, operational flexibility for the poloidal field (PF) system, magnet reliability and the cost constraints as the main design drivers. Key features of the magnet system which stem from these design drivers are described, together with interfaces and integration aspects of certain auxiliary systems. (author)

  17. Sustainable Design Re-Examined: Integrated Approach to Knowledge Creation for Sustainable Interior Design

    Science.gov (United States)

    Lee, Young S.

    2014-01-01

    The article focuses on a systematic approach to the instructional framework to incorporate three aspects of sustainable design. It also aims to provide an instruction model for sustainable design stressing a collective effort to advance knowledge creation as a community. It develops a framework conjoining the concept of integrated process in…

  18. Design optimization of radiation-hardened CMOS integrated circuits

    International Nuclear Information System (INIS)

    1975-01-01

    Ionizing-radiation-induced threshold voltage shifts in CMOS integrated circuits will drastically degrade circuit performance unless the design parameters related to the fabrication process are properly chosen. To formulate an approach to CMOS design optimization, experimentally observed analytical relationships showing strong dependences between threshold voltage shifts and silicon dioxide thickness are utilized. These measurements were made using radiation-hardened aluminum-gate CMOS inverter circuits and have been corroborated by independent data taken from MOS capacitor structures. Knowledge of these relationships allows one to define ranges of acceptable CMOS design parameters based upon radiation-hardening capabilities and post-irradiation performance specifications. Furthermore, they permit actual design optimization of CMOS integrated circuits which results in optimum pre- and post-irradiation performance with respect to speed, noise margins, and quiescent power consumption. Theoretical and experimental results of these procedures, the applications of which can mean the difference between failure and success of a CMOS integrated circuit in a radiation environment, are presented

  19. Integrated design optimization research and development in an industrial environment

    Science.gov (United States)

    Kumar, V.; German, Marjorie D.; Lee, S.-J.

    1989-01-01

    An overview is given of a design optimization project that is in progress at the GE Research and Development Center for the past few years. The objective of this project is to develop a methodology and a software system for design automation and optimization of structural/mechanical components and systems. The effort focuses on research and development issues and also on optimization applications that can be related to real-life industrial design problems. The overall technical approach is based on integration of numerical optimization techniques, finite element methods, CAE and software engineering, and artificial intelligence/expert systems (AI/ES) concepts. The role of each of these engineering technologies in the development of a unified design methodology is illustrated. A software system DESIGN-OPT has been developed for both size and shape optimization of structural components subjected to static as well as dynamic loadings. By integrating this software with an automatic mesh generator, a geometric modeler and an attribute specification computer code, a software module SHAPE-OPT has been developed for shape optimization. Details of these software packages together with their applications to some 2- and 3-dimensional design problems are described.

  20. Bringing service design to manufacturing companies: integrating PSS and service design approaches

    DEFF Research Database (Denmark)

    Costa, Nina; Patrício, Lia; Morelli, Nicola

    2018-01-01

    in a manufacturing industry. This paper details how the application supports the design of product–service system solutions from the exploration to the implementation stages, highlighting the physical evidence of service, and contributes to advance design research at the intersection of PSS and Service Design.......Manufacturing companies increasingly try to innovate in their offers to consumers by creating more complete solutions that combine product and service components. However, shifting from a product-centric perspective to a solution-oriented perspective is challenging. The present study adopted...... a design research methodology and built on Service-Dominant logic, integrating the human-oriented perspective of Service Design with an organizational network-oriented perspective of Product–Service System. It creates a new Integrative PSS approach, evolves design models, and provides an application...

  1. Fabrication of Phosphate Cement with High Integrity

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Lee, Chang Hwa; Heo, Cheol Min; Jeon, Min Ku; Kang, Kweon Ho

    2011-01-01

    As the development of industrial society has accelerated, hazardous wastes are generated as well. According to the 1986 statistics of U.S.A, each person made 40 tons of waste in America that year. Treatment of radioactive waste is one of the most important and serious problems related to waste treatments, because its radioactivity and decaying heat have harmful effects to human and environment for a long time. Nuclear developed countries have used conventional method of treatment such as vitrification or cementation in order to stabilize and solidify radioactive waste. Although the former guarantees the formation of high leaching resistant and durable waste form, it requires several hundred (or even more than one thousand) temperature to melt glass frit. This process generates secondary waste volatilized, as well as being non-economical. Cement technology played a role of immobilizing low and middle class wastes. It has advantages of low temperature setting, low cost, easy process, etc. The alkalinity of ordinary cement, however, constrains the utility of cement to the solidification of alkaline waste. In addition, leachability and mechanical strength of cements are not quite appropriate for the stabilization of high level waste. In this regard, chemically bonded phosphate cement(CBPC), which sets by an acid-base reaction, is a potentially expectable material for immobilization of radioactive waste. CBPC not only sets at room temperature, but also encapsulates various isotopes chemically. The performance of CBPC can be enhanced by the addition of fly ash, sand, wollastonite, etc. This study aims at fabricating the CBPC containing fly ash with high integrity. Morphology, microstructure, and compressive strength are evaluated using SEM, and digital compressing machine

  2. Design Integration - a theroretical and empirical study of design integration in small and medium sized Danish companies

    DEFF Research Database (Denmark)

    Erichsen, Pia Geisby

    er drivkræft. Afhandlingen bidrager til design management feltet med en ny måde at tale om og forstå design integration. Yderligere bidrager den med ny viden omkring dynamikken omkring design integration. Sidst men ikke mindst biddrager den til, at designledelseskonsulenter samt små og mellemstore...... organisatorisk kontekst?’ - blev søgt besvaret gennem to litteraturstudier af henholdsvis design management og design. Litteraturstudiet af design management gav imidlertid kun begrænsede svar på spørgsmålet ’hvad er design?’. Designfeltet derimod kunne give et mere nuanceret svar, hvilket resulterede i en ny...... blev det identificeret, at det var relevant, at se på barrierer og drivkræfter et dynamisk perspektiv. Via observationsstudiet blev designtrappen identificeret som relevant i forhold til forskningsspørgsmålet, men modellen havde også nogle indbyggede barrierer, hvorfor der blev søgt efter andre...

  3. Preliminary Guideline for the High Temperature Structure Integrity Assessment Procedure Part II. High Temperature Structural Integrity Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Kim, J. B.; Lee, H. Y.; Park, C. G.; Joo, Y. S.; Koo, G. H.; Kim, S. H

    2007-02-15

    A high temperature structural integrity assessment belongs to the Part II of a whole preliminary guideline for the high temperature structure. The main contents of this guideline are the evaluation procedures of the creep-fatigue crack initiation and growth in high temperature condition, the high temperature LBB evaluation procedure, and the inelastic evaluations of the welded joints in SFR structures. The methodologies for the proper inelastic analysis of an SFR structures in high temperatures are explained and the guidelines of inelastic analysis options using ANSYS and ABAQUS are suggested. In addition, user guidelines for the developed NONSTA code are included. This guidelines need to be continuously revised to improve the applicability to the design and analysis of the SFR structures.

  4. Integrated computer-aided framework for chemical product and process application design and optimization for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Woodley, John M.; Abildskov, Jens

    2017-01-01

    This contribution presents an integrated framework for product-process design. The framework integrates the two design problems into one and finds the optimal solution through simultaneous optimization. The framework consists of four hierarchical steps and uses a set of methods, tools and databases...... for property prediction, novel fluid design and mathematical programming. The application of the framework is targeted for waste heat recovery design systems, where the sensitivity of product and process design variables is high and the simultaneous design is necessary. The sustainable design solutions...... are showcased in this paper for mixed refrigeration design....

  5. Low voltage electroosmotic pump for high density integration into microfabricated fluidic systems

    NARCIS (Netherlands)

    Heuck, F.C.A.; Staufer, U.

    2011-01-01

    A low voltage electroosmotic (eo) pump suitable for high density integration into microfabricated fluidic systems has been developed. The high density integration of the eo pump required a small footprint as well as a specific on-chip design to ventilate the electrolyzed gases emerging at the

  6. Fundamental understanding and rational design of high energy structural microbatteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel; Li, Huidong; Mendoza, Sarah; Zhang, Ji-Guang; Deng, Zhiqun Daniel; Xiao, Jie

    2018-01-01

    Microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices and medical applications, etc. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Multiple design features adopted to accommodate large mechanical stress during the rolling process are discussed providing new insights in designing the structural microbatteries for emerging technologies.

  7. Concise Review: Organ Engineering: Design, Technology, and Integration.

    Science.gov (United States)

    Kaushik, Gaurav; Leijten, Jeroen; Khademhosseini, Ali

    2017-01-01

    Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling technologies including biocompatible biomaterials and biofabrication platforms such as three-dimensional bioprinting. When engineering complex tissues and organs, core design principles must be taken into account, such as the structure-function relationship, biochemical signaling, mechanics, gradients, and spatial constraints. Technological advances in biomaterials, biofabrication, and biomedical imaging allow for in vitro control of these factors to recreate in vivo phenomena. Finally, organ engineering emerges as an integration of biological design and technical rigor. An overall workflow for organ engineering and guiding technology to advance biology as well as a perspective on necessary future iterations in the field is discussed. Stem Cells 2017;35:51-60. © 2016 AlphaMed Press.

  8. Integrating chemical engineering fundamentals in the capstone process design project

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik

    2010-01-01

    Reaction Engineering. In order to incorporate reactor design into process design in a meaningful way, the teachers of the respective courses need to collaborate (Standard 9 – Enhancement of Faculty CDIO skills). The students also see that different components of the chemical engineering curriculum relate......All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30...... of the CDIO standards – especially standard 3 – Integrated Curriculum - means that the course projects must draw on competences provided in other subjects which the students are taking in parallel with Process Design – specifically Process Control and Reaction Engineering. In each semester of the B...

  9. Integrated Human Factors Design Guidelines for Sound Interface

    International Nuclear Information System (INIS)

    Lee, Jung Woon; Lee, Yong Hee; Oh, In Seok; Lee, Hyun Chul; Cha, Woo Chang

    2004-05-01

    Digital MMI, such as CRT, LCD etc., has been used increasingly in the design of main control room of the Korean standard nuclear power plants following the YGN units 3 and 4. The utilization of digital MMI may introduce various kind of sound interface into the control room design. In this project, for five top-level guideline items, including Sound Formats, Alarms, Sound Controls, Communications, and Environments, a total of 147 detail guidelines were developed and a database system for these guidelines was developed. The integrated human factors design guidelines for sound interface and the database system developed in this project will be useful for the design of sound interface of digital MMI in Korean NPPs

  10. Integrated Human Factors Design Guidelines for Sound Interface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Woon; Lee, Yong Hee; Oh, In Seok; Lee, Hyun Chul [KAERI, Daejeon (Korea, Republic of); Cha, Woo Chang [Kumoh National Univ. of Technology, Gumi (Korea, Republic of)

    2004-05-15

    Digital MMI, such as CRT, LCD etc., has been used increasingly in the design of main control room of the Korean standard nuclear power plants following the YGN units 3 and 4. The utilization of digital MMI may introduce various kind of sound interface into the control room design. In this project, for five top-level guideline items, including Sound Formats, Alarms, Sound Controls, Communications, and Environments, a total of 147 detail guidelines were developed and a database system for these guidelines was developed. The integrated human factors design guidelines for sound interface and the database system developed in this project will be useful for the design of sound interface of digital MMI in Korean NPPs.

  11. Design of a miniaturized integrated spectrometer for spectral tissue sensing

    Science.gov (United States)

    Belay, Gebirie Yizengaw; Hoving, Willem; Ottevaere, Heidi; van der Put, Arthur; Weltjens, Wim; Thienpont, Hugo

    2016-04-01

    Minimally-invasive image-guided procedures become increasingly used by physicians to obtain real-time characterization feedback from the tissue at the tip of their interventional device (needle, catheter, endoscopic or laparoscopic probes, etc…) which can significantly improve the outcome of diagnosis and treatment, and ultimately reduce cost of the medical treatment. Spectral tissue sensing using compact photonic probes has the potential to be a valuable tool for screening and diagnostic purposes, e.g. for discriminating between healthy and tumorous tissue. However, this technique requires a low-cost broadband miniature spectrometer so that it is commercially viable for screening at point-of-care locations such as physicians' offices and outpatient centers. Our goal is therefore to develop a miniaturized spectrometer based on diffractive optics that combines the functionalities of a visible/near-infrared (VIS/NIR) and shortwave-infrared (SWIR) spectrometer in one very compact housing. A second goal is that the hardware can be produced in high volume at low cost without expensive time consuming alignment and calibration steps. We have designed a miniaturized spectrometer which operates both in the visible/near-infrared and shortwave-infrared wavelength regions ranging from 400 nm to 1700 nm. The visible/near-infrared part of the spectrometer is designed for wavelengths from 400 nm to 800 nm whereas the shortwave-infrared segment ranges from 850 nm to 1700 nm. The spectrometer has a resolution of 6 nm in the visible/near-infrared wavelength region and 10 nm in the shortwave-infrared. The minimum SNR of the spectrometer for the intended application is about 151 in the VIS/NIR range and 6000 for SWIR. In this paper, the modelling and design, and power budget analysis of the miniaturized spectrometer are presented. Our work opens a door for future affordable micro- spectrometers which can be integrated with smartphones and tablets, and used for point

  12. Integrating experiences from operations into engineering design: modelling knowledge transfer in the offshore oil industry

    DEFF Research Database (Denmark)

    Souza da Conceição, Carolina; Broberg, Ole; Paravizo, Esdras

    2017-01-01

    of knowledge registered in the systems without standards to categorise and store this knowledge, to being difficult to access and retrieve the knowledge in the systems. Discussion: Transferring knowledge and experiences from users brings human factors into play and modelling the knowledge transfer process...... and workwise distance between operations and engineering design teams, integrating human factors and transferring knowledge are key aspects when designing for better performance systems. Research Objective: Based on an in-depth empirical investigation in an offshore oil company, this study aims to provide......Summative Statement: Integrating human factors and users’ experiences in design projects is a well-known challenge. This study focus on the specific challenges for transferring these experiences and how using a knowledge transfer model can help this integration on the design of high-risk productive...

  13. Integration study of high quality teaching resources in universities

    Directory of Open Access Journals (Sweden)

    Honglu Liu

    2012-12-01

    Full Text Available Purpose: The development level and quality of education depend on the merits and efficiency in the use of teaching resources, especially in the case of obvious contradiction between the demand and supply of teaching resources. So to integrate teaching resources, improve the efficiency in the use of high quality teaching resources, and take the road of content development to enhance the competitiveness of education has become very important and urgent.Design/methodology/approach: On the basis of analysis on the teaching resources of universities and the problems they faced, this paper introduced the basic concepts of cloud storage, and built the integration architecture of high quality teaching resources in universities based on the cloud storage.Findings and Originality/value: The HDFS-based cloud storage proposed in this paper is a dynamically adjustable and Internet-based storage solution, and the users can access storage targets using the network through a common and easy-to-use protocol and application programming interfaces. This new technology is useful for end users benefits. With the continuous development and improvement of cloud storage, it will necessarily result in more and more applications in the institutions of higher learning and education network.Originality/value: This paper introduced the cloud storage into the integration of high quality teaching resources in universities first and as a new form of service, it can be a good solution.

  14. DESIGN ANALYSIS OF ELECTRICAL MACHINES THROUGH INTEGRATED NUMERICAL APPROACH

    Directory of Open Access Journals (Sweden)

    ARAVIND C.V.

