Sample records for highly heterogeneous porous

  1. Flow and travel time statistics in highly heterogeneous porous media (United States)

    Gotovac, Hrvoje; Cvetkovic, Vladimir; Andricevic, Roko


    In this paper we present flow and travel time ensemble statistics based on a new simulation methodology, the adaptive Fup Monte Carlo method (AFMCM). As a benchmark case, we considered two-dimensional steady flow in a rectangular domain characterized by multi-Gaussian heterogeneity structure with an isotropic exponential correlation and lnK variance σY2 up to 8. Advective transport is investigated using the travel time framework where Lagrangian variables (e.g., velocity, transverse displacement, or travel time) depend on space rather than on time. We find that Eulerian and Lagrangian velocity distributions diverge for increasing lnK variance due to enhanced channeling. Transverse displacement is a nonnormal for all σY2 and control planes close to the injection area, but after xIY = 20 was found to be nearly normal even for high σY2. Travel time distribution deviates from the Fickian model for large lnK variance and exhibits increasing skewness and a power law tail for large lnK variance, the slope of which decreases for increasing distance from the source; no anomalous features are found. Second moment of advective transport is analyzed with respect to the covariance of two Lagrangian velocity variables: slowness and slope which are directly related to the travel time and transverse displacement variance, which are subsequently related to the longitudinal and transverse dispersion. We provide simple estimators for the Eulerian velocity variance, travel time variance, slowness, and longitudinal dispersivity as a practical contribution of this analysis. Both two-parameter models considered (the advection-dispersion equation and the lognormal model) provide relatively poor representations of the initial part of the travel time probability density function in highly heterogeneous porous media. We identify the need for further theoretical and experimental scrutiny of early arrival times, and the need for computing higher-order moments for a more accurate

  2. High Velocity Impact Interaction of Metal Particles with Porous Heterogeneous Materials with an Inorganic Matrix (United States)

    Glazunov, A. A.; Ishchenko, A. N.; Afanasyeva, S. A.; Belov, N. N.; Burkin, V. V.; Rogaev, K. S.; Tabachenko, A. N.; Khabibulin, M. V.; Yugov, N. T.


    A computational-experimental investigation of stress-strain state and fracture of a porous heterogeneous material with an inorganic matrix, used as a thermal barrier coating of flying vehicles, under conditions of a high-velocity impact by a spherical steel projectile imitating a meteorite particle is discussed. Ballistic tests are performed at the velocities about 2.5 km/s. Numerical modeling of the high-velocity impact is described within the framework of a porous elastoplastic model including fracture and different phase states of the materials. The calculations are performed using the Euler and Lagrange numerical techniques for the velocities up to 10 km/s in a complete-space problem statement.

  3. Multiscale Lattice Boltzmann method for flow simulations in highly heterogenous porous media

    KAUST Repository

    Li, Jun


    A lattice Boltzmann method (LBM) for flow simulations in highly heterogeneous porous media at both pore and Darcy scales is proposed in the paper. In the pore scale simulations, flow of two phases (e.g., oil and gas) or two immiscible fluids (e.g., water and oil) are modeled using cohesive or repulsive forces, respectively. The relative permeability can be computed using pore-scale simulations and seamlessly applied for intermediate and Darcy-scale simulations. A multiscale LBM that can reduce the computational complexity of existing LBM and transfer the information between different scales is implemented. The results of coarse-grid, reduced-order, simulations agree very well with the averaged results obtained using fine grid.

  4. Statistics of highly heterogeneous flow fields confined to three-dimensional random porous media (United States)

    Jin, C.; Langston, P. A.; Pavlovskaya, G. E.; Hall, M. R.; Rigby, S. P.


    We present a strong relationship between the microstructural characteristics of, and the fluid velocity fields confined to, three-dimensional random porous materials. The relationship is revealed through simultaneously extracting correlation functions Ru u(r ) of the spatial (Eulerian) velocity fields and microstructural two-point correlation functions S2(r ) of the random porous heterogeneous materials. This demonstrates that the effective physical transport properties depend on the characteristics of complex pore structure owing to the relationship between Ru u(r ) and S2(r ) revealed in this study. Further, the mean excess plot was used to investigate the right tail of the streamwise velocity component that was found to obey light-tail distributions. Based on the mean excess plot, a generalized Pareto distribution can be used to approximate the positive streamwise velocity distribution.

  5. A note on variational multiscale methods for high-contrast heterogeneous porous media flows with rough source terms

    KAUST Repository

    Calo, Victor M.


    In this short note, we discuss variational multiscale methods for solving porous media flows in high-contrast heterogeneous media with rough source terms. Our objective is to separate, as much as possible, subgrid effects induced by the media properties from those due to heterogeneous source terms. For this reason, enriched coarse spaces designed for high-contrast multiscale problems are used to represent the effects of heterogeneities of the media. Furthermore, rough source terms are captured via auxiliary correction equations that appear in the formulation of variational multiscale methods [23]. These auxiliary equations are localized and one can use additive or multiplicative constructions for the subgrid corrections as discussed in the current paper. Our preliminary numerical results show that one can capture the effects due to both spatial heterogeneities in the coefficients (such as permeability field) and source terms (e.g., due to singular well terms) in one iteration. We test the cases for both smooth source terms and rough source terms and show that with the multiplicative correction, the numerical approximations are more accurate compared to the additive correction. © 2010 Elsevier Ltd.

  6. Modeling Endovascular Coils as Heterogeneous Porous Media (United States)

    Yadollahi Farsani, H.; Herrmann, M.; Chong, B.; Frakes, D.


    Minimally invasive surgeries are the stat-of-the-art treatments for many pathologies. Treating brain aneurysms is no exception; invasive neurovascular clipping is no longer the only option and endovascular coiling has introduced itself as the most common treatment. Coiling isolates the aneurysm from blood circulation by promoting thrombosis within the aneurysm. One approach to studying intra-aneurysmal hemodynamics consists of virtually deploying finite element coil models and then performing computational fluid dynamics. However, this approach is often computationally expensive and requires extensive resources to perform. The porous medium approach has been considered as an alternative to the conventional coil modeling approach because it lessens the complexities of computational fluid dynamics simulations by reducing the number of mesh elements needed to discretize the domain. There have been a limited number of attempts at treating the endovascular coils as homogeneous porous media. However, the heterogeneity associated with coil configurations requires a more accurately defined porous medium in which the porosity and permeability change throughout the domain. We implemented this approach by introducing a lattice of sample volumes and utilizing techniques available in the field of interactive computer graphics. We observed that the introduction of the heterogeneity assumption was associated with significant changes in simulated aneurysmal flow velocities as compared to the homogeneous assumption case. Moreover, as the sample volume size was decreased, the flow velocities approached an asymptotical value, showing the importance of the sample volume size selection. These results demonstrate that the homogeneous assumption for porous media that are inherently heterogeneous can lead to considerable errors. Additionally, this modeling approach allowed us to simulate post-treatment flows without considering the explicit geometry of a deployed endovascular coil mass

  7. Porous metal-organic frameworks for heterogeneous biomimetic catalysis. (United States)

    Zhao, Min; Ou, Sha; Wu, Chuan-De


    Metalloporphyrins are the active sites in monooxygenases that oxidize a variety of substrates efficiently and under mild conditions. Researchers have developed artificial metalloporphyrins, but these structures have had limited catalytic applications. Homogeneous artificial metalloporphyrins can undergo catalytic deactivation via suicidal self-oxidation, which lowers their catalytic activity and sustainability relative to their counterparts in Nature. Heme molecules in protein scaffolds can maintain high efficiency over numerous catalytic cycles. Therefore, we wondered if immobilizing metalloporphyrin moieties within porous metal-organic frameworks (MOFs) could stabilize these structures and facilitate the molecular recognition of substrates and produce highly efficient biomimetic catalysis. In this Account, we describe our research to develop multifunctional porphyrinic frameworks as highly efficient heterogeneous biomimetic catalysts. Our studies indicate that porous porphyrinic frameworks provide an excellent platform for mimicking the activity of biocatalysts and developing new heterogeneous catalysts that effect new chemical transformations under mild conditions. The porous structures and framework topologies of the porphyrinic frameworks depend on the configurations, coordination donors, and porphyrin metal ions of the metalloporphyrin moieties. To improve the activity of porous porphyrinic frameworks, we have developed a two-step synthesis that introduces the functional polyoxometalates (POMs) into POM-porphyrin hybrid materials. To tune the pore structures and the catalytic properties of porphyrinic frameworks, we have designed metalloporphyrin M-H8OCPP ligands with four m-benzenedicarboxylate moieties, and introduced the secondary auxiliary ligands. The porphyrin metal ions and the secondary functional moieties that are incorporated into porous metal-organic frameworks greatly influence the catalytic properties and activities of porphyrinic frameworks in

  8. Vorticity and upscaled dispersion in 3D heterogeneous porous media (United States)

    Di Dato, Mariaines; Chiogna, Gabriele; de Barros, Felipe; Bellin, Alberto; Fiori, Aldo


    Modeling flow in porous media is relevant for many environmental, energy and industrial applications. From an environmental perspective, the relevance of porous media flow becomes evident in subsurface hydrology. In general, flow in natural porous media is creeping, yet the large variability in the hydraulic conductivity values encountered in natural aquifers leads to highly heterogeneous flow fields. This natural variability in the conductivity field will affect both dilution rates of chemical species and reactive mixing. A physical consequence of this heterogeneity is also the presence of a various localized kinematical features such as straining, shearing and vorticity in aquifers, which will influence the shape of solute clouds and its fate and transport. This work aims in fundamentally characterizing the vorticity field in spatially heterogeneous flow fields as a function of their statistical properties in order to analyze the impact on transport processes. In our study, three-dimensional porous formations are constructed with an ensemble of N independent, non-overlapping spheroidal inclusions submerged into an homogeneous matrix, of conductivity K0. The inclusions are randomly located in a domain of volume W and are fully characterized by the geometry of spheroid (oblate or prolate), their conductivity K (random and drawn from a given probability density function fκ), the centroid location ¯x, the axes ratio e, the orientation of the rotational axis (α1,α2) and the volume w. Under the assumption of diluted medium, the flow problem is solved analitically by means of only two parameters: the conductivity contrast κ = K/K0 and the volume fraction n = Nw/W . Through the variation of these parameters of the problem, it is possible to approximate the structure of natural heterogeneous porous media. Using a random distribution of the orientation of the inclusions, we create media defined by the same global anisotropy f = Iz/Ix but different micro

  9. Highly Refractory Porous Ceramics, (United States)


    also highly refractory porous materials based on co- rundum and magnesite were released in a limited amount.(1,6). The technology of manufacturing...there is an effect of slags and 4and other molten substances ( glasses , metals, etc.), under conditions where there is an effect of gas flows at high...slags, metal, glass , ashes, etc. (Table 53). Table 53 Ta6.,Hua 53 A Upeue~mbuas TenepaTypa npNveneas aA$MocANAEnaTNX n AunacoMux aerolecubM

  10. Entrapment and dissolution of DNAPLs in heterogeneous porous media. (United States)

    Bradford, Scott A; Rathfelder, Klaus M; Lang, John; Abriola, Linda M


    Two-dimensional multiphase flow and transport simulators were refined and used to numerically investigate the entrapment and dissolution behavior of tetrachloroethylene (PCE) in heterogeneous porous media containing spatial variations in wettability. Measured hydraulic properties, residual saturations, and dissolution parameters were employed in these simulations. Entrapment was quantified using experimentally verified hydraulic property and residual saturation models that account for hysteresis and wettability variations. The nonequilibrium dissolution of PCE was modeled using independent estimates of the film mass transfer coefficient and interfacial area for entrapped and continuous (PCE pools or films) saturations. Flow simulations demonstrate that the spatial distribution of PCE is highly dependent on subsurface wettability characteristics that create differences in PCE retention mechanisms and the presence of subsurface capillary barriers. For a given soil texture, the maximum and minimum PCE infiltration depth was obtained when the sand had intermediate (an organic-wet mass fraction of 25%) and strong (water- or organic-wet) wettability conditions, respectively. In heterogeneous systems, subsurface wettability variations were also found to enhance or diminish the performance of soil texture-induced capillary barriers. The dissolution behavior of PCE was found to depend on the soil wettability and the spatial PCE distribution. Shorter dissolution times tended to occur when PCE was distributed over large regions due to an increased access of flowing water to the PCE. In heterogeneous systems, capillary barriers that produced high PCE saturations tended to exhibit longer dissolution times.

  11. Plume dynamics in heterogeneous porous media (United States)

    Neufeld, Jerome A.; Huppert, Herbert E.


    Buoyancy driven flows in layered porous media are present in many geological settings and play an important role in the mixing of fluids, from the dispersal of pollutants in underground aquifers to enhanced oil recovery techniques and, of more recent importance, the sequestration of carbon dioxide (CO2). Seismic images of the rise of a buoyant CO2 plume at Sleipner in the North Sea indicate that these plumes are greatly influenced by a vertical array of thin lenses of relatively low permeability material. We model propagation of CO2 at each layer as a gravity current in a porous medium which propagates along, and drains through, a thin, low permeability seal. Drainage, driven both by hydrostatic pressure and the body force on the draining fluid, leads to an initial rapid advance followed by a gradual retreat of the current to a steady-state. By incorporating a vertical array of these single layer models we are able to capture the rise of the buoyant plume in layered reservoirs. We find that the plume is characterized by a broad head with a tail given by the steady state extent.

  12. Multi-level adaptive simulation of transient two-phase flow in heterogeneous porous media

    KAUST Repository

    Chueh, C.C.


    An implicit pressure and explicit saturation (IMPES) finite element method (FEM) incorporating a multi-level shock-type adaptive refinement technique is presented and applied to investigate transient two-phase flow in porous media. Local adaptive mesh refinement is implemented seamlessly with state-of-the-art artificial diffusion stabilization allowing simulations that achieve both high resolution and high accuracy. Two benchmark problems, modelling a single crack and a random porous medium, are used to demonstrate the robustness of the method and illustrate the capabilities of the adaptive refinement technique in resolving the saturation field and the complex interaction (transport phenomena) between two fluids in heterogeneous media. © 2010 Elsevier Ltd.

  13. Forecasting the brittle failure of heterogeneous, porous geomaterials (United States)

    Vasseur, Jérémie; Wadsworth, Fabian; Heap, Michael; Main, Ian; Lavallée, Yan; Dingwell, Donald


    Heterogeneity develops in magmas during ascent and is dominated by the development of crystal and importantly, bubble populations or pore-network clusters which grow, interact, localize, coalesce, outgas and resorb. Pore-scale heterogeneity is also ubiquitous in sedimentary basin fill during diagenesis. As a first step, we construct numerical simulations in 3D in which randomly generated heterogeneous and polydisperse spheres are placed in volumes and which are permitted to overlap with one another, designed to represent the random growth and interaction of bubbles in a liquid volume. We use these simulated geometries to show that statistical predictions of the inter-bubble lengthscales and evolving bubble surface area or cluster densities can be made based on fundamental percolation theory. As a second step, we take a range of well constrained random heterogeneous rock samples including sandstones, andesites, synthetic partially sintered glass bead samples, and intact glass samples and subject them to a variety of stress loading conditions at a range of temperatures until failure. We record in real time the evolution of the number of acoustic events that precede failure and show that in all scenarios, the acoustic event rate accelerates toward failure, consistent with previous findings. Applying tools designed to forecast the failure time based on these precursory signals, we constrain the absolute error on the forecast time. We find that for all sample types, the error associated with an accurate forecast of failure scales non-linearly with the lengthscale between the pore clusters in the material. Moreover, using a simple micromechanical model for the deformation of porous elastic bodies, we show that the ratio between the equilibrium sub-critical crack length emanating from the pore clusters relative to the inter-pore lengthscale, provides a scaling for the error on forecast accuracy. Thus for the first time we provide a potential quantitative correction for

  14. A discontinuous control volume finite element method for multi-phase flow in heterogeneous porous media (United States)

    Salinas, P.; Pavlidis, D.; Xie, Z.; Osman, H.; Pain, C. C.; Jackson, M. D.


    We present a new, high-order, control-volume-finite-element (CVFE) method for multiphase porous media flow with discontinuous 1st-order representation for pressure and discontinuous 2nd-order representation for velocity. The method has been implemented using unstructured tetrahedral meshes to discretize space. The method locally and globally conserves mass. However, unlike conventional CVFE formulations, the method presented here does not require the use of control volumes (CVs) that span the boundaries between domains with differing material properties. We demonstrate that the approach accurately preserves discontinuous saturation changes caused by permeability variations across such boundaries, allowing efficient simulation of flow in highly heterogeneous models. Moreover, accurate solutions are obtained at significantly lower computational cost than using conventional CVFE methods. We resolve a long-standing problem associated with the use of classical CVFE methods to model flow in highly heterogeneous porous media.

  15. Soluble Metal-Nanoparticle-Decorated Porous Coordination Polymers for the Homogenization of Heterogeneous Catalysis. (United States)

    Huang, Yuan-Biao; Wang, Qiang; Liang, Jun; Wang, Xusheng; Cao, Rong


    Ultrasmall metal nanoparticles (MNPs) were decorated on soluble porous coordination polymers (PCPs) with high metal loadings. The solubility of the composite and the size of the MNPs can be controlled by varying the ratio of the precursors to the supports. The soluble PCPs can serve as a platform to homogenize heterogeneous MNPs catalysts, which exhibited excellent activity and recyclability in C-H activation and Suzuki reactions. This strategy combines the advantages of homogeneous and heterogeneous catalysis and may bring new inspiration to catalysis.

  16. Shock compression of a heterogeneous, porous polymer composite (United States)

    Neel, Christopher Holmes

    . Correlating the model predictions and the experimental data lead to questions concerning the inertness of the composites and the validity of the assumed form of the Gruneisen coefficient. Possible reactions between the ceramic particles and the THV matrix were investigated. Although no reaction was discovered between Al 2O3 and THV, evidence of a reaction was found between ZrC and THV. It was demonstrated that consideration of the reaction improves the correlation between the predictive models and the observed response. For the 10 mum "ZrC/THV" composite, a major challenge in predicting the shock compression results is identifying the starting components. It was shown that the composite is actually composed of ZrC, monoclinic ZrO 2, THV, and some other unknown contaminants. Even with this compositional uncertainty, it was shown that predictions for the composite Hugoniot agree quite well with experimental results, provided that the higher value gamma was used and the crush-up behavior of the particles is accounted for. This work also presents evidence of a thermally-induced reaction in the ZrC/THV composite, and presents an alternative explanation for the observed Hugoniot based on an exothermic, shock-induced reaction model. Furthermore, this work shows that the waveforms of these porous, heterogeneous polymer composites follow previously noted trends of decreasing risetime with increasing pressure. As part of the investigation into the shock-wave risetimes of the composites, this work also investigated the inherent risetime of the PVDF stress gauges used to record the pressure wave profile, using comparisons with experiments done with VISAR particle velocity gauges. A clear discrepancy in the gauge records after the initial shock wave front has passed is observed. It has been proposed in the past that this discrepancy is due to a pressure-induced phase transformation in the PVDF gauge material, although no evidence of a phase transition is observed at room temperature

  17. Flow of miscible and immiscible hydrocarbons in heterogeneous porous media

    Energy Technology Data Exchange (ETDEWEB)

    Butts, M.B.


    A series of large-scale two-dimensional physical model studies has been carried out in order to better understand and predict the multiphase flow of hydrocarbon contaminants and the release of the water-soluble fraction of such contaminants into the groundwater stream. The detailed measurements of the fluid saturations within the bulk hydrocarbon plume as well as the aqueous concentrations recorded downstream should provide a useful data set for testing and improving numerical models of both multiphase flow and transport. Predictions of a numerical model of immiscible multiphase flow developed in the petroleum industry were found to compare favourably with the observed oil plume for the case of an immiscible oil spill. Nevertheless, subtle layering within the experimental flume altered the long-term development of the oil plume in a manner not predicted by the numerical model. A stochastic model for three-dimensional, two-phase incompressible flow in heterogeneous soil and rock formations is developed. Analytical solutions for the resulting stochastic differential equations are derived for asymptotic flows using a perturbation approach. These solutions were used to derive general expressions for the large-scale (effective) properties for large-scale two-phase flow in porous media. An important observation from this analysis is that general large-scale flow in heterogeneous soils cannot be predicted on the basis of simple averages of the soil hydraulic properties alone. The large-scale capillary pressure saturation relation is evaluated for imbibition into a wet soil or rock formation. (EG) 194 refs.

  18. Complexity Reduction of Multiphase Flows in Heterogeneous Porous Media

    KAUST Repository

    Ghommem, Mehdi


    In this paper, we apply mode decomposition and interpolatory projection methods to speed up simulations of two-phase flows in heterogeneous porous media. We propose intrusive and nonintrusive model-reduction approaches that enable a significant reduction in the size of the subsurface flow problem while capturing the behavior of the fully resolved solutions. In one approach, we use the dynamic mode decomposition. This approach does not require any modification of the reservoir simulation code but rather post-processes a set of global snapshots to identify the dynamically relevant structures associated with the flow behavior. In the second approach, we project the governing equations of the velocity and the pressure fields on the subspace spanned by their proper-orthogonal-decomposition modes. Furthermore, we use the discrete empirical interpolation method to approximate the mobility-related term in the global-system assembly and then reduce the online computational cost and make it independent of the fine grid. To show the effectiveness and usefulness of the aforementioned approaches, we consider the SPE-10 benchmark permeability field, and present a numerical example in two-phase flow. One can efficiently use the proposed model-reduction methods in the context of uncertainty quantification and production optimization.

  19. A theoretical framework for modeling dilution enhancement of non-reactive solutes in heterogeneous porous media. (United States)

    de Barros, F P J; Fiori, A; Boso, F; Bellin, A


    Spatial heterogeneity of the hydraulic properties of geological porous formations leads to erratically shaped solute clouds, thus increasing the edge area of the solute body and augmenting the dilution rate. In this study, we provide a theoretical framework to quantify dilution of a non-reactive solute within a steady state flow as affected by the spatial variability of the hydraulic conductivity. Embracing the Lagrangian concentration framework, we obtain explicit semi-analytical expressions for the dilution index as a function of the structural parameters of the random hydraulic conductivity field, under the assumptions of uniform-in-the-average flow, small injection source and weak-to-mild heterogeneity. Results show how the dilution enhancement of the solute cloud is strongly dependent on both the statistical anisotropy ratio and the heterogeneity level of the porous medium. The explicit semi-analytical solution also captures the temporal evolution of the dilution rate; for the early- and late-time limits, the proposed solution recovers previous results from the literature, while at intermediate times it reflects the increasing interplay between large-scale advection and local-scale dispersion. The performance of the theoretical framework is verified with high resolution numerical results and successfully tested against the Cape Cod field data. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Migration of buoyant non-wetting fluids in heterogeneous porous media (United States)

    Huber, C.; Parmigiani, A.; Faroughi, S. A.; Bachmann, O.; Karani, H.


    The buoyant migration of a non-wetting fluid in porous media occurs in several natural contexts, such as during CO2 sequestration, methane in cold seeps, DNAPLs infiltration in groundwater, oil recovery and magma chambers. In this study, we use numerical modeling and laboratory experiments to investigate the migration of buoyant non-wetting fluids in time-dependent (reactive) or spatially heterogeneous porous media. We find that the stress balance at the pore scale greatly influences the migration dynamics and regime of viscous energy dissipation of the flow (low Re) and therefore impacts the transport of non-wetting fluid even at the field scale. We consider two complementary pore-scale studies. In the first case, the migration of the non-wetting fluid is impacted by the concurrent dissolution of the porous medium because of the reactivity of the buoyant invading fluid. In the second scenario a chemically inert buoyant non-wetting fluid migrates across an heterogeneous medium, from a low porosity (and permeability) layer into a high porosity (high permeability) layer. We find that these two cases lead to a similar and counter-intuitive outcome: the migration of the buoyant non-wetting fluid is reduced at high porosity/permeability. These counter-intuitive results stem from the effect of confinement of the non-wetting fluid (volume available for invasion) and viscosity ratio between the immiscible fluids on the fluid migration at the pore scale. An important solid confinement (low porosity) stabilizes fingering pathways and promotes efficient transport, while high porosity promotes the formation of an emulsion with discrete bubbles or slugs of non-wetting fluids.

  1. Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings. (United States)

    Phenrat, Tanapon; Cihan, Abdullah; Kim, Hye-Jin; Mital, Menka; Illangasekare, Tissa; Lowry, Gregory V


    Concentrated suspensions of polymer-modified Fe(0) nanoparticles (NZVI) are injected into heterogeneous porous media for groundwater remediation. This study evaluated the effect of porous media heterogeneity and the dispersion properties including particle concentration, Fe(0) content, and adsorbed polymer mass and layer thickness which are expected to affect the delivery and emplacement of NZVI in heterogeneous porous media in a two-dimensional (2-D) cell. Heterogeneity in hydraulic conductivity had a significant impact on the deposition of NZVI. Polymer modified NZVI followed preferential flow paths and deposited in the regions where fluid shear is insufficient to prevent NZVI agglomeration and deposition. NZVI transported in heterogeneous porous media better at low particle concentration (0.3 g/L) than at high particle concentrations (3 and 6 g/L) due to greater particle agglomeration at high concentration. High Fe(0) content decreased transport during injection due to agglomeration promoted by magnetic attraction. NZVI with a flat adsorbed polymeric layer (thickness ∼30 nm) could not be transported effectively due to pore clogging and deposition near the inlet, while NZVI with a more extended adsorbed layer thickness (i.e., ∼70 nm) were mobile in porous media. This study indicates the importance of characterizing porous media heterogeneity and NZVI dispersion properties as part of the design of a robust delivery strategy for NZVI in the subsurface.

  2. Analytical and experimental analysis of solute transport in heterogeneous porous media. (United States)

    Wu, Lei; Gao, Bin; Tian, Yuan; Muñoz-Carpena, Rafael


    Knowledge of solute transport in heterogeneous porous media is crucial to monitor contaminant fate and transport in soil and groundwater systems. In this study, we present new findings from experimental and mathematical analysis to improve current understanding of solute transport in structured heterogeneous porous media. Three saturated columns packed with different sand combinations were used to examine the breakthrough behavior of bromide, a conservative tracer. Experimental results showed that bromide had different breakthrough responses in the three types of sand combinations, indicating that heterogeneity in hydraulic conductivity has a significant effect on the solute transport in structured heterogeneous porous media. Simulations from analytical solutions of a two-domain solute transport model matched experimental breakthrough data well for all the experimental conditions tested. Experimental and model results show that under saturated flow conditions, advection dominates solute transport in both fast-flow and slow-flow domains. The sand with larger hydraulic conductivity provided a preferential flow path for solute transport (fast-flow domain) that dominates the mass transfer in the heterogeneous porous media. Importantly, the transport in the slow-flow domain and mass exchange between the domains also contribute to the flow and solute transport processes and thus must be considered when investigating contaminant transport in heterogeneous porous media.

  3. Compositional multiphase flow and transport in heterogeneous porous media

    Energy Technology Data Exchange (ETDEWEB)

    Huber, R.U.


    This work first treats the conceptual models for the description of multiphase flow processes in porous media. The thermodynamic laws are explained and the description and quantification of multi-fluid equilibria are discussed in order to account for fluid composition. The fully and weakly coupled approaches for the mathematical description of such flow processes with respect to systems consisting of two and three fluid phases as well as with respect to compositional single and multiphase systems are assessed. For the discretization of the two-phase flow equations node- and cell-centered finite volume methods and mixed and mixed-hybrid finite element approaches are applied. Based upon these methods five solution algorithms are developed. Four of these algorithms are based on the simultaneous solution of the discretized equations in combination with the Newton-Raphson technique. Methods 1 and 2 treat two- three-phase flow processes, Method 3 applies to the solution of partially miscible three-component systems while Method 4 is created for three-phase three-component systems. The latter method uses a variable substitution dependent on the local presence of the fluid phases. Method 5 is based on the IMPES/IMPESC concept. The time-implicit pressure equation is discretized with the mixed-hybrid finite element method. The saturation and concentration equations, respectively, are solved with a cell-centered finite volume scheme. The developed algorithms are applied to the two- and three-phase Buckley-Leverett problems. A partitioning interwell tracer test is simulated. The propagation behavior of nonaqueous phase liquids (NAPLs) in the saturated and unsaturated ground zone under the influence of heterogeneities are examined. In addition, a larger-scale experiment is simulated, which involves an injection of trichloroethylene into the subsurface and the subsequent distribution. Here, the development of a dissolved contaminant plume as well as the behavior of organic

  4. Large-scale model of flow in heterogeneous and hierarchical porous media (United States)

    Chabanon, Morgan; Valdés-Parada, Francisco J.; Ochoa-Tapia, J. Alberto; Goyeau, Benoît


    Heterogeneous porous structures are very often encountered in natural environments, bioremediation processes among many others. Reliable models for momentum transport are crucial whenever mass transport or convective heat occurs in these systems. In this work, we derive a large-scale average model for incompressible single-phase flow in heterogeneous and hierarchical soil porous media composed of two distinct porous regions embedding a solid impermeable structure. The model, based on the local mechanical equilibrium assumption between the porous regions, results in a unique momentum transport equation where the global effective permeability naturally depends on the permeabilities at the intermediate mesoscopic scales and therefore includes the complex hierarchical structure of the soil. The associated closure problem is numerically solved for various configurations and properties of the heterogeneous medium. The results clearly show that the effective permeability increases with the volume fraction of the most permeable porous region. It is also shown that the effective permeability is sensitive to the dimensionality spatial arrangement of the porous regions and in particular depends on the contact between the impermeable solid and the two porous regions.

  5. Perturbation-based moment equation approach for flow in heterogeneous porous media: applicability range and analysis of high-order terms (United States)

    Li, Liyong; Tchelepi, Hamdi A.; Zhang, Dongxiao


    We present detailed comparisons between high-resolution Monte Carlo simulation (MCS) and low-order numerical solutions of stochastic moment equations (SMEs) for the first and second statistical moments of pressure. The objective is to quantify the difference between the predictions obtained from MCS and SME. Natural formations with high permeability variability and large spatial correlation scales are of special interest for underground resources (e.g. oil and water). Consequently, we focus on such formations. We investigated fields with variance of log-permeability, σY2, from 0.1 to 3.0 and correlation scales (normalized by domain length) of 0.05 to 0.5. In order to avoid issues related to statistical convergence and resolution level, we used 9000 highly resolved realizations of permeability for MCS. We derive exact discrete forms of the statistical moment equations. Formulations based on equations written explicitly in terms of permeability ( K-based) and log-transformed permeability ( Y-based) are considered. The discrete forms are applicable to systems of arbitrary variance and correlation scales. However, equations governing a particular statistical moment depend on higher moments. Thus, while the moment equations are exact, they are not closed. In particular, the discrete form of the second moment of pressure includes two triplet terms that involve log-permeability (or permeability) and pressure. We combined MCS computations with full discrete SME equations to quantify the importance of the various terms that make up the moment equations. We show that second-moment solutions obtained using a low-order Y-based SME formulation are significantly better than those from K-based formulations, especially when σY2>1. As a result, Y-based formulations are preferred. The two triplet terms are complex functions of the variance level and correlation length. The importance (contribution) of these triplet terms increases dramatically as σY2 increases above one. We also

  6. Solute transport in periodical heterogeneous porous media: Importance of observation scale and experimental sampling (United States)

    Majdalani, S.; Chazarin, J. P.; Delenne, C.; Guinot, V.


    This paper focuses on the effects of the observation scale and sampling on the dispersion of tracers in periodical heterogeneous porous media. A Model Heterogeneous Porous Medium (MHPM) with a high degree of heterogeneity was built. It consists of a preferential flow path surrounded by glass beads. 44 tracer experiments were carried out on several series of periodic MHPM to investigate the effect of the observation scale on solute dispersion. Each series was replicated several times, allowing for a statistical description of the unit transfer function of the MHPM. No significant trend was found for the dispersion coefficient as a function of the size of the MHPM. However, given the variability of the breakthrough curves from one experiment replicate to another, under-sampling might easily lead to conclude that the dispersion coefficient is variable with distance. Depending on the samples used, it would be as easy to (wrongly) detect an increasing trend as to detect a decreasing one. A confidence interval analysis of the experimental breakthrough curves in the Laplace space shows that (i) there exists a model with scale independent parameters that can describe the experimental breakthrough curves within the limits of experimental uncertainty, (ii) this model is not the advection-dispersion (AD) model, (iii) the modelling error of the AD model decreases with the number of periods, (iv) the size of the Reference Elementary Volume for the dispersion coefficient is between 10 and 20 periods. The effects of sampling prove to override those of scaling. This, with the invalidity of the AD model, leads to question attempts to calibrate and/or identify trends in the dispersion coefficient at intermediate scales from a limited number of experiment replicates.

  7. Pore-scale simulations of concentration tails in heterogeneous porous media (United States)

    Di Palma, Paolo Roberto; Parmigiani, Andrea; Huber, Christian; Guyennon, Nicolas; Viotti, Paolo


    The retention of contaminants in the finest and less-conductive regions of natural aquifer is known to strongly affect the decontamination of polluted aquifers. In fact, contaminant transfer from low to high mobility regions at the back end of a contaminant plume (i.e. back diffusion) is responsible for the long-term release of contaminants during remediation operation. In this paper, we perform pore-scale calculations for the transport of contaminant through heterogeneous porous media composed of low and high mobility regions with two objectives: (i) study the effect of permeability contrast and solute transport conditions on the exchange of solutes between mobile and immobile regions and (ii) estimate the mass of contaminants sequestered in low mobility regions based on concentration breakthrough curves.

  8. A domain decomposed finite element method for solving Darcian velocity in heterogeneous porous media (United States)

    Xie, Yifan; Wu, Jichun; Xue, Yuqun; Xie, Chunhong; Ji, Haifeng


    This paper proposes a domain decomposed finite element method (DDFEM) for groundwater flow velocity simulation, which can effectively and efficiently deal with arbitrarily oriented or intersected material interfaces in heterogeneous porous media. The main idea of this problem is to employ domain decompose technique to break the velocity problem down to subproblems by material interfaces, thereby achieving high accuracy at interface nodes and improving the velocity computation efficiency. By solving the global flow field by FEM before velocity computation, this method can capture the global information of the whole study region so as to ensure the subproblem solution accuracy by Yeh's model. After one subproblem has been solved, the DDFEM employs refraction law to obtain the Dirichlet boundary velocities of the adjacent subdomains. Numerical examples have been done to demonstrate the applicability and accuracy of the proposed method. Comparison between the DDFEM and two classical methods shows that the DDFEM can indeed save much computational cost, while achieving high accuracy.

  9. Continuous-time random-walk model of transport in variably saturated heterogeneous porous media. (United States)

    Zoia, Andrea; Néel, Marie-Christine; Cortis, Andrea


    We propose a unified physical framework for transport in variably saturated porous media. This approach allows fluid flow and solute migration to be treated as ensemble averages of fluid and solute particles, respectively. We consider the cases of homogeneous and heterogeneous porous materials. Within a fractal mobile-immobile continuous time random-walk framework, the heterogeneity will be characterized by algebraically decaying particle retention times. We derive the corresponding (nonlinear) continuum-limit partial differential equations and we compare their solutions to Monte Carlo simulation results. The proposed methodology is fairly general and can be used to track fluid and solutes particles trajectories for a variety of initial and boundary conditions.

  10. Porous-Hybrid Polymers as Platforms for Heterogeneous Photochemical Catalysis

    KAUST Repository

    Haikal, Rana R.


    A number of permanently porous polymers containing Ru(bpy)n photosensitizer or a cobaloxime complex, as a proton-reduction catalyst, were constructed via one-pot Sonogashira-Hagihara (SH) cross-coupling reactions. This process required minimal workup to access porous platforms with control over the apparent surface area, pore volume, and chemical functionality from suitable molecular building blocks (MBBs) containing the Ru or Co complexes, as rigid and multi-topic nodes. The cobaloxime molecular building block, generated through in situ metalation, afforded a microporous solid that demonstrated noticeable catalytic activity towards hydrogen-evolution reaction (HER) with remarkable recyclability. We further demonstrated, in two cases, the ability to affect the excited state lifetime of the covalently-immobilized Ru(bpy)3 complex attained through deliberate utilization of the organic linkers of variable dimensions. Overall, this approach facilitates construction of tunable porous solids, with hybrid composition and pronounced chemical and physical stability, based on the well-known Ru(bpy)nor the cobaloxime complexes.

  11. Global-local nonlinear model reduction for flows in heterogeneous porous media

    KAUST Repository

    AlOtaibi, Manal


    In this paper, we combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on a fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach significantly reduces the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media.

  12. Multiscale Adapted Time-Splitting Technique for Nonisothermal Two-Phase Flow and Nanoparticles Transport in Heterogenous Porous Media

    KAUST Repository

    El-Amin, Mohamed F.


    This paper is devoted to study the problem of nonisothermal two-phase flow with nanoparticles transport in heterogenous porous media, numerically. For this purpose, we introduce a multiscale adapted time-splitting technique to simulate the problem under consideration. The mathematical model consists of equations of pressure, saturation, heat, nanoparticles concentration in the water–phase, deposited nanoparticles concentration on the pore–walls, and entrapped nanoparticles concentration in the pore–throats. We propose a multiscale time splitting IMplicit Pressure Explicit Saturation–IMplicit Temperature Concentration (IMPES-IMTC) scheme to solve the system of governing equations. The time step-size adaptation is achieved by satisfying the stability Courant–Friedrichs–Lewy (CFL<1) condition. Moreover, numerical test of a highly heterogeneous porous medium is provided and the water saturation, the temperature, the nanoparticles concentration, the deposited nanoparticles concentration, and the permeability are presented in graphs.

  13. Dynamics of Coupled Contaminant and Microbial Transport in Heterogeneous Porous Media: Purdue Component

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.


    Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project, of which we report only the Purdue contribution, provides fundamental information on the attachment/detachment dynamics of bacteria in heterogeneous porous media. Fundamental results from the Purdue collaboration are: (a) development of a matched-index method for obtaining 3-D Lagrangian trajectories of microbial sized particles transporting within porous media or microflow cells, (b) application of advanced numerical methods to optimally design a microflow cell for studying anaerobic bacterial attachment/detachment phenomena, (c) development of two types of models for simulating bacterial movement and attachment/detachment in microflow cells and natural porous media, (d) application of stochastic analysis to upscale pore scale microbial attachment/detachment models to natural heterogeneous porous media, and (e) evaluation of the role nonlocality plays in microbial dynamics in heterogeneous porous media.

  14. Dynamics of Coupled Contaminant and Microbial Transport in Heterogeneous Porous Media: Purdue Component

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.; Madilyn Fletcher


    Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project, of which we report only the Purdue contribution, provides fundamental information on the attachment/detachment dynamics of bacteria in heterogeneous porous media. Fundamental results from the Purdue collaboration are: (a) development of a matched-index method for obtaining 3-D Lagrangian trajectories of microbial sized particles transporting within porous media or microflow cells, (b) application of advanced numerical methods to optimally design a microflow cell for studying anaerobic bacterial attachment/detachment phenomena, (c) development of two types of models for simulating bacterial movement and attachment/detachment in microflow cells and natural porous media, (d) application of stochastic analysis to upscale pore scale microbial attachment/detachment models to natural heterogeneous porous media, and (e) evaluation of the role nonlocality plays in microbial dynamics in heterogeneous porous media

  15. A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media (United States)

    A balance of applied hydrodynamic (TH) and resisting adhesive (TA) torques was conducted over a chemically heterogeneous porous medium that contained random roughness of height hr to determine the fraction of the solid surface area that contributes to colloid immobilization (Sf*) under unfavorable a...

  16. Dynamic modeling of porous heterogeneous micro/nanobeams (United States)

    Ebrahimi, Farzad; Jafari, Ali; Reza Barati, Mohammad


    In the present paper, the thermo-mechanical vibration characteristics of a functionally graded (FG) porous microbeam subjected to various types of thermal loadings are investigated based on modified couple stress theory and exact position of neutral axis. The FG micro/nanobeam is modeled via a refined hyperbolic beam theory in which the shear deformation effect is verified without the shear correction factor. A modified power-law distribution which contains porosity volume fraction is used to describe the graded material properties of the FG micro/nanobeam. The temperature field has uniform, linear and nonlinear distributions across the thickness. The governing equations and the related boundary conditions are derived by Hamilton's principle and they are solved applying an analytical solution which satisfies various boundary conditions. A comparison study is performed to verify the present formulation with the known data in the literature and a good agreement is observed. The parametric study covered in this paper includes several parameters, such as thermal loadings, porosity volume fraction, power-law exponents, slenderness ratio, scale parameter and various boundary conditions on natural frequencies of porous FG micro/nanobeams in detail.

  17. Colloid interaction energies for physically and chemically heterogeneous porous media (United States)

    The mean and variance of the colloid interaction energy (phi*) as a function of separation distance (h) were calculated on physically and/or chemically heterogeneous solid surfaces at the representative elementary area (REA) scale. Nanoscale roughness was demonstrated to have a significant influence...

  18. Simulation of DNAPL migration in heterogeneous translucent porous media based on estimation of representative elementary volume (United States)

    Wu, Ming; Wu, Jianfeng; Wu, Jichun


    When the dense nonaqueous phase liquid (DNAPL) comes into the subsurface environment, its migration behavior is crucially affected by the permeability and entry pressure of subsurface porous media. A prerequisite for accurately simulating DNAPL migration in aquifers is then the determination of the permeability, entry pressure and corresponding representative elementary volumes (REV) of porous media. However, the permeability, entry pressure and corresponding representative elementary volumes (REV) are hard to determine clearly. This study utilizes the light transmission micro-tomography (LTM) method to determine the permeability and entry pressure of two dimensional (2D) translucent porous media and integrates the LTM with a criterion of relative gradient error to quantify the corresponding REV of porous media. As a result, the DNAPL migration in porous media might be accurately simulated by discretizing the model at the REV dimension. To validate the quantification methods, an experiment of perchloroethylene (PCE) migration is conducted in a two-dimensional heterogeneous bench-scale aquifer cell. Based on the quantifications of permeability, entry pressure and REV scales of 2D porous media determined by the LTM and relative gradient error, different models with different sizes of discretization grid are used to simulate the PCE migration. It is shown that the model based on REV size agrees well with the experimental results over the entire migration period including calibration, verification and validation processes. This helps to better understand the microstructures of porous media and achieve accurately simulating DNAPL migration in aquifers based on the REV estimation.

  19. Mass transfer in porous media with heterogeneous chemical reaction

    Directory of Open Access Journals (Sweden)

    Souza S.M.A.G.Ulson de


    Full Text Available In this paper, the modeling of the mass transfer process in packed-bed reactors is presented and takes into account dispersion in the main fluid phase, internal diffusion of the reactant in the pores of the catalyst, and surface reaction inside the catalyst. The method of volume averaging is applied to obtain the governing equation for use on a small scale. The local mass equilibrium is assumed for obtaining the one-equation model for use on a large scale. The closure problems are developed subject to the length-scale constraints and the model of a spatially periodic porous medium. The expressions for effective diffusivity, hydrodynamic dispersion, total dispersion and the Darcy's law permeability tensors are presented. Solution of the set of final equations permits the variations of velocity and concentration of the chemical species along the packed-bed reactors to be obtained.


    NARCIS (Netherlands)



    This paper reports on the mechanical strength of highly porous ceramics in terms of the Weibull and Duxbury-Leath distributions. More than 1000 side-crushing strength tests on silica-catalyst carriers of various particle sizes have been performed in series. Within a series, preparation conditions

  1. Two-dimensional gas flows under heterogeneous combustion of solid porous media (United States)

    Levin, V. A.; Lutsenko, N. A.


    Two-dimensional unsteady gas flows in porous media with heterogeneous-combustion centers are investigated under forced filtration and free convection. With the use of numerical methods, it is shown that complex gas flows including vortex ones can arise under the combustion of solid porous media. In the case of forced filtration, the gas tends to flow around the heated portion of an object preferring to flow along cold regions. Under natural convection, the vortex gas flows, which can exist for a reasonably long time and strongly affect the oxidizer inflow into the reaction zone, arise at the initial moment of the process in the combustion zone and in its vicinities.

  2. Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating. (United States)

    Munholland, Jonah L; Mumford, Kevin G; Kueper, Bernard H


    A series of intermediate-scale laboratory experiments were completed in a two-dimensional flow cell to investigate gas production and migration during the application of electrical resistance heating (ERH) for the removal of dense non-aqueous phase liquids (DNAPLs). Experiments consisted of heating water in homogeneous silica sand and heating 270 mL of trichloroethene (TCE) and chloroform (CF) DNAPL pools in heterogeneous silica sands, both under flowing groundwater conditions. Spatial and temporal distributions of temperature were measured using thermocouples and observations of gas production and migration were collected using front-face image capture throughout the experiments. Post-treatment soil samples were collected and analyzed to assess DNAPL removal. Results of experiments performed in homogeneous sand subject to different groundwater flow rates showed that high groundwater velocities can limit subsurface heating rates. In the DNAPL pool experiments, temperatures increased to achieve DNAPL-water co-boiling, creating estimated gas volumes of 131 and 114 L that originated from the TCE and CF pools, respectively. Produced gas migrated vertically, entered a coarse sand lens and subsequently migrated laterally beneath an overlying capillary barrier to outside the heated treatment zone where 31-56% of the original DNAPL condensed back into a DNAPL phase. These findings demonstrate that layered heterogeneity can potentially facilitate the transport of contaminants outside the treatment zone by mobilization and condensation of gas phases during ERH applications. This underscores the need for vapor phase recovery and/or control mechanisms below the water table during application of ERH in heterogeneous porous media during the co-boiling stage, which occurs prior to reaching the boiling point of water. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Stochastic Diagrammatic Analysis of Groundwater Flow in Heterogeneous Porous Media (United States)

    Christakos, G.; Hristopulos, D. T.; Miller, C. T.


    The diagrammatic approach is an alternative to standard analytical methods for solving stochastic differential equations governing groundwater flow with spatially variable hydraulic conductivity. This approach uses diagrams instead of abstract symbols to visualize complex multifold integrals that appear in the perturbative expansion of the stochastic flow solution and reduces the original flow problem to a closed set of equations for the mean and the covariance functions. Diagrammatic analysis provides an improved formulation of the flow problem over conventional first-order series approximations, which are based on assumptions such as constant mean hydraulic gradient, infinite flow domain, and neglect of cross correlation terms. This formulation includes simple schemes, like finite-order diagrammatic perturbations that account for mean gradient trends and boundary condition effects, as well as more advanced schemes, like diagrammatic porous media description operators which contain infinite-order correlations. In other words, diagrammatic analysis covers not only the cases where low-order diagrams lead to good approximations of flow, but also those situations where low-order perturbation is insufficient and a more sophisticated analysis is needed. Diagrams lead to a nonlocal equation for the mean hydraulic gradient in terms of which necessary conditions are formulated for the existence of an effective hydraulic conductivity. Three-dimensional flow in an isotropic bounded domain with Dirichlet boundary conditions is considered, and an integral equation for the mean hydraulic head is derived by means of diagrams. This formulation provides an explicit expression for the boundary effects within the three-dimensional flow domain. In addition to these theoretical results, the numerical performance of the diagrammatic approach is tested, and useful insight is obtained by means of one-dimensional flow examples where the exact stochastic solutions are available.

  4. Acoustic emission in a fluid saturated heterogeneous porous layer with application to hydraulic fracture

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J.T. (California Univ., Berkeley, CA (USA). Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA (USA))


    A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.

  5. Complexity reduction of multi-phase flows in heterogeneous porous media

    KAUST Repository

    Ghommem, Mehdi


    In this paper, we apply mode decomposition and interpolatory projection methods to speed up simulations of two-phase flows in highly heterogeneous porous media. We propose intrusive and non-intrusive model reduction approaches that enable a significant reduction in the dimension of the flow problem size while capturing the behavior of the fully-resolved solutions. In one approach, we employ the dynamic mode decomposition (DMD) and the discrete empirical interpolation method (DEIM). This approach does not require any modification of the reservoir simulation code but rather postprocesses a set of global snapshots to identify the dynamically-relevant structures associated with the flow behavior. In a second approach, we project the governing equations of the velocity and the pressure fields on the subspace spanned by their proper orthogonal decomposition (POD) modes. Furthermore, we use DEIM to approximate the mobility related term in the global system assembly and then reduce the online computational cost and make it independent of the fine grid. To show the effectiveness and usefulness of the aforementioned approaches, we consider the SPE 10 benchmark permeability field and present a variety of numerical examples of two-phase flow and transport. The proposed model reduction methods can be efficiently used when performing uncertainty quantification or optimization studies and history matching.

  6. A continuous time random walk model for Darcy-scale anomalous transport in heterogeneous porous media. (United States)

    Comolli, Alessandro; Hakoun, Vivien; Dentz, Marco


    Achieving the understanding of the process of solute transport in heterogeneous porous media is of crucial importance for several environmental and social purposes, ranging from aquifers contamination and remediation, to risk assessment in nuclear waste repositories. The complexity of this aim is mainly ascribable to the heterogeneity of natural media, which can be observed at all the scales of interest, from pore scale to catchment scale. In fact, the intrinsic heterogeneity of porous media is responsible for the arising of the well-known non-Fickian footprints of transport, including heavy-tailed breakthrough curves, non-Gaussian spatial density profiles and the non-linear growth of the mean squared displacement. Several studies investigated the processes through which heterogeneity impacts the transport properties, which include local modifications to the advective-dispersive motion of solutes, mass exchanges between some mobile and immobile phases (e.g. sorption/desorption reactions or diffusion into solid matrix) and spatial correlation of the flow field. In the last decades, the continuous time random walk (CTRW) model has often been used to describe solute transport in heterogenous conditions and to quantify the impact of point heterogeneity, spatial correlation and mass transfer on the average transport properties [1]. Open issues regarding this approach are the possibility to relate measurable properties of the medium to the parameters of the model, as well as its capability to provide predictive information. In a recent work [2] the authors have shed new light on understanding the relationship between Lagrangian and Eulerian dynamics as well as on their evolution from arbitrary initial conditions. On the basis of these results, we derive a CTRW model for the description of Darcy-scale transport in d-dimensional media characterized by spatially random permeability fields. The CTRW approach models particle velocities as a spatial Markov process, which is

  7. Space-time mesh adaptation for solute transport in randomly heterogeneous porous media. (United States)

    Dell'Oca, Aronne; Porta, Giovanni Michele; Guadagnini, Alberto; Riva, Monica


    We assess the impact of an anisotropic space and time grid adaptation technique on our ability to solve numerically solute transport in heterogeneous porous media. Heterogeneity is characterized in terms of the spatial distribution of hydraulic conductivity, whose natural logarithm, Y, is treated as a second-order stationary random process. We consider nonreactive transport of dissolved chemicals to be governed by an Advection Dispersion Equation at the continuum scale. The flow field, which provides the advective component of transport, is obtained through the numerical solution of Darcy's law. A suitable recovery-based error estimator is analyzed to guide the adaptive discretization. We investigate two diverse strategies guiding the (space-time) anisotropic mesh adaptation. These are respectively grounded on the definition of the guiding error estimator through the spatial gradients of: (i) the concentration field only; (ii) both concentration and velocity components. We test the approach for two-dimensional computational scenarios with moderate and high levels of heterogeneity, the latter being expressed in terms of the variance of Y. As quantities of interest, we key our analysis towards the time evolution of section-averaged and point-wise solute breakthrough curves, second centered spatial moment of concentration, and scalar dissipation rate. As a reference against which we test our results, we consider corresponding solutions associated with uniform space-time grids whose level of refinement is established through a detailed convergence study. We find a satisfactory comparison between results for the adaptive methodologies and such reference solutions, our adaptive technique being associated with a markedly reduced computational cost. Comparison of the two adaptive strategies tested suggests that: (i) defining the error estimator relying solely on concentration fields yields some advantages in grasping the key features of solute transport taking place within

  8. Grayscale lattice Boltzmann model for multiphase heterogeneous flow through porous media. (United States)

    Pereira, Gerald G


    The grayscale lattice Boltzmann (LB) model has been recently developed to model single-phase fluid flow through heterogeneous porous media. Flow is allowed in each voxel but the degree of flow depends on that voxel's resistivity to fluid motion. Here we extend the grayscale LB model to multiphase, immiscible flow. The new model is outlined and then applied to a number of test cases, which show good agreement with theory. This method is subsequently used to model the important case where each voxel may have a different resistance to each particular fluid that is passing through it. Finally, the method is applied to model fluid flow through real porous media to demonstrate its capability. Both the capillary and viscous flow regimes are recovered in these simulations.

  9. Three-phase flow in heterogeneous wettability porous media; Deplacements triphasiques en milieux poreux de mouillabilite heterogene

    Energy Technology Data Exchange (ETDEWEB)

    Jaffrennou-Laroche, C.


    Better understanding and modelling of three-phase flow through porous media is of great interest, especially for improved oil recovery methods such as gas injection processes. Early theoretical and experimental studies have already demonstrated that the wettability characteristics of the solid surface and the spreading characteristics of the fluid system hold the key roles. This observation is confirmed by our theoretical results using DLP theory on the stability and the thickness of static oil films. In most of the works related to three-phase flow processes, homogeneous wettability is assumed. There exist only a few studies demonstrating the tremendous impact of the wettability heterogeneities on gas injection. The objective of the present work is twofold: to demonstrate the effect of small scale wettability heterogeneities on gas injection efficiency, and to develop a tool to predict this impact for various patterns and spatial distributions. To this end an experimental investigation in transparent glass micro-models is performed and a theoretical simulator is developed. Secondary and tertiary gas injections are performed for different heterogeneity patterns obtained by selective silane grafting. Displacement sequences are video-recorded and fluid saturations are determined by image analysis. Visualization of the displacement mechanisms provides the network model with the basic rules for water/oil and water/oil/gas motion. In water/oil displacement, drainage and imbibition occur according to the local wettability. Three-phase displacement is dominated by drainage mechanisms. The simulator allows the flow of oil through wetting films in the oil-wet regions and through spreading films on water in the water-wet regions. The effect of the wettability heterogeneities on: displacement mechanisms, sweep efficiency, and fluid distribution in three-phase gas injection is clearly demonstrated and successfully described by the network simulator. (author) 175 refs.

  10. Lagrangian scheme to model subgrid-scale mixing and spreading in heterogeneous porous media (United States)

    Herrera, P. A.; Cortínez, J. M.; Valocchi, A. J.


    Small-scale heterogeneity of permeability controls spreading, dilution, and mixing of solute plumes at large scale. However, conventional numerical simulations of solute transport are unable to resolve scales of heterogeneity below the grid scale. We propose a Lagrangian numerical approach to implement closure models to account for subgrid-scale spreading and mixing in Darcy-scale numerical simulations of solute transport in mildly heterogeneous porous media. The novelty of the proposed approach is that it considers two different dispersion coefficients to account for advective spreading mechanisms and local-scale dispersion. Using results of benchmark numerical simulations, we demonstrate that the proposed approach is able to model subgrid-scale spreading and mixing provided there is a correct choice of block-scale dispersion coefficient. We also demonstrate that for short travel times it is only possible to account for spreading or mixing using a single block-scale dispersion coefficient. Moreover, we show that it is necessary to use time-dependent dispersion coefficients to obtain correct mixing rates. On the contrary, for travel times that are large in comparison to the typical dispersive time scale, it is possible to use a single expression to compute the block-dispersion coefficient, which is equal to the asymptotic limit of the block-scale macrodispersion coefficient proposed by Rubin et al. (1999). Our approach provides a flexible and efficient way to model subgrid-scale mixing in numerical models of large-scale solute transport in heterogeneous aquifers. We expect that these findings will help to better understand the applicability of the advection-dispersion-equation (ADE) to simulate solute transport at the Darcy scale in heterogeneous porous media.

  11. Experimental Investigation of Heterogeneous Power Systems on the Basis of Lyophobic Liquids and Porous Media

    Directory of Open Access Journals (Sweden)

    V. D. Borman


    Full Text Available The use of non-traditional ways for energy accumulation (absorption is a reserve to increase efficiency of accumulating and damping devices. The work is aimed at experimental and theoretical verification of possibility to create the accumulating and energy damping devices based on the heterogeneous systems (HS. The HS includes a couple i.e. a porous body (silochromes with pore diameter from 20 nm to 360 nm and a lyophobic (non-wetting liquid (Wood's alloy. The paper briefly presents provisions of the theory of processes in HS based on the kinetics of percolation transition that allows us to calculate power, power and temporary characteristics of devices and prove the methods for choosing the couples for HS with the specified characteristics. It explains effect of hysteresis function of changing liquid volume that fills a porous body and outflows from it under the differential pressure, as well as conditions to realize effect of non-outflowing liquid after removal of the differential pressure thanks to which energy accumulation in HS is possible. The stand diagram, device parameters to study static and dynamic processes in HS, and measurement system characteristics are provided. Research results of static processes to fill (outflow pores of various silochromes with Wood's alloy are presented. It is shown that among considered HS the most efficient one is the HS possessing S-120 silochrome, hexamethyldisilazane-modified. The certain filling pores specific energy of HS made 71 J/g, while the outflow specific energy was 28 J/g. The paper presents a scheme of device model damping a force impact on the support. Test results of spring and hydraulic dampers and the model, as well, with HS based on silochromes with various lyophobic liquids are given. High HS efficiency that allows the 4 times less impact value is shown. Further researches concern a development of engineering techniques to design and optimize the HS parameters and a choice of the most

  12. Gravity-destabilized nonwetting phase invasion in macro-heterogeneous porous media: Experimental observations of invasion dynamics and scale analysis

    Energy Technology Data Exchange (ETDEWEB)



    The authors designed and conducted experiments in a heterogeneous sand pack where gravity-destabilized nonwetting phase invasion (CO{sub 2} and TCE) could be recorded using high resolution light transmission methods. The heterogeneity structure was designed to be reminiscent of fluvial channel lag cut-and-fill architecture and contain a series of capillary barriers. As invasion progressed, nonwetting phase structure developed a series of fingers and pools; behind the growing front they found nonwetting phase saturation to pulsate in certain regions when viscous forces were low. Through a scale analysis, they derive a series of length scales that describe finger diameter, pool height and width, and regions where pulsation occurs within a heterogeneous porous medium. In all cases, they find that the intrinsic pore scale nature of the invasion process and resulting structure must be incorporated into the analysis to explain experimental results. The authors propose a simple macro-scale structural growth model that assembles length scales for sub-structures to delineate nonwetting phase migration from a source into a heterogeneous domain. For such a model applied at the field scale for DNAPL migration, they expect capillary and gravity forces within the complex subsurface lithology to play the primary roles with viscous forces forming a perturbation on the inviscid phase structure.

  13. Homogenization of one-dimensional draining through heterogeneous porous media including higher-order approximations (United States)

    Anderson, Daniel M.; McLaughlin, Richard M.; Miller, Cass T.


    We examine a mathematical model of one-dimensional draining of a fluid through a periodically-layered porous medium. A porous medium, initially saturated with a fluid of a high density is assumed to drain out the bottom of the porous medium with a second lighter fluid replacing the draining fluid. We assume that the draining layer is sufficiently dense that the dynamics of the lighter fluid can be neglected with respect to the dynamics of the heavier draining fluid and that the height of the draining fluid, represented as a free boundary in the model, evolves in time. In this context, we neglect interfacial tension effects at the boundary between the two fluids. We show that this problem admits an exact solution. Our primary objective is to develop a homogenization theory in which we find not only leading-order, or effective, trends but also capture higher-order corrections to these effective draining rates. The approximate solution obtained by this homogenization theory is compared to the exact solution for two cases: (1) the permeability of the porous medium varies smoothly but rapidly and (2) the permeability varies as a piecewise constant function representing discrete layers of alternating high/low permeability. In both cases we are able to show that the corrections in the homogenization theory accurately predict the position of the free boundary moving through the porous medium.

  14. A Theoretical Analysis of Colloid Attachment and Straining in Chemically Heterogeneous Porous Media

    DEFF Research Database (Denmark)

    Bradford, Scott A.; Torkzaban, Saeed; Shapiro, Alexander


    A balance of applied hydrodynamic (TH) and resisting adhesive (TA) torques was conducted over a chemically heterogeneous porous medium that contained random roughness of height hr to determine the fraction of the solid surface area that contributes to colloid immobilization (Sf*) under unfavorable...... of physicochemical properties to gain insight into mechanisms and factors influencing colloid immobilization. Colloid attachment processes were demonstrated to depend on solution ionic strength (IS), the colloid radius (rc), the Young’s modulus (K), the amount of chemical heterogeneity (P+), and the Darcy velocity...... (q). Colloid immobilization was also demonstrated to occur on a rough surface in the absence of attachment. In this case, Sf* depended on IS, rc, the roughness fraction (f), hr, and q. Roughness tended to enhance TA and diminish TH. Consequently, the effect of IS on Sf* was enhanced by hr relative...

  15. Transverse mixing in three-dimensional nonstationary anisotropic heterogeneous porous media

    DEFF Research Database (Denmark)

    Cirpka, Olaf; Chiogna, Gabriele; Rolle, Massimo


    that nonstationary anisotropy in the correlation structure has a significant impact on transverse plume deformation and mixing. In natural sediments, contaminant plumes most likely mix more effectively in the transverse directions than predicted by models that neglect the nonstationarity of anisotropy.......Groundwater plumes originating from continuously emitting sources are typically controlled by transverse mixing between the plume and reactants in the ambient solution. In two-dimensional domains, heterogeneity causes only weak enhancement of transverse mixing in steady-state flows. In three......-dimensional domains, more complex flow patterns are possible because streamlines can twist. In particular, spatially varying orientation of anisotropy can cause steady-state groundwater whirls. We analyze steady-state solute transport in three-dimensional locally isotropic heterogeneous porous media with blockwise...

  16. Impacts of Physical and Chemical Heterogeneity on Cocontaminant Transport in a Sandy Porous Medium (United States)

    Tompson, Andrew F. B.; Schafer, Annette L.; Smith, Robert W.


    A simplified numerical study of the transport of a uranyl-citric acid mixture through a nonuniform and reactive sandy porous medium is presented. The study seeks to identify the more important impacts of medium heterogeneity, as embodied in spatially variable physical and chemical properties, on the migration and dilution rates of a model cocontaminant mixture, as well as on the overall partitioning among the aqueous and solid species formed from complexation and sorption reactions. Solid phase reactions are considered to occur on hydrous-ferric oxide (goethite) coatings on the sand and are controlled by the abundance of the oxide as a function of the specific sand surface area and larger-scale patterns of oxide deposition. The simulations involve calculation of fluid flow and chemical migration within highly resolved, two- and three-dimensional regions with synthetic material properties that approximate observed conditions in a sandy coastal aquifer. Model simulations in this system indicate that (1) the impact of correlation between reactive surface area and hydraulic conductivity, although evident, seems much less significant than the overall abundance and distribution of the reactive area, such as the kind of banded goethite patterns observed in a coastal sand body; (2) strong multicomponent interactions clearly reinforce the need to treat the mixture as a coupled system, as opposed to a series of independently reactive compounds; (3) simplifications can be made in extremely dilute problems that allow retardation effects to become concentration independent; and (4) for nonlinear reaction problems, three-dimensional models will be more appropriate than two-dimensional models to the extent that dispersion in the added dimension accelerates chemical dilution rates.

  17. Porous germanene as a highly efficient gas separation membrane. (United States)

    Bian, Ang; Dai, Yafei; Yang, Jinlong


    Using a gas separation membrane as a simple gas separation device has an obvious advantage because of the low energy consumption and pollution-free manufacturing. The first-principles calculations used in this work show that germanene with its divacancy is an excellent material for use as a hydrogen (H2) and helium (He) separation membrane, and that it displays an even better competitive advantage than porous graphene and porous silicene. Porous germanene with its divacancy is chemically inert to gas molecules, because it lacks additional atoms to protect the edged dangling germanium atoms in defects, and thus shows great advantages for gas separation over previously prepared graphene. The energy barriers to H2 and He penetrating porous germanene are quite low, and the permeabilities to H2 and He are high. Furthermore, the selectivities of porous germanene for H2 and He relative to other gas molecules are high, up to 1031 and 1027, respectively, which are superior to those of porous graphene (1023) and porous silicene (1013); thus the separation efficiency of porous germanene is much higher than that of porous graphene and porous silicene. Therefore, germanene is a favorable candidate as a gas separation membrane material. At the same time, the successful synthesis of germanene in the laboratory means that it is possible to use it in real applications.

  18. Silica containing highly porous alumina ceramic (United States)

    Svinka, R.; Svinka, V.; Zake, I.


    Porous alumina ceramic were produced by slip casting of aqueous alumina slurry with added small amount of metallic aluminium powder. Pores form in result of chemical reaction of aluminum with water by hydrogen gas evolution reaction and solidification of suspension. Porosity of such materials sintered at a temperature of 1600 - 1750°C varies from 60 to 90%. Pore size distribution and mechanical strength of these materials depend largely on the grain size of used raw materials. The major part of pores in the materials produced without additive of silica are larger than 10 ±m, but with 5 - 10 wt.% additive of silica in the raw mix pore size decreases considerably. The sintering shrinkage decreases to 2.5%. Coefficient of thermal expansion equally decreases from 8.9-10-6 K-1 to 7.1 10-6 K-1 and classification temperature increases to 1600°C, while deformation at high temperature decreases considerably.

  19. Effects of incomplete mixing on reactive transport in flows through heterogeneous porous media (United States)

    Wright, Elise E.; Richter, David H.; Bolster, Diogo


    The phenomenon of incomplete mixing reduces bulk effective reaction rates in reactive transport. Many existing models do not account for these effects, resulting in the overestimation of reaction rates in laboratory and field settings. To date, most studies on incomplete mixing have focused on diffusive systems; here, we extend these to explore the role that flow heterogeneity has on incomplete mixing. To do this, we examine reactive transport using a Lagrangian reactive particle tracking algorithm in two-dimensional idealized heterogeneous porous media. Contingent on the nondimensional Peclet and Damköhler numbers in the system, it was found that near well-mixed behavior could be observed at late times in the heterogeneous flow field simulations. We look at three common flow deformation metrics that describe the enhancement of mixing in the flow due to velocity gradients: the Okubo-Weiss parameter (θ ), the largest eigenvalue of the Cauchy-Green strain tensor (λC), and the finite-time Lyapunov exponent (Λ ). Strong mixing regions in the heterogeneous flow field identified by these metrics were found to correspond to regions with higher numbers of reactions, but the infrequency of these regions compared to the large numbers of reactions occurring elsewhere in the domain imply that these strong mixing regions are insufficient in explaining the observed near well-mixed behavior. Since it was found that reactive transport in these heterogeneous flows could overcome the effects of incomplete mixing, we also search for a closure for the mean concentration. The conservative quantity u2¯, where u =CA-CB , was found to predict the late time scaling of the mean concentration, i.e., Ci¯˜u2¯ .

