WorldWideScience

Sample records for highly functional tunnelling

  1. Highly functional tunnelling devices integrated in 3D

    DEFF Research Database (Denmark)

    Wernersson, Lars-Erik; Lind, Erik; Lindström, Peter

    2003-01-01

    a new type of tunnelling transistor, namely a resonant-tunnelling permeable base transistor. A simple model based on a piece-wise linear approximation is used in Cadence to describe the current-voltage characteristics of the transistor. This model is further introduced into a small signal equivalent...... simultaneously on both tunnelling structures and the obtained characteristics are the result of the interplay between the two tunnelling structures and the gate. An equivalent circuit model is developed and we show how this interaction influences the current-voltage characteristics. The gate may be used......We present a new technology for integrating tunnelling devices in three dimensions. These devices are fabricated by the combination of the growth of semiconductor heterostructures with the controlled introduction of metallic elements into an epitaxial layer by an overgrowth technique. First, we use...

  2. High Surface Area Tunnels in Hexagonal WO₃.

    Science.gov (United States)

    Sun, Wanmei; Yeung, Michael T; Lech, Andrew T; Lin, Cheng-Wei; Lee, Chain; Li, Tianqi; Duan, Xiangfeng; Zhou, Jun; Kaner, Richard B

    2015-07-08

    High surface area in h-WO3 has been verified from the intracrystalline tunnels. This bottom-up approach differs from conventional templating-type methods. The 3.67 Å diameter tunnels are characterized by low-pressure CO2 adsorption isotherms with nonlocal density functional theory fitting, transmission electron microscopy, and thermal gravimetric analysis. These open and rigid tunnels absorb H(+) and Li(+), but not Na(+) in aqueous electrolytes without inducing a phase transformation, accessing both internal and external active sites. Moreover, these tunnel structures demonstrate high specific pseudocapacitance and good stability in an H2SO4 aqueous electrolyte. Thus, the high surface area created from 3.67 Å diameter tunnels in h-WO3 shows potential applications in electrochemical energy storage, selective ion transfer, and selective gas adsorption.

  3. Further 'comment on 'Generalized Bessel functions in tunnelling ionization''

    International Nuclear Information System (INIS)

    Reiss, H R; Krainov, V P

    2005-01-01

    J Bauer, in commenting on our tunnelling approximation for the generalized Bessel function, points out that when the approximation is applied to strong-field ionization, it is suitable only for the lowest-energy part of an ionization spectrum. We do not disagree. We point out several things: the results of Bauer are to be expected; linear polarization results are dominated by the lowest part of the multiphoton spectrum; and we do not recommend practical use of this tunnelling approximation, since the asymptotic approximation is so much better. We show comparisons of momentum distributions calculated with the tunnelling approximation and those with the complete strong-field approximation, which show in more detail than spectrum comparisons that the tunnelling approximation to the generalized Bessel function is applicable only to the low-momentum part of the distribution, and neglects altogether the high-momentum portion. (reply)

  4. Generalized Bessel functions in tunnelling ionization

    International Nuclear Information System (INIS)

    Reiss, H R; Krainov, V P

    2003-01-01

    We develop two new approximations for the generalized Bessel function that frequently arises in the analytical treatment of strong-field processes, especially in non-perturbative multiphoton ionization theories. Both these new forms are applicable to the tunnelling environment in atomic ionization, and are analytically much simpler than the currently used low-frequency asymptotic approximation for the generalized Bessel function. The second of the new forms is an approximation to the first, and it is the second new form that exhibits the well-known tunnelling exponential

  5. Pain and Function Following Revision Cubital Tunnel Surgery.

    Science.gov (United States)

    Davidge, Kristen M; Ebersole, Gregory C; Mackinnon, Susan E

    2017-11-01

    The purpose of this study was to determine pain and functional outcomes following revision cubital tunnel surgery and to identify predictors of poor postoperative outcome. A retrospective cohort study was conducted of all patients undergoing revision cubital tunnel surgery over a 5-year period at a high-volume peripheral nerve center. Intraoperative findings, demographic and injury factors, and outcomes were reviewed. Average pain, worst pain, and impact of pain on self-perceived quality of life were each measured using a 10-cm visual analog scale (VAS). Function was evaluated using pinch and grip strength, as well as the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire. Differences in preoperative and postoperative pain, strength, and DASH were analyzed using nonparametric tests. Predictors of postoperative average pain were evaluated using odds ratios and linear regression analyses. The final cohort consisted of 50 patients (mean age: 46.3 ± 12.5 years; 29 [68%] male) undergoing 52 revision ulnar nerve transpositions (UNTs). Pain VAS scores decreased significantly following revision UNT. Strength and DASH scores demonstrated nonsignificant improvements postoperatively. Worse preoperative pain and greater than 1 prior cubital tunnel procedure were significant predictors of worse postoperative average pain VAS scores. Patients can and do improve following revision cubital tunnel surgery, particularly as it relates to pain. Intraoperative findings during the revision procedure suggest that adherence to specific principles in the primary operation is key to prevention of secondary cubital tunnel syndrome.

  6. High Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal

    NWs were contacted in a NW-FET setup. Electrical measurements at room temperature display typical tunnel diode behavior, with a Peak-to-Valley Current Ratio (PVCR) as high as 8.2 and a peak current density as high as 329 A/cm2. Low temperature measurements show improved PVCR of up to 27.6....... is the tunnel (Esaki) diode, which provides a low-resistance connection between junctions. We demonstrate an InP-GaAs NW axial heterostructure with tunnel diode behavior. InP and GaAs can be readily n- and p-doped, respectively, and the heterointerface is expected to have an advantageous type II band alignment...

  7. A predictive analytic model for high-performance tunneling field-effect transistors approaching non-equilibrium Green's function simulations

    International Nuclear Information System (INIS)

    Salazar, Ramon B.; Appenzeller, Joerg; Ilatikhameneh, Hesameddin; Rahman, Rajib; Klimeck, Gerhard

    2015-01-01

    A new compact modeling approach is presented which describes the full current-voltage (I-V) characteristic of high-performance (aggressively scaled-down) tunneling field-effect-transistors (TFETs) based on homojunction direct-bandgap semiconductors. The model is based on an analytic description of two key features, which capture the main physical phenomena related to TFETs: (1) the potential profile from source to channel and (2) the elliptic curvature of the complex bands in the bandgap region. It is proposed to use 1D Poisson's equations in the source and the channel to describe the potential profile in homojunction TFETs. This allows to quantify the impact of source/drain doping on device performance, an aspect usually ignored in TFET modeling but highly relevant in ultra-scaled devices. The compact model is validated by comparison with state-of-the-art quantum transport simulations using a 3D full band atomistic approach based on non-equilibrium Green's functions. It is shown that the model reproduces with good accuracy the data obtained from the simulations in all regions of operation: the on/off states and the n/p branches of conduction. This approach allows calculation of energy-dependent band-to-band tunneling currents in TFETs, a feature that allows gaining deep insights into the underlying device physics. The simplicity and accuracy of the approach provide a powerful tool to explore in a quantitatively manner how a wide variety of parameters (material-, size-, and/or geometry-dependent) impact the TFET performance under any bias conditions. The proposed model presents thus a practical complement to computationally expensive simulations such as the 3D NEGF approach

  8. Highly doped layer for tunnel junctions in solar cells

    Science.gov (United States)

    Fetzer, Christopher M.

    2017-08-01

    A highly doped layer for interconnecting tunnel junctions in multijunction solar cells is presented. The highly doped layer is a delta doped layer in one or both layers of a tunnel diode junction used to connect two or more p-on-n or n-on-p solar cells in a multijunction solar cell. A delta doped layer is made by interrupting the epitaxial growth of one of the layers of the tunnel diode, depositing a delta dopant at a concentration substantially greater than the concentration used in growing the layer of the tunnel diode, and then continuing to epitaxially grow the remaining tunnel diode.

  9. High tunnels: protection for rather than from insect pests?

    Science.gov (United States)

    Ingwell, Laura L; Thompson, Sarah L; Kaplan, Ian; Foster, Ricky E

    2017-12-01

    High tunnels are a season extension tool creating a hybrid of field and greenhouse growing conditions. High tunnels have recently increased in the USA and thus research on their management is lacking. One purported advantage of these structures is protection from common field pests, but evidence to support this claim is lacking. We compared insect pest populations in high tunnels with field production over two years for three crops: tomato, broccoli and cucumber. Greenhouse pests (e.g. aphids, whiteflies) were more prevalent in high tunnels, compared to field plots. Hornworms (tobacco (Manduca sexta L.) and tomato (M. quinquemaculata Haworth)), a common field pest on tomato, were also more abundant in high tunnels, requiring chemical control while field populations were low. The crucifer caterpillar complex (imported cabbageworm (Pieris rapae L.), diamondback moth (Plutella xylostella L.) and cabbage looper (Trichoplusia ni Hübner)) was also more abundant in high tunnels in 2010. Cucumber beetle (striped (Acalymma vittatum F.) and spotted (Diabrotica undecimpunctata Mannerheim)) densities were higher in high tunnels in 2010 and field plots in 2011. The common assumption that high tunnels offer protection from field pests was not supported. Instead, high tunnel growing conditions may facilitate higher pest populations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. High-Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal

    2010-01-01

    We demonstrate single nanowire tunnel diodes with room temperature peak current densities of up to 329 A/cm(2). Despite the large surface to volume ratio of the type-II InP-GaAs axial heterostructure nanowires, we measure peak to valley current ratios (PVCR) of up to 8.2 at room temperature and 27...

  11. Carrier tunneling in high magnetic fields

    NARCIS (Netherlands)

    Christianen, P.C.M.; Bruggink, I.E.M.; Maan, J.C.; Vleuten, van der W.C.

    1995-01-01

    Proceedings of the XXIV International School of Semiconducting Coinpounds, Jaszowiec 1995. A magnetic field induced coupling is observed between the Landau levels with different quantum number of two GaAs quantum wells separated by a thin (Ga,Al)As tunnel barrier using

  12. Double Tunneling Injection Quantum Dot Lasers for High Speed Operation

    Science.gov (United States)

    2017-10-23

    Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...State University Title: Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation Report Term: 0-Other Email: asryan@vt.edu Distribution

  13. A new spin-functional MOSFET based on magnetic tunnel junction technology: pseudo-spin-MOSFET

    OpenAIRE

    Shuto, Yusuke; Nakane, Ryosho; Wang, Wenhong; Sukegawa, Hiroaki; Yamamoto, Shuu'ichirou; Tanaka, Masaaki; Inomata, Koichiro; Sugahara, Satoshi

    2009-01-01

    We fabricated and characterized a new spin-functional MOSFET referred to as a pseudo-spin-MOSFET (PS-MOSFET). The PS-MOSFET is a circuit using an ordinary MOSFET and magnetic tunnel junction (MTJ) for reproducing functions of spin-transistors. Device integration techniques for a bottom gate MOSFET using a silicon-on-insulator (SOI) substrate and for an MTJ with a full-Heusler alloy electrode and MgO tunnel barrier were developed. The fabricated PS-MOSFET exhibited high and low transconductanc...

  14. Hybrid High-Temperature-Superconductor–Semiconductor Tunnel Diode

    Directory of Open Access Journals (Sweden)

    Alex Hayat

    2012-12-01

    Full Text Available We report the demonstration of hybrid high-T_{c}-superconductor–semiconductor tunnel junctions, enabling new interdisciplinary directions in condensed matter research. The devices are fabricated by our newly developed mechanical-bonding technique, resulting in high-T_{c}-superconductor–semiconductor tunnel diodes. Tunneling-spectra characterization of the hybrid junctions of Bi_{2}Sr_{2}CaCu_{2}O_{8+δ} combined with bulk GaAs, or a GaAs/AlGaAs quantum well, exhibits excess voltage and nonlinearity, similarly to spectra obtained in scanning-tunneling microscopy, and is in good agreement with theoretical predictions for a d-wave-superconductor–normal-material junction. Additional junctions are demonstrated using Bi_{2}Sr_{2}CaCu_{2}O_{8+δ} combined with graphite or Bi_{2}Te_{3}. Our results pave the way for new methods in unconventional superconductivity studies, novel materials, and quantum technology applications.

  15. High-resolution sonography in carpal tunnel syndrome

    International Nuclear Information System (INIS)

    Solbiati, L.; De Pra, L.; Rizzatto, G.; Derchi, L.E.

    1986-01-01

    Carpal tunnel syndrome, caused by the compression on the median nerve under the transverse carpal ligament, has multiple causes and clinical presentations. One hundred eighteen patients with carpal tunnel sydrome underwent high-resolution US which demonstrated unpalpable cystic masses in 25 patients (lobulated stalked synovial cysts in 19 and retrotendinous cysts in six, all confirmed at surgery), and diffuse thickening and decreased echogenicity of the tendon sheaths in 87 patients, suggesting tenosynovitis (confirmed at surgery in 64). In six patients simple encasement of muscle bellies in the carpal tunnel was shown. US can delineate the cause of carpal tunnel syndrome, suggest the need for surgery, and aid the surgeon in locating the lesion to be removed

  16. Theory of tunneling and photoemission spectroscopy for high-temperature superconductors

    International Nuclear Information System (INIS)

    Kouznetsov, K.; Coffey, L.

    1996-01-01

    A comprehensive analysis is presented of the tunneling conductance and angle-resolved photoemission spectra in high-temperature superconductors. It is shown that unexplained features of the tunneling and photoemission spectra such as broad backgrounds, dips, and asymmetry of the tunneling conductance can arise in a model of spin-fluctuation mediated inelastic tunneling. Effects of directionality in tunneling play an important role in determining the behavior of the tunneling conductance. copyright 1996 The American Physical Society

  17. High resolution imaging of tunnels by magnetic resonance neurography

    Energy Technology Data Exchange (ETDEWEB)

    Subhawong, Ty K.; Thawait, Shrey K.; Machado, Antonio J.; Carrino, John A.; Chhabra, Avneesh [Johns Hopkins Hospital, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Wang, Kenneth C. [Baltimore VA Medical Center, Department of Radiology, Baltimore, MD (United States); Williams, Eric H. [Dellon Institute for Peripheral Nerve Surgery, Towson, MD (United States); Hashemi, Shahreyar Shar [Johns Hopkins Hospital, Division of Plastic and Reconstructive Surgery, Baltimore, MD (United States)

    2012-01-15

    Peripheral nerves often traverse confined fibro-osseous and fibro-muscular tunnels in the extremities, where they are particularly vulnerable to entrapment and compressive neuropathy. This gives rise to various tunnel syndromes, characterized by distinct patterns of muscular weakness and sensory deficits. This article focuses on several upper and lower extremity tunnels, in which direct visualization of the normal and abnormal nerve in question is possible with high resolution 3T MR neurography (MRN). MRN can also serve as a useful adjunct to clinical and electrophysiologic exams by discriminating adhesive lesions (perineural scar) from compressive lesions (such as tumor, ganglion, hypertrophic callous, or anomalous muscles) responsible for symptoms, thereby guiding appropriate treatment. (orig.)

  18. High resolution imaging of tunnels by magnetic resonance neurography

    International Nuclear Information System (INIS)

    Subhawong, Ty K.; Thawait, Shrey K.; Machado, Antonio J.; Carrino, John A.; Chhabra, Avneesh; Wang, Kenneth C.; Williams, Eric H.; Hashemi, Shahreyar Shar

    2012-01-01

    Peripheral nerves often traverse confined fibro-osseous and fibro-muscular tunnels in the extremities, where they are particularly vulnerable to entrapment and compressive neuropathy. This gives rise to various tunnel syndromes, characterized by distinct patterns of muscular weakness and sensory deficits. This article focuses on several upper and lower extremity tunnels, in which direct visualization of the normal and abnormal nerve in question is possible with high resolution 3T MR neurography (MRN). MRN can also serve as a useful adjunct to clinical and electrophysiologic exams by discriminating adhesive lesions (perineural scar) from compressive lesions (such as tumor, ganglion, hypertrophic callous, or anomalous muscles) responsible for symptoms, thereby guiding appropriate treatment. (orig.)

  19. Study on Oxygen Supply Standard for Physical Health of Construction Personnel of High-Altitude Tunnels

    Directory of Open Access Journals (Sweden)

    Chun Guo

    2015-12-01

    Full Text Available The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO2. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.

  20. [Remote results of high myopia surgical correction by tunnel keratoplasty ].

    Science.gov (United States)

    Dushin, N V; Beliaev, V S; Gonchar, P A; Barashkov, V I; Kravchinina, V V; Frolov, M A

    2000-01-01

    Remote results evidence high refraction efficiency of tunnel keratoplasty, stable results being observed for up to 15 years. A total of 104 operations (58 patients) were analyzed for a period of observation of more than 10 years. The patients' ages varied from 17 to 52 years, there were 34 women and 24 men. The main advantage of interlamellar refraction meridional keratoplasty is easiness of operation. At present it is the operation of choice for dosed reduction of eye refraction aimed at correction of high myopia and astigmatism. The possibility of correcting residual myopia after keratotomy and repair of refraction abnormalities resultant from perforating keratoplasty is particularly interesting. The possibility of regulating the corrective effect in remote periods by replacing the implants also deserves attention. Hence, low traumatism, high efficiency, and stability of the refraction effect once more confirm our recommendation to use tunnel keratoplasty in clinical practice.

  1. Probing spin-polarized tunneling at high bias and temperature with a magnetic tunnel transistor

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Min, B.C.; Sanderink, Johannes G.M.; Lodder, J.C.; Jansen, R.

    2005-01-01

    The magnetic tunnel transistor (MTT) is a three terminal hybrid device that consists of a tunnel emitter, a ferromagnetic (FM) base, and a semiconductor collector. In the MTT with a FM emitter and a single FM base, spin-polarized hot electrons are injected into the base by tunneling. After

  2. Atomic scale images of acceptors in III-V semiconductors. Band bending, tunneling paths and wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Loth, S.

    2007-10-26

    This thesis reports measurements of single dopant atoms in III-V semiconductors with low temperature Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS). It investigates the anisotropic spatial distribution of acceptor induced tunneling processes at the {l_brace}110{r_brace} cleavage planes. Two different tunneling processes are identified: conventional imaging of the squared acceptor wave function and resonant tunneling at the charged acceptor. A thorough analysis of the tip induced space charge layers identifies characteristic bias windows for each tunnel process. The symmetry of the host crystal's band structure determines the spatial distribution of the tunneling paths for both processes. Symmetry reducing effects at the surface are responsible for a pronounced asymmetry of the acceptor contrasts along the principal [001] axis. Uniaxial strain fields due to surface relaxation and spin orbit interaction of the tip induced electric field are discussed on the basis of band structure calculations. High-resolution STS studies of acceptor atoms in an operating p-i-n diode confirm that an electric field indeed changes the acceptor contrasts. In conclusion, the anisotropic contrasts of acceptors are created by the host crystal's band structure and concomitant symmetry reduction effects at the surface. (orig.)

  3. Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes

    Science.gov (United States)

    Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.

    1991-01-01

    InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.

  4. Rectified tunneling current response of bio-functionalized metal-bridge-metal junctions.

    Science.gov (United States)

    Liu, Yaqing; Offenhäusser, Andreas; Mayer, Dirk

    2010-01-15

    Biomolecular bridged nanostructures allow direct electrical addressing of electroactive biomolecules, which is of interest for the development of bioelectronic and biosensing hybrid junctions. In the present paper, the electroactive biomolecule microperoxidase-11 (MP-11) was integrated into metal-bridge-metal (MBM) junctions assembled from a scanning tunneling microscope (STM) setup. Before immobilization of MP-11, the Au working electrode was first modified by a self-assembled monolayer of 1-undecanethiol (UDT). A symmetric and potential independent response of current-bias voltage (I(t)/V(b)) was observed for the Au (substrate)/UDT/Au (tip) junction. However, the I(t)/V(b) characteristics became potential dependent and asymmetrical after binding of MP-11 between the electrodes of the junction. The rectification ratio of the asymmetric current response varies with gate electrode modulation. A resonant tunneling process between metal electrode and MP-11 enhances the tunneling current and is responsible for the observed rectification. Our investigations demonstrated that functional building blocks of proteins can be reassembled into new conceptual devices with operation modes deviating from their native function, which could prove highly useful in the design of future biosensors and bioelectronic devices. Copyright 2009 Elsevier B.V. All rights reserved.

  5. High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures.

    Science.gov (United States)

    Liu, Yuan; Sheng, Jiming; Wu, Hao; He, Qiyuan; Cheng, Hung-Chieh; Shakir, Muhammad Imran; Huang, Yu; Duan, Xiangfeng

    2016-06-01

    Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Growth of an Ultrathin Zirconia Film on Pt3Zr Examined by High-Resolution X-ray Photoelectron Spectroscopy, Temperature-Programmed Desorption, Scanning Tunneling Microscopy, and Density Functional Theory.

    Science.gov (United States)

    Li, Hao; Choi, Joong-Il Jake; Mayr-Schmölzer, Wernfried; Weilach, Christian; Rameshan, Christoph; Mittendorfer, Florian; Redinger, Josef; Schmid, Michael; Rupprechter, Günther

    2015-02-05

    Ultrathin (∼3 Å) zirconium oxide films were grown on a single-crystalline Pt 3 Zr(0001) substrate by oxidation in 1 × 10 -7 mbar of O 2 at 673 K, followed by annealing at temperatures up to 1023 K. The ZrO 2 films are intended to serve as model supports for reforming catalysts and fuel cell anodes. The atomic and electronic structure and composition of the ZrO 2 films were determined by synchrotron-based high-resolution X-ray photoelectron spectroscopy (HR-XPS) (including depth profiling), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. Oxidation mainly leads to ultrathin trilayer (O-Zr-O) films on the alloy; only a small area fraction (10-15%) is covered by ZrO 2 clusters (thickness ∼0.5-10 nm). The amount of clusters decreases with increasing annealing temperature. Temperature-programmed desorption (TPD) of CO was utilized to confirm complete coverage of the Pt 3 Zr substrate by ZrO 2 , that is, formation of a closed oxide overlayer. Experiments and DFT calculations show that the core level shifts of Zr in the trilayer ZrO 2 films are between those of metallic Zr and thick (bulklike) ZrO 2 . Therefore, the assignment of such XPS core level shifts to substoichiometric ZrO x is not necessarily correct, because these XPS signals may equally well arise from ultrathin ZrO 2 films or metal/ZrO 2 interfaces. Furthermore, our results indicate that the common approach of calculating core level shifts by DFT including final-state effects should be taken with care for thicker insulating films, clusters, and bulk insulators.

  7. Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy.

    Science.gov (United States)

    Jeong, Jaewoo; Ferrante, Yari; Faleev, Sergey V; Samant, Mahesh G; Felser, Claudia; Parkin, Stuart S P

    2016-01-18

    Although high-tunnelling spin polarization has been observed in soft, ferromagnetic, and predicted for hard, ferrimagnetic Heusler materials, there has been no experimental observation to date of high-tunnelling magnetoresistance in the latter. Here we report the preparation of highly textured, polycrystalline Mn3Ge films on amorphous substrates, with very high magnetic anisotropy fields exceeding 7 T, making them technologically relevant. However, the small and negative tunnelling magnetoresistance that we find is attributed to predominant tunnelling from the lower moment Mn-Ge termination layers that are oppositely magnetized to the higher moment Mn-Mn layers. The net spin polarization of the current reflects the different proportions of the two distinct termination layers and their associated tunnelling matrix elements that result from inevitable atomic scale roughness. We show that by engineering the spin polarization of the two termination layers to be of the same sign, even though these layers are oppositely magnetized, high-tunnelling magnetoresistance is possible.

  8. Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets

    Science.gov (United States)

    Min, Byoung-Chul; Motohashi, Kazunari; Lodder, Cock; Jansen, Ron

    2006-10-01

    Magnetic tunnel junctions have become ubiquitous components appearing in magnetic random-access memory, read heads of magnetic disk drives and semiconductor-based spin devices. Inserting a tunnel barrier has been key to achieving spin injection from ferromagnetic (FM) metals into GaAs, but spin injection into Si has remained elusive. We show that Schottky barrier formation leads to a huge conductivity mismatch of the FM tunnel contact and Si, which cannot be solved by the well-known method of adjusting the tunnel barrier thickness. We present a radically different approach for spin-tunnelling resistance control using low-work-function ferromagnets, inserted at the FM/tunnel barrier interface. We demonstrate that in this way the resistance-area (RA) product of FM/Al2O3/Si contacts can be tuned over eight orders of magnitude, while simultaneously maintaining a reasonable tunnel spin polarization. This raises prospects for Si-based spintronics and presents a new category of ferromagnetic materials for spin-tunnel contacts in low-RA-product applications.

  9. A high stability and repeatability electrochemical scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhigang; Wang, Jihao; Lu, Qingyou, E-mail: qxl@ustc.edu.cn [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hou, Yubin [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-12-15

    We present a home built electrochemical scanning tunneling microscope (ECSTM) with very high stability and repeatability. Its coarse approach is driven by a closely stacked piezo motor of GeckoDrive type with four rigid clamping points, which enhances the rigidity, compactness, and stability greatly. It can give high clarity atomic resolution images without sound and vibration isolations. Its drifting rates in XY and Z directions in solution are as low as 84 pm/min and 59 pm/min, respectively. In addition, repeatable coarse approaches in solution within 2 mm travel distance show a lateral deviation less than 50 nm. The gas environment can be well controlled to lower the evaporation rate of the cell, thus reducing the contamination and elongating the measurement time. Atomically resolved SO{sub 4}{sup 2−} image on Au (111) work electrode is demonstrated to show the performance of the ECSTM.