    2016-02-01

    Full Text Available An integrated design platform for the newer type of machines is presented in this work. The machine parameters are evaluated out using developed modelling tool. With the machine parameters, the machine is modelled using computer aided tool. The designed machine is brought to simulation tool to perform electromagnetic and electromechanical analysis. In the simulation, conditions setting are performed to setup the materials, meshes, rotational speed and the excitation circuit. Electromagnetic analysis is carried out to predict the behavior of the machine based on the movement of flux in the machines. Besides, electromechanical analysis is carried out to analyse the speed-torque characteristic, the current-torque characteristic and the phase angle-torque characteristic. After all the results are analysed, the designed machine is used to generate S block function that is compatible with MATLAB/SIMULINK tool for the dynamic operational characteristics. This allows the integration of existing drive system into the new machines designed in the modelling tool. An example of the machine design is presented to validate the usage of such a tool.

  15. Effect of Plasmid Design and Type of Integration Event on Recombinant Protein Expression in Pichia pastoris.

    Science.gov (United States)

    Vogl, Thomas; Gebbie, Leigh; Palfreyman, Robin W; Speight, Robert

    2018-03-15

    Pichia pastoris (syn. Komagataella phaffii ) is one of the most common eukaryotic expression systems for heterologous protein production. Expression cassettes are typically integrated in the genome to obtain stable expression strains. In contrast to Saccharomyces cerevisiae , where short overhangs are sufficient to target highly specific integration, long overhangs are more efficient in P. pastoris and ectopic integration of foreign DNA can occur. Here, we aimed to elucidate the influence of ectopic integration by high-throughput screening of >700 transformants and whole-genome sequencing of 27 transformants. Different vector designs and linearization approaches were used to mimic the most common integration events targeted in P. pastoris Fluorescence of an enhanced green fluorescent protein (eGFP) reporter protein was highly uniform among transformants when the expression cassettes were correctly integrated in the targeted locus. Surprisingly, most nonspecifically integrated transformants showed highly uniform expression that was comparable to specific integration, suggesting that nonspecific integration does not necessarily influence expression. However, a few clones (integrated cassettes showed a greater variation spanning a 25-fold range, surpassing specifically integrated reference strains up to 6-fold. High-expression strains showed a correlation between increased gene copy numbers and high reporter protein fluorescence levels. Our results suggest that for comparing expression levels between strains, the integration locus can be neglected as long as a sufficient numbers of transformed strains are compared. For expression optimization of highly expressible proteins, increasing copy number appears to be the dominant positive influence rather than the integration locus, genomic rearrangements, deletions, or single-nucleotide polymorphisms (SNPs). IMPORTANCE Yeasts are commonly used as biotechnological production hosts for proteins and metabolites. In the yeast

  16. Supplier integration for new product developments: antecedents for supplier integration in modular product designs

    NARCIS (Netherlands)

    Eggers, Justus Erich

    2016-01-01

    Original equipment manufacturers (OEMs) increasingly integrate supplier resources in new product developments (NPD) to overcome bottlenecks of resource and to create competitive advantages. At the same time, OEMs react to the new market challenges by implementing modular product designs. Despite the

  17. Integration of distributed system simulation tools for a holistic approach to integrated building and system design

    NARCIS (Netherlands)

    Radosevic, M.; Hensen, J.L.M.; Wijsman, A.J.T.M.; Hensen, J.L.M.; Lain, M.

    2004-01-01

    Advanced architectural developments require an integrated approach to design where simulation tools available today deal. only with a small subset of the overall problem. The aim of this study is to enable run time exchange of necessary data at suitable frequency between different simulation

  18. Safeguards-by-Design: An Element of 3S Integration

    International Nuclear Information System (INIS)

    Bean, R.S.; Bjornard, T.A.; Hebdich, D.J.

    2009-01-01

    In 2008, the '20/20 Vision for the Future' background report by the IAEA Director General identified the possibility of integrating certain activities related to safeguards, safety, and security. Later in the year, the independent Commission report prepared at the request of the IAEA Director General noted that the Agency's's roles in nuclear safeguards, safety, and security (3S) complement and can mutually reinforce each other. Safeguards-by-design (SBD) is a practical measure that strengthens 3S integration, especially for the stage of nuclear facility design and construction, but also with ramifications for other stages of the facility life-cycle. This paper describes the SBD concept, with examples for diverse regulatory environments, being developed in the U.S under the U.S. Department of Energy (DOE) Next Generation Safeguards Initiative and the Advanced Fuel Cycle Initiative. This is compared with related international SBD work performed in the recent IAEA workshop on 'Facility Design and Plant Operation Features that Facilitate the Implementation of IAEA Safeguards'. Potential future directions for further development of SBD and its integration within 3S are identified.

  19. Designing to target cost: one approach to design/construction integration

    DEFF Research Database (Denmark)

    Jørgensen, Bo

    2005-01-01

    One approach to a more integrated construction delivery process is the concept of ‘designing to target cost’ of which the first examples of application within a lean construction framework have recently been seen. This paper introduces the main principles of the design to target cost method...... and discusses the applicability of this approach to construction. The low degree of organizational and technical continuity from one construction project to the next limits the applicability of the design for target cost approach when compared to its origin in product development of mass manufactured artefacts....... It can be argued that design to target cost may also provide a frame for developing the supply chain towards better coordination and collaboration. Thus methods of design to target cost may serve to facilitate the development of a more integrated supply chain....

  20. Cadence® High High-Speed PCB Design Flow Workshop

    CERN Document Server

    2006-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  1. Integrated safeguards and security for a highly automated process

    International Nuclear Information System (INIS)

    Zack, N.R.; Hunteman, W.J.; Jaeger, C.D.

    1993-01-01

    Before the cancellation of the New Production Reactor Programs for the production of tritium, the reactors and associated processing were being designed to contain some of the most highly automated and remote systems conceived for a Department of Energy facility. Integrating safety, security, materials control and accountability (MC and A), and process systems at the proposed facilities would enhance the overall information and protection-in-depth available. Remote, automated fuel handling and assembly/disassembly techniques would deny access to the nuclear materials while upholding ALARA principles but would also require the full integration of all data/information systems. Such systems would greatly enhance MC and A as well as facilitate materials tracking. Physical protection systems would be connected with materials control features to cross check activities and help detect and resolve anomalies. This paper will discuss the results of a study of the safeguards and security benefits achieved from a highly automated and integrated remote nuclear facility and the impacts that such systems have on safeguards and computer and information security

  2. Stochastic simulation and robust design optimization of integrated photonic filters

    Directory of Open Access Journals (Sweden)

    Weng Tsui-Wei

    2016-07-01

    Full Text Available Manufacturing variations are becoming an unavoidable issue in modern fabrication processes; therefore, it is crucial to be able to include stochastic uncertainties in the design phase. In this paper, integrated photonic coupled ring resonator filters are considered as an example of significant interest. The sparsity structure in photonic circuits is exploited to construct a sparse combined generalized polynomial chaos model, which is then used to analyze related statistics and perform robust design optimization. Simulation results show that the optimized circuits are more robust to fabrication process variations and achieve a reduction of 11%–35% in the mean square errors of the 3 dB bandwidth compared to unoptimized nominal designs.

  3. Integrating Emotional Attachment and Sustainability in Electronic Product Design

    Directory of Open Access Journals (Sweden)

    Alex Lobos

    2013-03-01

    Full Text Available Current models for Information and Communication Technology (ICT products encourage frequent product replacement with newer versions that offer only minor incremental improvements. This pattern, named planned obsolescence, diminishes user experience and shortens product lifespan. This paper presents the conceptual basis for a two-part integrated approach to combating planned obsolescence in ICT devices. First, design for emotional attachment, which creates products that users enjoy, value, and use for longer. Second, technological adaptability, which anticipates product upgrades and repairs as new technologies emerge. A model interdisciplinary design course in industrial design and sustainability, also described herein, trains students to apply this approach to create innovative ICT products with smaller environmental footprints.

  4. How can design approaches be integrated into entrepreneurship education?

    DEFF Research Database (Denmark)

    Færgemann, Helle Meibom; Nørgård, Rikke Toft; Robinson, Sarah

    reflection about the intention and how the elements fit with the entrepreneurship field. The proposed process model presented (Fig 3) primarily has potential to strengthen the awareness of the need to alternate between divergence and convergence many times through an entrepreneurial process. Apart from......Questions we care about: When educating students through entrepreneurship we are interested in how can design approaches and processes be integrated into Entrepreneurship Education and what effect does this have on entrepreneurial learning? Approach: This is a conceptual paper which draws on data...... from a classic entrepreneurship course (mix of for- and through-approach) as well as a classic design course. Furthermore data from the iterative development of an entrepreneurship course with substantial design elements is a key data source. Overall, products and processes in the course have been...

  5. High-level radioactive waste glass and storage canister design

    International Nuclear Information System (INIS)

    Slate, S.C.; Ross, W.A.

    1979-01-01

    Management of high-level radioactive wastes is a primary concern in nuclear operations today. The main objective in managing these wastes is to convert them into a solid, durable form which is then isolated from man. A description is given of the design and evaluation of this waste form. The waste form has two main components: the solidified waste and the storage canister. The solid waste form discussed in this study is glass. Waste glasses have been designed to be inert to water attack, physically rugged, low in volatility, and stable over time. Two glass-making processes are under development at PNL. The storage canister is being designed to provide high-integrity containment for solidified wastes from processing to terminal storage. An outline is given of the steps in canister design: material selection, stress and thermal analyses, quality verification, and postfill processing. Examples are given of results obtained from actual nonradioactive demonstration tests. 14 refs

  6. Procedure and information displays in advanced nuclear control rooms: experimental evaluation of an integrated design.

    Science.gov (United States)

    Chen, Yue; Gao, Qin; Song, Fei; Li, Zhizhong; Wang, Yufan

    2017-08-01

    In the main control rooms of nuclear power plants, operators frequently have to switch between procedure displays and system information displays. In this study, we proposed an operation-unit-based integrated design, which combines the two displays to facilitate the synthesis of information. We grouped actions that complete a single goal into operation units and showed these operation units on the displays of system states. In addition, we used different levels of visual salience to highlight the current unit and provided a list of execution history records. A laboratory experiment, with 42 students performing a simulated procedure to deal with unexpected high pressuriser level, was conducted to compare this design against an action-based integrated design and the existing separated-displays design. The results indicate that our operation-unit-based integrated design yields the best performance in terms of time and completion rate and helped more participants to detect unexpected system failures. Practitioner Summary: In current nuclear control rooms, operators frequently have to switch between procedure and system information displays. We developed an integrated design that incorporates procedure information into system displays. A laboratory study showed that the proposed design significantly improved participants' performance and increased the probability of detecting unexpected system failures.

  7. Software features and applications in process design, integration and operation

    Energy Technology Data Exchange (ETDEWEB)

    Dhole, V. [Aspen Tech Limited, Warrington (United Kingdom)

    1999-02-01

    Process engineering technologies and tools have evolved rapidly over the last twenty years. Process simulation/modeling, advanced process control, on-line optimisation, production planning and supply chain management are some of the examples of technologies that have rapidly matured from early commercial prototypes and concepts to established tools with significant impact on profitability of process industry today. Process Synthesis or Process Integration (PI) in comparison is yet to create its impact and still remains largely in the domain of few expert users. One of the key reasons as to why PI has not taken off is because the PI tools have not become integral components of the standard process engineering environments. On the last 15 years AspenTech has grown from a small process simulation tool provider to a large multinational company providing a complete suite of process engineering technologies and services covering process design, operation, planning and supply chain management. Throughout this period, AspenTech has acquired experience in rapidly evolving technologies from their early prototype stage to mature products and services. The paper outlines AspenTech`s strategy of integrating PI with other more established process design and operational improvement technologies. The paper illustrates the key elements of AspenTech`s strategy via examples of software development initiatives and services projects. The paper also outlines AspenTech`s future vision of the role of PI in process engineering. (au)

  8. Inlet design for high-speed propfans

    Science.gov (United States)

    Little, B. H., Jr.; Hinson, B. L.

    1982-01-01

    A two-part study was performed to design inlets for high-speed propfan installation. The first part was a parametric study to select promising inlet concepts. A wide range of inlet geometries was examined and evaluated - primarily on the basis of cruise thrust and fuel burn performance. Two inlet concepts were than chosen for more detailed design studies - one apropriate to offset engine/gearbox arrangements and the other to in-line arrangements. In the second part of this study, inlet design points were chosen to optimize the net installed thrust, and detailed design of the two inlet configurations was performed. An analytical methodology was developed to account for propfan slipstream effects, transonic flow efects, and three-dimensional geometry effects. Using this methodology, low drag cowls were designed for the two inlets.

  9. Development of fluid system design technology for integral reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D. J.; Chang, M. H.; Kang, D. J. and others

    1999-03-01

    This study presents the technology development of the system design concepts of SMART, a multi-purposed integral reactor with enhanced safety and operability, for use in diverse usages and applications of the nuclear energy. This report contains the following; - Design characteristics - Performance and safety related design criteria - System description: Primary system, Secondary system, Residual heat removal system, Make-up system, Component cooling system, Safety system - Development of design computer code: Steam generator performance(ONCESG), Pressurizer performance(COLDPZR), Steam generator flow instability(SGINS) - Development of component module and modeling using MMS computer code - Design calculation: Steam generator thermal sizing, Analysis of feed-water temperature increase at a low flow rate, Evaluation of thermal efficiency in the secondary system, Inlet orifice throttling coefficient for the prevention of steam generator flow instability, Analysis of Nitrogen gas temperature in the pressurizer during heat-up process, evaluation of water chemistry and erosion etc. The results of this study can be utilized not only for the foundation technology of the next phase basic system design of the SMART but also for the basic model in optimizing the system concepts for future advanced reactors. (author)

  10. Social research design: framework for integrating philosophical and practical elements.

    Science.gov (United States)

    Cunningham, Kathryn Burns

    2014-09-01

    To provide and elucidate a comprehensible framework for the design of social research. An abundance of information exists concerning the process of designing social research. The overall message that can be gleaned is that numerable elements - both philosophical (ontological and epistemological assumptions and theoretical perspective) and practical (issue to be addressed, purpose, aims and research questions) - are influential in the process of selecting a research methodology and methods, and that these elements and their inter-relationships must be considered and explicated to ensure a coherent research design that enables well-founded and meaningful conclusions. There is a lack of guidance concerning the integration of practical and philosophical elements, hindering their consideration and explication. The author's PhD research into loneliness and cancer. This is a methodology paper. A guiding framework that incorporates all of the philosophical and practical elements influential in social research design is presented. The chronological and informative relationships between the elements are discussed. The framework presented can be used by social researchers to consider and explicate the practical and philosophical elements influential in the selection of a methodology and methods. It is hoped that the framework presented will aid social researchers with the design and the explication of the design of their research, thereby enhancing the credibility of their projects and enabling their research to establish well-founded and meaningful conclusions.

  11. Design of Smart Multi-Functional Integrated Aviation Photoelectric Payload

    Science.gov (United States)

    Zhang, X.

    2018-04-01

    To coordinate with the small UAV at reconnaissance mission, we've developed a smart multi-functional integrated aviation photoelectric payload. The payload weighs only 1kg, and has a two-axis stabilized platform with visible task payload, infrared task payload, laser pointers and video tracker. The photoelectric payload could complete the reconnaissance tasks above the target area (including visible and infrared). Because of its light weight, small size, full-featured, high integrated, the constraints of the UAV platform carrying the payload will be reduced a lot, which helps the payload suit for more extensive using occasions. So all users of this type of smart multi-functional integrated aviation photoelectric payload will do better works on completion of the ground to better pinpoint targets, artillery calibration, assessment of observe strike damage, customs officials and other tasks.

  12. Integrated optical serializer designed and fabricated in a generic InP based technology

    NARCIS (Netherlands)

    Stopinski, S.T.; Malinowski, M.; Piramidowicz, R.; Smit, M.K.; Leijtens, X.J.M.