  20. A Universal Isotherm Model to Capture Adsorption Uptake and Energy Distribution of Porous Heterogeneous Surface

    KAUST Repository

    Ng, Kim Choon


    The adsorbate-adsorbent thermodynamics are complex as it is influenced by the pore size distributions, surface heterogeneity and site energy distribution, as well as the adsorbate properties. Together, these parameters defined the adsorbate uptake forming the state diagrams, known as the adsorption isotherms, when the sorption site energy on the pore surfaces are favorable. The available adsorption models for describing the vapor uptake or isotherms, hitherto, are individually defined to correlate to a certain type of isotherm patterns. There is yet a universal approach in developing these isotherm models. In this paper, we demonstrate that the characteristics of all sorption isotherm types can be succinctly unified by a revised Langmuir model when merged with the concepts of Homotattic Patch Approximation (HPA) and the availability of multiple sets of site energy accompanied by their respective fractional probability factors. The total uptake (q/q*) at assorted pressure ratios (P/P s ) are inextricably traced to the manner the site energies are spread, either naturally or engineered by scientists, over and across the heterogeneous surfaces. An insight to the porous heterogeneous surface characteristics, in terms of adsorption site availability has been presented, describing the unique behavior of each isotherm type.

  1. A Universal Isotherm Model to Capture Adsorption Uptake and Energy Distribution of Porous Heterogeneous Surface. (United States)

    Ng, Kim Choon; Burhan, Muhammad; Shahzad, Muhammad Wakil; Ismail, Azahar Bin


    The adsorbate-adsorbent thermodynamics are complex as it is influenced by the pore size distributions, surface heterogeneity and site energy distribution, as well as the adsorbate properties. Together, these parameters defined the adsorbate uptake forming the state diagrams, known as the adsorption isotherms, when the sorption site energy on the pore surfaces are favorable. The available adsorption models for describing the vapor uptake or isotherms, hitherto, are individually defined to correlate to a certain type of isotherm patterns. There is yet a universal approach in developing these isotherm models. In this paper, we demonstrate that the characteristics of all sorption isotherm types can be succinctly unified by a revised Langmuir model when merged with the concepts of Homotattic Patch Approximation (HPA) and the availability of multiple sets of site energy accompanied by their respective fractional probability factors. The total uptake (q/q*) at assorted pressure ratios (P/P s ) are inextricably traced to the manner the site energies are spread, either naturally or engineered by scientists, over and across the heterogeneous surfaces. An insight to the porous heterogeneous surface characteristics, in terms of adsorption site availability has been presented, describing the unique behavior of each isotherm type.

  2. Two-Level Domain Decomposition Methods for Highly Heterogeneous Darcy Equations. Connections with Multiscale Methods

    Directory of Open Access Journals (Sweden)

    Dolean Victorita


    Full Text Available Multiphase, compositional porous media flow models lead to the solution of highly heterogeneous systems of Partial Differential Equations (PDE. We focus on overlapping Schwarz type methods on parallel computers and on multiscale methods. We present a coarse space [Nataf F., Xiang H., Dolean V., Spillane N. (2011 SIAM J. Sci. Comput. 33, 4, 1623-1642] that is robust even when there are such heterogeneities. The two-level domain decomposition approach is compared to multiscale methods.

  3. Biosynthesis of highly porous bacterial cellulose nanofibers (United States)

    Hosseini, Hadi; Kokabi, Mehrdad; Mousavi, Seyyed Mohammad


    Bacterial cellulose nanofibers (BCNFs) as a sustainable and biodegradable polymer has drawn tremendous research attention in tissue engineering, bacterial sensors and drug delivery due to its extraordinary properties such as high purity, high crystallinity, high water absorption capacity and excellent mechanical strength in the wet state. This awesome properties, is attributed to BCNFs structure, therefore its characterization is important. In this work, the bacterial strain, Gluconacetobacter xylinus (PTCC 1734, obtained from Iranian Research Organization for Science and Technology (IROST)), was used to produce BCNFs hydrogel using bacterial fermentation under static condition at 29 °C for 10 days in the incubator. Then, the biosynthesized BCNFs wet gel, were dried at ambient temperature and pressure and characterized using Brunauer-Emmett-Teller (BET) and Field emission scanning electron microscopy (FE-SEM) analysis. FESEM image displayed highly interconnected and porous structure composed of web-like continuous, nanofibers with an average diameter of 48.5±2.1 nm. BET result analysis depicted BCNFs dried at ambient conditions had IV isotherm type, according to the IUPAC classification, indicating that BCNFs dried at ambient condition is essentially mesoporous. On the other hand, BET results depicted, mesoporous structure is around 85%. In addition, Specific surface area (SBET) obtained 81.45 m2/g. These results are in accordance with the FESEM observation.

  4. Solute mixing regulates heterogeneity of mineral precipitation in porous media: Effect of Solute Mixing on Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Cil, Mehmet B.; Xie, Minwei; Packman, Aaron I.; Buscarnera, Giuseppe (NWU); (HKUST-- China)


    Synchrotron X-ray microtomography was used to track the spatiotemporal evolution of mineral precipitation and the consequent alteration of the pore structure. Column experiments were conducted by injecting CaCl2 and NaHCO3 solutions into granular porous media either as a premixed supersaturated solution (external mixing) or as separate solutions that mixed within the specimen (internal mixing). The two mixing modes produced distinct mineral growth patterns. While internal mixing promoted transverse heterogeneity with precipitation at the mixing zone, external mixing favored relatively homogeneous precipitation along the flow direction. The impact of precipitation on pore water flow and permeability was assessed via 3-D flow simulations, which indicated anisotropic permeability evolution for both mixing modes. Under both mixing modes, precipitation decreased the median pore size and increased the skewness of the pore size distribution. Such similar pore-scale evolution patterns suggest that the clogging of individual pores depends primarily on local supersaturation state and pore geometry.

  5. Soluble Porous Coordination Frameworks Constructed from Inorganic Nanoparticles as Homogenized Heterogeneous Photocatalysts for Suzuki Coupling Reactions under Near-Infrared Light. (United States)

    Luo, Yuting; Peng, Yong; Liu, Weisheng; Chen, Fengjuan; Wang, Baodui


    Self-assembly has emerged as a promising method to control the structure and properties of ensembles of inorganic nanoparticles (NPs) for exploiting their collective effects. However, the rational assembly of inorganic NPs into soluble porous architectures for use as homogenized heterogeneous catalysts has been less studied. Herein, it is shown that inorganic NPs can be used for the assembly of soluble porous coordination frameworks (PCFs) by atom-scale interfacial coordination-driven assembly. Owing to their large pore size, high dispersity in solution, strong absorption in the near-infrared (NIR) range, and long-lived electron-hole pair, the obtained soluble frameworks could serve as a platform for homogenized heterogeneous photocatalysts, which exhibited excellent activity, high apparent quantum efficiency, and recyclability in the catalysis of the noble-metal-free Suzuki coupling reactions under NIR light at room temperature. Moreover, PCF catalysts can be reused more than five times without significant loss of activity, which indicates long-term stability. The present strategy to fabricate soluble porous nanostructures opens a new chemical toolbox for homogenized heterogeneous catalysts and may bring new inspiration to photocatalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. High-performance flexible supercapacitor based on porous array electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, Jen-Yu; Tsai, Sung-Ying; Li, Bo-Yan [Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China); Yu, Hsin Her, E-mail: [Department of Biotechnology, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China)


    In this study, an array of polystyrene (PS) spheres was synthesized by a dispersion-polymerization technique as a template onto which a porous polydimethylsiloxane (PDMS) microarray structure was fabricated by soft lithography. A conducting layer was coated on the surface of the microarray after a suspension of multi-walled carbon nanotubes (MWCNTs) mixed with graphene (G) had been poured into the porous array. A PDMS-based porous supercapacitor was assembled by sandwiching a separator between two porous electrodes filled with a H{sub 3}PO{sub 4}/polyvinyl alcohol (PVA) gel electrolyte. The specific capacitance, electrochemical properties, and cycle stability of the porous electrode supercapacitors were explored. The porous PDMS-electrode-based supercapacitor exhibited high specific capacitance and good cycle stability, indicating its enormous potential for future applications in wearable and portable electronic products. - Highlights: • Porous electrode was prepared using an array of polystyrene spheres as template. • The porous electrodes provided increased contact area with the electrolyte. • A gel electrolyte averted problems with leakage and poor interfacial contact. • A larger separator pore size effectively reduced the internal resistance, iR{sub drop}. • Porous PDMS supercapacitor showed superior flexibility and cycling stability.

  7. Effect of Pore-Scale Heterogeneity and Capillary-Viscous Fingering on Commingled Waterflood Oil Recovery in Stratified Porous Media

    Directory of Open Access Journals (Sweden)

    Emad W. Al-Shalabi


    Full Text Available Oil recovery prediction and field pilot implements require basic understanding and estimation of displacement efficiency. Corefloods and glass micromodels are two of the commonly used experimental methods to achieve this. In this paper, waterflood recovery is investigated using layered etched glass micromodel and Berea sandstone core plugs with large permeability contrasts. This study focuses mainly on the effect of permeability (heterogeneity in stratified porous media with no cross-flow. Three experimental setups were designed to represent uniformly stratified oil reservoir with vertical discontinuity in permeability. Waterflood recovery to residual oil saturation (Sor is measured through glass micromodel (to aid visual observation, linear coreflood, and forced drainage-imbibition processes by ultracentrifuge. Six oil samples of low-to-medium viscosity and porous media of widely different permeability (darcy and millidarcy ranges were chosen for the study. The results showed that waterflood displacement efficiencies are consistent in both permeability ranges, namely, glass micromodel and Berea sandstone core plugs. Interestingly, the experimental results show that the low permeability zones resulted in higher ultimate oil recovery compared to high permeability zones. At Sor microheterogeneity and fingering are attributed for this phenomenon. In light of the findings, conformance control is discussed for better sweep efficiency. This paper may be of help to field operators to gain more insight into microheterogeneity and fingering phenomena and their impact on waterflood recovery estimation.

  8. Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks (United States)

    Schulze-Makuch, Dirk; Cherkauer, Douglas S.

    Previous studies have shown that hydraulic conductivity of an aquifer seems to increase as the portion of the aquifer tested increases. To date, such studies have all relied on different methods to determine hydraulic conductivity at each scale of interest, which raises the possibility that the observed increase in hydraulic conductivity is due to the measurement method, not to the scale. This study analyzes hydraulic conductivity with respect to scale during individual aquifer tests in porous, heterogeneous carbonate rocks in southeastern Wisconsin, USA. Results from this study indicate that hydraulic conductivity generally increases during an individual test as the volume of aquifer impacted increases, and the rate of this increase is the same as the rate of increase determined by using different measurement methods. Thus, scale dependence of hydraulic conductivity during single tests does not depend on the method of measurement. This conclusion is supported by 22 of 26 aquifer tests conducted in porous-flow-dominated carbonate units within the aquifer. Instead, scale dependency is probably caused by heterogeneities within the aquifer, a conclusion supported by digital simulation. All of the observed types of hydraulic-conductivity variations with scale during individual aquifer tests can be explained by a conceptual model of a simple heterogeneous aquifer composed of high-conductivity zones within a low-conductivity matrix. Résumé Certaines études ont montré que la conductivité hydraulique d'un aquifère semble augmenter en même temps que la partie testée de l'aquifère s'étend. Jusqu'à présent, ces études ont toutes reposé sur des méthodes de détermination de la conductivité hydraulique différentes pour chaque niveau d'échelle, ce qui a conduit à penser que l'augmentation observée de la conductivité hydraulique pouvait être due aux méthodes de mesure et non à l'effet d'échelle. Cette étude analyse la conductivité hydraulique par

  9. Flow Kinematics and Lagrangian Mixing Dynamics in a Darcy Scale Heterogeneous Porous Medium (United States)

    Dentz, M.; de Barros, F.; Le Borgne, T.


    We study the mixing behavior of a solute blob that is transported through a two-dimensional Darcy scale heterogeneous porous medium. Flow heterogeneity is induced by spatial variability in hydraulic conductivity. The fundamental mechanism governing the evolution of the solute blob are the competition of the stretching and compression action within a fluid element, and diffusion. We formulate the transport problem in a Lagrangian framework and consider the motion of solute particles that form the blob, in the coordinate system attached to the fluid element on which it originates. The blob evolution is fully characterized by the time series of stretching and shear rates of the material segment in its own coordinate system. Associated stirring protocols, or spreading protocols may be different from the ones encountered in chaotic and turbulent flow and can be related to the evolution of center of mass velocities of an ensemble of solute blobs. The permeability variability is modeled using a stochastic approach, which renders the stretching and shear rate time series as stochastic processes. Theses stochastic series are investigated numerically using random walk particle tracking simulations, and quantified analytically in terms of multiplicative and additive stochastic processes for the strip elongation and shear deformation. In this stochastic framework, we study the ensemble concentration PDF, concentration entropy and scalar dissipation rate. We relate the mixing properties to the appearance of coherent structures as quantified by the Okubo-Weiss measure and its Lagrangian counterpart.

  10. Heterogeneous flow during high-pressure torsion

    Directory of Open Access Journals (Sweden)

    Roberto B. Figueiredo


    Full Text Available High-Pressure Torsion (HPT has attracted significant attention in recent years as an effective technique to process ultrafine and nanostructured materials. The hydrostatic pressure developed during processing prevents the occurrence of cracks and the low thickness to diameter ratio provides the opportunity for developing high strains at low numbers of rotations. The present work analyses the plastic flow during HPT. Experimental results and computer modeling are used to describe heterogeneous plastic flow. It is shown that variations in structure, hardness and in the distribution of strain are observed along the disc thickness. The sources of these heterogeneities are discussed.


    Hammond, R.P.; Wykoff, W.R.; Busey, H.M.


    A heterogeneous nuclear reactor is designed comprising a stationary housing and a rotatable annular core being supported for rotation about a vertical axis in the housing, the core containing a plurality of radial fuel- element supporting channels, the cylindrical empty space along the axis of the core providing a central plenum for the disposal of spent fuel elements, the core cross section outer periphery being vertically gradated in radius one end from the other to provide a coolant duct between the core and the housing, and means for inserting fresh fuel elements in the supporting channels under pressure and while the reactor is in operation.

  12. Algebraic dynamic multilevel method for compositional flow in heterogeneous porous media (United States)

    Cusini, Matteo; Fryer, Barnaby; van Kruijsdijk, Cor; Hajibeygi, Hadi


    This paper presents the algebraic dynamic multilevel method (ADM) for compositional flow in three dimensional heterogeneous porous media in presence of capillary and gravitational effects. As a significant advancement compared to the ADM for immiscible flows (Cusini et al., 2016) [33], here, mass conservation equations are solved along with k-value based thermodynamic equilibrium equations using a fully-implicit (FIM) coupling strategy. Two different fine-scale compositional formulations are considered: (1) the natural variables and (2) the overall-compositions formulation. At each Newton's iteration the fine-scale FIM Jacobian system is mapped to a dynamically defined (in space and time) multilevel nested grid. The appropriate grid resolution is chosen based on the contrast of user-defined fluid properties and on the presence of specific features (e.g., well source terms). Consistent mapping between different resolutions is performed by the means of sequences of restriction and prolongation operators. While finite-volume restriction operators are employed to ensure mass conservation at all resolutions, various prolongation operators are considered. In particular, different interpolation strategies can be used for the different primary variables, and multiscale basis functions are chosen as pressure interpolators so that fine scale heterogeneities are accurately accounted for across different resolutions. Several numerical experiments are conducted to analyse the accuracy, efficiency and robustness of the method for both 2D and 3D domains. Results show that ADM provides accurate solutions by employing only a fraction of the number of grid-cells employed in fine-scale simulations. As such, it presents a promising approach for large-scale simulations of multiphase flow in heterogeneous reservoirs with complex non-linear fluid physics.

  13. Upscaled Lattice Boltzmann Method for Simulations of Flows in Heterogeneous Porous Media

    KAUST Repository

    Li, Jun


    An upscaled Lattice Boltzmann Method (LBM) for flow simulations in heterogeneous porous media at the Darcy scale is proposed in this paper. In the Darcy-scale simulations, the Shan-Chen force model is used to simplify the algorithm. The proposed upscaled LBM uses coarser grids to represent the average effects of the fine-grid simulations. In the upscaled LBM, each coarse grid represents a subdomain of the fine-grid discretization and the effective permeability with the reduced-order models is proposed as we coarsen the grid. The effective permeability is computed using solutions of local problems (e.g., by performing local LBM simulations on the fine grids using the original permeability distribution) and used on the coarse grids in the upscaled simulations. The upscaled LBM that can reduce the computational cost of existing LBM and transfer the information between different scales is implemented. The results of coarse-grid, reduced-order, simulations agree very well with averaged results obtained using a fine grid.

  14. Upscaled Lattice Boltzmann Method for Simulations of Flows in Heterogeneous Porous Media

    Directory of Open Access Journals (Sweden)

    Jun Li


    Full Text Available An upscaled Lattice Boltzmann Method (LBM for flow simulations in heterogeneous porous media at the Darcy scale is proposed in this paper. In the Darcy-scale simulations, the Shan-Chen force model is used to simplify the algorithm. The proposed upscaled LBM uses coarser grids to represent the average effects of the fine-grid simulations. In the upscaled LBM, each coarse grid represents a subdomain of the fine-grid discretization and the effective permeability with the reduced-order models is proposed as we coarsen the grid. The effective permeability is computed using solutions of local problems (e.g., by performing local LBM simulations on the fine grids using the original permeability distribution and used on the coarse grids in the upscaled simulations. The upscaled LBM that can reduce the computational cost of existing LBM and transfer the information between different scales is implemented. The results of coarse-grid, reduced-order, simulations agree very well with averaged results obtained using a fine grid.

  15. Micro-PIV measurements of multiphase flow of water and supercritical CO2 in 2D heterogeneous porous micromodels (United States)

    Li, Y.; Kazemifar, F.; Blois, G.; Christensen, K. T.


    Multiphase flow of water and supercritical carbon dioxide (CO2) in porous media is central to geological sequestration of CO2 into saline aquifers. However, our fundamental understanding of the coupled flow dynamics of CO2 and water in complex geologic media still remains limited, especially at the pore scale. Recently, studies have been carried out in 2D homogeneous models with the micro-PIV technique, yielding very interesting observations of pore-scale flow transport. The primary aim of this work is to leverage this experimental protocol to quantify the pore-scale flow of water and liquid/supercritical CO2 in 2D heterogeneous porous micromodels under reservoir-relevant conditions. The goal is to capture the dynamics of this multi-phase flow in a porous matrix that mimics the heterogeneity of natural rock. Fluorescent microscopy and the micro-PIV technique are employed to simultaneously measure the spatially-resolved instantaneous velocity field in the water and quantify the instantaneous spatial configuration of both phases. The results for heterogeneous micromodels will be presented and compared with those for homogeneous micromodels, yielding valuable insight into flow processes at the pore scale in natural rock.

  16. An upscaled rate law for magnesite dissolution in heterogeneous porous media (United States)

    Wen, Hang; Li, Li


    Spatial heterogeneity in natural subsurface systems governs water fluxes and residence time in reactive zones and therefore determines effective rates of mineral dissolution. Extensive studies have documented mineral dissolution rates in natural systems, although a general rate law has remain elusive. Here we fill this gap by answering two questions: (1) how and to what extent does spatial heterogeneity affect water residence time and effectively-dissolving surface area? (2) what is the upscaled rate law that quantifies effective dissolution rates in natural, heterogeneous media? With data constraints from experimental work, 240 Monte-Carlo numerical experiments of magnesite dissolution within quartz matrix were run with spatial distributions characterized by a range of permeability variance σ2lnκ (0.5-6.0) and correlation length (2-50 cm). Although the total surface area and global residence time (τa) are the same in all experiments, the water fluxes through reactive magnesite zones varies between 0.7 and 72.8% of the total water fluxes. Highly heterogeneous media with large σ2lnκ and long λ divert water mostly into non-reactive preferential flow paths, therefore bypassing and minimizing flow in low permeability magnesite zones. As a result, the water residence time in magnesite zones (i.e., reactive residence time τa,r) is long and magnesite dissolution quickly reaches local equilibrium, which leads to small effective surface area and low dissolution rates. Magnesite dissolution rates in heterogeneous media vary from 2.7 to 100% of the rates in the equivalent homogeneous media, with effectively-dissolving surface area varying from 0.18 to 6.83 m2 (out of 51.71 m2 total magnesite surface area). Based on 240 numerical experiments and 45 column experiments, a general upscaled rate law in heterogeneous media, RMgCO3,ht =kAe,hm(1 - exp(-τa/τa,r))α , was derived to quantify effective dissolution rates. The dissolution rates in heterogeneous media are a

  17. Mode decomposition methods for flows in high-contrast porous media. A global approach

    KAUST Repository

    Ghommem, Mehdi


    We apply dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD) methods to flows in highly-heterogeneous porous media to extract the dominant coherent structures and derive reduced-order models via Galerkin projection. Permeability fields with high contrast are considered to investigate the capability of these techniques to capture the main flow features and forecast the flow evolution within a certain accuracy. A DMD-based approach shows a better predictive capability due to its ability to accurately extract the information relevant to long-time dynamics, in particular, the slowly-decaying eigenmodes corresponding to largest eigenvalues. Our study enables a better understanding of the strengths and weaknesses of the applicability of these techniques for flows in high-contrast porous media. Furthermore, we discuss the robustness of DMD- and POD-based reduced-order models with respect to variations in initial conditions, permeability fields, and forcing terms. © 2013 Elsevier Inc.

  18. Online Adaptive Local-Global Model Reduction for Flows in Heterogeneous Porous Media

    KAUST Repository

    Efendiev, Yalchin R.


    We propose an online adaptive local-global POD-DEIM model reduction method for flows in heterogeneous porous media. The main idea of the proposed method is to use local online indicators to decide on the global update, which is performed via reduced cost local multiscale basis functions. This unique local-global online combination allows (1) developing local indicators that are used for both local and global updates (2) computing global online modes via local multiscale basis functions. The multiscale basis functions consist of offline and some online local basis functions. The approach used for constructing a global reduced system is based on Proper Orthogonal Decomposition (POD) Galerkin projection. The nonlinearities are approximated by the Discrete Empirical Interpolation Method (DEIM). The online adaption is performed by incorporating new data, which become available at the online stage. Once the criterion for updates is satisfied, we adapt the reduced system online by changing the POD subspace and the DEIM approximation of the nonlinear functions. The main contribution of the paper is that the criterion for adaption and the construction of the global online modes are based on local error indicators and local multiscale basis function which can be cheaply computed. Since the adaption is performed infrequently, the new methodology does not add significant computational overhead associated with when and how to adapt the reduced basis. Our approach is particularly useful for situations where it is desired to solve the reduced system for inputs or controls that result in a solution outside the span of the snapshots generated in the offline stage. Our method also offers an alternative of constructing a robust reduced system even if a potential initial poor choice of snapshots is used. Applications to single-phase and two-phase flow problems demonstrate the efficiency of our method.

  19. Micro-scale displacement of NAPL by surfactant and microemulsion in heterogeneous porous media (United States)

    Javanbakht, Gina; Arshadi, Maziar; Qin, Tianzhu; Goual, Lamia


    Industrial processes such as remediation of oil-contaminated aquifers and enhanced oil recovery (EOR) often utilize chemical additives to increase the removal of non-aqueous phase liquids (NAPLs) from subsurface formations. Although the majority of crude oils are classified as LNAPLs, they often contain heavy molecules (DNAPLs) such as asphaltenes that tend to adsorb on minerals and alter their wettability. Effective additives are therefore those that can reduce the threshold capillary pressure, thus mobilizing LNAPL inside pore spaces and solubilizing DNAPL from rock surfaces. Nonionic surfactants in brine have often been injected to oil or contaminated aquifer formations in order to enhance NAPL displacement through IFT reduction. Recent studies revealed that surfactant-based microemulsions have a higher tendency to alter the wettability of surfaces, compared to surfactants alone, leading to more effective NAPL removal. However, the impact of these additives on pore-scale displacement mechanisms and multi-phase fluid occupancy in porous media is, to date, still unclear. In this study, x-ray microtomography experiments were performed to investigate the impact of surfactants and microemulsions on the mobilization and solubilization of NAPL in heterogeneous rocks. Saturation profiles indicated that an incremental NAPL removal was attained by addition of microemulsion to brine, compared with surfactant. Residual cluster size distributions revealed that microemulsions could break up large clusters into smaller disconnected ones, improving their mobilization in the rock. In-situ contact angle measurements showed that microemulsions could reverse the wettability of rough contaminated surfaces to a higher extent than surfactants. Unlike surfactant alone, the surfactant-solvent blend in the carrier fluid of microemulsions was able to penetrate rough grain surfaces, particularly those of dolomite cement, and desorb asphaltenes in the form of small-emulsified NAPL droplets

  20. Finite volume approximation of the three-dimensional flow equation in axisymmetric, heterogeneous porous media based on local analytical solution

    KAUST Repository

    Salama, Amgad


    In this work the problem of flow in three-dimensional, axisymmetric, heterogeneous porous medium domain is investigated numerically. For this system, it is natural to use cylindrical coordinate system, which is useful in describing phenomena that have some rotational symmetry about the longitudinal axis. This can happen in porous media, for example, in the vicinity of production/injection wells. The basic feature of this system is the fact that the flux component (volume flow rate per unit area) in the radial direction is changing because of the continuous change of the area. In this case, variables change rapidly closer to the axis of symmetry and this requires the mesh to be denser. In this work, we generalize a methodology that allows coarser mesh to be used and yet yields accurate results. This method is based on constructing local analytical solution in each cell in the radial direction and moves the derivatives in the other directions to the source term. A new expression for the harmonic mean of the hydraulic conductivity in the radial direction is developed. Apparently, this approach conforms to the analytical solution for uni-directional flows in radial direction in homogeneous porous media. For the case when the porous medium is heterogeneous or the boundary conditions is more complex, comparing with the mesh-independent solution, this approach requires only coarser mesh to arrive at this solution while the traditional methods require more denser mesh. Comparisons for different hydraulic conductivity scenarios and boundary conditions have also been introduced. © 2013 Elsevier B.V.

  1. Predesigned Metal-Anchored Building Block for In Situ Generation of Pd Nanoparticles in Porous Covalent Organic Framework: Application in Heterogeneous Tandem Catalysis. (United States)

    Bhadra, Mohitosh; Sasmal, Himadri Sekhar; Basu, Arghya; Midya, Siba P; Kandambeth, Sharath; Pachfule, Pradip; Balaraman, Ekambaram; Banerjee, Rahul


    The development of nanoparticle-polymer-hybrid-based heterogeneous catalysts with high reactivity and good recyclability is highly desired for their applications in the chemical and pharmaceutical industries. Herein, we have developed a novel synthetic strategy by choosing a predesigned metal-anchored building block for in situ generation of metal (Pd) nanoparticles in the stable, porous, and crystalline covalent organic framework (COF), without using conventional reducing agents. In situ generation of Pd nanoparticles in the COF skeleton is explicitly confirmed from PXRD, XPS, TEM images, and 15 N NMR spectral analysis. This hybrid material is found to be an excellent reusable heterogeneous catalyst for the synthesis of biologically and pharmaceutically important 2-substituted benzofurans from 2-bromophenols and terminal alkynes via a tandem process with the turnover number up to 1101. The heterogeneity of the catalytic process is unambiguously verified by a mercury poisoning experiment and leaching test. This hybrid material shows superior catalytic performance compared to commercially available homogeneous as well as heterogeneous Pd catalysts.

  2. Hybrid finite volume scheme for a two-phase flow in heterogeneous porous media*

    Directory of Open Access Journals (Sweden)

    Brenner Konstantin


    Full Text Available We propose a finite volume method on general meshes for the numerical simulation of an incompressible and immiscible two-phase flow in porous media. We consider the case that can be written as a coupled system involving a degenerate parabolic convection-diffusion equation for the saturation together with a uniformly elliptic equation for the global pressure. The numerical scheme, which is implicit in time, allows computations in the case of a heterogeneous and anisotropic permeability tensor. The convective fluxes, which are non monotone with respect to the unknown saturation and discontinuous with respect to the space variables, are discretized by means of a special Godunov scheme. We prove the existence of a discrete solution which converges, along a subsequence, to a solution of the continuous problem. We present a number of numerical results in space dimension two, which confirm the efficiency of the numerical method. Nous proposons un schéma de volumes finis hybrides pour la discrétisation d’un problème d’écoulement diphasique incompressible et immiscible en milieu poreux. On suppose que ce problème a la forme d’une équation parabolique dégénérée de convection-diffusion en saturation couplée à une équation uniformément elliptique en pression. On considère un schéma implicite en temps, où les flux diffusifs sont discrétisés par la méthode des volumes finis hybride, ce qui permet de pouvoir traiter le cas d’un tenseur de perméabilité anisotrope et hétérogène sur un maillage très général, et l’on s’appuie sur un schéma de Godunov pour la discrétisation des flux convectifs, qui peuvent être non monotones et discontinus par rapport aux variables spatiales. On démontre l’existence d’une solution discrète, dont une sous-suite converge vers une solution faible du problème continu. On présente finalement des cas test bidimensionnels.

  3. The Impact of DNAPL Source-Zone Architecture on Contaminant Mass Flux and Plume Evolution in Heterogeneous Porous Media (United States)


    M.D.; Jawitz, J.W. 2008. Laboratory investigation of flux reduction from dense non-aqueous phase liquid (DNAPL) partial source zone remediation by...project was designed to accomplish a systematic study of the mass-transfer behavior of chlorinated-solvent immiscible liquids in heterogeneous porous...5.1.3-1b Summary of experimental conditions……………………………………… 43 Tables 5.3.1-1 Summary of miscible -displacement experiments…………………………… 63 Table 5.3.1

  4. The use of laboratory experiments for the study of conservative solute transport in heterogeneous porous media (United States)

    Silliman, S. E.; Zheng, L.; Conwell, P.

    Laboratory experiments on heterogeneous porous media (otherwise known as intermediate scale experiments, or ISEs) have been increasingly relied upon by hydrogeologists for the study of saturated and unsaturated groundwater systems. Among the many ongoing applications of ISEs is the study of fluid flow and the transport of conservative solutes in correlated permeability fields. Recent advances in ISE design have provided the capability of creating correlated permeability fields in the laboratory. This capability is important in the application of ISEs for the assessment of recent stochastic theories. In addition, pressure-transducer technology and visualization methods have provided the potential for ISEs to be used in characterizing the spatial distributions of both hydraulic head and local water velocity within correlated permeability fields. Finally, various methods are available for characterizing temporal variations in the spatial distribution (and, thereby, the spatial moments) of solute concentrations within ISEs. It is concluded, therefore, that recent developments in experimental techniques have provided an opportunity to use ISEs as important tools in the continuing study of fluid flow and the transport of conservative solutes in heterogeneous, saturated porous media. Résumé Les hydrogéologues se sont progressivement appuyés sur des expériences de laboratoire sur des milieux poreux hétérogènes (connus aussi par l'expression "Expériences àéchelle intermédiaire", ISE) pour étudier les zones saturées et non saturées des aquifères. Parmi les nombreuses applications en cours des ISE, il faut noter l'étude de l'écoulement de fluide et le transport de solutés conservatifs dans des champs aux perméabilités corrélées. Les récents progrès du protocole des ISE ont donné la possibilité de créer des champs de perméabilités corrélées au laboratoire. Cette possibilité est importante dans l'application des ISE pour l'évaluation des th

  5. Different effects of surface heterogeneous atoms of porous and non-porous carbonaceous materials on adsorption of 1,1,2,2-tetrachloroethane in aqueous environment. (United States)

    Chen, Weifeng; Ni, Jinzhi


    The surface heterogeneous atoms of carbonaceous materials (CMs) play an important role in adsorption of organic pollutants. However, little is known about the surface heterogeneous atoms of CMs might generate different effect on adsorption of hydrophobic organic compounds by porous carbonaceous materials - activated carbons (ACs) and non-porous carbonaceous materials (NPCMs). In this study, we observed that the surface oxygen and nitrogen atoms could decrease the adsorption affinity of both ACs and NPCMs for 1,1,2,2-tetrachloroethane (TeCA), but the degree of decreasing effects were very different. The increasing content of surface oxygen and nitrogen ([O + N]) caused a sharper decrease in adsorption affinity of ACs (slope of lg (k d /SA) vs [O + N]: -0.098∼-0.16) than that of NPCMs (slope of lg (k d /SA) vs [O + N]: -0.025∼-0.059) for TeCA. It was due to the water cluster formed by the surface hydrophilic atoms that could block the micropores and generate massive invalid adsorption sites in the micropores of ACs, while the water cluster only occupied the surface adsorption sites of NPCMs. Furthermore, with the increasing concentration of dissolved TeCA, the effect of surface area on adsorption affinity of NPCMs for TeCA kept constant while the effect of [O + N] decreased due to the competitive adsorption between water molecule and TeCA on the surface of NPCMs, meanwhile, both the effects of micropore volume and [O + N] on adsorption affinity of ACs for TeCA were decreased due to the mechanism of micropore volume filling. These findings are valuable for providing a deep insight into the adsorption mechanisms of CMs for TeCA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Microbial-Induced Heterogeneity in the Acoustic Properties of Porous Media (United States)

    Acoustic wave data were acquired over a two-dimensional region of a microbial-stimulated sand column and an unstimulated sand column to assess the spatiotemporal changes in a porous medium caused by microbial growth and biofilm formation. The acoustic signals from the unstimulate...

  7. Highly porous nanoberyllium for X-ray beam speckle suppression

    Energy Technology Data Exchange (ETDEWEB)

    Goikhman, Alexander, E-mail:; Lyatun, Ivan; Ershov, Petr [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Snigireva, Irina [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Wojda, Pawel [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Gdańsk University of Technology, 11/12 G. Narutowicza, Gdańsk 80-233 (Poland); Gorlevsky, Vladimir; Semenov, Alexander; Sheverdyaev, Maksim; Koletskiy, Viktor [A. A. Bochvar High-Technology Scientific Research Institute for Inorganic Materials, Rogova str. 5a, Moscow 123098 (Russian Federation); Snigirev, Anatoly [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)


    A speckle suppression device containing highly porous nanoberyllium is proposed for manipulating the spatial coherence length and removing undesirable speckle structure during imaging experiments. This paper reports a special device called a ‘speckle suppressor’, which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1 mm thickness at 12 keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15 keV. It was applied for the transformation of the phase–amplitude contrast to the pure amplitude contrast in full-field microscopy.

  8. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan


    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent film...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  9. Influence of surface heterogeneities on reversibility of fullerene (nC60) nanoparticle attachment in saturated porous media. (United States)

    Shen, Chongyang; Zhang, Mengjia; Zhang, Shuzhen; Wang, Zhan; Zhang, Hongyan; Li, Baoguo; Huang, Yuanfang


    This study systematically investigated influence of surface roughness and surface chemical heterogeneity on attachment and detachment of nC60 nanoparticles in saturated porous media by conducting laboratory column experiments. Sand and glass beads were employed as a model collectors to represent a different surface roughness. The two collectors were treated by washing with only deionized water or by using acids to extensively remove chemical heterogeneities. Results show that both attachment and detachment were more in the acid-treated sand than those in the acid-treated glass beads. The greater attachment and detachment were attributed to the reason that sand surfaces have much more nanoscale asperities, which facilitates particle attachment atop of them at primary minima and subsequent detachment upon reduction of ionic strength. No detachment was observed if the water-washed collectors were employed, demonstrating that the couple of chemical heterogeneity with nanoscale roughness causes irreversible attachment in primary minima. Whereas existing studies frequently represented surface rough asperities as regular geometries (e.g., hemisphere, cone, pillar) for estimating influence of surface roughness on Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies, our theoretical calculations indicate that the assumptions could underestimate both attachment and detachment because these geometries cannot account for surface curvature effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Efficient High Performance Computing on Heterogeneous Platforms

    NARCIS (Netherlands)

    Shen, J.


    Heterogeneous platforms are mixes of different processing units in a compute node (e.g., CPUs+GPUs, CPU+MICs) or a chip package (e.g., APUs). This type of platforms keeps gaining popularity in various computer systems ranging from supercomputers to mobile devices. In this context, improving their

  11. Pore-network model of evaporation-induced salt precipitation in porous media: The effect of correlations and heterogeneity (United States)

    Dashtian, Hassan; Shokri, Nima; Sahimi, Muhammad


    Salt transport and precipitation in porous media constitute a set of complex and fascinating phenomena that are of considerable interest to several important problems, ranging from storage of CO2 in geological formations, to soil fertility, and protection of pavements and roads, as well as historical monuments. The phenomena occur at the pore scale and are greatly influenced by the heterogeneity of the pore space morphology. We present a pore-network (PN) model to study the phenomena. Vapor diffusion, capillary effect at the brine-vapor interface, flow of brine, and transport of salt and its precipitation in the pores that plug the pores partially or completely are all accounted for. The drying process is modeled by the invasion percolation, while transport of salt in brine is accounted for by the convective-diffusion equation. We demonstrate that the drying patterns, the clustering and connectivity of the pore throats in which salt precipitation occurs, the saturation distribution, and the drying rate are all strongly dependent upon the pore-size distribution, the correlations among the pore sizes, and the anisotropy of the pore space caused by stratification that most natural porous media contain. In particular, if the strata are more or less parallel to the direction of injection of the gas that dries out the pore space (air, for example) and/or causes salt precipitation (CO2, for example), the drying rate increases significantly. Moreover, salt tends to precipitate in clusters of neighboring pores that are parallel to the open surface of the porous medium.

  12. Membraneless flow battery leveraging flow-through heterogeneous porous media for improved power density and reduced crossover

    CERN Document Server

    Suss, Matthew E; Gilson, Laura; Buie, Cullen R; Bazant, Martin Z


    A key factor preventing the market penetration of renewable, intermittent energy sources, such as solar, wind and wave, is the lack of cost-effective energy storage options to counteract intermittency. Here, we propose and demonstrate a novel flow battery architecture that replaces traditional ion-exchange membranes with less expensive heterogeneous flow-through porous media. We present an experimentally-validated model which demonstrates that our architecture promises reduced crossover of reactive species compared to typical membraneless systems employing co-laminar flows in open channels. In addition, our prototype battery exhibits significantly improved power density (0.925 W/cm2) and maximum current density (3 A/cm2) compared to previous membraneless systems.

  13. Multilevel and quasi-Monte Carlo methods for uncertainty quantification in particle travel times through random heterogeneous porous media. (United States)

    Crevillén-García, D; Power, H


    In this study, we apply four Monte Carlo simulation methods, namely, Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel quasi-Monte Carlo to the problem of uncertainty quantification in the estimation of the average travel time during the transport of particles through random heterogeneous porous media. We apply the four methodologies to a model problem where the only input parameter, the hydraulic conductivity, is modelled as a log-Gaussian random field by using direct Karhunen-Loéve decompositions. The random terms in such expansions represent the coefficients in the equations. Numerical calculations demonstrating the effectiveness of each of the methods are presented. A comparison of the computational cost incurred by each of the methods for three different tolerances is provided. The accuracy of the approaches is quantified via the mean square error.

  14. Multiscale Characterization of Structural Compositional and Textural Heterogeneity of Nano-porous Geomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hongkyu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Geomechanics Dept.


    The purpose of the project was to perform multiscale characterization of low permeability rocks to determine the effect of physical and chemical heterogeneity on the poromechanical and flow responses of shales and carbonate rocks with a broad range of physical and chemical heterogeneity . An integrated multiscale imaging of shale and carbonate rocks from nanometer to centimeter scales include s dual focused ion beam - scanning electron microscopy (FIB - SEM) , micro computed tomography (micro - CT) , optical and confocal microscopy, and 2D and 3D energy dispersive spectroscopy (EDS). In addition, mineralogical mapping and backscattered imaging with nanoindentation testing advanced the quantitative evaluat ion of the relationship between material heterogeneity and mechanical behavior. T he spatial distribution of compositional heterogeneity, anisotropic bedding patterns, and mechanical anisotropy were employed as inputs for brittle fracture simulations using a phase field model . Comparison of experimental and numerical simulations reveal ed that proper incorporation of additional material information, such as bedding layer thickness and other geometrical attributes of the microstructures, can yield improvements on the numerical prediction of the mesoscale fracture patterns and hence the macroscopic effective toughness. Overall, a comprehensive framework to evaluate the relationship between mechanical response and micro-lithofacial features can allow us to make more accurate prediction of reservoir performance by developing a multi - scale understanding of poromechanical response to coupled chemical and mechanical interactions for subsurface energy related activities.

  15. Probability density function of non-reactive solute concentration in heterogeneous porous formations (United States)

    Alberto Bellin; Daniele Tonina


    Available models of solute transport in heterogeneous formations lack in providing complete characterization of the predicted concentration. This is a serious drawback especially in risk analysis where confidence intervals and probability of exceeding threshold values are required. Our contribution to fill this gap of knowledge is a probability distribution model for...

  16. Shape-controlled porous nanocarbons for high performance supercapacitors

    KAUST Repository

    Chén, Wěi


    Porous activated nanocarbons with well-controlled dimensionality and morphology (i.e. 0D activated carbon nanoparticles, 1D activated carbon nanotubes, and 2D activated carbon nanosheets) were derived successfully from different template-induced polyaniline nanostructures by facile carbonization and activation processes. The obtained nanocarbons show large specific surface areas (1332-2005 m2 g-1), good conductivities, and highly porous nanoscale architectures. The supercapacitors fabricated using the shape-controlled nanocarbons exhibit high specific capacitance, excellent rate capability, and superior long-term cycling stability in both aqueous and ionic liquid electrolytes. More importantly, a very high energy density of 50.5 W h kg-1 with a power density of 17.4 kW kg-1 can be obtained from the activated carbon nanotube based supercapacitors in an ionic liquid electrolyte (with a charge time of ∼10 s), making the shape-controlled nanocarbons promising candidates for high-performance energy storage devices. © 2014 the Partner Organisations.

  17. Heterogeneous porous media permeability field characterization from fluid displacement data; Integration de donnees de deplacements de fluides dans la caracterisation de milieux poreux heterogenes

    Energy Technology Data Exchange (ETDEWEB)

    Kretz, V.


    The prediction of oil recovery or pollutant dispersion requires an accurate knowledge of the permeability field distribution. Available data are usually measurements in well bores, and, since a few years, 4D-seismic data (seismic mappings repeated in time). Such measurements allow to evaluate fluids displacements fronts evolution. The purpose of the thesis is to evaluate the possibility to determinate permeability fields from fluid displacement measurements in heterogeneous porous media. At the laboratory scale, experimental studies are made on a model and on numerical simulations. The system uses blocks of granular materials whose individual geometries and permeabilities are controlled. The fluids displacements are detected with an acoustical. The key parameters of the study are the size and spatial correlation of the permeability heterogeneity distribution, and the influence of viscosity and gravity contrasts between the injected ant displaced fluid. Then the inverse problem - evaluating the permeability field from concentration fronts evolution - is approached. At the reservoir scale, the work will mainly be focused on the integration of 4D-seismic data into inversion programs on a 3D synthetic case. A particular importance will be given to the calculation of gradients, in order to obtain a complementary information about the sensitivity of data. The information provided by 4D-seismic data consists in maps showing the vertical average of oil saturation or the presence of gas. The purpose is to integrate this qualitative information in the inversion process and to evaluate the impact on the reservoir characterization. Comparative studies - with or without 4D-seismic data - will be realized on a synthetic case. (author)

  18. Genetic Manipulation of Outer Membrane Permeability: Generating Porous Heterogeneous Catalyst Analogs in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Patel, TN; Park, AHA; Bantat, S


    The limited permeability of the E. coli outer membrane can significantly hinder whole-cell biocatalyst performance. In this study, the SARS coronavirus small envelope protein (SCVE) was expressed in E. coli cells previously engineered for periplasmic expression of carbonic anhydrase (CA) activity. This maneuver increased small molecule uptake by the cells, resulting in increased apparent CA activity of the biocatalysts. The enhancements in activity were quantified using methods developed for traditional heterogeneous catalysis. The expression of the SCVE protein was found to significantly reduce the Thiele moduli (phi), as well as increase the effectiveness factors (eta), effective diffusivities (D-e), and permeabilities (P) of the biocatalysts. These catalytic improvements translated into superior performance of the biocatalysts for the precipitation of calcium carbonate from solution which is an attractive strategy for long-term sequestration of captured carbon dioxide. Overall, these results demonstrate that synthetic biology approaches can be used to enhance heterogeneous catalysts incorporated into microbial whole-cell scaffolds.

  19. Migration and Entrapment of DNAPLs in Heterogeneous Systems: Impact of Waste and Porous Medium Composition

    Energy Technology Data Exchange (ETDEWEB)

    Linda M. Abriola; Avery H. Demond


    Dense nonaqueous phase liquids (DNAPLs) pose a significant threat to soil and groundwater at Department of Energy (DOE) sites. Evidence suggests that subsurface wettability variations are present at many of these sites as a result of spatical and temporal variations in aqueous phase chemistry, contaminant aging, mineralogy and organic matter. The presence of such heterogeneity may significantly influence DNAPL migration and entrapment in the saturated zone.

  20. A Universal Isotherm Model to Capture Adsorption Uptake and Energy Distribution of Porous Heterogeneous Surface


    Ng, Kim Choon; Burhan, Muhammad; Shahzad, Muhammad Wakil; Ismail, Azahar Bin


    The adsorbate-adsorbent thermodynamics are complex as it is influenced by the pore size distributions, surface heterogeneity and site energy distribution, as well as the adsorbate properties. Together, these parameters defined the adsorbate uptake forming the state diagrams, known as the adsorption isotherms, when the sorption site energy on the pore surfaces are favorable. The available adsorption models for describing the vapor uptake or isotherms, hitherto, are individually defined to corr...

  1. Microfluidic Reactors Based on Rechargeable Catalytic Porous Supports: Heterogeneous Enzymatic Catalysis via Reversible Host-Guest Interactions. (United States)

    de León, Alberto Sanz; Vargas-Alfredo, Nelson; Gallardo, Alberto; Fernández-Mayoralas, Alfonso; Bastida, Agatha; Muñoz-Bonilla, Alexandra; Rodríguez-Hernández, Juan


    We report on the fabrication of a microfluidic device in which the reservoir contains a porous surface with enzymatic catalytic activity provided by the reversible immobilization of horseradish peroxidase onto micrometer size pores. The porous functional reservoir was obtained by the Breath Figures approach by casting in a moist environment a solution containing a mixture of high molecular weight polystyrene (HPS) and a poly(styrene-co-cyclodextrin based styrene) (P(S-co-SCD)) statistical copolymer. The pores enriched in CD were employed to immobilize horseradish peroxidase (previously modified with adamantane) by host-guest interactions (HRP-Ada). These surfaces exhibit catalytic activity that remains stable during several reaction cycles. Moreover, the porous platforms could be recovered by using free water-soluble β-CD with detergents. An excess of β-CD/TritonX100 in solution disrupts the interactions between HRP-Ada and the CD-modified substrate thus allowing us to recover the employed enzyme and reuse the platform.

  2. Coulombic interactions and multicomponent ionic dispersion during transport of charged species in heterogeneous porous media

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    the capability of the proposed two-dimensional multicomponent approach to describe transport of charged species and to accurately capture the Coulombic interactions between the ions, which are clearly observed in the flow-through experiments. Furthermore, the model allowed us to directly quantify and visualize...... the ionic interactions by mapping the Coulombic cross-coupling between the dispersive fluxes of the charged species in the heterogeneous domains. The outcomes of this study are important in many subsurface applications including migration of contaminants and propagation of reaction fronts....

  3. Miscible, Porous Media Displacements with Density Stratification

    National Research Council Canada - National Science Library



    A bstract : High accuracy, three‐dimensional numerical simulations of miscible displacements with gravity override, in both homogeneous and heterogeneous porous media, are discussed for the quarter five‐spot configuration...

  4. Chitosan/kaolin composite porous microspheres with high hemostatic efficacy. (United States)

    Sun, Xun; Tang, Zonghao; Pan, Meng; Wang, Zhengchao; Yang, Hongqin; Liu, Haiqing


    The hemostatic performance of chitosan was greatly improved by blending it with kaolin to fabricate porous composite microspheres (CSMS-K) through inverse emulsion method combining with thermally induced phase separation. The CSMS-K had high amount of interior and surface pores. The synergetic hemostatic competence of chitosan and kaolin components made the hemostatic efficacy of CSMS-K superior to chitosan porous microspheres (CSMS). The hemostatic time of CSMS-K3 in the rat tail amputation and liver laceration models was down to respective 120 and 99s from 183 and 134s of CSMS, and the blood loss of CSMS-K3 was respectively 65% and 36% of that of CSMS in the rat tail amputation and liver laceration models. The whole blood clotting kinetics proved that CSMS-K3 formed larger blood clots than CSMS and Celox within a same time period. Our results suggested that the CSMS-K is a potential quick pro-coagulant agent for traumatic hemorrhaging control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Nonideal transport of reactive contaminants in heterogeneous porous media: 7. distributed-domain model incorporating immiscible-liquid dissolution and rate-limited sorption/desorption. (United States)

    Zhang, Zhihui; Brusseau, Mark L


    The purpose of this work is to present a distributed-domain mathematical model incorporating the primary mass-transfer processes that mediate the transport of immiscible organic liquid constituents in water-saturated, locally heterogeneous porous media. Specifically, the impact of grain/pore-scale heterogeneity on immiscible-liquid dissolution and sorption/desorption is represented in the model by describing the system as comprising a continuous distribution of mass-transfer domains. With this conceptualization, the distributions of the initial dissolution rate coefficient and the sorption/desorption rate coefficient are represented as probability density functions. Several sets of numerical experiments are conducted to examine the effects of heterogeneous dissolution and sorption/desorption on contaminant transport and elution. Four scenarios with different combinations of uniform/heterogeneous rate-limited dissolution and uniform/heterogeneous rate-limited sorption/desorption are evaluated. The results show that both heterogeneous rate-limited sorption/desorption and heterogeneous rate-limited dissolution can significantly increase the time or pore volumes required to elute immiscible-liquid constituents from a contaminated porous medium. However, sorption/desorption has minimal influence on elution behavior until essentially all of the immiscible liquid has been removed. For typical immiscible-liquid constituents that have relatively low sorption, the asymptotic elution tailing produced by heterogeneous rate-limited sorption/desorption begins at effluent concentrations that are several orders of magnitude below the initial steady-state concentrations associated with dissolution of the immiscible liquid. Conversely, the enhanced elution tailing associated with heterogeneous rate-limited dissolution begins at concentrations that are approximately one-tenth of the initial steady-state concentrations. Hence, dissolution may generally control elution behavior of

  6. Multiphase flow in heterogeneous porous media from a stochastic differential geometry viewpoint (United States)

    Christakos, George; Hristopulos, Dionissios T.; Li, Xinyang


    Multiphase flow of immiscible fluids is studied by means of a stochastic flow path approach. This approach is based on a differential geometric formulation that replaces the partial differential equations (PDEs) of flow by a set of ordinary differential equations (ODEs) that determine the flow paths and impose conservation of flux. It is shown that flux conservation along the flow paths involves a space transform. Other formulations of the multiphase flow equations involve Jacobian mappings. Flow realizations as well as statistical flow moments can be derived by means of the stochastic flow path method. Advantages of the stochastic flow path method include: reduction of a PDE to an ODE system, independence from perturbation approximations and Green's functions, and the freedom to use random initial conditions at the boundary. Using the stochastic flow path method, closed-form expressions are obtained for two-phase flow in uniaxially heterogeneous media. Two-phase flow in a heterogeneous two-dimensional medium is also investigated using numerical simulations.

  7. Uncertainty estimation in one-dimensional heat transport model for heterogeneous porous medium. (United States)

    Chang, Ching-Min; Yeh, Hund-Der


    In many practical applications, the rates for ground water recharge and discharge are determined based on the analytical solution developed by Bredehoeft and Papadopulos (1965) to the one-dimensional steady-state heat transport equation. Groundwater flow processes are affected by the heterogeneity of subsurface systems; yet, the details of which cannot be anticipated precisely. There exists a great deal of uncertainty (variability) associated with the application of Bredehoeft and Papadopulos' solution (1965) to the field-scale heat transport problems. However, the quantification of uncertainty involved in such application has so far not been addressed, which is the objective of this wok. In addition, the influence of the statistical properties of log hydraulic conductivity field on the variability in temperature field in a heterogeneous aquifer is also investigated. The results of the analysis demonstrate that the variability (or uncertainty) in the temperature field increases with the correlation scale of the log hydraulic conductivity covariance function and the variability of temperature field also depends positively on the position. © 2013, National Ground Water Association.

  8. Highly heterogeneous Ty3/Gypsy -like retrotransposon sequences ...

    African Journals Online (AJOL)

    like), sequences to be highly heterogeneous. Some Megyps clustered with other plants' Ty3/Gypsy-like retrotransposons, while some clustered with Gypsy of Drosophila melanogaster and Ty3-2 of Saccharomyces cerevisiae in the comparative ...

  9. Comparison of iterative methods and preconditioners for the solution of miscible two-phase flow in heterogeneous porous media (United States)

    Büsing, Henrik


    calculation of mutual solubilities from 12 to 100 °C and up to 600 bar, Geochimica et Cosmochimica Acta, 67(16), 3015-3031. [2] Huber, R. & Helmig, R., 2000. Node-centered finite volume discretizations for the numerical simulation of multiphase flow in heterogeneous porous media, Computational Geosciences, 4, 141-164. [3] Griewank, A. & Walther, A., 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, SIAM, Philadelphia, PA, 2nd edn. [4] Büsing, H., Willkomm, J., Bischof, C. H., & Clauser, C., 2012. Using exact Jacobians in an implicit Newton method for solving multiphase flow in porous media, International Journal for Computational Science and Engineering, (to appear). [5] Pape, H., Clauser, C., & Iffland, J., 2000. Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal pore space model, Pure and Applied Geophysics, 157, 603-619.

  10. The acoustical structure of highly porous open-cell foams (United States)

    Lambert, R. F.


    This work concerns both the theoretical prediction and measurement of structural parameters in open-cell highly porous polyurethane foams. Of particular interest are the dynamic flow resistance, thermal time constant, and mass structure factor and their dependence on frequency and geometry of the cellular structure. The predictions of cell size parameters, static flow resistance, and heat transfer as accounted for by a Nusselt number are compared with measurement. Since the static flow resistance and inverse thermal time constant are interrelated via the 'mean' pore size parameter of Biot, only two independent measurements such as volume porosity and mean filament diameter are required to make the predictions for a given fluid condition. The agreements between this theory and nonacoustical experiments are excellent.

  11. High aspect ratio channels in glass and porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Liang, H.D. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Nanoscience and Nanotechnology Initiative (NNI), National University of Singapore, Singapore 117411 (Singapore); Dang, Z.Y. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Wu, J.F. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Kan, J.A. van; Qureshi, S. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Ynsa, M.D.; Torres-Costa, V. [Department of Applied Physics, Universidad Autónoma de Madrid, Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Centro de Micro-Análisis de Materiales (CMAM), Universidad Autónoma de Madrid, Campus de Cantoblanco Edif. 22, Faraday 3, E-28049 Madrid (Spain); Maira, A. [Department of Applied Physics, Universidad Autónoma de Madrid, Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Venkatesan, T.V. [Nanoscience and Nanotechnology Initiative (NNI), National University of Singapore, Singapore 117411 (Singapore); Breese, M.B.H., E-mail: [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore)


    We have developed a micromachining process to produce high-aspect-ratio channels and holes in glass and porous silicon. Our process utilizes MeV proton beam irradiation of silicon using direct writing with a focused beam, followed by electrochemical etching. To increase throughput we have also developed another process for large area ion irradiation based on a radiation-resistant gold surface mask, allowing many square inches to be patterned. We present a study of the achievable channel width, depth and period and sidewall verticality for a range of channels which can be over 100 μm deep or 100 nm wide with aspect ratios up to 80. This process overcomes the difficulty of machining glass on a micro- and nanometer scale which has limited many areas of applications in different fields such as microelectronics and microfluidics.

  12. Phase-field simulation of counter-current spontaneous imbibition in a fractured heterogeneous porous medium (United States)

    Rokhforouz, M. R.; Akhlaghi Amiri, H. A.


    Spontaneous imbibition is well-known to be one of the most effective processes of oil recovery in fractured reservoirs. However, the detailed pore-scale mechanisms of the counter-current imbibition process and the effects of different fluid/rock parameters on this phenomenon have not yet been deeply addressed. This work presents the results of a new pore-level numerical study of counter-current spontaneous imbibition, using coupled Cahn-Hilliard phase field and Navier-Stokes equations, solved by a finite element method. A 2D fractured medium was constructed consisting of a nonhomogeneous porous matrix, in which the grains were represented by an equilateral triangular array of circles with different sizes and initially saturated with oil, and a fracture, adjacent to the matrix, initially saturated with water and supported by low rate water inflow. Through invasion of water into the matrix, oil drops were expelled one by one from the matrix to the fracture, and in the matrix, water progressed by forming capillary fingerings, with characteristics corresponding to the experimental observations. The effects of wettability, viscosity ratio, and interfacial tension were investigated. In strongly water-wet matrix, with grain contact angles of θ movement, water bridging, and oil drop detachment. It was notified that there was a specific grain contact angle for this simulated model, θ = π/4, above it, matrix oil recovery was negligible by imbibition, while below it, the imbibition rate and oil recovery were significantly increased by decreasing the contact angle. In simulated mixed wet models, water, coming from the fracture, just invaded the neighboring water-wet grains; the water front was stopped moving as it met the oil-wet grains or wide pores/throats. Increasing water-oil interfacial tension, in the range of 0.005-0.05 N/m, resulted in both higher rate of imbibition and higher ultimate oil recovery. Changing the water-oil viscosity ratio (M), in the range of 0

  13. Numerical study of compositional compressible degenerate two-phase flow in saturated–unsaturated heterogeneous porous media

    KAUST Repository

    Saad, Ali S.


    We study the convergence of a combined finite volume-nonconforming finite element scheme on general meshes for a partially miscible two-phase flow model in anisotropic porous media. This model includes capillary effects and exchange between the phases. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh. The relative permeability of each phase is decentered according to the sign of the velocity at the dual interface. The convergence of the scheme is proved thanks to an estimate on the two pressures which allows to show estimates on the discrete time and compactness results in the case of degenerate relative permeabilities. A key point in the scheme is to use particular averaging formula for the dissolution function arising in the diffusion term. We show also a simulation of hydrogen production in nuclear waste management. Numerical results are obtained by in-house numerical code. © 2015 Elsevier Ltd.

  14. Bayesian uncertainty quantification for flows in heterogeneous porous media using reversible jump Markov chain Monte Carlo methods

    KAUST Repository

    Mondal, A.


    In this paper, we study the uncertainty quantification in inverse problems for flows in heterogeneous porous media. Reversible jump Markov chain Monte Carlo algorithms (MCMC) are used for hierarchical modeling of channelized permeability fields. Within each channel, the permeability is assumed to have a lognormal distribution. Uncertainty quantification in history matching is carried out hierarchically by constructing geologic facies boundaries as well as permeability fields within each facies using dynamic data such as production data. The search with Metropolis-Hastings algorithm results in very low acceptance rate, and consequently, the computations are CPU demanding. To speed-up the computations, we use a two-stage MCMC that utilizes upscaled models to screen the proposals. In our numerical results, we assume that the channels intersect the wells and the intersection locations are known. Our results show that the proposed algorithms are capable of capturing the channel boundaries and describe the permeability variations within the channels using dynamic production history at the wells. © 2009 Elsevier Ltd. All rights reserved.

  15. Adaptive Mesh Refinement for a Finite Volume Method for Flow and Transport of Radionuclides in Heterogeneous Porous Media

    Directory of Open Access Journals (Sweden)

    Amaziane Brahim


    Full Text Available In this paper, we consider adaptive numerical simulation of miscible displacement problems in porous media, which are modeled by single phase flow equations. A vertex-centred finite volume method is employed to discretize the coupled system: the Darcy flow equation and the diffusion-convection concentration equation. The convection term is approximated with a Godunov scheme over the dual finite volume mesh, whereas the diffusion-dispersion term is discretized by piecewise linear conforming finite elements. We introduce two kinds of indicators, both of them of residual type. The first one is related to time discretization and is local with respect to the time discretization: thus, at each time, it provides an appropriate information for the choice of the next time step. The second is related to space discretization and is local with respect to both the time and space variable and the idea is that at each time it is an efficient tool for mesh adaptivity. An error estimation procedure evaluates where additional refinement is needed and grid generation procedures dynamically create or remove fine-grid patches as resolution requirements change. The method was implemented in the software MELODIE, developed by the French Institute for Radiological Protection and Nuclear Safety (IRSN, Institut de Radioprotection et de Sûreté Nucléaire. The algorithm is then used to simulate the evolution of radionuclide migration from the waste packages through a heterogeneous disposal, demonstrating its capability to capture complex behavior of the resulting flow.

  16. Identifying and Quantifying Heterogeneity in High Content Analysis: Application of Heterogeneity Indices to Drug Discovery (United States)

    Gough, Albert H.; Chen, Ning; Shun, Tong Ying; Lezon, Timothy R.; Boltz, Robert C.; Reese, Celeste E.; Wagner, Jacob; Vernetti, Lawrence A.; Grandis, Jennifer R.; Lee, Adrian V.; Stern, Andrew M.; Schurdak, Mark E.; Taylor, D. Lansing


    One of the greatest challenges in biomedical research, drug discovery and diagnostics is understanding how seemingly identical cells can respond differently to perturbagens including drugs for disease treatment. Although heterogeneity has become an accepted characteristic of a population of cells, in drug discovery it is not routinely evaluated or reported. The standard practice for cell-based, high content assays has been to assume a normal distribution and to report a well-to-well average value with a standard deviation. To address this important issue we sought to define a method that could be readily implemented to identify, quantify and characterize heterogeneity in cellular and small organism assays to guide decisions during drug discovery and experimental cell/tissue profiling. Our study revealed that heterogeneity can be effectively identified and quantified with three indices that indicate diversity, non-normality and percent outliers. The indices were evaluated using the induction and inhibition of STAT3 activation in five cell lines where the systems response including sample preparation and instrument performance were well characterized and controlled. These heterogeneity indices provide a standardized method that can easily be integrated into small and large scale screening or profiling projects to guide interpretation of the biology, as well as the development of therapeutics and diagnostics. Understanding the heterogeneity in the response to perturbagens will become a critical factor in designing strategies for the development of therapeutics including targeted polypharmacology. PMID:25036749



    Marble, J. C.; DiFilippo, E. L.; Zhang, Z.; Tick, G. R.; Brusseau, M. L.


    The use of a lumped-process mathematical model to simulate the complete dissolution of immiscible liquid non-uniformly distributed in physically heterogeneous porous-media systems was investigated. The study focused specifically on systems wherein immiscible liquid was poorly accessible to flowing water. Two representative, idealized scenarios were examined, one wherein immiscible liquid at residual saturation exists within a lower-permeability unit residing in a higher-permeability matrix, a...

  18. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Energy Technology Data Exchange (ETDEWEB)

    Byamba-Ochir, Narandalai [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of); Shim, Wang Geun [Department of Polymer Science and Engineering, Sunchon National University, 255 Jungang-Ro, Suncheon, Jeollanam-Do 57922 (Korea, Republic of); Balathanigaimani, M.S., E-mail: [Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Ratapur Chowk, Rae Bareli, 229316 Uttar Pradesh (India); Moon, Hee, E-mail: [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of)


    Highlights: • Highly porous carbon materials from Mongolian anthracite by chemical activation. • Cheaper and eco-friendly activation process has been employed. • Activated carbons with graphitic structure and energetically heterogeneous surface. • Surface hydrophobicity and porosity of the activated carbons can be controlled. - Abstract: Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816–2063 m{sup 2}/g and of 0.55–1.61 cm{sup 3}/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  19. Heterogeneous catalysis in highly sensitive microreactors

    DEFF Research Database (Denmark)

    Olsen, Jakob Lind

    oxygen surplus, is presented. The e_ect of pretreating the catalyst, CuZnO, in a mixture of H2 and CO before methanol synthesis, is presented. Transient increased methanol production is seen after pretreatment, with a maximum in the transient for a pretreatment with a one to one CO to H2 ratio...... of adsorbates readily converted to methanol as the source of the transient increase in methanol production, is eliminated. A study of mass selected ruthenium nanoparticles from a magnetron-sputter gas-aggregation source, deposited in microreactors, is presented. It is, shown that CO methanation can be measured....... The highly active state of the catalyst after pretreatment in a CO and H2 mixture is shown to have transient methanol synthesis capabilities at 60.. Estimates of the area of the catalytic surface, is obtained using formate temperature programmed desorption measurements. From these, the possibility...

  20. Contact mechanics of highly porous oxide nanoparticle agglomerates

    NARCIS (Netherlands)

    Fabre, A.; Salameh, S.; Colombi Ciacchi, Lucio; Kreutzer, M.T.; van Ommen, J.R.


    Efficient nanopowder processing requires knowledge of the powder’s mechanical properties. Due to the large surface area to volume ratio, nanoparticles experience relatively strong attractive interactions, leading to the formation of micron-size porous structures called agglomerates. Significant

  1. Gas transport in highly permeable, dry porous media (United States)

    Levintal, Elad; Dragila, Maria I.; Kamai, Tamir; Weisbrod, Noam


    Gas exchange between soil and atmosphere is far more efficient via advective than diffusive mechanisms. Whereas advection requires media permeability be sufficiently high and an advecting driving mechanism, diffusion transport occurs in all permeabilities. Traditionally, diffusion models generally have focused only on low permeability media (sand particles and smaller, k transport in higher permeability media when climatic conditions do not favor advection. A permeability cutoff is quantified, such that above it traditional diffusion models become inaccurate. Results are based on experiments using large columns filled with different homogeneous spherical particles, conducted inside a climate-controlled laboratory especially designed for quantifying soil-gas diffusivity under isothermal and windless conditions. The results indicate that traditional diffusion models are accurate for permeability values below 2.7×10-3 cm2. Above this threshold, gas transport could not be explained by diffusion alone. Our measurements indicate that for permeability values above this threshold gas flux is higher than can be explained by diffusion, even under stable environmental conditions where advection is not expected. The findings of this research can contribute to better understanding of gas transport in high-permeability porous media such as: aggregated soils, snowpacks and mines stockpiles.

  2. Surface heterogeneity on hemispheres-in-cell model yields all experimentally-observed non-straining colloid retention mechanisms in porous media in the presence of energy barriers. (United States)

    Ma, Huilian; Pazmino, Eddy; Johnson, William P


    Many mechanisms of colloid retention in porous media under unfavorable conditions have been identified from experiments or theory, such as attachment at surface heterogeneities, wedging at grain to grain contacts, retention via secondary energy minimum association in zones of low flow drag, and straining in pore throats too small to pass. However, no previously published model is capable of representing all of these mechanisms of colloid retention. In this work, we demonstrate that incorporation of surface heterogeneity into our hemispheres-in-cell model yields all experimentally observed non-straining retention mechanisms in porous media under unfavorable conditions. We also demonstrate that the predominance of any given retention mechanism depends on the coupled colloid-collector-flow interactions that are governed by parameters such as the size and spatial frequency of heterogeneous attractive domains, colloid size, and solution ionic strength. The force/torque balance-simulated retention is shown to decrease gradually with decreasing solution ionic strength, in agreement with experimental observations. This gradual decrease stands in sharp contrast to predictions from mean field theory that does not account for discrete surface heterogeneity. © 2011 American Chemical Society

  3. Multiphase flow towards coupled solid-liquid interactions in 2D heterogeneous porous micromodels: a fluorescent microscopy and micro-PIV measurement at pore scale (United States)

    Li, Yaofa; Kazemifar, Farzan; Blois, Gianluca; Christensen, Kenneth; Kenneth Christensen, Notre Dame Team


    Multiphase flow in porous media is relevant to a range of applications in the energy and environmental sectors. Recently, the interest has been renewed by geological storage of CO2 within saline aquifers. Central to this goal is predicting the fidelity of candidate sites pre-injection of CO2 and its post-injection migration. Moreover, local pressure buildup may cause micro-seismic events, which could prove disastrous, and possibly compromise seal integrity. Evidence shows that the large-scale events are coupled with pore-scale phenomena, necessitating the understanding of pore-scale stress, strain, and flow processes and their representation in large-scale modeling. To this end, the pore-scale flow of water and supercritical CO2 is investigated under reservoir-relevant conditions over a range of wettability conditions in 2D heterogeneous micromodels that reflect the complexity of real sandstone. High-speed fluorescent microscopy, complemented by a fast differential pressure transmitter, allows for simultaneous measurement of the flow field within and the instantaneous pressure drop across the micromodels. A flexible micromodel is also designed, to be used in conjunction with the micro-PIV technique, enabling the quantification of coupled solid-liquid interactions. This work was supported as part of the GSCO2, an EFRC funded by the US DOE, Office of Science, and partially supported by WPI-I2CNER.