  10. A high stability and repeatability electrochemical scanning tunneling microscope.

    Science.gov (United States)

    Xia, Zhigang; Wang, Jihao; Hou, Yubin; Lu, Qingyou

    2014-12-01

    We present a home built electrochemical scanning tunneling microscope (ECSTM) with very high stability and repeatability. Its coarse approach is driven by a closely stacked piezo motor of GeckoDrive type with four rigid clamping points, which enhances the rigidity, compactness, and stability greatly. It can give high clarity atomic resolution images without sound and vibration isolations. Its drifting rates in XY and Z directions in solution are as low as 84 pm/min and 59 pm/min, respectively. In addition, repeatable coarse approaches in solution within 2 mm travel distance show a lateral deviation less than 50 nm. The gas environment can be well controlled to lower the evaporation rate of the cell, thus reducing the contamination and elongating the measurement time. Atomically resolved SO4(2-) image on Au (111) work electrode is demonstrated to show the performance of the ECSTM.

  11. Scanning tunneling spectroscopy on vortex cores in high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, B.W.; Maggio-Aprile, I.; Fischer, Oe. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Renner, C. [NEC Research Inst., Princeton, NJ (United States)

    2002-07-01

    Scanning tunneling spectroscopy (STS) with its unique capacity for tunneling spectroscopy with sub-nanometer spatial resolution, has opened new ways to look at the flux lines and their distribution in superconductors. In contrast to all other imaging techniques, which are sensitive to the local magnetic field, STM relies on local changes in the density of states near the Fermi level to generate a real space image of the vortex distribution. It is thus sensitive to the vortex cores, which in high temperature superconductors have a size approaching the interatomic distances. The small size of the vortex cores and the anisotropic character of the high temperature superconductors allow pinning to play a large role in determining the vortex core positions. Vortex hopping between different pinning sites, again down to a sub-nanometer scale, has been studied by STM imaging as a function of time. These studies give microscopic indications for quantum tunneling of vortices. Moreover, STM provides new insights into the detailed electronic vortex core structure, revealing localized quasiparticles. (orig.)

  12. Theory of high-resolution tunneling spin transport on a magnetic skyrmion

    OpenAIRE

    Palotás, Krisztián; Rózsa, Levente; Szunyogh, László

    2018-01-01

    Tunneling spin transport characteristics of a magnetic skyrmion are described theoretically in magnetic scanning tunneling microscopy (STM). The spin-polarized charge current in STM (SP-STM) and tunneling spin transport vector quantities, the longitudinal spin current and the spin transfer torque are calculated in high spatial resolution within the same theoretical framework. A connection between the conventional charge current SP-STM image contrasts and the magnitudes of the spin transport v...

  13. Tunneling emission of electrons from semiconductors' valence bands in high electric fields

    International Nuclear Information System (INIS)

    Kalganov, V. D.; Mileshkina, N. V.; Ostroumova, E. V.

    2006-01-01

    Tunneling emission currents of electrons from semiconductors to vacuum (needle-shaped GaAs photodetectors) and to a metal (silicon metal-insulator-semiconductor diodes with a tunneling-transparent insulator layer) are studied in high and ultrahigh electric fields. It is shown that, in semiconductors with the n-type conductivity, the major contribution to the emission current is made by the tunneling emission of electrons from the valence band of the semiconductor, rather than from the conduction band

  14. Nonequilibrium states of high tc YBCO superconductors under tunnel injection of quasiparticles

    International Nuclear Information System (INIS)

    Iguchi, I.; Wang, Q.; Lee, K.; Yoshida, K.

    1995-01-01

    The nonequilibrium states of high Tc superconductors are investigated by means of tunnel injection of quasiparticles using Pb(or Au)/MgO/YBCO tunnel junctions. The effective critical-current reduction due to tunnel injection is observed, whose behaviour is different from simple heating. The observed results suggest that the resultant nonequilibrium states may also differ from those described by conventional nonequilibrium models

  15. Internal resistor of multi-functional tunnel barrier for selectivity and switching uniformity in resistive random access memory.

    Science.gov (United States)

    Lee, Sangheon; Woo, Jiyong; Lee, Daeseok; Cha, Euijun; Hwang, Hyunsang

    2014-01-01

    In this research, we analyzed the multi-functional role of a tunnel barrier that can be integrated in devices. This tunnel barrier, acting as an internal resistor, changes its resistance with applied bias. Therefore, the current flow in the devices can be controlled by a tunneling mechanism that modifies the tunnel barrier thickness for non-linearity and switching uniformity of devices. When a device is in a low-resistance state, the tunnel barrier controls the current behavior of the device because most of the bias is applied to the tunnel barrier owing to its higher resistance. Furthermore, the tunnel barrier induces uniform filament formation during set operation with the tunnel barrier controlling the current flow.

  16. Theory of high-resolution tunneling spin transport on a magnetic skyrmion

    Science.gov (United States)

    Palotás, Krisztián; Rózsa, Levente; Szunyogh, László

    2018-05-01

    Tunneling spin transport characteristics of a magnetic skyrmion are described theoretically in magnetic scanning tunneling microscopy (STM). The spin-polarized charge current in STM (SP-STM) and tunneling spin transport vector quantities, the longitudinal spin current and the spin transfer torque, are calculated in high spatial resolution within the same theoretical framework. A connection between the conventional charge current SP-STM image contrasts and the magnitudes of the spin transport vectors is demonstrated that enables the estimation of tunneling spin transport properties based on experimentally measured SP-STM images. A considerable tunability of the spin transport vectors by the involved spin polarizations is also highlighted. These possibilities and the combined theory of tunneling charge and vector spin transport pave the way for gaining deep insight into electric-current-induced tunneling spin transport properties in SP-STM and to the related dynamics of complex magnetic textures at surfaces.

  17. Covariance Method of the Tunneling Radiation from High Dimensional Rotating Black Holes

    Science.gov (United States)

    Li, Hui-Ling; Han, Yi-Wen; Chen, Shuai-Ru; Ding, Cong

    2018-04-01

    In this paper, Angheben-Nadalini-Vanzo-Zerbini (ANVZ) covariance method is used to study the tunneling radiation from the Kerr-Gödel black hole and Myers-Perry black hole with two independent angular momentum. By solving the Hamilton-Jacobi equation and separating the variables, the radial motion equation of a tunneling particle is obtained. Using near horizon approximation and the distance of the proper pure space, we calculate the tunneling rate and the temperature of Hawking radiation. Thus, the method of ANVZ covariance is extended to the research of high dimensional black hole tunneling radiation.

  18. Design of a high-speed electrochemical scanning tunneling microscope.

    Science.gov (United States)

    Yanson, Y I; Schenkel, F; Rost, M J

    2013-02-01

    In this paper, we present a bottom-up approach to designing and constructing a high-speed electrochemical scanning tunneling microscope (EC-STM). Using finite element analysis (FEA) calculations of the frequency response of the whole mechanical loop of the STM, we analyzed several geometries to find the most stable one that could facilitate fast scanning. To test the FEA results, we conducted measurements of the vibration amplitudes using a prototype STM setup. Based on the FEA analysis and the measurement results, we identified the potentially most disturbing vibration modes that could impair fast scanning. By modifying the design of some parts of the EC-STM, we reduced the amplitudes as well as increased the resonance frequencies of these modes. Additionally, we designed and constructed an electrochemical flow-cell that allows STM imaging in a flowing electrolyte, and built a bi-potentiostat to achieve electrochemical potential control during the measurements. Finally, we present STM images acquired during high-speed imaging in air as well as in an electrochemical environment using our newly-developed EC-STM.

  19. Design of a High-Reynolds Number Recirculating Water Tunnel

    Science.gov (United States)

    Daniel, Libin; Elbing, Brian

    2014-11-01

    An experimental fluid mechanics laboratory focused on turbulent boundary layers, drag reduction techniques, multiphase flows and fluid-structure interactions has recently been established at Oklahoma State University. This laboratory has three primary components; (1) a recirculating water tunnel, (2) a multiphase pipe flow loop, and (3) a multi-scale flow visualization system. The design of the water tunnel is the focus of this talk. The criteria used for the water tunnel design was that it had to produce a momentum-thickness based Reynolds number in excess of 104, negligible flow acceleration due to boundary layer growth, maximize optical access for use of the flow visualization system, and minimize inlet flow non-uniformity. This Reynolds number was targeted to bridge the gap between typical university/commercial water tunnels (103) and the world's largest water tunnel facilities (105) . These objectives were achieved with a 152 mm (6-inch) square test section that is 1 m long and has a maximum flow speed of 10 m/s. The flow non-uniformity was mitigated with the use of a tandem honeycomb configuration, a settling chamber and an 8.5:1 contraction. The design process that produced this final design will be presented along with its current status.

  20. Cumulative exposure to dust and gases as determinants of lung function decline in tunnel construction workers.

    Science.gov (United States)

    Bakke, B; Ulvestad, B; Stewart, P; Eduard, W

    2004-03-01

    To study the relation between lung function decrease and cumulative exposure to dust and gases in tunnel construction workers. A total of 651 male construction workers (drill and blast workers, tunnel concrete workers, shotcreting operators, and tunnel boring machine workers) were followed up by spirometric measurements in 1989-2002 for an average of six years. Outdoor concrete workers, foremen, and engineers served as a low exposed referent population. The between worker component of variability was considerably reduced within the job groups compared to the whole population, suggesting that the workers within job groups had similar exposure levels. The annual decrease in FEV1 in low-exposed non-smoking workers was 21 ml and 24 ml in low-exposed ever smokers. The annual decrease in FEV1 in tunnel construction workers was 20-31 ml higher than the low exposed workers depending on job group for both non-smokers and ever smokers. After adjustment for age and observation time, cumulative exposure to nitrogen dioxide showed the strongest association with a decrease in FEV1 in both non-smokers, and ever smokers. Cumulative exposure to nitrogen dioxide appeared to be a major risk factor for lung function decreases in these tunnel construction workers, although other agents may have contributed to the observed effect. Contact with blasting fumes should be avoided, diesel exhaust emissions should be reduced, and respiratory devices should be used to protect workers against dust and nitrogen dioxide exposure.

  1. Atomic site tunneling spectroscopy on high-Tc superconductors

    International Nuclear Information System (INIS)

    Hasegawa, T.; Nantoh, M.; Takagi, A.; Yamaguchi, W.; Ogino, M.; Kawasaki, M.

    1994-01-01

    Superconducting gap structures of Bi 2 Sr 2 CaCu 2 O y (BSCCO) and YBa 2 Cu 3 O y (YBCO) have been probed by scanning tunneling microscopy (STM) at cryogenic temperatures. The tunneling conductance curves observed on bulk single crystals of BSCCO and epitaxial thin films of YBCO revealed clear obershooting peaks and flat bottom regions around V=0 with quite low zero-bias conductances of ∝1%. Since the electron tunneling process in STM is essentially incoherent, the present observation is favored by the s-wave pairing mechanism. However, the conductance curves were found to be substantially smeared in comparison with the conventional spectra predicted in the BCS (isotropic s-wave) superconductors, suggesting gap anisotropy. (orig.)

  2. High Response Dew Point Measurement System for a Supersonic Wind Tunnel

    Science.gov (United States)

    Blumenthal, Philip Z.

    1996-01-01

    A new high response on-line measurement system has been developed to continuously display and record the air stream dew point in the NASA Lewis 10 x 10 supersonic wind tunnel. Previous instruments suffered from such problems as very slow response, erratic readings, and high susceptibility to contamination. The system operates over the entire pressure level range of the 10 x 10 SWT, from less than 2 psia to 45 psia, without the need for a vacuum pump to provide sample flow. The system speeds up tunnel testing, provides large savings in tunnel power costs and provides the dew point input for the data-reduction subroutines which calculate test section conditions.

  3. Numerical investigation on an array of Helmholtz resonators for the reduction of micro-pressure waves in modern and future high-speed rail tunnel systems

    Science.gov (United States)

    Tebbutt, J. A.; Vahdati, M.; Carolan, D.; Dear, J. P.

    2017-07-01

    Previous research has proposed that an array of Helmholtz resonators may be an effective method for suppressing the propagation of pressure and sound waves, generated by a high-speed train entering and moving in a tunnel. The array can be used to counteract environmental noise from tunnel portals and also the emergence of a shock wave in the tunnel. The implementation of an array of Helmholtz resonators in current and future high-speed train-tunnel systems is studied. Wave propagation in the tunnel is modelled using a quasi-one-dimensional formulation, accounting for non-linear effects, wall friction and the diffusivity of sound. A multi-objective genetic algorithm is then used to optimise the design of the array, subject to the geometric constraints of a demonstrative tunnel system and the incident wavefront in order to attenuate the propagation of pressure waves. It is shown that an array of Helmholtz resonators can be an effective countermeasure for various tunnel lengths. In addition, the array can be designed to function effectively over a wide operating envelope, ensuring it will still function effectively as train speeds increase into the future.

  4. Conversion of Low-Flow Priapism to High-Flow State Using T-Shunt with Tunneling.

    Science.gov (United States)

    Mistry, Neil A; Tadros, Nicholas N; Hedges, Jason C

    2017-01-01

    Introduction . The three types of priapism are stuttering, arterial (high-flow, nonischemic), and venoocclusive (low-flow, ischemic). These are usually distinct entities and rarely occur in the same patient. T-shunts and other distal shunts are frequently combined with tunneling, but a seldom recognized potential complication is conversion to a high-flow state. Case Presentation . We describe 2 cases of men who presented with low-flow priapism episodes that were treated using T-shunts with tunneling that resulted with both men having recurrent erections shortly after surgery that were found to be consistent with high-flow states. Case 1 was a 33-year-old male with sickle cell anemia and case 2 was a 24-year-old male with idiopathic thrombocytopenic purpura. In both cases the men were observed over several weeks and both men returned to normal erectile function. Conclusions . Historically, proximal shunts were performed only in cases when distal shunts failed and carry a higher risk of serious complications. T-shunts and other distal shunts combined with tunneling are being used more frequently in place of proximal shunts. These cases illustrate how postoperative erections after T-shunts with tunneling can signify a conversion from low-flow to high-flow states and could potentially be misdiagnosed as an operative failure.

  5. High-Performance Flexible Magnetic Tunnel Junctions for Smart Miniaturized Instruments

    KAUST Repository

    Amara, Selma.; Sevilla, Gallo. A. Torres; Hawsawi, Mayyada.; Mashraei, Yousof.; Mohammed, Hanan .; Cruz, Melvin E.; Ivanov, Yurii. P.; Jaiswal, Samridh.; Jakob, Gerhard.; Klä ui, Mathias.; Hussain, Muhammad.; Kosel, Jurgen.

    2018-01-01

    , where size and weight are critical parameters. Given their prevalence on the sensors market, flexible magnetic sensors play a major role in this progress. For many high-performance applications, magnetic tunnel junctions (MTJs) have become the first

  6. L10-MnGa based magnetic tunnel junction for high magnetic field sensor

    Science.gov (United States)

    Zhao, X. P.; Lu, J.; Mao, S. W.; Yu, Z. F.; Wang, H. L.; Wang, X. L.; Wei, D. H.; Zhao, J. H.

    2017-07-01

    We report on the investigation of the magnetic tunnel junction structure designed for high magnetic field sensors with a perpendicularly magnetized L10-MnGa reference layer and an in-plane magnetized Fe sensing layer. A large linear tunneling magnetoresistance ratio up to 27.4% and huge dynamic range up to 5600 Oe have been observed at 300 K, with a low nonlinearity of 0.23% in the optimized magnetic tunnel junction (MTJ). The field response of tunneling magnetoresistance is discussed to explain the field sensing properties in the dynamic range. These results indicate that L10-MnGa based orthogonal MTJ is a promising candidate for a high performance magnetic field sensor with a large dynamic range, high endurance and low power consumption.

  7. Theory of macroscopic quantum tunneling in high-T c cuprate

    International Nuclear Information System (INIS)

    Kawabata, Shiro; Tanaka, Yukio; Kashiwaya, Satoshi; Asano, Yasuhiro

    2006-01-01

    To reveal macroscopic quantum tunneling (MQT) in high-T c superconductor Josephson junctions is an important issue since there is a possibility to fabricate a superconducting quantum bit by use of high T c junctions. Using the functional integral and the instanton theory, we analytically obtain the MQT rate (the inverse lifetime of the metastable state) for the c-axis twist Josephson junctions. In the case of the zero twist angle, the system shows the super-Ohmic dissipation due to the presence of the nodal quasiparticle tunneling. Therefore, the MQT rate is suppressed compared with the finite twist angle cases. Furthermore, the effect of the zero energy bound states (ZES) on the MQT in the in-plane junctions is theoretically investigated. We obtained the analytical formula of the MQT rate and showed that the presence of the ZES at the normal/superconductor interface leads to a strong Ohmic quasiparticle dissipation. Therefore, the MQT rate is noticeably inhibited compared with the c-axis junctions in which the ZES are completely absent

  8. Increased productivity in construction of civil and mining tunnels through the use of high-capacity tunnel-boring machines and continuous belt conveyor muck haulage

    Energy Technology Data Exchange (ETDEWEB)

    Beatty, J.G.; Ganey, R.J.; Killingsworth, J.E. [Perini Corp., Chicago, IL (United States). US Heavy Division

    1994-12-31

    The use of a large diameter high production tunnel boring machine interfaced with a high capacity continuous belt conveyor system provides a highly productive and cost effective construction system for both civil and mining tunnels. Continuous advance of the tunnel boring machine for a distance of 1,000 feet (305 m) allows for very efficient operation of the system. The available cost reductions will likely prove that this approach to waste handling will make marginally viable projects economically feasible. 9 refs., 10 figs., 1 tab.

  9. Tunneling spectroscopy on grain boundary junctions in electron-doped high-temperature superconductors

    International Nuclear Information System (INIS)

    Welter, B.

    2007-01-01

    Some methods are developed anf presented, by means of which from experimental tunnel spectra, especially on symmetric SIS contacts, informations about the properties of electrodes and tunnel barriers can be obtained. Especially a procedure for the numerical unfolding of symmetric SIS spectra is proposed. Furthermore a series of models is summarized, which can explain the linear background conductivity observed in many spectra on high-temperature superconductors. The results of resistance measurements on film bridges are presented. Especially different methods for the determination of H c2 (T) respectively H c2 (0) are presented and applied to the experimental data. Finally the results of the tunnel-spectroscopy measurements are shown

  10. Tunneling-induced shift of the cutoff law for high-order above-threshold ionization

    International Nuclear Information System (INIS)

    Lai, X. Y.; Quan, W.; Liu, X.

    2011-01-01

    We investigate the cutoff law for high-order above-threshold ionization (HATI) within a semiclassical framework. By explicitly adopting the tunneling effect and considering the initial position shift of the tunneled electron from the origin in the model, the cutoff energy position in HATI spectrum exhibits a well-defined upshift from the simple-man model prediction. The comparison between numerical results from our improved semiclassical model and the quantum-orbit theory shows a good agreement for small values of the Keldysh parameter γ, implying the important role of the inherent quantum tunneling effect in HATI dynamics.

  11. Soft errors in 10-nm-scale magnetic tunnel junctions exposed to high-energy heavy-ion radiation

    Science.gov (United States)

    Kobayashi, Daisuke; Hirose, Kazuyuki; Makino, Takahiro; Onoda, Shinobu; Ohshima, Takeshi; Ikeda, Shoji; Sato, Hideo; Inocencio Enobio, Eli Christopher; Endoh, Tetsuo; Ohno, Hideo

    2017-08-01

    The influences of various types of high-energy heavy-ion radiation on 10-nm-scale CoFeB-MgO magnetic tunnel junctions with a perpendicular easy axis have been investigated. In addition to possible latent damage, which has already been pointed out in previous studies, high-energy heavy-ion bombardments demonstrated that the magnetic tunnel junctions may exhibit clear flips between their high- and low-resistance states designed for a digital bit 1 or 0. It was also demonstrated that flipped magnetic tunnel junctions still may provide proper memory functions such as read, write, and hold capabilities. These two findings proved that high-energy heavy ions can produce recoverable bit flips in magnetic tunnel junctions, i.e., soft errors. Data analyses suggested that the resistance flips stem from magnetization reversals of the ferromagnetic layers and that each of them is caused by a single strike of heavy ions. It was concurrently found that an ion strike does not always result in a flip, suggesting a stochastic process behind the flip. Experimental data also showed that the flip phenomenon is dependent on the device and heavy-ion characteristics. Among them, the diameter of the device and the linear energy transfer of the heavy ions were revealed as the key parameters. From their dependences, the physical mechanism behind the flip was discussed. It is likely that a 10-nm-scale ferromagnetic disk loses its magnetization due to a local temperature increase induced by a single strike of heavy ions; this demagnetization is followed by a cooling period associated with a possible stochastic recovery process. On the basis of this hypothesis, a simple analytical model was developed, and it was found that the model accounts for the results reasonably well. This model also predicted that magnetic tunnel junctions provide sufficiently high soft-error reliability for use in space, highlighting their advantage over their counterpart conventional semiconductor memories.

  12. Point-contact electron tunneling into the high-Tc superconductor Y-Ba-Cu-O

    Science.gov (United States)

    Kirk, M. D.; Smith, D. P. E.; Mitzi, D. B.; Sun, J. Z.; Webb, D. J.

    1987-06-01

    Results are reported from a study of electron tunneling into bulk samples of the new high-Tc superconductor Y-Ba-Cu-O using point-contact tunneling. Based on a superconductive tunneling interpretation, the results show exceptionally large energy gaps in these materials (roughly 2Delta = 100 MeV), implying 2Delta/kBTc = about 13. Similar values were found for La-Sr-Cu-O. The structure in the I-V curves is also similar to that seen in La-Sr-Cu-O. From the asymmetries observed in the I-V characteristics, it is inferred that the natural tunneling barrier on this material is of the Schottky type.

  13. High performance vertical tunneling diodes using graphene/hexagonal boron nitride/graphene hetero-structure

    Energy Technology Data Exchange (ETDEWEB)

    Hwan Lee, Seung; Lee, Jia; Ho Ra, Chang; Liu, Xiaochi; Hwang, Euyheon [Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Sup Choi, Min [Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Hee Choi, Jun [Frontier Research Laboratory, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Yongin, Gyeonggi-do 446-711 (Korea, Republic of); Zhong, Jianqiang; Chen, Wei [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Jong Yoo, Won, E-mail: yoowj@skku.edu [Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2014-02-03

    A tunneling rectifier prepared from vertically stacked two-dimensional (2D) materials composed of chemically doped graphene electrodes and hexagonal boron nitride (h-BN) tunneling barrier was demonstrated. The asymmetric chemical doping to graphene with linear dispersion property induces rectifying behavior effectively, by facilitating Fowler-Nordheim tunneling at high forward biases. It results in excellent diode performances of a hetero-structured graphene/h-BN/graphene tunneling diode, with an asymmetric factor exceeding 1000, a nonlinearity of ∼40, and a peak sensitivity of ∼12 V{sup −1}, which are superior to contending metal-insulator-metal diodes, showing great potential for future flexible and transparent electronic devices.

  14. Plastic Zone Analysis of Deep-Buried, Noncircular Tunnel and Application on the High-Speed Railway in the Karst Area

    Directory of Open Access Journals (Sweden)

    Hai Shi

    2017-01-01

    Full Text Available With the conformal mapping function provided by Verruijt, the outland of a noncircular tunnel can be mapped to a circular unit in the complex plane and then spread the analytic function into a Laurent series. The stress unified solution of oval and horseshoe cross section can be determined using Muskhelishvili’s complex variables function method. Subsequently, the solution can be taken into the Griffith strength failure criterion and determine the scale and shape of plastic zone in the tunnel surrounding rock. Aiming at the critical safety thickness between a concealed cave and tunnel in the karst area and determining whether the plastic zone of tunnel surrounding rock is connected with the plastic zone of cave as a judgment standard, the model of critical safety thickness among the concealed caves and tunnels is established. The numerical model is established in comparison with the computing method of rock plate critical safety thickness in actual engineering based on the Doumo tunnel engineering of Shanghai-Kunming (Guizhou segment high-speed railway. The following conclusions can be drawn: the analytical approximation method has less indexes, and the output of this method is approximately close to actual engineering and numerical analysis, in which it is reliable and rational.

  15. High-temperature magnetoresistance study of a magnetic tunnel junction

    International Nuclear Information System (INIS)

    Chen, D.C.; Yao, Y.D.; Chen, C.M.; Hung, James; Chen, Y.S.; Wang, W.H.; Chen, W.C.; Kao, M.J.