    2012-01-01

    This work presents design and characterization results of an optical pulse serializer, realized as an Application Specific Photonic Integrated Circuit (ASPIC) in a novel, generic InPbased technology and fabricated in a multi-project wafer run. The measurement results show high-speed (32 Gbit/s)

  13. Designing neutral-atom nanotraps with integrated optical waveguides

    International Nuclear Information System (INIS)

    Burke, James P. Jr.; Chu, S.-T.; Bryant, Garnett W.; Williams, C.J.; Julienne, P.S.

    2002-01-01

    Integrated optical structures offer the intriguing potential of compact, reproducible waveguide arrays, rings, Y junctions, etc., that could be used to design evanescent field traps to transport, store, and interact atoms in networks as complicated as any integrated optical waveguide circuit. We theoretically investigate three approaches to trapping atoms above linear integrated optical waveguides. A two-color scheme balances the decaying evanescent fields of red- and blue-detuned light to produce a potential minimum above the guide. A one-color surface trap proposal uses blue-detuned light and the attractive surface interaction to provide a potential minimum. A third proposal uses blue-detuned light in two guides positioned above and below one another. The atoms are confined to the 'dark' spot in the vacuum gap between the guides. We find that all three approaches can be used to trap atoms in two or three dimensions with approximately 100 mW of laser power. We show that the dark spot guide is robust to light scatter and provides the most viable approach for constructing integrated optical circuits that could be used to transport and manipulate atoms in a controlled manner

  14. Design automation for integrated nonlinear logic circuits (Conference Presentation)

    Science.gov (United States)

    Van Vaerenbergh, Thomas; Pelc, Jason; Santori, Charles; Bose, Ranojoy; Kielpinski, Dave; Beausoleil, Raymond G.

    2016-05-01

    A key enabler of the IT revolution of the late 20th century was the development of electronic design automation (EDA) tools allowing engineers to manage the complexity of electronic circuits with transistor counts now reaching into the billions. Recently, we have been developing large-scale nonlinear photonic integrated logic circuits for next generation all-optical information processing. At this time a sufficiently powerful EDA-style software tool chain to design this type of complex circuits does not yet exist. Here we describe a hierarchical approach to automating the design and validation of photonic integrated circuits, which can scale to several orders of magnitude higher complexity than the state of the art. Most photonic integrated circuits developed today consist of a small number of components, and only limited hierarchy. For example, a simple photonic transceiver may contain on the order of 10 building-block components, consisting of grating couplers for photonic I/O, modulators, and signal splitters/combiners. Because this is relatively easy to lay out by hand (or simple script) existing photonic design tools have relatively little automation in comparison to electronics tools. But demonstrating all-optical logic will require significantly more complex photonic circuits containing up to 1,000 components, hence becoming infeasible to design manually. Our design framework is based off Python-based software from Luceda Photonics which provides an environment to describe components, simulate their behavior, and export design files (GDS) to foundries for fabrication. At a fundamental level, a photonic component is described as a parametric cell (PCell) similarly to electronics design. PCells are described by geometric characteristics of their layout. A critical part of the design framework is the implementation of PCells as Python objects. PCell objects can then use inheritance to simplify design, and hierarchical designs can be made by creating composite

  15. Multi-disciplinary coupling for integrated design of propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions for determining the true response of propulsion systems. Results are presented for propulsion system responses including multi-discipline coupling effects via (1) coupled multi-discipline tailoring, (2) an integrated system of multidisciplinary simulators, (3) coupled material-behavior/fabrication-process tailoring, (4) sensitivities using a probabilistic simulator, and (5) coupled materials/structures/fracture/probabilistic behavior simulator. The results show that the best designs can be determined if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated interactive multi-discipline numerical propulsion system simulator.

  16. Dynamic integration of residential building design and green energies : the Bireth approach : building integrated renewable energy total harvest approach

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, K.P. [Hong Kong Univ., Hong Kong (China). Dept. of Architecture; Luk, C.L.P. [Chu Hai College of Higher Education, Hong Kong (China). Dept. of Architecture; Wong, S.T. [Hong Kong Univ., Hong Kong (China). Div. of Arts and Humanities, SPACE; Chung, S.L.; Fung, K.S.; Leung, M.F. [Hong Kong Inst. of Vocational Education, Hong Kong (China)

    2006-07-01

    Renewable energy sources that are commonly used in buildings include solar energy, wind energy and rainwater collection. High quality environmentally responsive residential buildings are designed to provide good insulation in winter and solar shading in summer. However, this study demonstrated that the green energy design in residential buildings is not usually well integrated. For example, windows with clear double or triple glazed glass, allow good penetration of sunlight during the day in winter, but are not further dynamically insulated for when the sun goes down to avoid heat loss from the building. Additionally, good solar static shading devices often block much needed daylight on cloudy winter days. These examples emphasize the lack of an integrated approach to gain the best advantage of green energies and to minimize energy costs in residential buildings. This study addressed issues facing the integrated approach with particular reference to the design of a small residential building in rural Beijing. The design included a new approach for interpreting a traditional Beijing court yard house in the modern Beijing rural context, while integrating multi-responding innovative green energy applications derived from first principles. This paper also presented a proposal for a village house in Hong Kong to harvest as much renewable energies as possible, primarily wind energy and solar energy, that come into contact with the building. The purpose was to work towards a renewable energy approach for buildings, namely the Bireth approach, which will benefit practically all houses by making them zero energy houses. The paper described the feasibility of integrating renewable energies in buildings to fulfill performance requirements such improving ventilation, providing warm interiors, drying clothes, or storing solar and wind energies into power batteries. The challenges facing the development of a proposed micro solar hot air turbine were also presented. 15 refs., 6

  17. Design and Integration of Wearable Devices in Textiles

    Directory of Open Access Journals (Sweden)

    Isabel G. TRINDADE

    2014-12-01

    Full Text Available In this article, the design, production method, integration and characterization of textile sensors for the continuous monitoring of cardiac and respiration vital signals are presented. Textile electrodes, capacitive and piezoresistive sensors and respective interconnect plate were developed and integrated in elastic and adjustable chest bands, using a 6-needle digital embroidery machine and electrically conductive commercial threads. The signal's waveforms were recorded via PC with a data acquisition module and a LabView program. The signal to noise ratio of textile electrodes, having distinctive surface morphologies, that were either textured or smooth accordingly with the embroidery pattern used, were analyzed with Matlab. The quantitative method indicated differences between the two types of textile electrodes but performances comparable to standard Ag/AgCl gel electrodes. The sensors and interconnect plate were fully realized with the embroidery stitching method with textile fabrics and threads, and have a compact design, are lightweight and washable. The method offers great versatility for custom demand, in terms of sensor design and materials.

  18. Integrated heat exchanger design for a cryogenic storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U. [NASA Kennedy Space Center, Cryogenics Test Laboratory, NE-F6, KSC, FL 32899 (United States); Tomsik, T. M. [NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135 (United States); Conyers, H. J. [NASA Stennis Space Center, Building 3225, SSC, MS 39529 (United States)

    2014-01-29

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  19. Design and Fabrication of Vertically-Integrated CMOS Image Sensors

    Science.gov (United States)

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860

  20. Design and application of multilayer monolithic microwave integrated circuit transformers

    Energy Technology Data Exchange (ETDEWEB)

    Economides, S.B

    1999-07-01

    The design and performance of planar spiral transformers, using multilayer GaAs and silicon MMIC technology, are presented. This multilayer technology gives new opportunities for improving the performance of planar transformers, couplers and baluns. Planar transformers have high parasitic resistance and capacitance and low levels of coupling. Using multilayer technology these problems are overcome by applying a multilayer structure of three metal layers separated by two polyimide dielectric layers. The improvements gained by placing the conductors on different metal layers, and using conductors raised on polyimide layers for low capacitance, have been investigated. The circuits were fabricated using a novel experimental fabrication process, which uses entirely standard materials and techniques and is compatible with BJT's and silicon-germanium HBT's. The transformers were all characterised up to 20 GHz using RF-on-wafer measurements. They demonstrated good performance, considering the experimental nature of in-house multilayer technology and the difficulties in simulating these three-dimensional new geometries. With high resistivity substrates, the silicon components achieved virtually the same performance as their gallium arsenide counterparts. The transformers were then used in simulations of transformer-coupled HBT amplifier circuits, to demonstrate their capabilities. It was shown that these circuits present good performance compared to standard off-the shelf component circuits and are very promising for use in most multilayer MMIC applications. The structures were further used in coupling configurations, and applied in balun circuits and pushpull amplifiers. The spiral transformer coupler can operate at low frequencies without using up much chip area. In a balun configuration, the balun can compensate for coupling and phase imbalance and operates over 5 to 15 GHz. The spiral coupler does not always need multilayer processing, so the balun may be

  1. Design and development of high voltage high power operational ...

    Indian Academy of Sciences (India)

    address this challenge, a) Designing a discrete power opamp with high .... the use of high-impedance feedback networks, thus minimizing their output loading ... Spice simulation is done for the circuit and results are given in figures 4a–c.

  2. High-Average, High-Peak Current Injector Design

    CERN Document Server

    Biedron, S G; Virgo, M

    2005-01-01

    There is increasing interest in high-average-power (>100 kW), um-range FELs. These machines require high peak current (~1 kA), modest transverse emittance, and beam energies of ~100 MeV. High average currents (~1 A) place additional constraints on the design of the injector. We present a design for an injector intended to produce the required peak currents at the injector, eliminating the need for magnetic compression within the linac. This reduces the potential for beam quality degradation due to CSR and space charge effects within magnetic chicanes.

  3. Model-Based Integrated Process Design and Controller Design of Chemical Processes

    DEFF Research Database (Denmark)

    Abd Hamid, Mohd Kamaruddin Bin

    that is typically formulated as a mathematical programming (optimization with constraints) problem is solved by the so-called reverse approach by decomposing it into four sequential hierarchical sub-problems: (i) pre-analysis, (ii) design analysis, (iii) controller design analysis, and (iv) final selection......This thesis describes the development and application of a new systematic modelbased methodology for performing integrated process design and controller design (IPDC) of chemical processes. The new methodology is simple to apply, easy to visualize and efficient to solve. Here, the IPDC problem...... are ordered according to the defined performance criteria (objective function). The final selected design is then verified through rigorous simulation. In the pre-analysis sub-problem, the concepts of attainable region and driving force are used to locate the optimal process-controller design solution...

  4. Mixed-integrator-based bi-quad cell for designing a continuous time filter

    International Nuclear Information System (INIS)

    Chen Yong; Zhou Yumei

    2010-01-01

    A new mixed-integrator-based bi-quad cell is proposed. An alternative synthesis mechanism of complex poles is proposed compared with source-follower-based bi-quad cells which is designed applying the positive feedback technique. Using the negative feedback technique to combine different integrators, the proposed bi-quad cell synthesizes complex poles for designing a continuous time filter. It exhibits various advantages including compact topology, high gain, no parasitic pole, no CMFB circuit, and high capability. The fourth-order Butterworth lowpass filter using the proposed cells has been fabricated in 0.18 μm CMOS technology. The active area occupied by the filter with test buffer is only 200 x 170 μm 2 . The proposed filter consumes a low power of 201 μW and achieves a 68.5 dB dynamic range. (semiconductor integrated circuits)

  5. The Integration Method of Ceramic Arts in the Product Design

    Science.gov (United States)

    Shuxin, Wang

    2018-03-01

    As one of the four ancient civilization countries, the firing technology of ceramic invented by China has made a great contribution to the progress and development of human society. In modern life, even the development of technology still needs the ceramics, there are large number of artists who take the ceramics as carrier active in the field of contemporary art. The ceramics can be seen everywhere in our daily life, this paper mainly discusses the integration means of ceramic art in the product design.

  6. An engineering approach to an integrated value proposition design framework

    Directory of Open Access Journals (Sweden)

    Van Der Merwe, Carmen

    2015-05-01

    Full Text Available Numerous problems with product quality and time-to-market launches can be traced back to how the product lifecycle process is managed within the organisation. This article provides insight into how an integrated value proposition design framework shifts product lifecycle management from a product-centric view to a customer-centric view, through the use of good engineering practices as found in the systems engineering discipline. Combining this with methods and tools such as the Refined Kano model, Blue Ocean strategy, and the Generalised Bass model enables the organisation to enhance product and service quality while reducing the time-to-market for new value proposition launches.

  7. Integrating Cloud-Computing-Specific Model into Aircraft Design

    Science.gov (United States)

    Zhimin, Tian; Qi, Lin; Guangwen, Yang

    Cloud Computing is becoming increasingly relevant, as it will enable companies involved in spreading this technology to open the door to Web 3.0. In the paper, the new categories of services introduced will slowly replace many types of computational resources currently used. In this perspective, grid computing, the basic element for the large scale supply of cloud services, will play a fundamental role in defining how those services will be provided. The paper tries to integrate cloud computing specific model into aircraft design. This work has acquired good results in sharing licenses of large scale and expensive software, such as CFD (Computational Fluid Dynamics), UG, CATIA, and so on.

  8. Design of an integrated non-destructive plutonium assay facility

    International Nuclear Information System (INIS)

    Moore, C.B.

    1984-01-01

    The Department of Energy requires improved technology for nuclear materials accounting as an essential part of new plutonium processing facilities. New facilities are being constructed at the Savannah River Plant by the Du Pont Company, Operating Contractor, to recover plutonium from scrap and waste material generated at SRP and other DOE contract processing facilities. This paper covers design concepts and planning required to incorporate state-of-the-art plutonium assay instruments developed at several national laboratories into an integrated, at-line nuclear material accounting facility operating in the production area. 3 figures

  9. Market Designs for High Levels of Variable Generation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.; Holttinen, H.; Kiviluoma, J.; Orths, A.; Lynch, M.; Soder, L.

    2014-10-01

    Variable renewable generation is increasing in penetration in modern power systems, leading to higher variability in the supply and price of electricity as well as lower average spot prices. This raises new challenges, particularly in ensuring sufficient capacity and flexibility from conventional technologies. Because the fixed costs and lifetimes of electricity generation investments are significant, designing markets and regulations that ensure the efficient integration of renewable generation is a significant challenge. This papers reviews the state of play of market designs for high levels of variable generation in the United States and Europe and considers new developments in both regions.

  10. High stability design for new centrifugal compressor

    Science.gov (United States)

    Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.

    1989-01-01

    It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.

  11. Integrated design support systems for conceptual design of a space power reactor

    International Nuclear Information System (INIS)

    Shimoda, Hiroshi; Yoshikawa, Hidekazu; Takahashi, Makoto; Takeoka, Satoshi; Nagamatsu, Takashi; Ishizaki, Hiroaki

    1999-01-01

    In the process of conceptual design of large and complex engineering systems such as a nuclear power reactor, there must be various human works by several fields of engineers on each stage of design, analysis and evaluation. In this study, we have rearranged the design information to reduce the human workloads and have studied an efficient method to support the conceptual design works by new information technologies. For this purpose, we have developed two design support environments for conceptual design of a space power reactor as a concrete design target. When constructing an integrated design support environment, VINDS, which employs virtual reality(VR) technology, we focused on visualization of physical structure, functional organization and analysis calculation with full usage of easy perception and direct manipulation of VR. On the other hand, when constructing another asynchronous and distributed design support environment, WINDS, which employs WWW technology, we improved the support functions for cooperative design works among various fields of experts. In this paper, the basic concepts, configurations and functions of the design support environments are first described, then the future improvement is surveyed by their intercomparison. (author)

  12. An integrated reliability-based design optimization of offshore towers

    International Nuclear Information System (INIS)

    Karadeniz, Halil; Togan, Vedat; Vrouwenvelder, Ton

    2009-01-01

    After recognizing the uncertainty in the parameters such as material, loading, geometry and so on in contrast with the conventional optimization, the reliability-based design optimization (RBDO) concept has become more meaningful to perform an economical design implementation, which includes a reliability analysis and an optimization algorithm. RBDO procedures include structural analysis, reliability analysis and sensitivity analysis both for optimization and for reliability. The efficiency of the RBDO system depends on the mentioned numerical algorithms. In this work, an integrated algorithms system is proposed to implement the RBDO of the offshore towers, which are subjected to the extreme wave loading. The numerical strategies interacting with each other to fulfill the RBDO of towers are as follows: (a) a structural analysis program, SAPOS, (b) an optimization program, SQP and (c) a reliability analysis program based on FORM. A demonstration of an example tripod tower under the reliability constraints based on limit states of the critical stress, buckling and the natural frequency is presented.