  4. HSM: Heterogeneous Subspace Mining in High Dimensional Data

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Seidl, Thomas


    Heterogeneous data, i.e. data with both categorical and continuous values, is common in many databases. However, most data mining algorithms assume either continuous or categorical attributes, but not both. In high dimensional data, phenomena due to the "curse of dimensionality" pose additional...... challenges. Usually, due to locally varying relevance of attributes, patterns do not show across the full set of attributes. In this paper we propose HSM, which defines a new pattern model for heterogeneous high dimensional data. It allows data mining in arbitrary subsets of the attributes that are relevant...... for the respective patterns. Based on this model we propose an efficient algorithm, which is aware of the heterogeneity of the attributes. We extend an indexing structure for continuous attributes such that HSM indexing adapts to different attribute types. In our experiments we show that HSM efficiently mines...

  5. Preparation and Pore Structure Stability at High Temperature of Porous Fe-Al Intermetallics (United States)

    Shen, P. Z.; Gao, H. Y.; Song, M.; He, Y. H.


    Porous Fe-Al intermetallics with different nominal compositions (from Fe-8 wt.% Al to Fe-50 wt.% Al) were fabricated by Fe and Al elemental powders through reaction synthesis. The effects of the Al content on the pore structure properties, and the comparison of pore structure stabilities at high-temperatures among the porous Fe-Al intermetallics and porous Ti, Ni, 316L stainless steel samples, were systematically studied. Results showed that the open porosity, maximum pore size, and permeability vary with the Al content. Porous Fe-(25-30 wt.%) Al intermetallics show good shape controllability and excellent pore structure stability at 1073 K in air, which suggests that these porous Fe-Al intermetallics could be used for filtration at high temperatures.

  6. Highly Porous Core-Shell Structured Graphene-Chitosan Beads. (United States)

    Ouyang, An; Wang, Chunhui; Wu, Shiting; Shi, Enzheng; Zhao, Wenqi; Cao, Anyuan; Wu, Dehai


    Graphene oxide (GO) sheets have been assembled into various three-dimensional porous structures and composites, with potential applications in energy and environmental areas. Here, we show the combination of GO and chitosan (CTS) into inorganic-organic heterocomposites as ∼3 mm diameter core-shell beads with controlled microstructure. The spherical GO-CTS beads, made by a two-step freeze-casting method, consist of a GO core wrapped by a CTS shell with abrupt interface; both parts have high porosities (94-96%) and mesopores volume (0.246 cm(3)/g) yet with different pore morphologies. Incorporation of a GO core into the CTS beads significantly improved the methyl orange adsorption capacity (353 mg/g at 318 K) compared with pure CTS beads. Key factors such as the pH value, adsorbent dosage, concentration, time, and temperature have been studied in detail, whereas adsorption isotherm and kinetic studies reveal a Langmuir model following the pseudo-second order.

  7. Porous dendritic platinum nanotubes with extremely high activity and stability for oxygen reduction reaction

    National Research Council Canada - National Science Library

    Zhang, Gaixia; Sun, Shuhui; Cai, Mei; Zhang, Yong; Li, Ruying; Sun, Xueliang


    .... These unique structures are porous, hollow, hierarchical, and single crystalline, which not only gives them a large surface area with high catalyst utilization, but also improves mass transport and gas diffusion...

  8. Molecularly Imprinted Polymers and Highly Porous Materials in Sensing Applications (United States)


    83). The supercritical CO2 is then slowly vented. In the second method the monomers are polymerized with formic acid in the presence of...instance, materials might include polymers, molecularly imprinted polymers, dendrimers, porous silicon, optical fibres, nanoparticles /metallics, aptamersD...Analytes include small organic molecules, pharmaceuticals, pesticides, amino acids and peptides, nucleotide bases, steroids and sugars. Analytes

  9. Using fume silica as heavy metals' stabilizer for high alkali and porous MSWI baghouse ash. (United States)

    Huang, Wu-Jang; Huang, Hung-Shao


    In this study, we have proved that heavy metals in high porous and alkali baghouse ash could be fixed effectively by fume silica powder alone, or with the incorporation of colloidal aluminum oxide (CAO). The optimum amount is about 100g of fume silica per kilogram of baghouse ash. Results have indicated that fume silica has a better fixation efficiency of lead in high porous baghouse ash. In addition, the reaction mechanism of fume silica is also discussed.

  10. Study on flow parameters of fractal porous media in the high-velocity fluid flow regime (United States)

    Qi, Mei; Xu, Hui; Yang, Chao; Qu, Tailai; Kong, lingxiao; Wu, Shucheng; Zeng, Baoquan; Xu, Haixia


    High-velocity fluid flow, which will result in the region of the wellbore or fracture, is generally in the turbulent flow regime and has drawn tremendous attention in petroleum engineering field. Turbulent factor is the key parameter, which is widely used to describe high-velocity flow in porous media. In this work, a theoretical model for turbulent factor in fractal porous media in the high-velocity fluid flow regime is developed. Moreover, a novel analytical expression for the permeability in porous media based on Wu's resistance model is also derived. Then, the analytical Kozeny-Carman constant with no empirical constant is obtained. The predictions of permeability-porosity relation by the current mathematical models have been validated by comparing with available experimental data. Furthermore, the effects of structural parameters of porous media on the curve of velocity and pressure drop are discussed in detail.

  11. Electrospinning of silver nanoparticles loaded highly porous cellulose acetate nanofibrous membrane for treatment of dye wastewater (United States)

    Wang, Ke; Ma, Qian; Wang, Shu-Dong; Liu, Hua; Zhang, Sheng-Zhong; Bao, Wei; Zhang, Ke-Qin; Ling, Liang-Zhong


    In this paper, silver nanoparticles (NPs) were reduced form silver nitrate. Morphology and distribution of the synthesized silver NPs were characterized. In order to obtain cellulose acetate (CA), nanofibrous membrane with high effective adsorption performance to carry silver NPs for treatment of dye wastewater, different solvent systems were used to fabricate CA nanofibrous membranes with different morphologies and porous structures via electrospinning. Morphologies and structures of the obtained CA nanofibrous membranes were compared by scanning electron microscopy (SEM), which showed that CA nanofibrous membrane obtained from acetone/dichloromethane (1/2, v/v) was with the highly porous structure. SEM, energy-dispersive spectrometry and Fourier transform infrared spectrometry showed that the silver NPs were effectively incorporated in the CA nanofibrous membrane and the addition of silver NPs did not damage the porous structure of the CA nanofibrous membrane. Adsorption of dye solution (rhodamine B aqueous solution) revealed that the highly porous CA nanofibrous membrane exhibited effective adsorption performance and the addition of silver NPs did not affect the adsorption of the dye. Antibacterial property of the CA nanofibrous membrane showed that the silver-loaded highly porous CA nanofibrous membrane had remarkable antibacterial property when compared to the CA nanofibrous membrane without silver NPs. The silver-loaded highly porous CA nanofibrous membrane could be considered as an ideal candidate for treatment of the dye wastewater.

  12. An $h$-Adaptive Operator Splitting Method for Two-Phase Flow in 3D Heterogeneous Porous Media

    KAUST Repository

    Chueh, Chih-Che


    The simulation of multiphase flow in porous media is a ubiquitous problem in a wide variety of fields, such as fuel cell modeling, oil reservoir simulation, magma dynamics, and tumor modeling. However, it is computationally expensive. This paper presents an interconnected set of algorithms which we show can accelerate computations by more than two orders of magnitude compared to traditional techniques, yet retains the high accuracy necessary for practical applications. Specifically, we base our approach on a new adaptive operator splitting technique driven by an a posteriori criterion to separate the flow from the transport equations, adaptive meshing to reduce the size of the discretized problem, efficient block preconditioned solver techniques for fast solution of the discrete equations, and a recently developed artificial diffusion strategy to stabilize the numerical solution of the transport equation. We demonstrate the accuracy and efficiency of our approach using numerical experiments in one, two, and three dimensions using a program that is made available as part of a large open source library. © 2013 Society for Industrial and Applied Mathematics.

  13. Dynamic High-Pressure Behavior of Hierarchical Heterogeneous Geological Materials (United States)


    Taylor, N. E., Jardine, A. P., Behaviour of sand during release from a shocked state, Applied Physics Letters 103, 154103 (2013); doi: 10.1063...V., and M. N. Pavlovskii (1971), Response of clay and clay shale to heavy dynamic loading, Journal of Applied Mechanics and Technical Physics , 1, 161...multiple mechanisms in simulations 15.  SUBJECT TERMS High-rate Deformation, Heterogeneous Materials, Shock Physics Standard Form 298 (Rev. 8/98

  14. Introduction to porous spinel for refractory (high temp material

    Directory of Open Access Journals (Sweden)

    Kumar Saurav


    Full Text Available The paper examines thermal properties of materials. The transient pulse method was used for specific heat, thermal diffusivity and thermal conductivity determination. Porous MgO was synthesis by heating pellets at 1100 °C for 1 h. The resultant porous MgO was then immersed in 10 mol/L aluminum nitrate solution, dried, and reheated at 1300 °C for 2 h to convert it to spinel. The evaluation was performed with the help of mathematical apparatus used for study of fractal structures properties. The method results from generalized relations that were designed for study of physical properties of fractal structures. As it is shown these relations are in a good agreement with the equations used for the description of time responses of temperature for the pulse input of supplied heat.

  15. A high performance porous flat-plate solar collector (United States)

    Lansing, F. L.; Clarke, V.; Reynolds, R.


    A solar collector employing a porous matrix as a solar absorber and heat exchanger is presented and its application in solar air heaters is discussed. The collector is composed of a metallic matrix with a porous surface which acts as a large set of cavity radiators; cold air flows through the matrix plate and exchanges heat with the thermally stratified layers of the matrix. A steady-state thermal analysis of the collector is used to determine collector temperature distributions for the cases of an opaque surface matrix with total absorption of solar energy at the surface, and a diathermanous matrix with successive solar energy absorption at each depth. The theoretical performance of the porous flat plate collector is shown to exceed greatly that of a solid flat plate collector using air as the working medium for any given set of operational conditions. An experimental collector constructed using commercially available, low cost steel wool as the matrix has been found to have thermal efficiencies from 73 to 86%.

  16. Heterogeneous fragmentation of metallic liquid microsheet with high velocity gradient (United States)

    An-Min, He; Pei, Wang; Jian-Li, Shao


    Large-scale molecular dynamics simulations are performed to study the fragmentation of metallic liquid sheets with high velocity gradient. Dynamic fragmentation of the system involves the formation of a network of fragments due to the growth and coalescence of holes, decomposition of the network into filaments, and further breakup of the filaments into spherical clusters. The final size distribution of the fragmented clusters in the large volume limit is found to obey a bilinear exponential form, which is resulted from the heterogeneous breakup of quasi-cylindrical filaments. The main factors contributing to fragmentation heterogeneity are introduced, including strain rate inhomogeneity and matter distribution nonuniformity of fragments produced during decomposition of the network structure. Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant Nos. 2013A0201010 and 2015B0201039) and the National Natural Science Foundation of China (Grant No. 11402032).

  17. Oxidative stability of high-oleic sunflower oil in a porous starch carrier. (United States)

    Belingheri, Claudia; Giussani, Barbara; Rodriguez-Estrada, Maria Teresa; Ferrillo, Antonio; Vittadini, Elena


    This study evaluates the oxidation level of high-oleic sunflower oil (HOSO) plated onto porous starch as an alternative to spray drying. Encapsulated oils were subjected to accelerated oxidation by heat and light exposure, and peroxide value (PV) and conjugated dienes (CD) were measured. Bulk oil was the control. PV increased in all samples with increased light exposure, with similar values being reached by oil carried on porous starch and spray dried oil. The encapsulation processes determined a reduced effect of light on the increase of CD in the oil, as compared to bulk oil. Spray dried oil presented the highest CD in the experimental domain considered. Since similar levels of PV and lower levels of CD were shown in the HOSO carried on porous starch compared to the spray dried HOSO, plating flavour oils on porous starch could be a suitable technological alternative to spray drying, for flavour encapsulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. N-Doped Porous Carbon Nanofibers/Porous Silver Network Hybrid for High-Rate Supercapacitor Electrode. (United States)

    Meng, Qingshi; Qin, Kaiqiang; Ma, Liying; He, Chunnian; Liu, Enzuo; He, Fang; Shi, Chunsheng; Li, Qunying; Li, Jiajun; Zhao, Naiqin


    A three-dimensional cross-linked porous silver network (PSN) is fabricated by silver mirror reaction using polymer foam as the template. The N-doped porous carbon nanofibers (N-PCNFs) are further prepared on PSN by chemical vapor deposition and treated by ammonia gas subsequently. The PSN substrate serving as the inner current collector will improve the electron transport efficiency significantly. The ammonia gas can not only introduce nitrogen doping into PCNFs but also increase the specific surface area of PCNFs at the same time. Because of its large surface area (801 m2/g), high electrical conductivity (211 S/cm), and robust structure, the as-constructed N-PCNFs/PSN demonstrates a specific capacitance of 222 F/g at the current density of 100 A/g with a superior rate capability of 90.8% of its initial capacitance ranging from 1 to 100 A/g while applied as the supercapacitor electrode. The symmetric supercapacitor device based on N-PCNFs/PSN displays an energy density of 8.5 W h/kg with power density of 250 W/kg and excellent cycling stability, which attains 103% capacitance retention after 10 000 charge-discharge cycles at a high current density of 20 A/g, which indicates that N-PCNFs/PSN is a promising candidate for supercapacitor electrode materials.

  19. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors (United States)

    Wang, Shijie; Wang, Rutao; Zhang, Yabin; Zhang, Li


    Carbon-based supercapacitors have attracted extensive attention as the complement to batteries, owing to their durable lifespan and superiority in high-power-demand fields. However, their widespread use is limited by the low energy storage density; thus, a high-surface-area porous carbon is urgently needed. Herein, a highly porous carbon with a Brunauer-Emmett-Teller specific surface area up to 3643 m2 g-1 has been synthesized by chemical activation of papayas for the first time. This sp2-bonded porous carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form narrow mesopores of 2 ˜ 5 nm in width, which can be systematically tailored with varied activation levels. Two-electrode symmetric supercapacitors constructed by this porous carbon achieve energy density of 8.1 Wh kg-1 in aqueous electrolyte and 65.5 Wh kg-1 in ionic-liquid electrolyte. Furthermore, half-cells (versus Li or Na metal) using this porous carbon as ion sorption cathodes yield high specific capacity, e.g., 51.0 and 39.3 mAh g-1 in Li+ and Na+ based organic electrolyte. These results underline the possibility of obtaining the porous carbon for high-performance carbon-based supercapacitors and ion capacitors in a readily scalable and economical way.

  20. Application of room-temperature ionic liquids in preparation of highly porous polymer membranes and microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hoi [Dept. of Chemistry, Dankook University, Cheonan (Korea, Republic of); Seo, Jae Won; Shin, Ueon Sang [Dept. of Nanobiomedical Science and BK21 PlUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of)


    Polylactic acid (PLA) and polycaprolactone (PCL) devices with diverse morphologies, such as particulate structure, porous structures, and microspheres, were prepared using imidazolium- or ammonium-based room-temperature ionic liquids [bmim]X or [toma]X (X = NTf{sub 2} , PF{sub 6} , OTf, BF{sub 4} , Cl). Their morphological transformations could be induced by diverse approaches, including the changes of polymer type, the cationic or counter-anionic change of ionic liquid, the concentration change of ionic liquid, as well as the type and the quantity change of organic solvent. The results are likely to provide useful information for the production of diverse devices (or scaffolds) with particulate or porous structure and beads with various sizes and surface morphologies in fields such as biomedical tissue engineering, drug delivery, gas storage and separation, heterogeneous catalysis, and polymer gel electrolytes.

  1. Insights into the asymmetric heterogeneous catalysis in porous organic polymers: constructing a TADDOL-embedded chiral catalyst for studying the structure-activity relationship. (United States)

    An, Wan-Kai; Han, Man-Yi; Wang, Chang-An; Yu, Si-Min; Zhang, Yuan; Bai, Shi; Wang, Wei


    Construction of porous organic polymers (POPs) as asymmetric catalysts remains as an important but challenging task. Herein, we exploit the "bottom-up" strategy to facilely synthesize an α,α,α',α'-tetraaryl-1,3-dioxolane-4,5-dimethanol (TADDOL)-based chiral porous polymer (TADDOL-CPP) for highly efficient asymmetric catalysis. Constructed through the covalent linkages among the three-dimensional rigid monomers, TADDOL-CPP possesses hierarchical porous structure, high Brunauer-Emmett-Teller (BET) surface area, together with abundant and uniformly-distributed chiral sites. In the presence of [Ti(OiPr)4], TADDOL-CPP acts as a highly efficient and recyclable catalyst in the asymmetric addition of diethylzinc (Et2Zn) to aromatic aldehydes. Based on the direct observation of the key intermediates, the reaction mechanism has been revealed by solid-state (13)C magic-angle spinning (MAS) NMR spectroscopy. In combination with the catalytic testing results, characterization on the working catalyst provides further information for understanding the structure-activity relationship. We suggest that the catalytic activity of TADDOL-CPP is largely affected by the structural rigidity, cooperative catalysis, local chiral environment, and hierarchical porous framework. We expect that the information obtained herein will benefit to the designed synthesis of robust POP catalysts toward practical applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Research on the sound absorption characteristics of porous metal materials at high sound pressure levels

    Directory of Open Access Journals (Sweden)

    Xiaopeng Wang


    Full Text Available Porous metal materials are widely used in noise control with high sound pressure applications such as aircraft engine liners and combustion chambers for rocket engines due to their excellent performance of sound absorption characteristics and distinguished advantages in heat resistance, lightness, and stiffness. Understanding the effect of sound pressure on the acoustic properties of these materials is crucial when attempting to predict silencer performance. In this article, we experimentally investigate the sound absorption characteristics of porous metal materials at high sound pressure level. The effects of material parameters on the sound absorption characteristics of porous metal materials under high sound pressure level are further explored experimentally. Measurements are carried out by using a standard impedance tube that has been modified to accommodate sound pressure level of up to 150 dB. The experimental results show that with the increase in sound pressure level, the effect of sound pressure level on the sound absorption characteristics yields different variation regularities in different frequencies. The sound absorption performance of porous metal materials increases with the increase in sound pressure level in low frequency, which is reasonably consistent with the theoretical results. Under high sound pressure level, the sound absorption characteristics are significantly dependent upon the material parameters such as the metal fiber diameter, the material porosity, and the material thickness. It could provide a reliable experimental validation for the applications of porous metal materials in the area of vibration and noise control at high sound pressure levels.

  3. Contact mechanics of highly porous oxide nanoparticle agglomerates (United States)

    Fabre, Andrea; Salameh, Samir; Ciacchi, Lucio Colombi; Kreutzer, Michiel T.; van Ommen, J. Ruud


    Efficient nanopowder processing requires knowledge of the powder's mechanical properties. Due to the large surface area to volume ratio, nanoparticles experience relatively strong attractive interactions, leading to the formation of micron-size porous structures called agglomerates. Significant effort has been directed towards the development of models and experimental procedures to estimate the elasticity of porous objects such as nanoparticle agglomerates; however, none of the existing models has been validated for solid fractions below 0.1. Here, we measure the elasticity of titania (TiO_2, 22 nm), alumina (Al_2O_3, 8 nm), and silica (SiO_2, 16 nm) nanopowder agglomerates by Atomic Force Microscopy, using a 3.75 μm glass colloid for the stress-strain experiments. Three sample preparations with varying degree of powder manipulation are assessed. The measured Young's moduli are in the same order of magnitude as those predicted by the model of Kendall et al., thus validating it for the estimation of the Young's modulus of structures with porosity above 90 %.

  4. High hydrogen storage capacity of porous carbons prepared by using activated carbon. (United States)

    Wang, Huanlei; Gao, Qiuming; Hu, Juan


    A kind of activated carbon with further carbon dioxide and potassium hydroxide activations for hydrogen storage was investigated. The carbon dioxide and potassium hydroxide activations have apparently different effects on the pore structures and textures of the activated carbon which closely associated with the hydrogen storage properties. The potassium hydroxide activation can remarkably donate microporosity to the frameworks of the activated carbon. One of the resultant porous carbons exhibited a high surface area of up to 3190 m(2) g(-1) and large gravimetric hydrogen uptake capacity of 7.08 wt % at 77 K and 20 bar, which is one of the largest data reported for the porous carbon materials. This result suggests that the porous carbon with large amounts of active sites, high surface area, and high micropore volume related to optimum pore size could achieve high gravimetric hydrogen storage.

  5. Kinetic study of the heterogeneous photocatalysis of porous nanocrystalline TiO₂ assemblies using a continuous random walk simulation. (United States)

    Liu, Baoshun; Zhao, Xiujian


    The continuous time random walk (CTRW) simulation was used to study the photocatalytic kinetics of nanocrystalline (nc)-TiO2 assemblies in this research. nc-TiO2 assemblies, such as nc-TiO2 porous films and nc-TiO2 hierarchical structures, are now widely used in photocatalysis. The nc-TiO2 assemblies have quasi-disordered networks consisting of many tiny nanoparticles, so the charge transport within them can be studied by CTRW simulation. We considered the experimental facts that the holes can be quickly trapped and transferred to organic species just after photogeneration, and the electrons transfer to O2 slowly and accumulate in the conduction band of TiO2, which is believed to be the rate-limiting process of the photocatalysis under low light intensity and low organic concentration. Due to the existence of numerous traps, the electron transport within the nc-TiO2 assemblies follows a multi-trapping (MT) mechanism, which significantly limits the electron diffusion speed. The electrons need to undergo several steps of MT transport before transferring to oxygen, so it is highly important that the electron transport in nc-TiO2 networks is determined for standard photocatalytic reactions. Based on the MT transport model, the transient decays of photocurrents during the photocatalytic oxidation of formic acid were studied by CTRW simulation, and are in good accordance with experiments. The steady state photocatalysis was also simulated. The effects of organic concentration, light intensity, temperature, and nc-TiO2 crystallinity on the photocatalytic kinetics were investigated, and were also consistent with the experimental results. Due to the agreement between the simulation and the experiments for both the transient and the steady state photocatalysis, the MT charge transport should be an important mechanism that controls the kinetics of recombination and photocatalysis in nc-TiO2 assemblies. Also, our research provides a new methodology to study the photocatalytic

  6. Scout: high-performance heterogeneous computing made simple

    Energy Technology Data Exchange (ETDEWEB)

    Jablin, James [Los Alamos National Laboratory; Mc Cormick, Patrick [Los Alamos National Laboratory; Herlihy, Maurice [BROWN UNIV.


    Researchers must often write their own simulation and analysis software. During this process they simultaneously confront both computational and scientific problems. Current strategies for aiding the generation of performance-oriented programs do not abstract the software development from the science. Furthermore, the problem is becoming increasingly complex and pressing with the continued development of many-core and heterogeneous (CPU-GPU) architectures. To acbieve high performance, scientists must expertly navigate both software and hardware. Co-design between computer scientists and research scientists can alleviate but not solve this problem. The science community requires better tools for developing, optimizing, and future-proofing codes, allowing scientists to focus on their research while still achieving high computational performance. Scout is a parallel programming language and extensible compiler framework targeting heterogeneous architectures. It provides the abstraction required to buffer scientists from the constantly-shifting details of hardware while still realizing higb-performance by encapsulating software and hardware optimization within a compiler framework.

  7. Destabilization, Propagation, and Generation of Surfactant-Stabilized Foam during Crude Oil Displacement in Heterogeneous Model Porous Media. (United States)

    Xiao, Siyang; Zeng, Yongchao; Vavra, Eric D; He, Peng; Puerto, Maura; Hirasaki, George J; Biswal, Sibani L


    Foam flooding in porous media is of increasing interest due to its numerous applications such as enhanced oil recovery, aquifer remediation, and hydraulic fracturing. However, the mechanisms of oil-foam interactions have yet to be fully understood at the pore level. Here, we present three characteristic zones identified in experiments involving the displacement of crude oil from model porous media via surfactant-stabilized foam, and we describe a series of pore-level dynamics in these zones which were not observed in experiments involving paraffin oil. In the displacement front zone, foam coalesces upon initial contact with crude oil, which is known to destabilize the liquid lamellae of the foam. Directly upstream, a transition zone occurs where surface wettability is altered from oil-wet to water-wet. After this transition takes place, a strong foam bank zone exists where foam is generated within the porous media. We visualized each zone using a microfluidic platform, and we discuss the unique physicochemical phenomena that define each zone. In our analysis, we also provide an updated mechanistic understanding of the "smart rheology" of foam which builds upon simple "phase separation" observations in the literature.

  8. Rules for Flight Paths and Time of Flight for Flows in Porous Media with Heterogeneous Permeability and Porosity

    Directory of Open Access Journals (Sweden)

    Lihua Zuo


    Full Text Available Porous media like hydrocarbon reservoirs may be composed of a wide variety of rocks with different porosity and permeability. Our study shows in algorithms and in synthetic numerical simulations that the flow pattern of any particular porous medium, assuming constant fluid properties and standardized boundary and initial conditions, is not affected by any spatial porosity changes but will vary only according to spatial permeability changes. In contrast, the time of flight along the streamline will be affected by both the permeability and porosity, albeit in opposite directions. A theoretical framework is presented with evidence from flow visualizations. A series of strategically chosen streamline simulations, including systematic spatial variations of porosity and permeability, visualizes the respective effects on the flight path and time of flight. Two practical rules are formulated. Rule  1 states that an increase in permeability decreases the time of flight, whereas an increase in porosity increases the time of flight. Rule  2 states that the permeability uniquely controls the flight path of fluid flow in porous media; local porosity variations do not affect the streamline path. The two rules are essential for understanding fluid transport mechanisms, and their rigorous validation therefore is merited.

  9. Biomass Waste Inspired Highly Porous Carbon for High Performance Lithium/Sulfur Batteries. (United States)

    Zhao, Yan; Ren, Jun; Tan, Taizhe; Babaa, Moulay-Rachid; Bakenov, Zhumabay; Liu, Ning; Zhang, Yongguang


    The synthesis of highly porous carbon (HPC) materials from poplar catkin by KOH chemical activation and hydrothermal carbonization as a conductive additive to a lithium-sulfur cathode is reported. Elemental sulfur was composited with as-prepared HPC through a melt diffusion method to form a S/HPC nanocomposite. Structure and morphology characterization revealed a hierarchically sponge-like structure of HPC with high pore volume (0.62 cm³∙g −1 ) and large specific surface area (1261.7 m²∙g −1 ). When tested in Li/S batteries, the resulting compound demonstrated excellent cycling stability, delivering a second-specific capacity of 1154 mAh∙g −1 as well as presenting 74% retention of value after 100 cycles at 0.1 C. Therefore, the porous structure of HPC plays an important role in enhancing electrochemical properties, which provides conditions for effective charge transfer and effective trapping of soluble polysulfide intermediates, and remarkably improves the electrochemical performance of S/HPC composite cathodes.

  10. A highly porous three-dimensional aluminum phosphonate with hexagonal channels: synthesis, structure and adsorption properties. (United States)

    Tang, Si-Fu; Cai, Jin-Jun; Li, Liang-Jun; Lv, Xiao-Xia; Wang, Chao; Zhao, Xue-Bo


    A 3D porous aluminum(III) trisphosphonate, constructed from 1D inorganic aluminum phosphate chains and tripodal organic linkers, contains large hexagonal channels (1.24 nm in diameter) and a highly accessible void (50.3%) which allow it to have a fast and relatively high uptake of H2, N2 and CO2.

  11. Porous Ni-Co-Mn oxides prisms for high performance electrochemical energy storage (United States)

    Zhao, Jianbo; Li, Man; Li, Junru; Wei, Chengzhen; He, Yuyue; Huang, Yixuan; Li, Qiaoling


    Porous Ni-Co-Mn oxides prisms have been successfully synthesized via a facile route. The process involves the preparation of nickel-cobalt-manganese acetate hydroxide by a simple co-precipitation method and subsequently the thermal treatment. The as-synthesized Ni-Co-Mn oxides prisms had a large surface area (96.53 m2 g-1) and porous structure. As electrode materials for supercapacitors, porous Ni-Co-Mn oxides prisms showed a high specific capacitance of 1623.5 F g-1 at 1.0 A g-1. Moreover, the porous Ni-Co-Mn oxides prisms were also employed as positive electrode materials to assemble flexible solid-state asymmetric supercapacitors. The resulting flexible device had a maximum volumetric energy density (0.885 mW h cm-3) and power density (48.9 mW cm-3). Encouragingly, the flexible device exhibited good cycling stability with only about 2.2% loss after 5000 charge-discharge cycles and excellent mechanical stability. These results indicate that porous Ni-Co-Mn oxides prisms have the promising application in high performance electrochemical energy storage.


    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky


    Full Text Available The paper contains investigations on regularities of diamond - silicon carbide composite structure formation at impact-wave excitation. It has been determined that while squeezing a porous blank containing Si (SiC nano-diamond by explosive detonation products some processes are taking place such as diamond nano-particles consolidation, reverse diamond transition into graphite, fragments formation from silicon carbide. A method for obtaining high-porous composites with the presence of ultra-disperse diamond particles has been developed. Material with three-dimensional high-porous silicon-carbide structure has been received due to nano-diamond graphitation at impact wave transmission and plastic deformation. The paper reveals nano-diamonds inverse transformation into graphite and its subsequent interaction with the silicon accompanied by formation of silicon-carbide fragments with dimensions of up to 100 nm.

  13. High-Efficient Parallel CAVLC Encoders on Heterogeneous Multicore Architectures

    Directory of Open Access Journals (Sweden)

    H. Y. Su


    Full Text Available This article presents two high-efficient parallel realizations of the context-based adaptive variable length coding (CAVLC based on heterogeneous multicore processors. By optimizing the architecture of the CAVLC encoder, three kinds of dependences are eliminated or weaken, including the context-based data dependence, the memory accessing dependence and the control dependence. The CAVLC pipeline is divided into three stages: two scans, coding, and lag packing, and be implemented on two typical heterogeneous multicore architectures. One is a block-based SIMD parallel CAVLC encoder on multicore stream processor STORM. The other is a component-oriented SIMT parallel encoder on massively parallel architecture GPU. Both of them exploited rich data-level parallelism. Experiments results show that compared with the CPU version, more than 70 times of speedup can be obtained for STORM and over 50 times for GPU. The implementation of encoder on STORM can make a real-time processing for 1080p @30fps and GPU-based version can satisfy the requirements for 720p real-time encoding. The throughput of the presented CAVLC encoders is more than 10 times higher than that of published software encoders on DSP and multicore platforms.

  14. Gravity destabilized non-wetting phase invasion in macro-heterogeneous porous media: Near pore scale macro modified invasion percolation simulation of experiments

    Energy Technology Data Exchange (ETDEWEB)



    The authors reconceptualize macro modified invasion percolation (MMIP) at the near pore (NP) scale and apply it to simulate the non-wetting phase invasion experiments of Glass et al [in review] conducted in macro-heterogeneous porous media. For experiments where viscous forces were non-negligible, they redefine the total pore filling pressure to include viscous losses within the invading phase as well as the viscous influence to decrease randomness imposed by capillary forces at the front. NP-MMIP exhibits the complex invasion order seen experimentally with characteristic alternations between periods of gravity stabilized and destabilized invasion growth controlled by capillary barriers. The breaching of these barriers and subsequent pore scale fingering of the non-wetting phase is represented extremely well as is the saturation field evolution, and total volume invaded.

  15. High fidelity wireless network evaluation for heterogeneous cognitive radio networks (United States)

    Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso


    We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal

  16. Up scaling two-phase flow in heterogeneous porous media; Mise a l'echelle des ecoulements diphasiques dans les milieux poreux heterogenes

    Energy Technology Data Exchange (ETDEWEB)

    Artus, V.


    For two-phase flow in heterogeneous media, the emergence of different flow regimes at large-scale is driven by local interactions between the viscous coupling and the heterogeneity. In particular, when the viscosity ratio is favorable, viscous effects induce a transverse flow that stabilizes the front while flooding. However, most of recent stochastic models neglect the influence of the viscous coupling. We developed a stochastic model for the dynamics of the front, taking the viscous coupling into account. For stable cases, this model relates the statistical properties of the front to the statistical properties of the permeability field. For stable flow in stratified media, we show that the front is stationary by parts in the reservoir. These parts can be identified as large-scale hydrodynamic layers and separately coarsened in the large-scale simulation model. For flows with favorable viscosity ratios in isotropic reservoirs, we show that a stationary front occurs, in a statistical sense. For unfavorable viscosity ratios, the flow is driven by the development of viscous fingering. These different regimes lead to different large-scale saturation profiles that can be matched with a macro-dispersion equation, if the effective convective flux is modified to take into account stabilizing or destabilizing viscous effects. (author)

  17. High temperature heterogeneous reaction kinetics and mechanisms of tungsten oxidation (United States)

    Sabourin, Justin L.

    Tungsten, which is a material used in many high temperature applications, is limited by its susceptibility to oxidation at elevated temperatures. Although tungsten has the highest melting temperature of any metal, at much lower temperatures volatile oxides are formed during oxidation with oxygen containing species. This differs from many heterogeneous oxidation reactions involving metals since most reactions form very stable oxides that have higher melting or boiling points than the pure metal (e.g., aluminum, iron). Understanding heterogeneous oxidation and vaporization processes may allow for the expansion and improvement of high temperature tungsten applications. In order to increase understanding of the oxidation processes of tungsten, there is a need to develop reaction mechanisms and kinetics for oxidation processes involving oxidizers and environmental conditions of interest. Tungsten oxidation was thoroughly studied in the past, and today there is a good phenomenological understanding of these processes. However, as the design of large scale systems increasingly relies on computer modeling there becomes a need for improved descriptions of chemical reactions. With the increase in computing power over the last several decades, and the development of quantum chemistry and physics theories, heterogeneous systems can be modeled in detail at the molecular level. Thermochemical parameters that may not be measured experimentally may now be determined theoretically, a tool that was previously unavailable to scientists and engineers. Additionally, chemical kinetic modeling software is now available for both homogeneous and heterogeneous reactions. This study takes advantage of these new theoretical tools, as well as a thermogravimetric (TG) flow reactor developed as part of this study to learn about mechanisms and kinetics of tungsten oxidation. Oxidizers of interest are oxygen (O2), carbon dioxide (CO 2), water (H2O), and other oxidizers present in combustion and

  18. Highly Efficient Enrichment of Volatile Iodine by Charged Porous Aromatic Frameworks with Three Sorption Sites. (United States)

    Yan, Zhuojun; Yuan, Ye; Tian, Yuyang; Zhang, Daming; Zhu, Guangshan


    The targeted synthesis of a series of novel charged porous aromatic frameworks (PAFs) is reported. The compounds PAF-23, PAF-24, and PAF-25 are built up by a tetrahedral building unit, lithium tetrakis(4-iodophenyl)borate (LTIPB), and different alkyne monomers as linkers by a Sonogashira-Hagihara coupling reaction. They possess excellent adsorption properties to organic molecules owing to their "breathing" dynamic frameworks. As these PAF materials assemble three effective sorption sites, namely the ion bond, phenyl ring, and triple bond together, they exhibit high affinity and capacity for iodine molecules. To the best of our knowledge, these PAF materials give the highest adsorption values among all porous materials (zeolites, metal-organic frameworks, and porous organic frameworks) reported to date. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhanced high-frequency microwave absorption of Fe3O4 architectures based on porous nanoflake

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Liu, Yanguo; Han, Hongyan


    Hierarchical Fe3O4 architectures assembled with porous nanoplates (p-Fe3O4) were synthesized. Due to the strong shape anisotropy of the nanoplates, the p-Fe3O4 exhibits increased microwave resonance towards high frequency range. The improved microwave absorption properties of the p-Fe3O4, including...

  20. Immobilization of plutonium from solutions on porous matrices by the method of high temperature sorption

    Energy Technology Data Exchange (ETDEWEB)

    Nardova, A.K.; Filippov, E.A. [All Research Institute of Chemical Technologies, Moscow (Russian Federation); Glagolenko, Y.B. [and others


    This report presents the results of investigations of plutonium immobilization from solutions on inorganic matrices with the purpose of producing a solid waste form. High-temperature sorption is described which entails the adsorption of radionuclides from solutions on porous, inorganic matrices, as for example silica gel. The solution is brought to a boil with additional thermal process (calcination) of the saturated granules.

  1. High-concentration-gradient dispersion in porous media : experiments, analysis and approximations

    NARCIS (Netherlands)

    R.J. Schotting; H. Moser; S.M. Hassanizadeh


    textabstractVarious experimental and theoretical studies have shown that Fick's law, based on the assumption of a linear relation between solute dispersive mass flux and concentration gradient, is not valid when high concentration gradients are encountered in a porous medium. The value of the

  2. Growth and multiplexed analysis of microorganisms on a subdivided, highly porous, inorganic chip manufactured from anopore

    NARCIS (Netherlands)

    Ingham, C.J.; Ende, van den M.; Pijnenburg, D.; Wever, P.C.; Schneeberger, P.M.


    A highly porous inorganic material (Anopore) was shown to be an effective support for culturing and imaging a wide range of microorganisms. An inert barrier grid was printed on the rigid surface of Anopore to create a "living chip" of 336 miniaturized compartments (200/cm2) with broad applications

  3. Straightforward synthesis of a triazine-based porous carbon with high gas-uptake capacities

    DEFF Research Database (Denmark)

    Hu, Xinming; Chen, Qi; Zhao, Yan Chao


    is reversible and can etch the polymeric network to release CFn, thereby generating additional porosity and rendering TPC-1 a nitrogen-rich porous material. TPC-1 shows a high BET surface area of 1940 m2 g-1 and contains both micropores and mesopores, which facilitate the diffusion and adsorption of gas...

  4. Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process

    NARCIS (Netherlands)

    Hou, Q.; Grijpma, Dirk W.; Feijen, Jan


    Three-dimensional degradable porous polymeric structures with high porosities (93-98%) and well-interconnected pore networks have been prepared by freeze-drying polymer solutions in the presence of a leachable template followed by leaching of the template. Templates of the pore network were prepared

  5. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. (United States)

    Hao, Pin; Zhao, Zhenhuan; Tian, Jian; Li, Haidong; Sang, Yuanhua; Yu, Guangwei; Cai, Huaqiang; Liu, Hong; Wong, C P; Umar, Ahmad


    Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon aerogels by using bagasse as a raw material. Macro and mesoporous carbon was first prepared by carbonizing the freeze-dried bagasse aerogel; consequently, microporous structure was created on the walls of the mesoporous carbon by chemical activation. Interestingly, it was observed that the specific surface area, the pore size and distribution of the hierarchical porous carbon were affected by the activation temperature. In order to evaluate the ability of the hierarchical porous carbon towards the supercapacitor electrode performance, solid state symmetric supercapacitors were assembled, and a comparable high specific capacitance of 142.1 F g(-1) at a discharge current density of 0.5 A g(-1) was demonstrated. The fabricated solid state supercapacitor displayed excellent capacitance retention of 93.9% over 5000 cycles. The high energy storage ability of the hierarchical porous carbon was attributed to the specially designed pore structures, i.e., co-existence of the micropores and mesopores. This research has demonstrated that utilization of sustainable biopolymers as the raw materials for high performance supercapacitor electrode materials is an effective way to fabricate low-cost energy storage devices.

  6. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds. (United States)

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon


    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  7. Robust Multiscale Iterative Solvers for Nonlinear Flows in Highly Heterogeneous Media

    KAUST Repository

    Efendiev, Y.


    In this paper, we study robust iterative solvers for finite element systems resulting in approximation of steady-state Richards\\' equation in porous media with highly heterogeneous conductivity fields. It is known that in such cases the contrast, ratio between the highest and lowest values of the conductivity, can adversely affect the performance of the preconditioners and, consequently, a design of robust preconditioners is important for many practical applications. The proposed iterative solvers consist of two kinds of iterations, outer and inner iterations. Outer iterations are designed to handle nonlinearities by linearizing the equation around the previous solution state. As a result of the linearization, a large-scale linear system needs to be solved. This linear system is solved iteratively (called inner iterations), and since it can have large variations in the coefficients, a robust preconditioner is needed. First, we show that under some assumptions the number of outer iterations is independent of the contrast. Second, based on the recently developed iterative methods, we construct a class of preconditioners that yields convergence rate that is independent of the contrast. Thus, the proposed iterative solvers are optimal with respect to the large variation in the physical parameters. Since the same preconditioner can be reused in every outer iteration, this provides an additional computational savings in the overall solution process. Numerical tests are presented to confirm the theoretical results. © 2012 Global-Science Press.

  8. Velocity and thermal slip effects on MHD third order blood flow in an irregular channel though a porous medium with homogeneous/ heterogeneous reactions (United States)

    Gnaneswara Reddy, M.


    This communication presents the transportation of third order hydromagnetic fluid with thermal radiation by peristalsis through an irregular channel configuration filled a porous medium under the low Reynolds number and large wavelength approximations. Joule heating, Hall current and homogeneous-heterogeneous reactions effects are considered in the energy and species equations. The Second-order velocity and energy slip restrictions are invoked. Final dimensionless governing transport equations along the boundary restrictions are resolved numerically with the help of NDsolve in Mathematica package. Impact of involved sundry parameters on the non-dimensional axial velocity, fluid temperature and concentration characteristics have been analyzed via plots and tables. It is manifest that an increasing porosity parameter leads to maximum velocity in the core part of the channel. Fluid velocity boosts near the walls of the channel where as the reverse effect in the central part of the channel for higher values of first order slip. Larger values of thermal radiation parameter R reduce the fluid temperature field. Also, an increase in heterogeneous reaction parameter Ks magnifies the concentration profile. The present study has the crucial application of thermal therapy in biomedical engineering.

  9. Heterogeneous kinetics of vegetable oil transesterification at high temperature

    Directory of Open Access Journals (Sweden)

    Nasreen Sadia


    Full Text Available Currently, the catalytic efficiency and reusability of the solid base catalysts cannot meet the demand of industrial biodiesel production under low temperature. The purpose of this study is to define the kinetics of heterogeneous transesterification process which might be used for the prediction of the biodiesel synthesis at high temperature and pressure. The focus in this study was paid to recently reported data obtained with different catalysts used for biodiesel synthesis in a batch reactor at high temperatures. It was shown that three kinetic models that include: a irreversible first order reaction; b reaction with changeable order; and c resistances of mass transfer and chemical reaction at active sites of the catalyst could be applied for predicting the effect of high temperature of the transesterification. The apparent reaction rate constant of the irreversible first order reaction was determined, as well as the parameters of the other two, more complicated kinetic models. The best agreement was obtained with the more complicated models and the mean relative percent deviation between calculated and experimentally determined triacylglycerols conversion for these kinetic models is between 3 and 10%. [Projekat Ministarstva nauke Republike Srbije, br. 45001

  10. High-volumetric performance aligned nano-porous microwave exfoliated graphite oxide-based electrochemical capacitors. (United States)

    Ghaffari, Mehdi; Zhou, Yue; Xu, Haiping; Lin, Minren; Kim, Tae Young; Ruoff, Rodney S; Zhang, Q M


    Ultra-high volumetric performance electrochemical double layer capacitors based on high density aligned nano-porous microwave exfoliated graphite oxide have been studied. Elimination of macro-, meso-, and larger micro-pores from electrodes and controlling the nano-morphology results in very high volumetric capacitance, energy, and power density values. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Observed Dependence of Colloid Detachment on the Concentration of Initially Attached Colloids and Collector Surface Heterogeneity in Porous Media. (United States)

    Li, Tiantian; Jin, Yan; Huang, Yuanfang; Li, Baoguo; Shen, Chongyang


    Sand column experiments were conducted to examine the effects of the concentration of attached colloids (CAC) on their subsequent detachment upon decreasing solution ionic strength (IS). Different pore volumes of latex microparticle suspensions were injected into the columns to allow different amounts of colloids to attach at ISs of 0.001, 0.01, and 0.2 M. Then, deionized water was introduced to release the attached colloids. Results show that the fraction of attachments that were reversible to reduction of IS (FRA) increased with increasing CAC at a given IS if the sand was extensively treated using acids to reduce surface charge heterogeneity. This indicates that colloids were preferentially immobilized in sites favoring irreversible attachment and then gradually occupied reversible sites. In contrast, the FRA decreased with increasing CAC at 0.001 M in sand without the acid treatment, illustrating the opposite attachment sequence. Scanning electron microscope examinations reveal that the concave regions favored irreversible colloid attachment. Reversible attachment is likely due to immobilization on flat surfaces with charge heterogeneities, retention in stagnation point regions via secondary minimum association, ripening in the acid-treated sand, and capture of colloids by protruding asperities with charge heterogeneity in the untreated sand. At ISs of 0.01 and 0.2 M, the FRA was essentially independent of CAC in the untreated sand because the colloids were randomly attached on the sand surfaces over time.

  12. Organizing the Cellular and Molecular Heterogeneity in High-Grade Serous Ovarian Cancer by Mass Cytometry (United States)

    Tumor heterogeneity in high grade serous ovarian cancer (HG-SOC) represents a significant barrier for successful therapeutic intervention. To further...understand the cell types contributing to this heterogeneity we performed a comprehensive phenotypic characterization of 22 primary ovarian tumor...also showed greater overall phenotypic heterogeneity quantified by Simpsons Diversity Index. Importantly the novel cell types identified have the

  13. Porous graphene current collectors filled with silicon as high-performance lithium battery anode (United States)

    Ababtain, Khalid; Babu, Ganguli; Susarla, Sandhya; Gullapalli, Hemtej; Masurkar, Nirul; Ajayan, Pulickel M.; Mohana Reddy Arava, Leela


    Despite the massive success for high energy density, the charge–discharge current rate performance of the lithium-ion batteries are still a major concern owing to inherent sluggish Li-ion kinetics. Herein, we demonstrate three-dimensional porous electrodes engineered on highly conductive graphene current collectors to enhance the Li-ion conductivity, thereby c-rate performance. Such high-quality graphene provides surface area for loading a large amount of electrochemically active material and strong adhesion with the electrode. The synergism of porous structure and conductive current collector enables us to realize high-performance new-generation silicon anodes with a high energy density of 1.8 mAh cm‑2. Further, silicon electrodes revealed with excellent current rates up to 5C with a capacity of 0.37 mAh cm‑2 for 500 nm planar thickness.

  14. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors (United States)

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA


    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  15. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors (United States)

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.


    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  16. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. (United States)

    Čapek, Jaroslav; Machová, Markéta; Fousová, Michaela; Kubásek, Jiří; Vojtěch, Dalibor; Fojt, Jaroslav; Jablonská, Eva; Lipov, Jan; Ruml, Tomáš


    Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Advances in porous and high-energy (001)-faceted anatase TiO2 nanostructures (United States)

    Umar, Akrajas Ali; Md Saad, Siti Khatijah; Ali Umar, Marjoni Imamora; Rahman, Mohd Yusri Abd; Oyama, Munetaka


    In this review, we present a summary of research to date on the anatase polymorph of TiO2 nanostructures containing high-energy facet, particularly (001) plane, with porous structure, covering their synthesis and their application in photocatalysis as well as a review of any attempts to modify their electrical, optical and photocatalytic properties via doping. After giving a brief introduction on the role of crystalline facet on the physico-chemical properties of the anatase TiO2, we discuss the electrical and optical properties of pristine anatase TiO2 and after being doped with both metal and non-metals dopants. We then continue to the discussion of the electrical properties of (001) faceted anatase TiO2 and their modification upon being prepared in the form of porous morphology. Before coming to the review of the photocatalytic properties of the (001) faceted anatase and (001) with porous morphology in selected photocatalysis application, such as photodegradation of organic pollutant, hydrogenation reaction, water splitting, etc., we discuss the synthetic strategy for the preparation of them. We then end our discussion by giving an outlook on future strategy for development of research related to high-energy faceted and porous anatase TiO2.

  18. Freeze-casting: Fabrication of highly porous and hierarchical ceramic supports for energy applications

    Directory of Open Access Journals (Sweden)

    Cyril Gaudillere


    The aim of this paper is to give an overview of the freeze-casting ceramic shaping method and to show how its implementation could be useful for several energy applications where key components comprise a porous scaffold. A detailed presentation of the freeze-casting process and of the characteristics of the resulting porous parts is firstly given. The characteristic of freeze-cast parts and the drawbacks of conventional porous scaffolds existing in energy applications are drawn in order to highlight the expected beneficial effect of this new shaping technique as possible substitute to the conventional ones. Finally, a review of the state of the art freeze-cast based energy applications developed up to now and expected to be promising is given to illustrate the large perspectives opened by the implementation of the freeze-casting of ceramics for energy fields. Here we suggest discussing about the feasibility of incorporate freeze-cast porous support in high temperature ceramic-based energy applications.

  19. Temperature induced development of porous structure of bituminous coal chars at high pressure

    Directory of Open Access Journals (Sweden)

    Natalia Howaniec


    Full Text Available The porous structure of chars affects their reactivity in gasification, having an impact on the course and product distribution of the process. The shape, size and connections between pores determine the mechanical properties of chars, as well as heat and mass transport in thermochemical processing. In the study the combined effects of temperature in the range of 973–1273 °K and elevated pressure of 3 MPa on the development of porous structure of bituminous coal chars were investigated. Relatively low heating rate and long residence time characteristic for the in-situ coal conversion were applied. The increase in the temperature to 1173 °K under pressurized conditions resulted in the enhancement of porous structure development reflected in the values of the specific surface area, total pore volume, micropore area and volume, as well as ratio of the micropore volume to the total pore volume. These effects were attributed to the enhanced vaporization and devolatilization, as well as swelling behavior along the increase of temperature and under high pressure, followed by a collapse of pores over certain temperature value. This proves the strong dependence of the porous structure of chars not only on the pyrolysis process conditions but also on the physical and chemical properties of the parent fuel.

  20. High-density multicore fiber with heterogeneous core arrangement

    DEFF Research Database (Denmark)

    Amma, Y.; Sasaki, Y.; Takenaga, K.


    A 30-core fiber with heterogeneous cores that achieved large spatial multiplicity and low crosstalk of less than −40 dB at 100 km was demonstrated. The correlation lengths were estimated to be more than 1 m.......A 30-core fiber with heterogeneous cores that achieved large spatial multiplicity and low crosstalk of less than −40 dB at 100 km was demonstrated. The correlation lengths were estimated to be more than 1 m....

  1. Hierarchically porous carbon with high-speed ion transport channels for high performance supercapacitors (United States)

    Lu, Haoyuan; Li, Qingwei; Guo, Jianhui; Song, Aixin; Gong, Chunhong; Zhang, Jiwei; Zhang, Jingwei


    Hierarchically porous carbons (HPC) are considered as promising electrode materials for supercapacitors, due to their outstanding charge/discharge cycling stabilities and high power densities. However, HPC possess a relatively low ion diffusion rate inside the materials, which challenges their application for high performance supercapacitor. Thus tunnel-shaped carbon pores with a size of tens of nanometers were constructed by inducing the self-assembly of lithocholic acid with ammonium chloride, thereby providing high-speed channels for internal ion diffusion. The as-formed one-dimensional pores are beneficial to the activation process by KOH, providing a large specific surface area, and then facilitate rapid transport of electrolyte ions from macropores to the microporous surfaces. Therefore, the HPC achieve an outstanding gravimetric capacitance of 284 F g-1 at a current density of 0.1 A g-1 and a remarkable capacity retention of 64.8% when the current density increases by 1000 times to 100 A g-1.

  2. Porous graphene nanoarchitectures: an efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries. (United States)

    Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Munroe, Paul; Wang, Guoxiu


    The electrochemical performance of lithium-oxygen (Li-O2) batteries awaits dramatic improvement in the design of porous cathode electrodes with sufficient spaces to accommodate the discharge products and discovery of effective cathode catalysts to promote both oxygen reduction reactions and oxygen evolution reactions. Herein, we report the synthesis of porous graphene with different pore size architectures as cathode catalysts for Li-O2 batteries. Porous graphene materials exhibited significantly higher discharge capacities than that of nonporous graphene. Furthermore, porous graphene with pore diameter around 250 nm showed the highest discharge capacity among the porous graphene with the small pores (about 60 nm) and large pores (about 400 nm). Moreover, we discovered that addition of ruthenium (Ru) nanocrystals to porous graphene promotes the oxygen evolution reaction. The Ru nanocrystal-decorated porous graphene exhibited an excellent catalytic activity as cathodes in Li-O2 batteries with a high reversible capacity of 17,700 mA h g(-1), a low charge/discharge overpotential (about 0.355 V), and a long cycle life up to 200 cycles (under the curtaining capacity of 1000 mAh g(-1)). The novel porous graphene architecture inspires the development of high-performance Li-O2 batteries.

  3. Infiltrating sulfur into a highly porous carbon sphere as cathode material for lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaohui; Kim, Dul-Sun [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Hyo-Jun; Kim, Ki-Won [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Cho, Kwon-Koo, E-mail: [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of)


    Highlights: • A highly porous carbon (HPC) with regular spherical morphology was synthesized. • Sulfur/HPC composites were prepared by melt–diffusion method. • Sulfur/HPC composites showed improved cyclablity and long-term cycle life. - Abstract: Sulfur composite material with a highly porous carbon sphere as the conducting container was prepared. The highly porous carbon sphere was easily synthesized with resorcinol–formaldehyde precursor as the carbon source. The morphology of the carbon was observed with field emission scanning electron microscope and transmission electron microscope, which showed a well-defined spherical shape. Brunauer–Emmett–Teller analysis indicated that it possesses a high specific surface area of 1563 m{sup 2} g{sup −1} and a total pore volume of 2.66 cm{sup 3} g{sup −1} with a bimodal pore size distribution, which allow high sulfur loading and easy transportation of lithium ions. Sulfur carbon composites with varied sulfur contents were prepared by melt–diffusion method and lithium sulfur cells with the sulfur composites showed improved cyclablity and long-term cycle life.

  4. Highly porous activated carbons from resource-recovered Leucaena leucocephala wood as capacitive deionization electrodes. (United States)

    Hou, Chia-Hung; Liu, Nei-Ling; Hsi, Hsing-Cheng


    Highly porous activated carbons were resource-recovered from Leucaena leucocephala (Lam.) de Wit. wood through combined chemical and physical activation (i.e., KOH etching followed by CO2 activation). This invasive species, which has severely damaged the ecological economics of Taiwan, was used as the precursor for producing high-quality carbonaceous electrodes for capacitive deionization (CDI). Carbonization and activation conditions strongly influenced the structure of chars and activated carbons. The total surface area and pore volume of activated carbons increased with increasing KOH/char ratio and activation time. Overgasification induced a substantial amount of mesopores in the activated carbons. In addition, the electrochemical properties and CDI electrosorptive performance of the activated carbons were evaluated; cyclic voltammetry and galvanostatic charge/discharge measurements revealed a typical capacitive behavior and electrical double layer formation, confirming ion electrosorption in the porous structure. The activated-carbon electrode, which possessed high surface area and both mesopores and micropores, exhibited improved capacitor characteristics and high electrosorptive performance. Highly porous activated carbons derived from waste L. leucocephala were demonstrated to be suitable CDI electrode materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Small angle scattering methods to study porous materials under high uniaxial strain

    Energy Technology Data Exchange (ETDEWEB)

    Le Floch, Sylvie, E-mail:; Balima, Félix; Pischedda, Vittoria; Legrand, Franck; San-Miguel, Alfonso [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France)


    We developed a high pressure cell for the in situ study of the porosity of solids under high uniaxial strain using neutron small angle scattering. The cell comprises a hydraulically actioned piston and a main body equipped with two single-crystal sapphire windows allowing for the neutron scattering of the sample. The sample cavity is designed to allow for a large volume variation as expected when compressing highly porous materials. We also implemented a loading protocol to adapt an existing diamond anvil cell for the study of porous materials by X-ray small angle scattering under high pressure. The two techniques are complementary as the radiation beam and the applied pressure are in one case perpendicular to each other (neutron cell) and in the other case parallel (X-ray cell). We will illustrate the use of these two techniques in the study of lamellar porous systems up to a maximum pressure of 0.1 GPa and 0.3 GPa for the neutron and X-ray cells, respectively. These devices allow obtaining information on the evolution of porosity with pressure in the pore dimension subdomain defined by the wave-numbers explored in the scattering process. The evolution with the applied load of such parameters as the fractal dimension of the pore-matrix interface or the apparent specific surface in expanded graphite and in expanded vermiculite is used to illustrate the use of the high pressure cells.

  6. Correspondence Between One- and Two-Equation Models for Solute Transport in Two-Region Heterogeneous Porous Media

    KAUST Repository

    Davit, Y.


    In this work, we study the transient behavior of homogenized models for solute transport in two-region porous media. We focus on the following three models: (1) a time non-local, two-equation model (2eq-nlt). This model does not rely on time constraints and, therefore, is particularly useful in the short-time regime, when the timescale of interest (t) is smaller than the characteristic time (τ 1) for the relaxation of the effective macroscale parameters (i. e., when t ≤ τ 1); (2) a time local, two-equation model (2eq). This model can be adopted when (t) is significantly larger than (τ 1) (i.e., when t≫τ 1); and (3) a one-equation, time-asymptotic formulation (1eq ∞). This model can be adopted when (t) is significantly larger than the timescale (τ 2) associated with exchange processes between the two regions (i. e., when t≫τ 2). In order to obtain insight into this transient behavior, we combine a theoretical approach based on the analysis of spatial moments with numerical and analytical results in several simple cases. The main result of this paper is to show that there is only a weak asymptotic convergence of the solution of (2eq) towards the solution of (1eq ∞) in terms of standardized moments but, interestingly, not in terms of centered moments. The physical interpretation of this result is that deviations from the Fickian situation persist in the limit of long times but that the spreading of the solute is eventually dominating these higher order effects. © 2012 Springer Science+Business Media B.V.

  7. Highly potent silver-organoalkoxysilane antimicrobial porous nanomembrane (United States)

    Umar, Sirajo; Liu, Yuanfeng; Wu, Yiguang; Li, Guangtao; Ding, Jiabo; Xiong, Runsong; Chen, Jinchun


    We used a simple electrospinning technique to fabricate a highly potent silver-organoalkoxysilane antimicrobial composite from AgNO3-polyvinylpyrrolidone (PVP)/3-aminopropyltrimethoxysilane (APTMS)/tetraethoxysilane (TEOS) solution. Spectroscopic and microscopic analyses of the composite showed that the fibers contain an organoalkoxysilane `skeleton,' 0.18 molecules/nm2 surface amino groups, and highly dispersed and uniformly distributed silver nanoparticles (5 nm in size). Incorporation of organoalkoxysilanes is highly beneficial to the antimicrobial mat as (1) amino groups of APTMS are adhesive and biocidal to microorganisms, (2) polycondensation of APTMS and TEOS increases the membrane's surface area by forming silicon bonds that stabilize fibers and form a composite mat with membranous structure and high porosity, and (3) the organoalkoxysilanes are also instrumental to the synthesis of the very small-sized and highly dispersed silver metal particles in the fiber mat. Antimicrobial property of the composite was evaluated by disk diffusion, minimum inhibition concentration (MIC), kinetic, and extended use assays on bacteria (Escherichia coli, Bacillus anthracis, Staphylococcus aureus, and Brucella suis), a fungus (Aspergillus niger), and the Newcastle disease virus. The membrane shows quick and sustained broad-spectrum antimicrobial activity. Only 0.3 mg of fibers is required to achieve MIC against all the test organisms. Bacteria are inhibited within 30 min of contact, and the fibers can be used repeatedly. The composite is silver efficient and environment friendly, and its membranous structure is suitable for many practical applications as in air filters, antimicrobial linen, coatings, bioadhesives, and biofilms.

  8. Multiscale modeling of high contrast brinkman equations with applications to deformable porous media

    KAUST Repository

    Brown, Donald


    Simulating porous media flows has a wide range of applications. Often, these applications involve many scales and multi-physical processes. A useful tool in the analysis of such problems in that of homogenization as an averaged description is derived circumventing the need for complicated simulation of the fine scale features. In this work, we recall recent developments of homogenization techniques in the application of flows in deformable porous media. In addition, homogenization of media with high-contrast. In particular, we recall the main ideas of the homogenization of slowly varying Stokes flow and summarize the results of [4]. We also present the ideas for extending these techniques to high-contrast deformable media [3]. These ideas are connected by the modeling of multiscale fluid-structure interaction problems. © 2013 American Society of Civil Engineers.

  9. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode (United States)

    Hao, Pin; Zhao, Zhenhuan; Tian, Jian; Li, Haidong; Sang, Yuanhua; Yu, Guangwei; Cai, Huaqiang; Liu, Hong; Wong, C. P.; Umar, Ahmad


    Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon aerogels by using bagasse as a raw material. Macro and mesoporous carbon was first prepared by carbonizing the freeze-dried bagasse aerogel; consequently, microporous structure was created on the walls of the mesoporous carbon by chemical activation. Interestingly, it was observed that the specific surface area, the pore size and distribution of the hierarchical porous carbon were affected by the activation temperature. In order to evaluate the ability of the hierarchical porous carbon towards the supercapacitor electrode performance, solid state symmetric supercapacitors were assembled, and a comparable high specific capacitance of 142.1 F g-1 at a discharge current density of 0.5 A g-1 was demonstrated. The fabricated solid state supercapacitor displayed excellent capacitance retention of 93.9% over 5000 cycles. The high energy storage ability of the hierarchical porous carbon was attributed to the specially designed pore structures, i.e., co-existence of the micropores and mesopores. This research has demonstrated that utilization of sustainable biopolymers as the raw materials for high performance supercapacitor electrode materials is an effective way to fabricate low-cost energy storage devices.Renewable, cost-effective and eco-friendly electrode materials have attracted much attention in the energy conversion and storage fields. Bagasse, the waste product from sugarcane that mainly contains cellulose derivatives, can be a promising candidate to manufacture supercapacitor electrode materials. This study demonstrates the fabrication and characterization of highly porous carbon

  10. Biomass Derived Nitrogen-Doped Highly Porous Carbon Material with a Hierarchical Porous Structure for High-Performance Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Yan Zhao


    Full Text Available A novel nitrogen doped mesoporous carbon (NMPC with a hierarchical porous structure is prepared by simple carbonizing the green algae, which is applied as a host material to encapsulate sulfur for lithium/sulfur (Li/S battery. The NMPC exhibits high pore volume as well as large specific surface area, and thus sulfur content in the S/NMPC composite reaches up to 63 wt %. When tested in a Li/S battery, the S/NMPC composite yields a high initial capacity of 1327 mAh·g−1 as well as 757 mAh·g−1 after 100 cycles at a current rate of 0.1 C, a reversible capacity of 642 was achieved even at 1 C. This good electrochemical performance of the S/NMPC composite could be attributed to a unique combination of mesopority and surface chemistry, allowing for the retention of the intermediate polysuflides within the carbon framework.

  11. High internal phase emulsion with double emulsion morphology and their templated porous polymer systems. (United States)

    Lei, Lei; Zhang, Qi; Shi, Shuxian; Zhu, Shiping


    This paper reports synthesis of the first high internal phase emulsion (HIPE) system with double emulsion (DE) morphology (HIPE-DE). HIPE is a highly concentrated but highly stable emulsion system, which has a dispersed/internal phase fraction over 74vol%. DE represents an emulsion system that hierarchically encapsulates two immiscible phases. The combination of HIPE and DE provides an efficient method for fabrication of complex structures. In this work, HIPE-DE having a water-in-oil-in-water (W/O/W) morphology has been prepared for the first time via a simple one-step emulsification method with poly(2-(diethylamino)ethyl methacrylate) (PDEA) microgel particles as Pickering stabilizer. An oil phase fraction up to 90vol% was achieved by optimizing the microgel concentration in aqueous phase. The mechanism of the DE formation has been elucidated. It was found that while PDEA microgels stabilized the oil droplets in water, small amount protonated DEA monomers acted as surfactant and formed water-containing micelles inside the oil droplets. It was demonstrated that the W/O/W HIPE-DE could be precisely converted into porous polymer structures. With styrene as the oil phase in W/O/W HIPE-DE, porous polystyrene particles were obtained upon polymerization. With dissolved acrylamide as the aqueous phase and toluene as the continuous phase, porous polyacrylamide matrixes were prepared. Elevating temperature required for polymerization did not change the W/O/W HIPE-DE morphologies. This simple approach provides a versatile platform for synthesis of a variety of porous polymer systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. High Content Analysis of Compositional Heterogeneities to Study GPCR Oligomerization

    DEFF Research Database (Denmark)

    Walsh, Samuel McEwen

    appended manuscripts that investigate 1) the intrinsic nature of GPCR oligomerization in the simple lipid environment of a proteoliposome, 2) the regulation of GPCR oligomerization by membrane curvature, and 3) the extent of heterogeneities in GPCR oligomerization within the plasma membrane of living cells...

  13. Improving degradation of emerging organic compounds by applying chaotic advection in Managed Aquifer Recharge in randomly heterogeneous porous media (United States)

    Rodríguez-Escales, P.; Fernà ndez-Garcia, D.; Drechsel, J.; Folch, A.; Sanchez-Vila, X.


    Improving degradation rates of emerging organic compounds (EOCs) in groundwater is still a challenge. Although their degradation is not fully understood, it has been observed that some substances are preferably degraded under specific redox conditions. The coupling of Managed Aquifer Recharge with soil aquifer remediation treatment, by placing a reactive layer containing organic matter at the bottom of the infiltration pond, is a promising technology to improve the rate of degradation of EOCs. Its success is based on assuming that recharged water and groundwater get well mixed, which is not always true. It has been demonstrated that mixing can be enhanced by inducing chaotic advection through extraction-injection-engineering. In this work, we analyze how chaotic advection might enhance the spreading of redox conditions with the final aim of improving degradation of a mix of benzotriazoles: benzotriazole, 5-methyl-benzotriazole, and 5-chloro-benzotriazole. The degradation of the first two compounds was fastest under aerobic conditions whereas the third compound was best degraded under denitrification conditions. We developed a reactive transport model that describes how a recharged water rich in organic matter mixes with groundwater, how this organic matter is oxidized by different electron acceptors, and how the benzotriazoles are degraded attending for the redox state. The model was tested in different scenarios of recharge, both in homogenous and in heterogenous media. It was found that chaotic flow increases the spreading of the plume of recharged water. Consequently, different redox conditions coexist at a given time, facilitating the degradation of EOCs.