    2006-01-01

    The thermal stability and the spin transportation phenomenon at room temperature and 140 deg. C of a series of magnetic tunneling junctions with the structure of bottom electrode/PtMn/Pinned layer/ AlO x /CoFe/NiFe/top electrode have been investigated. The MR ratio decreases from 33.5% at room temperature to 29% at 140 deg. C. The MR ratio at room temperature increases roughly 0.8% after thermal treatment at temperatures above 60 deg. C. This is related to the thermal relaxation of the strains existing in the samples

  16. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    Science.gov (United States)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  17. Spin accumulation in Si channels using CoFe/MgO/Si and CoFe/AlOx/Si tunnel contacts with high quality tunnel barriers prepared by radical-oxygen annealing

    International Nuclear Information System (INIS)

    Akushichi, T.; Shuto, Y.; Sugahara, S.; Takamura, Y.

    2015-01-01

    We investigate spin injection into Si channels using three-terminal spin-accumulation (3T-SA) devices with high-quality CoFe/MgO/n-Si and CoFe/AlO x /n-Si tunnel spin-injectors whose tunnel barriers are formed by radical oxidation of Mg and Al thin films deposited on Si(100) substrates and successive annealing under radical-oxygen exposure. When the MgO and AlO x barriers are not treated by the radical-oxygen annealing, the Hanle-effect signals obtained from the 3T-SA devices are closely fitted by a single Lorentz function representing a signal due to trap spins. On the other hand, when the tunnel barriers are annealed under radical-oxygen exposure, the Hanle-effect signals can be accurately fitted by the superposition of a Lorentz function and a non-Lorentz function representing a signal due to accumulated spins in the Si channel. These results suggest that the quality improvement of tunnel barriers treated by radical-oxygen annealing is highly effective for spin-injection into Si channels

  18. High energy storage capacitor by embedding tunneling nano-structures

    Science.gov (United States)

    Holme, Timothy P; Prinz, Friedrich B; Van Stockum, Philip B

    2014-11-04

    In an All-Electron Battery (AEB), inclusions embedded in an active region between two electrodes of a capacitor provide enhanced energy storage. Electrons can tunnel to/from and/or between the inclusions, thereby increasing the charge storage density relative to a conventional capacitor. One or more barrier layers is present in an AEB to block DC current flow through the device. The AEB effect can be enhanced by using multi-layer active regions having inclusion layers with the inclusions separated by spacer layers that don't have the inclusions. The use of cylindrical geometry or wrap around electrodes and/or barrier layers in a planar geometry can enhance the basic AEB effect. Other physical effects that can be employed in connection with the AEB effect are excited state energy storage, and formation of a Bose-Einstein condensate (BEC).

  19. Local imaging of high mobility two-dimensional electron systems with virtual scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pelliccione, M. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (United States); Bartel, J.; Goldhaber-Gordon, D. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States); Sciambi, A. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Pfeiffer, L. N.; West, K. W. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-11-03

    Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called “virtual scanning tunneling microscopy” that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution.

  20. [The Performance Analysis for Lighting Sources in Highway Tunnel Based on Visual Function].

    Science.gov (United States)

    Yang, Yong; Han, Wen-yuan; Yan, Ming; Jiang, Hai-feng; Zhu, Li-wei

    2015-10-01

    Under the condition of mesopic vision, the spectral luminous efficiency function is shown as a series of curves. Its peak wavelength and intensity are affected by light spectrum, background brightness and other aspects. The impact of light source to lighting visibility could not be carried out via a single optical parametric characterization. The reaction time of visual cognition is regard as evaluating indexes in this experiment. Under the condition of different speed and luminous environment, testing visual cognition based on vision function method. The light sources include high pressure sodium, electrodeless fluorescent lamp and white LED with three kinds of color temperature (the range of color temperature is from 1 958 to 5 537 K). The background brightness value is used for basic section of highway tunnel illumination and general outdoor illumination, its range is between 1 and 5 cd x m(-)2. All values are in the scope of mesopic vision. Test results show that: under the same condition of speed and luminance, the reaction time of visual cognition that corresponding to high color temperature of light source is shorter than it corresponding to low color temperature; the reaction time corresponding to visual target in high speed is shorter than it in low speed. At the end moment, however, the visual angle of target in observer's visual field that corresponding to low speed was larger than it corresponding to high speed. Based on MOVE model, calculating the equivalent luminance of human mesopic vision, which is on condition of different emission spectrum and background brightness that formed by test lighting sources. Compared with photopic vision result, the standard deviation (CV) of time-reaction curve corresponding to equivalent brightness of mesopic vision is smaller. Under the condition of mesopic vision, the discrepancy between equivalent brightness of different lighting source and photopic vision, that is one of the main reasons for causing the

  1. Magnetic quantum tunneling: key insights from multi-dimensional high-field EPR.

    Science.gov (United States)

    Lawrence, J; Yang, E-C; Hendrickson, D N; Hill, S

    2009-08-21

    Multi-dimensional high-field/frequency electron paramagnetic resonance (HFEPR) spectroscopy is performed on single-crystals of the high-symmetry spin S = 4 tetranuclear single-molecule magnet (SMM) [Ni(hmp)(dmb)Cl](4), where hmp(-) is the anion of 2-hydroxymethylpyridine and dmb is 3,3-dimethyl-1-butanol. Measurements performed as a function of the applied magnetic field strength and its orientation within the hard-plane reveal the four-fold behavior associated with the fourth order transverse zero-field splitting (ZFS) interaction, (1/2)B(S + S), within the framework of a rigid spin approximation (with S = 4). This ZFS interaction mixes the m(s) = +/-4 ground states in second order of perturbation, generating a sizeable (12 MHz) tunnel splitting, which explains the fast magnetic quantum tunneling in this SMM. Meanwhile, multi-frequency measurements performed with the field parallel to the easy-axis reveal HFEPR transitions associated with excited spin multiplets (S spin s = 1 Ni(II) ions within the cluster, as well as a characterization of the ZFS within excited states. The combined experimental studies support recent work indicating that the fourth order anisotropy associated with the S = 4 state originates from second order ZFS interactions associated with the individual Ni(II) centers, but only as a result of higher-order processes that occur via S-mixing between the ground state and higher-lying (S spin multiplets. We argue that this S-mixing plays an important role in the low-temperature quantum dynamics associated with many other well known SMMs.

  2. Highly cited articles in wind tunnel-related research: a bibliometric analysis.

    Science.gov (United States)

    Mo, Ziwei; Fu, Hui-Zhen; Ho, Yuh-Shan

    2018-03-22

    Wind tunnels have been widely employed in aerodynamic research. To characterize the high impact research, a bibliometric analysis was conducted on highly cited articles related to wind tunnel based on the Science Citation Index Expanded (SCI-EXPANDED) database from 1900 to 2014. Articles with at least 100 citations from the Web of Science Core Collection were selected and analyzed in terms of publication years, authors, institutions, countries/territories, journals, Web of Science categories, and citation life cycles. The results show that a total of 77 highly cited articles in 37 journals were published between 1959 and 2008. Journal of Fluid Mechanics published the most of highly cited articles. The USA was the most productive country and most frequent partner of internationally collaboration. The prolific institutions were mainly located in the USA and UK. The authors who were both first author and corresponding author published 88% of the articles. The Y index was also deployed to evaluate the publication characteristics of authors. Moreover, the articles with high citations in both history and the latest year with their citation life cycles were examined to provide insights for high impact research. The highly cited articles were almost earliest wind tunnel experimental data and reports on their own research specialty, and thus attracted high citations. It was revealed that classic works of wind tunnel research was frequently occurred in 1990s but much less in 2000s, probably due to the development of numerical models of computational fluid dynamic (CFD) in recent decades.

  3. Anechoic wind tunnel tests on high-speed train bogie aerodynamic noise

    OpenAIRE

    Latorre Iglesias, E.; Thompson, D.; Smith, M.; Kitagawa, T.; Yamazaki, N.

    2016-01-01

    Aerodynamic noise becomes a significant noise source at speeds normally reached by high-speed trains. The train bogies are identified as important sources of aerodynamic noise. Due to the difficulty to assess this noise source carrying out field tests, wind tunnel tests offer many advantages. Tests were performed in the large-scale low-noise anechoic wind tunnel at Maibara, Japan, using a 1/7 scale train car and bogie model for a range of flow speeds between 50, 76, 89 and 100 m/s. The depend...

  4. Fermi velocity mismatch effects in the tunneling characteristics of high-Tc superconductors

    International Nuclear Information System (INIS)

    Aponte, J.M.; Nunez-Regueiro, J.E.; Bellorin, A.; Octavio, M.

    1994-01-01

    We present a comparative study of the tunneling characteristics of point contacts in which one electrode was a superconducting single crystal of Bi 2 Sr 2 CaCu 2 O x and the other electrode was either a normal metal (N-HTSC point contact), or a non-superconducting rare earth metallic oxide (REMO-HTSC point contact), or another crystal of the same superconductor (HTSC'-HTSC point contact). We show that the mismatch of the Fermi velocities of the electrodes is in part responsible for the irreproducibility of most of the tunneling conductance curves observed in high temperature superconductors. (orig.)

  5. Wind-tunnel investigations of pressure distribution over high-rise buildings

    CSIR Research Space (South Africa)

    Cwik, M

    2013-09-01

    Full Text Available of evaluating wind loads of high-rise structures. The second part provides a description of the research, conducted at the wind-tunnel of the Council for Scientific and Industrial Research, in Pretoria, South Africa. The aim of this research was to determine...

  6. Resonant tunneling with high peak to valley current ratio in SiO2/nc-Si/SiO2 multi-layers at room temperature

    International Nuclear Information System (INIS)

    Chen, D. Y.; Sun, Y.; He, Y. J.; Xu, L.; Xu, J.

    2014-01-01

    We have investigated carrier transport in SiO 2 /nc-Si/SiO 2 multi-layers by room temperature current-voltage measurements. Resonant tunneling signatures accompanied by current peaks are observed. Carrier transport in the multi-layers were analyzed by plots of ln(I/V 2 ) as a function of 1/V and ln(I) as a function of V 1/2 . Results suggest that besides films quality, nc-Si and barrier sub-layer thicknesses are important parameters that restrict carrier transport. When thicknesses are both small, direct tunneling dominates carrier transport, resonant tunneling occurs only at certain voltages and multi-resonant tunneling related current peaks can be observed but with peak to valley current ratio (PVCR) values smaller than 1.5. When barrier thickness is increased, trap-related and even high field related tunneling is excited, causing that multi-current peaks cannot be observed clearly, only one current peak with higher PVCR value of 7.7 can be observed. While if the thickness of nc-Si is large enough, quantum confinement is not so strong, a broad current peak with PVCR value as high as 60 can be measured, which may be due to small energy difference between the splitting energy levels in the quantum dots of nc-Si. Size distribution in a wide range may cause un-controllability of the peak voltages

  7. a New Approach for Subway Tunnel Deformation Monitoring: High-Resolution Terrestrial Laser Scanning

    Science.gov (United States)

    Li, J.; Wan, Y.; Gao, X.

    2012-07-01

    With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS) technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400). There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS) and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  8. A NEW APPROACH FOR SUBWAY TUNNEL DEFORMATION MONITORING: HIGH-RESOLUTION TERRESTRIAL LASER SCANNING

    Directory of Open Access Journals (Sweden)

    J. Li

    2012-07-01

    Full Text Available With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400. There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  9. A functional renormalization group application to the scanning tunneling microscopy experiment

    Directory of Open Access Journals (Sweden)

    José Juan Ramos Cárdenas

    2015-12-01

    Full Text Available We present a study of a system composed of a scanning tunneling microscope (STM tip coupled to an absorbed impurity on a host surface using the functional renormalization group (FRG. We include the effect of the STM tip as a correction to the self-energy in addition to the usual contribution of the host surface in the wide band limit. We calculate the differential conductance curves at two different lateral distances from the quantum impurity and find good qualitative agreement with STM experiments where the differential conductance curves evolve from an antiresonance to a Lorentzian shape.

  10. Nonadiabatic Dynamics in Single-Electron Tunneling Devices with Time-Dependent Density-Functional Theory

    Science.gov (United States)

    Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole

    2018-04-01

    We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.

  11. The Conceptual Design of High Pressure Reversible Axial Tunnel Ventilation Fans

    Directory of Open Access Journals (Sweden)

    A. G. Sheard

    2012-01-01

    Full Text Available Tunnel ventilation fans, classically, must have the ability to both supply and extract air from a tunnel system, with the operator's choice dependent on the tunnel ventilation system's operating mode most appropriate at any given point in time. Consequently, tunnel ventilation fans must incorporate a reversible aerodynamic design which limits the maximum fan pressure rise. This paper presents three high pressure reversible fan concepts. These comprise a two-stage counter rotating fan, a single-stage high speed fan, and a two-stage fan with a single motor and impeller on each end of the motor shaft. The authors consider the relative merits of each concept. The third concept offers the most compact fan, transform, silencer, and damper package size. The authors discuss the mechanical design challenges that occur with a two-stage fan with a single motor and impeller on each end of the motor shaft. They present and consider a selected motor bearing arrangement and casing design for maintainability. Finally, the authors present both prototype fan and full-scale package aerodynamic and acoustic performance, before discussing the challenges presented by high temperature certification in accordance with the requirements of EN 12101-3: 2012.

  12. Can Impairment Interfere with Performance by Women with Carpal Tunnel Syndrome According to International Classification of Function?

    Directory of Open Access Journals (Sweden)

    Somayeh Kavousipor

    2015-03-01

    Full Text Available Background: Carpal tunnel syndrome is the most prevalent compression neuropathy of upper extremity which, two of the most important risk factors of that are the female sex and manual works. In the model of international classification of function, disability and health, disease is an impairment, results in functional limitation. The goal of this study is to compare hand function of participants between various severities of carpal tunnel syndrome. Methods: In a cross-sectional study, during 6 months period of time, 30 housekeeper women with carpal tunnel syndrome, with the mean age of 47.03 years, were selected through simple sampling. They were assessed for hand function, by Purdue peg board test and Boston questionnaire, after that a professional practitioner had performed Nerve Conductive Velocity (NCV test and identified the severity of their diseases. Then the data were analyzed with SPSS software, by Kruskal-Wallis test. Results: The mean of Purdue peg board test and Boston questionnaire scores in various clusters of carpal tunnel syndrome severity, were not different (P>0.05. Conclusion: In this research, severity of electrodiagnostic findings of participants, with carpal tunnel syndrome, is not related to their performance and functional limitations.

  13. Concept design of the high voltage transmission system for the collider tunnel

    International Nuclear Information System (INIS)

    Norman, L.S.

    1992-03-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations -- such as the Channel Tunnel -- demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design

  14. Concept design of the high-voltage transmission system for the collider tunnel

    International Nuclear Information System (INIS)

    Norman, L.S.

    1992-01-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations-such as the Channel Tunnel-demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design

  15. Influence of microclimatic conditions under high tunnels on the physiological and productive responses in blueberry 'O'Neal'

    Directory of Open Access Journals (Sweden)

    Jorge Retamal-Salgado

    2015-09-01

    Full Text Available Blueberry (Vaccinium corymbosum L. production under tunnels has spread in recent years. However, there is little information on the productive and physiological responses of blueberry grown under high tunnels. The objective of this research was to evaluate the effect of high tunnel microclimate on the physiological and productive responses of blueberries. A total of 1296 plants of highbush blueberry 'O'Neal' were grown in high tunnels, leaving the same amount of plants under open fields (control. Environmental temperature (T, °C and relative humidity (RH, %, diffuse and total photosynthetically active radiation (PARdiffuse and PARtotal, /high tunnel than the control, whereas the minimum T averaged only 2-5 °C higher. PARtotal decreased an average of 25% under tunnel, while levels of PARdiffuse increased more than 150%. The g s ranged between 42% and 99% higher in the high tunnel compared to the control, and was positive and statistically related (r² = 0.69** to PARdiffuse variations. Blueberries under high tunnel recorded an accumulated yield 44% higher, while harvest started 14 d earlier compared to control. The results suggest that high tunnels in blueberries increases fruit yield and improves precocity due to higher temperatures during the flowering stage and fruit set. Particular light conditions under tunnels would favor higher leaf stomatal conductance in this crop.

  16. Pose Measurement Method and Experiments for High-Speed Rolling Targets in a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Zhenyuan Jia

    2014-12-01

    Full Text Available High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  17. Pose measurement method and experiments for high-speed rolling targets in a wind tunnel.

    Science.gov (United States)

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-12-12

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  18. Automatic Generation of the Planning Tunnel High Speed Craft Hull Form

    Institute of Scientific and Technical Information of China (English)

    Morteza Ghassabzadeh; Hassan Ghassemi

    2012-01-01

    The creation of geometric model of a ship to determine the characteristics of hydrostatic and hydrodynamic,and also for structural design and equipments arrangement are so important in the ship design process.Planning tunnel high speed craft is one of the crafts in which,achievement to their top speed is more important.These crafts with the use of tunnel have the aero-hydrodynamics properties to diminish the resistance,good sea-keeping behavior,reduce slamming and avoid porpoising.Because of the existence of the tunnel,the hull form generation of these crafts is more complex and difficult.In this paper,it has attempted to provide a method based on geometry creation guidelines and with an entry of the least control and hull form adjustment parameters,to generate automatically the hull form of planning tunnel craft.At first,the equations of mathematical model are described and subsequent,three different models generated based on present method are compared and analyzed.Obviously,the generated model has more application in the early stages of design.

  19. Coherent Interlayer Tunneling and Negative Differential Resistance with High Current Density in Double Bilayer Graphene-WSe2 Heterostructures.

    Science.gov (United States)

    Burg, G William; Prasad, Nitin; Fallahazad, Babak; Valsaraj, Amithraj; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; Wang, Qingxiao; Kim, Moon J; Register, Leonard F; Tutuc, Emanuel

    2017-06-14

    We demonstrate gate-tunable resonant tunneling and negative differential resistance between two rotationally aligned bilayer graphene sheets separated by bilayer WSe 2 . We observe large interlayer current densities of 2 and 2.5 μA/μm 2 and peak-to-valley ratios approaching 4 and 6 at room temperature and 1.5 K, respectively, values that are comparable to epitaxially grown resonant tunneling heterostructures. An excellent agreement between theoretical calculations using a Lorentzian spectral function for the two-dimensional (2D) quasiparticle states, and the experimental data indicates that the interlayer current stems primarily from energy and in-plane momentum conserving 2D-2D tunneling, with minimal contributions from inelastic or non-momentum-conserving tunneling. We demonstrate narrow tunneling resonances with intrinsic half-widths of 4 and 6 meV at 1.5 and 300 K, respectively.

  20. Systematic observation of tunneling field-ionization in highly excited Rb Rydberg atoms

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Tada, M.; Kominato, K.; Shibata, M.; Yamada, S.; Haseyama, T.; Ogawa, I.; Funahashi, H.; Yamamoto, K.; Matsuki, S.

    2002-01-01

    Pulsed field ionization of high-n (90≤n≤150) manifold states in Rb Rydberg atoms has been investigated in high slew-rate regime. Two peaks in the field ionization spectra were systematically observed for the investigated n region, where the field values at the lower peak do not almost depend on the excitation energy in the manifold, while those at the higher peak increase with increasing excitation energy. The fraction of the higher peak component to the total ionization signals increases with increasing n, exceeding 80% at n=147. Characteristic behavior of the peak component and the comparison with theoretical predictions indicate that the higher peak component is due to the tunneling process. The obtained results show that the tunneling process plays increasingly the dominant role at such highly excited nonhydrogenic Rydberg atoms

  1. Tunneling density of states as a function of thickness in superconductor/ strong ferromagnet bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Reymond, S.

    2010-04-29

    We have made an experimental study of the tunneling density of states (DOS) in strong ferromagnetic thin films (CoFe) in proximity with a thick superconducting film (Nb) as a function of d{sub F}, the ferromagnetic thickness. Remarkably, we find that as d{sub F} increases, the superconducting DOS exhibits a scaling behavior in which the deviations from the normal-state conductance have a universal shape that decreases exponentially in amplitude with characteristic length d* {approx} 0.4 nm. We do not see oscillations in the DOS as a function of d{sub F}, as expected from predictions based on the Usadel equations, although an oscillation in T{sub c}(d{sub F}) has been seen in the same materials.

  2. Functional Catastrophe Analysis of Collapse Mechanism for Shallow Tunnels with Considering Settlement

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2016-01-01

    Full Text Available Limit analysis is a practical and meaningful method to predict the stability of geomechanical properties. This work investigates the pore water effect on new collapse mechanisms and possible collapsing block shapes of shallow tunnels with considering the effects of surface settlement. The analysis is performed within the framework of upper bound theorem. Furthermore, the NL nonlinear failure criterion is used to examine the influence of different factors on the collapsing shape and the minimum supporting pressure in shallow tunnels. Analytical solutions derived by functional catastrophe theory for the two different shape curves which describe the distinct characteristics of falling blocks up and down the water level are obtained by virtual work equations under the variational principle. By considering that the mechanical properties of soil are not affected by the presence of underground water, the strength parameters in NL failure criterion can be taken to be the same under and above the water table. According to the numerical results in this work, the influences on the size of collapsing block different parameters have are presented in the tables and the upper bounds on the loads required to resist collapse are derived and illustrated in the form of supporting forces graphs that account for the variation of the embedded depth and other factors.

  3. Performance analysis of AlGaAs/GaAs tunnel junctions for ultra-high concentration photovoltaics

    International Nuclear Information System (INIS)

    García, I; Rey-Stolle, I; Algora, C

    2012-01-01

    An n ++ -GaAs/p ++ -AlGaAs tunnel junction with a peak current density of 10 100 A cm -2 is developed. This device is a tunnel junction for multijunction solar cells, grown lattice-matched on standard GaAs or Ge substrates, with the highest peak current density ever reported. The voltage drop for a current density equivalent to the operation of the multijunction solar cell up to 10 000 suns is below 5 mV. Trap-assisted tunnelling is proposed to be behind this performance, which cannot be justified by simple band-to-band tunnelling. The metal-organic vapour-phase epitaxy growth conditions, which are in the limits of the transport-limited regime, and the heavy tellurium doping levels are the proposed origins of the defects enabling trap-assisted tunnelling. The hypothesis of trap-assisted tunnelling is supported by the observed annealing behaviour of the tunnel junctions, which cannot be explained in terms of dopant diffusion or passivation. For the integration of these tunnel junctions into a triple-junction solar cell, AlGaAs barrier layers are introduced to suppress the formation of parasitic junctions, but this is found to significantly degrade the performance of the tunnel junctions. However, the annealed tunnel junctions with barrier layers still exhibit a peak current density higher than 2500 A cm -2 and a voltage drop at 10 000 suns of around 20 mV, which are excellent properties for tunnel junctions and mean they can serve as low-loss interconnections in multijunction solar cells working at ultra-high concentrations. (paper)

  4. First Results at ultra-high Rλ in a wind tunnel

    Science.gov (United States)

    Kuechler, Christian; Bodenschatz, Eberhard; Bewley, Gregory P.

    2017-11-01

    With a new active grid installed, the Variable Density Turbulence Tunnel (VDTT) at the Max-Planck-Institute for Dynamics and Self-Organization produced homogeneous turbulence at Reynolds numbers up to Rλ 7500 . The active grid consisted of 111 individually controllable flaps that produced more intense turbulence than classical fixed grids. We varied the Reynolds number by changing the pressure of sulfur hexafluoride gas in the tunnel between 0.5 and 15 bar, which changes the viscosity of the gas. With hot wire probes called NSTAPs that were 30 microns long, we measured velocity spectra and structure functions. While a bottleneck is present in the spectra at Reynolds numbers up to Rλ < 3000 , the bottleneck weakens and disappears at higher Rλ. We compare this observation with measurements made in the field and with computer simulations.

  5. Experiences with a high-blockage model tested in the NASA Ames 12-foot pressure wind tunnel

    Science.gov (United States)

    Coder, D. W.

    1984-01-01

    Representation of the flow around full-scale ships was sought in the subsonic wind tunnels in order to a Hain Reynolds numbers as high as possible. As part of the quest to attain the largest possible Reynolds number, large models with high blockage are used which result in significant wall interference effects. Some experiences with such a high blockage model tested in the NASA Ames 12-foot pressure wind tunnel are summarized. The main results of the experiment relating to wind tunnel wall interference effects are also presented.

  6. Radioactive airborne species formed in the air in high energy accelerator tunnels

    International Nuclear Information System (INIS)

    Kondo, K.

    2005-01-01

    Many radioactive airborne species have been observed in the air of high energy accelerator tunnels during machine operation. Radiation protection against these induced airborne radioactivities is one of the key issues for radiation safety, especially at high-energy and high-intense proton accelerators such as the J-PARC (Japan Proton Accelerator Research Complex, Joint project of KEK and JAERI), which is now under construction at the TOKAI site of JAERI. Information on the chemical forms and particle sizes of airborne radioactivities is essential for the estimation of internal doses. For that purpose, the study on radioactive airborne species formed in the air of beam-line tunnels at high-energy accelerators have been extensively conducted by our group. For Be-7, Na-24, S-38, Cl-38,-39, C-11, and N-13, formed by various types of nuclear reactions including nuclear spallation reactions, their aerosol and gaseous fractions are determined by a filter technique. A parallel plate diffusion battery is used for the measurement of aerosol size distributions, and the formation of radioactive aerosols is explained by the attachment of radionuclides to ambient non-radioactive aerosols which are formed through radiation induced reactions. The chemical forms of gaseous species are also determined by using a selective collection method based on a filter technique. A review is given of the physico-chemical properties of these airborne radionuclides produced in the air of accelerator beam-line tunnels.