  13. The integration between Business Model Canvas and Manufacturing System Design

    Science.gov (United States)

    Prasetyawan, Y.; Maulida, N.; Lutvitasari, M. R.

    2018-04-01

    Business Model Canvas (BMC) is an increasingly popular business design tool especially for a start-up business and new business player. In general, BMC seeks a balance between effective working patterns with suppliers, good relation with customers and ability to understand and manage internal resources. This balance will expedite the implementation of Manufacturing System Design (MSD). The existing use of BMC and MSD is frequently applied separately at various business levels. BMC business plan is primarily to have engagement with customers and explore potential revenue to increase profits, while MSD primarily aims to meet production targets with available resources. The purpose of this research is to provide a roadmap to align BMC and MSD. A series of simple mathematical (modified) and integration models are created to connect BMC and MSD. Several results in various industries (new, developed and mature) are presented and used as examples of implementation.

  14. An integrated reliability-based design optimization of offshore towers

    Energy Technology Data Exchange (ETDEWEB)

    Karadeniz, Halil [Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft (Netherlands)], E-mail: h.karadeniz@tudelft.nl; Togan, Vedat [Department of Civil Engineering, Karadeniz Technical University, Trabzon (Turkey); Vrouwenvelder, Ton [Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft (Netherlands)

    2009-10-15

    After recognizing the uncertainty in the parameters such as material, loading, geometry and so on in contrast with the conventional optimization, the reliability-based design optimization (RBDO) concept has become more meaningful to perform an economical design implementation, which includes a reliability analysis and an optimization algorithm. RBDO procedures include structural analysis, reliability analysis and sensitivity analysis both for optimization and for reliability. The efficiency of the RBDO system depends on the mentioned numerical algorithms. In this work, an integrated algorithms system is proposed to implement the RBDO of the offshore towers, which are subjected to the extreme wave loading. The numerical strategies interacting with each other to fulfill the RBDO of towers are as follows: (a) a structural analysis program, SAPOS, (b) an optimization program, SQP and (c) a reliability analysis program based on FORM. A demonstration of an example tripod tower under the reliability constraints based on limit states of the critical stress, buckling and the natural frequency is presented.

  15. Designing a Fuzzy Strategic Integrated Multiechelon Agile Supply Chain Network

    Directory of Open Access Journals (Sweden)

    Morteza Abbasi

    2013-01-01

    Full Text Available This paper integrates production, distribution and logistics activities at the strategic decision making level, where the objective is to design a multiechelon supply chain network considering agility as a key design criterion. A network with five echelons of supply chains including suppliers, plants, distribution centers, cross-docks, and customer zones is addressed in this paper. The problem has been mathematically formulated as a biobjective optimization model that aims to minimize the cost (fixed and variable and maximize the plant flexibility and volume flexibility. A novel multiobjective parallel simulating annealing algorithm (MOPSA is proposed to obtain the Pareto-optimal solutions of the problem. The performance of the proposed solution algorithm is compared with two well-known metaheuristics, namely, nondominated sorting genetic algorithm (NSGA-II and Pareto archive evolution strategy (PAES. Computational results show that MOPSA outperforms the other metaheuristics.

  16. Design principles for achieving integrated healthcare information systems.

    Science.gov (United States)

    Jensen, Tina Blegind

    2013-03-01

    Achieving integrated healthcare information systems has become a common goal for many countries in their pursuit of obtaining coordinated and comprehensive healthcare services. This article focuses on how a small local project termed 'Standardized pull of patient data' expanded and is now used on a large scale providing a majority of hospitals, general practitioners and citizens across Denmark with the possibility of accessing healthcare data from different electronic patient record systems and other systems. I build on design theory for information infrastructures, as presented by Hanseth and Lyytinen, to examine the design principles that facilitated this smallscale project to expand and become widespread. As a result of my findings, I outline three lessons learned that emphasize: (i) principles of flexibility, (ii) expansion from the installed base through modular strategies and (iii) identification of key healthcare actors to provide them with immediate benefits.

  17. Integrated and Modular Design of an Optimized Process Architecture

    Directory of Open Access Journals (Sweden)

    Colin Raßfeld

    2013-07-01

    Full Text Available Global economic integration increased the complexity of business activities, so organizations are forced to become more efficient each day. Process organization is a very useful way of aligning organizational systems towards business processes. However, an organization must do more than just focus its attention and efforts on processes. The layout design has also a significant impact on the system performance.. We contribute to this field by developing a tailored process-oriented organizational structure and new layout design for the quality assurance of a leading German automotive manufacturer. The target concept we developed was evaluated by process owners and an IT-based process simulation. Our results provide solid empirical back-up in which the performance and effects are  assessed from a qualitative and quantitative perspective

  18. Design and testing of integrated circuits for reactor protection channels

    International Nuclear Information System (INIS)

    Battle, R.E.; Vandermolen, R.I.; Jagadish, U.; Swail, B.K.; Naser, J.

    1995-01-01

    Custom and semicustom application-specific integrated circuit design and testing methods are investigated for use in research and commercial nuclear reactor safety systems. The Electric Power Research Institute and Oak Ridge National Laboratory are working together through a cooperative research and development agreement to apply modern technology to a nuclear reactor protection system. The purpose of this project is to demonstrate to the nuclear industry an alternative approach for new or upgrade reactor protection and safety system signal processing and voting logic. Motivation for this project stems from (1) the difficulty of proving that software-based protection systems are adequately reliable, (2) the obsolescence of the original equipment, and (3) the improved performance of digital processing. A demonstration model for protection system of PWR reactor has been designed and built

  19. Design and Control of Integrated Systems for Hydrogen Production and Power Generation

    Science.gov (United States)

    Georgis, Dimitrios

    Growing concerns on CO2 emissions have led to the development of highly efficient power plants. Options for increased energy efficiencies include alternative energy conversion pathways, energy integration and process intensification. Solid oxide fuel cells (SOFC) constitute a promising alternative for power generation since they convert the chemical energy electrochemically directly to electricity. Their high operating temperature shows potential for energy integration with energy intensive units (e.g. steam reforming reactors). Although energy integration is an essential tool for increased efficiencies, it leads to highly complex process schemes with rich dynamic behavior, which are challenging to control. Furthermore, the use of process intensification for increased energy efficiency imposes an additional control challenge. This dissertation identifies and proposes solutions on design, operational and control challenges of integrated systems for hydrogen production and power generation. Initially, a study on energy integrated SOFC systems is presented. Design alternatives are identified, control strategies are proposed for each alternative and their validity is evaluated under different operational scenarios. The operational range of the proposed control strategies is also analyzed. Next, thermal management of water gas shift membrane reactors, which are a typical application of process intensification, is considered. Design and operational objectives are identified and a control strategy is proposed employing advanced control algorithms. The performance of the proposed control strategy is evaluated and compared with classical control strategies. Finally SOFC systems for combined heat and power applications are considered. Multiple recycle loops are placed to increase design flexibility. Different operational objectives are identified and a nonlinear optimization problem is formulated. Optimal designs are obtained and their features are discussed and compared

  20. Design of integrated passive safety system (IPSS) for ultimate passive safety of nuclear power plants

    International Nuclear Information System (INIS)

    Chang, Soon Heung; Kim, Sang Ho; Choi, Jae Young

    2013-01-01

    Highlights: • We newly propose the design concept of integrated passive safety system (IPSS). • It has five safety functions for decay heat removal and severe accident mitigation. • Simulations for IPSS show that core melt does not occur in accidents with SBO. • IPSS can achieve the passive in-vessel retention and ex-vessel cooling strategy. • The applicability of IPSS is high due to the installation outside the containment. -- Abstract: The design concept of integrated passive safety system (IPSS) which can perform various passive safety functions is proposed in this paper. It has the various functions of passive decay heat removal system, passive safety injection system, passive containment cooling system, passive in-vessel retention and cavity flooding system, and filtered venting system with containment pressure control. The objectives of this paper are to propose the conceptual design of an IPSS and to estimate the design characters of the IPSS with accident simulations using MARS code. Some functions of the IPSS are newly proposed and the other functions are reviewed with the integration of the functions. Consequently, all of the functions are modified and integrated for simplicity of the design in preparation for beyond design based accidents (BDBAs) focused on a station black out (SBO). The simulation results with the IPSS show that the decay heat can be sufficiently removed in accidents that occur with a SBO. Also, the molten core can be retained in a vessel via the passive in-vessel retention strategy of the IPSS. The actual application potential of the IPSS is high, as numerous strong design characters are evaluated. The installation of the IPSS into the original design of a nuclear power plant requires minimal design change using the current penetrations of the containment. The functions are integrated in one or two large tanks outside the containment. Furthermore, the operation time of the IPSS can be increased by refilling coolant from the

  1. Design and integration of lower ports for ITER diagnostic systems

    Energy Technology Data Exchange (ETDEWEB)

    Casal, Natalia, E-mail: Natalia.casal@iter.org [ITER Organization, Route de Vinon-sur-Verdon – CS 90 046 – 13067 St Paul Lez Durance Cedex (France); Bertalot, Luciano; Cheng, Hao; Drevon, Jean Marc; Duckworth, Philip; Giacomin, Thibaud; Guirao, Julio; Iglesias, Silvia [ITER Organization, Route de Vinon-sur-Verdon – CS 90 046 – 13067 St Paul Lez Durance Cedex (France); Kochergin, Mikhail [IOFFE Institute, Saint Petersburg (Russian Federation); Martin, Alex [ITER Organization, Route de Vinon-sur-Verdon – CS 90 046 – 13067 St Paul Lez Durance Cedex (France); McCarron, Eddie [Oxford Technologies Ltd., Abingdon (United Kingdom); Mokeev, Alexander [Russian Federation Domestic Agency, Moscow (Russian Federation); Mota, Fernando [CIEMAT, Madrid (Spain); Penot, Christophe; Portales, Mickael [ITER Organization, Route de Vinon-sur-Verdon – CS 90 046 – 13067 St Paul Lez Durance Cedex (France); Kitazawa, Sin-iti [Japanese Domestic Agency, Naka (Japan); Sky, Jack [Oxford Technologies Ltd., Abingdon (United Kingdom); Suarez, Alejandro; Udintsev, Victor; Utin, Yuri [ITER Organization, Route de Vinon-sur-Verdon – CS 90 046 – 13067 St Paul Lez Durance Cedex (France); and others

    2015-10-15

    Highlights: • Lower port structures are in its conceptual design phase. • Electromagnetic and seismic loads, will dominate all other mechanical loads. • Design allows diagnostics support, neutron shielding while and signals transmission. • Installation and maintenance operations are fully remote handling compatible. - Abstract: All around the ITER vacuum vessel, forty-four ports will provide access to the vacuum vessel for remote handling operations, diagnostic systems, heating, and vacuum systems: 18 upper ports, 17 equatorial ports, and 9 lower ports. Among the lower ports, three of them will be used for the remote handling installation of the ITER divertor. Once the divertor is in place, these ports will host various diagnostic systems mounted in the so-called diagnostic racks. The diagnostic racks must allow the support and cooling of the diagnostics, extraction of the required diagnostic signals, and providing access and maintainability while minimizing the leakage of radiation toward the back of the port where the humans are allowed to enter. A fully integrated inner rack, carrying the near plasma diagnostic components, will be an stainless steel structure, 4.2 m long, with a maximum weight of 10 t. This structure brings water for cooling and baking at maximum temperature of 240 °C and provides connection with gas, vacuum and electric services. Additional racks (placed away from plasma and not requiring cooling) may be required for the support of some particular diagnostic components. The diagnostics racks and its associated ex vessel structures, which are in its conceptual design phase, are being designed to survive the lifetime of ITER of 20 years. This paper presents the current state of development including interfaces, diagnostic integration, operation and maintenance, shielding requirements, remote handling, loads cases and discussion of the main challenges coming from the severe environment and engineering requirements.

  2. Design and Development of an Integrated Workstation Automation Hub

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Andrew; Ghatikar, Girish; Sartor, Dale; Lanzisera, Steven

    2015-03-30

    Miscellaneous Electronic Loads (MELs) account for one third of all electricity consumption in U.S. commercial buildings, and are drivers for a significant energy use in India. Many of the MEL-specific plug-load devices are concentrated at workstations in offices. The use of intelligence, and integrated controls and communications at the workstation for an Office Automation Hub – offers the opportunity to improve both energy efficiency and occupant comfort, along with services for Smart Grid operations. Software and hardware solutions are available from a wide array of vendors for the different components, but an integrated system with interoperable communications is yet to be developed and deployed. In this study, we propose system- and component-level specifications for the Office Automation Hub, their functions, and a prioritized list for the design of a proof-of-concept system. Leveraging the strength of both the U.S. and India technology sectors, this specification serves as a guide for researchers and industry in both countries to support the development, testing, and evaluation of a prototype product. Further evaluation of such integrated technologies for performance and cost is necessary to identify the potential to reduce energy consumptions in MELs and to improve occupant comfort.

  3. Peculiarities of designing Holistic Electronic Government Services Integration Model

    Directory of Open Access Journals (Sweden)

    Tadas Limba

    2011-12-01

    Full Text Available Purpos– the aim ok this paper is to develop a Holistic Electronic Government Services Integration Model which could ensure the efficient integration of electronic government services in the local self-government level.Methodolog– the following analyses have been carried out in thirkpaper: theoretical-systematic; normative and conceptual comparative analysis of the researcha A method of modeling has also been applied.Finding– the scientific work analyzes the improvement opportunities of the models of electronic government services and their application alternatives in Lithuanian municipalities. The newly developed model of electronic government services that has been designed basng on the principle of integrating online expert consultation is primarily targeted at improvement of inside processes’ changes of an organization. Practicing the application of that model in the local self-government level starting with improvement of inside processes of an organization should help adapt more accurately and efficiently to the changing needs of the society while providing electronic government services, thus establishing a higher public value.Practical implication– the practical novelty of work is reflected not only through the integration opportunities’ assessment of the principle of online expert consultation services into the theoretical models of electronic government services that have already been developed by the scientists, but also on the basis of this principle there has been created a “Holistic Electronic Government Services Integration Model” in accordance with “E-Diamond” model basis and its practical application realization with the design of “The project of implementing the principle of online expert consultation on the model of electronic government services” for the future investigations.Originalit– the systematic, comparative analysis of the models of electronic government services carried out in the scientific

  4. A Supply Chain Design Problem Integrated Facility Unavailabilities Management

    Directory of Open Access Journals (Sweden)

    Fouad Maliki

    2016-08-01

    Full Text Available A supply chain is a set of facilities connected together in order to provide products to customers. The supply chain is subject to random failures caused by different factors which cause the unavailability of some sites. Given the current economic context, the management of these unavailabilities is becoming a strategic choice to ensure the desired reliability and availability levels of the different supply chain facilities. In this work, we treat two problems related to the field of supply chain, namely the design and unavailabilities management of logistics facilities. Specifically, we consider a stochastic distribution network with consideration of suppliers' selection, distribution centres location (DCs decisions and DCs’ unavailabilities management. Two resolution approaches are proposed. The first approach called non-integrated consists on define the optimal supply chain structure using an optimization approach based on genetic algorithms (GA, then to simulate the supply chain performance with the presence of DCs failures. The second approach called integrated approach is to consider the design of the supply chain problem and unavailabilities management of DCs in the same model. Note that, we replace each unavailable DC by performing a reallocation using GA in the two approaches. The obtained results of the two approaches are detailed and compared showing their effectiveness.