  14. Fe-Catalyzed Synthesis of Porous Carbons Spheres with High Graphitization Degree for High-Performance Supercapacitors (United States)

    Zhu, Jun; Shi, Hongwei; Zhuo, Xin; Hu, Yalin


    We have developed a facile and efficient Fe-catalyzed method for fabrication of porous carbons spheres with high graphitization degree (GNPCs) using glucose as carbon precursor at relatively low carbonization temperature. GNPCs not only have relatively large accessible ion surface area to accommodate greater capacity but also high graphitization degree to accelerate ion diffusion. As a typical application, we demonstrate that GNPCs exhibit excellent electrochemical performance for use in supercapacitors, with high specific capacity of 150.6 F g-1 at current density of 1 A g-1 and good rate capability and superior cycling stability over 10,000 cycles, confirming their potential application for energy storage. Moreover, it is believed that this method offers a new strategy for synthesis of porous carbons with high graphitization degree.

  15. Aerogels of 1D Coordination Polymers: From a Non-Porous Metal-Organic Crystal Structure to a Highly Porous Material

    Directory of Open Access Journals (Sweden)

    Adrián Angulo-Ibáñez


    Full Text Available The processing of an originally non-porous 1D coordination polymer as monolithic gel, xerogel and aerogel is reported as an alternative method to obtain novel metal-organic porous materials, conceptually different to conventional crystalline porous coordination polymer (PCPs or metal-organic frameworks (MOFs. Although the work herein reported is focused upon a particular kind of coordination polymer ([M(μ-ox(4-apy2]n, M: Co(II, Ni(II, the results are of interest in the field of porous materials and of MOFs, as the employed synthetic approach implies that any coordination polymer could be processable as a mesoporous material. The polymerization conditions were fixed to obtain stiff gels at the synthesis stage. Gels were dried at ambient pressure and at supercritical conditions to render well shaped monolithic xerogels and aerogels, respectively. The monolithic shape of the synthesis product is another remarkable result, as it does not require a post-processing or the use of additives or binders. The aerogels of the 1D coordination polymers are featured by exhibiting high pore volumes and diameters ranging in the mesoporous/macroporous regions which endow to these materials the ability to deal with large-sized molecules. The aerogel monoliths present markedly low densities (0.082–0.311 g·cm−3, an aspect of interest for applications that persecute light materials.

  16. Protective Effectiveness of Porous Shields Under the Influence of High-Speed Impact Loading

    Directory of Open Access Journals (Sweden)

    Kramshonkov E.N.


    Full Text Available The results of numerical simulations of a compact steel impactor with the aluminum porous shields under high-speed shock loading are presented. The porosity of barrier varies in wide range provided that its mass stays the same, but the impactor has always equal (identical mass. Here presented the final assessment of the barrier perforation speed depending on its porosity and initial shock speed. The range of initial impact speed varies from 1 to 10 km/s. Physical phenomena such as: destruction, melting, vaporization of a interacting objects are taken into account. The analysis of a shield porosity estimation disclosed that the protection effectiveness of porous shield reveals at the initial impact speed grater then 1.5 km/s, and it increases when initial impact speed growth.

  17. High field matching effects in superconducting Nb porous arrays catalyzed from anodic alumina templates

    DEFF Research Database (Denmark)

    Vinckx, W.; Vanacken, J.; Moshchalkov, V.V.


    Vortex pinning in a superconducting Nb thin film deposited on an anodically grown alumina template is investigated. Anodic oxidation of aluminium layers permits under specific conditions the formation of highly ordered porous alumina, a membrane-like structure consisting of triangular arrays...... of parallel pores. Its pore diameter and interpore distance are set by careful tuning of the anodization parameters. A superconducting Nb thin film is deposited directly onto the alumina film. The porous alumina acts as a template and it allows Nb to form a periodic pinning array during its growth. Pinning...... force vs. field measurements derived from magnetization measurements, show matching effects in fields up to 1 T. We demonstrate that the anodic alumina template with 50 nm interpore spacing provides enhanced vortex pinning in a large field and temperature range....

  18. Variational Multiscale Finite Element Method for Flows in Highly Porous Media

    KAUST Repository

    Iliev, O.


    We present a two-scale finite element method (FEM) for solving Brinkman\\'s and Darcy\\'s equations. These systems of equations model fluid flows in highly porous and porous media, respectively. The method uses a recently proposed discontinuous Galerkin FEM for Stokes\\' equations by Wang and Ye and the concept of subgrid approximation developed by Arbogast for Darcy\\'s equations. In order to reduce the "resonance error" and to ensure convergence to the global fine solution, the algorithm is put in the framework of alternating Schwarz iterations using subdomains around the coarse-grid boundaries. The discussed algorithms are implemented using the Deal.II finite element library and are tested on a number of model problems. © 2011 Society for Industrial and Applied Mathematics.

  19. Synthesis of copolymerized porous organic frameworks with high gas storage capabilities at both high and low pressures. (United States)

    Pei, Cuiying; Ben, Teng; Li, Yanqiang; Qiu, Shilun


    A series of copolymerized porous organic frameworks (C-POFs) were synthesized with monomers of tetrakis(4-bromophenyl)methane and tris(4-bromophenyl)amine in different ratios by a Yamamoto-type Ullmann cross-coupling reaction. These C-POFs exhibit high physicochemical stability, large surface areas and excellent H2, CH4 and CO2 adsorption properties both at low and high pressures.

  20. Synthesis of copolymerized porous organic frameworks with high gas storage capabilities at both high and low pressures

    KAUST Repository

    Pei, Cuiying


    A series of copolymerized porous organic frameworks (C-POFs) were synthesized with monomers of tetrakis(4-bromophenyl)methane and tris(4-bromophenyl)amine in different ratios by a Yamamoto-type Ullmann cross-coupling reaction. These C-POFs exhibit high physicochemical stability, large surface areas and excellent H2, CH4 and CO 2 adsorption properties both at low and high pressures. This journal is © the Partner Organisations 2014.

  1. Anion exchange: a novel way of preparing hierarchical porous structure in poly(ionic liquid)s. (United States)

    Qin, Li; Wang, Binshen; Zhang, Yongya; Chen, Li; Gao, Guohua


    Hierarchical porous poly(ionic liquid)s (PILs) with high specific surface area were firstly synthesized via anion exchange. The exchange of bulky salicylate and its dimers/clusters in PILs by other smaller anions increased the specific surface area and fabricated a hierarchical porous structure. The high specific surface area and hierarchical porous structure prompted a high degree of exposure of the active sites and made the heterogeneous PIL catalysts contact with substrates sufficiently, enhancing their catalytic activity.

  2. Porous mesocarbon microbeads with graphitic shells: constructing a high-rate, high-capacity cathode for hybrid supercapacitor (United States)

    Lei, Yu; Huang, Zheng-Hong; Yang, Ying; Shen, Wanci; Zheng, Yongping; Sun, Hongyu; Kang, Feiyu


    Li4Ti5O12/activated carbon hybrid supercapacitor can combine the advantages of both lithium-ion battery and supercapacitor, which may meet the requirements for developing high-performance hybrid electric vehicles. Here we proposed a novel “core-shell” porous graphitic carbon (PGC) to replace conventional activated carbon for achieving excellent cell performance. In this PGC structure made from mesocarbon microbead (MCMB), the inner core is composed of porous amorphous carbon, while the outer shell is graphitic carbon. The abundant porosity and the high surface area not only offer sufficient reaction sites to store electrical charge physically, but also can accelerate the liquid electrolyte to penetrate the electrode and the ions to reach the reacting sites. Meanwhile, the outer graphitic shells of the porous carbon microbeads contribute to a conductive network which will remarkably facilitate the electron transportation, and thus can be used to construct a high-rate, high-capacity cathode for hybrid supercapacitor, especially at high current densities. PMID:23963328

  3. Analysis and improvement of Brinkman lattice Boltzmann schemes: bulk, boundary, interface. Similarity and distinctness with finite elements in heterogeneous porous media. (United States)

    Ginzburg, Irina; Silva, Goncalo; Talon, Laurent


    This work focuses on the numerical solution of the Stokes-Brinkman equation for a voxel-type porous-media grid, resolved by one to eight spacings per permeability contrast of 1 to 10 orders in magnitude. It is first analytically demonstrated that the lattice Boltzmann method (LBM) and the linear-finite-element method (FEM) both suffer from the viscosity correction induced by the linear variation of the resistance with the velocity. This numerical artefact may lead to an apparent negative viscosity in low-permeable blocks, inducing spurious velocity oscillations. The two-relaxation-times (TRT) LBM may control this effect thanks to free-tunable two-rates combination Λ. Moreover, the Brinkman-force-based BF-TRT schemes may maintain the nondimensional Darcy group and produce viscosity-independent permeability provided that the spatial distribution of Λ is fixed independently of the kinematic viscosity. Such a property is lost not only in the BF-BGK scheme but also by "partial bounce-back" TRT gray models, as shown in this work. Further, we propose a consistent and improved IBF-TRT model which vanishes viscosity correction via simple specific adjusting of the viscous-mode relaxation rate to local permeability value. This prevents the model from velocity fluctuations and, in parallel, improves for effective permeability measurements, from porous channel to multidimensions. The framework of our exact analysis employs a symbolic approach developed for both LBM and FEM in single and stratified, unconfined, and bounded channels. It shows that even with similar bulk discretization, BF, IBF, and FEM may manifest quite different velocity profiles on the coarse grids due to their intrinsic contrasts in the setting of interface continuity and no-slip conditions. While FEM enforces them on the grid vertexes, the LBM prescribes them implicitly. We derive effective LBM continuity conditions and show that the heterogeneous viscosity correction impacts them, a property also shared

  4. Thermally robust and porous noncovalent organic framework with high affinity for fluorocarbons and CFCs (United States)

    Chen, Teng-Hao; Popov, Ilya; Kaveevivitchai, Watchareeya; Chuang, Yu-Chun; Chen, Yu-Sheng; Daugulis, Olafs; Jacobson, Allan J.; Miljanić, Ognjen Š.


    Metal-organic and covalent organic frameworks are porous materials characterized by outstanding thermal stability, high porosities and modular synthesis. Their repeating structures offer a great degree of control over pore sizes, dimensions and surface properties. Similarly precise engineering at the nanoscale is difficult to achieve with discrete molecules, since they rarely crystallize as porous structures. Here we report a small organic molecule that organizes into a noncovalent organic framework with large empty pores. This structure is held together by a combination of [N-H···N] hydrogen bonds between the terminal pyrazole rings and [π···π] stacking between the electron-rich pyrazoles and electron-poor tetrafluorobenzenes. Such a synergistic arrangement makes this structure stable to at least 250 °C and porous, with an accessible surface area of 1,159 m2 g-1. Crystals of this framework adsorb hydrocarbons, CFCs and fluorocarbons—the latter two being ozone-depleting substances and potent greenhouse species—with weight capacities of up to 75%.

  5. High-frequency viscosity and generalized Stokes-Einstein relations in dense suspensions of porous particles

    Energy Technology Data Exchange (ETDEWEB)

    Abade, Gustavo C; Cichocki, Bogdan [Institute of Theoretical Physics, University of Warsaw, Hoza 69, 00-681 Warsaw (Poland); Ekiel-Jezewska, Maria L; Wajnryb, Eligiusz [Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw (Poland); Naegele, Gerhard, E-mail: [Institut fuer Festkoerperforschung, Forschungszentrum Juelich, D-52425 Juelich (Germany)


    We study the high-frequency limiting shear viscosity, {eta}{sub {infinity}}, of colloidal suspensions of uncharged porous particles. An individual particle is modeled as a uniformly porous sphere with the internal solvent flow described by the Debye-Bueche-Brinkman equation. A precise hydrodynamic multipole method with a full account of many-particle hydrodynamic interactions encoded in the HYDROMULTIPOLE program extended to porous particles, is used to calculate {eta}{sub {infinity}}as a function of porosity and concentration. The second-order virial expansion for {eta}{sub {infinity}}is derived, and its range of applicability assessed. The simulation results are used to test the validity of generalized Stokes-Einstein relations between {eta}{sub {infinity}}and various short-time diffusion coefficients, and to quantify the accuracy of a simplifying cell model calculation of {eta}{sub {infinity}.} An easy-to-use generalized Saito formula for {eta}{sub {infinity}}is presented which provides a good description of its porosity and concentration dependence. (fast track communication)

  6. Silicate-entrapped porous coatings for preparing high-efficiency solid-phase microextraction sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Breton, Francois; Monton, Maria Rowena N. [University of Waterloo, Department of Chemistry, 200 University Ave. West, Waterloo, Ontario N2L 3G1 (Canada); Mullett, Wayne M. [MDS Nordion, 447 Marsh Road, Ottawa, Ontario K2K 1X8 (Canada); Pawliszyn, Janusz, E-mail: [University of Waterloo, Department of Chemistry, 200 University Ave. West, Waterloo, Ontario N2L 3G1 (Canada)


    We present a novel way to prepare SPME fibers using a silicate entrapment of porous particles, followed by derivatization using classical organosilane chemistry. The fibers provide a good platform for on-fiber derivatization of desired extraction phases while providing porosity necessary for high extractions capacities. The porous network was created using potassium silicate and porous silica particles. Fibers derivatized using n-butyl, n-octyl, n-octadecyl and n-triacontyl groups were shown to extract benzodiazepines successfully. The coatings were determined to have an average thickness of ca. 8 {mu}m, as determined by a scanning electron microscope, permitting equilibrium times as fast as 2 min. The fibers also showed very good ruggedness towards a vast range of solvents and prolonged use. It was determined that greater extraction efficiencies could be obtained using triacontyl as an extraction phase. The C18 and C30 fibers were also found to provide good linearity (>0.99) for the model analytes over two orders of magnitude, with limits of detection in the sub ng mL{sup -1} levels. C30 fibers were used to establish a correlation between structurally diverse {beta}-blockers and their literature reported Log P values. The C30 fibers provided a good correlation (R{sup 2} = 0.9255) between {beta}-blockers ranging in hydrophobicity from Log P{sub literature} 0.16-4.15 and their respective experimentally determined Log K{sub spme} values.

  7. Numerical simulation of porous burners and hole plate surface burners

    Directory of Open Access Journals (Sweden)

    Nemoda Stevan


    Full Text Available In comparison to the free flame burners the porous medium burners, especially those with flame stabilization within the porous material, are characterized by a reduction of the combustion zone temperatures and high combustion efficiency, so that emissions of pollutants are minimized. In the paper the finite-volume numerical tool for calculations of the non-isothermal laminar steady-state flow, with chemical reactions in laminar gas flow as well as within porous media is presented. For the porous regions the momentum and energy equations have appropriate corrections. In the momentum equations for the porous region an additional pressure drop has to be considered, which depends on the properties of the porous medium. For the heat transfer within the porous matrix description a heterogeneous model is considered. It treats the solid and gas phase separately, but the phases are coupled via a convective heat exchange term. For the modeling of the reaction of the methane laminar combustion the chemical reaction scheme with 164 reactions and 20 chemical species was used. The proposed numerical tool is applied for the analyses of the combustion and heat transfer processes which take place in porous and surface burners. The numerical experiments are accomplished for different powers of the porous and surface burners, as well as for different heat conductivity character is tics of the porous regions.

  8. Influence of yttria surface modification on high temperature corrosion of porous Ni22Cr alloy

    DEFF Research Database (Denmark)

    Karczewski, Jakub; Dunst, Katarzyna; Jasinski, Piotr


    Protective coatings for porous alloys for high temperature use are relatively new materials. Their main drawback is high temperature corrosion. In this work protective coatings based the on Y-precursor infiltrated into the sintered Ni22Cr alloys are studied at 700°C. Effects of the amount...... of the protective phase on the resulting corrosion properties are evaluated in air and humidified hydrogen. Weight gain of the samples, their open porosities and microstructures are analyzed and compared. Results show, that by the addition of even a minor amount of the Y-precursor corrosion rates can be decreased...

  9. Application of a lumped-process mathematical model to dissolution of non-uniformly distributed immiscible liquid in heterogeneous porous media. (United States)

    Marble, J C; DiFilippo, E L; Zhang, Z; Tick, G R; Brusseau, M L


    The use of a lumped-process mathematical model to simulate the complete dissolution of immiscible liquid non-uniformly distributed in physically heterogeneous porous-media systems was investigated. The study focused specifically on systems wherein immiscible liquid was poorly accessible to flowing water. Two representative, idealized scenarios were examined, one wherein immiscible liquid at residual saturation exists within a lower-permeability unit residing in a higher-permeability matrix, and one wherein immiscible liquid at higher saturation (a pool) exists within a higher-permeability unit adjacent to a lower-permeability unit. As expected, effluent concentrations were significantly less than aqueous solubility due to dilution and by-pass flow effects. The measured data were simulated with two mathematical models, one based on a simple description of the system and one based on a more complex description. The permeability field and the distribution of the immiscible-liquid zones were represented explicitly in the more complex, distributed-process model. The dissolution rate coefficient in this case represents only the impact of local-scale (and smaller) processes on dissolution, and the parameter values were accordingly obtained from the results of experiments conducted with one-dimensional, homogeneously-packed columns. In contrast, the system was conceptualized as a pseudo-homogeneous medium with immiscible liquid uniformly distributed throughout the system for the simpler, lumped-process model. With this approach, all factors that influence immiscible-liquid dissolution are incorporated into the calibrated dissolution rate coefficient, which in such cases serves as a composite or lumped term. The calibrated dissolution rate coefficients obtained from the simulations conducted with the lumped-process model were approximately two to three orders-of-magnitude smaller than the independently-determined values used for the simulations conducted with the

  10. Porous boron nitride with a high surface area: hydrogen storage and water treatment. (United States)

    Li, Jie; Lin, Jing; Xu, Xuewen; Zhang, Xinghua; Xue, Yanming; Mi, Jiao; Mo, Zhaojun; Fan, Ying; Hu, Long; Yang, Xiaojing; Zhang, Jun; Meng, Fanbin; Yuan, Songdong; Tang, Chengchun


    We report on the synthesis of high-quality microporous/mesoporous BN material via a facile two-step approach. An extremely high surface area of 1687 m(2) g(-1) and a large pore volume of 0.99 cm(3) g(-1) have been observed in the synthesized BN porous whiskers. The formation of the porous structure was attributed to the group elimination of organic species in a BN precursor, melamine diborate molecular crystal. This elimination method maintained the ordered pore structure and numerous structural defects. The features including high surface area, pore volume and structural defects make the BN whiskers highly suitable for hydrogen storage and wastewater treatment applications. We demonstrate excellent hydrogen uptake capacity of the BN whiskers with high weight adsorption up to 5.6% at room temperature and at the relatively low pressure of 3 MPa. Furthermore, the BN whiskers also exhibit excellent adsorption capacity of methyl orange and copper ions, with the maximum removal capacity of 298.3 and 373 mg g(-1) at 298 K, respectively.

  11. Mathematical and numerical modeling in porous media applications in geosciences

    CERN Document Server

    Diaz Viera, Martin A; Coronado, Manuel; Ortiz Tapia, Arturo


    Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete understanding of the physical processes involved in fluid flow and transport. This fact can be attributed to the complexity of the phenomena which include multicomponent fluids, multiphasic flow and rock-fluid interactions. Since its formulation in 1856, Darcy's law has been generalized to describe multi-phase compressible fluid flow through anisotropic and heterogeneous porous and fractured rocks. Due to the scarcity of information, a high degree of uncertainty on the porous medium properties is commonly present. Contributions to the knowledge of modeling flow and transport, as well as to the characterization of porous media at field scale are of great relevance. ...

  12. Preparation and application of highly porous aerogel-based bioactive materials in dentistry (United States)

    Kuttor, Andrea; Szalóki, Melinda; Rente, Tünde; Kerényi, Farkas; Bakó, József; Fábián, István; Lázár, István; Jenei, Attila; Hegedüs, Csaba


    In this study, the possibility of preparation and application of highly porous silica aerogel-based bioactive materials are presented. The aerogel was combined with hydroxyapatite and β-tricalcium phosphate as bioactive and osteoinductive agents. The porosity of aerogels was in the mesoporous region with a maximum pore diameter of 7.4 and 12.7 nm for the composite materials. The newly developed bioactive materials were characterized by scanning electron microscopy. The in vitro biological effect of these modified surfaces was also tested on SAOS-2 osteogenic sarcoma cells by confocal laser scanning microscopy.

  13. Engineering Carbon-Based Porous Materials from Selected Precursors for High-Capacity CO2 Capture


    Zhu, B


    The mitigation of climate change is one of the major global challenges in the 21st Century. Carbon capture and storage (CCS) is a promising technology to effectively reduce anthropogenic CO2 emissions into the Earth’s atmosphere. There are various candidate materials for CO2 capture but each has its own advatanges and disadvantages. Carbon-based materials are of low-cost and have relatively high cyclicity for CO2 and its porous structure and surface functional groups can be tailored to improv...

  14. Review. Freeze-casting: Fabrication of highly porous and hierarchical ceramic supports for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Gaudillere, C.; Serra, J. M.


    The manufacture of structured ceramic porous support knows an important boom since more than a decade with the development of new shaping techniques. Among the most promising ones, the freeze-casting also called Ice-Tem plating allows the fabrication of ceramic parts exhibiting high porosity (>50%) and vertically aligned and hierarchically organized pores. Such structures were firstly conceived for biomedical applications like bone substitute and tissue engineering, but the distinctive features of freeze-cast structures have attracted the attention of diverse scientific fields, especially in high temperature ceramic-based energy production systems. Indeed, technologies like (a) Solid Oxide Fuel Cell (SOFC) and Electrolyser Cell (SOEC), (b) gas separation (O{sub 2}, H{sub 2}) by asymmetric supported membranes based on mixed ionic and electronic conductors (MIEC) or hydrogen-permeable metals, and (c) Catalytic Membrane Reactor (CMR) systems present a porous component in their physical structure. This latest, presenting a tortuous pathway for gas access and as a consequence, a high transport limitation, is known to be a limiting component for the operation at high flow streams that would enable to reach industrial target. (Author)

  15. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles. (United States)

    Kim, Yong Jung; Yang, Cheol-Min; Park, Ki Chul; Kaneko, Katsumi; Kim, Yoong Ahm; Noguchi, Minoru; Fujino, Takeshi; Oyama, Shigeki; Endo, Morinobu


    Supercapacitors can store and deliver energy by a simple charge separation, and thus they could be an attractive option to meet transient high energy density in operating fuel cells and in electric and hybrid electric vehicles. To achieve such requirements, intensive studies have been carried out to improve the volumetric capacitance in supercapacitors using various types and forms of carbons including carbon nanotubes and graphenes. However, conventional porous carbons are not suitable for use as electrode material in supercapacitors for such high energy density applications. Here, we show that edge-enriched porous carbons are the best electrode material for high energy density supercapacitors to be used in vehicles as an auxiliary powertrain. Molten potassium hydroxide penetrates well-aligned graphene layers vertically and consequently generates both suitable pores that are easily accessible to the electrolyte and a large fraction of electrochemically active edge sites. We expect that our findings will motivate further research related to energy storage devices and also environmentally friendly electric vehicles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Highly tunable porous organic polymer (POP) supports for metallocene-based ethylene polymerization (United States)

    Wang, Xiong; Li, Zhenyou; Han, Xiaoyu; Han, Zhengang; Bai, Yongxiao


    Porous organic Polymers (POPs) can not only exhibit high specific surface area and pore volume, but also tunable pore size distribution. Herein, copolymers of 2-hydroxyethylmethylacrylate (HEMA) and divinylbenzene (DVB) with specific pore structure were synthesized via a dispersion polymerization strategy, and then immobilized metallocene catalysts with well-defined pore structure were obtained on the produced POP supports. The nitrogen sorption and Gel permeation chromatography (GPC) results demonstrate that the pore structure of the immobilized metallocene catalyst is highly dependent on the pore structure of the POPs, and the pore structure of metallocene catalysts or the POPs has a significant influence on the molecular chain growth of the produced polyethylene. By tuning the distribution of the active species scattered in the micro- and the narrow meso-pore range (roughly ≤4 nm), the chain growth of the polyolefin can be tailored effectively during the polymerization process, although differential scanning calorimetry (DSC) and temperature rising elution fractionation (TREF) results show that the chemical composition distributions (CCDs) of produced PE from the POPs-supported metallocene catalysts are not determined by polymerization activity or molecule chain length, but mainly by the active site species scattered in the supported catalysts. Scanning electron micrograph (SEM) shows that the produced polyethylene has highly porous fabric which consists of nanofiber and spherical beads of micron dimension.

  17. Mode decomposition methods for flows in high-contrast porous media. Global-local approach

    KAUST Repository

    Ghommem, Mehdi


    In this paper, we combine concepts of the generalized multiscale finite element method (GMsFEM) and mode decomposition methods to construct a robust global-local approach for model reduction of flows in high-contrast porous media. This is achieved by implementing Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) techniques on a coarse grid computed using GMsFEM. The resulting reduced-order approach enables a significant reduction in the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider a variety of high-contrast coefficients and present the corresponding numerical results to illustrate the effectiveness of the proposed technique. This paper is a continuation of our work presented in Ghommem et al. (2013) [1] where we examine the applicability of POD and DMD to derive simplified and reliable representations of flows in high-contrast porous media on fully resolved models. In the current paper, we discuss how these global model reduction approaches can be combined with local techniques to speed-up the simulations. The speed-up is due to inexpensive, while sufficiently accurate, computations of global snapshots. © 2013 Elsevier Inc.

  18. Single Carbon Fibers with a Macroscopic-Thickness, 3D Highly Porous Carbon Nanotube Coating. (United States)

    Zou, Mingchu; Zhao, Wenqi; Wu, Huaisheng; Zhang, Hui; Xu, Wenjing; Yang, Liusi; Wu, Shiting; Wang, Yunsong; Chen, Yijun; Xu, Lu; Cao, Anyuan


    Carbon fiber (CF) grafted with a layer of carbon nanotubes (CNTs) plays an important role in composite materials and other fields; to date, the applications of CNTs@CF multiscale fibers are severely hindered by the limited amount of CNTs grafted on individual CFs and the weak interfacial binding force. Here, monolithic CNTs@CF fibers consisting of a 3D highly porous CNT sponge layer with macroscopic-thickness (up to several millimeters), which is directly grown on a single CF, are fabricated. Mechanical tests reveal high sponge-CF interfacial strength owing to the presence of a thin transitional layer, which completely inhibits the CF slippage from the matrix upon fracture in CNTs@CF fiber-epoxy composites. The porous conductive CNTs@CF hybrid fibers also act as a template for introducing active materials (pseudopolymers and oxides), and a solid-state fiber-shaped supercapacitor and a fiber-type lithium-ion battery with high performances are demonstrated. These CNTs@CF fibers with macroscopic CNT layer thickness have many potential applications in areas such as hierarchically reinforced composites and flexible energy-storage textiles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High capacity and high rate capability of nitrogen-doped porous hollow carbon spheres for capacitive deionization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shanshan; Yan, Tingting; Wang, Hui; Chen, Guorong; Huang, Lei; Zhang, Jianping; Shi, Liyi; Zhang, Dengsong, E-mail:


    Graphical abstract: - Highlights: • The nitrogen-doped porous hollow carbon spheres were prepared. • The obtained materials have a good capacitive deionization performance. • The electrodes show high salt adsorption rate and good regeneration performance. - Abstract: In this work, nitrogen-doped porous hollow carbon spheres (N-PHCS) were well prepared by using polystyrene (PS) spheres as hard templates and dopamine hydrochloride as carbon and nitrogen sources. Field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images demonstrate that the N-PHCS have a uniform, spherical and hollow structure. Nitrogen adsorption–desorption analysis shows that the N-PHCS have a high specific area of 512 m{sup 2}/g. X-ray photoelectron spectroscopy result reveals that the nitrogen doping amount is 2.92%. The hollow and porous structure and effective nitrogen doping can contribute to large accessible surface area, efficient ion transport and good conductivity. In the electrochemical tests, we can conclude that the N-PHCS have a high specific capacitance value, a good stability and low inner resistance. The N-PHCS electrodes present a high salt adsorption capacity of 12.95 mg/g at a cell voltage of 1.4 V with a flow rate of 40 mL/min in a 500 mg/L NaCl aqueous solution. Moreover, the N-PHCS electrodes show high salt adsorption rate and good regeneration performance in the CDI process. With high surface specific area and effective nitrogen doping, the N-PHCS is promising to the CDI and other electrochemical applications.

  20. High-Performance Electrochemical Catalysts Based on Three-Dimensional Porous Architecture with Conductive Interconnected Networks. (United States)

    Wang, Dong; Wang, Jie; Liu, Zi-En; Yang, Xiangdong; Hu, Xiaoxia; Deng, Jinqi; Yang, Nianjun; Wan, Qijin; Yuan, Quan


    The electrochemical applications of traditional carbon nanomaterials such as carbon nanotubes (CNTs) and graphene (G) powders are significantly impeded by their poor three-dimensional (3D) conductivity and lack of hierarchical porous structure. Here, we have constructed a 3D highly conductive CNTs networks and further combined it with mesoporous carbon (mC) for the creation of a core-shell structured (CNT@mC) composite sponge that featured 3D conductivity and hierarchical porous structure. In the composite sponge, interconnected CNTs efficiently eliminates the contact resistance and the hierarchical pores significantly facilitate the mass transport. The electron transfer rates, electroactive surface area and catalytic activity of the CNT@mC composite sponge based catalysts were tested in the direct methanol fuel cells (DMFCs) and electrochemical sensors. In DMFCs, the Pd nanoparticles deposited CNT@mC showed significantly improved catalytic activity and methanol oxidization current. As for amperometric sensing of endocrine disrupting compounds (EDCs), CNT@mC-based catalyst gave a liner range from 10 nM to 1 mM for bisphenol A (BPA) detection and showed great promise for simultaneous detection of multiple EDCs. BPA recovery from environmental water further indicated the potential practical applications of the sensor for BPA detection. Finally, the electrochemical performance of CNT@mC were also investigated in impedimetric sensors. Good selectivity was obtained in impedimetric sensing of BPA and the detection limit was measured to be 0.3 nM. This study highlighted the exceptional electrochemical properties of the CNT@mC composite sponge enabled by its 3D conductivity and hierarchical porous structure. The strategy described may further pave a way for the creation of novel functional materials through integrating multiple superior properties into a single nanostructure for future clean energy technologies and environmental monitoring systems.

  1. Porous SnO2-CuO nanotubes for highly reversible lithium storage (United States)

    Cheong, Jun Young; Kim, Chanhoon; Jung, Ji-Won; Yoon, Ki Ro; Kim, Il-Doo


    Facile synthesis of rationally designed structures is critical to realize a high performance electrode for lithium-ion batteries (LIBs). Among different candidates, tin(IV) oxide (SnO2) is one of the most actively researched electrode materials due to its high theoretical capacity (1493 mAh g-1), abundance, inexpensive costs, and environmental friendliness. However, severe capacity decay from the volume expansion and low conductivity of SnO2 have hampered its use as a feasible electrode for LIBs. Rationally designed SnO2-based nanostructures with conductive materials can be an ideal solution to resolve such limitations. In this work, we have successfully fabricated porous SnO2-CuO composite nanotubes (SnO2-CuO p-NTs) by electrospinning and subsequent calcination step. The porous nanotubular structure is expected to mitigate the volume expansion of SnO2, while the as-formed Cu from CuO upon lithiation allows faster electron transport by improving the low conductivity of SnO2. With a synergistic effect of both Sn and Cu-based oxides, SnO2-CuO p-NTs deliver stable cycling performance (91.3% of capacity retention, ∼538 mAh g-1) even after 350 cycles at a current density of 500 mA g-1, along with enhanced rate capabilities compared with SnO2.

  2. Enthalpy-based equation of state for highly porous materials employing modified soft sphere fluid model (United States)

    Nayak, Bishnupriya; Menon, S. V. G.


    Enthalpy-based equation of state based on a modified soft sphere model for the fluid phase, which includes vaporization and ionization effects, is formulated for highly porous materials. Earlier developments and applications of enthalpy-based approach had not accounted for the fact that shocked states of materials with high porosity (e.g., porosity more than two for Cu) are in the expanded fluid region. We supplement the well known soft sphere model with a generalized Lennard-Jones formula for the zero temperature isotherm, with parameters determined from cohesive energy, specific volume and bulk modulus of the solid at normal condition. Specific heats at constant pressure, ionic and electronic enthalpy parameters and thermal excitation effects are calculated using the modified approach and used in the enthalpy-based equation of state. We also incorporate energy loss from the shock due to expansion of shocked material in calculating porous Hugoniot. Results obtained for Cu, even up to initial porosities ten, show good agreement with experimental data.

  3. Hierarchical porous carbon with ultrahigh surface area from corn leaf for high-performance supercapacitors application (United States)

    Yang, Xiaoqing; Li, Chengfei; Chen, Yue


    A new class of hierarchical porous carbon (HPC) with ultrahigh surface area is successfully fabricated by carefully selecting biomass carbon precursors and activation reagent, through which corn leaf (CL) with natural well-defined macropore channels is used as the carbon precursor, and H3PO4 is used as the active agent by virtue of its pore-widening effect. The as-prepared CL-based HPC (CLHPC) with a H3PO4/semi-carbonized CL mass ratio of 2 (CLHPC-2) demonstrates the highest specific surface area of 2507 m2 g-1 donated by 28.3% of micropore and 71.6% of mesopore, while maintaining the channel-like macroporous structure derived from the well-defined natural structure in CL. The combination of the hierarchical porous structure and ultrahigh surface area enables rapid electrolyte diffusion and sufficient active sites for charge accumulation. As a result, CLHPC-2 exhibits excellent electrochemical performance, such as high specific capacitance of 230 F g-1 at the current density of 0.1 A g-1, excellent high-rate capability (retention of 91% from 0.1 to 5 A g-1), and good cycling stability (99% capacitance retention after 10 000 cycles).

  4. Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology (United States)

    Zhang, Yue-Biao; Zhou, Hao-Long; Lin, Rui-Biao; Zhang, Chi; Lin, Jian-Bin; Zhang, Jie-Peng; Chen, Xiao-Ming


    Porous coordination polymers are well known for their easily tailored framework structures and corresponding properties. Although systematic modulations of pore sizes of binary prototypes have gained great success, simultaneous adjustment of both pore size and shape of ternary prototypes remains unexplored, owing to the difficulty in controlling the self-assembly of multiple molecular building blocks. Here we show that simple geometry analysis can be used to estimate the influence of the linker lengths and length ratios on the synthesis/construction difficulties and framework stabilities of a highly symmetric, ternary prototype composed of a typical trinuclear metal cluster and two types of bridging carboxylate ligands. As predicted, systematic syntheses with 5×5 ligand combinations produced 13 highly porous isoreticular frameworks, which show not only systematic adjustment of pore volumes (0.49–2.04 cm3 g−1) and sizes (7.8–13.0 Å; 5.2–12.0 Å; 7.4–17.4 Å), but also anisotropic modulation of the pore shapes. PMID:22273680

  5. Nasal measurements in Asians and high-density porous polyethylene implants in rhinoplasty. (United States)

    Jang, Dongwoo; Yu, Li; Wang, Yimin; Cao, Dejun; Yu, Zheyuan; Mu, Xiongzheng


    To understand Asian noses, set goals for rhinoplasty, and find the best alternative columellar strut. Six values were used to evaluate the morphology of the nose: tip projection, alar-tip-columellar base angle, alar-columellar base-philtrum angle, nasolabial angle, nasofacial angle, and tip angle. One hundred average Chinese people (50 males and 50 females) were compared with 36 preoperative Chinese patients (13 males and 23 females). We presented an application of high-density porous polyethylene (Medpor) implant as a columellar strut for use in lengthening. We performed 3 surgical techniques: a single-plate strut, a double-plate strut, and a butterfly-shaped strut. Open rhinoplasty (transcolumella incision) was performed on 21 patients; closed rhinoplasty (marginal incision) was performed on 15 patients. Prominent changes in the 6 values were found in both male and female patients after rhinoplasty. An analysis of the Asian nose will help surgeons achieve better results. High-density porous polyethylene columellar strut grafts provide adequate support for refined tip definition and the shaping of the columellar-lobular angle.

  6. Porous Pt Nanoparticles with High Near-Infrared Photothermal Conversion Efficiencies for Photothermal Therapy. (United States)

    Zhu, Xiao-Ming; Wan, Hong-Ye; Jia, Henglei; Liu, Liang; Wang, Jianfang


    Plasmonic nanostructures are of potential in acting as a type of optical agents for cancer photothermal therapy. To effectively function as photothermal therapy agents, plasmonic nanostructures are strongly desired to have good biocompatibility and high photothermal conversion efficiencies. In this study, poly(diallyldimethylammonium chloride)-coated porous Pt nanoparticles are synthesized for photothermal therapy. The Pt nanoparticles possess broadband near-infrared light absorption in the range from 650 to 1200 nm, therefore allowing for selecting different laser wavelengths for photothermal therapy. The as-prepared Pt nanoparticles exhibit remarkable photothermal conversion efficiencies under 809 and 980 nm laser irradiation. In vitro studies indicate that the Pt nanoparticles display good biocompatibility and high cellular uptake efficiencies through an endocytosis pathway. Photothermal heating using 808 nm laser irradiation (>7.0 W cm-2 , 3 min) leads to notable cytotoxic effect, and more than 70% of cells are photothermally ablated after 3 min irradiation at 8.4 W cm-2 . Furthermore, simultaneous application of photothermal therapy synergistically enhances the cytotoxicity of an anti-cancer drug doxorubicin. Therefore, the porous Pt nanoparticles have great potential as an attractive photothermal agent for cancer therapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Highly porous polytriazole ion exchange membranes cast from solutions in non-toxic cosolvents

    KAUST Repository

    Chisca, Stefan


    The development of highly functionalized porous materials for protein separation is important for biotech processes. We report the preparation of highly porous polytriazole with sulfonic acid functionalization. The resulting ion exchange membranes are selective for protein adsorption. The starting material was a hydroxyl-functionalized polytriazole, which is an advantageous platform for further modification. The polymer was dissolved in a mixture of 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) and dimethyl carbonate (DMC), which can be both considered green solvents. The polymer solubilization was only possible due to an interesting effect of cosolvency, which is discussed, based in phase diagrams. Membranes were prepared by solution casting, followed by immersion in a non-solvent bath. We then grafted sulfone groups on the membranes, by reacting the hydroxyl groups with 1,3-propane sultone and 1,4-butane sultone. Lysozyme adsorption was successfully evaluated. Membranes modified with 1,4-butane sultone adsorbed more protein than those with 1,3-propane sultone.

  8. Selective and Regenerative Carbon Dioxide Capture by Highly Polarizing Porous Carbon Nitride. (United States)

    Oh, Youngtak; Le, Viet-Duc; Maiti, Uday Narayan; Hwang, Jin Ok; Park, Woo Jin; Lim, Joonwon; Lee, Kyung Eun; Bae, Youn-Sang; Kim, Yong-Hyun; Kim, Sang Ouk


    Energy-efficient CO2 capture is a stringent demand for green and sustainable energy supply. Strong adsorption is desirable for high capacity and selective capture at ambient conditions but unfavorable for regeneration of adsorbents by a simple pressure control process. Here we present highly regenerative and selective CO2 capture by carbon nitride functionalized porous reduced graphene oxide aerogel surface. The resultant structure demonstrates large CO2 adsorption capacity at ambient conditions (0.43 mmol·g(-1)) and high CO2 selectivity against N2 yet retains regenerability to desorb 98% CO2 by simple pressure swing. First-principles thermodynamics calculations revealed that microporous edges of graphitic carbon nitride offer the optimal CO2 adsorption by induced dipole interaction and allows excellent CO2 selectivity as well as facile regenerability. This work identifies a customized route to reversible gas capture using metal-free, two-dimensional carbonaceous materials, which can be extended to other useful applications.

  9. Highly Stable Carbon Nanotube/Polyaniline Porous Network for Multifunctional Applications. (United States)

    Zhao, Wenqi; Li, Yibin; Wu, Shiting; Wang, Dezhi; Zhao, Xu; Xu, Fan; Zou, Mingchu; Zhang, Hui; He, Xiaodong; Cao, Anyuan


    Three-dimensional carbon nanotube (CNT) networks with high porosity and electrical conductivity have many potential applications in energy and environmental areas, but the network structure is not very stable due to weak inter-CNT interactions. Here, we coat a thin polyaniline (PANI) layer on as-synthesized CNT sponge to obtain a mechanically and electrically stable network, and enable multifunctional applications. The resulting CNT/PANI network serves as stable strain sensors, highly compressible supercapacitor electrode with enhanced volume-normalized capacitance (632 F/cm3), and reinforced nanocomposites with the PANI as intermediate layer between the CNT fillers and polymeric matrix. Our results provide a simple and controllable method for achieving high-stability porous networks composed of CNTs, graphene, or other nanostructures.

  10. Unsteady incompressible MHD boundary layer on porous aerofoil in high accelerating fluid flow

    Directory of Open Access Journals (Sweden)

    Ivanović Dečan J.


    Full Text Available The fluid, flowing past the surface, is incompressible and its electro-conductivity is constant. The present magnetic field is homogenous and perpendicular to the surface and through the porous contour the fluid has been injected or ejected. In order to study this problem, a polyparametric method known as generalized similarity method has been established. The corresponding equations of unsteady boundary layer, by introducing the appropriate variable transformations, momentum and energy equations and three similarity parameters sets, being transformed into generalized form. The numerical integration of the generalized equation with boundary conditions has been performed by means of the difference schemes and by using Tridiagonal Algorithm Method with iterations in the four parametric and twice localized approximation. So obtained generalized solutions are used to calculate the shear stress distribution in laminar-turbulent transition of unsteady boundary layer on porous high accelerating aerofoil. It's shown that for both in confuser and in diffuser regions the ejection of fluid postpones the boundary layer separation, and vice versa the fluid injection favors the separation. For both injection and ejection of fluid, the magnetic field increases the friction and postpones the laminar-turbulent transition.

  11. Synthesize and characterization of graphene nanosheets with high surface area and nano-porous structure

    Energy Technology Data Exchange (ETDEWEB)

    Jabari Seresht, Razieh [Nanotechnology Research Institute, School of Chemical Engineering, Babol University of Technology (Iran, Islamic Republic of); Jahanshahi, Mohsen, E-mail: [Nanotechnology Research Institute, School of Chemical Engineering, Babol University of Technology (Iran, Islamic Republic of); Rashidi, Alimorad [Nanotechnology Research Center, Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of); Ghoreyshi, Ali Asghar [Nanotechnology Research Institute, School of Chemical Engineering, Babol University of Technology (Iran, Islamic Republic of)


    A few-layer graphene was obtained by the expansion and exfoliation of water-intercalated graphene oxide via heat treatment in nitrogen environment in the temperature range of 200–1000 °C. Graphene which was synthesized at 800 °C (GT800) had a higher quality than other temperatures. This graphene has a high specific surface area (560.6 m{sup 2} g{sup −1}) and nano-porous structure. However, as for the purpose of comparison, graphene was synthesized with a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate in various reaction times (12, 24 and 36 h). This method has obtained a six-layer graphene and graphene that was synthesized during 24 h reaction with hydrazine hydrate (GC24) had a higher quality in comparison with the other products. The GC24 had 195.97 m{sup 2} g{sup −1} specific surface area and nano-porous structure. The as-synthesized graphene were then characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) as well as BET measurements. The results demonstrated that this low-cost method for few-layer grapheme, e.g. three-layers, fabrication is reliable and promising.

  12. High-Throughput Characterization of Porous Materials Using Graphics Processing Units

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihan; Martin, Richard L.; Rübel, Oliver; Haranczyk, Maciej; Smit, Berend


    We have developed a high-throughput graphics processing units (GPU) code that can characterize a large database of crystalline porous materials. In our algorithm, the GPU is utilized to accelerate energy grid calculations where the grid values represent interactions (i.e., Lennard-Jones + Coulomb potentials) between gas molecules (i.e., CH$_{4}$ and CO$_{2}$) and material's framework atoms. Using a parallel flood fill CPU algorithm, inaccessible regions inside the framework structures are identified and blocked based on their energy profiles. Finally, we compute the Henry coefficients and heats of adsorption through statistical Widom insertion Monte Carlo moves in the domain restricted to the accessible space. The code offers significant speedup over a single core CPU code and allows us to characterize a set of porous materials at least an order of magnitude larger than ones considered in earlier studies. For structures selected from such a prescreening algorithm, full adsorption isotherms can be calculated by conducting multiple grand canonical Monte Carlo simulations concurrently within the GPU.

  13. Vinyl Ester Oligomer Crosslinked Porous Polymers Prepared via Surfactant-Free High Internal Phase Emulsions

    Directory of Open Access Journals (Sweden)

    Yun Zhu


    Full Text Available Using vinyl ester resin (VER containing styrene (or methyl methacrylate and vinyl ester oligomer (VEO as external phase, Pickering high internal phase emulsions (Pickering HIPEs having internal phase volume fraction of up to 95 vol% were prepared with copolymer particles as sole stabilizer. Polymerizing the external phase of these Pickering HIPEs led to porous polymers (poly-Pickering-HIPEs. Compared to the polystyrene- (PS- based poly-Pickering-HIPEs which were prepared with mixture of styrene and divinylbenzene (DVB as crosslinker, the poly-Pickering-HIPEs herein showed much higher elastic modulus and toughness. The elastic modulus of these poly-Pickering-HIPEs increased with increasing the VEO concentration in the external phase, while it decreased with increasing internal phase volume fraction. Increasing VEO concentration in the external phase also resulted in a decrease in the average void diameter as well as a narrow void diameter distribution of the resulting poly-Pickering-HIPEs. In addition, there were many small pores in the voids surface caused by the volume contraction of VER during the polymerization, which suggests a new method to fabricate porous polymers having a well-defined hierarchical pore structure.

  14. Solute Dispersion in Water-Unsaturated Porous Media - Results from High Resolution Lab Experiments (United States)

    Heberle, S.; Buchner, J. S.; Roth, K.


    Dispersion of dissolved substances depends on the velocity field and on the geometry of the flow domain. So far, most experimental and theoretical studies focused on water-saturated media. This allows a simple parameterization of the constant microscopic flow domain. For water-unsaturated porous media, the microscopic flow domain depends strongly on the local water saturation which in turn relates to the local flow. We study the dispersion of a conservative dye tracer in a series of lab experiments with different flow rates and water contents. The experiments are run in a thin slab of uniformly packed translucent glass beads (porous Hele-Shaw cell). A light-transmission method allows to capture concentration distributions at high temporal and spatial resolutions. A first series of experiments was run with different flow rates and under saturated condition. It reproduced the well-established power-law relation between microscopic Peclet number (mean velocity) and scaled dispersion coefficient. In a second series of experiments under non-saturated conditions, we find that dispersion is strongly increased. For gravity flow one expects a functional relationship between dispersion and water content which will be explored in our presentation.

  15. Maintaining the structure of templated porous materials for reactive and high-temperature applications. (United States)

    Rudisill, Stephen G; Wang, Zhiyong; Stein, Andreas


    Nanoporous and nanostructured materials are becoming increasingly important for advanced applications involving, for example, bioactive materials, catalytic materials, energy storage and conversion materials, photonic crystals, membranes, and more. As such, they are exposed to a variety of harsh environments and often experience detrimental morphological changes as a result. This article highlights material limitations and recent advances in porous materials--three-dimensionally ordered macroporous (3DOM) materials in particular--under reactive or high-temperature conditions. Examples include systems where morphological changes are desired and systems that require an increased retention of structure, surface area, and overall material integrity during synthesis and processing. Structural modifications, changes in composition, and alternate synthesis routes are explored and discussed. Improvements in thermal or structural stability have been achieved by the isolation of nanoparticles in porous structures through spatial separation, by confinement in a more thermally stable host, by the application of a protective surface or an adhesive interlayer, by alloy or solid solution formation, and by doping to induce solute drag.

  16. In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High Performance Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Ju Won [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Texas A & M Univ., College Station, TX (United States); Sharma, Ronish [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meduri, Praveen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arey, Bruce W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schaef, Herbert T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lutkenhaus, Jodie [Texas A & M Univ., College Station, TX (United States); Lemmon, John P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, Praveen K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nandasiri, Manjula I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nune, Satish K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    Electrochemical performance of the existing state-of-the art capacitors is not very high, key scientific barrier is that its charge storage mechanism wholly depends on adsorption of electrolyte on electrode. We present a novel method for the synthesis of nitrogen -doped porous carbons and address the drawback by precisely controlling composition and surface area. Nitrogen-doped porous carbon was synthesized using a self-sacrificial template technique without any additional nitrogen and carbon sources. They exhibited exceptionally high capacitance (239 Fg-1) due to additional pseudocapacitance originating from doped nitrogen. Cycling tests showed no obvious capacitance decay even after 10,000 cycles, which meets the requirement of commercial supercapacitors. Our method is simple and highly efficient for the production of large quantities of nitrogen-doped porous carbons.

  17. Two-Stage Crystallizer Design for High Loading of Poorly Water-Soluble Pharmaceuticals in Porous Silica Matrices

    Directory of Open Access Journals (Sweden)

    Leia Dwyer


    Full Text Available While porous silica supports have been previously studied as carriers for nanocrystalline forms of poorly water-soluble active pharmaceutical ingredients (APIs, increasing the loading of API in these matrices is of great importance if these carriers are to be used in drug formulations. A dual-stage mixed-suspension, mixed-product removal (MSMPR crystallizer was designed in which the poorly soluble API fenofibrate was loaded into the porous matrices of pore sizes 35 nm–300 nm in the first stage, and then fed to a second stage in which the crystals were further grown in the pores. This resulted in high loadings of over 50 wt % while still producing nanocrystals confined to the pores without the formation of bulk-sized crystals on the surface of the porous silica. The principle was extended to another highly insoluble API, griseofulvin, to improve its loading in porous silica in a benchtop procedure. This work demonstrates a multi-step crystallization principle API in porous silica matrices with loadings high enough to produce final dosage forms of these poorly water-soluble APIs.

  18. Preparation of high strain porous polyvinyl alcohol/polyaniline composite and its applications in all-solid-state supercapacitor (United States)

    Hu, Ruofei; Zheng, Junping


    Impacted by the rapid development of the wearable and portable devices, the demands for excellent flexibility and high specific capacitance have highlighted an urgent need for developing flexible energy storage devices. In this paper, we prepare a porous polyvinyl alcohol (PVA)/polyaniline (PANI) composite with perfect mechanical performance (strain deformations of 696%). Due to its three-dimensional (3D) porous structure, deformation of the PANI can be avoided when the composite is bent or stretched. The electrochemical performance of the porous PVA/PANI composite can be maintained so that it holds promise for stretchable energy storage devices. As a proof of concept, an all-solid-state supercapacitor is fabricated by using the porous PVA/PANI composite and exhibits a high areal capacitance of 300.9 mF cm-2 and long-life stability of 85% capacitance retention after 10,000 charge/discharge cycles. In particular, the supercapacitor can also withstand repeated bending and stretching with minimal effect on the electrochemical performance when no current collector is employed. The research presents a design approach of high strain porous composite and shows great promise for the development of stretchable energy storage devices.

  19. Highly Efficient Electrocatalysts for Oxygen Reduction Reaction Based on 1D Ternary Doped Porous Carbons Derived from Carbon Nanotube Directed Conjugated Microporous Polymers

    KAUST Repository

    He, Yafei


    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.One-dimensional (1D) porous materials have shown great potential for gas storage and separation, sensing, energy storage, and conversion. However, the controlled approach for preparation of 1D porous materials, especially porous organic materials, still remains a great challenge due to the poor dispersibility and solution processability of the porous materials. Here, carbon nanotube (CNT) templated 1D conjugated microporous polymers (CMPs) are prepared using a layer-by-layer method. As-prepared CMPs possess high specific surface areas of up to 623 m2 g-1 and exhibit strong electronic interactions between p-type CMPs and n-type CNTs. The CMPs are used as precursors to produce heteroatom-doped 1D porous carbons through direct pyrolysis. As-produced ternary heteroatom-doped (B/N/S) 1D porous carbons possess high specific surface areas of up to 750 m2 g-1, hierarchical porous structures, and excellent electrochemical-catalytic performance for oxygen reduction reaction. Both of the diffusion-limited current density (4.4 mA cm-2) and electron transfer number (n = 3.8) for three-layered 1D porous carbons are superior to those for random 1D porous carbon. These results demonstrate that layered and core-shell type 1D CMPs and related heteroatom-doped 1D porous carbons can be rationally designed and controlled prepared for high performance energy-related applications.

  20. Multi-scale high-performance fluid flow: Simulations through porous media

    KAUST Repository

    Perović, Nevena


    Computational fluid dynamic (CFD) calculations on geometrically complex domains such as porous media require high geometric discretisation for accurately capturing the tested physical phenomena. Moreover, when considering a large area and analysing local effects, it is necessary to deploy a multi-scale approach that is both memory-intensive and time-consuming. Hence, this type of analysis must be conducted on a high-performance parallel computing infrastructure. In this paper, the coupling of two different scales based on the Navier–Stokes equations and Darcy\\'s law is described followed by the generation of complex geometries, and their discretisation and numerical treatment. Subsequently, the necessary parallelisation techniques and a rather specific tool, which is capable of retrieving data from the supercomputing servers and visualising them during the computation runtime (i.e. in situ) are described. All advantages and possible drawbacks of this approach, together with the preliminary results and sensitivity analyses are discussed in detail.

  1. Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bingkun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Ben, Teng [Jilin Univ., Changchun (China). Dept. of Chemistry; Bi, Zhonghe [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Veith, Gabriel M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Sun, Xiao-Guang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Qiu, Shilun [Jilin Univ., Changchun (China). Dept. of Chemistry; Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry


    Lithium–sulfur (Li–S) batteries are attractive candidates for transportation applications because of their high energy density (2600 W h kg$-$1). However, Li–S batteries have failed to achieve commercial success, due to the rapid capacity fading with cycling caused mainly by the “shuttle” phenomenon. In this paper, we report a feasible approach to mitigate this issue using a porous aromatic framework (PAF) as a hosting substrate in Li–S batteries. As a cathode material, the composite of PAF with sulfur exhibits high capacity and excellent cycling stability in both a sulfone electrolyte, 1.0 M LiPF6–MiPS, and an ionic liquid electrolyte, 0.5 M LiTFSI–MPPY·TFSI.

  2. Microscale transport in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Rashidi, M. [Lawrence Livermore National Lab., CA (United States); Rinker, R. [Univ. of California, Santa Barbara, CA (United States). Chemical Engineering Dept.


    In-pore transport processes in homogeneous and heterogeneous porous media have been investigated using novel 3D imaging techniques. The experimental system consists of a clear column packed with clear particles and a refractive index-matched fluid seeded with fluorescent tracers and an organic solute dye. By illuminating the porous regions within the column with a planar sheet of laser beam, flow and transport processes through the porous medium can be observed microscopically, and qualitative and quantitative in-pore transport information can be obtained at a good resolution and a high accuracy. Fluorescent images are captured and recorded at every vertical plane location while sweeping back and forth across the test section. These digitized transport images are then analyzed and accumulated over a 3D volume within the column. This paper reports on pore-scale observations of velocity, chemical concentration, and fluxes. Tests were undertaken with two separate columns. One is a rectangular column for chemical transport and bioremediation studies in aqueous heterogeneous systems and the other is a cylindrical column for flow and transport investigations in nonaqueous homogeneous systems.



    Tong, Zenghan; Joseph, K.S.; Hage, David S.


    This study examined the use of frontal analysis and high-performance affinity chromatography for detecting heterogeneous binding in biomolecular interactions, using the binding of acetohexamide with human serum albumin (HSA) as a model. It was found through the use of this model system and chromatographic theory that double-reciprocal plots could be used more easily than traditional isotherms for the initial detection of binding site heterogeneity. The deviations from linearity that were seen...

  4. Porous Shape Memory Polymers (United States)

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.


    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038

  5. Confined Porous Graphene/SnOx Frameworks within Polyaniline-Derived Carbon as Highly Stable Lithium-Ion Battery Anodes. (United States)

    Zhou, Dan; Song, Wei-Li; Li, Xiaogang; Fan, Li-Zhen


    Tin oxides are promising anode materials for their high theoretical capacities in rechargeable lithium-ion batteries (LIBs). However, poor stability usually limits the practical application owing to the large volume variation during the cycling process. Herein, a novel carbon confined porous graphene/SnOx framework was designed using a silica template assisted nanocasting method followed by a polyaniline-derived carbon coating process. In this process, silica served as a template to anchor SnOx nanoparticles on porous framework and polyaniline was used as the carbon source for coating on the porous graphene/SnOx framework. The synthesized carbon confined porous graphene/SnOx frameworks demonstrate substantially improved rate capacities and enhanced cycling stability as the anode materials in LIBs, showing a high reversible capacity of 907 mAh g(-1) after 100 cycles at 100 mA g(-1) and 555 mAh g(-1) after 400 cycles at 1000 mA g(-1). The remarkably improved electrochemical performance could be assigned to the unique porous architecture, which effectively solves the drawbacks of SnOx including poor electrical conductivity and undesirable volume expansion during cycling process. Consequently, such design concept for promoting SnOx performance could provide a novel stage for improving anode stability in LIBs.

  6. Detection of heterogeneous drug-protein binding by frontal analysis and high-performance affinity chromatography. (United States)

    Tong, Zenghan; Joseph, K S; Hage, David S


    This study examined the use of frontal analysis and high-performance affinity chromatography for detecting heterogeneous binding in biomolecular interactions, using the binding of acetohexamide with human serum albumin (HSA) as a model. It was found through the use of this model system and chromatographic theory that double-reciprocal plots could be used more easily than traditional isotherms for the initial detection of binding site heterogeneity. The deviations from linearity that were seen in double-reciprocal plots as a result of heterogeneity were a function of the analyte concentration, the relative affinities of the binding sites in the system and the amount of each type of site that was present. The size of these deviations was determined and compared under various conditions. Plots were also generated to show what experimental conditions would be needed to observe these deviations for general heterogeneous systems or for cases in which some preliminary information was available on the extent of binding heterogeneity. The methods developed in this work for the detection of binding heterogeneity are not limited to drug interactions with HSA but could be applied to other types of drug-protein binding or to additional biological systems with heterogeneous binding. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Long Term Stability Investigation of Solid Oxide Electrolysis Cell with Infiltrated Porous YSZ Air Electrode Under High Current

    DEFF Research Database (Denmark)

    Veltzé, Sune; Ovtar, Simona; Simonsen, Søren Bredmose


    The increased interest in stable and low cost electrodes for solid oxide cells (SOC) has driven the research of electrode preparation to infiltration of catalyst material into porous backbone material. The infiltration method enables a reduction of amount of catalyst material and increases its...... activity, due to high surface area of catalyst nano particles. Advantage of infiltration is also separate production of electrolyte backbone structure with good ionic connectivity and mechanical properties. With this study we present the results of a solid oxide cell with infiltrated porous yttria...... stabilised zirconia (YSZ) backbone air electrode and Ni/YSZ cermet fuel electrode. The SOC was tested at electrolysis conditions under high current (up to -1 A/cm2). The porous YSZ electrodes was infiltrated with gadolinium-doped ceria oxide (CGO), to act as a barrier layer between the catalyst...

  8. Characterization of natural porous media by NMR and MRI techniques. High and low magnetic field studies for estimation of hydraulic properties

    Energy Technology Data Exchange (ETDEWEB)

    Stingaciu, Laura-Roxana


    The aim of this thesis is to apply different NMR techniques for: i) understanding the relaxometric properties of unsaturated natural porous media and ii) for a reliable quantification of water content and its spatial and temporal change in model porous media and soil cores. For that purpose, porous media with increasing complexity and heterogeneity were used (coarse and fine sand and different mixture of sand/clay) to determine the relaxation parameters in order to adapt optimal sequence and parameters for water imaging. Conventional imaging is mostly performed with superconducting high field scanners but low field scanners promise longer relaxation times and therefore smaller loss of signal from water in small and partially filled pores. By this reason high and low field NMR experiments were conducted on these porous media to characterize the dependence on the magnetic field strength. Correlations of the NMR experiments with classical soil physics method like mercury intrusion porosimetry; water retention curves (pF) and multi-step-outflow (MSO) were performed for the characterization of the hydraulic properties of the materials. Due to the extensive research the experiments have been structured in three major parts as follows. In the first part a comparison study between relaxation experiments in high and low magnetic field was performed in order to observe the influence of the magnetic field on the relaxation properties. Due to these results, in the second part of the study only low field relaxation experiments were used in the attempt of correlations with classical soil physics methods (mercury intrusion porosimetry and water retention curves) for characterizing the hydraulic behavior of the samples. Further, the aim was to combine also MRI experiments (2D and 3D NMR) with classical soil physics methods (multi-step-outflow, MSO) for the same purpose of investigating the hydraulic properties. Because low field MRI systems are still under developing for the

  9. Nitrogen-doped biomass/polymer composite porous carbons for high performance supercapacitor (United States)

    Shu, Yu; Maruyama, Jun; Iwasaki, Satoshi; Maruyama, Shohei; Shen, Yehua; Uyama, Hiroshi


    Nitrogen-doped porous monolithic carbon (NDPMC) is obtained from biomass-derived activated carbon/polyacrylonitrile composite for the first time via a template-free thermally induced phase separation (TIPS) approach followed by KOH activation. The electrochemical results indicate that NDPMC possesses ultrahigh specific capacitance of 442 F g-1 at 1 A g-1, excellent rate capability with 81% retention rate from 1 to 100 A g-1 and outstanding cycling stability with 98% capacitance retention at 20 A g-1 after 5000 cycles. Furthermore, the evaluation of NDPMC on the practical symmetrical system also exhibits desired electrochemical performances. The novel composite carbon displays remarkable capacitance properties and the feasible, low-cost synthetic route demonstrates great potential for large-scale production of high-performance electrode materials for supercapacitors.

  10. High-pressure, ambient temperature hydrogen storage in metal-organic frameworks and porous carbon (United States)

    Beckner, Matthew; Dailly, Anne


    We investigated hydrogen storage in micro-porous adsorbents at ambient temperature and pressures up to 320 bar. We measured three benchmark adsorbents: two metal-organic frameworks, Cu3(1,3,5-benzenetricarboxylate)2 [Cu3(btc)2; HKUST-1] and Zn4O(1,3,5-benzenetribenzoate)2 [Zn4O(btb)2; MOF-177], and the activated carbon MSC-30. In this talk, we focus on adsorption enthalpy calculations using a single adsorption isotherm. We use the differential form of the Claussius-Clapeyron equation applied to the Dubinin-Astakhov adsorption model to calculate adsorption enthalpies. Calculation of the adsorption enthalpy in this way gives a temperature independent enthalpy of 5-7 kJ/mol at the lowest coverage for the three materials investigated. Additionally, we discuss the assumptions and corrections that must be made when calculating adsorption isotherms at high-pressure and adsorption enthalpies.

  11. Review on non-darcy flow in highly permeable porous media (United States)

    Yoshioka, Mayumi; Tosaka, Hiroyuki

    Historical researches on non-Darcy effects based on the Forchheimer's equation are reviewed under the needs for modeling unsaturated water flow and heat transport in highly permeable porous media. The estimation equations for the Forchheimer's coefficients a and b, proposed by Ergun (1952), Kovács (1981), Ward (1964) and Kadlec and Knight (1996) are compared. Significant differences are found in the plots of hydraulic gradient and water velocity among the equations, while the Ergun and Kovács's show almost identical. The Forchheimer's coefficient b derived from the regression of experimental data by Sidiropoulou et al. (2007) and the coefficient b derived from the measured hydraulic conductivities are not in good agreement while the Ergun and Kovács equations are relatively close to the experimental data.

  12. Three-dimensional porous graphene-Co{sub 3}O{sub 4} nanocomposites for high performance photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bin, Zeng, E-mail: [College of Mechanical Engineering, Hunan University of Arts and Science, Changde 415000 (China); Hui, Long [Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)


    Highlights: • The three-dimensional porous graphene-Co{sub 3}O{sub 4} nanocomposites were synthesized. • Excellent photocatalytic performance. • Separated from the reaction medium by magnetic decantation. - Abstract: Novel three-dimensional porous graphene-Co{sub 3}O{sub 4} nanocomposites were synthesized by freeze-drying methods. Scanning and transmission electron microscopy revealed that the graphene formed a three-dimensional porous structure with Co{sub 3}O{sub 4} nanoparticles decorated surfaces. The as-obtained product showed high photocatalytic efficiency and could be easily separated from the reaction medium by magnetic decantation. This nanocomposite may be expected to have potential in water purification applications.

  13. Numerical and analytical solutions for sound propagation and absorption in porous media at high sound pressure levels. (United States)

    Zhang, Bo; Chen, Tianning; Zhao, Yuyuan; Zhang, Weiyong; Zhu, Jian


    On the basis of the work of Wilson et al. [J. Acoust. Soc. Am. 84, 350-359 (1988)], a more exact numerical approach was constructed for predicting the nonlinear sound propagation and absorption properties of rigid porous media at high sound pressure levels. The numerical solution was validated by the experimental results for sintered fibrous porous steel samples and its predictions were compared with the numerical solution of Wilson et al. An approximate analytical solution was further put forward for the normalized surface acoustic admittance of rigid air-saturated porous materials with infinite thickness, based on the wave perturbation method developed by Lambert and McIntosh [J. Acoust. Soc. Am. 88, 1950-1959 (1990)]. Comparisons were made with the numerical results.

  14. Heat and Mass Transfer in a High-Porous Low-Temperature Thermal Insulation in Real Operating Conditions

    Directory of Open Access Journals (Sweden)

    Polovnikov Vyacheslav Yu.


    Full Text Available The results of numerical simulation of heat and mass transfer in a high-porous low-temperature insulation in conditions of insulation freezing, a moisture migration to the front of phase transition and a condensation forming on an outer contour of interaction were obtained. Values of heat leakage were established.

  15. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction

    NARCIS (Netherlands)

    Kas, Recep; Hummadi, Khalid Khazzal; Kortlever, Ruud; de Wit, Patrick; Milbrat, Alexander; Luiten-Olieman, Maria W.J.; Benes, Nieck Edwin; Koper, Marc T.M.; Mul, Guido


    Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area,

  16. The plasma device for the high-heat plasma testing of refractory metals and inventing of new highly porous materials (United States)

    Budaev, V. P.; Fedorovich, S. D.; Martynenko, Yu V.; Lukashevsky, M. V.; Gubkin, M. K.; Lazukin, A. V.; Karpov, A. V.; Shestakov, E. A.


    A unique plasma device has been constructed at the NRU “MPEI” for the study of plasma-surface interaction and the high-heat plasma testing of refractory metals, such as tungsten, molybdenum, steel and other plasma facing materials used in fusion reactor including the ITER. This plasma device is a multi-cusp linear stationary plasma confinement system. It has power-saving characteristics as well as compactness due to the employment of the 8-pole multicusp magnetic field configuration instead of a strong axial magnetic field. Experiments are planned to develop a novel technology for highly porous surface structure of the refractory metal with a pore size and nanofibers of 50 nanometers including tungsten “fuzz”.

  17. High mass resolution time of flight mass spectrometer for measuring products in heterogeneous catalysis in highly sensitive microreactors

    DEFF Research Database (Denmark)

    Andersen, Thomas; Jensen, Robert; Christensen, M. K.


    We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal...