  7. Studying the universality of field induced tunnel ionization times via high-order harmonic spectroscopy

    International Nuclear Information System (INIS)

    Soifer, H; Bruner, B D; Dudovich, N; Negro, M; Devetta, M; Vozzi, C; Faccialà, D; Silvestri, S de; Stagira, S

    2014-01-01

    High-harmonic generation spectroscopy is a promising tool for resolving electron dynamics and structure in atomic and molecular systems. This scheme, commonly described by the strong field approximation, requires a deep insight into the basic mechanism that leads to the harmonic generation. Recently, we have demonstrated the ability to resolve the first stage of the process—field induced tunnel ionization—by adding a weak perturbation to the strong fundamental field. Here we generalize this approach and show that the assumptions behind the strong field approximation are valid over a wide range of tunnel ionization conditions. Performing a systematic study—modifying the fundamental wavelength, intensity and atomic system—we observed a good agreement with quantum path analysis over a range of Keldysh parameters. The generality of this scheme opens new perspectives in high harmonics spectroscopy, holding the potential of probing large, complex molecular systems. (paper)

  8. Effects of plastic mulches and high tunnel raspberry production systems on soil physicochemical quality indicators

    Science.gov (United States)

    Domagała-Świątkiewicz, Iwona; Siwek, Piotr

    2018-01-01

    In horticulture, degradable materials are desirable alternatives to plastic films. Our aim was to study the impact of soil plastic mulching on the soil properties in the high tunnel and open field production systems of raspberry. The raised beds were mulched with a polypropylene non-woven and two degradable mulches: polypropylene with a photodegradant and non-woven polylactide. The results indicated that the system of raspberry production, as well as the type of mulching had significant impact on soil organic carbon stock, moisture content and water stable aggregate amount. Soils taken from the open field system had a lower bulk density and water stability aggregation index, but higher organic carbon and capillary water content as compared to soils collected from high tunnel conditions. In comparison with the open field system, soil salinity was also found to be higher in high tunnel, as well as with higher P, Mg, Ca, S, Na and B content. Furthermore, mulch covered soils had more organic carbon amount than the bare soils. Soil mulching also enhanced the water capacity expressed as a volume of capillary water content. In addition, mulching improved the soil structure in relation to the bare soil, in particular, in open field conditions. The impact of the compared mulches on soil quality indicators was similar.

  9. High-frequency spin-dependent tunnelling in magnetic nanocomposites: Magnetorefractive effect and magnetoimpedance

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, Alexander [Faculty of Physics, Lomonosov Moscow State University, Moscow 119992 (Russian Federation)]. E-mail: granov@magn.ru; Kozlov, Andrey [Faculty of Physics, Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Nedukh, Sergey [Institute of Radiophysics and Electronics NAS of Ukraine, Kharkov 61085 (Ukraine); Tarapov, Sergey [Institute of Radiophysics and Electronics NAS of Ukraine, Kharkov 61085 (Ukraine)

    2005-07-15

    Since the dielectric permittivity is linear with frequency-dependent conductivity, high-frequency properties for any kind of magnetic materials with the high magnetoresistance depend on magnetization. It manifests as magnetorefractive effect (MRE) in the infrared region of spectrum and as magnetoimpedance (MI) in the frequency range between radio and microwaves. The main mechanism of both MRE and MI in nanocomposites with tunnel-type magnetoresistance is high-frequency spin-dependent tunnelling. We report on recent results of theoretical and experimental investigations of MRE and MI in nanocomposites Co{sub 51.5}Al{sub 19.5}O{sub 29}, Co{sub 50.2}Ti{sub 9.1}O{sub 40.7}, Co{sub 52.3}Si{sub 12.2}O{sub 35.5} and (Co{sub 0,4}Fe{sub 0,6}){sub 48}(MgF){sub 52}. Most of the obtained experimental data for MRE and MI are consistent with the theory based on considering the tunnel junction between adjacent granules in percolation cluster as a capacitor.

  10. Palladium Gate All Around - Hetero Dielectric -Tunnel FET based highly sensitive Hydrogen Gas Sensor

    Science.gov (United States)

    Madan, Jaya; Chaujar, Rishu

    2016-12-01

    The paper presents a novel highly sensitive Hetero-Dielectric-Gate All Around Tunneling FET (HD-GAA-TFET) based Hydrogen Gas Sensor, incorporating the advantages of band to band tunneling (BTBT) mechanism. Here, the Palladium supported silicon dioxide is used as a sensing media and sensing relies on the interaction of hydrogen with Palladium-SiO2-Si. The high surface to volume ratio in the case of cylindrical GAA structure enhances the fortuities for surface reactions between H2 gas and Pd, and thus improves the sensitivity and stability of the sensor. Behaviour of the sensor in presence of hydrogen and at elevated temperatures is discussed. The conduction path of the sensor which is dependent on sensors radius has also been varied for the optimized sensitivity and static performance analysis of the sensor where the proposed design exhibits a superior performance in terms of threshold voltage, subthreshold swing, and band to band tunneling rate. Stability of the sensor with respect to temperature affectability has also been studied, and it is found that the device is reasonably stable and highly sensitive over the bearable temperature range. The successful utilization of HD-GAA-TFET in gas sensors may open a new door for the development of novel nanostructure gas sensing devices.

  11. High-precision pose measurement method in wind tunnels based on laser-aided vision technology

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2015-08-01

    Full Text Available The measurement of position and attitude parameters for the isolated target from a high-speed aircraft is a great challenge in the field of wind tunnel simulation technology. In this paper, firstly, an image acquisition method for small high-speed targets with multi-dimensional movement in wind tunnel environment is proposed based on laser-aided vision technology. Combining with the trajectory simulation of the isolated model, the reasonably distributed laser stripes and self-luminous markers are utilized to capture clear images of the object. Then, after image processing, feature extraction, stereo correspondence and reconstruction, three-dimensional information of laser stripes and self-luminous markers are calculated. Besides, a pose solution method based on projected laser stripes and self-luminous markers is proposed. Finally, simulation experiments on measuring the position and attitude of high-speed rolling targets are conducted, as well as accuracy verification experiments. Experimental results indicate that the proposed method is feasible and efficient for measuring the pose parameters of rolling targets in wind tunnels.

  12. Multiple-scanning-probe tunneling microscope with nanoscale positional recognition function.

    Science.gov (United States)

    Higuchi, Seiji; Kuramochi, Hiromi; Laurent, Olivier; Komatsubara, Takashi; Machida, Shinichi; Aono, Masakazu; Obori, Kenichi; Nakayama, Tomonobu

    2010-07-01

    Over the past decade, multiple-scanning-probe microscope systems with independently controlled probes have been developed for nanoscale electrical measurements. We developed a quadruple-scanning-probe tunneling microscope (QSPTM) that can determine and control the probe position through scanning-probe imaging. The difficulty of operating multiple probes with submicrometer precision drastically increases with the number of probes. To solve problems such as determining the relative positions of the probes and avoiding of contact between the probes, we adopted sample-scanning methods to obtain four images simultaneously and developed an original control system for QSPTM operation with a function of automatic positional recognition. These improvements make the QSPTM a more practical and useful instrument since four images can now be reliably produced, and consequently the positioning of the four probes becomes easier owing to the reduced chance of accidental contact between the probes.

  13. High spin structure functions

    International Nuclear Information System (INIS)

    Khan, H.

    1990-01-01

    This thesis explores deep inelastic scattering of a lepton beam from a polarized nuclear target with spin J=1. After reviewing the formation for spin-1/2, the structure functions for a spin-1 target are defined in terms of the helicity amplitudes for forward compton scattering. A version of the convolution model, which incorporates relativistic and binding energy corrections is used to calculate the structure functions of a neutron target. A simple parameterization of these structure functions is given in terms of a few neutron wave function parameters and the free nucleon structure functions. This allows for an easy comparison of structure functions calculated using different neutron models. (author)

  14. Application of Rapid Prototyping Methods to High-Speed Wind Tunnel Testing

    Science.gov (United States)

    Springer, A. M.

    1998-01-01

    This study was undertaken in MSFC's 14-Inch Trisonic Wind Tunnel to determine if rapid prototyping methods could be used in the design and manufacturing of high speed wind tunnel models in direct testing applications, and if these methods would reduce model design/fabrication time and cost while providing models of high enough fidelity to provide adequate aerodynamic data, and of sufficient strength to survive the test environment. Rapid prototyping methods utilized to construct wind tunnel models in a wing-body-tail configuration were: fused deposition method using both ABS plastic and PEEK as building materials, stereolithography using the photopolymer SL-5170, selective laser sintering using glass reinforced nylon, and laminated object manufacturing using plastic reinforced with glass and 'paper'. This study revealed good agreement between the SLA model, the metal model with an FDM-ABS nose, an SLA nose, and the metal model for most operating conditions, while the FDM-ABS data diverged at higher loading conditions. Data from the initial SLS model showed poor agreement due to problems in post-processing, resulting in a different configuration. A second SLS model was tested and showed relatively good agreement. It can be concluded that rapid prototyping models show promise in preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.

  15. Radiation environment in the tunnel of a high-energy proton accelerator at energies near 1 TeV

    International Nuclear Information System (INIS)

    McCaslin, J.B.; Sun, R.K.S.; Swanson, W.P.

    1987-12-01

    Neutron energy spectra, fluence distributions and rates in the FNAL Tevatron tunnel are summarized. This work has application to radiation damage to electronics and research equipment at high energy accelerators, as well as to radiological protection. 7 refs., 4 figs

  16. A compact sub-Kelvin ultrahigh vacuum scanning tunneling microscope with high energy resolution and high stability.

    Science.gov (United States)

    Zhang, L; Miyamachi, T; Tomanić, T; Dehm, R; Wulfhekel, W

    2011-10-01

    We designed a scanning tunneling microscope working at sub-Kelvin temperatures in ultrahigh vacuum (UHV) in order to study the magnetic properties on the nanoscale. An entirely homebuilt three-stage cryostat is used to cool down the microscope head. The first stage is cooled with liquid nitrogen, the second stage with liquid (4)He. The third stage uses a closed-cycle Joule-Thomson refrigerator of a cooling power of 1 mW. A base temperature of 930 mK at the microscope head was achieved using expansion of (4)He, which can be reduced to ≈400 mK when using (3)He. The cryostat has a low liquid helium consumption of only 38 ml/h and standing times of up to 280 h. The fast cooling down of the samples (3 h) guarantees high sample throughput. Test experiments with a superconducting tip show a high energy resolution of 0.3 meV when performing scanning tunneling spectroscopy. The vertical stability of the tunnel junction is well below 1 pm (peak to peak) and the electric noise floor of tunneling current is about 6fA/√Hz. Atomic resolution with a tunneling current of 1 pA and 1 mV was achieved on Au(111). The lateral drift of the microscope at stable temperature is below 20 pm/h. A superconducting spilt-coil magnet allows to apply an out-of-plane magnetic field of up to 3 T at the sample surface. The flux vortices of a Nb(110) sample were clearly resolved in a map of differential conductance at 1.1 K and a magnetic field of 0.21 T. The setup is designed for in situ preparation of tip and samples under UHV condition.

  17. Long-term symptomatic, functional, and work outcomes of carpal tunnel syndrome among construction workers.

    Science.gov (United States)

    Evanoff, Bradley; Gardner, Bethany T; Strickland, Jaime R; Buckner-Petty, Skye; Franzblau, Alfred; Dale, Ann Marie

    2016-05-01

    The long-term outcomes of carpal tunnel syndrome (CTS) including symptoms, functional status, work disability, and economic impact are unknown. We conducted a retrospective study of 234 active construction workers with medical claims for CTS and 249 workers without CTS claims; non-cases were matched on age, trade, and insurance eligibility. We conducted telephone interviews with cases and non-cases and collected administrative data on work hours. Compared to non-cases, CTS cases were more likely to report recurrent hand symptoms, decreased work productivity/quality, decreased performance of physical work demands, and greater functional limitations. Surgical cases showed larger improvements on multiple outcomes than non-surgical cases. Minimal differences in paid work hours were seen between cases and non-cases in the years preceding and following CTS claims. Persistent symptoms and functional impairments were present several years after CTS diagnosis. Long-term functional limitations shown by this and other studies indicate the need for improved prevention and treatment. © 2016 Wiley Periodicals, Inc.

  18. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, Alan J., E-mail: alane@ku.edu, E-mail: jwu@ku.edu; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Wu, Judy Z., E-mail: alane@ku.edu, E-mail: jwu@ku.edu [Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045 (United States); Yu, Haifeng; Zhao, Shiping [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-15

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al{sub 2}O{sub 2}/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ∼1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al{sub 2}O{sub 3} tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  19. High performance as-grown and annealed high band gap tunnel junctions: Te behavior at the interface

    Energy Technology Data Exchange (ETDEWEB)

    Bedair, S. M., E-mail: bedair@ncsu.edu; Harmon, Jeffrey L.; Carlin, C. Zachary; Hashem Sayed, Islam E.; Colter, P. C. [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-05-16

    The performance of n{sup +}-InGaP(Te)/p{sup +}-AlGaAs(C) high band gap tunnel junctions (TJ) is critical for achieving high efficiency in multijunction photovoltaics. Several limitations for as grown and annealed TJ can be attributed to the Te doping of InGaP and its behavior at the junction interface. Te atoms in InGaP tend to get attached at step edges, resulting in a Te memory effect. In this work, we use the peak tunneling current (J{sub pk}) in this TJ as a diagnostic tool to study the behavior of the Te dopant at the TJ interface. Additionally, we used our understanding of Te behavior at the interface, guided by device modeling, to modify the Te source shut-off procedure and the growth rate. These modifications lead to a record performance for both the as-grown (2000 A/cm{sup 2}) and annealed (1000 A/cm{sup 2}) high band gap tunnel junction.

  20. Numerical analysis of the slipstream development around a high-speed train in a double-track tunnel.

    Science.gov (United States)

    Fu, Min; Li, Peng; Liang, Xi-Feng

    2017-01-01

    Analysis of the slipstream development around the high-speed trains in tunnels would provide references for assessing the transient gust loads on trackside workers and trackside furniture in tunnels. This paper focuses on the computational analysis of the slipstream caused by high-speed trains passing through double-track tunnels with a cross-sectional area of 100 m2. Three-dimensional unsteady compressible Reynolds-averaged Navier-Stokes equations and a realizable k-ε turbulence model were used to describe the airflow characteristics around a high-speed train in the tunnel. The moving boundary problem was treated using the sliding mesh technology. Three cases were simulated in this paper, including two tunnel lengths and two different configurations of the train. The train speed in these three cases was 250 km/h. The accuracy of the numerical method was validated by the experimental data from full-scale tests, and reasonable consistency was obtained. The results show that the flow field around the high-speed trains can be divided into three distinct regions: the region in front of the train nose, the annular region and the wake region. The slipstream development along the two sides of train is not in balance and offsets to the narrow side in the double-track tunnels. Due to the piston effect, the slipstream has a larger peak value in the tunnel than in open air. The tunnel length, train length and length ratio affect the slipstream velocities; in particular, the velocities increase with longer trains. Moreover, the propagation of pressure waves also induces the slipstream fluctuations: substantial velocity fluctuations mainly occur in front of the train, and weaken with the decrease in amplitude of the pressure wave.

  1. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat.

    Science.gov (United States)

    Hackley, Jason D; Kislitsyn, Dmitry A; Beaman, Daniel K; Ulrich, Stefan; Nazin, George V

    2014-10-01

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

  2. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, Jason D.; Kislitsyn, Dmitry A.; Beaman, Daniel K.; Nazin, George V., E-mail: gnazin@uoregon.edu [Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403 (United States); Ulrich, Stefan [RHK Technology, Inc., 1050 East Maple Road, Troy, Michigan 48083 (United States)

    2014-10-15

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

  3. High-resolution MRI predicts steroid injection response in carpal tunnel syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Takatoshi; Oki, Hodaka; Kinoshita, Shunsuke; Yamashita, Yoshiko; Takahashi, Hiroyuki; Hayashida, Yoshiko; Korogi, Yukunori [University of Occupational and Environmental Health School of Medicine, Department of Radiology, Kitakyushu (Japan); Oshige, Takahisa; Sakai, Akinori [University of Occupational and Environmental Health School of Medicine, Department of Orthopaedic Surgery, Kitakyushu (Japan); Matsuyama, Atsushi; Hisaoka, Masanori [University of Occupational and Environmental Health School of Medicine, Department of Pathology and Oncology, Kitakyushu (Japan)

    2014-03-15

    To correlate median nerve T2 signal and shape at the carpal tunnel with steroid injection (SI) response in carpal tunnel syndrome (CTS) patients. One hundred and sixty-three CTS wrists of 92 consecutive patients who were scheduled to undergo SI were prospectively evaluated with 3-T magnetic resonance imaging (MRI) and a nerve conduction study. All patients underwent axial high-resolution T2-weighted MRI (in-plane resolution of 0.25 x 0.25 mm). The CTS wrists were classified into three groups according to the nerve T2 signal and the flattening ratio at the hook of hamate level: group 1, high and oval; group 2, high and flat; group 3, low and flat. Clinical response to SI was evaluated at 6 months after injection. One hundred and thirteen of the 163 wrists (69.3 %) responded well to SI. The percentage of improvement was 81.7 % (49/60) in group 1, 69.9 % (51/73) in group 2, and 43.3 % (13/30) in group 3 (P < 0.01). On stepwise logistic regression analysis high-resolution MRI was the only significant independent factor for SI response in CTS patients (P < 0.01). High-resolution MRI correlates well with SI response in CTS patients and seems useful for predicting SI response. (orig.)

  4. Seasonal Occurrence of Key Arthropod Pests and Beneficial Insects in Michigan High Tunnel and Field Grown Raspberries.

    Science.gov (United States)

    Leach, Heather; Isaacs, Rufus

    2018-06-06

    Berry crops are increasingly produced in high tunnels, which provide growers with the opportunity to extend their production season. This is particularly beneficial for the northern region of the United States with short and unpredictable growing seasons and where rainfall limits fruit quality. However, little is known about the effect of high tunnels on the community of pests, natural enemies, or pollinators, especially in berry crops, and there are few reports of the insect community in raspberries in this region. We compared the abundance of these insects during two growing seasons in field-grown and tunnel-grown floricane and primocane producing raspberries through direct observation and trapping at five sites in southwestern and central Michigan. We found eight key pests, including spotted wing Drosophila, leafhoppers, and thrips, and seven key natural enemies including parasitoid wasps, spiders, and lacewings, that were common across all sites. Pest populations were up to 6.6 times higher in tunnels, and pests typical of greenhouse systems became more dominant in this environment. Natural enemies observed on plants under tunnels were also more abundant than in the field, but this trend was reversed for natural enemies trapped on yellow sticky cards. There was also a reduction of both honey bees and wild bees under the high tunnels, which was balanced by use of commercial bumble bees. These data not only provide much-needed information on the phenology of the insect community on raspberry plantings, they also highlight the entomological implications of protected raspberry culture.

  5. Point-contact electron tunneling into the high-T/sub c/ superconductor Y-Ba-Cu-O

    International Nuclear Information System (INIS)

    Kirk, M.D.; Smith, D.P.E.; Mitzi, D.B.

    1987-01-01

    We report results of a study of electron tunneling into bulk samples of the new high-T/sub c/ superconductor Y-Ba-Cu-O using point-contact tunneling. Based on a superconductive tunneling interpretation, the results show exceptionally large energy gaps in these materials (roughly 2Δ = 100 meV), implying 2Δ/k/sub C/T/sub c/--13. Similar values were found previously by us for La-Sr-Cu-O. We also see Structure in the I-V curves similar to that seen in La-Sr-Cu-O. On the basis of the asymmetries observed in the I-V characteristics, we believe that the natural tunneling barrier on this material is of the Schottky type

  6. Magnetization switching driven by spin-transfer-torque in high-TMR magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Aurelio, D.; Torres, L.; Finocchio, G.

    2009-01-01

    This paper presents a numerical study of magnetization switching driven by spin-polarized current in high-TMR magnetic tunnel junctions (TMR>100%). The current density distribution throughout the free-layer is computed dynamically, by modeling the ferromagnet/insulator/ferromagnet trilayer as a series of parallel resistances. The validity of the main hypothesis, which states that the current flows perpendicular to the sample plane, has been verified by numerically solving the Poisson equation. Our results show that the nonuniform current density distribution is a source of asymmetry to the switching process. Furthermore, we observe that the reversal mechanisms are characterized by well-defined localized pre-switching oscillation modes.

  7. An ultra-high vacuum scanning tunneling microscope operating at sub-Kelvin temperatures and high magnetic fields for spin-resolved measurements

    Science.gov (United States)

    Salazar, C.; Baumann, D.; Hänke, T.; Scheffler, M.; Kühne, T.; Kaiser, M.; Voigtländer, R.; Lindackers, D.; Büchner, B.; Hess, C.

    2018-06-01

    We present the construction and performance of an ultra-low-temperature scanning tunneling microscope (STM), working in ultra-high vacuum (UHV) conditions and in high magnetic fields up to 9 T. The cryogenic environment of the STM is generated by a single-shot 3He magnet cryostat in combination with a 4He dewar system. At a base temperature (300 mK), the cryostat has an operation time of approximately 80 h. The special design of the microscope allows the transfer of the STM head from the cryostat to a UHV chamber system, where samples and STM tips can be easily exchanged. The UHV chambers are equipped with specific surface science treatment tools for the functionalization of samples and tips, including high-temperature treatments and thin film deposition. This, in particular, enables spin-resolved tunneling measurements. We present test measurements using well-known samples and tips based on superconductors and metallic materials such as LiFeAs, Nb, Fe, and W. The measurements demonstrate the outstanding performance of the STM with high spatial and energy resolution as well as the spin-resolved capability.

  8. Scanning Tunneling Microscopic Observation of Adatom-Mediated Motifs on Gold-Thiol Self-assembled Monolayers at High Coverage

    DEFF Research Database (Denmark)

    Wang, Yun; Chi, Qijin; Hush, Noel S.

    2009-01-01

    the structural motifs observed on surfaces at low coverage and on gold nanoparticles to the observed spectroscopic properties of high-coverage SAMs formed by methanethiol. However, the significant role attributed to intermolecular steric packing effects suggests a lack of generality for the adatom-mediated motif......Self-assembled monolayers (SAMs) formed by chemisorption of a branched-chain alkanethiol, 2-methyl-1-propanethiol, on Au(111) surfaces were studied by in situ scanning tunneling microscopy (STM) under electrochemical potential control and analyzed using extensive density functional theory (DFT...... two R−S−Au−S−R adatom-mediated motifs per surface cell, with steric-induced variations in the adsorbate alignment inducing the observed STM image contrasts. Observed pits covering 5.6 ± 0.5% of the SAM surface are consistent with this structure. These results provide the missing link from...

  9. High performance tunnel field-effect transistor by gate and source engineering

    International Nuclear Information System (INIS)

    Huang, Ru; Huang, Qianqian; Chen, Shaowen; Wu, Chunlei; Wang, Jiaxin; An, Xia; Wang, Yangyuan

    2014-01-01

    As one of the most promising candidates for future nanoelectronic devices, tunnel field-effect transistors (TFET) can overcome the subthreshold slope (SS) limitation of MOSFET, whereas high ON-current, low OFF-current and steep switching can hardly be obtained at the same time for experimental TFETs. In this paper, we developed a new nanodevice technology based on TFET concepts. By designing the gate configuration and introducing the optimized Schottky junction, a multi-finger-gate TFET with a dopant-segregated Schottky source (mFSB-TFET) is proposed and experimentally demonstrated. A steeper SS can be achieved in the fabricated mFSB-TFET on the bulk Si substrate benefiting from the coupled quantum band-to-band tunneling (BTBT) mechanism, as well as a high I ON /I OFF ratio (∼10 7 ) at V DS  = 0.2 V without an area penalty. By compatible SOI CMOS technology, the fabricated Si mFSB-TFET device was further optimized with a high I ON /I OFF ratio of ∼10 8 and a steeper SS of over 5.5 decades of current. A minimum SS of below 60 mV dec −1 was experimentally obtained, indicating its dominant quantum BTBT mechanism for switching. (paper)

  10. High performance tunnel field-effect transistor by gate and source engineering.

    Science.gov (United States)

    Huang, Ru; Huang, Qianqian; Chen, Shaowen; Wu, Chunlei; Wang, Jiaxin; An, Xia; Wang, Yangyuan

    2014-12-19

    As one of the most promising candidates for future nanoelectronic devices, tunnel field-effect transistors (TFET) can overcome the subthreshold slope (SS) limitation of MOSFET, whereas high ON-current, low OFF-current and steep switching can hardly be obtained at the same time for experimental TFETs. In this paper, we developed a new nanodevice technology based on TFET concepts. By designing the gate configuration and introducing the optimized Schottky junction, a multi-finger-gate TFET with a dopant-segregated Schottky source (mFSB-TFET) is proposed and experimentally demonstrated. A steeper SS can be achieved in the fabricated mFSB-TFET on the bulk Si substrate benefiting from the coupled quantum band-to-band tunneling (BTBT) mechanism, as well as a high I(ON)/I(OFF) ratio (∼ 10(7)) at V(DS) = 0.2 V without an area penalty. By compatible SOI CMOS technology, the fabricated Si mFSB-TFET device was further optimized with a high ION/IOFF ratio of ∼ 10(8) and a steeper SS of over 5.5 decades of current. A minimum SS of below 60 mV dec(-1) was experimentally obtained, indicating its dominant quantum BTBT mechanism for switching.