  5. Integrating availability and maintenance objectives in plant design. EDF approach

    International Nuclear Information System (INIS)

    Degrave, Claude; Martin-Onraet, Michel

    1995-01-01

    Energy self sufficiency is a major strategic necessity for France. Regarding the fossil fuels power, competitiveness of nuclear energy is a key goal for Electricite de France. Accordingly, for future nuclear power plants to remain competitive, it is necessary to maintain the kWh production costs of the future units at a level close to those of the latest units under construction (N4 series), while raising the safety level. EDF therefore decided to implement an analytical and systematic process for study of the new projects to optimize the design by integration of the maintenance (durations, costs), availability and radiation exposure goals from the related operating experience. This approach, CIDEM (French acronym for Design Integrating Availability, operating Experience and Maintenance) aims at a single goal: to minimize the kWh production cost incorporating investment, operation and fuel costs, allowing for the operating experience from French and foreign units. The implementation of the CIDEM process constitutes for EDF a new approach to the study of the new Nuclear Power Plant projects. The competitivity of nuclear energy greatly depends on the success of such an approach. The studies conducted in the availability field have already highlighted a number of critical points and have made it possible to define the corresponding goal allocations and to establish a first series of structuring specifications for the project. (J.P.N.)

  6. Radio frequency integrated circuit design for cognitive radio systems

    CERN Document Server

    Fahim, Amr

    2015-01-01

    This book fills a disconnect in the literature between Cognitive Radio systems and a detailed account of the circuit implementation and architectures required to implement such systems.  Throughout the book, requirements and constraints imposed by cognitive radio systems are emphasized when discussing the circuit implementation details.  In addition, this book details several novel concepts that advance state-of-the-art cognitive radio systems.  This is a valuable reference for anybody with background in analog and radio frequency (RF) integrated circuit design, needing to learn more about integrated circuits requirements and implementation for cognitive radio systems. ·         Describes in detail cognitive radio systems, as well as the circuit implementation and architectures required to implement them; ·         Serves as an excellent reference to state-of-the-art wideband transceiver design; ·         Emphasizes practical requirements and constraints imposed by cognitive radi...

  7. Integrated design of castings: effect of porosity on mechanical performance

    International Nuclear Information System (INIS)

    Hardin, R A; Beckermann, C

    2012-01-01

    Porosity can significantly reduce the strength and durability of castings in service. An integrated design approach has been developed where casting simulation is combined with mechanical performance simulations. Predictions of the porosity distribution from the casting process simulation are transferred to and used in stress and fatigue life simulations. Thus, the effect of casting quality on service performance can be evaluated. Results of a study are presented where the measured porosity distribution in cast steel specimens is transferred to an elasto-plastic finite-element stress analysis model. Methods are developed to locally reduce the mechanical properties according to the porosity present, without having to resolve individual pores. Plastic deformation is modeled using porous metal plasticity theory. The predictions are compared to tensile measurements performed on the specimens. The complex deformations and the reductions in the ductility of the specimens due to porosity are predicted well. The predicted stresses are transferred to a fatigue analysis code that takes the porosity distribution into account as well. The measured and predicted fatigue lives are also in good agreement. Finally, the results of a case study are presented that illustrate the utility of the present integrated approach in optimizing the design of a steel casting.

  8. The design rationale of the Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Wade, D.C.; Hill, R.N.

    1997-01-01

    The Integral Fast Reactor (IFR) concept has been developed over the last ten years to provide technical solutions to perceptual concerns associated with nuclear power. Beyond the traditional advanced reactor objectives of increased safety, improved economy and more efficient fuel utilization, the IFR is designed to simplify waste disposal and increase resistance to proliferation. Only a fast reactor with an efficient recycle technology can provide for total consumption of actinides. The basic physics governing reactor design dictates that, for efficient recycle, the fuel form should be limited in burnup only by radiation damage to fuel cladding. The recycle technology must recover essentially all actinides. In a fast reactor, not all fission products need to be removed from the recycled fuel, and there is no need to produce pure plutonium. Recovery, recycle, and ultimate consumption of all actinides resolves several waste-disposal concerns. The IFR can be configured to achieve safe passive response to any of the traditional postulated reactor accident initiators, and can be configured for a variety of power output levels. Passive heat removal is achieved by use of a large inventory sodium coolant and a physical configuration that emphasizes natural circulation. An IFR can be designed to consume excess fissile material, to produce a surplus, or to maintain inventory. It appears that commercial designs should be economically competitive with other available alternatives. (author)

  9. Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology

    Science.gov (United States)

    Kirkpatrick, Brad Kenneth

    In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.

  10. Performance advancement of solar air-conditioning through integrated system design for building

    International Nuclear Information System (INIS)

    Fong, K.F.; Lee, C.K.

    2014-01-01

    This study is to advance the energy performance of solar air-conditioning system through appropriate component integration from the absorption refrigeration cycle and proper high-temperature cooling. In the previous studies, the solar absorption air-conditioning using the working pair of water – lithium bromide (H 2 O–LiBr) is found to have prominent primary energy saving than the conventional compression air-conditioning for buildings in the hot-humid climate. In this study, three integration strategies have been generated for solar cooling, namely integrated absorption air-conditioning; integrated absorption-desiccant air-conditioning; and integrated absorption-desiccant air-conditioning for radiant cooling. To realize these ideas, the working pair of ammonia – water (NH 3 –H 2 O) was used in the absorption cycle, rather than H 2 O–LiBr. As such, the evaporator and the condenser can be separate from the absorption refrigeration cycle for the new configuration of various integrated design alternatives. Through dynamic simulation, the year-round primary energy saving of the proposed integration strategies for solar NH 3 –H 2 O absorption air-conditioning systems could be up to 50.6% and 25.5%, as compared to the conventional compression air-conditioning and the basic solar H 2 O–LiBr absorption air-conditioning respectively. Consequently, carbon reduction of building air-conditioning can be achieved more effectively through the integrated system design in the hot and humid cities. - Highlights: • Three integration strategies, IAAU, IADAU and IADAU-RC, are proposed to advance solar air-conditioning. • NH 3 –H 2 O is adopted for absorption refrigeration instead of H 2 O–LiBr. • Separate evaporator and condenser, desiccant cooling and radiant cooling are designed for IADAU-RC. • IADAU-RC can have 50.6% primary energy saving against the conventional air-conditioning

  11. Designing optimal bioethanol networks with purification for integrated biorefineries

    International Nuclear Information System (INIS)

    Shenoy, Akshay U.; Shenoy, Uday V.

    2014-01-01

    Highlights: • An analytical method is devised for bioethanol network integration with purification. • Minimum fresh bioethanol flow and pinch are found by the Unified Targeting Algorithm. • Optimal bioethanol networks are then synthesized by the Nearest Neighbors Algorithm. • Continuous targets and networks are developed over the purifier inlet flowrate range. • Case study of a biorefinery producing bioethanol from wheat shows large savings. - Abstract: Bioethanol networks with purification for processing pathways in integrated biorefineries are targeted and designed in this work by an analytical approach not requiring graphical constructions. The approach is based on six fundamental equations involving eight variables: two balance equations for the stream flowrate and the bioethanol load over the total network system; one equation for the above-pinch bioethanol load being picked up by the minimum fresh resource and the purified stream; and three equations for the purification unit. A solution strategy is devised by specifying the two variables associated with the purifier inlet stream. Importantly, continuous targeting is then possible over the entire purifier inlet flowrate range on deriving elegant formulae for the remaining six variables. The Unified Targeting Algorithm (UTA) is utilized to establish the minimum fresh bioethanol resource flowrate and identify the pinch purity. The fresh bioethanol resource flowrate target is shown to decrease linearly with purifier inlet flowrate provided the pinch is held by the same point. The Nearest Neighbors Algorithm (NNA) is used to methodically synthesize optimal networks matching bioethanol demands and sources. A case study of a biorefinery producing bioethanol from wheat with arabinoxylan (AX) coproduction is presented. It illustrates the versatility of the approach in generating superior practical designs with up to nearly 94% savings for integrated bioethanol networks, both with and without process

  12. High-voltage integrated linear regulator with current sinking capabilities for portable ultrasound scanners

    DEFF Research Database (Denmark)

    Pausas, Guifre Vendrell; Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger

    2017-01-01

    This paper presents a high-voltage integrated regulator capable of sinking current for driving pulse-triggered level shifters in drivers for ultrasound applications. The regulator utilizes a new topology with a feedback loop and a current sinking circuit to satisfy the requirements of the portable....... The proposed design has been implemented in high-voltage 0.18 μm process whithin an area of 0.11 mm2 and it is suitable for system-on-chip integration due to its low component count and the fully integrated design....

  13. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  14. Sodium immersible high temperature microphone design description

    International Nuclear Information System (INIS)

    Gavin, A.P.; Anderson, T.T.; Janicek, J.J.

    1975-02-01

    Argonne National Laboratory has developed a rugged high-temperature (HT) microphone for use as a sodium-immersed acoustic monitor in Liquid Metal Fast Breeder Reactors (LMFBRs). Microphones of this design have been extensively tested in room temperature water, in air up to 1200 0 F, and in sodium up to 1200 0 F. They have been successfully installed and employed as acoustic monitors in several operating liquid metal systems. The design, construction sequence, calibration, and testing of these microphones are described. 6 references. (U.S.)

  15. Understanding Creative Design Processes by Integrating Sketching and CAD Modelling Design Environments: A Preliminary Protocol Result from Architectural Designers

    Directory of Open Access Journals (Sweden)

    Yi Teng Shih

    2015-11-01

    Full Text Available This paper presents the results of a preliminary protocol study of the cognitive behaviour of architectural designers during the design process. The aim is to better understand the similarities and differences in cognitive behaviour using Sequential Mixed Media (SMM and Alternative Mixed Media (AMM approaches, and how switching between media may impact on design processes. Two participants with at least one-year’s professional design experience and a Bachelor of Design degree, and competence in both sketching and computer-aid design (CAD modelling participated in the study. Video recordings of participants working on different projects were coded using the Function-Behaviour-Structure (FBS coding scheme. Participants were also interviewed and their explanations about their switching behaviours were categorised into three types: S→C, S/C↹R and C→S. Preliminary results indicate that switching between media may influence how designers identify problems and develop solutions. In particular, two design issues were identified.  These relate to the FBS coding scheme, where structure (S and behaviour derived from structure (Bs, change to documentation (D after switching from sketching to CAD modelling (S→C. These switches make it possible for designers to integrate both approaches into one design medium and facilitate their design processes in AMM design environments.

  16. Numerical study and design optimization of electromagnetic energy harvesters integrated with flexible magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Won [Hanyang University, Seoul (Korea, Republic of)

    2017-05-15

    This study presents a new design of an electromagnetic energy harvester integrated with a soft magnetic material. The harvester design optimizes the magnetic material characteristics and the size of a rectangular permanent magnet. The design employs a complete magnetic circuit made of (1) a thin-film soft magnetic material that facilitates a flexible but highly (magnetically) permeable beam and (2) an optimally-sized magnet that maximizes the harvester performance. The design is demonstrated to reduce magnetic flux leakage, and thus considerably enhances both magnetic flux density (B) and its change by time (dB/dt), which both influence harvester performance. The improvement in harvester performances strongly depends on critical design parameters, especially, the magnet size and characteristics of magnetic materials, including permeability, stiffness, and thickness. The analyses conclude that recently-introduced nanomaterials (having ultrahigh magnetic permeability) can potentially innovate harvester performances. However, the performance may be degraded without design optimization. Once optimized, the integrated nanomaterials facilitate a significant improvement compared with a conventional design without integrated magnetic materials.

  17. Numerical study and design optimization of electromagnetic energy harvesters integrated with flexible magnetic materials

    International Nuclear Information System (INIS)

    Yoon, Sang Won

    2017-01-01

    This study presents a new design of an electromagnetic energy harvester integrated with a soft magnetic material. The harvester design optimizes the magnetic material characteristics and the size of a rectangular permanent magnet. The design employs a complete magnetic circuit made of (1) a thin-film soft magnetic material that facilitates a flexible but highly (magnetically) permeable beam and (2) an optimally-sized magnet that maximizes the harvester performance. The design is demonstrated to reduce magnetic flux leakage, and thus considerably enhances both magnetic flux density (B) and its change by time (dB/dt), which both influence harvester performance. The improvement in harvester performances strongly depends on critical design parameters, especially, the magnet size and characteristics of magnetic materials, including permeability, stiffness, and thickness. The analyses conclude that recently-introduced nanomaterials (having ultrahigh magnetic permeability) can potentially innovate harvester performances. However, the performance may be degraded without design optimization. Once optimized, the integrated nanomaterials facilitate a significant improvement compared with a conventional design without integrated magnetic materials.

  18. Empty substrate integrated waveguide technology for E plane high-frequency and high-performance circuits

    Science.gov (United States)

    Belenguer, Angel; Cano, Juan Luis; Esteban, Héctor; Artal, Eduardo; Boria, Vicente E.

    2017-01-01

    Substrate integrated circuits (SIC) have attracted much attention in the last years because of their great potential of low cost, easy manufacturing, integration in a circuit board, and higher-quality factor than planar circuits. A first suite of SIC where the waves propagate through dielectric have been first developed, based on the well-known substrate integrated waveguide (SIW) and related technological implementations. One step further has been made with a new suite of empty substrate integrated waveguides, where the waves propagate through air, thus reducing the associated losses. This is the case of the empty substrate integrated waveguide (ESIW) or the air-filled substrate integrated waveguide (air-filled SIW). However, all these SIC are H plane structures, so classical H plane solutions in rectangular waveguides have already been mapped to most of these new SIC. In this paper a novel E plane empty substrate integrated waveguide (ESIW-E) is presented. This structure allows to easily map classical E plane solutions in rectangular waveguide to this new substrate integrated solution. It is similar to the ESIW, although more layers are needed to build the structure. A wideband transition (covering the frequency range between 33 GHz and 50 GHz) from microstrip to ESIW-E is designed and manufactured. Measurements are successfully compared with simulation, proving the validity of this new SIC. A broadband high-frequency phase shifter (for operation from 35 GHz to 47 GHz) is successfully implemented in ESIW-E, thus proving the good performance of this new SIC in a practical application.

  19. Design integration of favorable geometry, structural support and containment

    International Nuclear Information System (INIS)

    Purcell, J.A.; McGehee, G.A.

    1991-07-01

    In designs for fissile processes at Savannah River site, different approaches have been used to provide engineered margins of safety for criticality with containment and seismic resistance as additional requirements. These requirements are frequently at odds in engineered systems. This paper proposes a plan to take advantage of vessels with favorable geometry to provide seismic resistance and to support a glovebox for containment. Thin slab tanks, small diameter pencil tanks, annular tanks, and other novel designs have been used for criticality safety. The requirement for DBE seismic resistance and rigid control of dimensions leads the designer to consider annular tanks for meeting these requirements. The high strength of annular tanks may logically be used to support secondary containment. Hands-on access to all instruments, piping etc. within containment can be provided through gloveports, thus a specialized glovebox. This paper examines the advantages of using an annular tank design to provide favorable geometry, structural support and containment

  20. Integral Monitored Retrievable Storage (MRS) Facility conceptual design report

    International Nuclear Information System (INIS)

    1985-09-01

    This document, Volume 6 Book 1, contains information on design studies of a Monitored Retrievable Storage (MRS) facility. Topics include materials handling; processing; support systems; support utilities; spent fuel; high-level waste and alpha-bearing waste storage facilities; and field drywell storage

  1. Integrated Design for Geoscience Education with Upward Bound Students

    Science.gov (United States)

    Cartwright, T. J.; Hogsett, M.; Ensign, T. I.; Hemler, D.