  18. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation (United States)

    Byamba-Ochir, Narandalai; Shim, Wang Geun; Balathanigaimani, M. S.; Moon, Hee


    Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816-2063 m2/g and of 0.55-1.61 cm3/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  19. A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction (United States)

    Zhang, Yaqing; Zhang, Xianlei; Ma, Xiuxiu; Guo, Wenhui; Wang, Chunchi; Asefa, Tewodros; He, Xingquan


    The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) derived from oatmeal (or a biological material) and we show the materials’ high-efficiency as electrocatalyst for ORR. The obtained N-HPCNPs hybrid materials exhibit superior electrocatalytic activities towards ORR, besides excellent stability and good methanol tolerance in both basic and acidic electrolytes. The unique nanoarchitectures with rich micropores and mesopores, as well as the high surface area-to-volume ratios, present in the materials significantly increase the density of accessible catalytically active sites in them and facilitate the transport of electrons and electrolyte within the materials. Consequently, the N-HPCNPs catalysts hold a great potential to serve as low-cost and highly efficient cathode materials in direct methanol fuel cells (DMFCs). PMID:28240234

  20. A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction (United States)

    Zhang, Yaqing; Zhang, Xianlei; Ma, Xiuxiu; Guo, Wenhui; Wang, Chunchi; Asefa, Tewodros; He, Xingquan


    The oxygen reduction reaction (ORR) is of great importance for various renewable energy conversion technologies such as fuel cells and metal-air batteries. Heteroatom-doped carbon nanomaterials have proven to be robust metal-free electrocatalysts for ORR in the above-mentioned energy devices. Herein, we demonstrate the synthesis of novel highly porous N-doped carbon nanoplatelets (N-HPCNPs) derived from oatmeal (or a biological material) and we show the materials’ high-efficiency as electrocatalyst for ORR. The obtained N-HPCNPs hybrid materials exhibit superior electrocatalytic activities towards ORR, besides excellent stability and good methanol tolerance in both basic and acidic electrolytes. The unique nanoarchitectures with rich micropores and mesopores, as well as the high surface area-to-volume ratios, present in the materials significantly increase the density of accessible catalytically active sites in them and facilitate the transport of electrons and electrolyte within the materials. Consequently, the N-HPCNPs catalysts hold a great potential to serve as low-cost and highly efficient cathode materials in direct methanol fuel cells (DMFCs).

  1. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. (United States)

    Liu, Yanming; Quan, Xie; Fan, Xinfei; Wang, Hua; Chen, Shuo


    H2O2 production by electroreduction of O2 is an attractive alternative to the current anthraquinone process, which is highly desirable for chemical industries and environmental remediation. However, it remains a great challenge to develop cost-effective electrocatalysts for H2O2 synthesis. Here, hierarchically porous carbon (HPC) was proposed for the electrosynthesis of H2O2 from O2 reduction. It exhibited high activity for O2 reduction and good H2O2 selectivity (95.0-70.2%, most of them >90.0% at pH 1-4 and >80.0% at pH 7). High-yield H2O2 generation has been achieved on HPC with H2O2 concentrations of 222.6-62.0 mmol L(-1) (2.5 h) and corresponding H2O2 production rates of 395.7-110.2 mmol h(-1)  g(-1) at pH 1-7 and -0.5 V. Moreover, HPC was energy-efficient for H2O2 production with current efficiency of 81.8-70.8%. The exceptional performance of HPC for electrosynthesis of H2O2 could be attributed to its high content of sp(3)-C and defects, large surface area and fast mass transfer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Characteristics of Flameless Combustion in 3D Highly Porous Reactors under Diesel Injection Conditions

    Directory of Open Access Journals (Sweden)

    M. Weclas


    Full Text Available The heat release process in a free volume combustion chamber and in porous reactors has been analyzed under Diesel engine-like conditions. The process has been investigated in a wide range of initial pressures and temperatures simulating engine conditions at the moment when fuel injection starts. The resulting pressure history in both porous reactors and in free volumes significantly depends on the initial pressure and temperature. At lower initial temperatures, the process in porous reactors is accelerated. Combustion in a porous reactor is characterized by heat accumulation in the solid phase of the porous structure and results in reduced pressure peaks and lowered combustion temperature. This depends on reactor heat capacity, pore density, specific surface area, pore structure, and heat transport properties. Characteristic modes of a heat release process in a two-dimensional field of initial pressure and temperature have been selected. There are three characteristic regions represented by a single- and multistep oxidation process (with two or three slopes in the reaction curve and characteristic delay time distribution has been selected in five characteristic ranges. There is a clear qualitative similarity of characteristic modes of the heat release process in a free volume and in porous reactors. A quantitative influence of porous reactor features (heat capacity, pore density, pore structure, specific surface area, and fuel distribution in the reactor volume has been clearly indicated.

  3. Electrostatic flocking of chitosan fibres leads to highly porous, elastic and fully biodegradable anisotropic scaffolds. (United States)

    Gossla, Elke; Tonndorf, Robert; Bernhardt, Anne; Kirsten, Martin; Hund, Rolf-Dieter; Aibibu, Dilibar; Cherif, Chokri; Gelinsky, Michael


    Electrostatic flocking - a common textile technology which has been applied in industry for decades - is based on the deposition of short polymer fibres in a parallel aligned fashion on flat or curved substrates, covered with a layer of a suitable adhesive. Due to their highly anisotropic properties the resulting velvet-like structures can be utilised as scaffolds for tissue engineering applications in which the space between the fibres can be defined as pores. In the present study we have developed a fully resorbable compression elastic flock scaffold from a single material system based on chitosan. The fibres and the resulting scaffolds were analysed concerning their structural and mechanical properties and the biocompatibility was tested in vitro. The tensile strength and Young's modulus of the chitosan fibres were analysed as a function of the applied sterilisation technique (ethanol, supercritical carbon dioxide, γ-irradiation and autoclaving). All sterilisation methods decreased the Young's modulus (from 14GPa to 6-12GPa). The tensile strength was decreased after all treatments - except after the autoclaving of chitosan fibres submerged in water. Compressive strength of the highly porous flock scaffolds was 18±6kPa with a elastic modulus in the range of 50-100kPa. The flocked scaffolds did not show any cytotoxic effect during indirect or direct culture of human mesenchymal stem cells or the sarcoma osteogenic cell line Saos-2. Furthermore cell adhesion and proliferation of both cell types could be observed. This is the first demonstration of a fully biodegradable scaffold manufactured by electrostatic flocking. Most tissues possess anisotropic fibrous structures. In contrast, most of the commonly used scaffolds have an isotropic morphology. By utilising the textile technology of electrostatic flocking, highly porous and clearly anisotropic scaffolds can be manufactured. Flocking leads to parallel aligned short fibres, glued on the surface of a substrate

  4. Characterizing the metabolic heterogeneity in human breast cancer xenografts by 3D high resolution fluorescence imaging. (United States)

    Xu, He N; Zheng, Gang; Tchou, Julia; Nioka, Shoko; Li, Lin Z


    We previously reported that tumor mitochondrial redox state and its heterogeneity distinguished between the aggressive and the indolent breast cancer xenografts, suggesting novel metabolic indices as biomarkers for predicting tumor metastatic potential. Additionally, we reported that the identified redox biomarkers successfully differentiated between the normal breast tissue and the cancerous breast tissue from breast cancer patients. The aim of the present study was to further characterize intratumor heterogeneity by its distribution of mitochondrial redox state and glucose uptake pattern in tumor xenografts and to further investigate the metabolic heterogeneity of the clinical biopsy samples. We employed the Chance redox scanner, a multi-section cryogenic fluorescence imager to simultaneously image the intratumor heterogeneity in the mitochondrial redox state and glucose uptake at a high spatial resolution (down to 50 × 50 × 20 μm(3)). The mitochondrial redox state was determined by the ratio of the intrinsic fluorescence signals from reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp including FAD, i.e., flavin adenine dinucleotide), and the glucose uptake was measured using a near-infrared fluorescent glucose-analogue, pyropheophorbide 2-deoxyglucosamide (Pyro-2DG). Significant inter- and intratumor metabolic heterogeneity were observed from our imaging data on various types of breast cancer xenografts. The patterns and degrees of heterogeneity of mitochondrial redox state appeared to relate to tumor size and metastatic potential. The glucose uptake was also heterogeneous and generally higher in tumor peripheries. The oxidized and reduced regions mostly corresponded with the lower and the higher pyro-2DG uptake, respectively. However, there were some regions where the glucose uptake did not correlate with the redox indices. Pronounced glucose uptake and high NADH were observed in certain localized areas within the tumor

  5. Design and Synthesis of Novel Porous Metal-Organic Frameworks (MOFs) Toward High Hydrogen Storage Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Eddaoudi [USF; Zaworotko, Michael [USF; Space, Brian [USF; Eckert, Juergen [USF


    Statement of Objectives: 1. Synthesize viable porous MOFs for high H2 storage at ambient conditions to be assessed by measuring H2 uptake. 2. Develop a better understanding of the operative interactions of the sorbed H2 with the organic and inorganic constituents of the sorbent MOF by means of inelastic neutron scattering (INS, to characterize the H2-MOF interactions) and computational studies (to interpret the data and predict novel materials suitable for high H2 uptake at moderate temperatures and relatively low pressures). 3. Synergistically combine the outcomes of objectives 1 and 2 to construct a made-to-order inexpensive MOF that is suitable for super H2 storage and meets the DOE targets - 6% H2 per weight (2kWh/kg) by 2010 and 9% H2 per weight (3kWh/kg) by 2015. The ongoing research is a collaborative experimental and computational effort focused on assessing H2 storage and interactions with pre-selected metal-organic frameworks (MOFs) and zeolite-like MOFs (ZMOFs), with the eventual goal of synthesizing made-to-order high H2 storage materials to achieve the DOE targets for mobile applications. We proposed in this funded research to increase the amount of H2 uptake, as well as tune the interactions (i.e. isosteric heats of adsorption), by targeting readily tunable MOFs:

  6. Ruthenium nanoparticles decorated curl-like porous carbons for high performance supercapacitors (United States)

    Lou, Bih-Show; Veerakumar, Pitchaimani; Chen, Shen-Ming; Veeramani, Vediyappan; Madhu, Rajesh; Liu, Shang-Bin


    The synthesis of highly dispersed and stable ruthenium nanoparticles (RuNPs; ca. 2-3 nm) on porous activated carbons derived from Moringa Oleifera fruit shells (MOC) is reported and were exploited for supercapacitor applications. The Ru/MOC composites so fabricated using the biowaste carbon source and ruthenium acetylacetonate as the co-feeding metal precursors were activated at elevated temperatures (600-900 oC) in the presence of ZnCl2 as the pore generating and chemical activating agent. The as-prepared MOC carbonized at 900 oC was found to possess a high specific surface area (2522 m2 g-1) and co-existing micro- and mesoporosities. Upon incorporating RuNPs, the Ru/MOC nanocomposites loaded with modest amount of metallic Ru (1.0-1.5 wt%) exhibit remarkable electrochemical and capacitive properties, achiving a maximum capacitance of 291 F g-1 at a current density of 1 A g-1 in 1.0 M H2SO4 electrolyte. These highly stable and durable Ru/MOC electrodes, which can be facily fabricated by the eco-friendly and cost-effective route, should have great potentials for practical applications in energy storage, biosensing, and catalysis.

  7. Tunable porous structure of carbon nanosheets derived from puffed rice for high energy density supercapacitors (United States)

    Hou, Jianhua; Jiang, Kun; Tahir, Muhammad; Wu, Xiaoge; Idrees, Faryal; Shen, Ming; Cao, Chuanbao


    The development of green and clean synthetic techniques to overcome energy requirements have motivated the researchers for the utilization of sustainable biomass. Driven by this desire we choose rice as starting materials source. After the explosion effect, the precursor is converted into puffed rice with a honeycomb-like structures composed of thin sheets. These honeycomb-like macrostructures, effectively prevent the cross-linking tendency towards the adjacent nanosheets during activation process. Furthermore, tuneable micro/mesoporous structures with ultrahigh specific surface areas (SBET) are successfully designed by KOH activation. The highest SBET of 3326 m2 g-1 with optimized proportion of small-mesopores is achieved at 850 °C. The rice-derived porous N-doped carbon nanosheets (NCS-850) are used as the active electrode materials for supercapacitors. It exhibites high specific capacitance specifically of 218 F g-1 at 80 A g-1 in 6 M KOH and a high-energy density of 104 Wh kg-1 (53 Wh L-1) in the ionic liquid electrolytes. These are the highest values among the reported biomass-derived carbon materials for the best of our knowledge. The present work demonstrates that the combination of ;puffing effect; and common chemical activation can turn natural products such as rice into functional products with prospective applications in high-performance energy storage devices.

  8. Ultrahigh gas storage both at low and high pressures in KOH-activated carbonized porous aromatic frameworks.

    KAUST Repository

    Li, Yanqiang


    The carbonized PAF-1 derivatives formed by high-temperature KOH activation showed a unique bimodal microporous structure located at 0.6 nm and 1.2 nm and high surface area. These robust micropores were confirmed by nitrogen sorption experiment and high-resolution transmission electron microscopy (TEM). Carbon dioxide, methane and hydrogen sorption experiments indicated that these novel porous carbon materials have significant gas sorption abilities in both low-pressure and high-pressure environments. Moreover the methane storage ability of K-PAF-1-750 is among the best at 35 bars, and its low-pressure gas adsorption abilities are also comparable to the best porous materials in the world. Combined with excellent physicochemical stability, these materials are very promising for industrial applications such as carbon dioxide capture and high-density clean energy storage.

  9. Hierarchical three-dimensional porous SnS{sub 2}/carbon cloth anode for high-performance lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Junfeng, E-mail: [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China); Zhang, Xiutai [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China); Xing, Shumin [College of Mathematics and Physics, Anyang Institute of Technology, Anyang 455000 (China); Fan, Qiufeng; Yang, Junping; Zhao, Luhua; Li, Xiang [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China)


    Graphical abstract: Hierarchical 3D porous SnS{sub 2}/carbon cloth, good electrochemical performance. - Highlights: • Hierarchical 3D porous SnS{sub 2}/carbon cloth has been firstly synthesized. • The SnS{sub 2}/carbon clothes were good candidates for excellent lithium ion batteries. • The SnS{sub 2}/carbon cloth exhibits improved capacity compared to pure SnS{sub 2}. - Abstract: Hierarchical three-dimension (3D) porous SnS{sub 2}/carbon clothes were synthesized via a facile polyol refluxing process. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmet–Teller (BET) and UV–vis diffuse reflectance spectrometer (UV–vis DRS). The 3D porous SnS{sub 2}/carbon clothes-based lithium ion batteries exhibited high reversible capacity and good rate capability as anode materials. The good electrochemical performance for lithium ion storage could be attributed to the special nanostructure, leading to high-rate transportation of electrolyte ion and electrons throughout the electrode matrix.

  10. Simulation of thermal effects during high and low frequency gas storage operations in porous formations (United States)

    Tilmann Pfeiffer, Wolf; Wang, Bo; Bauer, Sebastian


    Increasing the share of energy production from renewable sources will result in shortages in power supply on various timescales and magnitudes. Besides other options, porous media storage of chemical energy in the form of gases such as hydrogen (H2) or synthetic methane (CH4) as well as mechanical energy, i.e. in the form of a compressed air energy storage (CAES) could be employed to mitigate such shortages. A key difference between these storage options are the potential storage operation schemes in which they are used as a result of the different effective energy density in the subsurface. While CAES would most likely be employed in a high flow rate, high frequency storage scheme with daily cycles, H2 and CH4 storage sites are also suitable for longer, up to seasonal, withdrawal cycles with a lower periodicity. The aim of this work is to compare different thermal effects as a result of H2, CH4, and compressed air energy storage operations. Besides advective-conductive heat transport in the fluid and solid phases, also the Joule-Thomson effect as a result of gas flow through the porous formation is analysed for the different storage options. For this the Joule-Thomson effect is implemented in the open source simulation software OpenGeoSys and numerical simulations of the different storage options are performed. For the simulations, synthetic but realistically parameterized storage sites are used. Besides using OpenGeoSys, the simulations are also compared to results obtained with the ECLIPSE reservoir simulator (© Schlumberger). The simulations show that the heat introduced into the system by the gas injections is transported away from the injection wells mainly through heat conduction. Thus, the thermal perturbation is also present in the caprocks above and below the storage formation. Because of the low heat capacity of the injected gas, thermal effects are confined to the near well region. Temperature changes of more than 1 K are thus found within the first

  11. Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning piglets. (United States)

    Long, Lina; Chen, Jiashun; Zhang, Yonggang; Liang, Xiao; Ni, Hengjia; Zhang, Bin; Yin, Yulong


    The aim of this study was to compare the effect of dietary supplementation with low dose of porous and nano zinc oxide (ZnO) on weaning piglets, and to evaluate the possibility of using them as an alternative to high dose of regular ZnO. Piglets were randomly allocated into four treatment groups fed with four diets: (1) basal diet (NC), (2) NC+ 3000 mg/kg ZnO (PC), (3) NC + 500 mg/kg porous ZnO (HiZ) and (4) NC + 500 mg/kg nano ZnO (ZNP). The result showed that piglets in HiZ group had less diarrhea than ZNP group (P 0.05). Analysis of trace metal elements revealed that piglets fed with high dose of regular ZnO had the highest Zn level in kidney (P < 0.05), which may induce kidney stone formation. Additionally, a decrease in ileal crypt depth was observed in PC, HiZ and ZNP group, suggesting an effective protection against intestinal injury. Results of mRNA analysis in intestine showed that ZNP supplementation had better effects on up-regulated trefoil factor 3 (TFF3) and nuclear factor erythroid 2-related factor 2 (Nrf2) levels in duodenum and jejunum than HiZ did (P < 0.05), implying that nano ZnO may possess higher anti-inflammatory capacity than porous ZnO. In conclusion, dietary supplementation with low dose of porous and nano ZnO had similar (even better) effect on improving growth performance and intestinal morphology, reducing diarrhea and intestinal inflammatory as high dose of regular ZnO in weaning piglets. Compared with nano ZnO, porous ZnO had better performance on reducing diarrhea but less effect on up-regulation of intestinal TFF3 and Nrf2.

  12. Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations

    National Research Council Canada - National Science Library

    Yuhong Chen; Jing Wang; Lihua Yuan; Meiling Zhang; Cairong Zhang


    The generalized gradient approximation (GGA) function based on density functional theory is adopted to investigate the optimized geometrical structure, electron structure and hydrogen storage performance of Sc modified porous graphene (PG...

  13. Catalysts and conditions for the highly efficient, selective and stable heterogeneous oligomerisation of ethylene

    CSIR Research Space (South Africa)

    Heveling, J


    Full Text Available The oligomerisation of ethylene into products in the C-4-C-20 range over heterogeneous nickel catalysts in a fixed-bed reactor at low temperature and high pressure (LT-HP) is reported. The catalysts were obtained by Ni (II) exchange or impregnation...

  14. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering. (United States)

    Guex, Anne Géraldine; Puetzer, Jennifer L; Armgarth, Astrid; Littmann, Elena; Stavrinidou, Eleni; Giannelis, Emmanuel P; Malliaras, George G; Stevens, Molly M


    Conjugated polymers have been increasingly considered for the design of conductive materials in the field of regenerative medicine. However, optimal scaffold properties addressing the complexity of the desired tissue still need to be developed. The focus of this study lies in the development and evaluation of a conductive scaffold for bone tissue engineering. In this study PEDOT:PSS scaffolds were designed and evaluated in vitro using MC3T3-E1 osteogenic precursor cells, and the cells were assessed for distinct differentiation stages and the expression of an osteogenic phenotype. Ice-templated PEDOT:PSS scaffolds presented high pore interconnectivity with a median pore diameter of 53.6±5.9µm and a total pore surface area of 7.72±1.7m(2)·g(-1). The electrical conductivity, based on I-V curves, was measured to be 140µS·cm(-1) with a reduced, but stable conductivity of 6.1µS·cm(-1) after 28days in cell culture media. MC3T3-E1 gene expression levels of ALPL, COL1A1 and RUNX2 were significantly enhanced after 4weeks, in line with increased extracellular matrix mineralisation, and osteocalcin deposition. These results demonstrate that a porous material, based purely on PEDOT:PSS, is suitable as a scaffold for bone tissue engineering and thus represents a promising candidate for regenerative medicine. Tissue engineering approaches have been increasingly considered for the repair of non-union fractions, craniofacial reconstruction or large bone defect replacements. The design of complex biomaterials and successful engineering of 3-dimensional tissue constructs is of paramount importance to meet this clinical need. Conductive scaffolds, based on conjugated polymers, present interesting candidates to address the piezoelectric properties of bone tissue and to induce enhanced osteogenesis upon implantation. However, conductive scaffolds have not been investigated in vitro in great measure. To this end, we have developed a highly porous, electrically conductive scaffold

  15. A facile strategy for enzyme immobilization with highly stable hierarchically porous metal-organic frameworks. (United States)

    Liu, Xiao; Qi, Wei; Wang, Yuefei; Su, Rongxin; He, Zhimin


    Metal-organic frameworks (MOFs) have drawn extensive research interest as candidates for enzyme immobilization owing to their tunable porosity, high surface area, and excellent chemical/thermal stability. Herein, we report a facile and universal strategy for enzyme immobilization using highly stable hierarchically porous metal-organic frameworks (HP-MOFs). The HP-MOFs were stable over a wide pH range (pH = 2-11 for HP-DUT-5) and met the catalysis conditions of most enzymes. The as-prepared hierarchical micro/mesoporous MOFs with mesoporous defects showed a superior adsorption capacity towards enzymes. The maximum adsorption capacity of HP-DUT-5 for glucose oxidase (GOx) and uricase was 208 mg g(-1) and 225 mg g(-1), respectively. Furthermore, we constructed two multi-enzyme biosensors for glucose and uric acid (UA) by immobilizing GOx and uricase with horseradish peroxidase (HRP) on HP-DUT-5, respectively. These sensors were efficiently applied in the colorimetric detection of glucose and UA and showed good sensitivity, selectivity, and recyclability.

  16. Surface characterization and effectiveness evaluation of anti-graffiti coatings on highly porous stone materials (United States)

    Lettieri, Mariateresa; Masieri, Maurizio


    In this study, two commercial sacrificial anti-graffiti systems, provided as water emulsion, were applied on a highly porous stone. The behavior of the anti-graffiti treatments was investigated by means of differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy in attenuated total reflectance mode (ATR-FTIR), colorimetric tests, and water static contact angle measurements. The presence of a protective coating enhanced the removal of paint sprayed on the stone. However, penetration of the staining agent below the surface, due to the high porosity of the substrate, caused difficulties in eliminating the paint. In fact, repeated cleaning procedures, involving hot water, mechanical action, and chemical removers, did not allow a complete removal of the paint. The examined systems behaved against graffiti in different ways. No affinity between the wax-based product and the paint was observed; nevertheless, this behavior did not result in good anti-graffiti performances. On the contrary, the penetration of the paint into the fluorine-based coating yielded a good anti-graffiti effectiveness, since the stain was easily eliminated from the surfaces. The anti-graffiti coatings survived in limited areas after the cleaning processes, although the studied compounds are suggested as sacrificial products. Such behavior may affect the maintenance activities, when the surface is no longer protected and the coating need to be renewed, since compatibility problems, as well as harmful accumulation, could occur because of further treatments on these surfaces.

  17. Photoluminescence of monocrystalline and stain-etched porous silicon doped with high temperature annealed europium

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Lemus, R; Montesdeoca-Santana, A; Gonzalez-Diaz, B; Diaz-Herrera, B; Hernandez-Rodriguez, C; Jimenez-Rodriguez, E [Departamento de Fisica Basica, Universidad de La Laguna (ULL), Avenida AstrofIsico Francisco Sanchez, 2. 38206 La Laguna, Tenerife (Spain); Velazquez, J J, E-mail: [Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna (ULL), Avenida Astrofisico Francisco Sanchez, 2. 38206 La Laguna, Tenerife (Spain)


    In this work, for the first time, the photoluminescent emission and excitation spectra of non-textured layers and stain-etched porous silicon layers (PSLs) doped with high temperature annealed europium (Eu) are evaluated. The PSLs are evaluated as a host for rare earth ions and as an antireflection coating. The applied doping process, which consists in a simple impregnation method followed by a high-temperature annealing step, is compatible with the standard processes in the fabrication of solar cells. The results show down-shifting processes with a maximum photoluminescent intensity at 615 nm, related to the transition {sup 5}D{sub 0} {yields} {sup 7}F{sub 2}. Different initial concentrations of Eu(NO{sub 3}){sub 3} are evaluated to study the influence of the rare earth concentration on the photoluminescent intensity. The chemical composition and the morphology of Eu-doped PSLs are examined by means of x-ray dispersion spectroscopy, Fourier-transform infrared spectroscopy and scanning electron microscopy. These Eu-doped layers are considered to be applied as energy converters in silicon-based third generation solar cells.

  18. Momentum Enhancement due to Crater Ejecta during Hypervelocity Impact of Highly Porous and Consolidated Rock (United States)

    Walker, James; Chocron, Sidney; Grosch, Donald; Durda, Daniel; Housen, Kevin


    Experiments were performed with impacts of 2.54- to 4.45-cm-diameter aluminum spheres at 2.1 km/s into both consolidated rock (granite) and highly porous rock (pumice). Measured in these experiments was the momentum enhancement -- that is, how much momentum is transferred to the rock by the impactor. The transferred momentum is greater than the impactor due to the crater ejecta. The momentum enhancement is characterized by β , which is the ratio of the momentum transferred to the target and the momentum of the impactor. High speed video recorded the impact event, the ejecta from the target, and the motion of the target (hung in a ballistic pendulum arrangement). Constitutive models of rock that include porosity and crush-up behavior when incorporated into impact physics codes (specifically CTH and EPIC) show good agreement with crater depth, but they do not show good agreement with momentum enhancement. This paper will review the data and place it in the context of other momentum enhancement data, including the nonlinear effect of scale size. It will also explore the difficulties in large-scale numerical modeling of the momentum enhancement. An application of this data is determining the effectiveness of deflecting asteroids and comet nuclei by hypervelocity impacts.

  19. Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction (United States)

    Pan, Fuping; Cao, Zhongyue; Zhao, Qiuping; Liang, Hongyu; Zhang, Junyan


    The successful commercialization of fuel cells requires the efficient electrocatalyst to make the oxygen reduction reaction (ORR) fast because of the sluggish nature of ORR and the high cost of the platinum catalysts. In this work, we report the excellent performance of metal-free nitrogen-doped porous carbon nanosheets (NPCN) with hierarchical porous structure and a high surface area of 1436.02 m2 g-1 for catalyzing ORR. The active NPCN is synthesized via facile high-temperature carbonization of natural ginkgo leaves followed by purification and ammonia post-treatment without using additional supporting templates and activation processes. In O2-saturated 0.1 M KOH solution, the resultant NPCN exhibits a high kinetic-limiting current density of 13.57 mA cm-2 at -0.25 V (vs. Ag/AgCl) approaching that of the commercial Pt/C catalyst (14 mA cm-2) and long-term electrochemical stability. Notably, the NPCN shows a slightly negative ORR half-wave potential in comparison with Pt/C (ΔE1/2 = 19 mV). The excellent electrocatalytic properties of NPCN originate from the combined effect of optimal nitrogen doping, high surface area, and porous architecture, which induce the high-density distribution of highly active and stable catalytic sites.

  20. Scalable synthesis of interconnected porous silicon/carbon composites by the Rochow reaction as high-performance anodes of lithium ion batteries. (United States)

    Zhang, Zailei; Wang, Yanhong; Ren, Wenfeng; Tan, Qiangqiang; Chen, Yunfa; Li, Hong; Zhong, Ziyi; Su, Fabing


    Despite the promising application of porous Si-based anodes in future Li ion batteries, the large-scale synthesis of these materials is still a great challenge. A scalable synthesis of porous Si materials is presented by the Rochow reaction, which is commonly used to produce organosilane monomers for synthesizing organosilane products in chemical industry. Commercial Si microparticles reacted with gas CH3 Cl over various Cu-based catalyst particles to substantially create macropores within the unreacted Si accompanying with carbon deposition to generate porous Si/C composites. Taking advantage of the interconnected porous structure and conductive carbon-coated layer after simple post treatment, these composites as anodes exhibit high reversible capacity and long cycle life. It is expected that by integrating the organosilane synthesis process and controlling reaction conditions, the manufacture of porous Si-based anodes on an industrial scale is highly possible. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development of highly porous flat sheet polyvinylidene fluoride (PVDF) membranes for membrane distillation

    KAUST Repository

    Alsaery, Salim A.


    With the increase of population every year, fresh water scarcity has rapidly increased and it is reaching a risky level, particularly in Africa and the Middle East. Desalination of seawater is an essential process for fresh water generation. One of the methods for desalination is membrane distillation (MD). MD process separates an aqueous liquid feed across a porous hydrophobic membrane to produce pure water via evaporation. Polyvinlidene fluoride (PVDF) membranes reinforced with a polyester fabric were fabricated as potential candidates for MD. Non-solvent induced phase separation coupled with steam treatment was used to prepare the PVDF membranes. A portion of the prepared membrane was coated with Teflon (AF2400) to increase its hydrophobicity. In the first study, the fabricated membranes were characterized using scanning electron microscopy and other techniques, and they were evaluated using direct contact MD (DCMD). The fabricated membranes showed a porous sponge-like structure with some macrovoids. The macrovoid formation and the spongy structure in the membrane cross-sections contributed significantly to a high permeate flux as they provide a large space for vapor water transport. The modified PVDF membranes with steaming and coating exhibited a permeate flux of around 40 L/h m2 (i.e. 27-30% increase to the control PVDF membrane) at temperatures of 60 °C (feed) and 20 °C (permeate). This increase in the permeate flux for the modified membranes was mainly attributed to its larger pore size on the bottom surface. In the second study, the control PVDF membrane was tested in two different module designs (i.e. semi-circular pipe and rectangular duct module designs). The semi-circular module design (turbulent regime) exhibited a higher permeate flux, 3-fold higher than that of the rectangular duct module design (laminar regime) at feed temperature of 60 °C. Furthermore, a heat energy balance was performed for each module design to determine the temperature

  2. Polyethyleneimine-loaded bimodal porous silica as low-cost and high-capacity sorbent for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Witoon, Thongthai, E-mail: [National Center of Excellence for Petroleum, Petrochemicals and Advance Material, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900 (Thailand); Center for Advanced Studies in Nanotechnology and Its Applications in Chemical Food and Agricultural Industries, Kasetsart University, Bangkok 10900 (Thailand)


    In this work, bimodal (meso-macro) porous silicas with different mesopore diameters synthesized by using rice husk ash as a low-cost silica source and chitosan as a natural template were used as a polyethyleneimine (PEI) support for CO{sub 2} capture. Unimodal porous silica supports with equivalent mesopore diameters to bimodal porous silica supports have been prepared for purpose of comparison. Effects of different PEI contents (10, 20, 30, 40 and 50 wt%) on CO{sub 2} sorption capacity have been systematically investigated. The porous silica supports and the PEI-loaded porous silica supports were characterized by N{sub 2}-sorption analysis, scanning electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. CO{sub 2} sorption measurements of all PEI-loaded porous silica supports were performed at different adsorption temperatures (60, 75, 85, 90, 95 and 105 Degree-Sign C). At low PEI contents (10-20 wt%), the CO{sub 2} sorption of all adsorbents was found to decrease as a function of adsorption temperature, which was a characteristic of a thermodynamically-controlled regime. A transition from the thermodynamically-controlled regime to a kinetically-controlled regime was found when the PEI content was increased up to 30 wt% for PEI-loaded unimodal porous silicas and 40 wt% for PEI-loaded bimodal porous silicas. At high PEI contents (40-50 wt%), the CO{sub 2} capturing efficiency of the PEI-loaded bimodal porous silicas was found to be considerably greater than that of the PEI-loaded unimodal porous silicas, indicating that most of the amine groups of PEI molecules loaded on the unimodal porous silica supports was useless, and thus the appeared macroporosity of the bimodal porous silica supports could provide a higher effective amine density to adsorb CO{sub 2}. Highlights: Black-Right-Pointing-Pointer PEI-impregnated bimodal porous silica as low-cost sorbent for CO{sub 2} capture. Black-Right-Pointing-Pointer Macropores enhances

  3. Osteoinductive potential of highly purified porous β-TCP in mice. (United States)

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Otsuki, Bungo; Takemoto, Mitsuru; Matsuda, Shuichi


    Material-induced osteoinduction of calcium phosphate ceramics has been reported in specific animals. We previously reported that recruitment of tartrate-resistant acid phosphatase (TRAP)-positive cells might be one of the main factors responsible for the difference in the occurrence of material-induced osteoinduction between dogs and rats. In this study, we evaluated the osteoinductive potential of highly purified porous beta-tricalcium phosphate materials (HPP-β-TCP) with two different porosities, 75 and 60 % (Olympus Terumo Biomaterials, Tokyo, Japan), implanted into subcutaneous pockets of FVB and C57BL/6 mice. Twelve weeks after implantation, histological examination and gene expression analysis using reverse transcription-polymerase chain reaction were performed. We observed osteoinduction in half of the HPP-β-TCP materials with 60 % porosity implanted into FVB mice. This group of mice also exhibited the most TRAP-positive cells. Significantly more vessels were found in FVB mice than in C57BL/6 mice, but the greatest number of vessels was counted in implants from materials with 75 % porosity implanted into FVB mice, which did not show osteoinduction. These results indicate that recruitment of TRAP-positive cells is one factor responsible for osteoinduction caused by HPP-β-TCP materials in both FVB mice and dogs. Vessel formation seems to be necessary but appears to be less influential for osteoinduction than TRAP-positive cell recruitment.

  4. Multi-modal porous microstructure for high temperature fuel cell application (United States)

    Wejrzanowski, T.; Haj Ibrahim, S.; Cwieka, K.; Loeffler, M.; Milewski, J.; Zschech, E.; Lee, C.-G.


    In this study, the effect of microstructure of porous nickel electrode on the performance of high temperature fuel cell is investigated and presented based on a molten carbonate fuel cell (MCFC) cathode. The cathode materials are fabricated from slurry consisting of nickel powder and polymeric binder/solvent mixture, using the tape casting method. The final pore structure is shaped through modifying the slurry composition - with or without the addition of porogen(s). The manufactured materials are extensively characterized by various techniques involving: micro-computed tomography (micro-XCT), scanning electron microscopy (SEM), mercury porosimetry, BET and Archimedes method. Tomographic images are also analyzed and quantified to reveal the evolution of pore space due to nickel in situ oxidation to NiO, and infiltration by the electrolyte. Single-cell performance tests are carried out under MCFC operation conditions to estimate the performance of the manufactured materials. It is found that the multi-modal microstructure of MCFC cathode results in a significant enhancement of the power density generated by the reference cell. To give greater insight into the understanding of the effect of microstructure on the properties of the cathode, a model based on 3D tomography image transformation is proposed.

  5. Initial mechanical stability of cementless highly-porous titanium tibial components

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Timothy Brandon [Los Alamos National Laboratory; Amer, Luke D [Los Alamos National Laboratory; Warren, Christopher P [Los Alamos National Laboratory; Cornwell, Phillip [Los Alamos National Laboratory; Meneghini, R Michael [UNIV OF CONNECTICUT HEALTH CENTER


    Cementless fixation in total knee replacement has seen limited use since reports of early failure surfaced in the late 80s and early 90s. However the emergence of improved biomaterials, particularly porous titanium and tantalum, has led to a renewed interest in developing a cementless tibial component to enhance long-term survivorship of the implants. Cement is commonly employed to minimize micromotion in new implants but represents a weak interface between the implant and bone. The elimination of cement and application of these new biomaterials, which theoretically provide improved stability and ultimate osseointegration, would likely result in greater knee replacement success. Additionally, the removal of cement from the procedure would help minimize surgical durations and get rid of the time needed for curing, thereby the chance of infection. The purpose of this biomechanical study was twofold. The first goal was to assess whether vibration analysis techniques can be used to evaluate and characterize initial mechanical stability of cementless implants more accurately than the traditional method of micromotion determination, which employs linear variable differential transducers (LVDTs). Second, an evaluative study was performed to determine the comparative mechanical stability of five designs of cementless tibial components under mechanical loading designed to simulate in vivo forces. The test groups will include a cemented Triathlon Keeled baseplate control group, three different 2-peg cementless baseplates with smooth, mid, and high roughnesses and a 4-peg cement/ess baseplate with mid-roughness.

  6. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media (United States)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu


    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  7. Fabrication of highly porous platinum electrodes for micro-scale applications by pulsed electrodeposition and dealloying (United States)

    Köhler, Christian; Kloke, Arne; Drzyzga, Anna; Zengerle, Roland; Kerzenmacher, Sven


    We present the implementation and optimization of a novel electrodeposition method for the fabrication of highly porous platinum electrodes. It is based on the co-deposition of platinum and copper and the selective dealloying of copper in a pulsed manner. The new process yields mechanically stable platinum electrodes with roughness factors of up to RF = 6500 ± 700, compared to the state-of-the-art cyclic electrodeposition method this corresponds to an improvement in RF by 111%. Furthermore the time demand for fabrication is reduced by 59%, whereas the platinum utilization is increased by 53%. The method is particularly advantageous for applications such as micro fuel cells since it enables the precise deposition of catalytically active electrodes on micro-structured conductive areas. In this context the novel platinum electrodes show higher current densities for the oxidation of formic acid and glucose than state-of-the-art electrodes. In terms of methanol oxidation their catalytic activity is comparable to commercial direct methanol fuel cell (DMFC) electrodes, fabricated from Pt-Ru nanoparticles dispersed on carbon black.

  8. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction (United States)

    Liang, Hai-Wei; Zhuang, Xiaodong; Brüller, Sebastian; Feng, Xinliang; Müllen, Klaus


    Development of efficient, low-cost and stable electrocatalysts as the alternative to platinum for the oxygen reduction reaction is of significance for many important electrochemical devices, such as fuel cells, metal-air batteries and chlor-alkali electrolysers. Here we report a highly active nitrogen-doped, carbon-based, metal-free oxygen reduction reaction electrocatalyst, prepared by a hard-templating synthesis, for which nitrogen-enriched aromatic polymers and colloidal silica are used as precursor and template, respectively, followed by ammonia activation. Our protocol allows for the simultaneous optimization of both porous structures and surface functionalities of nitrogen-doped carbons. Accordingly, the prepared catalysts show the highest oxygen reduction reaction activity (half-wave potential of 0.85 V versus reversible hydrogen electrode with a low loading of 0.1 mg cm-2) in alkaline media among all reported metal-free catalysts. Significantly, when used for constructing the air electrode of zinc-air battery, our metal-free catalyst outperforms the state-of the-art platinum-based catalyst.

  9. Low refractive index porous silicon multilayer with a high reflection band

    Energy Technology Data Exchange (ETDEWEB)

    Xifre Perez, E.; Pallares, J.; Ferre-Borrull, J.; Trifonov, T.; Marsal, L.F. [Departament d' Enginyeria Electronica, Electrica i Automatica, ETSE, Campus Sescelades, Universitat Rovira i Virgili, Avda. Paisos Catalans 26, 43007 Tarragona (Spain)


    We present the fabrication and characterization of a one-dimensional photonic crystal consisting of the periodic repetition of two porous silicon layers with different refractive index. The refractive indices of the single layers have been determined from experimental measurements using two different methods. Both methods lead to the same results: the obtained average refractive index for a current density of J=30 mA/cm{sup 2} is 1.7 and for J=70 mA/cm{sup 2} is 1.3. The reflectivity spectrum of the studied multilayer for different angles of incidence has been measured and a good agreement with the simulation of the structure has been achieved. It has been observed that it presents a high reflectivity band in the NIR. Besides, we show that the projected band structure of the multilayer can be used for the analysis of the reflectivity results. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. The high performance of tungsten carbides/porous bamboo charcoals supported Pt catalysts for methanol electrooxidation (United States)

    Ma, Chun-an; Xu, Chenbin; Shi, Meiqin; Song, Guanghui; Lang, Xiaoling


    In this paper, a kind of environmental friendly and cost-effective bamboo charcoal (BC) is used as catalyst support in DMFCs instead of carbon nanotubes (CNTs), which is toxic and expensive. After special treatments, we obtain a sponge-like three-dimensional (3D) BC, which can provide high specific surface area (1264.5 m2 g-1) and porous matrices. Then, tungsten carbide (WC) and Pt are loaded on the BCs with microwave-assisted technique and 3D structural Pt/WC/BCs electro-catalyst is finally fabricated. Subsequently, the catalyst is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In the further electrochemical investigation, it was found that Pt/WC/BCs catalyst has higher performance (2.76 mA cm-2) and better CO-tolerance for methanol oxidation compared with Pt/WC/CNTs and commercial Pt/C. Herein, we believe that the as-synthesized 3D Pt/WC/BCs catalyst has great promising application in DMFCs.

  11. Photoluminescence of highly porous nanostructured Si-based thin films deposited by pulsed laser ablation (United States)

    Yang, D.-Q.; Ethier, V.; Sacher, E.; Meunier, M.


    Nanostructured, Si-based cottonlike, highly porous thin films of Si, SiNx, and SiOx were deposited by the excimer laser ablation of Si targets in He, He /N2, and He /O2 ambients, respectively. Photoluminescence (PL), x-ray photoelectron spectroscopy, and photoacoustic Fourier transform IR have been used to characterize these deposits. After exposure to air, broad PL bands appear at 1.7eV (Si), 2.0eV (SiNx), and 2.3eV (SiOx); air oxidation causes the separation of the PL spectra into two identical component peaks, at 1.5 and 2.3eV, whose relative ratios differ with film composition. The present results indicate that the red PL peak at 1.5eV is due to the localized states at the oxidized surfaces of these materials, while the green PL peak at 2.3eV is due to oxygen-related defects in their local disordered nanostructures.

  12. Porous metal for orthopedics implants


    Matassi, Fabrizio; Botti, Alessandra; Sirleo, Luigi; Carulli, Christian; Innocenti, Massimo


    Porous metal has been introduced to obtain biological fixation and improve longevity of orthopedic implants. The new generation of porous metal has intriguing characteristics that allows bone healing and high osteointegration of the metallic implants. This article gives an overview about biomaterials properties of the contemporary class of highly porous metals and about the clinical use in orthopaedic surgery.

  13. Rapidly reconfigurable high-fidelity optical arbitrary waveform generation in heterogeneous photonic integrated circuits. (United States)

    Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J


    This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.

  14. High performance all-solid-state symmetric supercapacitor based on porous carbon made from a metal-organic framework compound (United States)

    Yu, Feng; Wang, Teng; Wen, Zubiao; Wang, Hongxia


    In this work, we demonstrate the synthesis of porous carbon material with high specific surface area by using metal-organic framework (MOF) as precursor. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have confirmed that the material was amorphous and consisted of nanoparticles (5-6 nm) and hierarchical distribution of pores. The characterization of the material by N2 adsorption/desorption isotherm measurement have shown that the material had a high specific surface area reaching to 2618.7 m2 g-1 and abundant porosity with pore size less than 10 nm. The investigation of the electrochemical properties of the material has shown the porous carbon electrode possessed excellent rate performance with high specific capacitances of 150.8 F g-1 at a current density of 5 A g-1, and 133.6 F g-1 at a current density of 50 A g-1, respectively. An all-solid-state symmetric supercapacitor assembled using the as-prepared porous carbon as electrodes and Na2SO4/PVA gel as an electrolyte delivered a high power density of 13 516.4 W kg-1 with an energy density of 8.26 Wh kg-1. A high energy density of 17.37 Wh kg-1 was obtained at discharge current density of 1 A g-1. In addition, the device exhibited superior cycling performance with 94.8% retention rate after 10 000 cycles at a current density of 10 A g-1.

  15. Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors (United States)

    Sun, Junting; Niu, Jin; Liu, Mengyue; Ji, Jing; Dou, Meiling; Wang, Feng


    Porous carbon materials with hierarchical structures attract intense interest for the development of high-performance supercapacitors. Herein, we demonstrate a facile and efficient strategy to synthesize nitrogen-doped hierarchically porous carbons with tailored porous structure combined with high specific surface area (SSA), which involves a pre-carbonization and a subsequent carbonization combined with KOH activation of silkworm cocoon precursors. Through adjusting the mass ratio of the activator (KOH) to pre-carbonized precursor in the activation process, the hierarchically porous carbon prepared at the mass ratio of 2 (referred to as NHPC-2) possesses a high defect density and a high SSA of 3386 m2 g-1 as well as the relatively high volumetric proportion of mesopores and macropores (45.5%). As a result, the energy density and power density of the symmetric supercapacitor based on NHPC-2 electrode are as high as 34.41 Wh kg-1 and 31.25 kW kg-1 in organic-solvent electrolyte, and are further improved to 112.1 Wh kg-1 and 23.91 kW kg-1 in ionic-liquid electrolyte.

  16. Nanotemplate-Enabled Arrays of Highly Heterogeneous Nanostructures for Infrared Detection and Power Generation (United States)


    California, Department of Chemical Eng. & Materials Science, Vivian Hall of Engineeering, 3651Watt Way, Los Angeles, CA 90089-0241 8. PERFORMING...funds to provide for laboratory materials and supplies. In spite of such setback, the following significant goal was reached: highly lattice... photoluminescence , spectral uniformity, exciton decay, time-resolved photoluminescence , InGaAs/AlGaAs, highly heterogeneous heterojunctions, single photon source

  17. Highly linear heterogeneous-integrated Mach-Zehnder interferometer modulators on Si. (United States)

    Zhang, Chong; Morton, Paul A; Khurgin, Jacob B; Peters, Jon D; Bowers, John E


    In this paper we demonstrate highly linear Mach-Zehnder interferometer modulators utilizing heterogeneous integration on a Si substrate (HS-MZM). A record high dynamic range was achieved for silicon devices, obtained using hybrid III-V/Si phase modulation sections and single drive push-pull operation, demonstrating a spurious free dynamic range (SFDR) of 112 dB∙Hz2/3 at 10 GHz, comparable to commercial Lithium Niobate MZMs.

  18. Robust, Chiral, and Porous BINAP-Based Metal–Organic Frameworks for Highly Enantioselective Cyclization Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, Takahiro; Thacker, Nathan C.; Lin, Zekai; McIsaac, Alexandra R.; Lin, Wenbin (UC)


    We report here the design of BINAP-based metal–organic frameworks and their postsynthetic metalation with Rh complexes to afford highly active and enantioselective single-site solid catalysts for the asymmetric cyclization reactions of 1,6-enynes. Robust, chiral, and porous Zr-MOFs of UiO topology, BINAP-MOF (I) or BINAP-dMOF (II), were prepared using purely BINAP-derived dicarboxylate linkers or by mixing BINAP-derived linkers with unfunctionalized dicarboxylate linkers, respectively. Upon metalation with Rh(nbd)2BF4 and [Rh(nbd)Cl]2/AgSbF6, the MOF precatalysts I·Rh(BF4) and I·Rh(SbF6) efficiently catalyzed highly enantioselective (up to 99% ee) reductive cyclization and Alder-ene cycloisomerization of 1,6-enynes, respectively. I·Rh catalysts afforded cyclization products at comparable enantiomeric excesses (ee’s) and 4–7 times higher catalytic activity than the homogeneous controls, likely a result of catalytic site isolation in the MOF which prevents bimolecular catalyst deactivation pathways. However, I·Rh is inactive in the more sterically encumbered Pauson–Khand reactions between 1,6-enynes and carbon monoxide. In contrast, with a more open structure, Rh-functionalized BINAP-dMOF, II·Rh, effectively catalyzed Pauson–Khand cyclization reactions between 1,6-enynes and carbon monoxide at 10 times higher activity than the homogeneous control. II·Rh was readily recovered and used three times in Pauson–Khand cyclization reactions without deterioration of yields or ee’s. Our work has expanded the scope of MOF-catalyzed asymmetric reactions and showed that the mixed linker strategy can effectively enlarge the open space around the catalytic active site to accommodate highly sterically demanding polycyclic metallocycle transition states/intermediates in asymmetric intramolecular cyclization reactions.

  19. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. (United States)

    Yoshida, T; Miyaji, H; Otani, K; Inoue, K; Nakane, K; Nishimura, H; Ibara, A; Shimada, A; Ogawa, K; Nishida, E; Sugaya, T; Sun, L; Fugetsu, B; Kawanami, M


    Beta-tricalcium phosphate (β-TCP), a bio-absorbable ceramic, facilitates bone conductivity. We constructed a highly porous three-dimensional scaffold, using β-TCP, for bone tissue engineering and coated it with co-poly lactic acid/glycolic acid (PLGA) to improve the mechanical strength and biological performance. The aim of this study was to examine the effect of implantation of the PLGA/β-TCP scaffold loaded with fibroblast growth factor-2 (FGF-2) on bone augmentation. The β-TCP scaffold was fabricated by the replica method using polyurethane foam, then coated with PLGA. The PLGA/β-TCP scaffold was characterized by scanning electron miscroscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction, compressive testing, cell culture and a subcutaneous implant test. Subsequently, a bone-forming test was performed using 52 rats. The β-TCP scaffold, PLGA-coated scaffold, and β-TCP and PLGA-coated scaffolds loaded with FGF-2, were implanted into rat cranial bone. Histological observations were made at 10 and 35 d postsurgery. SEM and TEM observations showed a thin PLGA layer on the β-TCP particles after coating. High porosity (> 90%) of the scaffold was exhibited after PLGA coating, and the compressive strength of the PLGA/β-TCP scaffold was six-fold greater than that of the noncoated scaffold. Good biocompatibility of the PLGA/β-TCP scaffold was found in the culture and implant tests. Histological samples obtained following implantation of PLGA/β-TCP scaffold loaded with FGF-2 showed significant bone augmentation. The PLGA coating improved the mechanical strength of β-TCP scaffolds while maintaining high porosity and tissue compatibility. PLGA/β-TCP scaffolds, in combination with FGF-2, are bioeffective for bone augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. A Modulator-Induced Defect-Formation Strategy to Hierarchically Porous Metal-Organic Frameworks with High Stability. (United States)

    Cai, Guorui; Jiang, Hai-Long


    The pore size enlargement and structural stability have been recognized as two crucial targets, which are rarely achieved together, in the development of metal-organic frameworks (MOFs). Herein, we have developed a versatile modulator-induced defect-formation strategy, in the presence of monocarboxylic acid as a modulator and an insufficient amount of organic ligand, successfully realizing the controllable synthesis of hierarchically porous MOFs (HP-MOFs) with high stability and tailorable pore characters. Remarkably, the integration of high stability and large mesoporous property enables these HP-MOFs to be important porous platforms for applications involving large molecules, especially in catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Incorporation of Molecular Catalysts in Metal-Organic Frameworks for Highly Efficient Heterogeneous Catalysis. (United States)

    Wu, Chuan-De; Zhao, Min


    Porous metal-organic frameworks (MOFs) are built from periodically alternate organic moieties and metal ions/clusters. The unique features of the open framework structures, the high surface areas, the permanent porosity, and the appropriate hydrophilic and hydrophobic pore nature mean that MOF materials are a class of ideal host matrices for immobilization of molecular catalysts. The emerging porous materials can not only retain but are also able to enhance the catalytic functions of the single individuals. MOF catalysts have the following super characters: i) uniformly dispersed catalytic sites on the pore surfaces to improve the utility, ii) appropriate hydrophilic and hydrophobic pore nature to facilitate the recognition and transportation of reactant and product molecules, iii) a collaborative microenvironment to realize synergistic catalysis, and iv) simple separation and recovery for long-term usage. Accompanying the development of the synthetic strategies and the technologies for the characterization of MOF materials, MOF catalysis has undergone an upsurge, which has transcended the stage of opportunism. Here, the rational design and synthesis of MOF catalysts are discussed, along with the key factors of active sites, microenvironments, and transmission channels that lead to the distinct catalytic properties of MOF catalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High-resolution Slide Spotlight SAR Imaging by BP Algorithm and Heterogeneous Parallel Implementation

    Directory of Open Access Journals (Sweden)

    Tang Jiangwen


    Full Text Available High-resolution synthetic aperture radar presents a significant challenge to imaging algorithms and computing power. Slide spotlight is an important mode that has both high resolution and wide azimuth swath. Generally, in the slide spotlight mode, the performance of conventional frequency domain imaging algorithms degrades because of orbit curvature, the time-variant azimuth chirp rate, and other factors. We adopt the Back-Projection (BP algorithm in this study to counteract this limitation. We also propose a CPU/GPU heterogeneous BP algorithm to deal with the high computing complexity O(N3 of the BP algorithm. This heterogeneous BP algorithm makes full use of computing resources and accelerates imaging progress, and the design of a scheduling thread improves the flexibility of the algorithm.

  3. Hierarchical Porous Carbon Spheres for High-Performance Na-O2 Batteries. (United States)

    Sun, Bing; Kretschmer, Katja; Xie, Xiuqiang; Munroe, Paul; Peng, Zhangquan; Wang, Guoxiu


    As a new family member of room-temperature aprotic metal-O2 batteries, Na-O2 batteries, are attracting growing attention because of their relatively high theoretical specific energy and particularly their uncompromised round-trip efficiency. Here, a hierarchical porous carbon sphere (PCS) electrode that has outstanding properties to realize Na-O2 batteries with excellent electrochemical performances is reported. The controlled porosity of the PCS electrode, with macropores formed between PCSs and nanopores inside each PCS, enables effective formation/decomposition of NaO2 by facilitating the electrolyte impregnation and oxygen diffusion to the inner part of the oxygen electrode. In addition, the discharge product of NaO2 is deposited on the surface of individual PCSs with an unusual conformal film-like morphology, which can be more easily decomposed than the commonly observed microsized NaO2 cubes in Na-O2 batteries. A combination of coulometry, X-ray diffraction, and in situ differential electrochemical mass spectrometry provides compelling evidence that the operation of the PCS-based Na-O2 battery is underpinned by the formation and decomposition of NaO2 . This work demonstrates that employing nanostructured carbon materials to control the porosity, pore-size distribution of the oxygen electrodes, and the morphology of the discharged NaO2 is a promising strategy to develop high-performance Na-O2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Nurul Izni Rusli


    Full Text Available The formation of high-density zinc oxide (ZnO nanorods on porous silicon (PS substrates at growth temperatures of 600–1000 °C by a simple thermal evaporation of zinc (Zn powder in the presence of oxygen (O2 gas was systematically investigated. The high-density growth of ZnO nanorods with (0002 orientation over a large area was attributed to the rough surface of PS, which provides appropriate planes to promote deposition of Zn or ZnOx seeds as nucleation sites for the subsequent growth of ZnO nanorods. The geometrical morphologies of ZnO nanorods are determined by the ZnOx seed structures, i.e., cluster or layer structures. The flower-like hexagonal-faceted ZnO nanorods grown at 600 °C seem to be generated from the sparsely distributed ZnOx nanoclusters. Vertically aligned hexagonal-faceted ZnO nanorods grown at 800 °C may be inferred from the formation of dense arrays of ZnOx clusters. The formation of disordered ZnO nanorods formed at 1000 °C may due to the formation of a ZnOx seed layer. The growth mechanism involved has been described by a combination of self-catalyzed vapor-liquid-solid (VLS and vapor-solid (VS mechanism. The results suggest that for a more precise study on the growth of ZnO nanostructures involving the introduction of seeds, the initial seed structures must be taken into account given their significant effects.

  5. Synthesis of High-Surface-Area Nitrogen-Doped Porous Carbon Microflowers and Their Efficient Carbon Dioxide Capture Performance. (United States)

    Li, Yao; Cao, Minhua


    Sustainable carbon materials have received particular attention in CO2 capture and storage owing to their abundant pore structures and controllable pore parameters. Here, we report high-surface-area hierarchically porous N-doped carbon microflowers, which were assembled from porous nanosheets by a three-step route: soft-template-assisted self-assembly, thermal decomposition, and KOH activation. The hydrazine hydrate used in our experiment serves as not only a nitrogen source, but also a structure-directing agent. The activation process was carried out under low (KOH/carbon=2), mild (KOH/carbon=4) and severe (KOH/carbon=6) activation conditions. The mild activated N-doped carbon microflowers (A-NCF-4) have a hierarchically porous structure, high specific surface area (2309 m(2)  g(-1)), desirable micropore size below 1 nm, and importantly large micropore volume (0.95 cm(3)  g(-1)). The remarkably high CO2 adsorption capacities of 6.52 and 19.32 mmol g(-1) were achieved with this sample at 0 °C (273 K) and two pressures, 1 bar and 20 bar, respectively. Furthermore, this sample also exhibits excellent stability during cyclic operations and good separation selectivity for CO2 over N2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A novel formulation for solubility and content uniformity enhancement of poorly water-soluble drugs using highly-porous mannitol. (United States)

    Saffari, Morteza; Ebrahimi, Amirali; Langrish, Timothy


    The present study investigates the enhancement of the dissolution rates for poorly-water soluble drugs by a new adsorption method. The results show that the current adsorption method enhanced the dissolution rate of both nifedipine and indomethacin to a significant extent by nano-confinement of drugs into the pore spaces of highly-porous excipients. Porous mannitol particles with a surface area and pore volume of 6.3 ± 0.1 m(2) g(-1) and 0.036 ± 0.002 ml g(-1), respectively, were drug loaded in two different concentrations of indomethacin and nifedipine. The results of drug loading for nifedipine showed an increase from 3.2 ± 0.1% w/w for a 0.08 M drug solution to 9.1 ± 0.3% w/w drug loading for a 0.16 M drug solution, while indomethacin had slightly better performance for the adsorption process, with 4.1 ± 0.2% w/w and 12.6 ± 0.4% w/w for 0.08 M and 0.16 M concentrations of indomethacin, respectively, in the final formulation. This result also indicated highly-uniform blends with a percentage relative standard deviation of less than 4% for drug-loaded mannitol in both nifedipine and indomethacin. This method gave a significant enhancement of the dissolution rate for both drugs due to nano-confinement of drugs into porous excipients and high solubility of porous mannitol, with 80% drug release within the first 15 min for the drug-loaded samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Mobility management for highly mobile users and vehicular networks in heterogeneous environments


    Andersson, Karl; Åhlund, Christer; Gukhool, Balkrishna Sharma; Cherkaoui, Soumaya


      With the recent developments in wireless networks, different radio access technologies are used in different places depending on capacity in terms of throughput, cell size, scalability etc. In this context, mobile users, and in particular highly mobile users and vehicular networks, will see an increasing number and variety of wireless access points enabling Internet connectivity. Such a heterogeneous networking environment needs, however, an efficient mobility management scheme offering ...

  8. Fully coupled multiscale modeling of cohesive failure in heterogeneous interfaces using high performance computing


    Mosby, Matthew; Matous, Karel


    Multiscale interfaces are prevalent throughout engineering design and application, often in the form of layered composites and adhesive joints. Most modern adhesives are highly heterogeneous, containing a wide range of sizes, shapes, and material properties of reinforcing constituents. Predicting how the size, shape, orientation, and distribution of the reinforcing particles change the failure response of the bonded structure is important for design and safety assessment. Using Direct Numeric...

  9. A Heterogeneous High-Performance System for Computational and Computer Science (United States)


    System for Computational and Computer Science Report Title This DoD HBC/MI Equipment/Instrumentation grant was awarded in October 2014 for the purchase... Computing (HPC) course taught in the department of computer science as to attract more graduate students from many disciplines where their research...AND SUBTITLE A Heterogeneous High-Performance System for Computational and Computer Science 5a. CONTRACT NUMBER W911NF-15-1-0023 5b

  10. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries (United States)

    Hu, Lin; Chen, Qianwang


    Lithium-ion batteries (LIBs), owing to their high energy density, light weight, and long cycle life, have shown considerable promise for storage devices. The successful utilization of LIBs depends strongly on the preparation of nanomaterials with outstanding lithium storage properties. Recent progress has demonstrated that hollow/porous nanostructured oxides are very attractive candidates for LIBs anodes due to their high storage capacities. Here, we aim to provide an overview of nanoscale metal-organic frameworks (NMOFs)-templated synthesis of hollow/porous nanostructured oxides and their LIBs applications. By choosing some typical NMOFs as examples, we present a comprehensive summary of synthetic procedures for nanostructured oxides, such as binary, ternary and composite oxides. Hollow/porous structures are readily obtained due to volume loss and release of internally generated gas molecules during the calcination of NMOFs in air. Interestingly, the NMOFs-derived hollow/porous structures possess several special features: pores generated from gas molecules release will connect to each other, which are distinct from ``dead pores'' pore size often appears to be pore surface is hydrophobic. These structural features are believed to be the most critical factors that determine LIBs' performance. Indeed, it has been shown that these NMOFs-derived hollow/porous oxides exhibit excellent electrochemical performance as anode materials for LIBs, including high storage capacity, good cycle stability, and so on. For example, a high charge capacity of 1465 mA h g-1 at a rate of 300 mA g-1 was observed after 50 cycles for NMOFs-derived Co3O4 porous nanocages, which corresponds to 94.09% of the initial capacity (1557 mA h g-1), indicating excellent stability. The capacity of NMOFs-derived Co3O4 is higher than that of other Co3O4 nanostructures obtained by a conventional two-step route, including nanosheets (1450 mA h g-1 at 50 mA g-1), nanobelts (1400 mA h g-1 at 40 mA g-1) and

  11. Snow carrots after the Chelyabinsk event and model implications for highly porous solar system objects (United States)

    Luther, Robert; Artemieva, Natalia; Ivanova, Marina; Lorenz, Cyril; Wünnemann, Kai


    After the catastrophic disruption of the Chelyabinsk meteoroid, small fragments formed funnels in the snow layer covering the ground. We constrain the pre-impact characteristics of the fragments by simulating their atmospheric descent with the atmospheric entry model. Fragments resulting from catastrophic breakup may lose about 90% of their initial mass due to ablation and reach the snow vertically with a free-fall velocity in the range of 30-90 m s-1. The fall time of the fragments is much longer than their cooling time, and, as a consequence, fragments have the same temperature as the lower atmosphere, i.e., of about -20 °C. Then, we use the shock physics code iSALE to model the penetration of fragments into fluffy snow, the formation of a funnel and a zone of denser snow lining its walls. We examine the influence of several material parameters of snow and present our best-fit model by comparing funnel depth and funnel wall characteristics with observations. In addition, we suggest a viscous flow approximation to estimate funnel depth dependence on the meteorite mass. We discuss temperature gradient metamorphism as a possible mechanism which allows to fill the funnels with denser snow and to form the observed "snow carrots." This natural experiment also helps us to calibrate the iSALE code for simulating impacts into highly porous matter in the solar system including tracks in the aerogel catchers of the Stardust mission and possible impact craters on the 67P/Churyumov-Gerasimenko comet observed recently by the Rosetta mission.

  12. Flow characteristics and scaling past highly porous wall-mounted fences (United States)

    Rodríguez-López, Eduardo; Bruce, Paul J. K.; Buxton, Oliver R. H.


    An extensive characterization of the flow past wall-mounted highly porous fences based on single- and multi-scale geometries has been performed using hot-wire anemometry in a low-speed wind tunnel. Whilst drag properties (estimated from the time-averaged momentum equation) seem to be mostly dependent on the grids' blockage ratio; wakes of different size and orientation bars seem to generate distinct behaviours regarding turbulence properties. Far from the near-grid region, the flow is dominated by the presence of two well-differentiated layers: one close to the wall dominated by the near-wall behaviour and another one corresponding to the grid's wake and shear layer, originating from between this and the freestream. It is proposed that the effective thickness of the wall layer can be inferred from the wall-normal profile of root-mean-square streamwise velocity or, alternatively, from the wall-normal profile of streamwise velocity correlation. Using these definitions of wall-layer thickness enables us to collapse different trends of the turbulence behaviour inside this layer. In particular, the root-mean-square level of the wall shear stress fluctuations, longitudinal integral length scale, and spanwise turbulent structure is shown to display a satisfactory scaling with this thickness rather than with the whole thickness of the grid's wake. Moreover, it is shown that certain grids destroy the spanwise arrangement of large turbulence structures in the logarithmic region, which are then re-formed after a particular streamwise extent. It is finally shown that for fences subject to a boundary layer of thickness comparable to their height, the effective thickness of the wall layer scales with the incoming boundary layer thickness. Analogously, it is hypothesized that the growth rate of the internal layer is also partly dependent on the incoming boundary layer thickness.

  13. Coffee Waste-Derived Hierarchical Porous Carbon as a Highly Active and Durable Electrocatalyst for Electrochemical Energy Applications. (United States)

    Chung, Dong Young; Son, Yoon Jun; Yoo, Ji Mun; Kang, Jin Soo; Ahn, Chi-Yeong; Park, Subin; Sung, Yung-Eun


    Nitrogen-doped porous carbon materials have been highlighted as promising alternatives to high-cost platinum in various electrochemical energy applications. However, protocols to generate effective pore structure are still challenging, which hampers mass production and utilization of carbon materials. Here, we suggest a facile and effective method for hierarchical porous carbon by a single-step carbonization of coffee waste (CW) with ZnCl2. The CW, which is one of the most earth-abundant organic waste, can be successfully converted to nitrogen-doped porous carbon. It shows outstanding oxygen reduction activity and durability comparable to the state-of-the-art platinum, and the half-wave potential is also comparable to the best metal-free electrocatalysts in alkaline media. Finally, we apply it to counter electrode of dye-sensitized solar cell, whose photovoltaic efficiency surpasses the one made with conventional platinum electrode. We demonstrate the feasibility of our strategies for highly efficient, cheap, and environment-friendly electrocatalyst to replace platinum in various electrochemical energy applications.

  14. Prediction of Flow and Temperature Distributions in a High Flux Research Reactor Using the Porous Media Approach

    Directory of Open Access Journals (Sweden)

    Shanfang Huang


    Full Text Available High thermal neutron fluxes are needed in some research reactors and for irradiation tests of materials. A High Flux Research Reactor (HFRR with an inverse flux trap-converter target structure is being developed by the Reactor Engineering Analysis Lab (REAL at Tsinghua University. This paper studies the safety of the HFRR core by full core flow and temperature calculations using the porous media approach. The thermal nonequilibrium model is used in the porous media energy equation to calculate coolant and fuel assembly temperatures separately. The calculation results show that the coolant temperature keeps increasing along the flow direction, while the fuel temperature increases first and decreases afterwards. As long as the inlet coolant mass flow rate is greater than 450 kg/s, the peak cladding temperatures in the fuel assemblies are lower than the local saturation temperatures and no boiling exists. The flow distribution in the core is homogeneous with a small flow rate variation less than 5% for different assemblies. A large recirculation zone is observed in the outlet region. Moreover, the porous media model is compared with the exact model and found to be much more efficient than a detailed simulation of all the core components.

  15. Photocatalytic decomposition of benzene by porous nanocrystalline ZnGa2O4 with a high surface area. (United States)

    Zhang, Xinnian; Huang, Jianhui; Ding, Kaining; Hou, Yidong; Wang, Xinchen; Fu, Xianzhi


    Porous nanocrystalline ZnGa2O4 catalysts were synthesized by a simple soft-chemical method at low temperature. The catalysts were characterized by XRD, nitrogen adsorption, SEM, TEM, UV/ vis, and FT-IR spectroscopy. The activity of the photocatalysts was evaluated by decomposition of benzene and its derivatives in the gas phase. It was found that hydrothermal treatment resulted in the formation of spinel ZnGa2O4 with a large surface area of 43-201 m2 x g(-1) depending on the synthetic temperature. The optimum synthetic temperature was found to be 80 degrees C, at which the sample possessed a surface area of 201 m2 x g(-1) and had the highest photocatalytic activity for degrading benzene. A comparison with TiO2 and Pt/TiO2 showed that the ZnGa2O4 (synthesized at 80 degrees C) had improved photocatalytic activity and durability over the TiO2-based catalysts. No remarkable deactivation of the ZnGa2O4 catalyst was observed in 80 h photoreaction, whereas the TiO2 deactivated remarkably in 24 h reaction. The high photocatalytic performance of porous ZnGa2O4 catalysts can be explained by the large specific surface area, the accessible porous framework, and the high redox power.