  11. Efficacy of high frequency ultrasound in postoperative evaluation of carpal tunnel syndrome treatment

    Directory of Open Access Journals (Sweden)

    Katarzyna Kapuścińska

    2016-03-01

    Full Text Available Carpal tunnel syndrome (CTS is the most common entrapment neuropathy and a frequent cause of sick leave because of work-related hand overload. The main treatment is operation. Aim: The aim of the study is to assess the usefulness of high frequency ultrasound in the postoperative evaluation of CTS treatment efficacy. Material and methods: Sixty-two patients (50 women and 12 men aged 28–70, mean age 55.2 underwent surgical treatment of CTS. Ultrasound examinations of the wrist in all carpal tunnel sufferers were performed 3 months after the procedure with the use of a high frequency broadband linear array transducer (6–18 MHz, using 18 MHz band of MyLab 70/Esaote. On the basis of the collected data, the author has performed multiple analyses to confirm the usefulness of ultrasound imaging for postoperative evaluation of CTS treatment efficacy. Results: Among all 62 patients, 3 months after surgical median nerve decompression: in 40 patients, CTS symptoms subsided completely, and sonographic evaluation did not show median nerve entrapment signs; in 9 patients, CTS symptoms persisted or exacerbated, and ultrasound proved nerve compression revealing preserved flexor retinaculum fibers; in 13 patients, scar tissue symptoms occurred, and in 5 of them CTS did not subside completely (although ultrasound showed no signs of compression. Conclusions: Ultrasound imaging with the use of a high frequency transducer is a valuable diagnostic tool for postoperative assessment of CTS treatment efficacy.

  12. Tunneling Diode Based on WSe2 /SnS2 Heterostructure Incorporating High Detectivity and Responsivity.

    Science.gov (United States)

    Zhou, Xing; Hu, Xiaozong; Zhou, Shasha; Song, Hongyue; Zhang, Qi; Pi, Lejing; Li, Liang; Li, Huiqiao; Lü, Jingtao; Zhai, Tianyou

    2018-02-01

    van der Waals (vdW) heterostructures based on atomically thin 2D materials have led to a new era in next-generation optoelectronics due to their tailored energy band alignments and ultrathin morphological features, especially in photodetectors. However, these photodetectors often show an inevitable compromise between photodetectivity and photoresponsivity with one high and the other low. Herein, a highly sensitive WSe 2 /SnS 2 photodiode is constructed on BN thin film by exfoliating each material and manually stacking them. The WSe 2 /SnS 2 vdW heterostructure shows ultralow dark currents resulting from the depletion region at the junction and high direct tunneling current when illuminated, which is confirmed by the energy band structures and electrical characteristics fitted with direct tunneling. Thus, the distinctive WSe 2 /SnS 2 vdW heterostructure exhibits both ultrahigh photodetectivity of 1.29 × 10 13 Jones (I ph /I dark ratio of ≈10 6 ) and photoresponsivity of 244 A W -1 at a reverse bias under the illumination of 550 nm light (3.77 mW cm -2 ). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The application of cryogenics to high Reynolds number testing in wind tunnels. I - Evolution, theory, and advantages

    Science.gov (United States)

    Kilgore, R. A.; Dress, D. A.

    1984-01-01

    During the time which has passed since the construction of the first wind tunnel in 1870, wind tunnels have been developed to a high degree of sophistication. However, their development has consistently failed to keep pace with the demands placed on them. One of the more serious problems to be found with existing transonic wind tunnels is their inability to test subscale aircraft models at Reynolds numbers sufficiently near full-scale values to ensure the validity of using the wind tunnel data to predict flight characteristics. The Reynolds number capability of a wind tunnel may be increased by a number of different approaches. However, the best solution in terms of model, balance, and model support loads, as well as in terms of capital and operating cost appears to be related to the reduction of the temperature of the test gas to cryogenic temperatures. The present paper has the objective to review the evolution of the cryogenic wind tunnel concept and to describe its more important advantages.

  14. On the Feasibility of High Speed Railway mmWave Channels in Tunnel Scenario

    Directory of Open Access Journals (Sweden)

    Guangkai Li

    2017-01-01

    Full Text Available Rail traffic is widely acknowledged as an efficient and green transportation pattern and its evolution attracts a lot of attention. However, the key point of the evolution is how to develop the railway services from traditional handling of the critical signaling applications only to high data rate applications, such as real-time videos for surveillance and entertainments. The promising method is trying to use millimeter wave which includes dozens of GHz bandwidths to bridge the high rate demand and frequency shortage. In this paper, the channel characteristics in an arched railway tunnel are investigated owing to their significance of designing reliable communication systems. Meantime, as millimeter wave suffers from higher propagation loss, directional antenna is widely accepted for designing the communication system. The specific changes that directional antenna brings to the radio channel are studied and compared to the performances of omnidirectional antenna. Note that the study is based on enhanced wide-band ray tracing tool where the electromagnetic and scattering parameters of the main materials of the tunnel are measured and fitted with predicting models.

  15. Resonant tunneling assisted propagation and amplification of plasmons in high electron mobility transistors

    International Nuclear Information System (INIS)

    Bhardwaj, Shubhendu; Sensale-Rodriguez, Berardi; Xing, Huili Grace; Rajan, Siddharth; Volakis, John L.

    2016-01-01

    A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. It is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures

  16. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hao, E-mail: hc000211@ohio.edu [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Preissner, Curt; Freeland, John W. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rosenmann, Daniel [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Kersell, Heath; Hla, Saw-Wai [Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rose, Volker, E-mail: vrose@anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2016-01-28

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  17. Valley current characterization of high current density resonant tunnelling diodes for terahertz-wave applications

    Science.gov (United States)

    Jacobs, K. J. P.; Stevens, B. J.; Baba, R.; Wada, O.; Mukai, T.; Hogg, R. A.

    2017-10-01

    We report valley current characterisation of high current density InGaAs/AlAs/InP resonant tunnelling diodes (RTDs) grown by metal-organic vapour phase epitaxy (MOVPE) for THz emission, with a view to investigate the origin of the valley current and optimize device performance. By applying a dual-pass fabrication technique, we are able to measure the RTD I-V characteristic for different perimeter/area ratios, which uniquely allows us to investigate the contribution of leakage current to the valley current and its effect on the PVCR from a single device. Temperature dependent (20 - 300 K) characteristics for a device are critically analysed and the effect of temperature on the maximum extractable power (PMAX) and the negative differential conductance (NDC) of the device is investigated. By performing theoretical modelling, we are able to explore the effect of typical variations in structural composition during the growth process on the tunnelling properties of the device, and hence the device performance.

  18. Rupture of a high pressure gas or steam pipe in a tunnel: a preliminary investigation of the jet thrust exerted on a tunnel barrier

    International Nuclear Information System (INIS)

    Baum, M.R.

    1988-04-01

    On power plant, if a high pressure pipe containing high temperature gas or steam were to rupture, sensitive equipment necessary for safety shutdown of the plant could possibly be incapacitated if exposed to the subsequent high temperature environment. In many plant configurations the high pressure pipework is contained in tunnels where it is possible to construct barriers which isolate one section of the plant from another, thereby restricting the spread of the high temperature fluid/air mixture. This paper describes a preliminary experimental investigation of the magnitude of the thrust likely to be exerted on such barriers by a gas jet issuing from the failed pipe. Measurements of the thrust exerted on a flat plate by normal impingement of a highly underexpanded gas jet are in agreement with a semi-quantitative analysis assuming conservation of the axial momentum of the jet. (author)

  19. High Pressure Scanning Tunneling Microscopy Studies of AdsorbateStructure and Mobility during Catalytic Reactions: Novel Design of anUltra High Pressure, High Temperature Scanning Tunneling MicroscopeSystem for Probing Catalytic Conversions

    Energy Technology Data Exchange (ETDEWEB)

    Tang, David Chi-Wai [Univ. of California, Berkeley, CA (United States)

    2005-05-16

    The aim of the work presented therein is to take advantage of scanning tunneling microscope’s (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 °C).

  20. Studies of superconductors using a low-temperature, high-field scanning tunneling microscope

    International Nuclear Information System (INIS)

    Kirtley, J.R.; Feenstra, R.M.; Fein, A.P.

    1988-01-01

    We have developed a scanning tunneling microscope (STM) capable of operating at temperatures as low as 0.4 K and fields as high as 8 T. We have used this STM to study the energy gap of the high-T/sub c/ superconductors La--Sr--Cu--O and Y--Ba--Cu--O. We find that the reduced gap for these oxide superconductors falls in the range 3<2Δ/k/sub B/T/sub c/<7, for polycrystalline, single-crystal, and thin-film samples. We have also simultaneously imaged the surface topography and superconducting energy gap for thin films of the granular superconductor NbN. We occasionally see regions with smaller best-fit gaps that correlate with surface topographical features, but have been unable so far to image flux vortices

  1. A New XOR Structure Based on Resonant-Tunneling High Electron Mobility Transistor

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Sharifi

    2009-01-01

    Full Text Available A new structure for an exclusive-OR (XOR gate based on the resonant-tunneling high electron mobility transistor (RTHEMT is introduced which comprises only an RTHEMT and two FETs. Calculations are done by utilizing a new subcircuit model for simulating the RTHEMT in the SPICE simulator. Details of the design, input, and output values and margins, delay of each transition, maximum operating frequency, static and dynamic power dissipations of the new structure are discussed and calculated and the performance is compared with other XOR gates which confirm that the presented structure has a high performance. Furthermore, to the best of authors' knowledge, it has the least component count in comparison to the existing structures.

  2. High-performance silicon nanotube tunneling FET for ultralow-power logic applications

    KAUST Repository

    Fahad, Hossain M.; Hussain, Muhammad Mustafa

    2013-01-01

    To increase typically low output drive currents from tunnel field-effect transistors (FETs), we show a silicon vertical nanotube (NT) architecture-based FET's effectiveness. Using core (inner) and shell (outer) gate stacks, the silicon NT tunneling FET shows a sub-60 mV/dec subthreshold slope, ultralow off -state leakage current, higher drive current compared with gate-all-around nanowire silicon tunnel FETs. © 1963-2012 IEEE.

  3. High-performance silicon nanotube tunneling FET for ultralow-power logic applications

    KAUST Repository

    Fahad, Hossain M.

    2013-03-01

    To increase typically low output drive currents from tunnel field-effect transistors (FETs), we show a silicon vertical nanotube (NT) architecture-based FET\\'s effectiveness. Using core (inner) and shell (outer) gate stacks, the silicon NT tunneling FET shows a sub-60 mV/dec subthreshold slope, ultralow off -state leakage current, higher drive current compared with gate-all-around nanowire silicon tunnel FETs. © 1963-2012 IEEE.

  4. An underground research tunnel for the validation of high-level radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Kwon, S.; Park, S. I.; Park, J. H.; Cho, W. J.; Han, P. S.

    2005-01-01

    In order to dispose of high-level radioactive waste(HLW) safely in geological formations, it is necessary to assess the feasibility, safety, appropriateness, and stability of the disposal concept at an underground research site, which is constructed in the same geological formation as the host rock. In this study, minimum requirements and the conceptual design for an efficient construction of a small scale URL, which is named URT, were derived based on a literature review. To confirm the validity of the conceptual design for construction at KAERI, a geological survey including a seismic refraction survey, electronic resistivity survey, borehole drilling, and in situ and laboratory tests were carried out. Based on the results, it was possible to design URT effectively with a consideration of the site characterization. The construction of URT was started in May 2005 and the first stage of the construction of the access tunnel could be successfully completed in Aug. 2005

  5. Determining the phonon energy of highly oriented pyrolytic graphite by scanning tunneling microscope light emission spectroscopy

    Science.gov (United States)

    Uehara, Yoichi; Michimata, Junichi; Watanabe, Shota; Katano, Satoshi; Inaoka, Takeshi

    2018-03-01

    We have investigated the scanning tunneling microscope (STM) light emission spectra of isolated single Ag nanoparticles lying on highly oriented pyrolytic graphite (HOPG). The STM light emission spectra exhibited two types of spectral structures (step-like and periodic). Comparisons of the observed structures and theoretical predictions indicate that the phonon energy of the ZO mode of HOPG [M. Mohr et al., Phys. Rev. B 76, 035439 (2007)] can be determined from the energy difference between the cutoff of STM light emission and the step in the former structure, and from the period of the latter structure. Since the role of the Ag nanoparticles does not depend on the substrate materials, this method will enable the phonon energies of various materials to be measured by STM light emission spectroscopy. The spatial resolution is comparable to the lateral size of the individual Ag nanoparticles (that is, a few nm).

  6. Braids and phase gates through high-frequency virtual tunneling of Majorana zero modes

    Science.gov (United States)

    Gorantla, Pranay; Sensarma, Rajdeep

    2018-05-01

    Braiding of non-Abelian Majorana anyons is a first step towards using them in quantum computing. We propose a protocol for braiding Majorana zero modes formed at the edges of nanowires with strong spin-orbit coupling and proximity-induced superconductivity. Our protocol uses high-frequency virtual tunneling between the ends of the nanowires in a trijunction, which leads to an effective low-frequency coarse-grained dynamics for the system, to perform the braid. The braiding operation is immune to amplitude noise in the drives and depends only on relative phase between the drives, which can be controlled by the usual phase-locking techniques. We also show how a phase gate, which is necessary for universal quantum computation, can be implemented with our protocol.

  7. Wind-tunnel Tests of a Hall High-life Wing

    Science.gov (United States)

    Weick, Fred E; Sanders, Robert

    1932-01-01

    Wind-tunnel tests have been made to find the lift, drag, and center-of-pressure characteristics of a Hall high-lift wing model. The Hall wing is essentially a split-flap airfoil with an internal air passage. Air enters the passage through an opening in the lower surface somewhat back of and parallel to the leading edge, and flows out through an opening made by deflecting the rear portion of the under surface downward as a flap. For ordinary flight conditions the front opening and the rear flap can be closed, providing in effect a conventional airfoil (the Clark Y in this case). The tests were made with various flap settings and with the entrance to the passage both open and closed. The highest lift coefficient found, C(sub L) = 2.08, was obtained with the passage closed.

  8. A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields.

    Science.gov (United States)

    Assig, Maximilian; Etzkorn, Markus; Enders, Axel; Stiepany, Wolfgang; Ast, Christian R; Kern, Klaus

    2013-03-01

    We present design and performance of a scanning tunneling microscope (STM) that operates at temperatures down to 10 mK providing ultimate energy resolution on the atomic scale. The STM is attached to a dilution refrigerator with direct access to an ultra high vacuum chamber allowing in situ sample preparation. High magnetic fields of up to 14 T perpendicular and up to 0.5 T parallel to the sample surface can be applied. Temperature sensors mounted directly at the tip and sample position verified the base temperature within a small error margin. Using a superconducting Al tip and a metallic Cu(111) sample, we determined an effective temperature of 38 ± 1 mK from the thermal broadening observed in the tunneling spectra. This results in an upper limit for the energy resolution of ΔE = 3.5 kBT = 11.4 ± 0.3 μeV. The stability between tip and sample is 4 pm at a temperature of 15 mK as demonstrated by topography measurements on a Cu(111) surface.

  9. High-frequency ultrasound in carpal tunnel syndrome: assessment of patient eligibility for surgical treatment

    Directory of Open Access Journals (Sweden)

    Katarzyna Kapuścińska

    2015-09-01

    Full Text Available Carpal tunnel syndrome (CTS is the most common entrapment neuropathy and a frequent cause of sick leaves because of work-related hand overload. That is why an early diagnosis and adequate treatment (conservative or surgical are essential for optimal patient management. Aim: The aim of the study is to assess the usefulness of high-frequency ultrasound in CTS for the assessment of patient eligibility for surgical treatment. Material and methods: The study involved 62 patients (50 women and 12 men, aged 28–70, mean age 55.2 with scheduled surgeries of CTS on the basis of clinical symptoms, physical examination performed by a neurosurgeon and a positive result of EMG testing. The ultrasound examinations of the wrist were performed in all these patients. On the basis of the collected data, the author has performed multiple analyses to confi rm the usefulness of ultrasound imaging in assessing patient eligibility for surgical treatment of CTS. Results: US examinations showed evidence of median nerve compression at the level of the carpal tunnel in all of the examined patients. This was further confi rmed during surgical procedures. The mean value of the cross-sectional area at the proximal part of the pisiform bone was 17.45 mm2 (min. 12 mm2 , max. 31 mm2 . Nerve hypoechogenicity proximal to the nerve compression site was visible in all 62 patients (100%. Increased nerve vascularity on the transverse section was present in 50 patients (80.65%. Conclusions: Ultrasonography with the use of high-frequency transducers is a valuable diagnostic tool both for assessing patient eligibility for surgical treatment of CTS, and in postoperative assessment of the treatment efficacy.

  10. Passenger comfort on high-speed trains: effect of tunnel noise on the subjective assessment of pressure variations.

    Science.gov (United States)

    Sanok, Sandra; Mendolia, Franco; Wittkowski, Martin; Rooney, Daniel; Putzke, Matthias; Aeschbach, Daniel

    2015-01-01

    When passing through a tunnel, aerodynamic effects on high-speed trains may impair passenger comfort. These variations in atmospheric pressure are accompanied by transient increases in sound pressure level. To date, it is unclear whether the latter influences the perceived discomfort associated with the variations in atmospheric pressure. In a pressure chamber of the DLR-Institute of Aerospace Medicine, 71 participants (M = 28.3 years ± 8.1 SD) rated randomised pressure changes during two conditions according to a crossover design. The pressure changes were presented together with tunnel noise such that the sound pressure level was transiently elevated by either +6 dB (low noise condition) or +12 dB (high noise condition) above background noise level (65 dB(A)). Data were combined with those of a recent study, in which identical pressure changes were presented without tunnel noise (Schwanitz et al., 2013, 'Pressure Variations on a Train - Where is the Threshold to Railway Passenger Discomfort?' Applied Ergonomics 44 (2): 200-209). Exposure-response relationships for the combined data set comprising all three noise conditions show that pressure discomfort increases with the magnitude and speed of the pressure changes but decreases with increasing tunnel noise. Practitioner Summary: In a pressure chamber, we systematically examined how pressure discomfort, as it may be experienced by railway passengers, is affected by the presence of tunnel noise during pressure changes. It is shown that across three conditions (no noise, low noise (+6 dB), high noise (+12 dB)) pressure discomfort decreases with increasing tunnel noise.

  11. Damage functions for the vulnerability assessment of masonry buildings subjected to tunneling

    NARCIS (Netherlands)

    Giardina, C.; Hendriks, M.A.N.; Rots, J.G.

    2015-01-01

    This paper describes a new framework for the assessment of potential damage caused by tunneling-induced settlement to surface masonry buildings. Finite element models in two and three dimensions, validated through comparison with experimental results and field observations, are used to investigate

  12. Anterior subcutaneous transposition of the ulnar nerve improves neurological function in patients with cubital tunnel syndrome

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2015-01-01

    Full Text Available Although several surgical procedures exist for treating cubital tunnel syndrome, the best surgical option remains controversial. To evaluate the efficacy of anterior subcutaneous transposition of the ulnar nerve in patients with moderate to severe cubital tunnel syndrome and to analyze prognostic factors, we retrospectively reviewed 62 patients (65 elbows diagnosed with cubital tunnel syndrome who underwent anterior subcutaneous transposition. Preoperatively, the initial severity of the disease was evaluated using the McGowan scale as modified by Goldberg: 18 patients (28% had grade IIA neuropathy, 20 (31% had grade IIB, and 27 (42% had grade III. Postoperatively, according to the Wilson & Krout criteria, treatment outcomes were excellent in 38 patients (58%, good in 16 (25%, fair in 7 (11%, and poor in 4 (6%, with an excellent and good rate of 83%. A negative correlation was found between the preoperative McGowan grade and the postoperative Wilson & Krout score. The patients having fair and poor treatment outcomes had more advanced age, lower nerve conduction velocity, and lower action potential amplitude compared with those having excellent and good treatment outcomes. These results suggest that anterior subcutaneous transposition of the ulnar nerve is effective and safe for the treatment of moderate to severe cubital tunnel syndrome, and initial severity, advancing age, and electrophysiological parameters can affect treatment outcome.

  13. Model of a tunneling current in a p-n junction based on armchair graphene nanoribbons - an Airy function approach and a transfer matrix method

    International Nuclear Information System (INIS)

    Suhendi, Endi; Syariati, Rifki; Noor, Fatimah A.; Khairurrijal; Kurniasih, Neny

    2014-01-01

    We modeled a tunneling current in a p-n junction based on armchair graphene nanoribbons (AGNRs) by using an Airy function approach (AFA) and a transfer matrix method (TMM). We used β-type AGNRs, in which its band gap energy and electron effective mass depends on its width as given by the extended Huckel theory. It was shown that the tunneling currents evaluated by employing the AFA are the same as those obtained under the TMM. Moreover, the calculated tunneling current was proportional to the voltage bias and inversely with temperature

  14. A Simplified Analytical Technique for High Frequency Characterization of Resonant Tunneling Diode

    Directory of Open Access Journals (Sweden)

    DESSOUKI, A. A. S.

    2014-11-01

    Full Text Available his paper proposes a simplified analytical technique for high frequency characterization of the resonant tunneling diode (RTD. An equivalent circuit of the RTD that consists of a parallel combination of conductance, G (V, f, and capacitance, C (V, f is formulated. The proposed approach uses the measured DC current versus voltage characteristic of the RTD to extract the equivalent circuit elements parameters in the entire bias range. Using the proposed analytical technique, the frequency response - including the high frequency range - of many characteristic aspects of the RTD is investigated. Also, the maximum oscillation frequency of the RTD is calculated. The results obtained have been compared with those concluded and reported in the literature. The reported results in literature were obtained through simulation of the RTD at high frequency using either a computationally complicated quantum simulator or through difficult RF measurements. A similar pattern of results and highly concordant conclusion are obtained. The proposed analytical technique is simple, correct, and appropriate to investigate the behavior of the RTD at high frequency. In addition, the proposed technique can be easily incorporated into SPICE program to simulate circuits containing RTD.

  15. Physics of Gate Modulated Resonant Tunneling (RT)-FETs: Multi-barrier MOSFET for steep slope and high on-current

    Science.gov (United States)

    Afzalian, Aryan; Colinge, Jean-Pierre; Flandre, Denis

    2011-05-01

    A new concept of nanoscale MOSFET, the Gate Modulated Resonant Tunneling Transistor (RT-FET), is presented and modeled using 3D Non-Equilibrium Green's Function simulations enlightening the main physical mechanisms. Owing to the additional tunnel barriers and the related longitudinal confinement present in the device, the density of state is reduced in its off-state, while remaining comparable in its on-state, to that of a MOS transistor without barriers. The RT-FET thus features both a lower RT-limited off-current and a faster increase of the current with V G, i.e. an improved slope characteristic, and hence an improved Ion/ Ioff ratio. Such improvement of the slope can happen in subthreshold regime, and therefore lead to subthreshold slope below the kT/q limit. In addition, faster increase of current and improved slope occur above threshold and lead to high thermionic on-current and significant Ion/ Ioff ratio improvement, even with threshold voltage below 0.2 V and supply voltage V dd of a few hundreds of mV as critically needed for future technology nodes. Finally RT-FETs are intrinsically immune to source-drain tunneling and are therefore promising candidate for extending the roadmap below 10 nm.

  16. Free-flight measurement technique in the free-piston high-enthalpy shock tunnel

    Science.gov (United States)

    Tanno, H.; Komuro, T.; Sato, K.; Fujita, K.; Laurence, S. J.

    2014-04-01

    A novel multi-component force-measurement technique has been developed and implemented at the impulse facility JAXA-HIEST, in which the test model is completely unrestrained during the test and thus experiences free-flight conditions for a period on the order of milliseconds. Advantages over conventional free-flight techniques include the complete absence of aerodynamic interference from a model support system and less variation in model position and attitude during the test itself. A miniature on-board data recorder, which was a key technology for this technique, was also developed in order to acquire and store the measured data. The technique was demonstrated in a HIEST wind-tunnel test campaign in which three-component aerodynamic force measurement was performed on a blunted cone of length 316 mm, total mass 19.75 kg, and moment of inertia 0.152 kgm2. During the test campaign, axial force, normal forces, and pitching moment coefficients were obtained at angles of attack from 14° to 32° under two conditions: H0 = 4 MJ/kg, P0 = 14 MPa; and H0 = 16 MJ/kg, P0 = 16 MPa. For the first, low-enthalpy condition, the test flow was considered a perfect gas; measurements were thus directly compared with those obtained in a conventional blow-down wind tunnel (JAXA-HWT2) to evaluate the accuracy of the technique. The second test condition was a high-enthalpy condition in which 85% of the oxygen molecules were expected to be dissociated; high-temperature real-gas effects were therefore evaluated by comparison with results obtained in perfect-gas conditions. The precision of the present measurements was evaluated through an uncertainty analysis, which showed the aerodynamic coefficients in the HIEST low enthalpy test agreeing well with those of JAXA-HWT2. The pitching-moment coefficient, however, showed significant differences between low- and high-enthalpy tests. These differences are thought to result from high-temperature real-gas effects.