    2009-05-01

    Capturing the interest of our students is imperative to expand the conduit of future Earth scientists in the United States. According to the Rising Above the Gathering Storm report (2005), we must increase America's talent pool by improving K-12 mathematics and science education. Geoscience education is uniquely suited to accomplish this goal, as we have become acutely aware of our sensitivity to the destructive forces of nature. The educational community must take advantage of this heightened awareness to educate our students and ensure the next generation rebuilds the scientific and technological base on which our society rests. In response to these concerns, the National Science Foundation advocates initiatives in Geoscience Education such as IDGE (Integrated Design for Geoscience Education), which is an inquiry-based geoscience program for Upward Bound (UB) students at Marshall University in Huntington, West Virginia. The UB program targets low-income under-represented students for a summer academic-enrichment program. IDGE builds on the mission of UB by encouraging underprivileged students to investigate science and scientific careers. During the two year project, high school students participated in an Environmental Inquiry course utilizing GLOBE program materials and on-line learning modules developed by geoscience specialists in land cover, soils, hydrology, phenology, and meteorology. Students continued to an advanced course which required IDGE students to collaborate with GLOBE students from Costa Rica. The culmination of this project was an educational expedition in Costa Rica to complete ecological field studies, providing first-hand knowledge of the international responsibility we have as scientists and citizens of our planet. IDGE was designed to continuously serve educators and students. By coordinating initiatives with GLOBE headquarters and the GLOBE country community, IDGE's efforts have yielded multiple ways in which to optimize positive

  2. High performance integer arithmetic circuit design on FPGA architecture, implementation and design automation

    CERN Document Server

    Palchaudhuri, Ayan

    2016-01-01

    This book describes the optimized implementations of several arithmetic datapath, controlpath and pseudorandom sequence generator circuits for realization of high performance arithmetic circuits targeted towards a specific family of the high-end Field Programmable Gate Arrays (FPGAs). It explores regular, modular, cascadable, and bit-sliced architectures of these circuits, by directly instantiating the target FPGA-specific primitives in the HDL. Every proposed architecture is justified with detailed mathematical analyses. Simultaneously, constrained placement of the circuit building blocks is performed, by placing the logically related hardware primitives in close proximity to one another by supplying relevant placement constraints in the Xilinx proprietary “User Constraints File”. The book covers the implementation of a GUI-based CAD tool named FlexiCore integrated with the Xilinx Integrated Software Environment (ISE) for design automation of platform-specific high-performance arithmetic circuits from us...

  3. Progress in the High Level Trigger Integration

    CERN Multimedia

    Cristobal Padilla

    2007-01-01

    During the week from March 19th to March 23rd, the DAQ/HLT group performed another of its technical runs. On this occasion the focus was on integrating the Level 2 and Event Filter triggers, with a much fuller integration of HLT components than had been done previously. For the first time this included complete trigger slices, with a menu to run the selection algorithms for muons, electrons, jets and taus at the Level-2 and Event Filter levels. This Technical run again used the "Pre-Series" system (a vertical slice prototype of the DAQ/HLT system, see the ATLAS e-news January issue for details). Simulated events, provided by our colleagues working in the streaming tests, were pre-loaded into the ROS (Read Out System) nodes. These are the PC's where the data from the detector is stored after coming out of the front-end electronics, the "first part of the TDAQ system" and the interface to the detectors. These events used a realistic beam interaction mixture and had been subjected to a Level-1 selection. The...

  4. Inviscid/Boundary-Layer Aeroheating Approach for Integrated Vehicle Design

    Science.gov (United States)

    Lee, Esther; Wurster, Kathryn E.

    2017-01-01

    A typical entry vehicle design depends on the synthesis of many essential subsystems, including thermal protection system (TPS), structures, payload, avionics, and propulsion, among others. The ability to incorporate aerothermodynamic considerations and TPS design into the early design phase is crucial, as both are closely coupled to the vehicle's aerodynamics, shape and mass. In the preliminary design stage, reasonably accurate results with rapid turn-representative entry envelope was explored. Initial results suggest that for Mach numbers ranging from 9-20, a few inviscid solutions could reasonably sup- port surface heating predictions at Mach numbers variation of +/-2, altitudes variation of +/-10 to 20 kft, and angle-of-attack variation of +/- 5. Agreement with Navier-Stokes solutions was generally found to be within 10-15% for Mach number and altitude, and 20% for angle of attack. A smaller angle-of-attack increment than the 5 deg around times for parametric studies and quickly evolving configurations are necessary to steer design decisions. This investigation considers the use of an unstructured 3D inviscid code in conjunction with an integral boundary-layer method; the former providing the flow field solution and the latter the surface heating. Sensitivity studies for Mach number, angle of attack, and altitude, examine the feasibility of using this approach to populate a representative entry flight envelope based on a limited set of inviscid solutions. Each inviscid solution is used to generate surface heating over the nearby trajectory space. A subset of a considered in this study is recommended. Results of the angle-of-attack sensitivity studies show that smaller increments may be needed for better heating predictions. The approach is well suited for application to conceptual multidisciplinary design and analysis studies where transient aeroheating environments are critical for vehicle TPS and thermal design. Concurrent prediction of aeroheating

  5. Powersail High Power Propulsion System Design Study

    Science.gov (United States)

    Gulczinski, Frank S., III

    2000-11-01

    A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.

  6. Optimizing the design of very high power, high performance converters

    International Nuclear Information System (INIS)

    Edwards, R.J.; Tiagha, E.A.; Ganetis, G.; Nawrocky, R.J.

    1980-01-01

    This paper describes how various technologies are used to achieve the desired performance in a high current magnet power converter system. It is hoped that the discussions of the design approaches taken will be applicable to other power supply systems where stringent requirements in stability, accuracy and reliability must be met

  7. Integrated predictive modelling simulations of burning plasma experiment designs

    International Nuclear Information System (INIS)

    Bateman, Glenn; Onjun, Thawatchai; Kritz, Arnold H

    2003-01-01

    Models for the height of the pedestal at the edge of H-mode plasmas (Onjun T et al 2002 Phys. Plasmas 9 5018) are used together with the Multi-Mode core transport model (Bateman G et al 1998 Phys. Plasmas 5 1793) in the BALDUR integrated predictive modelling code to predict the performance of the ITER (Aymar A et al 2002 Plasma Phys. Control. Fusion 44 519), FIRE (Meade D M et al 2001 Fusion Technol. 39 336), and IGNITOR (Coppi B et al 2001 Nucl. Fusion 41 1253) fusion reactor designs. The simulation protocol used in this paper is tested by comparing predicted temperature and density profiles against experimental data from 33 H-mode discharges in the JET (Rebut P H et al 1985 Nucl. Fusion 25 1011) and DIII-D (Luxon J L et al 1985 Fusion Technol. 8 441) tokamaks. The sensitivities of the predictions are evaluated for the burning plasma experimental designs by using variations of the pedestal temperature model that are one standard deviation above and below the standard model. Simulations of the fusion reactor designs are carried out for scans in which the plasma density and auxiliary heating power are varied

  8. High field dipole magnet design concepts

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1988-12-01

    High field dipole magnets will play a crucial role in the development of future accelerators whether at Fermilab or elsewhere. This paper presents conceptual designs for two such dipoles; 6.6 and 8.8 Tesla, with special focus on their suitability for upgrades to the Fermilab Tevatron. Descriptions and cross-sectional views will be presented as will preliminary estimates of heat loads and costs. 3 refs., 2 figs., 2 tabs

  9. Integration of catalyst design and reactor engineering in paraffins dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, D.; Miracca, I. [Snamprogetti S.p.A., S. Donato Milanese (Italy)

    2005-07-01

    Unfortunately, olefins are not a natural fossil resource. Their production requires sophisticated and costly technologies, highly demanding in terms of investments and energy. Dehydrogenations are applied industrially to light alkanes (propane to propylene for polymers and isobutane to iso-butylene for gasoline and polymers) as well as long linear ones (C{sub 10}-C{sub 14} to linear-alkyl-benzenes) and for the production of styrene from ethylbenzene. The light paraffins dehydrogenation sustains a network of technologies allowing an integrated approach to create value from Natural Gas. (orig.)

  10. High capacity photonic integrated switching circuits

    NARCIS (Netherlands)

    Albores Mejia, A.

    2011-01-01

    As the demand for high-capacity data transfer keeps increasing in high performance computing and in a broader range of system area networking environments; reconfiguring the strained networks at ever faster speeds with larger volumes of traffic has become a huge challenge. Formidable bottlenecks

  11. Integrating speech technology to meet crew station design requirements

    Science.gov (United States)

    Simpson, Carol A.; Ruth, John C.; Moore, Carolyn A.

    The last two years have seen improvements in speech generation and speech recognition technology that make speech I/O for crew station controls and displays viable for operational systems. These improvements include increased robustness of algorithm performance in high levels of background noise, increased vocabulary size, improved performance in the connected speech mode, and less speaker dependence. This improved capability makes possible far more sophisticated user interface design than was possible with earlier technology. Engineering, linguistic, and human factors design issues are discussed in the context of current voice I/O technology performance.

  12. High school science fair and research integrity

    Science.gov (United States)

    Dalley, Simon; Shepherd, Karen; Reisch, Joan

    2017-01-01

    Research misconduct has become an important matter of concern in the scientific community. The extent to which such behavior occurs early in science education has received little attention. In the current study, using the web-based data collection program REDCap, we obtained responses to an anonymous and voluntary survey about science fair from 65 high school students who recently competed in the Dallas Regional Science and Engineering Fair and from 237 STEM-track, post-high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) doing research at UT Southwestern Medical Center. Of the post-high school students, 24% had competed in science fair during their high school education. Science fair experience was similar overall for the local cohort of Dallas regional students and the more diverse state/national cohort of post-high school students. Only one student out of 122 reported research misconduct, in his case making up the data. Unexpectedly, post-high school students who did not participate in science fair anticipated that carrying out science fair would be much more difficult than actually was the case, and 22% of the post-high school students anticipated that science fair participants would resort to research misconduct to overcome obstacles. No gender-based differences between students’ science fair experiences or expectations were evident. PMID:28328976

  13. Design and testing of integrated circuits for reactor protection channels

    International Nuclear Information System (INIS)

    Battle, R.E.; Vandermolen, R.I.; Jagadish, U.; Swail, B.K.; Naser, J.; Rana, I.

    1995-01-01

    Custom and semicustom application-specific integrated circuit design and testing methods are investigated for use in research and commercial nuclear reactor safety systems. The Electric Power Research Institute and Oak Ridge National Laboratory are working together through a cooperative research and development agreement to apply modern technology to a nuclear reactor protection system. Purpose of this project is to demonstrate to the nuclear industry an alternative approach for new or upgrade reactor protection and safety system signal processing and voting logic. Motivation for this project stems from (1) the difficulty of proving that software-based protection systems are adequately reliable, (2) the obsolescence of the original equipment, and (3) the improved performance of digital processing

  14. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    CERN Document Server

    Croft, S; Chard-Mj, P; Estop, J R; Martancik, D; Sheila-Melton; Young, B

    2003-01-01

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nucli...

  15. Brayton Isotope Power System, Design Integrity Checklist (BIPS-DIC)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.G.

    1976-06-10

    A preliminary Failure Modes, Effects and Criticality Analysis (FMECA) for the BIPS Flight System (FS) was published as AiResearch Report 76-311709 dated January 12, 1976. The FMECA presented a thorough review of the conceptual BIPS FS to identify areas of concern and activities necessary to avoid premature failures. In order to assure that the actions recommended by the FMECA are effected in both the FS and the Ground Demonstration System (GDS), a checklist (the BIPS-DIC) was prepared for the probability of occurrence of those failure modes that rated highest in criticality ranking. This checklist was circulated as an attachment to AiResearch Coordination Memo No. BIPS-GDS-A0106 dated January 23, 1976. The Brayton Isotope Power System-Design Integrity Checklist (BIPS-DIC) has been revised and is presented. Additional entries have been added that reference failure modes determined to rank highest in criticality ranking. The checklist will be updated periodically.

  16. Information delivery manuals to integrate building product information into design

    DEFF Research Database (Denmark)

    Berard, Ole Bengt; Karlshøj, Jan

    2011-01-01

    Despite continuing BIM progress, professionals in the AEC industry often lack the information they need to perform their work. Although this problem could be alleviated by information systems similar to those in other industries, companies struggle to model processes and information needs...... them in information systems. BIM implies that objects are bearers of information and logic. The present study has three main aims: (1) to explore IDMs capability to capture all four perspectives, (2) to determine whether an IDM’s collaborative methodology is valid for developing standardized processes......, and (3) to ascertain whether IDM’s business rules can support the development of information and logic-bearing BIM objects. The research is based on a case study of re-engineering the bidding process for a design-build project to integrate building product manufacturers, subcontractors...

  17. Using Multilayered Substrate Integrated Waveguide to Design Microwave Gain Equalizer

    Directory of Open Access Journals (Sweden)

    Yongfei Wang

    2014-01-01

    Full Text Available This paper presents the design and experiment of a novel microwave gain equalizer based on the substrate integrated waveguide (SIW technique. The proposed equalizer is formed by an SIW loaded by SIW resonators, which has very compact structure and can compensate for gain slope of microwave systems. Equivalent circuit analysis is given about the proposed structure for a better insight into the structure’s response. A Ku-Band equalizer with four SIW resonators is simulated and fabricated with a multilayer printed circuit board process. The measured results show good performance and agreement with the simulated results; an attenuation slope of −4.5 dB over 12.5–13.5 GHz is reached with a size reduction of 76%.

  18. INTEGRATED PRODUCT AND ENTERPRISE DESIGN FOR GLOBAL COMPETITIVENESS

    Directory of Open Access Journals (Sweden)

    N.D. Du Preez

    2012-01-01

    Full Text Available This paper presentsan overview of the challenge to integrate product and process life cycles in maintaining global competitiveness of an enterprise and proposes IEKOS as a possible solution . It provides the reader with a framework of two virtual life cycles which create a problem solving matrix for the industrial engineer. In this matrix, bordered by the virtual enterprise life cycle and the virtual product life cycles, the business functions of analyze, design deploy and operate are predominantly functions executed by the, industrial engineer. The different phases of each life cycle serves as a framework to a virtual industrial engineering toolkit providing access to detailed functions, formats, examples and a series of software and other "tools" available to the industrial engineer.
    In conclusion a brief overview is provided of the progress of the IEKOS toolkit which is under development at the department of Industrial Engineering at Stellenbosch University.

  19. Integrating protein engineering with process design for biocatalysis

    DEFF Research Database (Denmark)

    Woodley, John M.

    2017-01-01

    Biocatalysis uses enzymes for chemical synthesis and production, offering selective, safe and sustainable catalysis. While today the majority of applications are in the pharmaceutical sector, new opportunities are arising every day in other industry sectors, where production costs become a more...... important driver. In the early applications of the technology, it was necessary to design processes to match the properties of the biocatalyst. With the advent of protein engineering, organic chemists started to develop and improve enzymes to suit their needs. Likewise in industry, although not widespread......, a new paradigm was already implemented several years ago to engineer enzymes to suit process needs. Today, a new era is entered, where the effectiveness with which such integrated protein and process engineering is achieved becomes critical to implementation. In this paper, the development of a tool...

  20. Integrating Multibody Simulation and CFD: toward Complex Multidisciplinary Design Optimization

    Science.gov (United States)

    Pieri, Stefano; Poloni, Carlo; Mühlmeier, Martin

    This paper describes the use of integrated multidisciplinary analysis and optimization of a race car model on a predefined circuit. The objective is the definition of the most efficient geometric configuration that can guarantee the lowest lap time. In order to carry out this study it has been necessary to interface the design optimization software modeFRONTIER with the following softwares: CATIA v5, a three dimensional CAD software, used for the definition of the parametric geometry; A.D.A.M.S./Motorsport, a multi-body dynamic simulation software; IcemCFD, a mesh generator, for the automatic generation of the CFD grid; CFX, a Navier-Stokes code, for the fluid-dynamic forces prediction. The process integration gives the possibility to compute, for each geometrical configuration, a set of aerodynamic coefficients that are then used in the multiboby simulation for the computation of the lap time. Finally an automatic optimization procedure is started and the lap-time minimized. The whole process is executed on a Linux cluster running CFD simulations in parallel.