  16. Highly Porous 3D Fibrous Nanostructured Bioplolymer Films with Stimuli-Responsive Porosity via Phase Separation in Polymer Blend. (United States)

    Tokarev, Igor; Gopishetty, Venkateshwarlu; Minko, Sergiy


    The article describes a novel polymer blend system that yields thin films with unique porous nanoscale morphologies and environmentally responsive properties. The blend consists of sodium alginate and amine end-terminated PEG, which undergoes phase separation during film deposition. The blend films can be readily converted into highly porous membranes using facile treatment with a solution containing divalent ions. The resulting membranes are primarily comprised of alginate hydrogel, whereas the PEG phase is removed from the films during exposure to the saline solution, yielding nanometer-sized pores. The alginate gel phase forms a three-dimensional nanostructure which can be best described as a filament or fibrous network. Because such network geometry is untypical of polymer blends in thin films, possible reasons for the observed phase morphology are discussed. Because of ionizable carboxyl groups, the hydrogel membranes demonstrate responsive behavior, in particular a drastic change in their porosity between a highly porous state and a state with completely closed pores in response to changes in the solution pH. The pore-size tunability can be explored in multiple applications where the regulation of material's permeability is needed.

  17. Fabrication of Highly Porous Alumina-Based Ceramics with Connected Spaces by Employing PMMA Microspheres as a Template

    Directory of Open Access Journals (Sweden)

    Kazutaka Kamitani


    Full Text Available Highly porous alumina-based ceramics were fabricated by a slip casting method by employing polymethylmethacrylate (PMMA microspheres having different diameters as a template and MgO or SiC powder as a sintering aid and subsequent calcination at 1600∘C. Spherical pores reflecting the morphology of the PMMA microspheres could be fabricated. In addition, the formation of much smaller connected space among the pores was observed on the pore's inner walls of all ceramics. In this method, porous structure, for example, pore diameter, shape (open or closed, and mechanical properties, could be controlled by varying the particle size of PMMA microspheres and its concentration in alumina-based slurries. Highly porous and mechanically strong alumina-based ceramics having an open porosity of 62%, a connected space size of 1.3 m, and a compressive strength of 147.6 MPa could be fabricated by employing PMMA microspheres with a mean particle size of 22.6 m and an appropriate amount of SiC.

  18. The Migration and Entrapment of DNAPLs in Physically and Chemically Heterogeneous Porous Media - Final Report - 09/15/1996 - 09/15/2000

    Energy Technology Data Exchange (ETDEWEB)

    Abriola, L. M.; Demond, A. H.


    Hazardous dense nonaqueous phase liquids (DNAPLs), such as chlorinated solvents, are slightly water soluble and pose a serious threat to soil and groundwater supplies in many portions of the United States. The migration and entrapment of DNAPLs in the subsurface environment is typically believed to be controlled by physical heterogeneities; i.e, layers and lenses of contrasting soil texture. The rationale for this assumption is that capillarity, as determined by the soil texture, is the dominant transport mechanism. Capillarity also depends on interfacial tension and medium wettability. Interfacial tension and medium wettability may be spatially and temporally dependent due to variations in aqueous phase chemistry, contaminant aging, and/or variations in mineralogy and organic matter distributions. Such chemical heterogeneities have largely been ignored to date, even though they are known to have dramatic effects on the hydraulic property relations. Numerical multiphase flow and transport models typically assume that solids are water-wet and that interfacial tension is constant. The primary objective of this research is to investigate the influence of coupled physical and chemical heterogeneities on the migration and entrapment of DNAPLs. This objective will be accomplished through a combination of laboratory and numerical experiments. Laboratory experiments will be conducted to examine: (i) aqueous phase chemistry effects on medium wettability and interfacial tension; and (ii) relative permeability-saturation-capillary pressure relations for chemically heterogeneous systems. An important objective of this research is to modify a two-dimensional multiphase flow and transport model to account for chemically and physically heterogeneous systems. This numerical simulator will be used in conjunction with independently measured parameters to simulate two-dimensional DNAPL infiltration experiments. Comparisons of simulated and laboratory data will provide a means to

  19. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Al-Jassim, M. [National Renewable Energy Lab., Golden, CO (United States)] [and others


    We have studied a novel extrinsic gettering method that utilizes the very large surface areas, produced by porous silicon etch on both front and back surfaces of the silicon wafer, as gettering sites. In this method, a simple and low-cost chemical etching is used to generate the porous silicon layers. Then, a high-flux solar furnace (HFSF) is used to provide high-temperature annealing and the required injection of silicon interstitials. The gettering sites, along with the gettered impurities, can be easily removed at the end the process. The porous silicon removal process consists of oxidizing the porous silicon near the end the gettering process followed by sample immersion in HF acid. Each porous silicon gettering process removes up to about 10 {mu}m of wafer thickness. This gettering process can be repeated so that the desired purity level is obtained.

  20. A highly porous luminescent terbium-organic framework for reversible anion sensing

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K.L.; Law, G.L.; Wong, W.T. [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Yang, Y.Y. [School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)


    Unique tailored porous frameworks incorporating a lanthanide metal center have been designed to function as chemical detectors. A flexible multidentate ligand, mucic acid, is used to differentiate between several anions, thus creating an organic framework that is ideally suited for applications in gas separation, sensors, and chemical switches. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  1. Expanded Organic Building Units for the Construction of Highly Porous Metal-Organic Frameworks

    NARCIS (Netherlands)

    Kong, G.Q.; Han, Z.D.; He, Y.; Qu, S.; Zhou, W.; Yildirim, T.; Krishna, R.; Zou, C.; Chen, B.; Wu, C.D.


    wo new organic building units that contain dicarboxylate sites for their self-assembly with paddlewheel [Cu2(CO2)4] units have been successfully developed to construct two isoreticular porous metal-organic frameworks (MOFs), ZJU-35 and ZJU-36, which have the same tbo topologies (Reticular Chemistry

  2. Low frequency acoustic reverberation from highly porous seafloors under grazing incidence

    NARCIS (Netherlands)

    Cristol, X.; Jespers, S.; Chalindar, B.; Juhel, B.; Dybedal, J.; Eidem, E.J.; Ivansson, S.; Vossen, R. van; Ainslie, M.A.; Andersson, B.L.; Colin, M.E.G.D.; Pihl, J.


    The European Defence Agency project RUMBLE-2 (ref.[1]) offered the opportunity for investigating experimentally acoustic reverberation at about 1.kHz, under grazing incidence (less than about 20°), from very porous clayey seafloors of a continental shelf (mean grain size spanning from about 7 to 10

  3. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting

    Czech Academy of Sciences Publication Activity Database

    Čapek, Jaroslav; Machová, M.; Fousová, M.; Kubásek, J.; Vojtěch, D.; Fojt, J.; Jablonská, E.; Lipov, J.; Ruml, T.


    Roč. 69, Dec (2016), 631–639 ISSN 0928-4931 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : selective laser melting * 316L stainless steel * porous implants * scaffolds Subject RIV: BM - Solid Matter Physics ; Magnetism

  4. Hierarchically porous carbon derived from banana peel for lithium sulfur battery with high areal and gravimetric sulfur loading (United States)

    Li, Fanqun; Qin, Furong; Zhang, Kai; Fang, Jing; Lai, Yanqing; Li, Jie


    Facile and sustainable route is developed to convert biomass into hierarchically porous carbon matrix cooperating with highly conductive graphene. By tailoring the porosity of the carbon matrix to promote fast mass transfer and cooperating highly conductive interconnected graphene frameworks to accelerate the electron transport, the carbon sulfur cathodes simultaneously achieve high areal and gravimetric sulfur loading/content (6 mg cm-2/67 wt%) and deliver outstanding electrochemical performance. After 100 cyclic discharge-charge test at the current density of 0.2 C, the reversible capacity maintains at 707 mA h g-1.

  5. Conversion of nuclear waste to molten glass: Formation of porous amorphous alumina in a high-Al melter feed

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai; Hrma, Pavel R.; Washton, Nancy M.; Schweiger, Michael J.; Kruger, Albert A.


    The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min-1 to 700°C was investigated with transmission electron microscopy, 27Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500°C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (~8 m2 g-1). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification.

  6. Capillary flow in porous media under highly reduced gravity investigated through high altitude parabolic aircraft flights and NASA space shuttle flight

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, L.L. [Saskatchewan Research Council, Saskatoon, SK (Canada); Wassmuth, F. [Alberta Research Council, Edmonton, AB (Canada); Stasiuk, E.N. [Calgary Univ., AB (Canada); Hart, D. [Centre for Cold Ocean Resources Engineering, St. John' s, NF (Canada); Legros, J.C. [Brussels Univ., Brussels (Belgium); Smirnov, N.N. [Moscow State Univ., Moscow (Russian Federation)


    Several enhanced oil recovery methods are being developed to economically recover waterflooded residual oil. The challenge is comparable to understanding the mechanisms involved when liquid contaminants in soil are filtered and mixed with groundwater and then transported by convective flows. Multiphase flow and trapping of fluids in porous media are greatly affected by wettability and capillary forces. However, fluid flow in porous media is also strongly governed by gravity effects. In this study, a series of high altitude aircraft parabolic flights were conducted in which capillary flow experiments were performed in porous media using different fluids. Three capillary flow experiments were conducted on a shuttle flight where gravity was not a factor. This paper presents a newly developed finite-difference numerical model for two-dimensional homogeneous fluid flow in a porous medium confined by a horizontal bottom, two vertical boundaries and a free surface. The model describes movement of fluid flow in response to applied pressure gradients. It also considers capillary flow caused by surface tension. The simulator can be used to predict the effect of changing properties such as gravitational acceleration, permeability, pore radii, surface tension, liquid viscosity and wettability. The study showed that interfacial phenomena in highly reduced gravity conditions can be applied to problems associated with fluid handling in various types of space vehicles. 12 refs., 12 figs.

  7. Ionic liquid-assisted synthesis of Br-modified g-C3N4 semiconductors with high surface area and highly porous structure for photoredox water splitting (United States)

    Zhao, Shuo; Zhang, Yiwei; Wang, Yanyun; Zhou, Yuming; Qiu, Kaibo; Zhang, Chao; Fang, Jiasheng; Sheng, Xiaoli


    Coping with the gradually increasing worldwide energy and environmental issues, it is urgent to develop efficient, cheap and visible-light-driven photocatalysts for hydrogen production. Here, we present a facile way to synthesize bromine doped graphitic carbon nitride (CN-BrX) with highly porous structure by using ionic liquid (1-butyl-3-vinylimidazolium bromide) as the Br source and soft-template for the first time, which applied in hydrogen evolution under visible light irradiation. A systematic study is conducted on the optimization in the doping amount. The results find that the as-fabricated CN-BrX photocatalysts possess a uniform porous network with thin walls due to the release of volatile domains and decomposition of ionic liquids. The highly porous structure with the large surface area (≤150 m2/g) benefits the exposure of active sites. Moreover, the bromine modification and porous structure can narrow the band gap, enhance the transportation capability of photogenerated electrons, improve the optical and conductive properties of CN, thus contribute to an outstanding H2 evolution rate under visible light irradiation (120 μmol h-1), which is about 3.6 times higher than pure CN. This work provides a new insight for designing the novel g-C3N4 based photocatalysts for hydrogen production, CO2 conversion and environmental remediation.

  8. Is high-resolution inverse characterization of heterogeneous river bed hydraulic conductivities needed and possible?

    Directory of Open Access Journals (Sweden)

    W. Kurtz


    Full Text Available River–aquifer exchange fluxes influence local and regional water balances and affect groundwater and river water quality and quantity. Unfortunately, river–aquifer exchange fluxes tend to be strongly spatially variable, and it is an open research question to which degree river bed heterogeneity has to be represented in a model in order to achieve reliable estimates of river–aquifer exchange fluxes. This research question is addressed in this paper with the help of synthetic simulation experiments, which mimic the Limmat aquifer in Zurich (Switzerland, where river–aquifer exchange fluxes and groundwater management activities play an important role. The solution of the unsaturated–saturated subsurface hydrological flow problem including river–aquifer interaction is calculated for ten different synthetic realities where the strongly heterogeneous river bed hydraulic conductivities (L are perfectly known. Hydraulic head data (100 in the default scenario are sampled from the synthetic realities. In subsequent data assimilation experiments, where L is unknown now, the hydraulic head data are used as conditioning information, with the help of the ensemble Kalman filter (EnKF. For each of the ten synthetic realities, four different ensembles of L are tested in the experiments with EnKF; one ensemble estimates high-resolution L fields with different L values for each element, and the other three ensembles estimate effective L values for 5, 3 or 2 zones. The calibration of higher-resolution L fields (i.e. fully heterogeneous or 5 zones gives better results than the calibration of L for only 3 or 2 zones in terms of reproduction of states, stream–aquifer exchange fluxes and parameters. Effective L for a limited number of zones cannot always reproduce the true states and fluxes well and results in biased estimates of net exchange fluxes between aquifer and stream. Also in case only 10 head data are used for conditioning, the high

  9. Facile synthesis high nitrogen-doped porous carbon nanosheet from pomelo peel and as catalyst support for nitrobenzene hydrogenation (United States)

    Zuo, Pingping; Duan, Jiaqi; Fan, Huailin; Qu, Shijie; Shen, Wenzhong


    Nitrogen-doping porous carbon-based nanosheets were fabricated from pemole peel and melamine through hydrothermal route and carbonization. The pomelo peel with sponge-like natural structure was employed as carbon source, and melamine was used both as nitrogen precursors and as nanosheet structure directing. The morphology and chemical composition of the obtained porous carbon nanosheet carbon materials were characterized by scanning electron microscopy, thermogravimetric analyzer, Fourier transform infrared spectra, transmission electron microscopy, BET surface area measurement, X-ray photoelectron spectroscopy and X-ray powder diffraction. The result indicated that the nanosheet thickness, nitrogen-doped amount and surface area were determined by the ratio of pomelo peel to melamine and carbonization temperature. The catalytic nitrobenzene hydrogenation was evaluated after Pd was loaded on nitrogen-doping porous carbon-based nanosheet. The results showed Pd@PCN had almost 100% conversion and good cycling performance towards the hydrogenation of nitrobenzene due to the developed pore structure, high nitrogen-doping and well dispersed less Pd particle; it was superior to other nanomaterial supports and demonstrated great potential application.

  10. Eliminating micro-porous layer from gas diffusion electrode for use in high temperature polymer electrolyte membrane fuel cell


    Su, H.; Xu, Q.; Chong, J.; Li, H.; Sita, C.; Pasupathi, S.


    In this work, we report a simple strategy to improve the performance of high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) by eliminating the micro-porous layer (MPL) from its gas diffusion electrodes (GDEs). Due to the absence of liquid water and the general use of high amount of catalyst, the MPL in a HT-PEMFC system works limitedly. Contrarily, the elimination of the MPL leads to an interlaced micropore/macropore composited structure in the catalyst layer (CL), which favors...

  11. High Intra- and Inter-Tumoral Heterogeneity of RAS Mutations in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Marion Jeantet


    Full Text Available Approximately 30% of patients with wild type RAS metastatic colorectal cancer are non-responders to anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR mAbs, possibly due to undetected tumoral subclones harboring RAS mutations. The aim of this study was to analyze the distribution of RAS mutations in different areas of the primary tumor, metastatic lymph nodes and distant metastasis. A retrospective cohort of 18 patients with a colorectal cancer (CRC was included in the study. Multiregion analysis was performed in 60 spatially separated tumor areas according to the pathological tumor node metastasis (pTNM staging and KRAS, NRAS and BRAF mutations were tested using pyrosequencing. In primary tumors, intra-tumoral heterogeneity for RAS mutation was found in 33% of cases. Inter-tumoral heterogeneity for RAS mutation between primary tumors and metastatic lymph nodes or distant metastasis was found in 36% of cases. Moreover, 28% of tumors had multiple RAS mutated subclones in the same tumor. A high proportion of CRCs presented intra- and/or inter-tumoral heterogeneity, which has relevant clinical implications for anti-EGFR mAbs prescription. These results suggest the need for multiple RAS testing in different parts of the same tumor and/or more sensitive techniques.

  12. Fly ash porous material using geopolymerization process for high temperature exposure. (United States)

    Abdullah, Mohd Mustafa Al Bakri; Jamaludin, Liyana; Hussin, Kamarudin; Bnhussain, Mohamed; Ghazali, Che Mohd Ruzaidi; Ahmad, Mohd Izzat


    This paper presents the results of a study on the effect of temperature on geopolymers manufactured using pozzolanic materials (fly ash). In this paper, we report on our investigation of the performance of porous geopolymers made with fly ash after exposure to temperatures from 600 °C up to 1000 °C. The research methodology consisted of pozzolanic materials (fly ash) synthesized with a mixture of sodium hydroxide and sodium silicate solution as an alkaline activator. Foaming agent solution was added to geopolymer paste. The geopolymer paste samples were cured at 60 °C for one day and the geopolymers samples were sintered from 600 °C to 1000 °C to evaluate strength loss due to thermal damage. We also studied their phase formation and microstructure. The heated geopolymers samples were tested by compressive strength after three days. The results showed that the porous geopolymers exhibited strength increases after temperature exposure.

  13. Fly Ash Porous Material using Geopolymerization Process for High Temperature Exposure

    Directory of Open Access Journals (Sweden)

    Mohd Izzat Ahmad


    Full Text Available This paper presents the results of a study on the effect of temperature on geopolymers manufactured using pozzolanic materials (fly ash. In this paper, we report on our investigation of the performance of porous geopolymers made with fly ash after exposure to temperatures from 600 °C up to 1000 °C. The research methodology consisted of pozzolanic materials (fly ash synthesized with a mixture of sodium hydroxide and sodium silicate solution as an alkaline activator. Foaming agent solution was added to geopolymer paste. The geopolymer paste samples were cured at 60 °C for one day and the geopolymers samples were sintered from 600 °C to 1000 °C to evaluate strength loss due to thermal damage. We also studied their phase formation and microstructure. The heated geopolymers samples were tested by compressive strength after three days. The results showed that the porous geopolymers exhibited strength increases after temperature exposure.

  14. Recharge heterogeneity and high intensity rainfall events increase contamination risk for Mediterranean groundwater resources (United States)

    Hartmann, Andreas; Jasechko, Scott; Gleeson, Tom; Wada, Yoshihide; Andreo, Bartolomé; Barberá, Juan Antonio; Brielmann, Heike; Charlier, Jean-Baptiste; Darling, George; Filippini, Maria; Garvelmann, Jakob; Goldscheider, Nico; Kralik, Martin; Kunstmann, Harald; Ladouche, Bernard; Lange, Jens; Mudarra, Matías; Francisco Martín, José; Rimmer, Alon; Sanchez, Damián; Stumpp, Christine; Wagener, Thorsten


    Karst develops through the dissolution of carbonate rock and results in pronounced spatiotemporal heterogeneity of hydrological processes. Karst groundwater in Europe is a major source of fresh water contributing up to half of the total drinking water supply in some countries like Austria or Slovenia. Previous work showed that karstic recharge processes enhance and alter the sensitivity of recharge to climate variability. The enhanced preferential flow from the surface to the aquifer may be followed by enhanced risk of groundwater contamination. In this study we assess the contamination risk of karst aquifers over Europe and the Mediterranean using simulated transit time distributions. Using a new type of semi-distributed model that considers the spatial heterogeneity of karst hydraulic properties, we were able to simulate karstic groundwater recharge including its heterogeneous spatiotemporal dynamics. The model is driven by gridded daily climate data from the Global Land Data Assimilation System (GLDAS). Transit time distributions are calculated using virtual tracer experiments. We evaluated our simulations by independent information on transit times derived from observed time series of water isotopes of >70 karst springs over Europe. The simulations indicate that, compared to humid, mountain and desert regions, the Mediterranean region shows a stronger risk of contamination in Europe because preferential flow processes are most pronounced given thin soil layers and the seasonal abundance of high intensity rainfall events in autumn and winter. Our modelling approach includes strong simplifications and its results cannot easily be generalized but it still highlights that the combined effects of variable climate and heterogeneous catchment properties constitute a strong risk on water quality.

  15. Dosimetric verification of a high dose rate brachytherapy treatment planning system in homogeneous and heterogeneous media. (United States)

    Uniyal, S C; Sharma, S D; Naithani, U C


    To verify the dosimetric accuracy of treatment plans in high dose rate (HDR) brachytherapy by using Gafchromic EBT2 film and to demonstrate the adequacy of dose calculations of a commercial treatment planning system (TPS) in a heterogeneous medium. Absorbed doses at chosen points in anatomically different tissue equivalent phantoms were measured using Gafchromic EBT2 film. In one case, tandem ovoid brachytherapy was performed in a homogeneous cervix phantom, whereas in the other, organ heterogeneities were introduced in a phantom to replicate the upper thorax for esophageal brachytherapy treatment. A commercially available TPS was used to perform treatment planning in each case and the EBT2 films were irradiated with the HDR Ir-192 brachytherapy source. Film measurements in the cervix phantom were found to agree with the TPS calculated values within 3% in the clinically relevant volume. In the thorax phantom, the presence of surrounding heterogeneities was not seen to affect the dose distribution in the volume being treated, whereas, a little dose perturbation was observed at the lung surface. Doses to the spinal cord and to the sternum bone were overestimated and underestimated by 14.6% and 16.5% respectively by the TPS relative to the film measurements. At the trachea wall facing the esophagus, a dose reduction of 10% was noticed in the measurements. The dose calculation accuracy of the TPS was confirmed in homogeneous medium, whereas, it was proved inadequate to produce correct dosimetric results in conditions of tissue heterogeneity. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. High-density biosynthetic fuels: the intersection of heterogeneous catalysis and metabolic engineering. (United States)

    Harvey, Benjamin G; Meylemans, Heather A; Gough, Raina V; Quintana, Roxanne L; Garrison, Michael D; Bruno, Thomas J


    Biosynthetic valencene, premnaspirodiene, and natural caryophyllene were hydrogenated and evaluated as high performance fuels. The parent sesquiterpenes were then isomerized to complex mixtures of hydrocarbons with the heterogeneous acid catalyst Nafion SAC-13. High density fuels with net heats of combustion ranging from 133-141 000 Btu gal(-1), or up to 13% higher than commercial jet fuel could be generated by this approach. The products of caryophyllene isomerization were primarily tricyclic hydrocarbons which after hydrogenation increased the fuel density by 6%. The isomerization of valencene and premnaspirodiene also generated a variety of sesquiterpenes, but in both cases the dominant product was δ-selinene. Ab initio calculations were conducted to determine the total electronic energies for the reactants and products. In all cases the results were in excellent agreement with the experimental distribution of isomers. The cetane numbers for the sesquiterpane fuels ranged from 20-32 and were highly dependent on the isomer distribution. Specific distillation cuts may have the potential to act as high density diesel fuels, while use of these hydrocarbons as additives to jet fuel will increase the range and/or time of flight of aircraft. In addition to the ability to generate high performance renewable fuels, the powerful combination of metabolic engineering and heterogeneous catalysis will allow for the preparation of a variety of sesquiterpenes with potential for pharmaceutical, flavor, and fragrance applications.

  17. Advanced asymmetric supercapacitors based on Ni(OH){sub 2}/graphene and porous graphene electrodes with high energy density

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun; Fan, Zhuangjun; Sun, Wei; Wei, Tong [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Ning, Guoqing [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhang, Qiang; Zhang, Rufan; Wei, Fei [Beijing Key Laboratory of Green Chemical Reaction, Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Zhi, Linjie [National Center for Nanoscience and Technology of China, Zhongguancun, Beiyitiao 11, Beijing 100190 (China)


    Hierarchical flowerlike nickel hydroxide decorated on graphene sheets has been prepared by a facile and cost-effective microwave-assisted method. In order to achieve high energy and power densities, a high-voltage asymmetric supercapacitor is successfully fabricated using Ni(OH){sub 2}/graphene and porous graphene as the positive and negative electrodes, respectively. Because of their unique structure, both of these materials exhibit excellent electrochemical performances. The optimized asymmetric supercapacitor could be cycled reversibly in the high-voltage region of 0-1.6 V and displays intriguing performances with a maximum specific capacitance of 218.4 F g{sup -1} and high energy density of 77.8 Wh kg{sup -1}. Furthermore, the Ni(OH){sub 2}/graphene//porous graphene supercapacitor device exhibits an excellent long cycle life along with 94.3% specific capacitance retained after 3000 cycles. These fascinating performances can be attributed to the high capacitance and the positive synergistic effects of the two electrodes. The impressive results presented here may pave the way for promising applications in high energy density storage systems. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Dynamics of a Highly Viscous Circular Blob in Homogeneous Porous Media

    Directory of Open Access Journals (Sweden)

    Vandita Sharma


    Full Text Available Viscous fingering is ubiquitous in miscible displacements in porous media, in particular, oil recovery, contaminant transport in aquifers, chromatography separation, and geological CO2 sequestration. The viscosity contrasts between heavy oil and water is several orders of magnitude larger than typical viscosity contrasts considered in the majority of the literature. We use the finite element method (FEM-based COMSOL Multiphysics simulator to simulate miscible displacements in homogeneous porous media with very large viscosity contrasts. Our numerical model is suitable for a wide range of viscosity contrasts covering chromatographic separation as well as heavy oil recovery. We have successfully captured some interesting and previously unexplored dynamics of miscible blobs with very large viscosity contrasts in homogeneous porous media. We study the effect of viscosity contrast on the spreading and the degree of mixing of the blob. Spreading (variance of transversely averaged concentration follows the power law t 3 . 34 for the blobs with viscosity ∼ O ( 10 2 and higher, while degree of mixing is found to vary non-monotonically with log-mobility ratio. Moreover, in the limit of very large viscosity contrast, the circular blob behaves like an erodible solid body and the degree of mixing approaches the viscosity-matched case.

  19. Fractal model for evaluating heat transfer of high temperature porous corundum shell in vacuum investment casting

    Directory of Open Access Journals (Sweden)

    WAN Xin


    Full Text Available Under vacuum, heat transfer in porous corundum shell of investment casting depends on the characteristics of the solid materials and the spatial arrangement of solids and pores. In this study, we present a modified fractal approach to model the pore structure of corundum shell and to describe its influence on the thermal conductivity. We assumed that there is no heat convection in the shell. A sectioned view of porous corundum shell was studied and used to describe the geometric structure and to calculate the fractal dimension d. Based on the fractal dimension d, we obtained the relationship between volumetric solid content and pore arrangement in different measure scales. A heat transfer model was thus established using a network of resistors in which we applied an equivalent approach to calculate the effective thermal conductivity of real porous corundum shell that include the effects of heat conduction and heat radiation of solid. From the obtained results we discuss these effects on the effective thermal conductivity including the scale of measurement, the structure of pore and the temperature. At last these results were compared with other empirical model, which computed by assuming even porosity in which effect of pore structure was not being considered. Though the thermal conductivity calculated essentially in agreement with that obtained from empirical model, model used in this study is more close to the real heat transfer process.

  20. Scalable parallel programming for high performance seismic simulation on petascale heterogeneous supercomputers (United States)

    Zhou, Jun

    The 1994 Northridge earthquake in Los Angeles, California, killed 57 people, injured over 8,700 and caused an estimated $20 billion in damage. Petascale simulations are needed in California and elsewhere to provide society with a better understanding of the rupture and wave dynamics of the largest earthquakes at shaking frequencies required to engineer safe structures. As the heterogeneous supercomputing infrastructures are becoming more common, numerical developments in earthquake system research are particularly challenged by the dependence on the accelerator elements to enable "the Big One" simulations with higher frequency and finer resolution. Reducing time to solution and power consumption are two primary focus area today for the enabling technology of fault rupture dynamics and seismic wave propagation in realistic 3D models of the crust's heterogeneous structure. This dissertation presents scalable parallel programming techniques for high performance seismic simulation running on petascale heterogeneous supercomputers. A real world earthquake simulation code, AWP-ODC, one of the most advanced earthquake codes to date, was chosen as the base code in this research, and the testbed is based on Titan at Oak Ridge National Laboraratory, the world's largest hetergeneous supercomputer. The research work is primarily related to architecture study, computation performance tuning and software system scalability. An earthquake simulation workflow has also been developed to support the efficient production sets of simulations. The highlights of the technical development are an aggressive performance optimization focusing on data locality and a notable data communication model that hides the data communication latency. This development results in the optimal computation efficiency and throughput for the 13-point stencil code on heterogeneous systems, which can be extended to general high-order stencil codes. Started from scratch, the hybrid CPU/GPU version of AWP

  1. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis.

    Directory of Open Access Journals (Sweden)

    Roland F Schwarz


    Full Text Available The major clinical challenge in the treatment of high-grade serous ovarian cancer (HGSOC is the development of progressive resistance to platinum-based chemotherapy. The objective of this study was to determine whether intra-tumour genetic heterogeneity resulting from clonal evolution and the emergence of subclonal tumour populations in HGSOC was associated with the development of resistant disease.Evolutionary inference and phylogenetic quantification of heterogeneity was performed using the MEDICC algorithm on high-resolution whole genome copy number profiles and selected genome-wide sequencing of 135 spatially and temporally separated samples from 14 patients with HGSOC who received platinum-based chemotherapy. Samples were obtained from the clinical CTCR-OV03/04 studies, and patients were enrolled between 20 July 2007 and 22 October 2009. Median follow-up of the cohort was 31 mo (interquartile range 22-46 mo, censored after 26 October 2013. Outcome measures were overall survival (OS and progression-free survival (PFS. There were marked differences in the degree of clonal expansion (CE between patients (median 0.74, interquartile range 0.66-1.15, and dichotimization by median CE showed worse survival in CE-high cases (PFS 12.7 versus 10.1 mo, p = 0.009; OS 42.6 versus 23.5 mo, p = 0.003. Bootstrap analysis with resampling showed that the 95% confidence intervals for the hazard ratios for PFS and OS in the CE-high group were greater than 1.0. These data support a relationship between heterogeneity and survival but do not precisely determine its effect size. Relapsed tissue was available for two patients in the CE-high group, and phylogenetic analysis showed that the prevalent clonal population at clinical recurrence arose from early divergence events. A subclonal population marked by a NF1 deletion showed a progressive increase in tumour allele fraction during chemotherapy.This study demonstrates that quantitative measures of intra

  2. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures. (United States)

    Li, Yiju; Fu, Kun Kelvin; Chen, Chaoji; Luo, Wei; Gao, Tingting; Xu, Shaomao; Dai, Jiaqi; Pastel, Glenn; Wang, Yanbin; Liu, Boyang; Song, Jianwei; Chen, Yanan; Yang, Chunpeng; Hu, Liangbing


    Lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical energy density in comparison to conventional state-of-the-art lithium-ion batteries. However, low sulfur mass loading in the cathode results in low areal capacity and impedes the practical use of Li-S cells. Inspired by wood, a cathode architecture with natural, three-dimensionally (3D) aligned microchannels filled with reduced graphene oxide (RGO) were developed as an ideal structure for high sulfur mass loading. Compared with other carbon materials, the 3D porous carbon matrix has several advantages including low tortuosity, high electrical conductivity, and good structural stability, which make it an excellent 3D lightweight current collector. The Li-S battery assembled with the wood-based sulfur electrode can deliver a high areal capacity of 15.2 mAh cm(-2) with a sulfur mass loading of 21.3 mg cm(-2). This work provides a facile but effective strategy to develop 3D porous electrodes for Li-S batteries, which can also be applied to other cathode materials to achieve a high areal capacity with uncompromised rate and cycling performance.

  3. Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors (United States)

    Wang, Cunjing; Wu, Dapeng; Wang, Hongju; Gao, Zhiyong; Xu, Fang; Jiang, Kai


    Highly porous carbon sheets were prepared from fresh clover stems under air atmosphere via a facile potassium chloride salt-sealing technique, which not only avoids using the high cost inert gas protection but also spontaneously introduce multi-level porosity into the carbon structure taking advantage of the trace of oxygen in the molten salt system. The as-obtained porous carbon sheets possess high specific surface area of 2244 m2 g-1 and interconnected hierarchical pore structures from micro-to macro-scale, which provide abundant storage active sites and fast ion diffusion channels. In addition, the spontaneously formed N (2.55 at%) and O (6.94 at%) doping sites not only improve the electron conductivity of the electrode but also enhance the specific capacitance by introducing pseudocapacitance. When employed as supercapacitor electrodes, a high specific capacitance of 436 F g-1 at 1 A g-1 and an excellent rate capacity with capacitance remaining 290 F g-1 at 50 A g-1 are demonstrated. Furthermore, the assembled symmetric supercapacitor delivers a high specific capacitance of 420 F g-1 at 0.5 A g-1, excellent energy density of 58.4 Wh kg-1 and good cycling stability which retains 99.4% of the initial capacitance at 5 A g-1 after 30,000 cycles.

  4. On the propagation of a quasi-static disturbance in a heterogeneous, deformable, and porous medium with pressure-dependent properties

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.


    Using an asymptotic technique, valid when the medium properties are smoothly-varying, I derive a semi-analytic expression for the propagation velocity of a quasi-static disturbance traveling within a nonlinear-elastic porous medium. The phase, a function related to the propagation time, depends upon the properties of the medium, including the pressure-sensitivities of the medium parameters, and on pressure and displacement amplitude changes. Thus, the propagation velocity of a disturbance depends upon its amplitude, as might be expected for a nonlinear process. As a check, the expression for the phase function is evaluated for a poroelastic medium, when the material properties do not depend upon the fluid pressure. In that case, the travel time estimates agree with conventional analytic estimates, and with values calculated using a numerical simulator. For a medium with pressure-dependent permeability I find general agreement between the semi-analytic estimates and estimates from a numerical simulation. In this case the pressure amplitude changes are obtained from the numerical simulator.

  5. Spatial heterogeneity as a genetic mixing mechanism in highly philopatric colonial seabirds. (United States)

    Cristofari, Robin; Trucchi, Emiliano; Whittington, Jason D; Vigetta, Stéphanie; Gachot-Neveu, Hélène; Stenseth, Nils Christian; Le Maho, Yvon; Le Bohec, Céline


    How genetic diversity is maintained in philopatric colonial systems remains unclear, and understanding the dynamic balance of philopatry and dispersal at all spatial scales is essential to the study of the evolution of coloniality. In the King penguin, Aptenodytes patagonicus, return rates of post-fledging chicks to their natal sub-colony are remarkably high. Empirical studies have shown that adults return year after year to their previous breeding territories within a radius of a few meters. Yet, little reliable data are available on intra- and inter-colonial dispersal in this species. Here, we present the first fine-scale study of the genetic structure in a king penguin colony in the Crozet Archipelago. Samples were collected from individual chicks and analysed at 8 microsatellite loci. Precise geolocation data of hatching sites and selective pressures associated with habitat features were recorded for all sampling locations. We found that despite strong natal and breeding site fidelity, king penguins retain a high degree of panmixia and genetic diversity. Yet, genetic structure appears markedly heterogeneous across the colony, with higher-than-expected inbreeding levels, and local inbreeding and relatedness hotspots that overlap predicted higher-quality nesting locations. This points towards heterogeneous population structure at the sub-colony level, in which fine-scale environmental features drive local philopatric behaviour, while lower-quality patches may act as genetic mixing mechanisms at the colony level. These findings show how a lack of global genetic structuring can emerge from small-scale heterogeneity in ecological parameters, as opposed to the classical model of homogeneous dispersal. Our results also emphasize the importance of sampling design for estimation of population parameters in colonial seabirds, as at high spatial resolution, basic genetic features are shown to be location-dependent. Finally, this study stresses the importance of

  6. Spatial heterogeneity as a genetic mixing mechanism in highly philopatric colonial seabirds.

    Directory of Open Access Journals (Sweden)

    Robin Cristofari

    Full Text Available How genetic diversity is maintained in philopatric colonial systems remains unclear, and understanding the dynamic balance of philopatry and dispersal at all spatial scales is essential to the study of the evolution of coloniality. In the King penguin, Aptenodytes patagonicus, return rates of post-fledging chicks to their natal sub-colony are remarkably high. Empirical studies have shown that adults return year after year to their previous breeding territories within a radius of a few meters. Yet, little reliable data are available on intra- and inter-colonial dispersal in this species. Here, we present the first fine-scale study of the genetic structure in a king penguin colony in the Crozet Archipelago. Samples were collected from individual chicks and analysed at 8 microsatellite loci. Precise geolocation data of hatching sites and selective pressures associated with habitat features were recorded for all sampling locations. We found that despite strong natal and breeding site fidelity, king penguins retain a high degree of panmixia and genetic diversity. Yet, genetic structure appears markedly heterogeneous across the colony, with higher-than-expected inbreeding levels, and local inbreeding and relatedness hotspots that overlap predicted higher-quality nesting locations. This points towards heterogeneous population structure at the sub-colony level, in which fine-scale environmental features drive local philopatric behaviour, while lower-quality patches may act as genetic mixing mechanisms at the colony level. These findings show how a lack of global genetic structuring can emerge from small-scale heterogeneity in ecological parameters, as opposed to the classical model of homogeneous dispersal. Our results also emphasize the importance of sampling design for estimation of population parameters in colonial seabirds, as at high spatial resolution, basic genetic features are shown to be location-dependent. Finally, this study stresses the

  7. Preparation of highly porous carbonaceous sorbents from sewage sludge by physical and chemical activation

    Energy Technology Data Exchange (ETDEWEB)

    Ros, A.; Martin, M.J. [Girona Univ., Lab. d' Enginyerie Quimica i Ambiental, Dept. d' Enginyeria Quimica, Agraria i Tecnologia Agroalimentaria, Facultat de Ciencies (Spain); Lillo-Rodenas, M.A.; Linares-Solano, A. [Alicante Univ., Dept. de Quimica Inorganica (Spain); Fuente, E.; Montes-Moran, M.A. [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)


    Among the different porous materials, activated carbon (AC) is the most widely used for environmental applications such as gas-phase pollutant removal, gas separation, solvent recovery and water purification, because of its high specific surfacea. Commercial activated carbons are generally produced from coals and lignocellulosic materials [1]. Additionally, in the latest years great attention is being focused on the reuse of wastes such as sewage sludges [2,3]. The objective of this study is to find more effective activating procedures to prepare AC from sewage sludge. Both dried sludges from two different WWTP (SL, SB) and their corresponding chars prepared by pyrolysis (SL-P, SB-P) were activated using physical activation (CO{sub 2}) and chemical activation (H{sub 3}PO{sub 4}, NaOH and KOH). As shown in Table 1, pyrolysis of the raw sludges slightly increased the specific surface area, up to 50 m{sup 2}/g. Acid-washing of the pyrolyzed samples with 5 M HCl removes part of the metal content leading to an increase in the specific surface areas for both SL-PD and SB-PD, with surface areas of 428 m{sup 2}/g and 188 m{sup 2}/g, respectively. This simple washing treatment is useful for the development of porous adsorbents, especially in the case of SL derived materials. Our results show that CO{sub 2} physical activation of the pyrolyzed and the HCl-washed samples develops no appreciable porosity in the final materials, under the experimental conditions used. For CO{sub 2} activation, maximum temperatures of 870 C and holding times up to 4 hours in CO{sub 2} (100 ml/min) were used. Chemical activation with H{sub 3}PO{sub 4} of the pristine samples and those pyrolyzed was performed at 450 C, a temperature typically used for the activation by H{sub 3}PO{sub 4} of lignocellulosic precursors, and using two different H{sub 3}PO{sub 4} solutions (30 and 50% wt). These conditions were not either suitable for an efficient porosity development. A detailed study about the

  8. Hierarchically porous Ni monolith@branch-structured NiCo2O4 for high energy density supercapacitors

    Directory of Open Access Journals (Sweden)

    Mengjie Xu


    Full Text Available A variety of NiCo2O4 nanostrucutures ranging from nanowire to nanoplate and branched structures were successfully prepared via a simple hydrothermal process. The experimental results show that NiCo2O4 with branched structures possesses the best overall electrochemical performance. The improvement of energy density was explored in terms of hierarchically three-dimensional (3D metal substrates and a high specific area capacitance, and area energy density is obtained with hierarchically porous Ni monolith synthesized through a controlled combustion procedure.

  9. Optical Design of Porous ZnO/TiO2 Films for Highly Transparent Glasses with Broadband Ultraviolet Protection

    Directory of Open Access Journals (Sweden)

    Han Sung Song


    Full Text Available We present a design of a bilayer porous film structure on a glass substrate for the highly efficient ultraviolet (UV protection with high visible-light transparency. To effectively block UVB (280–315 nm and UVA (315–400 nm, titanium dioxide (TiO2 and zinc oxide (ZnO are used as absorbing layers having the appropriate coverages in different UV ranges with extinction coefficients, respectively. We show the process of refractive index (RI matching by controlling porosity (Pr. Effective RIs of porous media with TiO2 and ZnO were calculated based on volume averaging theory. Transmittances of the designed films with different effective RIs were calculated using rigorous coupled-wave analysis method. Using admittance loci method, the film thickness was optimized in center wavelengths from 450 to 550 nm. The results show that the optimal design provides high UV shielding performance at both UVA and UVB with high transparency in the visible range. We also analyze electrical field distributions in each layer and angle dependency with 3D HSV color map.

  10. A high output voltage flexible piezoelectric nanogenerator using porous lead-free KNbO3 nanofibers (United States)

    Ganeshkumar, Rajasekaran; Cheah, Chin Wei; Xu, Ruize; Kim, Sang-Gook; Zhao, Rong


    Self-powered nanodevices for applications such as sensor networks and IoTs are among the emerging technologies in electronics. Piezoelectric nanogenerators (P-NGs) that harvest energy from mechanical stimuli are highly valuable in the development of self-sufficient nanosystems. Despite progress in the development of P-NGs, the use of porous perovskite ferroelectric nanofibers was barely considered or discussed. In this letter, a flexible high output nanogenerator is fabricated using a nanocomposite comprising porous potassium niobate (KNbO3) nanofibers and polydimethylsiloxane. When a compressive force was applied to as-fabricated P-NG, a peak-to-peak output voltage of ˜16 V and a maximum closed circuit current of 230 nA were obtained, which are high enough to realize self-powered nanodevices. In addition, due to their porosity and non-toxic nature, KNbO3 nanofibers may be used as an alternative to the dominant lead-based piezoelectric devices. Besides the high output performance of the device, multifunctional capability, flexible design, and cost-effective construction of the as-fabricated P-NG can be crucial to large-scale deployment of autonomous devices.

  11. Strings of Porous Carbon Polyhedrons as Self-Standing Cathode Host for High-Energy-Density Lithium-Sulfur Batteries. (United States)

    Liu, Yazhi; Li, Gaoran; Fu, Jing; Chen, Zhongwei; Peng, Xinsheng


    Rational design of cathode hosts with high electrical conductivity and strong sulfur confinement is a great need for high-performance lithium-sulfur batteries. Herein, we report a self-standing, hybrid-nanostructured cathode host comprised of metal-organic framework (MOF)-derived porous carbon polyhedrons and carbon nanotubes (CNTs) for the significant improvement of both the electrode cyclability and energy density. The strong coupling of the intertwined CNTs and strung porous carbon polyhedrons as a binder-free thin film significantly enhances the long-range electronic conductivity and provides abundant active interfaces as well as robust electrode integrity for sulfur electrochemistry. Attributed to the synergistic combination of the CNTs and carbon polyhedrons, the obtained sulfur electrodes exhibit outstanding cyclability, an excellent high-rate response up to 10 C, and an ultra-high volumetric capacity of 960 Ah L(-1) . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Biofouling patterns in spacer filled channels: High resolution imaging for characterization of heterogeneous biofilms

    KAUST Repository

    Staal, Marc


    Biofilms develop in heterogeneous patterns at a µm scale up to a cm scale, and patterns become more pronounced when biofilms develop under complex hydrodynamic flow regimes. Spatially heterogeneous biofilms are especially known in spiral wound reverse osmosis (RO) and nanofiltration (NF) membrane filtration systems used for desalination and wastewater reuse to produce high quality (drinking) water. These spiral wound membrane modules contain mesh-like spacer structures used to create an intermembrane space and improve water mixing. Spacers create inhomogeneous water flow patterns resulting in zones favouring biofilm growth, possibly leading to biofouling thus hampering water production. Oxygen sensing planar optodes were used to visualize variations in oxygen decrease rates (ODR). ODR is an indication of biofilm activity. In this study, ODR images of multiple repetitive spacer areas in a membrane fouling simulator were averaged to produce high resolution, low noise ODR images. Averaging 40 individual spacer areas improved the ODR distribution image significantly and allowed comparison of biofilm patterning over a spacer structure at different positions in an RO filter. This method clearly showed that most active biofilm accumulated on and in direct vicinity of the spacer. The averaging method was also used to calculate the deviation of ODR patterning from individual spacer areas to the average ODR pattern, proposing a new approach to determine biofilm spatial heterogeneity. This study showed that the averaging method can be applied and that the improved, averaged ODR images can be used as an analytical, in-situ, non-destructive method to assess and quantify the effect of membrane installation operational parameters or different spacer geometries on biofilm development in spiral wound membrane systems characterized by complex hydrodynamic conditions.

  13. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi

    CERN Document Server

    Abdurachmanov, David; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad


    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  14. Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi (United States)

    Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad


    Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).

  15. Nitrogen-Doped Porous Carbons As Electrode Materials for High-Performance Supercapacitor and Dye-Sensitized Solar Cell. (United States)

    Wang, Lan; Gao, Zhiyong; Chang, Jiuli; Liu, Xiao; Wu, Dapeng; Xu, Fang; Guo, Yuming; Jiang, Kai


    Activated N-doped porous carbons (a-NCs) were synthesized by pyrolysis and alkali activation of graphene incorporated melamine formaldehyde resin (MF). The moderate N doping levels, mesopores rich porous texture, and incorporation of graphene enable the applications of a-NCs in surface and conductivity dependent electrode materials for supercapacitor and dye-sensitized solar cell (DSSC). Under optimal activation temperature of 700 °C, the afforded sample, labeled as a-NC700, possesses a specific surface area of 1302 m2 g(-1), a N fraction of 4.5%, and a modest graphitization. When used as a supercapacitor electrode, a-NC700 offers a high specific capacitance of 296 F g(-1) at a current density of 1 A g(-1), an acceptable rate capability, and a high cycling stability in 1 M H2SO4 electrolyte. As a result, a-NC700 supercapacitor delivers energy densities of 5.0-3.5 Wh kg(-1) under power densities of 83-1609 W kg(-1). Moreover, a-NC700 also demonstrates high electrocatalytic activity for I3- reduction. When employed as a counter electrode (CE) of DSSC, a power conversion efficiency (PCE) of 6.9% is achieved, which is comparable to that of the Pt CE based counterpart (7.1%). The excellent capacitive and photovoltaic performances highlight the potential of a-NCs in sustainable energy devices.

  16. Porous, Hyper-cross-linked, Three-Dimensional Polymer as Stable, High Rate Capability Electrode for Lithium-Ion Battery. (United States)

    Mukherjee, Debdyuti; Gowda Y K, Guruprasada; Makri Nimbegondi Kotresh, Harish; Sampath, S


    Organic materials containing active carbonyl groups have attracted considerable attention as electrodes in Li-ion batteries due to their reversible redox activity, ability to retain capacity, and, in addition, their ecofriendly nature. Introduction of porosity will help accommodate as well as store small ions and molecules reversibly. In the present work, we introduce a mesoporous triptycene-related, rigid network polymer with high specific surface area as an electrode material for rechargeable Li-ion battery. The designed polymer with a three-dimensional (3D), rigid porous network allows free movement of ions/electrolyte as well as helps in interacting with the active anhydride moieties (containing two carbonyl groups). Considerable intake of Li+ ions giving rise to very high specific capacity of 1100 mA h g-1 at a discharge current of 50 mA g-1 and ∼120 mA h g-1 at a high discharge current of 3 A g-1 are observed with excellent cyclability up to 1000 cycles. This remarkable rate capability, which is one of the highest among the reported organic porous polymers to date, makes the triptycene-related rigid 3D network a very good choice for Li-ion batteries and opens up a new method to design polymer-based electrode materials for metal-ion battery technology.

  17. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane

    KAUST Repository

    Li, Baiyan


    In this work, we demonstrate for the first time the introduction of π-complexation into a porous aromatic framework (PAF), affording significant increase in ethylene uptake capacity, as illustrated in the context of Ag(I) ion functionalized PAF-1, PAF-1-SO3Ag. IAST calculations using single-component-isotherm data and an equimolar ethylene/ethane ratio at 296 K reveal that PAF-1-SO3Ag shows exceptionally high ethylene/ethane adsorption selectivity (Sads: 27 to 125), far surpassing benchmark zeolite and any other MOF reported in literature. The formation of π-complexation between ethylene molecules and Ag(I) ions in PAF-1-SO 3Ag has been evidenced by the high isosteric heats of adsorption of C2H4 and also proved by in situ IR spectroscopy studies. Transient breakthrough experiments, supported by simulations, indicate the feasibility of PAF-1-SO3Ag for producing 99.95%+ pure C 2H4 in a Pressure Swing Adsorption operation. Our work herein thus suggests a new perspective to functionalizing PAFs and other types of advanced porous materials for highly selective adsorption of ethylene over ethane. © 2014 American Chemical Society.

  18. Computational fluid dynamics of cerebral aneurysm coiling using high-resolution and high-energy synchrotron X-ray microtomography: comparison with the homogeneous porous medium approach. (United States)

    Levitt, Michael R; Barbour, Michael C; Rolland du Roscoat, Sabine; Geindreau, Christian; Chivukula, Venkat K; McGah, Patrick M; Nerva, John D; Morton, Ryan P; Kim, Louis J; Aliseda, Alberto


    Computational modeling of intracranial aneurysms provides insights into the influence of hemodynamics on aneurysm growth, rupture, and treatment outcome. Standard modeling of coiled aneurysms simplifies the complex geometry of the coil mass into a homogeneous porous medium that fills the aneurysmal sac. We compare hemodynamics of coiled aneurysms modeled from high-resolution imaging with those from the same aneurysms modeled following the standard technique, in an effort to characterize sources of error from the simplified model. Physical models of two unruptured aneurysms were created using three-dimensional printing. The models were treated with coil embolization using the same coils as those used in actual patient treatment and then scanned by synchrotron X-ray microtomography to obtain high-resolution imaging of the coil mass. Computational modeling of each aneurysm was performed using patient-specific boundary conditions. The coils were modeled using the simplified porous medium or by incorporating the X-ray imaged coil surface, and the differences in hemodynamic variables were assessed. X-ray microtomographic imaging of coils and incorporation into computational models were successful for both aneurysms. Porous medium calculations of coiled aneurysm hemodynamics overestimated intra-aneurysmal flow, underestimated oscillatory shear index and viscous dissipation, and over- or underpredicted wall shear stress (WSS) and WSS gradient compared with X-ray-based coiled computational fluid dynamics models. Computational modeling of coiled intracranial aneurysms using the porous medium approach may inaccurately estimate key hemodynamic variables compared with models incorporating high-resolution synchrotron X-ray microtomographic imaging of complex aneurysm coil geometry. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  19. Investigation of the Failure of Advanced High Strength Steels Heterogeneous Spot Welds

    Directory of Open Access Journals (Sweden)

    Thibaut Huin


    Full Text Available Nowadays, environmental regulation encourages carmakers to reduce the global vehicle weight. Steelmakers develop grades with high performance (Advanced High Strength Steels, AHSS and fine steel sheet assemblies are used in car body structures, with an optimized thickness in each part. However, unusual fracture modes are sometimes observed during the mechanical tests of heterogeneous AHSS welds, made of dissimilar steel grades and sheet thicknesses. Weld fractures can occur with a strength lower than expected. This study aims at understanding these fracture mechanisms and focuses on two common steel grades joined by Resistance Spot Welding (RSW: DP600 (a dual phase steel and Usibor®1500 (a martensitic steel. The parameters affecting the failure modes and load bearing capacity are investigated during two common types of tests: the Cross Tension and Tensile Shear tests. The positive effects of heterogeneous welding with respect to the corresponding homogeneous configurations are discussed, as well as the consequences of a so-called Dome failure occurring at the weld nugget boundary.

  20. Quantifying heterogeneity in emphysema from high-resolution computed tomography: a lung tissue research consortium study. (United States)

    Yilmaz, Cuneyt; Dane, Dan M; Patel, Nova C; Hsia, Connie C W


    To quantify spatial distribution of emphysema using high-resolution computed tomography (HRCT), we applied semiautomated analysis with internal attenuation calibration to measure regional air volume, tissue volume, and fractional tissue volume (FTV = tissue/[air + tissue] volume) in well-characterized patients studied by the Lung Tissue Research Consortium (LTRC). HRCT was obtained at supine end-inspiration and end-expiration, and prone end-inspiration from 31 patients with mild, moderate, severe, or very severe emphysema (stages II-V, forced expiratory volume at 1 second >75%, 51%-75%, 21%-50% and ≤20% predicted, respectively). Control data were from 20 healthy non-smokers (stage I). Each lobe was analyzed separately. Heterogeneity of FTV was assessed from coefficients of variation (CV) within and among lobes, and the kurtosis and skewness of FTV histograms. In emphysema, lobar air volume increased up to 177% above normal except in the right middle lobe. Lobar tissue volume increased up to 107% in mild-moderate stages then normalized in advanced stages. Normally, FTV was up to 82% higher in lower than upper lobes. In mild-moderate emphysema, lobar FTV increased by up to 74% above normal at supine inspiration. In severe emphysema, FTV declined below normal in all lobes and positions in correlation with pulmonary function (P < .05). Markers of FTV heterogeneity increased steadily with disease stage in correlation with pulmonary function (P < .05); the pattern is distinct from that seen in interstitial lung disease (ILD). CT-derived biomarkers differentiate the spatial patterns of emphysema distribution and heterogeneity from that in ILD. Early emphysema is associated with elevated tissue volume and FTV, consistent with hyperemia, inflammation or atelectasis. Published by Elsevier Inc.

  1. Cobalt iron selenide/sulfide porous nanocubes as high-performance electrocatalysts for efficient dye-sensitized solar cells (United States)

    Jiang, Yiqing; Qian, Xing; Niu, Yudi; Shao, Li; Zhu, Changli; Hou, Linxi


    A novel series of ternary compounds, namely cobalt iron selenide/sulfide nanocubes, are successfully synthesized as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs), which deliver excellent performances. Homogeneous cobalt iron Prussian-blue-analog (PBA) nanocubes are prepared as the templates and are subsequently dealt with selenation/sulfidation processes via hydrothermal methods. Owing to their unique morphology, porous structure, high surface area, small charge transfer resistance and high diffusion coefficient, the Co-Fe-Se/S nanocubes possess high catalytic activity and excellent conductivity, which are tested and verified by electrochemical measurements. Meanwhile, cobalt iron selenide/sulfide nanocubes CEs achieve high efficiencies of 9.58% and 9.06%, respectively, which are both higher than that of Pt CE (8.16%). All these prominent merits make them outstanding and promising participants among Pt-free CE materials of DSSCs with lower production costs and higher power conversion efficiency.

  2. Porous carbons

    Indian Academy of Sciences (India)

    Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and poor ...

  3. High rate capability and cyclic stability of hierarchically porous Tin oxide (IV)-carbon nanofibers as anode in lithium ion batteries (United States)

    Gupta, Ashish; Dhakate, Sanjay R.; Gurunathan, P.; Ramesha, K.


    Tin oxide-carbon composite porous nanofibres exhibiting superior electrochemical performance as lithium ion battery (LIB) anode have been prepared using electrospinning technique. Surface morphology and structural characterizations of the composite material is carried out by techniques such as XRD, FESEM, HR-TEM, XPS, TGA and Raman spectroscopy. FESEM and TEM studies reveal that nanofibers have a uniform diameter of 150-180 nm and contain highly porous outer wall. The carbon content is limited to 10% in the nanofibers as shown by the TGA and EDAX which does not fade the high capacity of SnO2. These nanofibers delivered a higher discharge capacity of 722 mAh/g even after 100 cycles at high rate of 1C. The excellent electrochemical performance can be ascribed to the synergy effect of small amount of carbon in the composite and the hierarchically porous structure which accommodate large volume changes associated with Li-ion insertion-desertion. The porous nano-architecture would also provide a short diffusion path for Li+ ions in addition to facilitating high flux of electrolyte percolation through micropores. The electrochemical performance of composite material has also been tested at 60 °C at a higher rate of 2C and 5C. Post cycling FESEM analysis shows no volumetric and morphology changes in porous nanofibers after completing rate capability at high rate of 10C.

  4. Fatigue behavior of highly porous titanium produced by powder metallurgy with temporary space holders. (United States)

    Özbilen, Sedat; Liebert, Daniela; Beck, Tilmann; Bram, Martin


    Porous titanium cylinders were produced with a constant amount of temporary space holder (70 vol.%). Different interstitial contents were achieved by varying the starting powders (HDH vs. gas atomized) and manufacturing method (cold compaction without organic binders vs. warm compaction of MIM feedstocks). Interstitial contents (O, C, and N) as a function of manufacturing were measured by chemical analysis. Samples contained 0.34-0.58 wt.% oxygen, which was found to have the greatest effect on mechanical properties. Quasi-static mechanical tests under compression at low strain rate were used for reference and to define parameters for cyclic compression tests. Not unexpectedly, increased oxygen content increased the yield strength of the porous titanium. Cyclic compression fatigue tests were conducted using sinusoidal loading in a servo-hydraulic testing machine. Increased oxygen content was concomitant with embrittlement of the titanium matrix, resulting in significant reduction of compression cycles before failure. For samples with 0.34 wt.% oxygen, R, σ(min) and σ(max) were varied systematically to estimate the fatigue limit (~4 million cycles). Microstructural changes induced by cyclic loading were then characterized by optical microscopy, SEM and EBSD. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Surface-Wettability Patterning for Distributing High-Momentum Water Jets on Porous Polymeric Substrates. (United States)

    Sen, Uddalok; Chatterjee, Souvick; Sinha Mahapatra, Pallab; Ganguly, Ranjan; Dodge, Richard; Yu, Lisha; Megaridis, Constantine M


    Liquid jet impingement on porous materials is particularly important in many applications of heat transfer, filtration, or in incontinence products. Generally, it is desired that the liquid not penetrate the substrate at or near the point of jet impact, but rather be distributed over a wider area before reaching the back side. A facile wettability-patterning technique is presented, whereby a water jet impinging orthogonally on a wettability-patterned nonwoven substrate is distributed on the top surface and through the porous matrix, and ultimately dispensed from prespecified points underneath the sample. A systematic approach is adopted to identify the optimum design that allows for a uniform distribution of the liquid on horizontally mounted substrates of ∼50 cm 2 area, with minimal or no spilling over the sample edges at jet flow rates exceeding 1 L/min. The effect of the location of jet impingement on liquid distribution is also studied, and the design is observed to perform well even under offset jet impact conditions.

  6. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenlong [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China); Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Liu, Yen-Yu [Department of chemical and materials engineering, Tunghai University, Taichung 407, Taiwan (China); Do, Jing-Shan, E-mail: [Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Li, Jing, E-mail: [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China)


    Highlights: • Water vapors seem to hugely improve the electrochemical activity of the Pt and Pt-Ir porous ceramic electrodes. • The gas sensors based on the Pt and Pt-Ir alloy electrodes possess good sensing performances. • The reaction path of the ammonia on platinum has been discussed. - Abstract: Room temperature NH{sub 3} gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH{sub 3} gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm{sup −1} cm{sup −2} .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  7. Fatigue behavior of highly porous titanium produced by powder metallurgy with temporary space holders

    Energy Technology Data Exchange (ETDEWEB)

    Özbilen, Sedat [Forschungszentrum Jülich, Institute of Energy and Climate Research (IEK), 52425 Jülich (Germany); Gazi University, Faculty of Technology, Department of Metallurgical and Materials Engineering, Teknikokullar, Ankara (Turkey); Liebert, Daniela [Forschungszentrum Jülich, Institute of Energy and Climate Research (IEK), 52425 Jülich (Germany); Beck, Tilmann [Forschungszentrum Jülich, Institute of Energy and Climate Research (IEK), 52425 Jülich (Germany); University of Kaiserslautern, Lehrstuhl für Werkstoffkunde (WKK), D-67663 Kaiserslautern (Germany); Bram, Martin, E-mail: [Forschungszentrum Jülich, Institute of Energy and Climate Research (IEK), 52425 Jülich (Germany)


    Porous titanium cylinders were produced with a constant amount of temporary space holder (70 vol.%). Different interstitial contents were achieved by varying the starting powders (HDH vs. gas atomized) and manufacturing method (cold compaction without organic binders vs. warm compaction of MIM feedstocks). Interstitial contents (O, C, and N) as a function of manufacturing were measured by chemical analysis. Samples contained 0.34–0.58 wt.% oxygen, which was found to have the greatest effect on mechanical properties. Quasi-static mechanical tests under compression at low strain rate were used for reference and to define parameters for cyclic compression tests. Not unexpectedly, increased oxygen content increased the yield strength of the porous titanium. Cyclic compression fatigue tests were conducted using sinusoidal loading in a servo-hydraulic testing machine. Increased oxygen content was concomitant with embrittlement of the titanium matrix, resulting in significant reduction of compression cycles before failure. For samples with 0.34 wt.% oxygen, R, σ{sub min} and σ{sub max} were varied systematically to estimate the fatigue limit (~ 4 million cycles). Microstructural changes induced by cyclic loading were then characterized by optical microscopy, SEM and EBSD. - Highlights: • Systematic variation of the oxygen content from 0.34 to 0.58 wt.%. • Systematic study of the relationship between fatigue limit and oxygen content. • Critical oxygen equivalent seems to be 0.35 wt.% to avoid embrittlement. • Identification of the failure modes by light microscopy, SEM and EBSD.

  8. Direct Bio-printing with Heterogeneous Topology Design. (United States)

    Ahsan, Amm Nazmul; Xie, Ruinan; Khoda, Bashir


    Bio-additive manufacturing is a promising tool to fabricate porous scaffold structures for expediting the tissue regeneration processes. Unlike the most traditional bulk material objects, the microstructures of tissue and organs are mostly highly anisotropic, heterogeneous, and porous in nature. However, modelling the internal heterogeneity of tissues/organs structures in the traditional CAD environment is difficult and oftentimes inaccurate. Besides, the de facto STL conversion of bio-models introduces loss of information and piles up more errors in each subsequent step (build orientation, slicing, tool-path planning) of the bio-printing process plan. We are proposing a topology based scaffold design methodology to accurately represent the heterogeneous internal architecture of tissues/organs. An image analysis technique is used that digitizes the topology information contained in medical images of tissues/organs. A weighted topology reconstruction algorithm is implemented to represent the heterogeneity with parametric functions. The parametric functions are then used to map the spatial material distribution. The generated information is directly transferred to the 3D bio-printer and heterogeneous porous tissue scaffold structure is manufactured without STL file. The proposed methodology is implemented to verify the effectiveness of the approach and the designed example structure is bio-fabricated with a deposition based bio-additive manufacturing system.

  9. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications. (United States)

    Ehterami, Arian; Kazemi, Mansure; Nazari, Bahareh; Saraeian, Payam; Azami, Mahmoud


    It is well established that the piezoelectric effect plays an important physiological role in bone growth, remodeling and fracture healing. Barium titanate, as a well-known piezoelectric ceramic, is especially an attractive material as a scaffold for bone tissue engineering applications. In this regard, we tried to fabricate a highly porous barium titanate based scaffolds by foam replication method and polarize them by applying an external electric field. In order to enhance the mechanical and biological properties, polarized/non-polarized scaffolds were coated with gelatin and nanostructured HA and characterized for their morphologies, porosities, piezoelectric and mechanical properties. The results showed that the compressive strength and piezoelectric coefficient of porous scaffolds increased with the increase of sintering temperature. After being coated with Gel/HA nanocomposite, the interconnected porous structure and pore size of the scaffolds almost remain unchanged while the Gel/nHA-coated scaffolds exhibited enhanced compressive strength and elastic modulus compared with the uncoated samples. Also, the effect of polarizing and coating of optimal scaffolds on adhesion, viability, and proliferation of the MG63 osteoblast-like cell line was evaluated by scanning electron microscope (SEM) and MTT assay. The cell culture experiments revealed that developed scaffolds had good biocompatibility and cells were able to adhere, proliferate and migrate into pores of the scaffolds. Furthermore, cell density was significantly higher in the coated scaffolds at all tested time-points. These results indicated that highly porous barium titanate scaffolds coated with Gel/HA nanocomposite has great potential in tissue engineering applications for bone tissue repair and regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Fabrication of Slippery Lubricant-Infused Porous Surface with High Underwater Transparency for the Control of Marine Biofouling. (United States)

    Wang, Peng; Zhang, Dun; Sun, Shimei; Li, Tianping; Sun, Yan


    Marine optical instruments are bearing serious biofouling problem, which affects the accuracy of data collected. To solve the biofouling problem of marine optical instruments, a novel instance of slippery lubricant-infused porous surface (SLIPS) with high underwater-transparency was designed over glass substrate via infusing lubricant into its porous microstructure fabricated with hydrothermal method. The advantage of SLIPS as antibiofouling strategy to marine optical instruments was proven by comparing its underwater optical and antibiofouling performances with three kinds of samples (hydrophilic glass sample, textured hydrophilic glass sample, and superhydrophobic glass sample). The modification of SLIPS enhances the underwater-transparency of glass sample within the wavelength of 500-800 nm, for the infusion of lubricant with lower refractive index than glass substrate. In contrast with hydrophilic surface, textured hydrophilic surface and superhydrophobic surface, SLIPS can significantly inhibit bacterial and algal settlements, thereby maintaining high underwater-transparency in both dynamic and static seawater. The inhibition of bacterial and algal settlements over SLIPS results from its liquid-like property. The contact angle hysteresis of water over SLIPS increases with immersion time in seawater under different conditions (static, dynamic, and vibration conditions). Both dynamic and vibration conditions accelerate the failure of SLIPS exposed in seawater. This research provides valuable information for solving biofouling problem of marine optical instruments with SLIPS.

  11. Comparison of high-intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting. (United States)

    Seiffert, Gary; Hopkins, Carl; Sutcliffe, Chris


    Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high-intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting-fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high-intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117-123, 2017. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  12. A smart strategy to fabricate Ru nanoparticle inserted porous carbon nanofibers as highly efficient levulinic acid hydrogenation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying; Sun, Cheng-Jun; Brown, Dennis E.; Zhang, Liqiang; Yang, Feng; Zhao, Hairui; Wang, Yue; Ma, Xiaohui; Zhang, Xin; Ren, Yang


    Herein, we first put forward a smart strategy to in situ fabricate Ru nanoparticle (NP) inserted porous carbon nanofibers by one-pot conversion of Ru-functionalized metal organic framework fibers. Such fiber precursors are skillfully constructed by cooperative assembly of different proportional RuCl3 and Zn(Ac)2·2H2O along with trimesic acid (H3BTC) in the presence of N,N-dimethylformamide. The following high-temperature pyrolysis affords uniform and evenly dispersed Ru NPs (ca. 12-16 nm), which are firmly inserted into the hierarchically porous carbon nanofibers formed simultaneously. The resulting Ru-carbon nanofiber (Ru-CNF) catalysts prove to be active towards the liquid-phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL), a biomass-derived platform molecule with wide applications in the preparation of renewable chemicals and liquid transportation fuels. The optimal GVL yield of 96.0% is obtained, corresponding to a high activity of 9.23 molLAh–1gRu–1, 17 times of that using the commercial Ru/C catalyst. Moreover, the Ru-CNF catalyst is extremely stable, and can be cycled up to 7 times without significant loss of reactivity. Our strategy demonstrated here reveals new possibilities to make proficient metal catalysts, and provides a general way to fabricate metal-carbon nanofiber composites available for other applications.