  17. Quantum tunneling of massive flux lines in a high-T{sub c} superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, M.W.; Achar, B.N.N. [Memphis Univ., TN (United States)

    1999-02-01

    We have investigated the quantum tunneling of damped flux lines of finite mass at T = 0 by extending our previous study of tunneling around T{sub 0}, the transition temperature. In the case of a cubic pinning potential, considered here, the action could be evaluated in a closed form for a flux line of finite length. The tunneling rate reaches a finite limit at T = 0, although it is temperature dependent and exhibits a 1/T variation near T{sub 0}. (orig.) 21 refs.

  18. Pulse-burst PIV in a high-speed wind tunnel

    International Nuclear Information System (INIS)

    Beresh, Steven; Kearney, Sean; Wagner, Justin; Guildenbecher, Daniel; Henfling, John; Spillers, Russell; Pruett, Brian; Jiang, Naibo; Slipchenko, Mikhail; Mance, Jason; Roy, Sukesh

    2015-01-01

    Time-resolved particle image velocimetry (TR-PIV) has been achieved in a high-speed wind tunnel, providing velocity field movies of compressible turbulence events. The requirements of high-speed flows demand greater energy at faster pulse rates than possible with the TR-PIV systems developed for low-speed flows. This has been realized using a pulse-burst laser to obtain movies at up to 50 kHz, with higher speeds possible at the cost of spatial resolution. The constraints imposed by use of a pulse-burst laser are limited burst duration of 10.2 ms and a low duty cycle for data acquisition. Pulse-burst PIV has been demonstrated in a supersonic jet exhausting into a transonic crossflow and in transonic flow over a rectangular cavity. The velocity field sequences reveal the passage of turbulent structures and can be used to find velocity power spectra at every point in the field, providing spatial distributions of acoustic modes. The present work represents the first use of TR-PIV in a high-speed ground-test facility. (paper)

  19. Device-quality tunnel junctions on the high Tc superconductor HgBa2CuO4+δ

    International Nuclear Information System (INIS)

    Zasadzinski, J.; Chen, J.; Romano, P.; Gray, K.E.; Wagner, J.L.; Hinks, D.G.

    1995-01-01

    SIN and SIS tunnel junction devices (e.g. photon detectors, logic elements) require quasiparticle characteristics that exhibit sharp current onsets at the gap voltage and very low sub-gap conductances. Progress is reported on the development of such junctions on High Tc cuprates using mechanical point contacts. In general, these contacts display the optimum characteristics that can be obtained from HTS native-surface tunnel barriers. Most cuprates display a sub-gap conductance which monotonically increases with voltage about the minimum value at zero bias. However, tunneling data of unusually high quality have been obtained for the recently discovered Hg-based cuprate, HgBa 2 CuO 4 (T c =96K). SIS' tunneling data using a Nb tip are presented which exhibit very low and flat sub-gap conductances and sharp conductance peaks as expected from a BCS density of states. These results are slightly improved over earlier published results with SIN junctions. Use of the experimental data to simulate the performance of a quasiparticle mixer demonstrates that noise temperatures approaching the quantum limit are possible for SIS and SIN mixers in the range 1-5 THz

  20. Electron tunneling in chemistry

    International Nuclear Information System (INIS)

    Zamaraev, K.I.; Khajrutdinov, R.F.; Zhdanov, V.P.; Molin, Yu.N.

    1985-01-01

    Results of experimental and theoretical investigations are outlined systematically on electron tunnelling in chemical reactions. Mechanism of electron transport to great distances is shown to be characteristic to chemical compounds of a wide range. The function of tunnel reactions is discussed for various fields of chemistry, including radiation chemistry, electrochemistry, chemistry of solids, chemistry of surface and catalysis

  1. Combining scanning tunneling microscopy and synchrotron radiation for high-resolution imaging and spectroscopy with chemical, electronic, and magnetic contrast

    International Nuclear Information System (INIS)

    Cummings, M.L.; Chien, T.Y.; Preissner, C.; Madhavan, V.; Diesing, D.; Bode, M.; Freeland, J.W.; Rose, V.

    2012-01-01

    The combination of high-brilliance synchrotron radiation with scanning tunneling microscopy opens the path to high-resolution imaging with chemical, electronic, and magnetic contrast. Here, the design and experimental results of an in-situ synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system are presented. The system is designed to allow monochromatic synchrotron radiation to enter the chamber, illuminating the sample with x-ray radiation, while an insulator-coated tip (metallic tip apex open for tunneling, electron collection) is scanned over the surface. A unique feature of the SXSTM is the STM mount assembly, designed with a two free-flex pivot, providing an angular degree of freedom for the alignment of the tip and sample with respect to the incoming x-ray beam. The system designed successfully demonstrates the ability to resolve atomic-scale corrugations. In addition, experiments with synchrotron x-ray radiation validate the SXSTM system as an accurate analysis technique for the study of local magnetic and chemical properties on sample surfaces. The SXSTM system's capabilities have the potential to broaden and deepen the general understanding of surface phenomena by adding elemental contrast to the high-resolution of STM. -- Highlights: ► Synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system designed. ► Unique STM mount design allows angular DOF for tip alignment with x-ray beam. ► System demonstrates ability to resolve atomic corrugations on HOPG. ► Studies show chemical sensitivity with STM tip from photocurrent and tunneling. ► Results show system's ability to study local magnetic (XMCD) properties on Fe films.

  2. "We Actually Saw Atoms with Our Own Eyes": Conceptions and Convictions in Using the Scanning Tunneling Microscope in Junior High School

    Science.gov (United States)

    Margel, Hannah; Eylon, Bat-Sheva; Scherz, Zahava

    2004-01-01

    The feasibility and the potential contribution of the scanning tunneling microscopy (STM) in junior high school (JHS) as an instructional tool for learning the particulate nature of matter is described. The use and power of new technologies can probably be demonstrated by the scanning tunneling microscopy (STM).

  3. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans.

    Science.gov (United States)

    Chen, Xu; Guo, Tengfei; Hou, Yubin; Zhang, Jing; Meng, Wenjie; Lu, Qingyou

    2017-01-01

    A new scan-head structure for the scanning tunneling microscope (STM) is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans) coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan). They are fixed at one end (called common end). A hollow tantalum shaft is coaxially housed in the XY -scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  4. A High Rigidity and Precision Scanning Tunneling Microscope with Decoupled XY and Z Scans

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2017-01-01

    Full Text Available A new scan-head structure for the scanning tunneling microscope (STM is proposed, featuring high scan precision and rigidity. The core structure consists of a piezoelectric tube scanner of quadrant type (for XY scans coaxially housed in a piezoelectric tube with single inner and outer electrodes (for Z scan. They are fixed at one end (called common end. A hollow tantalum shaft is coaxially housed in the XY-scan tube and they are mutually fixed at both ends. When the XY scanner scans, its free end will bring the shaft to scan and the tip which is coaxially inserted in the shaft at the common end will scan a smaller area if the tip protrudes short enough from the common end. The decoupled XY and Z scans are desired for less image distortion and the mechanically reduced scan range has the superiority of reducing the impact of the background electronic noise on the scanner and enhancing the tip positioning precision. High quality atomic resolution images are also shown.

  5. An extended model of electrons: experimental evidence from high-resolution scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Hofer, Werner A

    2012-01-01

    In a recent paper we introduced a model of extended electrons, which is fully compatible with quantum mechanics in the formulation of Schrödinger. However, it contradicts the current interpretation of electrons as point-particles. Here, we show by a statistical analysis of high-resolution scanning tunneling microscopy (STM) experiments, that the interpretation of electrons as point particles and, consequently, the interpretation of the density of electron charge as a statistical quantity will lead to a conflict with the Heisenberg uncertainty principle. Given the precision in these experiments we find that the uncertainty principle would be violated by close to two orders of magnitude, if this interpretation were correct. We are thus forced to conclude that the density of electron charge is a physically real, i.e. in principle precisely measurable quantity, as derived in a recent paper. Experimental evidence to the contrary, in particular high-energy scattering experiments, is briefly discussed. The finding is expected to have wide implications in condensed matter physics, chemistry, and biology, scientific disciplines which are based on the properties and interactions of electrons.

  6. Proceedings of the IS-HTS-TP'94: 2nd international symposium on high temperature superconductivity and tunneling phenomena

    International Nuclear Information System (INIS)

    Svistunov, V.M.

    1995-01-01

    The main purpose of this symposium is to discuss a problem of the current transfer in HTS: direct and tunneling mechanisms. It was proposed to consider a series of questions concerning spectral function of the electron-phonon interactions in HTS, the linear background conductance, the critical current in magnetic fields in bulk materials, studying in details the role of the weak superconducting links and the different natural contributions in current transfer of HTS

  7. High Channel Count, High Density Microphone Arrays for Wind Tunnel Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Interdisciplinary Consulting Corporation (IC2) proposes the development of high channel count, high density, reduced cost per channel, directional microphone...

  8. Single-electron charging effects and implications for tunneling measurements of the high-T/sub c/ superconductors

    International Nuclear Information System (INIS)

    Barner, J.B.; Honkanen, M.J.; Ruggiero, S.T.; Mullen, K.; Ben-Jacob, E.; Pelton, A.R.; Michigan Univ., Ann Arbor, MI

    1989-01-01

    The authors present a theory for the dynamics of two voltage-biased, ultra-small-capacitance tunnel junctions connected in series when one or more electrodes are superconducting and experiments performed on parallel arrays of such junctions. Using the semiclassical model, they find that the I-V characteristics display steps and therefore multiple peaks in dI/dV, corresponding to the time-average occupation of the interjunction region by integral numbers of electrons. The voltage at which the first step is located depends on the superconducting gap, Δ(T), and the capacitances of the junctions. The spacing between subsequent steps depends solely on the capacitances. They discuss electron tunneling results performed on metal/Al/sub 2/O/sub 3//2-10 nm-diameter metal particles/Al/sub 2/O/sub 3//metal junctions where this multiple-peak structure is observed. They present preliminary tunneling results in junctions employing Pb-particles, where they observe a shift of the peaks when the sample is cooled below T/sub c/ of Pb consistent with theory. Taken together, these results indicate that the multiple-peak structure commonly observed in tunneling data of high-T/sub c/ oxide superconductors can be explained in terms of charging effects in a material with a single superconducting gap. Finally, they discuss possible applications in a new type of transistor element

  9. High-Performance Flexible Magnetic Tunnel Junctions for Smart Miniaturized Instruments

    KAUST Repository

    Amara, Selma.

    2018-04-04

    Flexible electronics is an emerging field in many applications ranging from in vivo biomedical devices to wearable smart systems. The capability of conforming to curved surfaces opens the door to add electronic components to miniaturized instruments, where size and weight are critical parameters. Given their prevalence on the sensors market, flexible magnetic sensors play a major role in this progress. For many high-performance applications, magnetic tunnel junctions (MTJs) have become the first choice, due to their high sensitivity, low power consumption etc. MTJs are also promising candidates for non-volatile next-generation data storage media and, hence, could become central components of wearable electronic devices. In this work, a generic low-cost regenerative batch fabrication process is utilized to transform rigid MTJs on a 500 {\\\\mu}m silicon wafer substrate into 5 {\\\\mu}m thin, mechanically flexible silicon devices, and ensuring optimal utilization of the whole substrate. This method maintains the outstanding magnetic properties, which are only obtained by deposition of the MTJ on smooth high-quality silicon wafers. The flexible MTJs are highly reliable and resistive to mechanical stress. Bending of the MTJ stacks with a diameter as small as 500 {\\\\mu}m is possible without compromising their performance and an endurance of over 1000 cycles without fatigue has been demonstrated. The flexible MTJs were mounted onto the tip of a cardiac catheter with 2 mm in diameter without compromising their performance. This enables the detection of magnetic fields and the angle which they are applied at with a high sensitivity of 4.93 %/Oe and a low power consumption of 0.15 {\\\\mu}W, while adding only 8 {\\\\mu}g and 15 {\\\\mu}m to the weight and diameter of the catheter, respectively.

  10. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    Science.gov (United States)

    Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar

    2015-01-01

    We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188

  11. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    Directory of Open Access Journals (Sweden)

    Omar Siddiqui

    2015-03-01

    Full Text Available We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide.

  12. First-principles modelling of scanning tunneling microscopy using non-equilibrium Green's functions

    DEFF Research Database (Denmark)

    Lin, H.P.; Rauba, J.M.C.; Thygesen, Kristian Sommer

    2010-01-01

    The investigation of electron transport processes in nano-scale architectures plays a crucial role in the development of surface chemistry and nano-technology. Experimentally, an important driving force within this research area has been the concurrent refinements of scanning tunneling microscopy...... into account. As an illustrating example we apply the NEGF-STM method to the Si(001)(2x1):H surface with sub-surface P doping and discuss the results in comparison to the Bardeen and Tersoff-Hamann methods....

  13. A simulation-based proposed high-k heterostructure AlGaAs/Si junctionless n-type tunnel FET

    International Nuclear Information System (INIS)

    Rahi Shiromani Balmukund; Asthana Pranav; Ghosh Bahniman

    2014-01-01

    We propose a heterostructure junctionless tunnel field effect transistor (HJL-TFET) using AlGaAs/Si. In the proposed HJL-TFET, low band gap silicon is used in the source side and higher band gap AlGaAs in the drain side. The whole AlGaAs/Si region is heavily doped n-type. The proposed HJL-TFET uses two isolated gates (named gate, gate1) with two different work functions (gate = 4.2 eV, gate1 = 5.2 eV respectively). The 2-D nature of HJL-TFET current flow is studied. The proposed structure is simulated in Silvaco with different gate dielectric materials. This structure exhibits a high on current in the range of 1.4 × 10 −6 A/μm, the off current remains as low as 9.1 × 10 −14 A/μm. So I ON /I OFF ratio of ≃ 10 8 is achieved. Point subthreshold swing has also been reduced to a value of ≃ 41 mV/decade for TiO 2 gate material. (semiconductor devices)

  14. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  15. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope.

    Science.gov (United States)

    Fang, Yurui; Zhang, Zhenglong; Sun, Mengtao

    2016-03-01

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10(-7) Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 × 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.

  16. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yurui [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603-146, Beijing 100190 (China); Bionanophotonics, Department of Applied Physics, Chalmers University of Technology, Göteborg, SE 41296 (Sweden); Zhang, Zhenglong [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603-146, Beijing 100190 (China); School of Physics and Information Technology, Shaanxi Normal University, 710062 Xi’an (China); Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena (Germany); Sun, Mengtao, E-mail: mtsun@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603-146, Beijing 100190 (China)

    2016-03-15

    In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10{sup −7} Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 × 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.

  17. Numerical simulation of nonequilibrium flow in high-enthalpy shock tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, M.; Men' shov, I.; Nakamura, Y

    2005-03-01

    The flow field of a nozzle starting process with thermal and chemical nonequilibrium has been simulated. This flow is produced in high enthalpy impulse facilities such as the free piston shock tunnel. The governing equations are the axisymmetric, compressible Navier-Stokes equations. In this study, Park's two-temperature model, where air consists of five species, is used for defining the thermodynamic properties of air as a driven gas. The numerical scheme employed here is the hybrid scheme of the explicit and implicit methods, which was developed in our laboratory, along with AUSM{sup +} to evaluate inviscid fluxes. In the present simulation, the Mach number of an incident shock wave is set at M{sub s}=10.0. It corresponds to a specific enthalpy, h{sub 0}, of 12 MJ/kg. The results clearly show the complicated thermal and chemical nonequilibrium flow field around the end of the shock tube section and at the nozzle inlet during the initial stage of the nozzle starting process. They also suggest that the phenomenon of nozzle melting might be associated with a flow separation at the nozzle inlet.

  18. Nonequilibrium thermodynamics of interacting tunneling transport: variational grand potential, density functional formulation and nature of steady-state forces

    International Nuclear Information System (INIS)

    Hyldgaard, P

    2012-01-01

    The standard formulation of tunneling transport rests on an open-boundary modeling. There, conserving approximations to nonequilibrium Green function or quantum statistical mechanics provide consistent but computational costly approaches; alternatively, the use of density-dependent ballistic-transport calculations (e.g., Lang 1995 Phys. Rev. B 52 5335), here denoted ‘DBT’, provides computationally efficient (approximate) atomistic characterizations of the electron behavior but has until now lacked a formal justification. This paper presents an exact, variational nonequilibrium thermodynamic theory for fully interacting tunneling and provides a rigorous foundation for frozen-nuclei DBT calculations as a lowest-order approximation to an exact nonequilibrium thermodynamic density functional evaluation. The theory starts from the complete electron nonequilibrium quantum statistical mechanics and I identify the operator for the nonequilibrium Gibbs free energy which, generally, must be treated as an implicit solution of the fully interacting many-body dynamics. I demonstrate a minimal property of a functional for the nonequilibrium thermodynamic grand potential which thus uniquely identifies the solution as the exact nonequilibrium density matrix. I also show that the uniqueness-of-density proof from a closely related Lippmann-Schwinger collision density functional theory (Hyldgaard 2008 Phys. Rev. B 78 165109) makes it possible to express the variational nonequilibrium thermodynamic description as a single-particle formulation based on universal electron-density functionals; the full nonequilibrium single-particle formulation improves the DBT method, for example, by a more refined account of Gibbs free energy effects. I illustrate a formal evaluation of the zero-temperature thermodynamic grand potential value which I find is closely related to the variation in the scattering phase shifts and hence to Friedel density oscillations. This paper also discusses the

  19. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    International Nuclear Information System (INIS)

    Lima, E A; Weiss, B P; Bruno, A C; Carvalho, H R

    2014-01-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x–y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz 1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10 –14  A m 2 , a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays. (paper)

  20. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    Science.gov (United States)

    Lima, E. A.; Bruno, A. C.; Carvalho, H. R.; Weiss, B. P.

    2014-10-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x-y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10-14 A m2, a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays.

  1. Low-voltage high-speed programming gate-all-around floating gate memory cell with tunnel barrier engineering

    Science.gov (United States)

    Hamzah, Afiq; Ezaila Alias, N.; Ismail, Razali

    2018-06-01

    The aim of this study is to investigate the memory performances of gate-all-around floating gate (GAA-FG) memory cell implementing engineered tunnel barrier concept of variable oxide thickness (VARIOT) of low-k/high-k for several high-k (i.e., Si3N4, Al2O3, HfO2, and ZrO2) with low-k SiO2 using three-dimensional (3D) simulator Silvaco ATLAS. The simulation work is conducted by initially determining the optimized thickness of low-k/high-k barrier-stacked and extracting their Fowler–Nordheim (FN) coefficients. Based on the optimized parameters the device performances of GAA-FG for fast program operation and data retention are assessed using benchmark set by 6 and 8 nm SiO2 tunnel layer respectively. The programming speed has been improved and wide memory window with 30% increment from conventional SiO2 has been obtained using SiO2/Al2O3 tunnel layer due to its thin low-k dielectric thickness. Furthermore, given its high band edges only 1% of charge-loss is expected after 10 years of ‑3.6/3.6 V gate stress.

  2. Design and simulation of a novel GaN based resonant tunneling high electron mobility transistor on a silicon substrate

    International Nuclear Information System (INIS)

    Chowdhury, Subhra; Biswas, Dhrubes; Chattaraj, Swarnabha

    2015-01-01

    For the first time, we have introduced a novel GaN based resonant tunneling high electron mobility transistor (RTHEMT) on a silicon substrate. A monolithically integrated GaN based inverted high electron mobility transistor (HEMT) and a resonant tunneling diode (RTD) are designed and simulated using the ATLAS simulator and MATLAB in this study. The 10% Al composition in the barrier layer of the GaN based RTD structure provides a peak-to-valley current ratio of 2.66 which controls the GaN based HEMT performance. Thus the results indicate an improvement in the current–voltage characteristics of the RTHEMT by controlling the gate voltage in this structure. The introduction of silicon as a substrate is a unique step taken by us for this type of RTHEMT structure. (paper)

  3. Tunneling works. Tunnel koji

    Energy Technology Data Exchange (ETDEWEB)

    Higo, M [Hazam Gumi, Ltd., Tokyo (Japan)

    1991-10-25

    A mountain tunneling method for rock-beds used to be applied mainly to construction works in the mountains under few restrictions by environmental problems. However, construction works near residential sreas have been increasing. There are such enviromental problems due to tunneling works as vibration, noise, lowering of ground-water level, and influences on other structures. This report mainly describes the measurement examples of vibration and noise accompanied with blasting and the effects of the measures to lessen such influences. When the tunneling works for the railroad was carried out on the natural ground mainly composed of basalt, vibration of the test blasting was measured at three stations with piezoelectric accelerometers. Then, ordinary blasting, mutistage blasting, and ABM blasting methods were used properly besed on the above results, and only a few complaints were made. In the different works, normal noise and low-frequency sound were mesured at 22 stations around the pit mouth. As countermeasures for noise, sound-proof sheets, walls, and single and double doors were installed and foundto be effective. 1 ref., 6 figs., 1 tab.

  4. High density processing electronics for superconducting tunnel junction x-ray detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, W.K., E-mail: bill@xia.com [XIA LLC, 31057 Genstar Road, Hayward, CA 94544 (United States); Harris, J.T. [XIA LLC, 31057 Genstar Road, Hayward, CA 94544 (United States); Friedrich, S. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2015-06-01

    Superconducting tunnel junctions (STJs) are excellent soft x-ray (100–2000 eV) detectors, particularly for synchrotron applications, because of their ability to obtain energy resolutions below 10 eV at count rates approaching 10 kcps. In order to achieve useful solid detection angles with these very small detectors, they are typically deployed in large arrays – currently with 100+ elements, but with 1000 elements being contemplated. In this paper we review a 5-year effort to develop compact, computer controlled low-noise processing electronics for STJ detector arrays, focusing on the major issues encountered and our solutions to them. Of particular interest are our preamplifier design, which can set the STJ operating points under computer control and achieve 2.7 eV energy resolution; our low noise power supply, which produces only 2 nV/√Hz noise at the preamplifier's critical cascode node; our digital processing card that digitizes and digitally processes 32 channels; and an STJ I–V curve scanning algorithm that computes noise as a function of offset voltage, allowing an optimum operating point to be easily selected. With 32 preamplifiers laid out on a custom 3U EuroCard, and the 32 channel digital card in a 3U PXI card format, electronics for a 128 channel array occupy only two small chassis, each the size of a National Instruments 5-slot PXI crate, and allow full array control with simple extensions of existing beam line data collection packages.

  5. Countermeasures for Reducing Unsteady Aerodynamic Force Acting on High-Speed Train in Tunnel by Use of Modifications of Train Shapes

    Science.gov (United States)

    Suzuki, Masahiro; Nakade, Koji; Ido, Atsushi

    As the maximum speed of high-speed trains increases, flow-induced vibration of trains in tunnels has become a subject of discussion in Japan. In this paper, we report the result of a study on use of modifications of train shapes as a countermeasure for reducing an unsteady aerodynamic force by on-track tests and a wind tunnel test. First, we conduct a statistical analysis of on-track test data to identify exterior parts of a train which cause the unsteady aerodynamic force. Next, we carry out a wind tunnel test to measure the unsteady aerodynamic force acting on a train in a tunnel and examined train shapes with a particular emphasis on the exterior parts identified by the statistical analysis. The wind tunnel test shows that fins under the car body are effective in reducing the unsteady aerodynamic force. Finally, we test the fins by an on-track test and confirmed its effectiveness.

  6. The value of high-resolution sonography and MR imaging in the diagnosis and follow-up of carpal tunnel syndrome

    International Nuclear Information System (INIS)

    Buchberger, W.; Judmaier, W.; Birbamer, G.; Hasenoehrl, K.; Schmidauer, C.