  1. Design of pressure vessels using shape optimization: An integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Carbonari, R.C., E-mail: ronny@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Munoz-Rojas, P.A., E-mail: pablo@joinville.udesc.br [Department of Mechanical Engineering, Universidade do Estado de Santa Catarina, Bom Retiro, Joinville, SC 89223-100 (Brazil); Andrade, E.Q., E-mail: edmundoq@petrobras.com.br [CENPES, PDP/Metodos Cientificos, Petrobras (Brazil); Paulino, G.H., E-mail: paulino@uiuc.edu [Newmark Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Av., Urbana, IL 61801 (United States); Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 158 Mechanical Engineering Building, 1206 West Green Street, Urbana, IL 61801-2906 (United States); Nishimoto, K., E-mail: knishimo@usp.br [Department of Naval Architecture and Ocean Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Silva, E.C.N., E-mail: ecnsilva@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil)

    2011-05-15

    Previous papers related to the optimization of pressure vessels have considered the optimization of the nozzle independently from the dished end. This approach generates problems such as thickness variation from nozzle to dished end (coupling cylindrical region) and, as a consequence, it reduces the optimality of the final result which may also be influenced by the boundary conditions. Thus, this work discusses shape optimization of axisymmetric pressure vessels considering an integrated approach in which the entire pressure vessel model is used in conjunction with a multi-objective function that aims to minimize the von-Mises mechanical stress from nozzle to head. Representative examples are examined and solutions obtained for the entire vessel considering temperature and pressure loading. It is noteworthy that different shapes from the usual ones are obtained. Even though such different shapes may not be profitable considering present manufacturing processes, they may be competitive for future manufacturing technologies, and contribute to a better understanding of the actual influence of shape in the behavior of pressure vessels. - Highlights: > Shape optimization of entire pressure vessel considering an integrated approach. > By increasing the number of spline knots, the convergence stability is improved. > The null angle condition gives lower stress values resulting in a better design. > The cylinder stresses are very sensitive to the cylinder length. > The shape optimization of the entire vessel must be considered for cylinder length.

  2. High-bandwidth piezoresistive force probes with integrated thermal actuation

    International Nuclear Information System (INIS)

    Doll, Joseph C; Pruitt, Beth L

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond timescale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN nm −1 ) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors, while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using the open-source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20-fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. (paper)

  3. High bandwidth piezoresistive force probes with integrated thermal actuation

    Science.gov (United States)

    Doll, Joseph C.; Pruitt, Beth L.

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond time scale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN/nm) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using open source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20 fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. PMID:23175616

  4. High temperature spectral emissivity measurement using integral blackbody method

    Science.gov (United States)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

    2016-10-01

    Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.

  5. Highly-Integrated Hydraulic Smart Actuators and Smart Manifolds for High-Bandwidth Force Control

    Directory of Open Access Journals (Sweden)

    Victor Barasuol

    2018-06-01

    Full Text Available Hydraulic actuation is the most widely used alternative to electric motors for legged robots and manipulators. It is often selected for its high power density, robustness and high-bandwidth control performance that allows the implementation of force/impedance control. Force control is crucial for robots that are in contact with the environment, since it enables the implementation of active impedance and whole body control that can lead to a better performance in known and unknown environments. This paper presents the hydraulic Integrated Smart Actuator (ISA developed by Moog in collaboration with IIT, as well as smart manifolds for rotary hydraulic actuators. The ISA consists of an additive-manufactured body containing a hydraulic cylinder, servo valve, pressure/position/load/temperature sensing, overload protection and electronics for control and communication. The ISA v2 and ISA v5 have been specifically designed to fit into the legs of IIT’s hydraulic quadruped robots HyQ and HyQ-REAL, respectively. The key features of these components tackle 3 of today’s main challenges of hydraulic actuation for legged robots through: (1 built-in controllers running inside integrated electronics for high-performance control, (2 low-leakage servo valves for reduced energy losses, and (3 compactness thanks to metal additive manufacturing. The main contributions of this paper are the derivation of the representative dynamic models of these highly integrated hydraulic servo actuators, a control architecture that allows for high-bandwidth force control and their experimental validation with application-specific trajectories and tests. We believe that this is the first work that presents additive-manufactured, highly integrated hydraulic smart actuators for robotics.

  6. Design and development of ITER high-frequency magnetic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y., E-mail: Yunxing.Ma@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Fircroft Engineering, Lingley House, 120 Birchwood Point, Birchwood Boulevard, Warrington, WA3 7QH (United Kingdom); Vayakis, G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Begrambekov, L.B. [National Research Nuclear University (MEPhI), 115409, Moscow, Kashirskoe shosse 31 (Russian Federation); Cooper, J.-J. [Culham Centre for Fusion Energy (CCFE), Abingdon, Oxfordshire OX14 3DB (United Kingdom); Duran, I. [IPP Prague, Za Slovankou 1782/3, 182 00 Prague 8 (Czech Republic); Hirsch, M.; Laqua, H.P. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Moreau, Ph. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Oosterbeek, J.W. [Eindhoven University of Technology (TU/e), PO Box 513, 5600 MB Eindhoven (Netherlands); Spuig, P. [CEA Cadarache, 13108 Saint Paul lez Durance Cedex (France); Stange, T. [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstraße 1, D-17491 Greifswald (Germany); Walsh, M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-15

    Highlights: • ITER high-frequency magnetic sensor system has been designed. • Prototypes have been successfully manufactured. • Manufactured prototypes have been tested in various labs. • Test results experimentally validated the design. - Abstract: High-frequency (HF) inductive magnetic sensors are the primary ITER diagnostic set for Toroidal Alfvén Eigenmodes (TAE) detection, while they also supplement low-frequency MHD and plasma equilibrium measurements. These sensors will be installed on the inner surface of ITER vacuum vessel, operated in a harsh environment with considerable neutron/nuclear radiation and high thermal load. Essential components of the HF sensor system, including inductive coil, electron cyclotron heating (ECH) shield, electrical cabling and termination load, have been designed to meet ITER measurement requirements. System performance (e.g. frequency response, thermal conduction) has been assessed. A prototyping campaign was initiated to demonstrate the manufacturability of the designed components. Prototypes have been produced according to the specifications. A series of lab tests have been performed to examine assembly issues and validate electrical and thermo-mechanical aspects of the design. In-situ microwave radiation test has been conducted in the MISTRAL test facility at IPP-Greifswald to experimentally examine the microwave shielding efficiency and structural integrity of the ECH shield. Low-power microwave attenuation measurement and scanning electron microscopic inspection were conducted to probe and examine the quality of the metal coating on the ECH shield.

  7. Fundamental understanding and rational design of high energy structural microbatteries

    International Nuclear Information System (INIS)

    Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel; Li, Huidong; Mendoza, Sarah

    2017-01-01

    We present that microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices, medical applications, and animal acoustic telemetry transmitters among others. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Finally, multiple design features adopted to accommodate large mechanical stress during the rolling process are discussed providing new insights in designing the structural microbatteries for emerging technologies.

  8. Design, construction and operation features of high-rise structures

    Science.gov (United States)

    Mylnik, Alexey; Mylnik, Vladimir; Zubeeva, Elena; Mukhamedzhanova, Olga

    2018-03-01

    The article considers design, construction and operation features of high-rise facilities. The analysis of various situations, that come from improper designing, construction and operation of unique facilities, is carried out. The integrated approach is suggested, when the problems of choosing acceptable constructional solutions related to the functional purpose, architectural solutions, methods of manufacturing and installation, operating conditions for unique buildings and structures are being tackled. A number of main causes for the emergency destruction of objects under construction and operation is considered. A number of measures are proposed on the basis of factor classification in order to efficiently prevent the situations, when various negative options of design loads and emergency impacts occur.

  9. Design of very high speed electric generators

    International Nuclear Information System (INIS)

    Labollita, Santiago

    2008-01-01

    This work approaches the design process of an electric generator suitable for running efficiently at high speed, driven by a turbo shaft.The axial flux concept was used.For the mechanical design of the prototype, cooling capacity and mounting method were considered, looking for simplicity of the parts evolved. Neodymium-iron-boron permanent magnets were used as magnetic source.For the electrical design, a calculation tool was developed in order to predict the prototype electrical parameters and optimize its geometry.The goal was to obtain 1 kW of electric power at a speed of 100,000 rpm.The efficiency and electrical behaviour of the prototype were characterized at speeds between 2,000 rpm and 30,000 rpm and then the behaviour at the design condition was predicted by obtaining an equivalent electric circuit.The estimated load voltage was 237 V as well as an electrical efficiency of 95%.Eddy current effects were not recognized. Increase of the internal resistance and decree of inductance were observed while raising the electric frequency.Finally, an electronic system was developed in order to use the prototype as a c.c. motor. Global performance was measured according to different supply characteristic. An optimum supply voltage was found.A maximum efficiency of 63% was reached. [es

  10. Very high intensity reaction chamber design

    International Nuclear Information System (INIS)

    Devaney, J.J.

    1975-09-01

    The problem of achieving very high intensity irradiation by light in minimal regions was studied. Three types of irradiation chamber are suggested: the common laser-reaction chamber, the folded concentric or near-concentric resonator, and the asymmetric confocal resonator. In all designs the ratio of high-intensity illuminated volume to other volume is highly dependent (to the 3 / 2 power) on the power and fluence tolerances of optical elements, primarily mirrors. Optimization of energy coupling is discussed for the common cavity. For the concentric cavities, optimization for both coherent and incoherent beams is treated. Formulae and numerical examples give the size of chambers, aspect ratios, maximum pass number, image sizes, fluences, and the like. Similarly for the asymmetric confocal chamber, formulae and numerical examples for fluences, dimensions, losses, and totally contained pass numbers are given

  11. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  12. Design and characterization of integrated components for SiN photonic quantum circuits.

    Science.gov (United States)

    Poot, Menno; Schuck, Carsten; Ma, Xiao-Song; Guo, Xiang; Tang, Hong X

    2016-04-04

    The design, fabrication, and detailed calibration of essential building blocks towards fully integrated linear-optics quantum computation are discussed. Photonic devices are made from silicon nitride rib waveguides, where measurements on ring resonators show small propagation losses. Directional couplers are designed to be insensitive to fabrication variations. Their offset and coupling lengths are measured, as well as the phase difference between the transmitted and reflected light. With careful calibrations, the insertion loss of the directional couplers is found to be small. Finally, an integrated controlled-NOT circuit is characterized by measuring the transmission through different combinations of inputs and outputs. The gate fidelity for the CNOT operation with this circuit is estimated to be 99.81% after post selection. This high fidelity is due to our robust design, good fabrication reproducibility, and extensive characterizations.

  13. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    International Nuclear Information System (INIS)

    Latkowski, J.F.; Kramer, K.J.; Abbott, R.P.; Morris, K.R.; DeMuth, J.; Divol, L.; El-Dasher, B.; Lafuente, A.; Loosmore, G.; Reyes, S.; Moses, G.A.; Fratoni, M.; Flowers, D.; Aceves, S.; Rhodes, M.; Kane, J.; Scott, H.; Kramer, R.; Pantano, C.; Scullard, C.; Sawicki, R.; Wilks, S.; Mehl, M.

    2010-01-01

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  14. Compact beam splitters with deep gratings for miniature photonic integrated circuits: design and implementation aspects.

    Science.gov (United States)

    Chen, Chin-Hui; Klamkin, Jonathan; Nicholes, Steven C; Johansson, Leif A; Bowers, John E; Coldren, Larry A

    2009-09-01

    We present an extensive study of an ultracompact grating-based beam splitter suitable for photonic integrated circuits (PICs) that have stringent density requirements. The 10 microm long beam splitter exhibits equal splitting, low insertion loss, and also provides a high extinction ratio in an integrated coherent balanced receiver. We further present the design strategies for avoiding mode distortion in the beam splitter and discuss optimization of the widths of the detectors to improve insertion loss and extinction ratio of the coherent receiver circuit. In our study, we show that the grating-based beam splitter is a competitive technology having low fabrication complexity for ultracompact PICs.

  15. Development of high speed integrated circuit for very high resolution timing measurements

    International Nuclear Information System (INIS)

    Mester, Christian

    2009-10-01

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  16. Development of high speed integrated circuit for very high resolution timing measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mester, Christian

    2009-10-15

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  17. Advantages of a vertical integration process in the design of DNW MAPS

    International Nuclear Information System (INIS)

    Ratti, L.; Gaioni, L.; Manazza, A.; Manghisoni, M.; Re, V.; Traversi, G.

    2015-01-01

    This work discusses the main features of a CMOS Deep N-well (DNW) monolithic active pixel sensor (MAPS) fabricated in a vertically integrated technology, where two 130 nm CMOS homogeneous tiers are processed to obtain a 3D integrated circuit (3D-IC). The 3D CMOS MAPS, which was designed in view of vertexing applications to experiments at high luminosity colliders, features a 20 μm pitch for a point resolution of about 5 μm and data sparsification capabilities for high data rate systems. Results from the characterization of different test structures, including single pixels, 3×3 and 8×8 matrices, are presented. In particular, measurements have been performed with an infrared laser source to evaluate the charge collection properties of the proposed vertically integrated sensors

  18. Advantages of a vertical integration process in the design of DNW MAPS

    Energy Technology Data Exchange (ETDEWEB)

    Ratti, L. [Università di Pavia, Dipartimento di Elettronica, Via Ferrata 1, I-27100 Pavia (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Gaioni, L. [Università di Bergamo, Dipartimento di Ingegneria Industriale, Via Marconi 5, I-24044 Dalmine (Italy); Manazza, A. [INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Manghisoni, M.; Re, V.; Traversi, G. [Università di Bergamo, Dipartimento di Ingegneria Industriale, Via Marconi 5, I-24044 Dalmine (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy)

    2015-06-01

    This work discusses the main features of a CMOS Deep N-well (DNW) monolithic active pixel sensor (MAPS) fabricated in a vertically integrated technology, where two 130 nm CMOS homogeneous tiers are processed to obtain a 3D integrated circuit (3D-IC). The 3D CMOS MAPS, which was designed in view of vertexing applications to experiments at high luminosity colliders, features a 20 μm pitch for a point resolution of about 5 μm and data sparsification capabilities for high data rate systems. Results from the characterization of different test structures, including single pixels, 3×3 and 8×8 matrices, are presented. In particular, measurements have been performed with an infrared laser source to evaluate the charge collection properties of the proposed vertically integrated sensors.

  19. Topology and boundary shape optimization as an integrated design tool

    Science.gov (United States)

    Bendsoe, Martin Philip; Rodrigues, Helder Carrico

    1990-01-01

    The optimal topology of a two dimensional linear elastic body can be computed by regarding the body as a domain of the plane with a high density of material. Such an optimal topology can then be used as the basis for a shape optimization method that computes the optimal form of the boundary curves of the body. This results in an efficient and reliable design tool, which can be implemented via common FEM mesh generator and CAD type input-output facilities.

  20. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    Science.gov (United States)

    Clark, Lawrence T [Phoenix, AZ; McIver, III, John K.

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  1. Design of High Field Solenoids made of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bartalesi, Antonio; /Pisa U.