  13. Hierarchically porous silicon–carbon–nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes (United States)

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie


    The hierarchically macro/micro-porous silicon–carbon–nitrogen (Si–C–N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp2-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7 mg·g−1 and 1084.5 mg·g−1 for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si–C–N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants. PMID:25604334

  14. Vacuum ultra-violet damage and damage mitigation for plasma processing of highly porous organosilicate glass dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Marneffe, J.-F. de, E-mail:; Lukaszewicz, M.; Porter, S. B.; Vajda, F.; Rutigliani, V.; Verdonck, P.; Baklanov, M. R. [IMEC v.z.w., 3001 Leuven (Belgium); Zhang, L.; Heyne, M.; El Otell, Z.; Krishtab, M. [IMEC v.z.w., 3001 Leuven (Belgium); Department of Chemistry, KULeuven, 3001 Leuven (Belgium); Goodyear, A.; Cooke, M. [Oxford Instruments Plasma Technology, BS49 4AP Bristol (United Kingdom)


    Porous organosilicate glass thin films, with k-value 2.0, were exposed to 147 nm vacuum ultra-violet (VUV) photons emitted in a Xenon capacitive coupled plasma discharge. Strong methyl bond depletion was observed, concomitant with a significant increase of the bulk dielectric constant. This indicates that, besides reactive radical diffusion, photons emitted during plasma processing do impede dielectric properties and therefore need to be tackled appropriately during patterning and integration. The detrimental effect of VUV irradiation can be partly suppressed by stuffing the low-k porous matrix with proper sacrificial polymers showing high VUV absorption together with good thermal and VUV stability. In addition, the choice of an appropriate hard-mask, showing high VUV absorption, can minimize VUV damage. Particular processing conditions allow to minimize the fluence of photons to the substrate and lead to negligible VUV damage. For patterned structures, in order to reduce VUV damage in the bulk and on feature sidewalls, the combination of both pore stuffing/material densification and absorbing hard-mask is recommended, and/or the use of low VUV-emitting plasma discharge.

  15. Porous chitosan doped with graphene oxide as highly effective adsorbent for methyl orange and amido black 10B. (United States)

    Wang, Ying; Xia, Guangmei; Wu, Cong; Sun, Jing; Song, Rui; Huang, Wei


    In the current study, porous chitosan aerogels doped with small amount of graphene oxide (CSGO aerogels) with high porosity (97.96-98.78%), extraordinarily high water absorption (5848-8917%) and low density (0.021-0.035 g cm(-3)) were prepared and used as adsorbents for two azo dyes methyl orange (MO) and amido black 10B (AB10B). The adsorption behavior of these CSGO aerogels and some influence factors such as pH value, graphene oxide (GO) loading, concentration of pollutants, as well as adsorption kinetics were studied. Specifically, the adsorption capacity for MO is 686.89 mg g(-1), the highest comparing with other publication results, and it is 573.47 mg g(-1) for AB10B. Since they are biodegradable, non-toxic, efficient, low-cost and easy to prepare, we believe that these porous CSGO aerogels will be a promising candidate for dye removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Detection of admittivity anomaly on high-contrast heterogeneous backgrounds using frequency difference EIT. (United States)

    Jang, J; Seo, J K


    This paper describes a multiple background subtraction method in frequency difference electrical impedance tomography (fdEIT) to detect an admittivity anomaly from a high-contrast background conductivity distribution. The proposed method expands the use of the conventional weighted frequency difference EIT method, which has been used limitedly to detect admittivity anomalies in a roughly homogeneous background. The proposed method can be viewed as multiple weighted difference imaging in fdEIT. Although the spatial resolutions of the output images by fdEIT are very low due to the inherent ill-posedness, numerical simulations and phantom experiments of the proposed method demonstrate its feasibility to detect anomalies. It has potential application in stroke detection in a head model, which is highly heterogeneous due to the skull.


    Energy Technology Data Exchange (ETDEWEB)

    Franklin M. Orr, Jr.


    This report outlines progress in the third quarter of the second year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs''. High order finite difference schemes for one-dimensional, two-phase, multicomponent displacements are investigated. Numerical tests are run using a three component fluid description for a case when the interaction between phase behavior and flow is strong. Some currently used total variation diminishing (TVD) methods produce unstable results. A third order essentially non-oscillatory (ENO) method captures the effects of phase behavior for this test case. Possible modifications to ensure stability are discussed along with plans to incorporate higher order schemes into the 3DSL streamline simulator.

  18. Viscoelastic relaxations of high alcohols and alkanes: Effects of heterogeneous structure and translation-orientation coupling (United States)

    Yamaguchi, Tsuyoshi


    The frequency-dependent shear viscosity of high alcohols and linear alkanes, including 1-butanol, 1-octanol, 1-dodecanol, n-hexane, n-decane, and n-tetradecane, was calculated using molecular dynamics simulation. The relaxation of all the liquids was bimodal. The correlation functions of the collective orientation were also evaluated. The analysis of these functions showed that the slower relaxation mode of alkanes is assigned to the translation-orientation coupling, while that of high alcohols is not. The X-ray structure factors of all the alcohols showed prepeaks, as have been reported in the literature, and the intermediate scattering functions were calculated at the prepeak. Comparing the intermediate scattering function with the frequency-dependent shear viscosity based on the mode-coupling theory, it was demonstrated that the slower viscoelastic relaxation of the alcohols is assigned to the relaxation of the heterogeneous structure described by the prepeak.

  19. Quantifying Heterogeneity in Emphysema from High Resolution Computed Tomography: A Lung Tissue Research Consortium Study (United States)

    Yilmaz, Cuneyt; Dane, Dan M.; Patel, Nova C.; Hsia, Connie C.W.


    Rationale and Objective To quantify spatial distribution of emphysema using high-resolution computed tomography (HRCT), we applied semi-automated analysis with internal attenuation calibration to measure regional air volume, tissue volume, and fractional tissue volume (FTV=tissue/[air+tissue] volume) in well-characterized patients studied by the Lung Tissue Research Consortium (LTRC). Methods HRCT was obtained at supine end-inspiration and end-expiration, and prone end-inspiration from 31 patients with mild, moderate, severe, or very severe emphysema (stages II–V, FEV1>75%, 51–75%, 21–50% and ≤20% predicted, respectively). Control data were from 20 healthy non-smokers (stage I). Each lobe was analyzed separately. Heterogeneity of FTV was assessed from coefficients of variation (CV) within and among lobes, and the kurtosis and skewness of FTV histograms. Results In emphysema, lobar air volume increased up to 177% except in the right middle lobe. Lobar tissue volume increased up to 107% in mild-moderate stages then normalized in advanced stages. Normally, FTV was up to 82% higher in lower than upper lobes. In mild-moderate emphysema, lobar FTV increased by up to 74% above normal at supine inspiration. In severe emphysema FTV declined below normal in all lobes and positions in correlation with pulmonary function (pemphysema distribution and heterogeneity from that in ILD. Early emphysema is associated with elevated tissue volume and FTV, consistent with hyperemia, inflammation or atelectasis. PMID:23122057

  20. High intra-tumor genetic heterogeneity is related to worse outcome in head and neck squamous cell carcinoma (United States)

    Mroz, Edmund A.; Tward, Aaron D.; Pickering, Curtis R.; Myers, Jeffrey N.; Ferris, Robert L.; Rocco, James W.


    Background Although the presence of genetic heterogeneity within individual patients’ tumors is established, it is unclear whether greater heterogeneity predicts worse outcome. A quantitative measure of genetic heterogeneity based on next-generation sequencing (NGS) data, mutant-allele tumor heterogeneity (MATH), was previously developed and applied to a data set on head and neck squamous cell cancer (HNSCC). Whether this measure correlates with clinical outcome was not previously assessed. Methods We examined the association of MATH with clinical, pathological and overall-survival data for 74 HNSCC patients for whom exome sequencing was completed. Results High MATH (a MATH value above the median) was significantly associated with shorter overall survival (hazard ratio 2.5; 95% CI, 1.3 to 4.8). MATH was similarly associated with adverse outcomes in clinically high risk patients with advanced stage, and in tumors classified as high risk on the basis of validated biomarkers including those negative for human papillomavirus or having disruptive TP53 mutations. In patients who received chemotherapy, the hazard ratio for high MATH was 4.1 (95%CI: 1.6 to 10.2). Conclusions This novel measure of tumor genetic heterogeneity is significantly associated with tumor progression and adverse treatment outcomes, supporting the hypothesis that higher genetic heterogeneity portends worse clinical outcome in HNSCC. The prognostic value of some known biomarkers may be the result of their association with high genetic heterogeneity. MATH provides a useful measure of that heterogeneity, to be prospectively validated as NGS data from homogeneously treated patient cohorts becomes available. PMID:23696076

  1. High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma. (United States)

    Mroz, Edmund A; Tward, Aaron D; Pickering, Curtis R; Myers, Jeffrey N; Ferris, Robert L; Rocco, James W


    Although the presence of genetic heterogeneity within the tumors of individual patients is established, it is unclear whether greater heterogeneity predicts a worse outcome. A quantitative measure of genetic heterogeneity based on next-generation sequencing (NGS) data, mutant-allele tumor heterogeneity (MATH), was previously developed and applied to a data set on head and neck squamous cell carcinoma (HNSCC). Whether this measure correlates with clinical outcome was not previously assessed. The authors examined the association between MATH and clinical, pathologic, and overall survival data for 74 patients with HNSCC for whom exome sequencing was completed. High MATH (a MATH value above the median) was found to be significantly associated with shorter overall survival (hazards ratio, 2.5; 95% confidence interval, 1.3-4.8). MATH was similarly found to be associated with adverse outcomes in clinically high-risk patients with an advanced stage of disease, and in those with tumors classified as high risk on the basis of validated biomarkers including those that were negative for human papillomavirus or having disruptive tumor protein p53 mutations. In patients who received chemotherapy, the hazards ratio for high MATH was 4.1 (95% confidence interval, 1.6-10.2). This novel measure of tumor genetic heterogeneity is significantly associated with tumor progression and adverse treatment outcomes, thereby supporting the hypothesis that higher genetic heterogeneity portends a worse clinical outcome in patients with HNSCC. The prognostic value of some known biomarkers may be the result of their association with high genetic heterogeneity. MATH provides a useful measure of that heterogeneity to be prospectively validated as NGS data from homogeneously treated patient cohorts become available. Copyright © 2013 American Cancer Society.

  2. On-chip high power porous silicon lithium ion batteries with stable capacity over 10,000 cycles. (United States)

    Westover, Andrew S; Freudiger, Daniel; Gani, Zarif S; Share, Keith; Oakes, Landon; Carter, Rachel E; Pint, Cary L


    We demonstrate the operation of a graphene-passivated on-chip porous silicon material as a high rate lithium battery anode with over 50 X power density, and 100 X energy density improvement compared to identically prepared on-chip supercapacitors. We demonstrate this Faradaic storage behavior to occur at fast charging rates (1-10 mA cm(-2)) where lithium locally intercalates into the nanoporous silicon, preventing the degradation and poor cycling performance attributed to deep storage in the bulk silicon. This device exhibits cycling performance that exceeds 10,000 cycles with capacity above 0.1 mA h cm(-2) without notable capacity fade. This demonstrates a practical route toward high power, high energy, and long lifetime all-silicon on-chip storage systems relevant toward integration into electronics, photovoltaics, and other silicon-based platforms.


    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich


    Full Text Available The proposed multi-component façade system is made of porous concretes employed both as bearing structures and for heat insulation and fireproofing purposes. The authors also provide their recommendations in respect of the mounting of the proposed façade system. The façade system considered in the article is composed of wall foam concrete blocks reinforced by basalt fibers (bearing elements of the structure, cellular concrete polystyrene (thermal insulation, and porous concrete (fireproofing and thermal insulation. Retained shuttering (in the fireproofing sections represents chrysolite cement sheets attached to the structures composed of glass-fiber plastic elements. The application of insulating porous concrete as a fireproofing material is based on the principle of adjustable stress-strained states of materials in the environment of variable pressure. This technology was developed at Moscow State University of Civil Engineering, and it was initially designated for the manufacturing of tailor-made products. The above concrete is also designated for retained shuttering and modified cavity masonry walls. Porous concrete that expands inside the fireproofing cavity ensures a tight contact both with the basic material and thermal insulation plates. The use of materials of the same origin (Portland cement means the formation of strong transition zones connecting the system components in the course of its hardening and further operation. The results of the thermotechnical calculation demonstrate that the thermal resistance registered on the surface of the wall that is 3 meters high (that has a 0.4 m fireproofing cavity is equal to 3.98 sq. m. C/Wt. The value of the coefficient of thermotechnical heterogeneity (r is equal to 0.86 with account for the thickness and thermal conductivity of point and linear elements. If the thermotechnical heterogeneity is taken into consideration, the thermal resistance of the proposed wall is equal to 3.42 m2 С/Wt.

  4. Reconfiguration of lithium sulphur batteries: "Enhancement of Li-S cell performance by employing a highly porous conductive separator coating" (United States)

    Stoeck, Ulrich; Balach, Juan; Klose, Markus; Wadewitz, Daniel; Ahrens, Eike; Eckert, Jürgen; Giebeler, Lars


    Li-S batteries are an emerging technology and the most promising successor of current lithium ion technology. While there is great perspective in terms of superior theoretical specific capacity and energy density great challenges have to be addressed. One major challenge, severely limiting cycle performance and capacity retention, is the shuttling of polysulphide species. In this contribution we show a reconfiguration of the usual Li-S cell. Instead of generating a carbon/sulphur composite by melt infiltration a highly porous, conductive nitrogen-rich carbon material (TNC) is coated onto a commercial polypropylene separator foil. The thin conductive coating of TNC on the separator enables the application of very simple sulphur/carbon black cathodes. Because the melt infiltration of sulphur in a porous host material becomes unnecessary the electrode processing is significantly simplified. The specific capacity and cycling stability of reconfigurated cells are both improved significantly compared to the performance of a standard cell setup using a pristine separator. At a constant charging rate of C/5 cells with modified separator showed 2.5 times higher residual capacity (1016 mAh g-1) than cells with pristine separator (405 mAh g-1).

  5. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao


    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  6. Macrostructure-dependent photocatalytic property of high-surface-area porous titania films

    Directory of Open Access Journals (Sweden)

    T. Kimura


    Full Text Available Porous titania films with different macrostructures were prepared with precise control of condensation degree and density of the oxide frameworks in the presence of spherical aggregates of polystyrene-block-poly(oxyethylene (PS-b-PEO diblock copolymer. Following detailed explanation of the formation mechanisms of three (reticular, spherical, and large spherical macrostructures by the colloidal PS-b-PEO templating, structural variation of the titania frameworks during calcination were investigated by X-ray diffraction and X-ray photoelectron spectroscopy. Then, photocatalytic performance of the macroporous titania films was evaluated through simple degradation experiments of methylene blue under an UV irradiation. Consequently, absolute surface area of the film and crystallinity of the titania frameworks were important for understanding the photocatalytic performance, but the catalytic performance can be improved further by the macrostructural design that controls diffusivity of the targeted molecules inside the film and their accessibility to active sites.

  7. Well-crystalline porous ZnO-SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material. (United States)

    Lamba, Randeep; Umar, Ahmad; Mehta, S K; Kansal, Sushil Kumar


    This work demonstrates the synthesis and characterization of porous ZnO-SnO2 nanosheets prepared by the simple and facile hydrothermal method at low-temperature. The prepared nanosheets were characterized by several techniques which revealed the well-crystallinity, porous and well-defined nanosheet morphology for the prepared material. The synthesized porous ZnO-SnO2 nanosheets were used as an efficient photocatalyst for the photocatalytic degradation of highly hazardous dye, i.e., direct blue 15 (DB 15), under visible-light irradiation. The excellent photocatalytic degradation of prepared material towards DB 15 dye could be ascribed to the formation of ZnO-SnO2 heterojunction which effectively separates the photogenerated electron-hole pairs and possess high surface area. Further, the prepared porous ZnO-SnO2 nanosheets were utilized to fabricate a robust chemical sensor to detect 4-nitrophenol in aqueous medium. The fabricated sensor exhibited extremely high sensitivity of ~ 1285.76 µA/mmol L(-1)cm(-2) and an experimental detection limit of 0.078 mmol L(-1) with a linear dynamic range of 0.078-1.25 mmol L(-1). The obtained results confirmed that the prepared porous ZnO-SnO2 nanosheets are potential material for the removal of organic pollutants under visible light irradiation and efficient chemical sensing applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries. (United States)

    Wang, Xia; Sun, Pingping; Qin, Jinwen; Wang, Jianqiang; Xiao, Ying; Cao, Minhua


    Metal phosphides are great promising anode materials for lithium-ion batteries with a high gravimetric capacity. However, significant challenges such as low capacity, fast capacity fading and poor cycle stability must be addressed for their practical applications. Herein, we demonstrate a versatile strategy for the synthesis of a novel three-dimensional porous molybdenum phosphide@carbon hybrid (3D porous MoP@C hybrid) by a template sol-gel method followed by an annealing treatment. The resultant hybrid exhibits a 3D interconnected ordered porous structure with a relatively high surface area. Benefiting from its advantages of microstructure and composition, the 3D porous MoP@C hybrid displays excellent lithium storage performance as an anode material for lithium-ion batteries in terms of specific capacity, cycling stability and long-cycle life. It presents stable cycling performance with a high reversible capacity up to 1028 mA h g(-1) at a current density of 100 mA g(-1) after 100 cycles. By ex situ XRD, HRTEM, SAED and XPS analyses, the 3D porous MoP@C hybrid was found to follow the Li-intercalation reaction mechanism (MoP + xLi(+) + e(-)↔ LixMoP), which was further confirmed by ab initio calculations based on density functional theory.

  9. Porous materials as high performance adsorbents for CO2 capture, gas separation and purification (United States)

    Wang, Jun

    new series of oxygen-doped ACs were synthesized from polyfuran. Different factors that affect the AC formation were investigated, and two kinds of porogens (ZnC12 and KOH) and two active temperatures (600 and 800 °C) were tested. At 298K and 1bar, an excellent selectivity for separating CO2/N2 (41.7) and CO2/CH 4(6.8) gas mixture pairs was obtained on the PF-600 KOH. A breakthrough simulation was also performed to demonstrate the potential of industrial applications. The PF-600 KOH sample showed the best separation result in the simulated adsorption breakthrough as well. In chapter 4, quinone and hydroquinone on the surface of PF-600 ZnC1 2 were integrated. Significantly pore size shrinkage, improved CO 2/N2 and CO2/CH4 IAST selectivity were observed, which is 58.7% and 28.4 % higher than pristine porous carbon at 298K and 1 atm, respectively. In addition, transient breakthrough simulations for CO2/CH4/N2 binary mixtures were conducted in order to demonstrate the good separation performance in fixed bed adsorbers. In chapter 5, a novel nitrogen doped polymer poly(2-phenyl-1,3,6,8tetraazacyclodecane) will be used as the precursor to produce microporous N-doped activated carbons. Three activation temperatures (600, 700, and 800 °C) has been investigated with KOH as the porogen. High nitrogen content has been remained in the resultant carbon materials. Improved CO2 adsorption capacity and selectivites for the separation of CO2/CH4/N2 binary gas mixtures were achieved by the carbon adsorbents due to their N-containing groups, narrow pore size distribution, and large specific surface area. In chapter 6, MOF-derived activated carbons are developed from MIL-100(Al) as hard-template. Direct carbonization of MIL-100, MIL-100(Al)/F-127 composite, and MIL-100(Al)/KOH mixture has been investigated. Pore structure and surface morphology have been demonstrated. CO2/CH4/N2 binary selectivity, adsorption heats, and kinetic selectivity have been calculated. Breakthrough simulation

  10. β-FeOOH Nanorods/Carbon Foam-Based Hierarchically Porous Monolith for Highly Effective Arsenic Removal. (United States)

    Ge, Xiao; Ma, Yue; Song, Xiangyang; Wang, Guozhong; Zhang, Haimin; Zhang, Yunxia; Zhao, Huijun


    Arsenic pollution in waters has become a worldwide issue, constituting a severe hazard to whole ecosystems and public health worldwide. Accordingly, it is highly desirable to design high-performance adsorbents for arsenic decontamination. Herein, a feasible strategy is developed for in situ growth of β-FeOOH nanorods (NRs) on a three-dimensional (3D) carbon foam (CF) skeleton via a simple calcination process and subsequent hydrothermal treatment. The as-fabricated 3D β-FeOOH NRs/CF monolith can be innovatively utilized for arsenic remediation from contaminated aqueous systems, accompanied by remarkably high uptake capacity of 103.4 mg/g for arsenite and 172.9 mg/g for arsenate. The superior arsenic uptake performance can be ascribed to abundant active sites and hydroxyl functional groups available as well as efficient mass transfer associated with interconnected hierarchical porous networks. In addition, the as-obtained material exhibits exceptional sorption selectivity toward arsenic over other coexisting anions at high levels, which can be ascribed to strong affinity between active sites and arsenic. More importantly, the free-standing 3D porous monolith not only makes it easy for separation and collection after treatment but also efficiently prevents the undesirable potential release of nanoparticles into aquatic environments while maintaining the outstanding properties of nanometer-scale building blocks. Furthermore, the monolith absorbent is able to be effectively regenerated and reused for five cycles with negligible decrease in arsenic removal. In view of extremely high adsorption capacities, preferable sorption selectivity, satisfactory recyclability, as well as facile separation nature, the obtained 3D β-FeOOH NRs/CF monolith holds a great potential for arsenic decontamination in practical applications.

  11. Highly porous oil sorbent based on hollow fibers as the interceptor for oil on static and running water

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Ting [College of Textiles, Donghua University, Shanghai 201620 (China); Cao, Shengbin [College of Textiles, Donghua University, Shanghai 201620 (China); School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306 (China); Xu, Guangbiao, E-mail: [College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science and Technology Ministry of Education, Donghua University, Shanghai 201620 (China)


    Highlights: • Highly porous sorbent was made up of kapok and PET fibers. • The sorbent was prepared by air-laying-bonding method. • The sorbent showed much higher oil sorption capacity than 100% loose kapok fibers. • The sorbent showed high intercepting efficiency to oils on water. • The runing of water significantly accelerated the oil leakage. - Abstract: Highly porous fibrous assembly made by kapok and hollow PET fibers was prepared by the air-laying-bonding method, and used as the interceptor for oils on static and running water. SEM showed that the vast majority of kapok and PET fibers in the assembly was intact and retained their hollow lumens, with the assembly's porosity high to 98.03%. Oil sorption tests exhibited that kapok/PET assembly could absorb 63.00 g/g of vegetable oil and 58.50 g/g of used motor oil, with high oil retention after 24 h dripping. In static condition of oil interception, the two oils started to leak at around 20 min for 10-mm thick kapok/PET wall. The time for that was prolonged with increasing the thickness of kapok/PET wall. After oil breakthrough, continuous oil leaking took place. The typical leakage was divided into three stages in which oils leaked separately in sharply increased rate, reduced rate and finally gently. In running condition, oils leaked in markedly quicker way than that in static condition, with initial leakage of oils shortened to less 6 min when the water ran at 60.35 ml/s. The leakage of oils was considerably accelerated with increasing running rates.


    Energy Technology Data Exchange (ETDEWEB)

    Franklin M. Orr, Jr.


    This report outlines progress in the first quarter of the second year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs''. The application of the analytical theory for gas injection processes, including the effects of volume change on mixing, has up to now been limited to fully self-sharpening systems, systems where all solution segments that connect the key tie lines present in the displacement are shock fronts. In the following report, we describe the extension of the analytical theory to include systems with rarefactions (continuous composition and saturation variations) between key tie lines. With the completion of this analysis, a completely general procedure has been developed for finding solutions for problems in which a multicomponent gas displaces a multicomponent oil.

  13. High heterogeneity in soil composition and quality in different mangrove forests of Venezuela. (United States)

    Otero, X L; Méndez, A; Nóbrega, G N; Ferreira, T O; Meléndez, W; Macías, F


    Mangrove forests play an important role in biogeochemical cycles of metals, nutrients, and C in coastal ecosystems. However, these functions could be strongly affected by the mangrove soil degradation. In this study, we performed an intensive sampling characterizing mangrove soils under different types of environment (lagoon/gulf) and vegetation (Rhizophora/Avicennia/dead mangrove) in the Venezuelan coast. To better understand the spatial heterogeneity of the composition and characteristics of the soils, a wide range of the soil attributes were analyzed. In general, the soils were anoxic (Eh  15%). Finally, the dead mangrove showed significantly lower amounts of TOC and fibers (in comparison to the well-preserved mangrove forest), which indicates that the C pools in mangrove soils are highly sensitive also to natural impact, such as ENSO.

  14. An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds. (United States)

    Kramschuster, Adam; Turng, Lih-Sheng


    In this research, injection molding was combined with a novel material combination, supercritical fluid processing, and particulate leaching techniques to produce highly porous and interconnected structures that have the potential to act as scaffolds for tissue engineering applications. The foamed structures, molded with polylactide (PLA) and polyvinyl alcohol (PVOH) with salt as the particulate, were processed without the aid of organic solvents, which can be detrimental to tissue growth. The pore size in the scaffolds is controlled by salt particulates and interconnectivity is achieved by the co-continuous blending morphology of biodegradable PLA matrix with water-soluble PVOH. Carbon dioxide (CO(2)) at the supercritical state is used to serve as a plasticizer, thereby imparting moldability of blends even with an ultra high salt particulate content, and allows the use of low processing temperatures, which are desirable for temperature-sensitive biodegradable polymers. Interconnected pores of approximately 200 microm in diameter and porosities of approximately 75% are reported and discussed.

  15. Preparation of hybrid thiol-acrylate emulsion-templated porous polymers by interfacial copolymerization of high internal phase emulsions. (United States)

    Langford, Caitlin R; Johnson, David W; Cameron, Neil R


    Emulsion-templated highly porous polymers (polyHIPEs), containing distinct regions differing in composition, morphology, and/or properties, are prepared by the simultaneous polymerization of two high internal phase emulsions (HIPEs) contained within the same mould. The HIPEs are placed together in the mould and subjected to thiol-acrylate photopolymerization. The resulting polyHIPE material is found to contain two distinct semicircular regions, reflecting the composition of each HIPE. The original interface between the two emulsions becomes a copolymerized band between 100 and 300 μm wide, which is found to be mechanically robust. The separate polyHIPE layers are distinguished from one another by their differing average void diameter, chemical composition, and extent of contraction upon drying. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity (United States)

    Liu, Ruiping; Ren, Feng; Yang, Jinlin; Su, Weiming; Sun, Zhiming; Zhang, Lei; Wang, Chang-an


    Hierarchically porous hybrid TiO2 hollow spheres were solvothermally synthesized successfully by using tetrabutyl titanate as titanium precursor and hydrated metal sulfates as soft templates. The as-prepared TiO2 spheres with hierarchically pore structures and high specific surface area and pore volume consisted of highly crystallized anatase TiO2 nanocrystals hybridized with a small amount of metal oxide from the hydrated sulfate. The proposed hydrated-sulfate assisted solvothermal (HAS) synthesis strategy was demonstrated to be widely applicable to various systems. Evaluation of the hybrid TiO2 hollow spheres for the photo-decomposition of methyl orange (MO) under visible-light irradiation revealed that they exhibited excellent photocatalytic activity and durability.

  17. Tandem Nitrogen Functionalization of Porous Carbon: Toward Immobilizing Highly Active Palladium Nanoclusters for Dehydrogenation of Formic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhangpeng [National Inst. of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka (Japan). Research Inst. of Electrochemical Energy; Yang, Xinchun [National Inst. of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka (Japan). Research Inst. of Electrochemical Energy; Tsumori, Nobuko [Toyama National College of Technology (Japan); Liu, Zheng [National Inst. of Advanced Industrial Science and Technology (AIST), Nagoya, Aichi (Japan). Inorganic Functional Materials Research Inst.; Himeda, Yuichiro [National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Research Inst. of Energy Frontier; Autrey, Tom [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Qiang [National Inst. of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka (Japan). Research Inst. of Electrochemical Energy


    Highly dispersed palladium nanoclusters (Pd NCs) immobilized by a nitrogen (N)-functionalized porous carbon support (N-MSC-30) are synthesized by a wet chemical reduction method, wherein the N-MSC-30 prepared by a tandem low temperature heat-treatment approach proved to be a distinct support for stabilizing the Pd NCs. The prepared Pd/N-MSC-30 shows extremely high catalytic activity and recyclability for the dehydrogenation of formic acid (FA), affording the highest turnover frequency (TOF = 8414 h-1) at 333 K, which is much higher than that of the Pd catalyst supported on the N-MSC-30 prepared via a one-step process. This tandem heat treatment strategy provides a facile and effective synthetic methodology to immobilize ultrafine metal NPs on N-functionalized carbon materials, which have tremendous application prospects in various catalytic fields.

  18. Three-Dimensional Porous Nitrogen-Doped NiO Nanostructures as Highly Sensitive NO2 Sensors

    Directory of Open Access Journals (Sweden)

    Van Hoang Luan


    Full Text Available Nickel oxide has been widely used in chemical sensing applications, because it has an excellent p-type semiconducting property with high chemical stability. Here, we present a novel technique of fabricating three-dimensional porous nitrogen-doped nickel oxide nanosheets as a highly sensitive NO2 sensor. The elaborate nanostructure was prepared by a simple and effective hydrothermal synthesis method. Subsequently, nitrogen doping was achieved by thermal treatment with ammonia gas. When the p-type dopant, i.e., nitrogen atoms, was introduced in the three-dimensional nanostructures, the nickel-oxide-nanosheet-based sensor showed considerable NO2 sensing ability with two-fold higher responsivity and sensitivity compared to non-doped nickel-oxide-based sensors.

  19. High-speed impact of the metal projectile on the barrier containing porous corundum-based ceramics with chemically active filler (United States)

    Ischenko, Alexander; Afanas'eva, Svetlana; Belov, Nikolai; Blinov, Vasiliy; Burkin, Vladimir; Korolkov, Leonid; Rogaev, Konstantin; Khabibullin, Marat; Yugov, Nikolai


    The paper presents a calculation-experimental study on high-speed interaction of the metal projectile with a combined barrier made of porous corundum-based ceramics filled with chemically active composition (sulfur, nitrate of potash) in the wide range of speeds. A mathematical behavior model of porous corundum-based ceramics with chemically active filler is developed within the scope of mechanics of continuous media taking into account the energy embedding from a possible chemical reaction between a projectile metal and filler at high-speed impact. Essential embedding of inlet heat is not observed in the considered range of impact speeds (2.5 … 8 km/s).

  20. Removal of Cr{sup 6+} from wastewater via adsorption with high-specific-surface-area nitrogen-doped hierarchical porous carbon derived from silkworm cocoon

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junting; Zhang, Zhengping; Ji, Jing; Dou, Meiling, E-mail:; Wang, Feng, E-mail:


    Highlights: • The nitrogen-doped hierarchical porous carbon was prepared from silkworm cocoon. • The NHPC possesses a unique porous structure and a high specific surface area. • The NHPC presents superior adsorption performance for Cr (VI). • The NHPC exhibits an excellent recyclability for the removal of Cr (VI). - Abstract: The development of highly efficient adsorbents is an effective way to remove Cr{sup 6+} from wastewater for environment protection. Herein, a high-specific-surface-area nitrogen-doped hierarchical porous carbon (NHPC) derived from silkworm cocoon was synthesized and applied as an efficient adsorbent for the removal of Cr{sup 6+} from wastewater. The resultant NHPC possesses a specific surface area as high as 3134 m{sup 2} g{sup −1} and a unique hierarchical porous structure with a large number of small mesopores (2–4 nm) and micropores (0.8–2 nm) embedded in the sidewall of bowl-like macropores (200–300 nm), in which sufficient exposure of adsorption sites and high-flow transfer of Cr{sup 6+} ions can be achieved. As a result, the NHPC exhibits a remarkable adsorption performance with a larger adsorption capacity (366.3 mg g{sup −1}), a higher adsorption rate (4 × 10{sup −2} g mg{sup −1} min{sup −1}) and a superior recyclability in comparison with the commercial adsorbent (Norit CGP). Thermodynamic and kinetic analyses indicate that the adsorption process is spontaneous and endothermic, which fits well with the pseudo-second-order kinetic model and Langmuir isotherm model. This biomass-based porous carbon with well-defined hierarchical porous structure can be applied as a promising adsorbent for the removal of Cr{sup 6+} from wastewater.

  1. Intrusion features of a high-speed striker of a porous tungsten-based alloy with a strengthening filler in a steel barrier (United States)

    Ishchenko, A. N.; Afanas'eva, S. A.; Belov, N. N.; Burkin, V. V.; Rogaev, K. S.; Sammel', A. Yu.; Skosyrskii, A. B.; Tabachenko, A. N.; Yugov, N. T.


    The complex problem of increasing the penetrating power of strikers based on highly porous tungsten composites is considered by improving their strengthening properties by alloying the hardening components under high-speed collision conditions. Using the method of liquid-phase sintering, we fabricated samples of strikers based on a porous WNiFeCo alloy (tungsten + nickel + iron + cobalt), alloyed with tungsten carbide with cobalt (WCCo8) and titanium-tungsten carbide (TiWC). Dynamic tests of the strikers from the developed alloys were carried out at the collision velocity with a steel barrier of the order of 2800 m/s. The penetration depth of the striker based on a porous WNiFeCo alloy doped with tungsten carbides is 30% higher than the penetration depth of a striker of a monolithic WNiFe-90 alloy (tungsten + nickel + iron with a tungsten content of 90%).

  2. Single-molecule detection and radiation control in solutions at high concentrations via a heterogeneous optical slot antenna. (United States)

    Zhao, Chenglong; Liu, Yongmin; Yang, Jing; Zhang, Jiasen


    We designed a heterogeneous optical slot antenna (OSA) that is capable of detecting single molecules in solutions at high concentrations, where most biological processes occur. A heterogeneous OSA consists of a rectangular nanoslot fabricated on heterogeneous metallic films formed by sequential deposition of gold and aluminum on a glass substrate. The rectangular nanoslot gives rise to large field and fluorescence enhancement for single molecules. The near-field intensity inside a heterogeneous OSA is 170 times larger than that inside an aluminum zero-mode waveguide (ZMW), and the fluorescence emission rate of a molecule inside the heterogeneous OSA is about 70 times higher than that of the molecule in free space. Our proposed heterogeneous optical antenna enables excellent balance between performance and cost. The design takes into account the practical experimental conditions so that the parameters chosen in the simulation are well within the reach of current nano-fabrication technologies. Our results can be used as a direct guidance for designing high-performance, low-cost plasmonic nanodevices for the study of bio-molecule and enzyme dynamics at the single-molecule level.

  3. Heterogeneous Uptake of Nanoparticles in Mouse Models of Pediatric High-Risk Neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Ketan B Ghaghada

    Full Text Available Liposomal chemotherapeutics are exemplified by DOXIL® are commonly used in adult cancers. While these agents exhibit improved safety profile compared to their free drug counterparts, their treatment response rates have been ~ 20%, often attributed to the heterogeneous intratumoral uptake and distribution of liposomal nanoparticles. Non-invasive and quantitative monitoring of the uptake and distribution of liposomal nanoparticles in solid tumors could allow for patient stratification and personalized cancer nanomedicine. In this study, the variability of liposomal nanoparticle intratumoral distribution and uptake in orthotopic models of pediatric neuroblastoma was investigated using a liposomal nanoprobe visualized by high-resolution computed tomography (CT. Two human neuroblastoma cell lines (NGP: a MYCN-amplified line, and SH-SY5Y a MYCN non-amplified line were implanted in the renal capsule of nude mice to establish the model. Intratumoral nanoparticle uptake was measured at tumor ages 1, 2, 3 and 4 weeks post implantation. The locations of uptake within the tumor were mapped in the 3-dimensional reconstructed images. Total uptake was measured by integration of the x-ray absorption signal over the intratumoral uptake locations. Both tumor models showed significant variation in nanoparticle uptake as the tumors aged. Observation of the uptake patterns suggested that the nanoparticle uptake was dominated by vascular leak at the surface/periphery of the tumor, and localized, heterogeneous vascular leak in the interior of the tumor. Slow growing SH-SY5Y tumors demonstrated uptake that correlated directly with the tumor volume. Faster growing NGP tumor uptake did not correlate with any tumor geometric parameters, including tumor volume, tumor surface area, and R30 and R50, measures of uptake localized to the interior of the tumor. However, uptake for both SH-SY5Y and NGP tumors correlated almost perfectly with the leak volume, as measured by CT

  4. Convection in Porous Media

    CERN Document Server

    Nield, Donald A


    Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more. Recognized as the standard reference in the field Includes a comprehensive, 250-page reference list Cited over 2300 times to date in its various editions Serves as an introduction for those entering the field and as a comprehensive reference for experienced researchers Features new sections on nanofluids, carbon dioxide sequestration, and applications...

  5. Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon. (United States)

    Cheng, Qin; Xia, Shanhong; Tong, Jianhua; Wu, Kangbing


    It is very challenging to develop highly-sensitive analytical platforms for toxic synthetic colourants that widely added in food samples. Herein, a series of porous carbon (PC) was prepared using CaCO3 nanoparticles (nano-CaCO3) as the hard template and starch as the carbon precursor. Characterizations of scanning electron microscopy and transmission electron microscopy indicated that the morphology and porous structure were controlled by the weight ratio of starch and nano-CaCO3. The electrochemical behaviours of four kinds of widely-used food colourants, Sunset yellow, Tartrazine, Ponceau 4R and Allura red, were studied. On the surface of PC samples, the oxidation signals of colourants enhanced obviously, and more importantly, the signal enhancement abilities of PC were also dependent on the starch/nano-CaCO3 weight ratio. The greatly-increased electron transfer ability and accumulation efficiency were the main reason for the enhanced signals of colourants, as confirmed by electrochemical impedance spectroscopy and chronocoulometry. The prepared PC-2 sample by 1:1 starch/nano-CaCO3 weight ratio was more active for the oxidation of food colourtants, and increased the signals by 89.4-fold, 79.3-fold, 47.3-fold and 50.7-fold for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. As a result, a highly-sensitive electrochemical sensing platform was developed, and the detection limits were 1.4, 3.5, 2.1 and 1.7 μg L(-1) for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. The practical application of this new sensing platform was demonstrated using drink samples, and the detected results consisted with the values that obtained by high-performance liquid chromatography. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Homogenization of seismic surface wave profiling in highly heterogeneous improved ground (United States)

    Lin, C.; Chien, C.


    Seismic surface wave profiling is gaining popularity in engineering practice for determining shear-wave velocity profile since the two-station SASW (Spectral Analysis of Surface Wave) was introduced. Recent developments in the multi-station approach (Multi-station Analysis of Surface Wave, MASW) result in several convenient commercial tools. Unlike other geophysical tomography methods, the surface wave method is essentially a 1-D method assuming horizontally-layered medium. Nevertheless, MASW is increasingly used to map lateral variation of S-wave velocity by multiple surveys overlooking the effect of lateral heterogeneity. MASW typically requires long receiver spread in order to have enough depth coverage. The accuracy and lateral resolution of 2-D S-wave velocity imaging by surface wave is not clear. Many geotechnical applications involves lateral variation in a scale smaller than the geophone spread and wave length. For example, soft ground is often improved to increase strength and stiffness by methods such as jet grouting and stone column which result in heterogeneous ground with improved columns. Experimental methods (Standard Penetration Test, sampling and laboratory testing, etc.) used to assess such ground improvement are subjected to several limitations such as small sampling volume, time-consuming, and cost ineffectiveness. It's difficult to assess the average property of the improved ground and the actual replacement ratio of ground improvement. The use of seismic surface wave method for such a purpose seems to be a good alternative. But what MASW measures in such highly heterogeneous improved ground remains to be investigated. This study evaluated the feasibility of MASW in highly heterogeneous ground with improved columns and investigated the homogenization of shear wave velocity measured by MASW. Field experiments show that MASW testing in such a composite ground behaves similar to testing in horizontally layered medium. It seems to measure some sort

  7. Factors associated with high heterogeneity of malaria at fine spatial scale in the Western Kenyan highlands. (United States)

    Baidjoe, Amrish Y; Stevenson, Jennifer; Knight, Philip; Stone, William; Stresman, Gillian; Osoti, Victor; Makori, Euniah; Owaga, Chrispin; Odongo, Wycliffe; China, Pauline; Shagari, Shehu; Kariuki, Simon; Drakeley, Chris; Cox, Jonathan; Bousema, Teun


    The East African highlands are fringe regions between stable and unstable malaria transmission. What factors contribute to the heterogeneity of malaria exposure on different spatial scales within larger foci has not been extensively studied. In a comprehensive, community-based cross-sectional survey an attempt was made to identify factors that drive the macro- and micro epidemiology of malaria in a fringe region using parasitological and serological outcomes. A large cross-sectional survey including 17,503 individuals was conducted across all age groups in a 100 km(2) area in the Western Kenyan highlands of Rachuonyo South district. Households were geo-located and prevalence of malaria parasites and malaria-specific antibodies were determined by PCR and ELISA. Household and individual risk-factors were recorded. Geographical characteristics of the study area were digitally derived using high-resolution satellite images. Malaria antibody prevalence strongly related to altitude (1350-1600 m, p malaria infections were apparently asymptomatic. Malaria parasite prevalence was associated with age, bed net use, house construction features, altitude and topographical wetness index. Antibody prevalence was associated with all these factors and distance to the nearest water body. Altitude was a major driver of malaria transmission in this study area, even across narrow altitude bands. The large proportion of asymptomatic parasite carriers at all altitudes and the age-dependent acquisition of malaria antibodies indicate stable malaria transmission; the strong correlation between current parasite carriage and serological markers of malaria exposure indicate temporal stability of spatially heterogeneous transmission.

  8. Scaling of impact-generated cavity-size for highly porous targets and its application to cometary surfaces (United States)

    Okamoto, Takaya; Nakamura, Akiko M.


    Detailed images of highly porous small bodies show variety of the surface. One of the interesting findings is that the depressions on comets look shallower than the simple craters such as on the moon, that is the depth-to-diameter ratio of the depressions is smaller than ∼0.2. Although the mechanisms for the formation of the depression are controversial; such as collapse after the sublimation of the sub-surface volatile or activities after impact such as sublimation and viscous relaxation, the shape of the cavity formed on the highly-porous surface by impact itself has not been studied much. We performed impact experiments of sintered glass-bead targets with porosities of ∼94% and 87%, as well as gypsum targets with a porosity of ∼50%, and pumice targets with that of 74%. The cavity formed in the porous target by the impact has maximum diameter at some depth from the target surface. This type of cavity is called bulb-shape cavity. In addition to the results of this study, we also compiled the results of previous impact experiments for cavity sizes in which the targets with porosity larger than 30% were used. Then new empirical scaling relations for the maximum diameter and the bulb depth for the wide range of target porosity were obtained. We applied the relations to comets and showed that the surface strength and the particle size of the comet 9P/Tempel 1 are estimated to be of the orders of 101-103 Pa, and, with the assumption of ice grains consisted of monodisperse spheres, to be larger than ∼90 μm, respectively. The ratio of bulb depth to the maximum diameter on a comet derived from the extrapolation of scaling relations expects that the ratio on the weak surface with the strength less than 102 Pa was 0.10 or below, which is smaller than the depth-to-diameter ratio of simple craters, ∼0.2. It suggests a possibility that shallow depressions on comets could be formed only by impact without the need for subsequent activities, such as sublimation and

  9. Assessing spatial heterogeneity of MDR-TB in a high burden country (United States)

    Jenkins, Helen E.; Plesca, Valeriu; Ciobanu, Anisoara; Crudu, Valeriu; Galusca, Irina; Soltan, Viorel; Serbulenco, Aliona; Zignol, Matteo; Dadu, Andrei; Dara, Masoud; Cohen, Ted


    Multidrug-resistant tuberculosis (MDR-TB) is a major concern in countries of the former Soviet Union. The reported risk of resistance among TB cases in the Republic of Moldova is among the highest in the world. We aimed to produce high-resolution spatial maps of MDR-TB risk and burden in this setting. We analyzed national TB surveillance data collected between 2007 and 2010 in Moldova. High drug susceptibility testing coverage and detailed location data permitted identification of sub-regional areas of higher MDR-TB risk. We investigated whether the distribution of cases with MDR-TB risk factors could explain this observed spatial variation in MDR-TB. 3,447 MDR-TB cases were notified during this period; 24% of new and 62% of previously treated patients had MDR-TB. Nationally, the estimated annual MDR-TB incidence was 54 cases/100,000 persons and >1,000 cases/100,000 persons within penitentiaries. We identified substantial geographic variation in MDR-TB burden and hotspots of MDR-TB. Locations with a higher percentage of previously incarcerated TB cases were at greater risk of being MDR-TB hotspots. Spatial analyses revealed striking geographic heterogeneity of MDR-TB. Methods to identify locations of high MDR-TB risk and burden should allow for better resource allocation and more appropriate targeting of studies to understand local mechanisms driving resistance. PMID:23100496

  10. High Sensitivity pH Sensor Based on Porous Silicon (PSi Extended Gate Field-Effect Transistor

    Directory of Open Access Journals (Sweden)

    Naif H. Al-Hardan


    Full Text Available In this study, porous silicon (PSi was prepared and tested as an extended gate field-effect transistor (EGFET for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions.

  11. Complementary study of the internal porous silicon layers formed under high-dose implantation of helium ions

    Energy Technology Data Exchange (ETDEWEB)

    Lomov, A. A., E-mail:; Myakon’kikh, A. V. [Russian Academy of Sciences, Institute of Physics and Technology (Russian Federation); Chesnokov, Yu. M. [National Research Centre “Kurchatov Institute” (Russian Federation); Shemukhin, A. A.; Oreshko, A. P. [Moscow State University (Russian Federation)


    The surface layers of Si(001) substrates subjected to plasma-immersion implantation of helium ions with an energy of 2–5 keV and a dose of 5 × 10{sup 17} cm{sup –2} have been investigated using high-resolution X-ray reflectivity, Rutherford backscattering, and transmission electron microscopy. The electron density depth profile in the surface layer formed by helium ions is obtained, and its elemental and phase compositions are determined. This layer is found to have a complex structure and consist of an upper amorphous sublayer and a layer with a porosity of 30–35% beneath. It is shown that the porous layer has the sharpest boundaries at a lower energy of implantable ions.

  12. A Porous Cobalt (II Metal–Organic Framework with Highly Efficient Electrocatalytic Activity for the Oxygen Evolution Reaction

    Directory of Open Access Journals (Sweden)

    Qingguo Meng


    Full Text Available A 3D porous framework ([Co1.5(tib(dcpna]·6H2O (1 with a Wei topology has been synthesized by solvothermal reaction of 1,3,5-tris(1-imidazolyl-benzene (tib, 5-(3′,5′-dicarboxylphenylnicotinic acid (H3dcpna and cobalt nitrate. The electrocatalytic activity for water oxidation of 1 has been investigated in alkaline solution. Compound 1 exhibits good oxygen evolution reaction (OER activities in alkaline solution, exhibiting 10 mA·cm−2 at η = 360 mV with a Tafel slope of 89 mV·dec−1. The high OER activity can be ascribe to 1D open channels along b axis of 1, which expose more activity sites and facilitate the electrolyte penetration.

  13. High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor. (United States)

    Al-Hardan, Naif H; Abdul Hamid, Muhammad Azmi; Ahmed, Naser M; Jalar, Azman; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim; Chiu, Weesiong; Al-Rawi, Hamzah N


    In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions.

  14. High survival of uncemented proximally porous-coated titanium alloy femoral stems in osteoporotic bone. (United States)

    Meding, John B; Galley, Matthew R; Ritter, Merrill A


    Because the initial fixation of an uncemented stem may be compromised in patients with osteoporotic bone (Class C, Dorr et al.), many surgeons prefer a cemented stem in this setting. We therefore determined the survival of an uncemented, proximally porous-coated, straight-stemmed, titanium alloy femoral component in patients with Class C bone when compared with Class A and B bone. We implanted proximally plasma-sprayed, straight-stemmed titanium alloy stems in 1994 patients (2321 hips). Of these, 625 hips (27%), 1569 hips (67%), and 127 hips (6%) were classified as Classes A, B, and C, respectively. Minimum followup was 2 years (mean, 5.9 years; range, 2-19.5 years). We identified no differences in Harris hip scores, pain, radiolucencies, or osteolysis among Classes A, B, and C hips. Stem survival at 5, 10, and 15 years for aseptic loosening (failure) was 100% in all patients with Class A bone; 99+% in all patients with Class B bone; and 100% in all patients with Class C bone. Initial stability and durable fixation can be achieved with the use of this uncemented stem in patients in whom a cemented stem traditionally has been preferred as a result of poor bone quality. Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  15. Amino Acids Aided Sintering for the Formation of Highly Porous FeAl Intermetallic Alloys. (United States)

    Karczewski, Krzysztof; Stepniowski, Wojciech J; Salerno, Marco


    Fabrication of metallic foams by sintering metal powders mixed with thermally degradable compounds is of interest for numerous applications. Compounds releasing gaseous nitrogen, minimizing interactions between the formed gases and metallic foam by diluting other combustion products, were applied. Cysteine and phenylalanine, were used as gas releasing agents during the sintering of elemental Fe and Al powders in order to obtain metallic foams. Characterization was carried out by optical microscopy with image analysis, scanning electron microscopy with energy dispersive spectroscopy, and gas permeability tests. Porosity of the foams was up to 42 ± 3% and 46 ± 2% for sintering conducted with 5 wt % cysteine and phenylalanine, respectively. Chemical analyses of the formed foams revealed that the oxygen content was below 0.14 wt % and the carbon content was below 0.3 wt %. Therefore, no brittle phases could be formed that would spoil the mechanical stability of the FeAl intermetallic foams. The gas permeability tests revealed that only the foams formed in the presence of cysteine have enough interconnections between the pores, thanks to the improved air flow through the porous materials. The foams formed with cysteine can be applied as filters and industrial catalysts.

  16. Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations. (United States)

    Chen, Yuhong; Wang, Jing; Yuan, Lihua; Zhang, Meiling; Zhang, Cairong


    The generalized gradient approximation (GGA) function based on density functional theory is adopted to investigate the optimized geometrical structure, electron structure and hydrogen storage performance of Sc modified porous graphene (PG). It is found that the carbon ring center is the most stable adsorbed position for a single Sc atom on PG, and the maximum number of adsorbed H₂ molecules is four with the average adsorption energy of -0.429 eV/H₂. By adding a second Sc atom on the other side of the system, the hydrogen storage capacity of the system can be improved effectively. Two Sc atoms located on opposite sides of the PG carbon ring center hole is the most suitable hydrogen storage structure, and the hydrogen storage capacity reach a maximum 9.09 wt % at the average adsorption energy of -0.296 eV/H₂. The adsorption of H₂ molecules in the PG system is mainly attributed to orbital hybridization among H, Sc, and C atoms, and Coulomb attraction between negatively charged H₂ molecules and positively charged Sc atoms.

  17. Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations

    Directory of Open Access Journals (Sweden)

    Yuhong Chen


    Full Text Available The generalized gradient approximation (GGA function based on density functional theory is adopted to investigate the optimized geometrical structure, electron structure and hydrogen storage performance of Sc modified porous graphene (PG. It is found that the carbon ring center is the most stable adsorbed position for a single Sc atom on PG, and the maximum number of adsorbed H2 molecules is four with the average adsorption energy of −0.429 eV/H2. By adding a second Sc atom on the other side of the system, the hydrogen storage capacity of the system can be improved effectively. Two Sc atoms located on opposite sides of the PG carbon ring center hole is the most suitable hydrogen storage structure, and the hydrogen storage capacity reach a maximum 9.09 wt % at the average adsorption energy of −0.296 eV/H2. The adsorption of H2 molecules in the PG system is mainly attributed to orbital hybridization among H, Sc, and C atoms, and Coulomb attraction between negatively charged H2 molecules and positively charged Sc atoms.

  18. High-Performance Hydrogen Storage Nanoparticles Inside Hierarchical Porous Carbon Nanofibers with Stable Cycling. (United States)

    Xia, Guanglin; Chen, Xiaowei; Zhao, Yan; Li, Xingguo; Guo, Zaiping; Jensen, Craig M; Gu, Qinfen; Yu, Xuebin


    An effective route based on space-confined chemical reaction to synthesize uniform Li2Mg(NH)2 nanoparticles is reported. The hierarchical pores inside the one-dimensional carbon nanofibers (CNFs), induced by the creation of well-dispersed Li3N, serve as intelligent nanoreactors for the reaction of Li3N with Mg-containing precursors, resulting in the formation of uniformly discrete Li2Mg(NH)2 nanoparticles. The nanostructured Li2Mg(NH)2 particles inside the CNFs are capable of complete hydrogenation and dehydrogenation at a temperature as low as 105 °C with the suppression of ammonia release. Furthermore, by virtue of the nanosize effects and space-confinement by the porous carbon scaffold, no degradation was observed after 50 de/rehydrogenation cycles at a temperature as low as 130 °C for the as-prepared Li2Mg(NH)2 nanoparticles, indicating excellent reversibility. Moreover, the theoretical calculations demonstrate that the reduction in particle size could significantly enhance the H2 sorption of Li2Mg(NH)2 by decreasing the relative activation energy barrier, which agrees well with our experimental results. This method could represent an effective, general strategy for synthesizing nanoparticles of complex hydrides with stable reversibility and excellent hydrogen storage performance.

  19. Microstructure evolution of nanostructured and submicrometric porous refractory ceramics induced by a continuous high-energy proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Sandrina [CERN, 1211 Geneva 23 (Switzerland); Bruetsch, Roland [Paul Scherrer Institut, 5232 Villigen (Switzerland); Catherall, Richard [CERN, 1211 Geneva 23 (Switzerland); Groeschel, Friedrich; Guenther-Leopold, Ines [Paul Scherrer Institut, 5232 Villigen (Switzerland); Lettry, Jacques [CERN, 1211 Geneva 23 (Switzerland); Manfrin, Enzo [Paul Scherrer Institut, 5232 Villigen (Switzerland); Marzari, Stefano; Noah, Etam; Sgobba, Stefano [CERN, 1211 Geneva 23 (Switzerland); Stora, Thierry, E-mail: [CERN, 1211 Geneva 23 (Switzerland); Zanini, Luca [Paul Scherrer Institut, 5232 Villigen (Switzerland)


    The production of radioactive ion beams by the isotope mass separation online (ISOL) method requires a fast diffusion and effusion of nuclear products from thick refractory target materials under high-energy particle beam irradiation. A new generation of ISOL nanostructured and submicrometric porous materials have been developed, exhibiting enhanced release of exotic isotopes, compared to previously used conventional micrometric materials. A programme was developed at PSI within the framework sof the Design Study of EURISOL, the next generation European ISOL-type facility to study aging under irradiation on porous ceramic pellets and dense thin metal foils at high temperatures. Ceramic oxides and carbide samples underwent proton damage with fluence up to 3.0 x 10{sup 20} and 1.3 x 10{sup 21} cm{sup -2} respectively. The post-irradiation examination on Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3} and SiC - C nanotube composite matrices show a proton-induced densification region in which a moderate grain growth occurred. The microstructural evolution effects were associated to the combination of radiation-enhanced diffusion and thermal diffusion. The irradiated Al{sub 2}O{sub 3} shows higher sintering rates than in similar non-irradiation isothermal conditions, in particular at the lowest irradiation temperature, subjected to a proton fluence inferior to 1.1 x 10{sup 15} cm{sup -2}. The apparent activation energy for its sintering controlling mechanism was found to be between 44 and 88 kJ mol{sup -1}. However, despite the enhanced sintering, shrinkage and increased grain growth, the selected nanostructured and submicrometric TARPIPE materials did not display an average grain diameter above 2 {mu}m, which confirms that these materials are suited as production targets for present and next generation ISOL facilities.

  20. Bi2O3 nanoparticles encapsulated by three-dimensional porous nitrogen-doped graphene for high-rate lithium ion batteries (United States)

    Fang, Wei; Zhang, Naiqing; Fan, Lishuang; Sun, Kening


    A composite consisting of Bi2O3 nanoparticles encapsulated by three-dimensional (3D) porous nitrogen-doped graphene is reported. Due to the 3D porous structure, the composite has large specific surface area of 112 m2 g-1, which can increase the contact area between active material and electrolyte. In addition, the 3D porous conductive framework can not only facilitate the fast electron transport and Li+ diffusion but also enhance the electrical conductivity of the composite. As expected, the composite shows an outstanding rate capability of 273 mAh g-1 at 10000 mA g-1 and a capacity of 417 mAh g-1 over 100 cycles at a current density of 200 mA g-1. Therefore, the composite is a promising candidate as an anode material for high-rate lithium ion batteries.

  1. Nickel nanoparticles encapsulated in porous carbon and carbon nanotube hybrids from bimetallic metal-organic-frameworks for highly efficient adsorption of dyes

    DEFF Research Database (Denmark)

    Jin, Lina; Zhao, Xiaoshuang; Qian, Xinye


    Nickel nanoparticles encapsulated in porous carbon/carbon nanotube hybrids (Ni/PC-CNT) were successfully prepared by a facile carbonization process using Ni/Zn-MOF as the precursor. Distinct from previous studies, Ni/Zn-MOF precursors were prepared via a direct precipitation method at room...... temperature for only 5 min. After the carbonization, magnetic Ni nanoparticles were well embedded in the porous carbon and carbon nanotube. The obtained Ni/PC-CNT composites had a high surface area (999 m(2) g(-1) Marge pore volume (0.86 cm(3) g(-1)) and well-developed graphitized wall. The Ni...

  2. Hydroquinone and quinone-grafted porous carbons for highly selective CO2 capture from flue gases and natural gas upgrading

    NARCIS (Netherlands)

    Wang, J.; Krishna, R.; Yang, J.; Deng, S.


    Hydroquinone and quinone functional groups were grafted onto a hierarchical porous carbon framework via the Friedel-Crafts reaction to develop more efficient adsorbents for the selective capture and removal of carbon dioxide from flue gases and natural gas. The oxygen-doped porous carbons were

  3. High resolution digital autoradiographic and dosimetric analysis of heterogeneous radioactivity distribution in xenografted prostate tumors. (United States)

    Timmermand, Oskar V; Nilsson, Jenny; Strand, Sven-Erik; Elgqvist, Jörgen


    The first main aim of this study was to illustrate the absorbed dose rate distribution from 177Lu in sections of xenografted prostate cancer (PCa) tumors using high resolution digital autoradiography (DAR) and compare it with hypothetical identical radioactivity distributions of 90Y or 7 MeV alpha-particles. Three dosimetry models based on either dose point kernels or Monte Carlo simulations were used and evaluated. The second and overlapping aim, was to perform DAR imaging and dosimetric analysis of the distribution of radioactivity, and hence the absorbed dose rate, in tumor sections at an early time point after injection during radioimmunotherapy using 177Lu-h11B6, directed against the human kallikrein 2 antigen. Male immunodeficient BALB/c nude mice, aged 6-8 w, were inoculated by subcutaneous injection of ∼107 LNCaP cells in a 200 μl suspension of a 1:1 mixture of medium and Matrigel. The antibody h11B6 was conjugated with the chelator CHX-A″-DTPA after which conjugated h11B6 was mixed with 177LuCl3. The incubation was performed at room temperature for 2 h, after which the labeling was terminated and the solution was purified on a NAP-5 column. About 20 MBq 177Lu-h11B6 was injected intravenously in the tail vein. At approximately 10 h postinjection (hpi), the mice were sacrificed and one tumor was collected from each of the five animals and cryosectioned into 10 μm thick slices. The tumor slices were measured and imaged using the DAR MicroImager system and the M3Vision software. Then the absorbed dose rate was calculated using a dose point kernel generated with the Monte Carlo code gate v7.0. The DAR system produced high resolution images of the radioactivity distribution, close to the resolution of single PCa cells. The DAR images revealed a pronounced heterogeneous radioactivity distribution, i.e., count rate per area, in the tumors, indicated by the normalized intensity variations along cross sections as mean ± SD: 0.15 ± 0.15, 0.20 ± 0.18, 0.12

  4. High Productivity Programming of Dense Linear Algebra on Heterogeneous NUMA Architectures

    KAUST Repository

    Alomairy, Rabab M.


    High-end multicore systems with GPU-based accelerators are now ubiquitous in the hardware landscape. Besides dealing with the nontrivial heterogeneous environ- ment, end users should often take into consideration the underlying memory architec- ture to decrease the overhead of data motion, especially when running on non-uniform memory access (NUMA) platforms. We propose the OmpSs parallel programming model approach using its Nanos++ dynamic runtime system to solve the two challeng- ing problems aforementioned, through 1) an innovative NUMA node-aware scheduling policy to reduce data movement between NUMA nodes and 2) a nested parallelism feature to concurrently exploit the resources available from the GPU devices as well as the CPU host, without compromising the overall performance. Our approach fea- tures separation of concerns by abstracting the complexity of the hardware from the end users so that high productivity can be achieved. The Cholesky factorization is used as a benchmark representative of dense numerical linear algebra algorithms. Superior performance is also demonstrated on the symmetric matrix inversion based on Cholesky factorization, commonly used in co-variance computations in statistics. Performance on a NUMA system with Kepler-based GPUs exceeds that of existing implementations, while the OmpSs-enabled code remains very similar to its original sequential version.

  5. Dose prediction accuracy of anisotropic analytical algorithm and pencil beam convolution algorithm beyond high density heterogeneity interface

    Directory of Open Access Journals (Sweden)

    Suresh B Rana


    Full Text Available Purpose: It is well known that photon beam radiation therapy requires dose calculation algorithms. The objective of this study was to measure and assess the ability of pencil beam convolution (PBC and anisotropic analytical algorithm (AAA to predict doses beyond high density heterogeneity. Materials and Methods: An inhomogeneous phantom of five layers was created in Eclipse planning system (version 8.6.15. Each layer of phantom was assigned in terms of water (first or top, air (second, water (third, bone (fourth, and water (fifth or bottom medium. Depth doses in water (bottom medium were calculated for 100 monitor units (MUs with 6 Megavoltage (MV photon beam for different field sizes using AAA and PBC with heterogeneity correction. Combinations of solid water, Poly Vinyl Chloride (PVC, and Styrofoam were then manufactured to mimic phantoms and doses for 100 MUs were acquired with cylindrical ionization chamber at selected depths beyond high density heterogeneity interface. The measured and calculated depth doses were then compared. Results: AAA′s values had better agreement with measurements at all measured depths. Dose overestimation by AAA (up to 5.3% and by PBC (up to 6.7% was found to be higher in proximity to the high-density heterogeneity interface, and the dose discrepancies were more pronounced for larger field sizes. The errors in dose estimation by AAA and PBC may be due to improper beam modeling of primary beam attenuation or lateral scatter contributions or combination of both in heterogeneous media that include low and high density materials. Conclusions: AAA is more accurate than PBC for dose calculations in treating deep-seated tumor beyond high-density heterogeneity interface.

  6. Locus heterogeneity disease genes encode proteins with high interconnectivity in the human protein interaction network

    Directory of Open Access Journals (Sweden)

    Benjamin eKeith


    Full Text Available Mutations in genes potentially lead to a number of genetic diseases with differing severity. These disease genes have been the focus of research in recent years showing that the disease gene population as a whole is not homogeneous, and can be categorised according to their interactions. Locus heterogeneity describes a single disorder caused by mutations in different genes each acting individually to cause the same disease. Using datasets of experimentally derived human disease genes and protein interactions, we created a protein interaction network to investigate the relationships between the products of genes associated with a disease displaying locus heterogeneity, and use network parameters to suggest properties that distinguish these disease genes from the overall disease gene population. Through the manual curation of known causative genes of 100 diseases displaying locus heterogeneity and 397 single-gene Mendelian disorders, we use network parameters to show that our locus heterogeneity network displays distinct properties from the global disease network and a Mendelian network. Using the global human proteome, through random simulation of the network we show that heterogeneous genes display significant interconnectivity. Further topological analysis of this network revealed clustering of locus heterogeneity genes that cause identical disorders, indicating that these disease genes are involved in similar biological processes. We then use this information to suggest novel genes that may also contribute to diseases with locus heterogeneity.