    1993-01-01

    120 wrists of 105 patients with carpal tunnel syndrome were studied preoperatively by high-resolution sonography. Follow-up examinations after carpal tunnel release were performed in 72 wrists. In addition, 40 wrists were examined preoperatively, and 20 wrists were examined postoperatively by MR imaging. Based on quantitative analysis of the cross-sectional area and shape of the median nerve and of the palmar bowing of the flexor retinaculum, sonography established the diagnosis in 95% of cases. MR was superior in the evaluation of mild degrees of median nerve compression, and in the detection of possible causes of the carpal tunnel syndrome, such as synovitis of the flexor tendon sheaths or ganglionic cysts. In postoperative follow-up, sonographic demonstration of a normally flattened median nerve was an excellent indicator of the successful carpal tunnel release. In 10 patients with persistent or recurrent symptoms after carpal tunnel release, the underlying pathology could be exactly demonstrated by MR. (orig.) [de

  7. High-resolution MR imaging of the carpal tunnel and the wrist. Application of a 5-cm surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, J.; Bleschkowski, A.; Tempka, A.; Felix, R. [Medical Faculty of the Humboldt Univ., Berlin (Germany). Dept. of Radiology

    2000-07-01

    In order to make a comparative analysis of transversal tomograms obtained by high-resolution MR imaging with frozen cross-sections of an anatomical forearm specimen, twenty-two healthy volunteers were also examined using the same coil system to test for a range of possible clinical applications and for the depiction of morphological and morphometrical values of normal anatomy in vivo. MR images of the carpal tunnel of 22 healthy volunteers were obtained with a 1.5-T whole-body system with a 5-cm surface coil. Measurements were recorded with a field-of-view between 50x50 mm{sup 2} and 60x60 mm{sup 2} in a 256x256 pixel matrix for the T1 sequence. A slice thickness of 2 mm was used. The images were acquired using a T1-weighted SE sequence (TR/TE 500/38 ms) and a T2-weighted SE sequence (TR/TE 2000/70 ms). Additionally, a formalin-fixed anatomical forearm specimen was imaged for anatomic correlation. The imaged transversal cross-section levels in the specimen were subsequently freeze-sectioned. The anatomical structures of the MR findings were identified and compared with the macroscopical sections of the specimen. Based on the good depiction of details at this coil system with a pixel size in T1 of 0.195x0.195 mm, high-resolution MR imaging enabled identification of the interior structures of the carpal tunnel, as well as delineation of connective tissue. The clinical value of high-resolution MR includes the diagnosis of carpal tunnel syndrome and inflammatory disorders of the wrist. Our results support the feasibility of high-resolution MR imaging of the carpal tunnel and the wrist using small surface coils.

  8. High-resolution MR imaging of the carpal tunnel and the wrist. Application of a 5-cm surface coil

    International Nuclear Information System (INIS)

    Maurer, J.; Bleschkowski, A.; Tempka, A.; Felix, R.

    2000-01-01

    In order to make a comparative analysis of transversal tomograms obtained by high-resolution MR imaging with frozen cross-sections of an anatomical forearm specimen, twenty-two healthy volunteers were also examined using the same coil system to test for a range of possible clinical applications and for the depiction of morphological and morphometrical values of normal anatomy in vivo. MR images of the carpal tunnel of 22 healthy volunteers were obtained with a 1.5-T whole-body system with a 5-cm surface coil. Measurements were recorded with a field-of-view between 50x50 mm 2 and 60x60 mm 2 in a 256x256 pixel matrix for the T1 sequence. A slice thickness of 2 mm was used. The images were acquired using a T1-weighted SE sequence (TR/TE 500/38 ms) and a T2-weighted SE sequence (TR/TE 2000/70 ms). Additionally, a formalin-fixed anatomical forearm specimen was imaged for anatomic correlation. The imaged transversal cross-section levels in the specimen were subsequently freeze-sectioned. The anatomical structures of the MR findings were identified and compared with the macroscopical sections of the specimen. Based on the good depiction of details at this coil system with a pixel size in T1 of 0.195x0.195 mm, high-resolution MR imaging enabled identification of the interior structures of the carpal tunnel, as well as delineation of connective tissue. The clinical value of high-resolution MR includes the diagnosis of carpal tunnel syndrome and inflammatory disorders of the wrist. Our results support the feasibility of high-resolution MR imaging of the carpal tunnel and the wrist using small surface coils

  9. Growth and Yield Responses of Green Pepper (Capsicum annum L. to Manure Rates under Field and High Tunnel Conditions

    Directory of Open Access Journals (Sweden)

    Ima-obong I. DOMINIC

    2017-03-01

    Full Text Available The present study was conducted to determine growth and yield responses of green pepper to varying manure rates under field and high tunnel conditions. Experiment 1 was a pot experiment to evaluate three rates (0.5 and 10 t/ha of poultry manure (PM on green pepper production under high tunnel and open field conditions. Experiment 2 was to determine the performance of green pepper as influenced by different manure rates (0, 5 and 10 t/ha of PM, 300 kg/ha of NPK, 5 t/ha of PM + 200 kg of NPK and 10 t/ha of PM + 100 kg of NPK on the field. High tunnel produced about 3.1 fruits/plant that weighted 102.8 g, which was significantly higher than open field experiment in which 1.7 fruits/plant, with a medium weight of 32.3 g were noted. High tunnel enhanced successful production of green pepper during rainy season, whereas the open field production during the same season was near failure. Application of 10 t/ha of PM produced significantly larger fruits in the pot experiment. Good fertilizer effects on growth and yield components were recorded for the field study. Plant height, number of leaves and branches, number and weight of harvested fruit followed similar trend in 5 and 10 t/ha of PM which gave statistically similar results, and provided the best performance during the experiment. Application of 5 t/ha of PM produced the highest total fruits yield.

  10. Band-gap engineering of functional perovskites through quantum confinement and tunneling

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Pandey, Mohnish; Thygesen, Kristian Sommer

    2015-01-01

    An optimal band gap that allows for a high solar-to-fuel energy conversion efficiency is one of the key factors to achieve sustainability. We investigate computationally the band gaps and optical spectra of functional perovskites composed of layers of the two cubic perovskite semiconductors BaSnO3...... and BaTaO2N. Starting from an indirect gap of around 3.3 eV for BaSnO3 and a direct gap of 1.8 eV for BaTaO2N, different layerings can be used to design a direct gap of the functional perovskite between 2.3 and 1.2 eV. The variations of the band gap can be understood in terms of quantum confinement...

  11. Si Nanoribbons on Ag(110) Studied by Grazing-Incidence X-Ray Diffraction, Scanning Tunneling Microscopy, and Density-Functional Theory: Evidence of a Pentamer Chain Structure.

    Science.gov (United States)

    Prévot, Geoffroy; Hogan, Conor; Leoni, Thomas; Bernard, Romain; Moyen, Eric; Masson, Laurence

    2016-12-30

    We report a combined grazing incidence x-ray diffraction (GIXD), scanning tunneling microscopy (STM), and density-functional theory (DFT) study which clearly elucidates the atomic structure of the Si nanoribbons grown on the missing-row reconstructed Ag(110) surface. Our study allows us to discriminate between the theoretical models published in the literature, including the most stable atomic configurations and those based on a missing-row reconstructed Ag(110) surface. GIXD measurements unambiguously validate the pentamer model grown on the reconstructed surface, obtained from DFT. This pentamer atomistic model accurately matches the high-resolution STM images of the Si nanoribbons adsorbed on Ag(110). Our study closes the long-debated atomic structure of the Si nanoribbons grown on Ag(110) and definitively excludes a honeycomb structure similar to that of freestanding silicene.

  12. Interaction between groundwater and TBM (Tunnel Boring Machine) excavated tunnels

    OpenAIRE

    Font Capó, Jordi

    2012-01-01

    A number of problems, e.g. sudden inflows are encountered during tunneling under the piezometric level, especially when the excavation crosses high transmissivity areas. These inflows may drag materials when the tunnel crosses low competent layers, resulting in subsidence, chimney formation and collapses. Moreover, inflows can lead to a decrease in head level because of aquifer drainage. Tunnels can be drilled by a tunnel boring machine (TBM) to minimize inflows and groundwater impacts, restr...

  13. Tunnel splitting for a high-spin molecule in an in-plane field

    Science.gov (United States)

    Zhu, Jia-Lin

    2000-08-01

    Direction and strength effects of a magnetic field on the ground-state tunnel splitting for a biaxial spin molecule with the model Hamiltonian H = k1Sz2 + k2Sy2- gµBHzSz- gµBHySy have been investigated within a continuous-spin approach including the Wess-Zumino-Berry term. The topological oscillation and the non-Kramers freezing indicated in the approach are in agreement with those observed in a recent experiment on Fe8 molecular nanomagnets. The behaviour of tunnel splitting with multiple orbits induced by strong fields has been revealed clearly.

  14. Long-term reliable physically unclonable function based on oxide tunnel barrier breakdown on two-transistors two-magnetic-tunnel-junctions cell-based embedded spin transfer torque magnetoresistive random access memory

    Science.gov (United States)

    Takaya, Satoshi; Tanamoto, Tetsufumi; Noguchi, Hiroki; Ikegami, Kazutaka; Abe, Keiko; Fujita, Shinobu

    2017-04-01

    Among the diverse applications of spintronics, security for internet-of-things (IoT) devices is one of the most important. A physically unclonable function (PUF) with a spin device (spin transfer torque magnetoresistive random access memory, STT-MRAM) is presented. Oxide tunnel barrier breakdown is used to realize long-term stability for PUFs. A secure PUF has been confirmed by evaluating the Hamming distance of a 32-bit STT-MRAM-PUF fabricated using 65 nm CMOS technology.

  15. Application of tests of goodness of fit in determining the probability density function for spacing of steel sets in tunnel support system

    Directory of Open Access Journals (Sweden)

    Farnoosh Basaligheh

    2015-12-01

    Full Text Available One of the conventional methods for temporary support of tunnels is to use steel sets with shotcrete. The nature of a temporary support system demands a quick installation of its structures. As a result, the spacing between steel sets is not a fixed amount and it can be considered as a random variable. Hence, in the reliability analysis of these types of structures, the selection of an appropriate probability distribution function of spacing of steel sets is essential. In the present paper, the distances between steel sets are collected from an under-construction tunnel and the collected data is used to suggest a proper Probability Distribution Function (PDF for the spacing of steel sets. The tunnel has two different excavation sections. In this regard, different distribution functions were investigated and three common tests of goodness of fit were used for evaluation of each function for each excavation section. Results from all three methods indicate that the Wakeby distribution function can be suggested as the proper PDF for spacing between the steel sets. It is also noted that, although the probability distribution function for two different tunnel sections is the same, the parameters of PDF for the individual sections are different from each other.

  16. Design and Wind Tunnel Testing of a Thick, Multi-Element High-Lift Airfoil

    DEFF Research Database (Denmark)

    Zahle, Frederik; Gaunaa, Mac; Sørensen, Niels N.

    2012-01-01

    In this work a 2D CFD solver has been used to optimize the shape of a leading edge slat with a chord length of 30% of the main airfoil which was 40% thick. The airfoil configuration was subsequently tested in a wind tunnel and compared to numerical predictions. The multi-element airfoil was predi...

  17. Full-zone spectral envelope function formalism for the optimization of line and point tunnel field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Verreck, Devin, E-mail: devin.verreck@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium); Verhulst, Anne S.; Mocuta, Anda; Collaert, Nadine; Thean, Aaron [imec, Kapeldreef 75, 3001 Leuven (Belgium); Van de Put, Maarten; Magnus, Wim [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Sorée, Bart [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium)

    2015-10-07

    Efficient quantum mechanical simulation of tunnel field-effect transistors (TFETs) is indispensable to allow for an optimal configuration identification. We therefore present a full-zone 15-band quantum mechanical solver based on the envelope function formalism and employing a spectral method to reduce computational complexity and handle spurious solutions. We demonstrate the versatility of the solver by simulating a 40 nm wide In{sub 0.53}Ga{sub 0.47}As lineTFET and comparing it to p-n-i-n configurations with various pocket and body thicknesses. We find that the lineTFET performance is not degraded compared to semi-classical simulations. Furthermore, we show that a suitably optimized p-n-i-n TFET can obtain similar performance to the lineTFET.

  18. Electrospray deposition of fullerenes in ultra-high vacuum: in situ scanning tunneling microscopy and photoemission spectroscopy

    International Nuclear Information System (INIS)

    Satterley, Christopher J; Perdigao, LuIs M A; Saywell, Alex; Magnano, Graziano; Rienzo, Anna; Mayor, Louise C; Dhanak, Vinod R; Beton, Peter H; O'Shea, James N

    2007-01-01

    Electrospray deposition of fullerenes on gold has been successfully observed by in situ room temperature scanning tunneling microscopy and photoemission spectroscopy. Step-edge decoration and hexagonal close-packed islands with a periodicity of 1 nm are observed at low and multilayer coverages respectively, in agreement with thermal evaporation studies. Photoemission spectroscopy shows that fullerenes are being deposited in high purity and are coupling to the gold surface as for thermal evaporation. These results open a new route for the deposition of thermally labile molecules under ultra-high vacuum conditions for a range of high resolution surface science techniques

  19. Metal-organic chemical vapor deposition of high quality, high indium composition N-polar InGaN layers for tunnel devices

    Science.gov (United States)

    Lund, Cory; Romanczyk, Brian; Catalano, Massimo; Wang, Qingxiao; Li, Wenjun; DiGiovanni, Domenic; Kim, Moon J.; Fay, Patrick; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia

    2017-05-01

    In this study, the growth of high quality N-polar InGaN films by metalorganic chemical vapor deposition is presented with a focus on growth process optimization for high indium compositions and the structural and tunneling properties of such films. Uniform InGaN/GaN multiple quantum well stacks with indium compositions up to 0.46 were grown with local compositional analysis performed by energy-dispersive X-ray spectroscopy within a scanning transmission electron microscope. Bright room-temperature photoluminescence up to 600 nm was observed for films with indium compositions up to 0.35. To study the tunneling behavior of the InGaN layers, N-polar GaN/In0.35Ga0.65N/GaN tunnel diodes were fabricated which reached a maximum current density of 1.7 kA/cm2 at 5 V reverse bias. Temperature-dependent measurements are presented and confirm tunneling behavior under reverse bias.

  20. Tunneling into quantum wires: regularization of the tunneling Hamiltonian and consistency between free and bosonized fermions

    OpenAIRE

    Filippone, Michele; Brouwer, Piet

    2016-01-01

    Tunneling between a point contact and a one-dimensional wire is usually described with the help of a tunneling Hamiltonian that contains a delta function in position space. Whereas the leading order contribution to the tunneling current is independent of the way this delta function is regularized, higher-order corrections with respect to the tunneling amplitude are known to depend on the regularization. Instead of regularizing the delta function in the tunneling Hamiltonian, one may also obta...

  1. Analysis of dynamic accumulative damage about the lining structure of high speed railway’s tunnel based on ultrasonic testing technology

    Science.gov (United States)

    Wang, Xiang-qiu; Zhang, Huojun; Xie, Wen-xi

    2017-08-01

    Based on the similar material model test of full tunnel, the theory of elastic wave propagation and the testing technology of intelligent ultrasonic wave had been used to research the dynamic accumulative damage characteristics of tunnel’s lining structure under the dynamic loads of high speed train. For the more, the dynamic damage variable of lining structure of high speed railway’s tunnel was obtained. The results shown that the dynamic cumulative damage of lining structure increases nonlinearly with the times of cumulative vibration, the weakest part of dynamic cumulative damage is the arch foot of tunnel. Much more attention should be paid to the design and operation management of high speed railway’s tunnel.

  2. High current density 2D/3D MoS2/GaN Esaki tunnel diodes

    Science.gov (United States)

    Krishnamoorthy, Sriram; Lee, Edwin W.; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D.; Johnson, Jared M.; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth

    2016-10-01

    The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at -1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.

  3. Heat-flux gage measurements on a flat plate at a Mach number of 4.6 in the VSD high speed wind tunnel, a feasibility test (LA28). [wind tunnel tests of measuring instruments for boundary layer flow

    Science.gov (United States)

    1975-01-01

    The feasibility of employing thin-film heat-flux gages was studied as a method of defining boundary layer characteristics at supersonic speeds in a high speed blowdown wind tunnel. Flow visualization techniques (using oil) were employed. Tabulated data (computer printouts), a test facility description, and photographs of test equipment are given.

  4. Very high precision survey equipment for great distances Surface surveys used to map out the surface network and the tunnelling machines then gyroscopically steered underground.

    CERN Document Server

    1983-01-01

    At the beginning of the 1980s, CERN embarked on the enormous Large Electron-Positron Collider construction project. The excavation of the 27-kilometre LEP tunnel was a huge technical challenge. The tunnel-boring machines excavated the tunnel in 3.3 km octants and had to be operated with extraordinary precision to ensure that they reached their destination - the bottom of the next vertical shaft - precisely on target. The tunnel was excavated before high-performance instruments were developed for the construction of the Channel Tunnel. As no firms were willing to perform the surveying work, CERN's own surveyors, with experience from the SPS behind them, took up the challenge. At the surface, the surveyors established the world's most accurate geodetic network, performing measurements to an accuracy of 10-7, or 1mm per 10 km, using the Terrameter (see photo). The excavation of the tunnel was completed in 1988 and the finished tunnel's trajectory was found to diverge from the theoretical value specified by the p...

  5. Features of carrier tunneling between the silicon valence band and metal in devices based on the Al/high-K oxide/SiO_2/Si structure

    International Nuclear Information System (INIS)

    Vexler, M. I.; Grekhov, I. V.

    2016-01-01

    The features of electron tunneling from or into the silicon valence band in a metal–insulator–semiconductor system with the HfO_2(ZrO_2)/SiO_2 double-layer insulator are theoretically analyzed for different modes. It is demonstrated that the valence-band current plays a less important role in structures with HfO_2(ZrO_2)/SiO_2 than in structures containing only silicon dioxide. In the case of a very wide-gap high-K oxide ZrO_2, nonmonotonic behavior related to tunneling through the upper barrier is predicted for the valence-band–metal current component. The use of an insulator stack can offer certain advantages for some devices, including diodes, bipolar tunnel-emitter transistors, and resonant-tunneling diodes, along with the traditional use of high-K insulators in a field-effect transistor.

  6. Acoustic Radiation from High-Speed Turbulent Boundary Layers in a Tunnel-Like Environment

    Science.gov (United States)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2015-01-01

    Direct numerical simulation of acoustic radiation from a turbulent boundary layer in a cylindrical domain will be conducted under the flow conditions corresponding to those at the nozzle exit of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) operated under noisy-flow conditions with a total pressure p(sub t) of 225 kPa and a total temperature of T(sub t) equal to 430 K. Simulations of acoustic radiation from a turbulent boundary layer over a flat surface are used as a reference configuration to illustrate the effects of the cylindrical enclosure. A detailed analysis of acoustic freestream disturbances in the cylindrical domain will be reported in the final paper along with a discussion pertaining to the significance of the flat-plate acoustic simulations and guidelines concerning the modeling of the effects of an axisymmetric tunnel wall on the noise field.

  7. Two-dimensional computational modeling of high-speed transient flow in gun tunnel

    Science.gov (United States)

    Mohsen, A. M.; Yusoff, M. Z.; Hasini, H.; Al-Falahi, A.

    2018-03-01

    In this work, an axisymmetric numerical model was developed to investigate the transient flow inside a 7-meter-long free piston gun tunnel. The numerical solution of the gun tunnel was carried out using the commercial solver Fluent. The governing equations of mass, momentum, and energy were discretized using the finite volume method. The dynamic zone of the piston was modeled as a rigid body, and its motion was coupled with the hydrodynamic forces from the flow solution based on the six-degree-of-freedom solver. A comparison of the numerical data with the theoretical calculations and experimental measurements of a ground-based gun tunnel facility showed good agreement. The effects of parameters such as working gases and initial pressure ratio on the test conditions in the facility were examined. The pressure ratio ranged from 10 to 50, and gas combinations of air-air, helium-air, air-nitrogen, and air-CO2 were used. The results showed that steady nozzle reservoir conditions can be maintained for a longer duration when the initial conditions across the diaphragm are adjusted. It was also found that the gas combination of helium-air yielded the highest shock wave strength and speed, but a longer test time was achieved in the test section when using the CO2 test gas.

  8. New concept of tunnel boring machine: high performance using water jet and diamond wire as rock cutting technology

    Directory of Open Access Journals (Sweden)

    Rafael Pacheco dos Santos

    Full Text Available Abstract Tunnel boring machines are important tools in underground infrastructure projects. Although being well established equipment, these machinesare based on designsof more than 60 years ago and are characterized by big dimensions, enormous weight and high power consumption. Commercial aspects should be noted too. The model adopted by the TBM industry requires constant replacement of cutter discs and specific labor skills, usually offered by the same manufacturingcompany. In some cases the cost of replacement parts and technical assistance can be higher than the acquisition cost of an entire machine. These aspects are no longer compatible with the concept of sustainability that is an important aspect of currentsociety. While the technical characteristics require a large quantity of steel and several inputs, the adoptedmodel is not competitive. One alternative is looking for new technologies that break the old paradigms and allow the development of high performance concepts with lower social and environmental impact. This studydealswith this opportunity by proposing a high performance tunnel boring machine that makes use of high power water jet and diamond wire to compose a double shield cutter head. It works in two stages. In the fristone, an annular cut is executed by hydrodemolition,and in the second one, the diamond wire station slices the rock core. Only with the action of diamond wire is the rock core separated from the rock mass and the removal process is finished. A smart water jet nozzle movement system is described and non circular tunnels can be executed. The new technologies involved requirea different type of backup system, lighter and smaller. The non-existence of mechanical contact between the equipment and the rock mass at theexcavation front allows low power consumption. The advanced rate and primary excavation cost analyses can also be encountered herein. It shows that it is possible to reach an advanced rate of 174 m/day in

  9. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur

    2011-08-09

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can be aligned parallel or antiparallel with respect to the fixed magnetizations of the left FML and right FMR ferromagnetic electrodes. The transmission coefficients for components of the spin-dependent current, and TMR are calculated as a function of the applied voltage. As a result, we found a high resonant TMR. Thus, DMTJ can serve as highly effective magnetic nanosensor for biological applications, or as magnetic memory cells by switching the magnetization of the inner ferromagnetic layer FMW.© Springer Science+Business Media, LLC 2011.

  10. Water Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s High-Pressure Water Tunnel Facility in Pittsburgh, PA, re-creates the conditions found 3,000 meters beneath the ocean’s surface, allowing scientists to study...

  11. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  12. Direct, coherent and incoherent intermediate state tunneling and scanning tunnel microscopy (STM)

    International Nuclear Information System (INIS)

    Halbritter, J.

    1997-01-01

    Theory and experiment in tunneling are still qualitative in nature, which hold true also for the latest developments in direct-, resonant-, coherent- and incoherent-tunneling. Those tunnel processes have recently branched out of the field of ''solid state tunnel junctions'' into the fields of scanning tunnel microscopy (STM), single electron tunneling (SET) and semiconducting resonant tunnel structures (RTS). All these fields have promoted the understanding of tunneling in different ways reaching from the effect of coherence, of incoherence and of charging in tunneling, to spin flip or inelastic effects. STM allows not only the accurate measurements of the tunnel current and its voltage dependence but, more importantly, the easy quantification via the (quantum) tunnel channel conductance and the distance dependence. This new degree of freedom entering exponentially the tunnel current allows an unique identification of individual tunnel channels and their quantification. In STM measurements large tunnel currents are observed for large distances d > 1 nm explainable by intermediate state tunneling. Direct tunneling with its reduced tunnel time and reduced off-site Coulomb charging bridges distances below 1 nm, only. The effective charge transfer process with its larger off-site and on-site charging at intermediate states dominates tunnel transfer in STM, biology and chemistry over distances in the nm-range. Intermediates state tunneling becomes variable range hopping conduction for distances larger than d > 2 nm, for larger densities of intermediate states n 1 (ε) and for larger temperatures T or voltages U, still allowing high resolution imaging

  13. Measuring fire size in tunnels

    International Nuclear Information System (INIS)

    Guo, Xiaoping; Zhang, Qihui

    2013-01-01

    A new measure of fire size Q′ has been introduced in longitudinally ventilated tunnel as the ratio of flame height to the height of tunnel. The analysis in this article has shown that Q′ controls both the critical velocity and the maximum ceiling temperature in the tunnel. Before the fire flame reaches tunnel ceiling (Q′ 1.0), Fr approaches a constant value. This is also a well-known phenomenon in large tunnel fires. Tunnel ceiling temperature shows the opposite trend. Before the fire flame reaches the ceiling, it increases very slowly with the fire size. Once the flame has hit the ceiling of tunnel, temperature rises rapidly with Q′. The good agreement between the current prediction and three different sets of experimental data has demonstrated that the theory has correctly modelled the relation among the heat release rate of fire, ventilation flow and the height of tunnel. From design point of view, the theoretical maximum of critical velocity for a given tunnel can help to prevent oversized ventilation system. -- Highlights: • Fire sizing is an important safety measure in tunnel design. • New measure of fire size a function of HRR of fire, tunnel height and ventilation. • The measure can identify large and small fires. • The characteristics of different fire are consistent with observation in real fires

  14. Long-distance pulse propagation on high-frequency dissipative nonlinear transmission lines/resonant tunneling diode line cascaded maps

    International Nuclear Information System (INIS)

    Klofai, Yerima; Essimbi, B Z; Jaeger, D

    2011-01-01

    Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.

  15. Long-distance pulse propagation on high-frequency dissipative nonlinear transmission lines/resonant tunneling diode line cascaded maps

    Energy Technology Data Exchange (ETDEWEB)

    Klofai, Yerima [Department of Physics, Higher Teacher Training College, University of Maroua, PO Box 46 Maroua (Cameroon); Essimbi, B Z [Department of Physics, Faculty of Science, University of Yaounde 1, PO Box 812 Yaounde (Cameroon); Jaeger, D, E-mail: bessimb@yahoo.fr [ZHO, Optoelectronik, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)

    2011-10-15

    Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.