    2010-12-01

    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

  2. Premixer Design for High Hydrogen Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin P. Lacy; Keith R. McManus; Balachandar Varatharajan; Biswadip Shome

    2005-12-16

    This 21-month project translated DLN technology to the unique properties of high hydrogen content IGCC fuels, and yielded designs in preparation for a future testing and validation phase. Fundamental flame characterization, mixing, and flame property measurement experiments were conducted to tailor computational design tools and criteria to create a framework for predicting nozzle operability (e.g., flame stabilization, emissions, resistance to flashback/flame-holding and auto-ignition). This framework was then used to establish, rank, and evaluate potential solutions to the operability challenges of IGCC combustion. The leading contenders were studied and developed with the most promising concepts evaluated via computational fluid dynamics (CFD) modeling and using the design rules generated by the fundamental experiments, as well as using GE's combustion design tools and practices. Finally, the project scoped the necessary steps required to carry the design through mechanical and durability review, testing, and validation, towards full demonstration of this revolutionary technology. This project was carried out in three linked tasks with the following results. (1) Develop conceptual designs of premixer and down-select the promising options. This task defined the ''gap'' between existing design capabilities and the targeted range of IGCC fuel compositions and evaluated the current capability of DLN pre-mixer designs when operated at similar conditions. Two concepts (1) swirl based and (2) multiple point lean direct injection based premixers were selected via a QFD from 13 potential design concepts. (2) Carry out CFD on chosen options (1 or 2) to evaluate operability risks. This task developed the leading options down-selected in Task 1. Both a GE15 swozzle based premixer and a lean direct injection concept were examined by performing a detailed CFD study wherein the aerodynamics of the design, together with the chemical kinetics of the

  3. Design of High Efficient MPPT Solar Inverter

    Directory of Open Access Journals (Sweden)

    Sunitha K. A.

    2017-01-01

    Full Text Available This work aims to design a High Efficient Maximum Power Point Tracking (MPPT Solar Inverter. A boost converter is designed in the system to boost the power from the photovoltaic panel. By this experimental setup a room consisting of 500 Watts load (eight fluorescent tubes is completely controlled. It is aimed to decrease the maintenance cost. A microcontroller is introduced for tracking the P&O (Perturb and Observe algorithm used for tracking the maximum power point. The duty cycle for the operation of the boost convertor is optimally adjusted by using MPPT controller. There is a MPPT charge controller to charge the battery as well as fed to inverter which runs the load. Both the P&O scheme with the fixed variation for the reference current and the intelligent MPPT algorithm were able to identify the global Maximum power point, however the performance of the MPPT algorithm was better.

  4. Integral Design Methodology of Photocatalytic Reactors for Air Pollution Remediation

    Directory of Open Access Journals (Sweden)

    Claudio Passalía

    2017-06-01

    Full Text Available An integral reactor design methodology was developed to address the optimal design of photocatalytic wall reactors to be used in air pollution control. For a target pollutant to be eliminated from an air stream, the proposed methodology is initiated with a mechanistic derived reaction rate. The determination of intrinsic kinetic parameters is associated with the use of a simple geometry laboratory scale reactor, operation under kinetic control and a uniform incident radiation flux, which allows computing the local superficial rate of photon absorption. Thus, a simple model can describe the mass balance and a solution may be obtained. The kinetic parameters may be estimated by the combination of the mathematical model and the experimental results. The validated intrinsic kinetics obtained may be directly used in the scaling-up of any reactor configuration and size. The bench scale reactor may require the use of complex computational software to obtain the fields of velocity, radiation absorption and species concentration. The complete methodology was successfully applied to the elimination of airborne formaldehyde. The kinetic parameters were determined in a flat plate reactor, whilst a bench scale corrugated wall reactor was used to illustrate the scaling-up methodology. In addition, an optimal folding angle of the corrugated reactor was found using computational fluid dynamics tools.

  5. GLobal Integrated Design Environment (GLIDE): A Concurrent Engineering Application

    Science.gov (United States)

    McGuire, Melissa L.; Kunkel, Matthew R.; Smith, David A.

    2010-01-01

    The GLobal Integrated Design Environment (GLIDE) is a client-server software application purpose-built to mitigate issues associated with real time data sharing in concurrent engineering environments and to facilitate discipline-to-discipline interaction between multiple engineers and researchers. GLIDE is implemented in multiple programming languages utilizing standardized web protocols to enable secure parameter data sharing between engineers and researchers across the Internet in closed and/or widely distributed working environments. A well defined, HyperText Transfer Protocol (HTTP) based Application Programming Interface (API) to the GLIDE client/server environment enables users to interact with GLIDE, and each other, within common and familiar tools. One such common tool, Microsoft Excel (Microsoft Corporation), paired with its add-in API for GLIDE, is discussed in this paper. The top-level examples given demonstrate how this interface improves the efficiency of the design process of a concurrent engineering study while reducing potential errors associated with manually sharing information between study participants.

  6. Integrated learning in practical machine element design course: a case study of V-pulley design

    Science.gov (United States)

    Tantrabandit, Manop

    2014-06-01

    To achieve an effective integrated learning in Machine Element Design course, it is of importance to bridge the basic knowledge and skills of element designs. The multiple core learning leads the pathway which consists of two main parts. The first part involves teaching documents of which the contents are number of V-groove formulae, standard of V-grooved pulleys, and parallel key dimension's formulae. The second part relates to the subjects that the students have studied prior to participating in this integrated learning course, namely Material Selection, Manufacturing Process, Applied Engineering Drawing, CAD (Computer Aided Design) animation software. Moreover, an intensive cooperation between a lecturer and students is another key factor to fulfill the success of integrated learning. Last but not least, the students need to share their knowledge within the group and among the other groups aiming to gain knowledge of and skills in 1) the application of CAD-software to build up manufacture part drawings, 2) assembly drawing, 3) simulation to verify the strength of loaded pulley by method of Finite Element Analysis (FEA), 4) the software to create animation of mounting and dismounting of a pulley to a shaft, and 5) an instruction manual. The end product of this integrated learning, as a result of the above 1 to 5 knowledge and skills obtained, the participating students can create an assembly derived from manufacture part drawings and a video presentation with bilingual (English-Thai) audio description of Vpulley with datum diameter of 250 mm, 4 grooves, and type of groove: SPA.

  7. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  8. Design for high productivity remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Sykes, N., E-mail: nick.sykes@ccfe.ac.uk [Culham Centre For Fusion Energy, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom); Collins, S.; Loving, A.B.; Ricardo, V. [Culham Centre For Fusion Energy, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom); Villedieu, E. [Association Euratom-CEA Cadarache, DSM/IRFM, Saint Paul Les Durance (France)

    2011-10-15

    As the central part of a programme of enhancements in support of ITER, the Joint European Torus (JET) is being equipped with an all-metal wall. This enhancement programme requires the removal and installation of 6927 tile carriers and tiles, as well as the removal and installation of embedded diagnostics and antennas. The scale of this operation and the necessity to maximise operational availability of the facility added a requirement for high productivity in the remote activities to the existing exigencies of precision, reliability, cleanliness and operational security. This high productivity requirement has been incorporated into the design of the components and associated installation tooling, the design of the installation equipment, the development of installation procedures including the use of a mock-up for optimisation and training. Consideration of the remote handling installation process is vital during the design of the in vessel components. A number of features to meet the need of the high productivity while maintaining the function requirements have been incorporated into the metal wall components and associated tooling including kinematic design with guidance appropriate for remote operation. The component and tools are designed to guide the attachment of the installation tool, the installation path, and the interlocking with adjacent components without contact between the fragile castellated beryllium of the adjacent tiles. Other incorporated ergonomic features are discussed. At JET, the remote maintenance is conducted using end effectors, normally bi-lateral force feed back manipulator, mounted on driven, articulated booms. Prior to the current shutdown one long boom was used to conduct the installation and collect and deliver components to the 'short' boom which was linked to the tile carrier transfer facility. This led to loss of efficiency during these movements. The adoption of a new remote handling philosophy using 'point of

  9. Design for high productivity remote handling

    International Nuclear Information System (INIS)

    Sykes, N.; Collins, S.; Loving, A.B.; Ricardo, V.; Villedieu, E.

    2011-01-01

    As the central part of a programme of enhancements in support of ITER, the Joint European Torus (JET) is being equipped with an all-metal wall. This enhancement programme requires the removal and installation of 6927 tile carriers and tiles, as well as the removal and installation of embedded diagnostics and antennas. The scale of this operation and the necessity to maximise operational availability of the facility added a requirement for high productivity in the remote activities to the existing exigencies of precision, reliability, cleanliness and operational security. This high productivity requirement has been incorporated into the design of the components and associated installation tooling, the design of the installation equipment, the development of installation procedures including the use of a mock-up for optimisation and training. Consideration of the remote handling installation process is vital during the design of the in vessel components. A number of features to meet the need of the high productivity while maintaining the function requirements have been incorporated into the metal wall components and associated tooling including kinematic design with guidance appropriate for remote operation. The component and tools are designed to guide the attachment of the installation tool, the installation path, and the interlocking with adjacent components without contact between the fragile castellated beryllium of the adjacent tiles. Other incorporated ergonomic features are discussed. At JET, the remote maintenance is conducted using end effectors, normally bi-lateral force feed back manipulator, mounted on driven, articulated booms. Prior to the current shutdown one long boom was used to conduct the installation and collect and deliver components to the 'short' boom which was linked to the tile carrier transfer facility. This led to loss of efficiency during these movements. The adoption of a new remote handling philosophy using 'point of installation

  10. Systems engineering applied to integrated safety management for high consequence facilities

    International Nuclear Information System (INIS)

    Barter, R; Morais, B.

    1998-01-01

    Integrated Safety Management is a concept that is being actively promoted by the U.S. Department of Energy as a means of assuring safe operation of its facilities. The concept involves the integration of safety precepts into work planning rather than adjusting for safe operations after defining the work activity. The system engineering techniques used to design an integrated safety management system for a high consequence research facility are described. An example is given to show how the concepts evolved with the system design

  11. High temperature creep-fatigue design

    International Nuclear Information System (INIS)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M.

    2010-01-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  12. High temperature creep-fatigue design

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M. [CEA Saclay, DEN DMN, F-91191 Gif Sur Yvette (France)

    2010-07-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  13. Data Integration and Mining for Synthetic Biology Design.

    Science.gov (United States)

    Mısırlı, Göksel; Hallinan, Jennifer; Pocock, Matthew; Lord, Phillip; McLaughlin, James Alastair; Sauro, Herbert; Wipat, Anil

    2016-10-21

    One aim of synthetic biologists is to create novel and predictable biological systems from simpler modular parts. This approach is currently hampered by a lack of well-defined and characterized parts and devices. However, there is a wealth of existing biological information, which can be used to identify and characterize biological parts, and their design constraints in the literature and numerous biological databases. However, this information is spread among these databases in many different formats. New computational approaches are required to make this information available in an integrated format that is more amenable to data mining. A tried and tested approach to this problem is to map disparate data sources into a single data set, with common syntax and semantics, to produce a data warehouse or knowledge base. Ontologies have been used extensively in the life sciences, providing this common syntax and semantics as a model for a given biological domain, in a fashion that is amenable to computational analysis and reasoning. Here, we present an ontology for applications in synthetic biology design, SyBiOnt, which facilitates the modeling of information about biological parts and their relationships. SyBiOnt was used to create the SyBiOntKB knowledge base, incorporating and building upon existing life sciences ontologies and standards. The reasoning capabilities of ontologies were then applied to automate the mining of biological parts from this knowledge base. We propose that this approach will be useful to speed up synthetic biology design and ultimately help facilitate the automation of the biological engineering life cycle.

  14. Bioblendstocks that Enable High Efficiency Engine Designs

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.; Fioroni, Gina M.; Ratcliff, Matthew A.; Zigler, Bradley T.; Farrell, John

    2016-11-03

    The past decade has seen a high level of innovation in production of biofuels from sugar, lipid, and lignocellulose feedstocks. As discussed in several talks at this workshop, ethanol blends in the E25 to E50 range could enable more highly efficient spark-ignited (SI) engines. This is because of their knock resistance properties that include not only high research octane number (RON), but also charge cooling from high heat of vaporization, and high flame speed. Emerging alcohol fuels such as isobutanol or mixed alcohols have desirable properties such as reduced gasoline blend vapor pressure, but also have lower RON than ethanol. These fuels may be able to achieve the same knock resistance benefits, but likely will require higher blend levels or higher RON hydrocarbon blendstocks. A group of very high RON (>150) oxygenates such as dimethyl furan, methyl anisole, and related compounds are also produced from biomass. While providing no increase in charge cooling, their very high octane numbers may provide adequate knock resistance for future highly efficient SI engines. Given this range of options for highly knock resistant fuels there appears to be a critical need for a fuel knock resistance metric that includes effects of octane number, heat of vaporization, and potentially flame speed. Emerging diesel fuels include highly branched long-chain alkanes from hydroprocessing of fats and oils, as well as sugar-derived terpenoids. These have relatively high cetane number (CN), which may have some benefits in designing more efficient CI engines. Fast pyrolysis of biomass can produce diesel boiling range streams that are high in aromatic, oxygen and acid contents. Hydroprocessing can be applied to remove oxygen and consequently reduce acidity, however there are strong economic incentives to leave up to 2 wt% oxygen in the product. This oxygen will primarily be present as low CN alkyl phenols and aryl ethers. While these have high heating value, their presence in diesel fuel

  15. Computer Aided Product Service Systems Design : Service CAD and Its integration with Life Cycle Simulation

    NARCIS (Netherlands)

    Komoto, H.

    2009-01-01

    Integration of product design into service design, or vice versa, is considered to bring more efficient and effective value addition. Besides EcoDesign tools and methods, a methodology to design such an integration of products and services from a systemic perspective, or product-service systems

  16. A high-level product representation for automatic design reasoning

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, E.; Qamar, Z.; Mohammad, R. [Texas A and M Univ., College Station, TX (United States). Mechanical Engineering Dept.

    1994-12-31

    A high-level product representation has been developed and implemented, using features for part description and mating conditions between features for the relationships among parts. The underlying ideas are that features are necessary for effective design representation; that spatial and functional relationships among parts of an assembly are best expressed through mating conditions; that assembly features of a part may, at times, be different from its manufacturing features; and that a good representation should be natural, intelligent, comprehensive, and integrated with a visual display. Some new mating conditions have been defined and classified. Several problems concerning the use of features with mating conditions are discussed.

  17. Audiovisual Integration in High Functioning Adults with Autism

    Science.gov (United States)

    Keane, Brian P.; Rosenthal, Orna; Chun, Nicole H.; Shams, Ladan

    2010-01-01

    Autism involves various perceptual benefits and deficits, but it is unclear if the disorder also involves anomalous audiovisual integration. To address this issue, we compared the performance of high-functioning adults with autism and matched controls on experiments investigating the audiovisual integration of speech, spatiotemporal relations, and…

  18. Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor

    Science.gov (United States)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, Abdelhamid A.; El Deeb, Walid S.; Obayya, Salah S. A.

    2016-10-01

    A design of a highly sensitive multichannel biosensor based on photonic crystal fiber is proposed and analyzed. The suggested design has a silver layer as a plasmonic material coated by a gold layer to protect silver oxidation. The reported sensor is based on detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes, which offers the possibility of multichannel/multianalyte sensing. The numerical results are obtained using a finite element method with perfect matched layer boundary conditions. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High-refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained according to the quasi TM and quasi TE modes of the proposed sensor, respectively. Further, the reported design can be used as a self-calibration biosensor within an unknown analyte refractive index ranging from 1.33 to 1.35 with high linearity and high accuracy. Moreover, the suggested biosensor has advantages in terms of compactness and better integration of microfluidics setup, waveguide, and metallic layers into a single structure.

  19. High Efficiency Lighting with Integrated Adaptive Control (HELIAC), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is the continued development of the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system. Solar radiation is not a viable...

  20. High Efficiency Lighting with Integrated Adaptive Control (HELIAC), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation of the proposed project is the development of High Efficiency Lighting with Integrated Adaptive Control (HELIAC) systems to drive plant growth. Solar...