  7. Clinical heterogeneity among people with high functioning autism spectrum conditions: evidence favouring a continuous severity gradient

    Directory of Open Access Journals (Sweden)

    Woodbury-Smith Marc


    Full Text Available Abstract Background Autism Spectrum Conditions (ASCs are characterized by a high degree of clinical heterogeneity, but the extent to which this variation represents a severity gradient versus discrete phenotypes is unclear. This issue has complicated genetic studies seeking to investigate the genetic basis of the high hereditability observed clinically in those with an ASC. The aim of this study was to examine the possible clustering of symptoms associated with ASCs to determine whether the observed distribution of symptom type and severity supported either a severity or a symptom subgroup model to account for the phenotypic variation observed within the ASCs. Methods We investigated the responses of a group of adults with higher functioning ASCs on the fifty clinical features examined in the Autism Spectrum Quotient, a screening questionnaire used in the diagnosis of higher functioning ASCs. In contrast to previous studies we have used this instrument with no a priori assumptions about any underlying factor structure of constituent items. The responses obtained were analyzed using complete linkage hierarchical cluster analysis. For the members of each cluster identified the mean score on each Autism Spectrum Quotient question was calculated. Results Autism Spectrum Quotient responses from a total of 333 individuals between the ages of 16.6 and 78.0 years were entered into the hierarchical cluster analysis. The four cluster solution was the one that generated the largest number of clusters that did not also include very small cluster sizes, defined as a membership comprising 10 individuals or fewer. Examination of these clusters demonstrated that they varied in total Autism Spectrum Quotient but that the profiles across the symptoms comprising the Autism Spectrum Quotient did not differ independently of this severity factor. Conclusion These results are consistent with a unitary spectrum model, suggesting that the clinical heterogeneity observed

  8. Clinical heterogeneity among people with high functioning autism spectrum conditions: evidence favouring a continuous severity gradient (United States)

    Ring, Howard; Woodbury-Smith, Marc; Watson, Peter; Wheelwright, Sally; Baron-Cohen, Simon


    Background Autism Spectrum Conditions (ASCs) are characterized by a high degree of clinical heterogeneity, but the extent to which this variation represents a severity gradient versus discrete phenotypes is unclear. This issue has complicated genetic studies seeking to investigate the genetic basis of the high hereditability observed clinically in those with an ASC. The aim of this study was to examine the possible clustering of symptoms associated with ASCs to determine whether the observed distribution of symptom type and severity supported either a severity or a symptom subgroup model to account for the phenotypic variation observed within the ASCs. Methods We investigated the responses of a group of adults with higher functioning ASCs on the fifty clinical features examined in the Autism Spectrum Quotient, a screening questionnaire used in the diagnosis of higher functioning ASCs. In contrast to previous studies we have used this instrument with no a priori assumptions about any underlying factor structure of constituent items. The responses obtained were analyzed using complete linkage hierarchical cluster analysis. For the members of each cluster identified the mean score on each Autism Spectrum Quotient question was calculated. Results Autism Spectrum Quotient responses from a total of 333 individuals between the ages of 16.6 and 78.0 years were entered into the hierarchical cluster analysis. The four cluster solution was the one that generated the largest number of clusters that did not also include very small cluster sizes, defined as a membership comprising 10 individuals or fewer. Examination of these clusters demonstrated that they varied in total Autism Spectrum Quotient but that the profiles across the symptoms comprising the Autism Spectrum Quotient did not differ independently of this severity factor. Conclusion These results are consistent with a unitary spectrum model, suggesting that the clinical heterogeneity observed in those with an autistic

  9. Clinical heterogeneity among people with high functioning autism spectrum conditions: evidence favouring a continuous severity gradient. (United States)

    Ring, Howard; Woodbury-Smith, Marc; Watson, Peter; Wheelwright, Sally; Baron-Cohen, Simon


    Autism Spectrum Conditions (ASCs) are characterized by a high degree of clinical heterogeneity, but the extent to which this variation represents a severity gradient versus discrete phenotypes is unclear. This issue has complicated genetic studies seeking to investigate the genetic basis of the high hereditability observed clinically in those with an ASC. The aim of this study was to examine the possible clustering of symptoms associated with ASCs to determine whether the observed distribution of symptom type and severity supported either a severity or a symptom subgroup model to account for the phenotypic variation observed within the ASCs. We investigated the responses of a group of adults with higher functioning ASCs on the fifty clinical features examined in the Autism Spectrum Quotient, a screening questionnaire used in the diagnosis of higher functioning ASCs. In contrast to previous studies we have used this instrument with no a priori assumptions about any underlying factor structure of constituent items. The responses obtained were analyzed using complete linkage hierarchical cluster analysis. For the members of each cluster identified the mean score on each Autism Spectrum Quotient question was calculated. Autism Spectrum Quotient responses from a total of 333 individuals between the ages of 16.6 and 78.0 years were entered into the hierarchical cluster analysis. The four cluster solution was the one that generated the largest number of clusters that did not also include very small cluster sizes, defined as a membership comprising 10 individuals or fewer. Examination of these clusters demonstrated that they varied in total Autism Spectrum Quotient but that the profiles across the symptoms comprising the Autism Spectrum Quotient did not differ independently of this severity factor. These results are consistent with a unitary spectrum model, suggesting that the clinical heterogeneity observed in those with an autistic spectrum condition at the higher-IQ end

  10. Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: a high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. (United States)

    Zhang, Chao; Huang, Yi; Yu, Yifu; Zhang, Jingfang; Zhuo, Sifei; Zhang, Bin


    The exploration of a facile strategy to synthesize porous ultrathin nanosheets of non-layered materials, especially with exposed reactive facets, as highly efficient electrocatalysts for the hydrogen evolution reaction (HER), remains challenging. Herein we demonstrate a chemical transformation strategy to synthesize porous CoP ultrathin nanosheets with sub-1.1 nm thickness and exposed {200} facets via phosphidation of Co3O4 precursors. The resultant samples exhibit outstanding electrochemical HER performance: a low overpotential (only 56 and 131 mV are required for current densities of 10 and 100 mA cm(-2), respectively), a small Tafel slope of 44 mV per decade, a good stability of over 20 h, and a high mass activity of 151 A g(-1) at an overpotential of 100 mV. The latter is about 80 times higher than that of CoP nanoparticles. Experimental data and density functional theory calculations reveal that a high proportion of reactive {200} facets, high utilization efficiency of active sites, metallic nature, appropriate structural disorder, facile electron/mass transfer and rich active sites benefiting from the unique ultrathin and porous structure are the key factors for the greatly improved activity. Additionally, this facile chemical conversion strategy can be developed to a generalized method for preparing porous ultrathin nanosheets of CoSe2 and CoS that cannot be obtained using other methods.

  11. Porous Fe2O3 Nanoframeworks Encapsulated within Three-Dimensional Graphene as High-Performance Flexible Anode for Lithium-Ion Battery. (United States)

    Jiang, Tiancai; Bu, Fanxing; Feng, Xiaoxiang; Shakir, Imran; Hao, Guolin; Xu, Yuxi


    Integrating nanoscale porous metal oxides into three-dimensional graphene (3DG) with encapsulated structure is a promising route but remains challenging to develop high-performance electrodes for lithium-ion battery. Herein, we design 3DG/metal organic framework composite by an excessive metal-ion-induced combination and spatially confined Ostwald ripening strategy, which can be transformed into 3DG/Fe2O3 aerogel with porous Fe2O3 nanoframeworks well encapsulated within graphene. The hierarchical structure offers highly interpenetrated porous conductive network and intimate contact between graphene and porous Fe2O3 as well as abundant stress buffer nanospace for effective charge transport and robust structural stability during electrochemical processes. The obtained free-standing 3DG/Fe2O3 aerogel was directly used as highly flexible anode upon mechanical pressing for lithium-ion battery and showed an ultrahigh capacity of 1129 mAh/g at 0.2 A/g after 130 cycles and outstanding cycling stability with a capacity retention of 98% after 1200 cycles at 5 A/g, which is the best results that have been reported so far. This study offers a promising route to greatly enhance the electrochemical properties of metal oxides and provides suggestive insights for developing high-performance electrode materials for electrochemical energy storage.

  12. Growth of zinc cobaltate nanoparticles and nanorods on reduced graphene oxide porous networks toward high-performance supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaling; Zhao, Changhui; Fu, Wenbin; Zhang, Zemin; Zhang, Mingxiang; Zhou, Jinyuan; Pan, Xiaojun, E-mail:; Xie, Erqing


    A type of composite network constructed from zinc cobaltate (ZnCo{sub 2}O{sub 4}) nanoparticles and nanorods on reduced graphene oxide (rGO) nanosheets has been prepared by a facile hydrothermal method. Transmission electron microscope results reveal that the rGO nanosheets are covered by ZnCo{sub 2}O{sub 4} nanoparticles evenly due to the abundant surface functional groups on surface of original GO, and supported by some cross-linked ZnCo{sub 2}O{sub 4} nanorods in the entire structures. With a rational combination, the composite networks present a meso-/macroporous architecture with a larger specific surface area than those of pristine ZnCo{sub 2}O{sub 4} nanorods. As expected, the prepared ZnCo{sub 2}O{sub 4}/rGO electrode exhibits improved electrochemical performances, which shows a high specific capacitance (626 F g{sup −1} at 1 A g{sup −1}), excellent rate capability (81% retention of the initial capacitance at 30 A g{sup −1}), and long-term cycling stability (99.7% retention after 3000 cycles at 10 A g{sup −1}). Such remarkable electrochemical performances of ZnCo{sub 2}O{sub 4}/rGO electrode can be due to the effective pathways for both electronic and ionic transport in these porous networks. - Highlights: • Porous ZnCo{sub 2}O{sub 4}/rGO composite networks can be prepared by a hydrothermal method. • These networks are mainly constructed from ZnCo{sub 2}O{sub 4} nanorods and rGO nanosheets. • The rGO nanosheets are uniformly covered by ZnCo{sub 2}O{sub 4} nanoparticles. • The composite networks can promote capacitive performances as electrode materials.

  13. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others


    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  14. Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jiadeng, E-mail:; Lu, Yao, E-mail:; Chen, Chen, E-mail:; Ge, Yeqian, E-mail:; Jasper, Samuel, E-mail:; Leary, Jennifer D., E-mail:; Li, Dawei, E-mail:; Jiang, Mengjin, E-mail:; Zhang, Xiangwu, E-mail:


    Hematite iron oxide (α-Fe{sub 2}O{sub 3}) is considered to be a prospective anode material for lithium-ion batteries (LIBs) because of its high theoretical capacity (1007 mAh g{sup −1}), nontoxicity, and low cost. However, the low electrical conductivity and large volume change during Li insertion/extraction of α-Fe{sub 2}O{sub 3} hinder its use in practical batteries. In this study, carbon-coated α-Fe{sub 2}O{sub 3} nanofibers, prepared via an electrospinning method followed by a thermal treatment process, are employed as the anode material for LIBs. The as-prepared porous nanofibers with a carbon content of 12.5 wt% show improved cycling performance and rate capability. They can still deliver a high and stable capacity of 715 mAh g{sup −1} even at superior high current density of 1000 mA g{sup −1} after 200 cycles with a large Coulombic efficiency of 99.2%. Such improved electrochemical performance can be assigned to their unique porous fabric structure as well as the conductive carbon coating which shorten the distance for Li ion transport, enhancing Li ion reversibility and kinetic properties. It is, therefore, demonstrated that carbon-coated α-Fe{sub 2}O{sub 3} nanofiber prepared under optimized conditions is a promising anode material candidate for LIBs. - Graphical abstract: Carbon-coated α-Fe{sub 2}O{sub 3} nanofibers are employed as anode material to achieve high and stable electrochemical performance for lithium-ion batteries, enhancing their commercial viability. - Highlights: • α-Fe{sub 2}O{sub 3}/C nanofibers were fabricated by electrospinning and thermal treatment. • α-Fe{sub 2}O{sub 3}/C nanofibers exhibit stable cyclability and good rate capability. • α-Fe{sub 2}O{sub 3}–C nanofibers maintain high capacity at 1000 mA g{sup −1} for 200 cycles. • A capacity retention of 99.2% is achieved by α-Fe{sub 2}O{sub 3}–C nanofibers after 200 cycles.

  15. Nanoscale high-content analysis using compositional heterogeneities of single proteoliposomes

    DEFF Research Database (Denmark)

    Mathiasen, Signe; Christensen, Sune M.; Fung, Juan José


    Proteoliposome reconstitution is a standard method to stabilize purified transmembrane proteins in membranes for structural and functional assays. Here we quantified intrareconstitution heterogeneities in single proteoliposomes using fluorescence microscopy. Our results suggest that compositional...

  16. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures. (United States)

    Douglas, Peter M J; Affek, Hagit P; Ivany, Linda C; Houben, Alexander J P; Sijp, Willem P; Sluijs, Appy; Schouten, Stefan; Pagani, Mark


    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands.

  17. An Improved Discrete-Time Model for Heterogeneous High-Speed Train Traffic Flow (United States)

    Xu, Yan; Jia, Bin; Li, Ming-Hua; Li, Xin-Gang


    This paper aims to present a simulation model for heterogeneous high-speed train traffic flow based on an improved discrete-time model (IDTM). In the proposed simulation model, four train control strategies, including departing strategy, traveling strategy, braking strategy, overtaking strategy, are well defined to optimize train movements. Based on the proposed simulation model, some characteristics of train traffic flow are investigated. Numerical results indicate that the departure time intervals, the station dwell time, the section length, and the ratio of fast trains have different influence on traffic capacity and train average velocity. The results can provide some theoretical support for the strategy making of railway departments. Supported by the National Basic Research Program of China under Grant No. 2012CB725400, the National Natural Science Foundation of China under Grant No. 71222101, the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety under Grant No. RCS2014ZT16, and the Fundamental Research Funds for the Central Universities No. 2015YJS088, Beijing Jiaotong University

  18. Microphysics and heterogeneous chemistry in aircraft plumes - high sensitivity on local meteorology and atmospheric composition

    Directory of Open Access Journals (Sweden)

    S. K. Meilinger


    Full Text Available An aircraft plume model has been developed on the basis of two coupled trajectory box models. Two boxes, one for plume and one for background conditions, are coupled by means of a mixing parameterization based on turbulence theory. The model considers comprehensive gas phase chemistry for the tropopause region including acetone, ethane and their oxidation products. Heterogeneous halogen, N2O5 and HOx chemistry on various types of background and aircraft-induced aerosols (liquid and ice is considered, using state-of-the-art solubility dependent uptake coefficients for liquid phase reactions. The microphysical scheme allows for coagulation, gas-diffusive particle growth and evaporation, so that the particle development from 1s after emission to several days can be simulated. Model results are shown, studying emissions into the upper troposphere as well as into the lowermost stratosphere for contrail and non-contrail conditions. We show the microphysical and chemical evolution of spreading plumes and use the concept of mean plume encounter time, tl, to define effective emission and perturbation indices (EEIs and EPIs for the North Atlantic Flight Corridor (NAFC showing EEI(NOy and EPI(O3 for various background conditions, such as relative humidity, local time of emission, and seasonal variations. Our results show a high sensitivity of EEI and EPIs on the exact conditions under which emissions take place. The difference of EEIs with and without considering plume processes indicates that these processes cannot be neglected.

  19. High Loading of Pd Nanoparticles by Interior Functionalization of MOFs for Heterogeneous Catalysis. (United States)

    Gole, Bappaditya; Sanyal, Udishnu; Banerjee, Rahul; Mukherjee, Partha Sarathi


    In this report, the issue related to nanoparticle (NP) agglomeration upon increasing their loading amount into metal-organic frameworks (MOFs) has been addressed by functionalization of MOFs with alkyne groups. The alkynophilicity of the Pd(2+) (or other noble metals) ions has been utilized successfully for significant loading of Pd NPs into alkyne functionalized MOFs. It has been shown here that the size and loading amount of Pd NPs are highly dependent on the surface area and pore width of the MOFs. The loading amount of Pd NPs was increased monotonically without altering their size distribution on a particular MOF. Importantly, the distinct role of alkyne groups for Pd(2+) stabilization has also been demonstrated by performing a control experiment considering a MOF without an alkyne moiety. The preparation of NPs involved two distinct steps viz. adsorption of metal ions inside MOFs and reduction of metal ions. Both of these steps were monitored by microscopic techniques. This report also demonstrates the applicability of Pd@MOF NPs as extremely efficient heterogeneous catalysts for Heck-coupling and hydrogenation reactions of aryl bromides or iodides and alkenes, respectively.

  20. Chiral Covalent Organic Frameworks with High Chemical Stability for Heterogeneous Asymmetric Catalysis. (United States)

    Han, Xing; Xia, Qingchun; Huang, Jinjing; Liu, Yan; Tan, Chunxia; Cui, Yong


    Covalent organic frameworks (COFs) featuring chirality, stability, and function are of both fundamental and practical interest, but are yet challenging to achieve. Here we reported the metal-directed synthesis of two chiral COFs (CCOFs) by imine-condensations of enantiopure 1,2-diaminocyclohexane with C3-symmetric trisalicylaldehydes having one or zero 3-tert-butyl group. Powder X-ray diffraction and modeling studies, together with pore size distribution analysis demonstrate that the Zn(salen)-based CCOFs possess a two-dimensional hexagonal grid network with AA stacking. Dramatic enhancement in the chemical stability toward acidic (1 M HCl) and basic (9 M NaOH) conditions was observed for the COF incorporated with tert-butyl groups on the pore walls compared to the nonalkylated analog. The Zn(salen) modules in the CCOFs allow for installing multivariate metals into the frameworks by postsynthetic metal exchange. The exchanged CCOFs maintain high crystallinity and porosity and can serve as efficient and recyclable heterogeneous catalysts for asymmetric cyanation of aldehydes, Diels-Alder reaction, alkene epoxidation, epoxide ring-opening, and related sequential reactions with up to 97% ee.

  1. Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage. (United States)

    Ma, Lianbo; Chen, Renpeng; Hu, Yi; Zhu, Guoyin; Chen, Tao; Lu, Hongling; Liang, Jia; Tie, Zuoxiu; Jin, Zhong; Liu, Jie


    To improve the energy storage performance of carbon-based materials, considerable attention has been paid to the design and fabrication of novel carbon architectures with structural and chemical modifications. Herein, we report that hierarchical porous nitrogen-rich carbon (HPNC) nanospheres originating from acidic etching of metal carbide/carbon hybrid nanoarchitectures can be employed as high-performance anode materials for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The structural advantages of HPNC nanospheres are that the exceptionally-high content of nitrogen (17.4 wt%) can provide abundant electroactive sites and enlarge the interlayer distance (∼3.5 Å) to improve the capacity, and the large amount of micropores and mesopores can serve as reservoirs for storing lithium/sodium ions. In LIBs, HPNC based anodes deliver a high reversible capacity of 1187 mA h g-1 after 100 cycles at 100 mA g-1, a great rate performance of 470 mA h g-1 at 5000 mA g-1, and outstanding cycling stabilities with a capacity of 788 mA h g-1 after 500 cycles at 1000 mA g-1. In SIBs, HPNC based anodes exhibit a remarkable reversible capacity of 357 mA h g-1 at 100 mA g-1 and high long-term stability with a capacity of 136 mA h g-1 after 500 cycles at 1000 mA g-1.

  2. Three-dimensional beehive-like hierarchical porous polyacrylonitrile-based carbons as a high performance supercapacitor electrodes (United States)

    Yao, Long; Yang, Guangzhi; Han, Pan; Tang, Zhihong; Yang, Junhe


    Three-dimensional beehive-like hierarchical porous carbons (HPCs) have been prepared by a facile carbonization of polymethylmethacrylate (PMMA)/polyacrylonitrile (PAN) core-shell polymer particle followed by KOH activation. The all-organic porogenic core-shell precursor was synthesized by a simple and green surfactant-free emulsion polymerization. The as-obtained HPCs show favorable features for electrochemical energy storage such as high specific surface area of up to 2085 m2 g-1, high volume of pores up to 1.89 cm3 g-1, hierarchical porosity consisting of micro, meso, and macropores, turbostratic carbon structure, uniform pore size and rich oxygen-doping (21.20%). The supercapacitor performance of HPCs exhibit a high specific capacitance 314 F g-1 at a current density of 0.5 A g-1 and 237 F g-1 at a current density of 20 A g-1, ultra-high rate capability with 83% retention rate from 1 to 20 A g-1 and outstanding cycling stability with 96% capacitance retention after 2000 cycles. The facile, efficient and green synthesis strategy for novel HPCs from polymer sources could find use in supercapacitors, lithium ion batteries, fuel cells and sorbents.

  3. Durable polydopamine-coated porous sulfur core-shell cathode for high performance lithium-sulfur batteries (United States)

    Deng, Yuanfu; Xu, Hui; Bai, Zhaowen; Huang, Baoling; Su, Jingyang; Chen, Guohua


    Lithium-sulfur batteries show fascinating potential for advanced energy system due to their high specific capacity, low-cost, and environmental benignity. However, their wide applications have been plagued by low coulombic efficiency, fast capacity fading and poor rate performance. Herein, a facile method for preparation of S@PDA (PDA = polydopamine) composites with core-shell structure and good electrochemical performance as well as the First-Principles calculations on the interactions of PDA and polysulfides are reported. Taking the advantages of the core-shell structure with porous sulfur core, the high mechanical flexibility of PDA for accommodating the volumetric variation during the discharge/charge processes, the good lithium ion conductivity and the strong chemical interactions between the nitrogen/oxygen atoms with lone electron pair and lithium polysulfides for alleviating their dissolution, the S@PDA composites exhibit high discharge capacities at different current densities (1048 and 869 mAh g-1 at 0.2 and 0.8 A g-1, respectively) and excellent capacity retention capability. A capacity decay as low as 0.021% per cycle and an average coulombic efficiency of 98.5% is observed over a long-term cycling of 890 cycles at 0.8 A g-1. The S@PDA electrode has great potential as a low-cost cathode in high energy Li-S batteries.

  4. Gene expression identifies heterogeneity of metastatic propensity in high-grade soft tissue sarcomas

    DEFF Research Database (Denmark)

    Skubitz, Keith M; Francis, Princy; Skubitz, Amy P N


    Metastatic propensity of soft tissue sarcoma (STS) is heterogeneous and may be determined by gene expression patterns that do not correlate well with morphology. The authors have reported gene expression patterns that distinguish 2 broad classes of clear cell renal carcinoma (ccRCC-gene set......), and other patterns that can distinguish heterogeneity of serous ovarian carcinoma (OVCA-gene set) and aggressive fibromatosis (AF-gene set); however, clinical follow-up data were not available for these samples....

  5. Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Qin [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Xia, Shanhong; Tong, Jianhua [State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Science, Beijing, 100190 (China); Wu, Kangbing, E-mail: [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China)


    It is very challenging to develop highly-sensitive analytical platforms for toxic synthetic colourants that widely added in food samples. Herein, a series of porous carbon (PC) was prepared using CaCO{sub 3} nanoparticles (nano-CaCO{sub 3}) as the hard template and starch as the carbon precursor. Characterizations of scanning electron microscopy and transmission electron microscopy indicated that the morphology and porous structure were controlled by the weight ratio of starch and nano-CaCO{sub 3}. The electrochemical behaviours of four kinds of widely-used food colourants, Sunset yellow, Tartrazine, Ponceau 4R and Allura red, were studied. On the surface of PC samples, the oxidation signals of colourants enhanced obviously, and more importantly, the signal enhancement abilities of PC were also dependent on the starch/nano-CaCO{sub 3} weight ratio. The greatly-increased electron transfer ability and accumulation efficiency were the main reason for the enhanced signals of colourants, as confirmed by electrochemical impedance spectroscopy and chronocoulometry. The prepared PC-2 sample by 1:1 starch/nano-CaCO{sub 3} weight ratio was more active for the oxidation of food colourtants, and increased the signals by 89.4-fold, 79.3-fold, 47.3-fold and 50.7-fold for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. As a result, a highly-sensitive electrochemical sensing platform was developed, and the detection limits were 1.4, 3.5, 2.1 and 1.7 μg L{sup −1} for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. The practical application of this new sensing platform was demonstrated using drink samples, and the detected results consisted with the values that obtained by high-performance liquid chromatography. - Highlights: • PC samples with different morphology and electrochemical activities were prepared. • Highly sensitive electrochemical sensing platform was developed for food colourants. • The accuracy and practicability was testified to be good by HPLC.

  6. Dynamics of spatial heterogeneity of stomatal closure in Tradescantia virginiana altered by growth at high relative air humidity

    NARCIS (Netherlands)

    Rezaei Nejad, A.; Harbinson, J.; Meeteren, van U.


    The spatial heterogeneity of stomatal closure in response to rapid desiccation of excised well-watered Tradescantia virginiana leaves grown at moderate (55%) or high (90%) relative air humidity (RH) was studied using a chlorophyll fluorescence imaging system under non-photorespiratory conditions.

  7. 3D highly heterogeneous thermal model of pineal gland in-vitro study for electromagnetic exposure using finite volume method (United States)

    Cen, Wei; Hoppe, Ralph; Lu, Rongbo; Cai, Zhaoquan; Gu, Ning


    In this paper, the relationship between electromagnetic power absorption and temperature distributions inside highly heterogeneous biological samples was accurately determinated using finite volume method. An in-vitro study on pineal gland that is responsible for physiological activities was for the first time simulated to illustrate effectiveness of the proposed method.

  8. High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers (United States)

    Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas


    Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for

  9. The generation of biomolecular patterns in highly porous collagen-GAG scaffolds using direct photolithography. (United States)

    Martin, Teresa A; Caliari, Steven R; Williford, Paul D; Harley, Brendan A; Bailey, Ryan C


    The extracellular matrix (ECM) is a complex organization of structural proteins found within tissues and organs. Heterogeneous tissues with spatially and temporally modulated properties play an important role in organism physiology. Here we present a benzophenone (BP) based direct, photolithographic approach to spatially pattern solution phase biomolecules within collagen-GAG (CG) scaffolds and demonstrate creation of a wide range of patterns composed of multiple biomolecular species in a manner independent from scaffold fabrication steps. We demonstrate the ability to immobilize biomolecules at surface densities of up to 1000 ligands per square micron on the scaffold strut surface and to depths limited by the penetration depth of the excitation source into the scaffold structure. Importantly, while BP photopatterning does further crosslink the CG scaffold, evidenced by increased mechanical properties and collagen crystallinity, it does not affect scaffold microstructural or compositional properties or negatively influence cell adhesion, viability, or proliferation. We show that covalently photoimmobilized fibronectin within a CG scaffold significantly increases the speed of MC3T3-E1 cell attachment relative to the bare CG scaffold or non-specifically adsorbed fibronectin, suggesting that this approach can be used to improve scaffold bioactivity. Our findings, on the whole, establish the use of direct, BP photolithography as a methodology for covalently incorporating activity-improving biochemical cues within 3D collagen biomaterial scaffolds with spatial control over biomolecular deposition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. High-resolution mapping of the triangle of Koch: Spatial heterogeneity of fast pathway atrionodal connections. (United States)

    Chua, Kelvin; Upadhyay, Gaurav; Lee, Elliot; Aziz, Zaid; Beaser, Andrew; Ozcan, Cevher; Broman, Michael; Nayak, Hemal; Tung, Roderick


    Dedicated mapping studies of the triangle of Koch to characterize retrograde fast pathway activation have not been previously performed using high-resolution, 3-dimensional, multielectrode mapping technology. To delineate the activation pattern and spatial distribution of the retrograde fast pathway within the triangle of Koch during typical atrioventricular nodal reentrant tachycardia (AVNRT) and right ventricular pacing in a consecutive series of patients using the Rhythmia mapping system (Boston Scientific, Natick, MA). A total of 18 patients with symptomatic typical AVNRT referred for ablation underwent ultrahigh-density mapping of atrial activation with minielectrode basket configuration during tachycardia. The earliest atrial activation was mapped using automated annotation, with manual overreading by 2 independent observers. The triangle of Koch was classified into 3 anatomic regions: anteroseptal (His), midseptal, and posteroseptal (coronary sinus roof). Thirteen patients underwent mapping of atrial activation during ventricular pacing. A median of 422 mapping points (interquartile range 258-896 points) was acquired within the triangle of Koch during tachycardia. The most common site of earliest atrial activation within the triangle of Koch was anterior in 67% of patients (n = 12). Midseptal early atrial activation was seen in 17% (n = 3), and posteroseptal activation was observed in 11% (n = 2). One patient exhibited broad simultaneous activation of the entire triangle of Koch. Slow pathway potentials were not identified. With high-resolution multielectrode mapping, atrial activation during typical AVNRT exhibited anatomic variability and spatially heterogeneous activation within the triangle of Koch. These findings highlight the limitations of an anatomically based classification of atrioventricular nodal retrograde pathways. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  11. Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths (United States)

    Bianchi, M.; Zheng, C.; Wilson, C.; Tick, G.R.; Liu, Gaisheng; Gorelick, S.M.


    This study investigates connectivity in a small portion of the extremely heterogeneous aquifer at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. A total of 19 fully penetrating soil cores were collected from a rectangular grid of 4 m by 4 m. Detailed grain size analysis was performed on 5 cm segments of each core, yielding 1740 hydraulic conductivity (K) estimates. Three different geostatistical simulation methods were used to generate 3-D conditional realizations of the K field for the sampled block. Particle tracking calculations showed that the fastest particles, as represented by the first 5% to arrive, converge along preferential flow paths and exit the model domain within preferred areas. These 5% fastest flow paths accounted for about 40% of the flow. The distribution of preferential flow paths and particle exit locations is clearly influenced by the occurrence of clusters formed by interconnected cells with K equal to or greater than the 0.9 decile of the data distribution (10% of the volume). The fraction of particle paths within the high-K clusters ranges from 43% to 69%. In variogram-based K fields, some of the fastest paths are through media with lower K values, suggesting that transport connectivity may not require fully connected zones of relatively homogenous K. The high degree of flow and transport connectivity was confirmed by the values of two groups of connectivity indicators. In particular, the ratio between effective and geometric mean K (on average, about 2) and the ratio between the average arrival time and the arrival time of the fastest particles (on average, about 9) are consistent with flow and advective transport behavior characterized by channeling along preferential flow paths. ?? 2011 by the American Geophysical Union.

  12. Integration of metal organic chemical vapour deposition and wet chemical techniques to obtain highly ordered porous ZnO nanoplatforms. (United States)

    Fragalà, Maria Elena; Aleeva, Yana; Satriano, Cristina


    Large-area, highly ordered ZnO micropores-arrays consisting of ZnO nanotubes delimited by ZnO nanorods have been successfully fabricated and tested for protein sensing applications. ZnO seed layers have been deposited by Metal Organic Chemical Vapour Deposition and readily patterned by Colloidal Lithography to attain ZnO nanorods growth at selective sites by Chemical Bath Deposition. The used synthetic approach has been proven effective for the easy assembly of ZnO nanoplatforms into high-density arrays. Both patterned and unpatterned ZnO nanorods have been morphologically and compositionally characterised and, thus, tested for model studies of protein mobility at the interface. The patterned layers, having a higher contribution of surface polar moieties than the corresponding unpatterned surfaces, exhibit a reduced lateral diffusion of the adsorbed protein. This evidence is related to the intrinsic porous nature of the ZnO hemispherical arrays characterised by a nanotube-nanorod hybrid networks. The present study gives a great impetus to the fabrication of tunable ZnO nanoplatforms having multiple morphologies and exceptionally high surface areas suitable for application in sensing devices.

  13. Direct separation of arsenic and antimony oxides by high-temperature filtration with porous FeAl intermetallic. (United States)

    Zhang, Huibin; Liu, Xinli; Jiang, Yao; Gao, Lin; Yu, Linping; Lin, Nan; He, Yuehui; Liu, C T


    A temperature-controlled selective filtration technology for synchronous removal of arsenic and recovery of antimony from the fume produced from reduction smelting process of lead anode slimes was proposed. The chromium (Cr) alloyed FeAl intermetallic with an asymmetric pore structure was developed as the high-temperature filter material after evaluating its corrosive resistance, structural stability and mechanical properties. The results showed that porous FeAl alloyed with 20wt.% Cr had a long term stability in a high-temperature sulfide-bearing environment. The separation of arsenic and antimony trioxides was realized principally based on their disparate saturated vapor pressures at specific temperature ranges and the asymmetric membrane of FeAl filter elements with a mean pore size of 1.8μm. Pilot-scale filtration tests showed that the direct separation of arsenic and antimony can be achieved by a one-step or two-step filtration process. A higher removal percentage of arsenic can reach 92.24% at the expense of 6∼7% loss of antimony in the two-step filtration process at 500∼550°C and 300∼400°C. The FeAl filters had still good permeable and mechanical properties with 1041h of uninterrupted service, which indicates the feasibility of this high-temperature filtration technology. Copyright © 2017. Published by Elsevier B.V.

  14. Optimization of macropore evolution towards high photocatalytic activity enhancement in meso/macro porous Anatase TiO2 (United States)

    Nair, Radhika V.; Gayathri, P. K.; Siva Gummaluri, Venkata; Vijayan, C.


    We report on an optimization strategy for macro pore evolution leading to the design of highly photocatalytic 3D hierarchical meso/macroporous TiO2 via much simpler, faster and cost effective synthesis scheme. Meso/macro porous TiO2 is an excellent candidate material for photocatalytic applications owing to the availability of internal surfaces as active sites for redox reactions. The current research scenario focuses on the design of highly efficient photocatalytic systems as well as rapid, facile and cost effective methods of synthesis and optimization of parameters. The present report is on the gradual evolution of macropores in anatase TiO2 by the effective control of pH of the solvent, reaction time, temperature, solvent ratio and reactant concentration via a facile hydrothermal method in this regard. 3D hierarchical macroporous structures are obtained at pH 7 within a comparatively short reaction time of 5 h and demonstrated to be highly photocatalytic (with rate constant four times that of P25 nanoparticles) through photodegradation of Rhodamine B dye.

  15. N- and O-doped hollow carbonaceous spheres with hierarchical porous structure for potential application in high-performance capacitance (United States)

    Chen, Ze; Cao, Rui; Ge, Yuanhang; Tu, Yingfeng; Xia, Yu; Yang, Xiaoming


    Hollow carbonaceous spheres (HCSs) have been extensively investigated due to their valuable potentials in the applications of energy storage devices such as solar cells, fuel cells, and supercapacitors. It is highly desirable to develop abundant pore structures and introduce heteroatoms in the resultant HCSs to improve capacitance of the devices. Herein, N-, and O-doped HCSs with macro/micro/mesoporous structures are successfully prepared by one-step carbonization of polypyrrole coated polystyrene nanoparticles followed by chemical activation with KOH. The huge specific surface area (up to 935 m2 g-1) and hierarchical porous structures can effectively facilitate the transportation and exchange of ions and electrons. Besides, high heteroatom content (∼30%) are believed to provide pseudocapacitance contributed from the redox faradic reactions of these electrochemically active functional groups. The as-prepared activated HCSs possess a high capacitance of 535 F g-1 at a current density of 0.2 A g-1, and maintains 55% of the highest capacitance even at a current density of 10 A g-1. The newly prepared HCSs thus show great potential as the electrode materials of supercapacitors.

  16. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance (United States)

    Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi


    Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm-2 & 19.1 Wh Kg-1 and 194 mF cm-2 & 4.5 Wh Kg-1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm-2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices.

  17. Highly efficient and porous TiO{sub 2}-coated Ag@Fe{sub 3}O{sub 4}@C-Au microspheres for degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Mao, E-mail:; Chen, Suqing, E-mail:; Jia, Wenping, E-mail: [Taizhou University, College of Pharmaceutical and Chemical Engineering (China); Fan, Guodong, E-mail: [Shan xi University of Science and Technology, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education (China); Jin, Yanxian, E-mail:; Liang, Huading, E-mail: [Taizhou University, College of Pharmaceutical and Chemical Engineering (China)


    In this paper, we reported a novel hierarchical porous Ag@Fe{sub 3}O{sub 4}@C-Au@TiO{sub 2} core@shell microspheres with a highly photocatalytic activity and magnetically separable properties. The synthesis method is included of a Fe{sub 3}O{sub 4} magnetic embedded Ag core (Ag@Fe{sub 3}O{sub 4}), an interlayer of carbon modified by PEI to form sufficient amounts of amine functional groups (Ag@Fe{sub 3}O{sub 4}@C-PEI), the grafting of Au nanoparticles on the surface of Ag@Fe{sub 3}O{sub 4}@C-PEI (Ag@Fe{sub 3}O{sub 4}@C-Au), and an ordered porous TiO{sub 2} structured shell. As an example of the applications, the photocatalytic activities of the samples were investigated by the reduction of Rhodamine B (RhB) under visible-light irradiation. The results show that the porous Ag@Fe{sub 3}O{sub 4}@C-Au@TiO{sub 2} core@shell microspheres display higher adsorption and photocatalytic activities compared to the pure porous TiO{sub 2} and Ag@Fe{sub 3}O{sub 4}@C@TiO{sub 2} microspheres, which are attributed to the local surface plasmon resonance (LSPR) by the Ag and Au nanoparticles and the high specific surface area.

  18. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts and Single Cells Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hui [Iowa State Univ., Ames, IA (United States)


    Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitably designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.

  19. Cerâmicas porosas para aplicação em altas temperaturas Porous ceramics for high temperature applications

    Directory of Open Access Journals (Sweden)

    M. O. C. Villas Bôas


    Full Text Available Com o objetivo de reduzir o consumo energético, tem crescido o uso de cerâmicas refratárias porosas como isolantes térmicos para altas temperaturas. Entre as técnicas comumente empregadas na produção desses materiais (como a adição de surfactante e incorporação de orgânicos, destaca-se aquela baseada na geração de poros por meio de transformações de fase. Comparada às outras técnicas, esse processo se mostra bastante simples e sem geração de voláteis tóxicos. Neste trabalho, essa técnica foi utilizada para produzir porosos por meio da decomposição de hidróxidos de alumínio e alumínio-magnésio, e da posterior reação de espinelização, que os estabiliza e impede sua densificação acima de 1000 ºC. Verificou-se que o uso de hidróxidos complexos resulta em maior volume de poros, resistência mecânica e refratariedade que sua utilização isolada.In order to reduce the energy consumption, the use of porous refractory ceramics as high-temperature insulating materials has grown significantly. Among the techniques employed in the production of these materials, such as the addition of foam and organic compounds, the generation of pores by phase transformation presents great technological interest, due to its easy processing route and lack of toxic volatiles. In the present work, this technique was employed to produce porous ceramics by the decomposition of aluminum and aluminum-magnesium hydroxides. The in-situ spinelization reaction reduces the densification at high temperatures. It was verified that the use of complex hydroxides generates greater porosity, mechanical strength and refractoriness.

  20. Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors (United States)

    Wang, Zhen; Tan, Yongtao; Yang, Yunlong; Zhao, Xiaoning; Liu, Ying; Niu, Lengyuan; Tichnell, Brandon; Kong, Lingbin; Kang, Long; Liu, Zhen; Ran, Fen


    In this work, biomass pomelo peel is used to fabricate the porous activated carbon microsheets, and diammonium hydrogen phosphate (DHP) is employed to dual-dope carbon with nitrogen and phosphorus elements. With the benefit of DHP inducement and dual-doping of nitrogen and phosphorus, the prepared carbon material has a higher carbon yield, and exhibits higher specific surface area (about 807.7 m2/g), and larger pore volume (about 0.4378 cm3/g) with hierarchically structure of interconnected thin microsheets compared to the pristine carbon. The material exhibits not only high specific capacitance (240 F/g at 0.5 A/g), but also superior cycling performance (approximately 100% of capacitance retention after 10,000 cycles at 2 A/g) in 2 M KOH aqueous electrolyte. Furthermore, the assembled symmetric electrochemical capacitor in 1 M Na2SO4 aqueous electrolyte exhibits a high energy density of 11.7 Wh/kg at a power density of 160 W/kg.

  1. ZnO-dotted porous ZnS cluster microspheres for high efficient, Pt-free photocatalytic hydrogen evolution (United States)

    Wu, Aiping; Jing, Liqiang; Wang, Jianqiang; Qu, Yang; Xie, Ying; Jiang, Baojiang; Tian, Chungui; Fu, Honggang


    The Pt-free photocatalytic hydrogen evolution (PHE) has been the focus in the photocatalysis field. Here, the ZnO-dotted porous ZnS cluster microsphere (PCMS) is designed for high efficient, Pt-free PHE. The PCMS is designed through an easy “controlling competitive reaction” strategy by selecting the thiourea as S2− source and Zn(Ac)2·2H2O as Zn source in ethylene glycol medium. Under suitable conditions, one of the PCMS, named PCMS-1, with high SBET specific area of 194 m2g−1, microsphere size of 100 nm and grain size of 3 nm can be obtained. The formation of PCMS is verified by TEM, XAES, XPS, Raman and IR methods. Importantly, a series of the experiments and theoretical calculation demonstrate that the dotting of ZnO not only makes the photo-generated electrons/hole separate efficiently, but also results in the formation of the active catalytic sites for PHE. As a result, the PCMS-1 shows the promising activity up to 367 μmol h−1 under Pt-free condition. The PHE activity has no obvious change after addition 1 wt.% Pt, implying the presence of active catalytic sites for hydrogen evolution in the PCMS-1. The easy synthesis process, low preparation cost of the PCMS makes their large potential for Pt-free PHE. PMID:25748688

  2. Development and characterization of fluorine tin oxide electrodes modified with high area porous thin films containing gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, Carmen, E-mail: carmen.quintana@uam.e [Dpto. Quimica Analitica y Analisis Instrumental. Facultad de Ciencias. Universidad Autonoma de Madrid. Cantoblanco. 28049-Madrid (Spain); Atienzar, Pedro; Budroni, Gerolamo [Instituto de Tecnologia Quimica de Valencia, UPV-CSIC, Universidad Politecnica de Valencia, Av. de los Naranjos s/n, 46022-Valencia (Spain); Mora, Laura; Hernandez, Lucas [Dpto. Quimica Analitica y Analisis Instrumental. Facultad de Ciencias. Universidad Autonoma de Madrid. Cantoblanco. 28049-Madrid (Spain); Garcia, Hermenegildo; Corma, Avelino [Instituto de Tecnologia Quimica de Valencia, UPV-CSIC, Universidad Politecnica de Valencia, Av. de los Naranjos s/n, 46022-Valencia (Spain)


    Different electrode materials are prepared using fluoride doped tin oxide (FTO) electrodes modified with high area porous thin films of metal oxides containing gold nanoparticles. Three different metal oxides (TiO{sub 2}, MgO and SnO{sub 2}) have been assayed to this end. The effect of the metal oxide nature and gold loading on the structure and performance of the modified electrodes was examined by Scanning Electron Microscopy, Transmission Electron Microscopy, X-Ray Diffraction (XRD), Diffuse Reflectance Spectroscopy and electrochemical techniques. XRD measurements reveal that MgO electrodes present the smallest gold nanoparticles after the sintering step however, the electrochemical response of these electrodes shows important problems of mass transport derived from the high porosity of these materials (Brunauer Emmett Teller area of 125 m{sup 2}/g). The excellent sintering properties of titania nanoparticles result in robust films attached to the FTO electrodes which allow more reliable and reproducible results from an electroanalytical point of view.

  3. Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: Design and analysis

    Directory of Open Access Journals (Sweden)

    Bikash Kumar Paul


    Full Text Available A micro structure folded cladding porous shaped with circular air hole photonic crystal fiber (FP-PCF is proposed and numerically investigated in a broader wavelength range from 1.4 µm to 1.64 µm (E+S+C+L+U for chemical sensing purposes. Employing finite element method (FEM with anisotropic perfectly matched layer (PML various properties of the proposed FP-PCF are numerically inquired. Filling the hole of core with aqueous analyte ethanol (n = 1.354 and tuning different geometric parameters of the fiber, the sensitivity order of 64.19% and the confinement loss of 2.07 × 10-5 dB/m are attained at 1.48 µm wavelength in S band. The investigated numerical simulation result strongly focuses on sensing purposes; because this fiber attained higher sensitivity with lower confinement loss over the operating wavelength. Measuring time of sensitivity, simultaneously confinement loss also inquired. It reflects that confinement loss is highly dependable on PML depth but not for sensitivity. Beside above properties numerical aperture (NA, nonlinearity, and effective area are also computed. This FP-PCF also performed as sensor for other alcohol series (methanol, propanol, butanol, pentanol. Optimized FP-PCF shows higher sensitivity and low confinement loss carrying high impact in the area of chemical as well as gas sensing purposes. Surely it is clear that install such type of sensor will flourish technology massively.

  4. Eliminating micro-porous layer from gas diffusion electrode for use in high temperature polymer electrolyte membrane fuel cell (United States)

    Su, Huaneng; Xu, Qian; Chong, Junjie; Li, Huaming; Sita, Cordellia; Pasupathi, Sivakumar


    In this work, we report a simple strategy to improve the performance of high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) by eliminating the micro-porous layer (MPL) from its gas diffusion electrodes (GDEs). Due to the absence of liquid water and the general use of high amount of catalyst, the MPL in a HT-PEMFC system works limitedly. Contrarily, the elimination of the MPL leads to an interlaced micropore/macropore composited structure in the catalyst layer (CL), which favors gas transport and catalyst utilization, resulting in a greatly improved single cell performance. At the normal working voltage (0.6 V), the current density of the GDE eliminated MPL reaches 0.29 A cm-2, and a maximum power density of 0.54 W cm-2 at 0.36 V is obtained, which are comparable to the best results yet reported for the HT-PEMFCs with similar Pt loading and operated using air. Furthermore, the MPL-free GDE maintains an excellent durability during a preliminary 1400 h HT-PEMFC operation, owing to its structure advantages, indicating the feasibility of this electrode for practical applications.

  5. Nanofiber-deposited porous platinum enables glucose fuel cell anodes with high current density in body fluids (United States)

    Frei, Maxi; Erben, Johannes; Martin, Julian; Zengerle, Roland; Kerzenmacher, Sven


    The poisoning of platinum anodes by body-fluid constituents such as amino acids is currently the main hurdle preventing the application of abiotic glucose fuel cells as battery-independent power supply for medical implants. We present a novel anode material that enables continuous operation of glucose oxidation anodes in horse serum for at least 30 days at a current density of (7.2 ± 1.9) μA cm-2. The fabrication process is based on the electro-deposition of highly porous platinum onto a 3-dimensional carbon nanofiber support, leading to approximately 2-fold increased electrode roughness factors (up to 16500 ± 2300). The material's superior performance is not only related to its high specific surface area, but also to an improved catalytic activity and/or poisoning resistance. Presumably, this results from the micro- and nanostructure of the platinum deposits. This represents a major step forward in the development of implantable glucose fuel cells based on long-term stable platinum electrodes.

  6. A nickel hydroxide-coated 3D porous graphene hollow sphere framework as a high performance electrode material for supercapacitors. (United States)

    Zhang, Fengqiao; Zhu, Dong; Chen, Xi'an; Xu, Xin; Yang, Zhi; Zou, Chao; Yang, Keqin; Huang, Shaoming


    A three-dimensional (3D) porous graphene hollow sphere (PGHS) framework has been fabricated via a hard template method and used to anchor α-Ni(OH)2 nanoparticles with the size of about 4 nm through electrochemical deposition. It is found that a 3D PGHS framework can improve the capacitive performance of Ni(OH)2 effectively. In hybrid materials, α-Ni(OH)2 achieves the high specific capacitance of 2815 F g(-1) at a scan rate of 5 mV s(-1) and 1950 F g(-1) even at 200 mV s(-1) with a capacitance retention of about 70%, indicating that the α-Ni(OH)2-coated 3D PGHS framework exhibits high rate capability. The excellent performance of such hybrid material is believed to be due to the smaller size of Ni(OH)2 nanoparticles and the PGHS framework with large specific surface area promoting efficient electron transport and facilitating the electrolyte ions migration. These impressive results suggest that the composite is a promising electrode material for an efficient supercapacitor.

  7. Boric acid-mediated B,N-codoped chitosan-derived porous carbons with a high surface area and greatly improved supercapacitor performance (United States)

    Ling, Zheng; Wang, Gang; Zhang, Mengdi; Fan, Xiaoming; Yu, Chang; Yang, Juan; Xiao, Nan; Qiu, Jieshan


    This work reports an efficient strategy to synthesize B,N-codoped porous carbons with a high specific surface area using chitosan as the carbon precursor with the help of boric acid, featuring a high specific capacitance, large operation voltage and excellent cycle stability for supercapacitors.This work reports an efficient strategy to synthesize B,N-codoped porous carbons with a high specific surface area using chitosan as the carbon precursor with the help of boric acid, featuring a high specific capacitance, large operation voltage and excellent cycle stability for supercapacitors. Electronic supplementary information (ESI) available: Experimental details, additional figures and tables see DOI: 10.1039/c5nr00081e

  8. Highly Stable Porous Covalent Triazine-Piperazine Linked Nanoflower as a Feasible Adsorbent for Flue Gas CO2 Capture

    KAUST Repository

    Das, Swapan Kumar


    Here, we report a porous covalent triazine-piperazine linked polymer (CTPP) featuring 3D nanoflower morphology and enhanced capture/removal of CO2, CH4 from air (N2), essential to control greenhouse gas emission and natural gas upgrading. 13C solid-state NMR and FTIR analyses and CHN and X-ray photoelectron spectroscopy (XPS) elemental analyses confirmed the integration of triazine and piperazine components in the network. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) analyses revealed a relatively uniform particle size of approximately 400 to 500 nm with 3D nanoflower microstructure, which was formed by the self-assembly of interwoven and slight bent nanoflake components. The material exhibited outstanding chemical robustness under acidic and basic medium and high thermal stability up to 773 K. The CTPP possess high surface area (779 m2/g) and single-component gas adsorption study exhibited enhanced CO2 and CH4 uptake of 3.48 mmol/g, 1.09 mmol/g, respectively at 273 K, 1 bar; coupled with high sorption selectivities for CO2/N2 and CH4/N2 of 128 and 17, respectively. The enriched Lewis basicity of the CTPP favors the interaction with CO2, which results in an enhanced CO2 adsorption capacity and high CO2/N2 selectivity. The binary mixture breakthrough study for the flue gas composition at 298 K showed a high CO2/N2 selectivity of 82. CO2 heats of adsorption for the CTPP (34 kJ mol−1) were realized at the borderline between strong physisorption and weak chemisorption (QstCO2; 25−50 kJ mol−1) and low Qst value for N2 (22.09 kJ mol−1), providing the ultimate validation for the high selectivity of CO2 over N2.

  9. Spatial heterogeneity of denitrification genes in a highly homogenous urban stream. (United States)

    Knapp, Charles W; Dodds, Walter K; Wilson, Kymberly C; O'Brien, Jonathan M; Graham, David W


    Human modification of natural streams by urbanization has led to more homogeneous channel surfaces; however, the influence of channel simplification on in situ microbial distribution and function is poorly characterized. For example, denitrification, a microbial process that reduces soluble nitrogen (N) levels, requires peripheral anoxic zones that might be lost in artificial channels such as those with a concrete lining. To examine how microbial function might be influenced by channel simplification, we quantified denitrification rates and conditions in microbial mats within an urban concrete channel. We quantified spatial and diurnal patterns of nitrate uptake, diurnal dissolved oxygen (DO) levels, and nutrient conditions, along with the spatial distribution of DO, solids, chlorophyll a, and genes associated with denitrification (nirS and nirK), ammonia-oxidizing bacteria (AOB), cyanobacteria, and algal chloroplasts. Despite the channel being superficially homogeneous, nir genes were distributed in a patchy manner. Two types of gene patches were observed: one associated with nirK, which had diurnally variable DO levels and high nocturnal nitrate uptake rates, and the other associated with nirS, which had elevated AOB genes, thicker layers of mud, and an apparent 24 h nitrate uptake. All active nir patches had elevated microbial photosynthetic genes. Results implythat even artificial channels, with reduced macroscale heterogeneity, can sustain significant rates of denitrification, although the responsible communities vary with space and time. This patchiness has significant implications to extending local data to landscape level predictions and field sampling strategies but also suggests alternate channel designs to increase N retention rates.

  10. High prevalence of diabetes and anthropometric heterogeneity among tuberculosis patients in Pakistan. (United States)

    Aftab, Huma; Ambreen, Atiqa; Jamil, Mohammad; Garred, Peter; Petersen, Jørgen H; Nielsen, Susanne D; Bygbjerg, Ib C; Christensen, Dirk L


    In Pakistan, the prevalence of diabetes (DM) among adults is 6.9% and expected to double by 2040. DM may facilitate transmission and halter the elimination of tuberculosis (TB). We aimed to determine the prevalence of DM among patients with TB in Pakistan, and to investigate anthropometric biochemical and haemodynamic associations between TB patients with and without DM. We conducted a cross-sectional study at Gulab Devi Chest Hospital in Lahore, Punjab. A total of 3027 newly diagnosed smear-positive TB patients ≥25 years of age were screened for DM by HbA1c regardless of previous DM history. The prevalence of screen-detected DM and known DM among the TB participants was 13.5% and 26.1%, respectively, resulting in a combined DM prevalence of 39.6%. Most participants were male (64.4%). Using bivariate analyses, participants with DM were significantly older (49.8 vs. 40.6 years) with higher haemoglobin (men, 12.1 vs. 11.8 g/dl, women 11.5 vs. 10.7 g/dl), body mass index (21.0 vs. 17.6 kg/m2 ) and waist-hip ratio (men, 0.87 vs. 0.81, women, 0.87 vs. 0.79) (all P < 0.05) than participants without DM. Stratifying by screen-detected and known DM, these differences remained significant when using multivariate analysis. We report a high prevalence of DM among patients with TB who may be anthropometrically and biochemically distinct from TB patients without DM, and this heterogeneity further transcends the different DM groups. © 2017 John Wiley & Sons Ltd.

  11. Blasting methods for heterogeneous rocks in hillside open-pit mines with high and steep slopes (United States)

    Chen, Y. J.; Chang, Z. G.; Chao, X. H.; Zhao, J. F.


    In the arid desert areas in Xinjiang, most limestone quarries are hillside open-pit mines (OPMs) where the limestone is hard, heterogeneous, and fractured, and can be easily broken into large blocks by blasting. This study tried to find effective technical methods for blasting heterogeneous rocks in such quarries based on an investigation into existing problems encountered in actual mining at Hongshun Limestone Quarry in Xinjiang. This study provided blasting schemes for hillside OPMs with different heights and slopes. These schemes involve the use of vertical deep holes, oblique shallow holes, and downslope hole-by-hole sublevel or simultaneous detonation techniques. In each bench, the detonations of holes in a detonation unit occur at intervals of 25-50 milliseconds. The research findings can offer technical guidance on how to blast heterogeneous rocks in hillside limestone quarries.

  12. Development of a phantom to validate high-dose-rate brachytherapy treatment planning systems with heterogeneous algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Eduardo S., E-mail: [Department of Medical Physics, University of Wisconsin–Madison, Madison, Wisconsin 53705 and Instituto de Pesquisas Energéticas e Nucleares—IPEN-CNEN/SP, São Paulo 05508-000 (Brazil); Micka, John A.; Hammer, Cliff G.; Culberson, Wesley S.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin–Madison, Madison, Wisconsin 53705 (United States); Rostelato, Maria Elisa C. M.; Zeituni, Carlos A. [Instituto de Pesquisas Energéticas e Nucleares—IPEN-CNEN/SP, São Paulo 05508-000 (Brazil)


    Purpose: This work presents the development of a phantom to verify the treatment planning system (TPS) algorithms used for high-dose-rate (HDR) brachytherapy. It is designed to measure the relative dose in a heterogeneous media. The experimental details used, simulation methods, and comparisons with a commercial TPS are also provided. Methods: To simulate heterogeneous conditions, four materials were used: Virtual Water™ (VM), BR50/50™, cork, and aluminum. The materials were arranged in 11 heterogeneity configurations. Three dosimeters were used to measure the relative response from a HDR {sup 192}Ir source: TLD-100™, Gafchromic{sup ®} EBT3 film, and an Exradin™ A1SL ionization chamber. To compare the results from the experimental measurements, the various configurations were modeled in the PENELOPE/penEasy Monte Carlo code. Images of each setup geometry were acquired from a CT scanner and imported into BrachyVision™ TPS software, which includes a grid-based Boltzmann solver Acuros™. The results of the measurements performed in the heterogeneous setups were normalized to the dose values measured in the homogeneous Virtual Water™ setup and the respective differences due to the heterogeneities were considered. Additionally, dose values calculated based on the American Association of Physicists in Medicine-Task Group 43 formalism were compared to dose values calculated with the Acuros™ algorithm in the phantom. Calculated doses were compared at the same points, where measurements have been performed. Results: Differences in the relative response as high as 11.5% were found from the homogeneous setup when the heterogeneous materials were inserted into the experimental phantom. The aluminum and cork materials produced larger differences than the plastic materials, with the BR50/50™ material producing results similar to the Virtual Water™ results. Our experimental methods agree with the PENELOPE/penEasy simulations for most setups and dosimeters. The

  13. Analysis of Porous Structure Parameters of Biomass Chars Versus Bituminous Coal and Lignite Carbonized at High Pressure and Temperature—A Chemometric Study

    Directory of Open Access Journals (Sweden)

    Adam Smoliński


    Full Text Available The characteristics of the porous structure of carbonized materials affect their physical properties, such as density or strength, their sorption capacity, and their reactivity in thermochemical processing, determining both their applicability as fuels or sorbents and their efficiency in various processes. The porous structure of chars is shaped by the combined effects of physical and chemical properties of a carbonaceous material and the operating parameters applied in the carbonization process. In the study presented, the experimental dataset covering parameters of various fuels, ranging from biomass through lignite to bituminous coal, and chars produced at 1273 K and under the pressure of 1, 2, 3, and 4 MPa was analyzed with the application of the advanced method of data exploration. The principal component analysis showed that the sample of the highest coal rank was characterized by lower values of parameters reflecting the development of the porous structure of chars. A negative correlation was also observed between the carbon content in a fuel and the evolution of the porous structure of chars at high pressure. The highest total pore volume of chars produced under 1 and 3 MPa and the highest micropore surface area under 3 MPa were reported for a carbonized fuel sample of the highest moisture content.

  14. Simple template fabrication of porous MnCo2O4 hollow nanocages as high-performance cathode catalysts for rechargeable Li-O2 batteries (United States)

    Cao, Y. L.; Lv, F. C.; Yu, S. C.; Xu, J.; Yang, X.; Lu, Z. G.


    Porous MnCo2O4 hollow nanocages have been fabricated via a simple template method using carbon spheres as a template. The hydrophilic surface of carbon spheres can adsorb Mn2+ and Co2+ ions simultaneously to form Mn,Co-adsorbed carbon spheres. The calcination of Mn,Co-adsorbed carbon spheres can result in porous hollow nanocages of MnCo2O4. The MnCo2O4 hollow nanocages are built by nanoscale MnCo2O4 crystals. Because of the unique porous hollow nanostructures, the resulting MnCo2O4/KB cathode shows an efficient electrocatalytic performance in LiTFSI/TEGDME electrolyte-based Li-O2 batteries. The MnCo2O4 hollow nanocages as the cathode catalysts can deliver better performance during the discharge/charge processes and good cycle stability compared with that of the pure KB carbon. The preliminary results manifest that porous MnCo2O4 hollow nanocages are promising high-performance cathode catalysts for Li-O2 batteries. This template technique is a simple, general, low-cost and controllable method and can be extended to prepare other transition metal oxide hollow nanostructures.

  15. Experimental studies on the enhanced flow boiling heat transfer and pressure drop of organic fluid with high saturation temperature in vertical porous coated tube (United States)

    Yang, Dong; Shen, Zhi; Chen, Tingkuan; Zhou, Chenn Q.


    The characteristics of flow boiling heat transfer and pressure drop of organic fluid with high saturation temperature in a vertical porous coated tube are experimentally studied in this paper. The experiments are performed at evaporation pressure of 0.16-0.31MPa, mass flux of 390-790kg/m2s, and vapor quality of 0.06-0.58. The variations of heat transfer coefficient and pressure drop with vapor quality are measured and compared to the results of smooth tube. Boiling curves are generated at mass flux of 482 and 675kg/m2s. The experimental results indicate that the heat transfer coefficients of the porous tube are 1.8-3.5 times those of smooth tube, and that the frictional pressure drops of the porous tube are 1.1-2.9 times those of smooth tube. The correlations for heat transfer coefficient and frictional pressure drop are derived, in which the effect of fluid molecular weight is included. The experiments show that significant heat transfer enhancement is accompanied by a little pressure drop penalty, the application of the porous coated tube is promising in the process industries.

  16. Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity. (United States)

    Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina


    In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.

  17. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors (United States)

    Zou, Kaixiang; Deng, Yuanfu; Chen, Juping; Qian, Yunqian; Yang, Yuewang; Li, Yingwei; Chen, Guohua


    Nitrogen-doped carbon with an ultra-high specific surface area and a hierarchically interconnected porous structure is synthesized in large scale from a green route, that is, the activation of bagasse via a one-step method using KOH and urea. KOH and urea play a synergistic effect for the enhancement of the specific surface area and the modification of pore size of the as-prepared material. Benefiting from the multiple synergistic roles originated from an ultra-high specific area (2905.4 m2 g-1), a high porous volume (2.05 mL g-1 with 75.6 vol% micropores, which is an ideal proportion of micropores for obtaining high specific capacitance), a suitable nitrogen content (2.63 wt%), and partial graphitization, the hierarchically interconnected porous N-doped carbon exhibits an excellent electrochemical performance with a high specific capacitance (350.8, 301.9, and 259.5 F g-1 at 1.0 A g-1 in acidic, alkaline, and neutral electrolytes, respectively), superior rate capability and excellent cycling stability (almost no capacitance loss up to 5000 cycles). Furthermore, the symmetric device assembled by this material achieves high energy densities of 39.1 and 23.5 Wh kg-1 at power densities of 1.0 and 20 kW kg-1, respectively, and exhibits an excellent long-term cycling stability (with capacitance retention above 95.0% after 10 000 cycles).

  18. Porous Fe-Nx/C hybrid derived from bi-metal organic frameworks as high efficient electrocatalyst for oxygen reduction reaction (United States)

    Wu, Yijin; Zhao, Shenlong; Zhao, Kun; Tu, Tengxiu; Zheng, Jianzhong; Chen, Jie; Zhou, Haifeng; Chen, Dejian; Li, Shunxing


    A simple, low-cost and large-scale synthesis method for the carbonized porous cubes (CPCs) containing Fe and N co-doped porous carbon hybrid (Fe-Nx/C) with controlled-morphology, uniform elemental distribution and well-defined pore size is developed by pyrolyzing bimetallic FeIII-modified IRMOF-3 cubes in Argon atmosphere at 800 °C. Furtherly, the CPCs are used as the electrocatalyst for oxygen reduction reaction in alkaline solution. Impressively, the CPCs hybrid exhibits a superior electrocatalytic activity with high onset potential (0.93 V) and half-wave potential (0.78 V), and excellent stability, which is attributed to the synergistic effect of its high the surface to volume ratio, well-defined pore size, multi-active composition and high exposed catalytic active sites. We believe the materials based on earth-abundant elements have a huge potential to apply in catalysis, energy, and environment.

  19. Chaotic genetic patchiness and high relatedness of a poecilogonous polychaete in a heterogeneous estuarine landscape

    DEFF Research Database (Denmark)

    Hansen, Benni Winding; Banta, Gary Thomas; Kesäniemi, Jenni E


    locations from the heterogeneous Isefjord–Roskilde Fjord estuary complex in Denmark were found. There was no isolation by distance, and the geography of the estuary complex did not seem to pose a barrier to dispersal and gene flow in this species. We investigated whether characteristics of the environment...

  20. Performances and Coating Morphology of a Siloxane-Based Hydrophobic Product Applied in Different Concentrations on a Highly Porous Stone

    Directory of Open Access Journals (Sweden)

    Mariateresa Lettieri


    Full Text Available Many polymers, able to confer a hydrophobicity to treated surfaces, have been proposed for the restoration and conservation of civil and monumental buildings. Polysiloxanes, and their precursors, the silanes, have been frequently employed for stone protection. To avoid decay of the treated surfaces, the effectiveness and harmlessness of the treatment need to be carefully evaluated before application in the field. In this study, a commercial alkyl-siloxane was tested as a protective treatment on a highly porous stone, starting from water solutions with different contents of the product. The treatments have been devised to try to balance the requirements and the sustainability of the conservative actions. Sustainability, in terms of costs and environmental impact, is regarded as a key factor in the 21st century. Morphological observations of the stone surface, static contact angle and colour measurements, water vapour transmission test, and tests of water absorption were carried out to characterize the untreated and treated stones. A concentration below the minimum level suggested by the manufacturer was still able to act as a good barrier against water. More concentrated solutions produced polymer accumulation and coatings with extended cracks. The properties of the treated stone were affected by the presence of cracks in the coating.

  1. Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber. (United States)

    Yin, Yichao; Liu, Xiaofang; Wei, Xiaojun; Yu, Ronghai; Shui, Jianglan


    Porous carbon nanotubes/cobalt nanoparticles (CNTs/Co) composite with dodecahedron morphology was synthesized by in situ pyrolysis of the Co-based zeolitic imidazolate framework in a reducing atmosphere. The morphology and microstructure of the composite can be well tuned by controlling the pyrolysis conditions. At lower pyrolysis temperature, the CNTs/Co composite is composed of well-dispersed Co nanoparticles and short CNT clusters with low graphitic degree. The increase of pyrolysis temperature/time promotes the growth and graphitization of CNTs and leads to the aggregation of Co nanoparticles. The optimized CNTs/Co composite exhibits strong dielectric and magnetic losses as well as a good impedance matching property. Interestingly, the CNTs/Co composite displays extremely strong electromagnetic wave absorption with a maximum reflection loss of -60.4 dB. More importantly, the matching thickness of the absorber is as thin as 1.81 mm, and the filler loading of composite in the matrix is only 20 wt %. The highly efficient absorption is closely related to the well-designed structure and the synergistic effect between CNTs and Co nanoparticles. The excellent absorbing performance together with lightweight and ultrathin thickness endows the CNTs/Co composite with the potential for application in the electromagnetic wave absorbing field.

  2. Morphological examination of highly porous polylactic acid/Bioglass®scaffolds produced via nonsolvent induced phase separation. (United States)

    Rezabeigi, Ehsan; Wood-Adams, Paula M; Drew, Robin A L


    In this study, we produce highly porous (up to ∼91%) composite scaffolds of polylactic acid (PLA) containing 2 wt % sol-gel-derived 45S5 Bioglass ® particles via nonsolvent induced phase separation at -23°C with no sacrificial phases involved. Before the incorporation of the bioglass with PLA, the particles are surface modified with a silane coupling agent which effectively diminishes agglomeration between them leading to a better dispersion of bioactive particles throughout the scaffold. Interestingly, the incorporation route (via solvent dichloromethane or nonsolvent hexane) of the surface modified particles in the foaming process has the greatest impact on porosity, crystallinity, and morphology of the scaffolds. The composite scaffolds with a morphology consisting of both mesopores and large macropores, which is potentially beneficial for bone regeneration applications, are examined further. SEM images show that the surface modified bioglass particles take-up a unique configuration within the mesoporous structure of these scaffolds ensuring that the particles are well interlocked but not completely covered by PLA such that they can be in contact with physiological fluids. The results of preliminary in vitro tests confirm that this PLA/bioglass configuration promotes the interaction of the bioactive phase with physiological fluids. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2433-2442, 2017. © 2016 Wiley Periodicals, Inc.

  3. Synthesis of Highly Porous Poly(tert-butyl acrylate)-b-polysulfone-b-poly(tert-butyl acrylate) Asymmetric Membranes

    KAUST Repository

    Xie, Yihui


    For the first time, self-assembly and non-solvent induced phase separation was applied to polysulfone-based linear block copolymers, reaching mechanical stability much higher than other block copolymers membranes used in this method, which were mainly based on polystyrene blocks. Poly(tert-butyl acrylate)-b-polysulfone-b-poly(tert-butyl acrylate) (PtBA30k-b-PSU14k-b-PtBA30k) with a low polydispersity of 1.4 was synthesized by combining step-growth condensation and RAFT polymerization. Various advanced electron microscopies revealed that PtBA30k-b-PSU14k-b-PtBA30k assembles into worm-like cylindrical micelles in DMAc and adopts a “flower-like” arrangement with the PSU central block forming the shell. Computational modeling described the mechanism of micelle formation and morphological transition. Asymmetric nanostructured membranes were obtained with a highly porous interconnected skin layer and a sublayer with finger-like macrovoids. Ultrafiltration tests confirmed a water permeance of 555 L m-2 h-1 bar-1 with molecular weight cut-off of 28 kg/mol. PtBA segments on the membrane surface were then hydrolyzed and complexed with metals, leading to cross-linking and enhancement of antibacterial capability.

  4. Three-Dimensional Porous Iron Vanadate Nanowire Arrays as a High-Performance Lithium-Ion Battery. (United States)

    Cao, Yunhe; Fang, Dong; Liu, Ruina; Jiang, Ming; Zhang, Hang; Li, Guangzhong; Luo, Zhiping; Liu, Xiaoqing; Xu, Jie; Xu, Weilin; Xiong, Chuanxi


    Development of three-dimensional nanoarchitectures on current collectors has emerged as an effective strategy for enhancing rate capability and cycling stability of the electrodes. Herein, a new type of three-dimensional porous iron vanadate (Fe0.12V2O5) nanowire arrays on a Ti foil has been synthesized by a hydrothermal method. The as-prepared Fe0.12V2O5 nanowires are about 30 nm in diameter and several micrometers in length. The effect of reaction time on the resulting morphology is investigated and the mechanism for the nanowire formation is proposed. As an electrode material used in lithium-ion batteries, the unique configuration of the Fe0.12V2O5 nanowire arrays presents enhanced capacitance, satisfying rate capability and good cycling stability, as evaluated by cyclic voltammetry and galvanostatic discharge-charge cycling. It delivers a high discharge capaci