  16. A method to design high SNR nanoscale magnetic sensors using an array of tunnelling magneto-resistance (TMR) devices

    International Nuclear Information System (INIS)

    Gomez, P; Litvinov, D; Khizroev, S

    2007-01-01

    This paper presents a systematic method to design and calculate tunnelling magneto-resistance (TMR) sensors with high signal-to-noise ratio (SNR). The sensing module consists of four TMR devices arranged in a Wheatstone-bridge configuration. Closed-form equations were obtained to calculate TMR sensor current, array output voltage, magneto-resistance ratio, overall noise (thermal and shot) and SNR for a given bandwidth. Using this technique we were able to maximize the SNR by tuning the many parameters of the TMR devices. Typical SNR values are in excess of 45 dB

  17. Low-Temperature, Chemically Grown Titanium Oxide Thin Films with a High Hole Tunneling Rate for Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Yu-Tsu Lee

    2016-05-01

    Full Text Available In this paper, we propose a chemically grown titanium oxide (TiO2 on Si to form a heterojunction for photovoltaic devices. The chemically grown TiO2 does not block hole transport. Ultraviolet photoemission spectroscopy was used to study the band alignment. A substantial band offset at the TiO2/Si interface was observed. X-ray photoemission spectroscopy (XPS revealed that the chemically grown TiO2 is oxygen-deficient and contains numerous gap states. A multiple-trap-assisted tunneling (TAT model was used to explain the high hole injection rate. According to this model, the tunneling rate can be 105 orders of magnitude higher for holes passing through TiO2 than for flow through SiO2. With 24-nm-thick TiO2, a Si solar cell achieves a 33.2 mA/cm2 photocurrent on a planar substrate, with a 9.4% power conversion efficiency. Plan-view scanning electron microscopy images indicate that a moth-eye-like structure formed during TiO2 deposition. This structure enables light harvesting for a high photocurrent. The high photocurrent and ease of production of chemically grown TiO2 imply that it is a suitable candidate for future low-cost, high-efficiency solar cell applications.

  18. Burst Speed of Wild Fishes under High-Velocity Flow Conditions Using Stamina Tunnel with Natural Guidance System in River

    Science.gov (United States)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.

  19. High-frequency response and the possibilities of frequency-tunable narrow-band terahertz amplification in resonant tunneling nanostructures

    International Nuclear Information System (INIS)

    Kapaev, V. V.; Kopaev, Yu. V.; Savinov, S. A.; Murzin, V. N.

    2013-01-01

    The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schrödinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In 0.53 Ga 0.47 As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V dc in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in such structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.

  20. INCAS TRISONIC WIND TUNNEL

    Directory of Open Access Journals (Sweden)

    Florin MUNTEANU

    2009-09-01

    Full Text Available The 1.2 m x 1.2 m Trisonic Blowdown Wind Tunnel is the largest of the experimental facilities at the National Institute for Aerospace Research - I.N.C.A.S. "Elie Carafoli", Bucharest, Romania. The tunnel has been designed by the Canadian company DSMA (now AIOLOS and since its commissioning in 1978 has performed high speed aerodynamic tests for more than 120 projects of aircraft, missiles and other objects among which the twin jet fighter IAR-93, the jet trainer IAR-99, the MIG-21 Lancer, the Polish jet fighter YRYDA and others. In the last years the wind tunnel has been used mostly for experimental research in European projects such as UFAST. The high flow quality parameters and the wide range of testing capabilities ensure the competitivity of the tunnel at an international level.

  1. Achievement of high diode sensitivity via spin torque-induced resonant expulsion in vortex magnetic tunnel junction

    Science.gov (United States)

    Tsunegi, Sumito; Taniguchi, Tomohiro; Yakushiji, Kay; Fukushima, Akio; Yuasa, Shinji; Kubota, Hitoshi

    2018-05-01

    We investigated the spin-torque diode effect in a magnetic tunnel junction with FeB free layer. Vortex-core expulsion was observed near the boundary between vortex and uniform states. A high diode voltage of 24 mV was obtained with alternative input power of 0.3 µW, corresponding to huge diode sensitivity of 80,000 mV/mW. In the expulsion region, a broad peak in the high frequency region was observed, which is attributed to the weak excitation of uniform magnetization by thermal noise. The high diode sensitivity is of great importance for device applications such as telecommunications, radar detectors, and high-speed magnetic-field sensors.

  2. Thermal properties of highly structured composite and aluminium sheets in an aerodynamic tunnel

    Science.gov (United States)

    Kulhavy, Petr; Egert, Josef

    This article deals with the thermodynamic behaviour of heat shields - structured metal and composite plates. Experiments have been carried out in a wind tunnel with an additional heating, which simulates the heat source from engine or exhaust pipe and simultaneously the airflow generated during a car movement. The tested sheets with hexagonal structure were a standard commercial made of aluminium and a second manufactured by replication (lamination, diffusion) from glass fabric. The airflow in a parallel way along the sheets was analysed experimentally in order to determine the heat transfer efficiency between surfaces of sheets and surrounding airflow. The temperature on the sheets was chosen to observe the effects of different sheets material, various heat power and airflow velocity. During the experiment a thermal input below the sheets and airflow velocity through the tunnel have been changed. The thermal field distribution on the metal sheet is different than in case of composite sheet. For the composite material the thermal field distribution was more homogeneous. This article describe briefly also methods of obtaining real composite geometry based on scanned data and their reconstruction for using in some future numerical models.

  3. Thermal properties of highly structured composite and aluminium sheets in an aerodynamic tunnel

    Directory of Open Access Journals (Sweden)

    Kulhavy Petr

    2017-01-01

    Full Text Available This article deals with the thermodynamic behaviour of heat shields - structured metal and composite plates. Experiments have been carried out in a wind tunnel with an additional heating, which simulates the heat source from engine or exhaust pipe and simultaneously the airflow generated during a car movement. The tested sheets with hexagonal structure were a standard commercial made of aluminium and a second manufactured by replication (lamination, diffusion from glass fabric. The airflow in a parallel way along the sheets was analysed experimentally in order to determine the heat transfer efficiency between surfaces of sheets and surrounding airflow. The temperature on the sheets was chosen to observe the effects of different sheets material, various heat power and airflow velocity. During the experiment a thermal input below the sheets and airflow velocity through the tunnel have been changed. The thermal field distribution on the metal sheet is different than in case of composite sheet. For the composite material the thermal field distribution was more homogeneous. This article describe briefly also methods of obtaining real composite geometry based on scanned data and their reconstruction for using in some future numerical models.

  4. Effect Of Agrotechnical Measures And Varieties On Seasonal Dynamics Of Tetranychus Urticae Koch (Acari, Trombidiformes, Tetranychidae On High Tunnel-Cultivated Garden Strawberries

    Directory of Open Access Journals (Sweden)

    Salmane Ineta

    2015-04-01

    Full Text Available The aim of the present study was to determine the seasonal pattern of two-spotted spider mite Tetranychus urticae on strawberries cultivated in polythene-covered high tunnels in temperate climatic conditions. Various cultivars were used and the effect of modification of plant covering indices on abundance and incidence of these mites was also tested. The number of two-spotted spider mites was relatively low at the beginning of the vegetation season and started to increase when average air temperature rose above 20 to 25 °C. In the experiment two types of tunnels differing in additional plant cover were used. The maximum mite abundance did not significantly vary between varieties in tunnel 1 conditions, but it was significantly lower for variety 'Sonata' in tunnel 2 conditions. Mite numbers significantly declined after strawberry foliage mowing and removal of polythene cover. Mite development was prolonged in tunnel 1, where additional cover of plants was used and higher early season air temperature was recorded in comparison to tunnel 2. It was concluded that increase in early season temperature can increase two-spotted spider mite abundance and have a more negative effect on strawberry plants in respect of foliage damage by mites.

  5. Full-scale wind-tunnel tests of high-lift system modifications on a carrier based fighter aircraft

    Science.gov (United States)

    Meyn, Larry A.; Zell, Peter T.; Hagan, John L.; Schoch, David

    1993-01-01

    Modifications to the high-lift system of a full-scale F/A-I8A were tested in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at the NASA Ames Research Center in Moffett Field, California. The objective was to measure the effect of simple modifications on the aerodynamic performance of the high-lift system. The modifications included the placement of a straight fairing in the shroud cove above the trailing-edge flap and the addition of seals to prevent air leakage through the hinge lines of the leading-edge flap, the trailing-edge shroud, and the wing fold. The test was carried out on an actual F/A-18A with it's flaps deployed in the landing approach configuration. The angle of attack ranged from 0 to 16 degrees and the wind speed was 100 knots. At an angle of attack of 8 degrees, the trimmed lift coefficient was improved by 0.09 with all wing seals in place. This corresponds to a reduction in the approach speed for the F/A-I8A of about 5 knots. The seal along the wing fold hinge, a feature present on many naval aircraft, provided one third of the total increment in trimmed lift. A comparison of the full-scale wind-tunnel results with those obtained from flight test is also presented.

  6. High Pressure Scanning Tunneling Microscopy Studies of Adsorbate Structure and Mobility during Catalytic Reactions. Novel Design of an Ultra High Pressure, High Temperature Scanning Tunneling Microscope System for Probing Catalytic Conversions

    International Nuclear Information System (INIS)

    Tang, David Chi-Wai

    2005-01-01

    The aim of the work presented therein is to take advantage of scanning tunneling microscope's (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 C). The design of a high pressure, high temperature scanning tunneling microscope system, that is capable of monitoring reactions in situ at conditions from UHV and ambient temperature up to 1 atm and 250 C, is briefly presented along with vibrational and thermal analysis, as this system serves as a template to improve upon during the design of the new ultra high pressure, high temperature STM. Using this existing high pressure scanning tunneling microscope we monitored the co-adsorption of hydrogen, ethylene and carbon dioxide on platinum (111) and rhodium (111) crystal faces in the mTorr pressure range at 300 K in equilibrium with the gas phase. During the catalytic hydrogenation of ethylene to ethane in the absence of CO the metal surfaces are covered by an adsorbate layer that is very mobile on the time scale of STM imaging. We found that the addition of CO poisons the hydrogenation reaction and induces ordered structures on the single crystal surfaces. Several ordered structures were observed upon CO addition to the surfaces pre-covered with hydrogen and ethylene: a rotated (√19 x √19)R23.4 o on Pt(111), and domains of c(4 x 2)-CO+C 2 H 3 , previously unobserved (4 x 2)-CO+3C 2 H 3 , and (2 x 2)-3CO on Rh(111). A mechanism for CO poisoning of ethylene hydrogenation on the metal single crystals was proposed, in which CO blocks surface metal sites and reduces adsorbate mobility to limit adsorption and reaction rate of ethylene and hydrogen. In order to observe heterogeneous catalytic reactions that occur well above ambient pressure and temperature that more closely

  7. CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type 1 immunity.

    Science.gov (United States)

    Zaccard, Colleen R; Watkins, Simon C; Kalinski, Pawel; Fecek, Ronald J; Yates, Aarika L; Salter, Russell D; Ayyavoo, Velpandi; Rinaldo, Charles R; Mailliard, Robbie B

    2015-02-01

    The ability of dendritic cells (DC) to mediate CD4(+) T cell help for cellular immunity is guided by instructive signals received during DC maturation, as well as the resulting pattern of DC responsiveness to the Th signal, CD40L. Furthermore, the professional transfer of antigenic information from migratory DC to lymph node-residing DC is critical for the effective induction of cellular immune responses. In this study we report that, in addition to their enhanced IL-12p70 producing capacity, human DC matured in the presence of inflammatory mediators of type 1 immunity are uniquely programmed to form networks of tunneling nanotube-like structures in response to CD40L-expressing Th cells or rCD40L. This immunologic process of DC reticulation facilitates intercellular trafficking of endosome-associated vesicles and Ag, but also pathogens such HIV-1, and is regulated by the opposing roles of IFN-γ and IL-4. The initiation of DC reticulation represents a novel helper function of CD40L and a superior mechanism of intercellular communication possessed by type 1 polarized DC, as well as a target for exploitation by pathogens to enhance direct cell-to-cell spread. Copyright © 2015 by The American Association of Immunologists, Inc.

  8. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability

    International Nuclear Information System (INIS)

    Wang, Qi; Wang, Junting; Lu, Qingyou; Hou, Yubin

    2013-01-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d 31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices

  9. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability.

    Science.gov (United States)

    Wang, Qi; Hou, Yubin; Wang, Junting; Lu, Qingyou

    2013-11-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.

  10. A high-stability scanning tunneling microscope achieved by an isolated tiny scanner with low voltage imaging capability

    Science.gov (United States)

    Wang, Qi; Hou, Yubin; Wang, Junting; Lu, Qingyou

    2013-11-01

    We present a novel homebuilt scanning tunneling microscope (STM) with high quality atomic resolution. It is equipped with a small but powerful GeckoDrive piezoelectric motor which drives a miniature and detachable scanning part to implement coarse approach. The scanning part is a tiny piezoelectric tube scanner (industry type: PZT-8, whose d31 coefficient is one of the lowest) housed in a slightly bigger polished sapphire tube, which is riding on and spring clamped against the knife edges of a tungsten slot. The STM so constructed shows low back-lashing and drifting and high repeatability and immunity to external vibrations. These are confirmed by its low imaging voltages, low distortions in the spiral scanned images, and high atomic resolution quality even when the STM is placed on the ground of the fifth floor without any external or internal vibration isolation devices.

  11. Tunneling effects in the current-voltage characteristics of high-efficiency GaAs solar cells

    Science.gov (United States)

    Kachare, R.; Anspaugh, B. E.; Garlick, G. F. J.

    1988-01-01

    Evidence is that tunneling via states in the forbidden gap is the dominant source of excess current in the dark current-voltage (I-V) characteristics of high-efficiency DMCVD grown Al(x)Ga(1-x)As/GaAs(x is equal to or greater than 0.85) solar cells. The dark forward and reverse I-V measurements were made on several solar cells, for the first time, at temperatures between 193 and 301 K. Low-voltage reverse-bias I-V data of a number of cells give a thermal activation energy for excess current of 0.026 + or - 0.005 eV, which corresponds to the carbon impurity in GaAs. However, other energy levels between 0.02 eV and 0.04 eV were observed in some cells which may correspond to impurity levels introduced by Cu, Si, Ge, or Cd. The forward-bias excess current is mainly due to carrier tunneling between localized levels created in the space-charge layer by impurities such as carbon, which are incorporated during the solar cell growth process. A model is suggested to explain the results.

  12. Magnetization tunneling in high-symmetry single-molecule magnets: Limitations of the giant spin approximation

    Science.gov (United States)

    Wilson, A.; Lawrence, J.; Yang, E.-C.; Nakano, M.; Hendrickson, D. N.; Hill, S.

    2006-10-01

    Electron paramagnetic resonance (EPR) studies of a Ni4 single-molecule magnet (SMM) yield the zero-field-splitting (ZFS) parameters D , B40 , and B44 , based on the giant spin approximation (GSA) with S=4 ; B44 is responsible for the magnetization tunneling in this SMM. Experiments on an isostructural Ni-doped Zn4 crystal establish the NiII ion ZFS parameters. The fourth-order ZFS parameters in the GSA arise from the interplay between the Heisenberg interaction Jŝ1•ŝ2 and the second-order single-ion anisotropy, giving rise to mixing of higher-lying S≠4 states into the S=4 state. Consequently, J directly influences the ZFS in the ground state, enabling its determination by EPR.

  13. Submucosal tunneling techniques: current perspectives.

    Science.gov (United States)

    Kobara, Hideki; Mori, Hirohito; Rafiq, Kazi; Fujihara, Shintaro; Nishiyama, Noriko; Ayaki, Maki; Yachida, Tatsuo; Matsunaga, Tae; Tani, Johji; Miyoshi, Hisaaki; Yoneyama, Hirohito; Morishita, Asahiro; Oryu, Makoto; Iwama, Hisakazu; Masaki, Tsutomu

    2014-01-01

    Advances in endoscopic submucosal dissection include a submucosal tunneling technique, involving the introduction of tunnels into the submucosa. These tunnels permit safer offset entry into the peritoneal cavity for natural orifice transluminal endoscopic surgery. Technical advantages include the visual identification of the layers of the gut, blood vessels, and subepithelial tumors. The creation of a mucosal flap that minimizes air and fluid leakage into the extraluminal cavity can enhance the safety and efficacy of surgery. This submucosal tunneling technique was adapted for esophageal myotomy, culminating in its application to patients with achalasia. This method, known as per oral endoscopic myotomy, has opened up the new discipline of submucosal endoscopic surgery. Other clinical applications of the submucosal tunneling technique include its use in the removal of gastrointestinal subepithelial tumors and endomicroscopy for the diagnosis of functional and motility disorders. This review suggests that the submucosal tunneling technique, involving a mucosal safety flap, can have potential values for future endoscopic developments.

  14. Electronic noise of superconducting tunnel junction detectors

    International Nuclear Information System (INIS)

    Jochum, J.; Kraus, H.; Gutsche, M.; Kemmather, B.; Feilitzsch, F. v.; Moessbauer, R.L.

    1994-01-01

    The optimal signal to noise ratio for detectors based on superconducting tunnel junctions is calculated and compared for the cases of a detector consisting of one single tunnel junction, as well as of series and of parallel connections of such tunnel junctions. The influence of 1 / f noise and its dependence on the dynamical resistance of tunnel junctions is discussed quantitatively. A single tunnel junction yields the minimum equivalent noise charge. Such a tunnel junction exhibits the best signal to noise ratio if the signal charge is independent of detector size. In case, signal charge increases with detector size, a parallel or a series connection of tunnel junctions would provide the optimum signal to noise ratio. The equivalent noise charge and the respective signal to noise ratio are deduced as functions of tunnel junction parameters such as tunneling time, quasiparticle lifetime, etc. (orig.)

  15. A new method for calculating energy release rate in tunnel excavation subjected to high in situ stress

    Directory of Open Access Journals (Sweden)

    Xiao Qinghua

    2016-03-01

    Full Text Available Based on energy theory, energy release rate (EER and local energy release rate (LEER, a new index called FERR (Fractional Energy Release Rate is proposed, and this method can not only evaluate the risk of rock burst, but also can point out the location of high risk and the scale of rockburst. The FERR index is applied to the TBM assembling tunnel in Jinping Hydro Power Station II to evaluate the scale and intensity of rockburst, as well as the location where rockburst occurs. With FDM method adopted, the energy release rate of 3 excavation plans are calculated and the scale and risk of rockburst is evaluated, and the location of high risk of rockburst is also mapped. With FERR used in the evaluation, the rockburst is nicely controlled which ensured the safety and construction schedule of the project.

  16. Typical Underwater Tunnels in the Mainland of China and Related Tunneling Technologies

    Directory of Open Access Journals (Sweden)

    Kairong Hong

    2017-12-01

    Full Text Available In the past decades, many underwater tunnels have been constructed in the mainland of China, and great progress has been made in related tunneling technologies. This paper presents the history and state of the art of underwater tunnels in the mainland of China in terms of shield-bored tunnels, drill-and-blast tunnels, and immersed tunnels. Typical underwater tunnels of these types in the mainland of China are described, along with innovative technologies regarding comprehensive geological prediction, grouting-based consolidation, the design and construction of large cross-sectional tunnels with shallow cover in weak strata, cutting tool replacement under limited drainage and reduced pressure conditions, the detection and treatment of boulders, the construction of underwater tunnels in areas with high seismic intensity, and the treatment of serious sedimentation in a foundation channel of immersed tunnels. Some suggestions are made regarding the three potential great strait-crossing tunnels—the Qiongzhou Strait-Crossing Tunnel, Bohai Strait-Crossing Tunnel, and Taiwan Strait-Crossing Tunnel—and issues related to these great strait-crossing tunnels that need further study are proposed. Keywords: Underwater tunnel, Strait-crossing tunnel, Shield-bored tunnel, Immersed tunnel, Drill and blast

  17. Development of Near-Field Microwave Microscope with the Functionality of Scanning Tunneling Spectroscopy

    Science.gov (United States)

    Machida, Tadashi; Gaifullin, Marat B.; Ooi, Shuuich; Kato, Takuya; Sakata, Hideaki; Hirata, Kazuto

    2010-11-01

    We describe the details of an original near-field scanning microwave microscope, developed for simultaneous measurements of local density-of-states (LDOS) and local ohmic losses (LOL). Improving microwave detection systems, we have succeeded in distinguishing the LDOS and LOL even between two low resistance materials; gold and highly orientated pyrolitic graphite. The experimental data indicate that our microscope holds a capability to investigate both LDOS and LOL in nanoscale.

  18. Spin tunnelling in mesoscopic systems

    Indian Academy of Sciences (India)

    We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic field, vanishing completely at special points in the ...

  19. Functional High Performance Financial IT

    DEFF Research Database (Denmark)

    Berthold, Jost; Filinski, Andrzej; Henglein, Fritz

    2011-01-01

    at the University of Copenhagen that attacks this triple challenge of increased performance, transparency and productivity in the financial sector by a novel integration of financial mathematics, domain-specific language technology, parallel functional programming, and emerging massively parallel hardware. HIPERFIT......The world of finance faces the computational performance challenge of massively expanding data volumes, extreme response time requirements, and compute-intensive complex (risk) analyses. Simultaneously, new international regulatory rules require considerably more transparency and external...... auditability of financial institutions, including their software systems. To top it off, increased product variety and customisation necessitates shorter software development cycles and higher development productivity. In this paper, we report about HIPERFIT, a recently etablished strategic research center...

  20. Low p-type contact resistance by field-emission tunneling in highly Mg-doped GaN

    Science.gov (United States)

    Okumura, Hironori; Martin, Denis; Grandjean, Nicolas

    2016-12-01

    Mg-doped GaN with a net acceptor concentration (NA-ND) in the high 1019 cm-3 range was grown using ammonia molecular-beam epitaxy. Electrical properties of NiO contact on this heavily doped p-type GaN were investigated. A potential-barrier height of 0.24 eV was extracted from the relationship between NA-ND and the specific contact resistivity (ρc). We found that there is an optimum NA-ND value of 5 × 1019 cm-3 for which ρc is as low as 2 × 10-5 Ω cm2. This low ρc is ascribed to hole tunneling through the potential barrier at the NiO/p+-GaN interface, which is well accounted for by the field-emission model.

  1. Nonlinear Aeroelastic Analysis of the HIAD TPS Coupon in the NASA 8' High Temperature Tunnel: Theory and Experiment

    Science.gov (United States)

    Goldman, Benjamin D.; Scott, Robert C,; Dowell, Earl H.

    2014-01-01

    The purpose of this work is to develop a set of theoretical and experimental techniques to characterize the aeroelasticity of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A square TPS coupon experiences trailing edge oscillatory behavior during experimental testing in the 8' High Temperature Tunnel (HTT), which may indicate the presence of aeroelastic flutter. Several theoretical aeroelastic models have been developed, each corresponding to a different experimental test configuration. Von Karman large deflection theory is used for the plate-like components of the TPS, along with piston theory for the aerodynamics. The constraints between the individual TPS layers and the presence of a unidirectional foundation at the back of the coupon are included by developing the necessary energy expressions and using the Rayleigh Ritz method to derive the nonlinear equations of motion. Free vibrations and limit cycle oscillations are computed and the frequencies and amplitudes are compared with accelerometer and photogrammetry data from the experiments.

  2. Study of a high critical temperature superconductor through Josephson effect and tunnel spectroscopy

    International Nuclear Information System (INIS)

    Grison, X.

    2000-11-01

    This work, mainly experimental, is dedicated to the study of the Josephson effect and the tunnel spectroscopy of superconducting films. Thin films of YBa 2 Cu 3 O 7-δ oriented towards [0,0,1], [1,0,3], [1,1,0] or [1,0,0] axis have been made. The results concerning the [0,0,1] orientation are consistent with an order parameter having a d(x 2 -y 2 ) symmetry but with a small component of s symmetry due to the orthorombicity of YBa 2 Cu 3 O 7δ . The results concerning the [1,1,0] orientation show the existence (near (1,1,0)-type surfaces) of an order parameter whose symmetry is d(x 2 -y 2 ) ± i*s or more likely d(x 2 - y 2 ) ± i*d(xy). The latter term implies the breaking of the time reversing symmetry. The i*d(xy) component is responsible for the Josephson coupling along the [1,1,0] axis, which means that the coupling is not or is little carried by the Andreev bound states contrarily to recent predictions. It is also shown that Josephson junctions can be fabricated by using ion irradiation. (A.C.)

  3. Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    Science.gov (United States)

    Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.

    1993-01-01

    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angle-of-attack and sideslip regions studied.

  4. Work function and temperature dependence of electron tunneling through an N-type perylene diimide molecular junction with isocyanide surface linkers.

    Science.gov (United States)

    Smith, Christopher E; Xie, Zuoti; Bâldea, Ioan; Frisbie, C Daniel

    2018-01-18

    Conducting probe atomic force microscopy (CP-AFM) was employed to examine electron tunneling in self-assembled monolayer (SAM) junctions. A 2.3 nm long perylene tetracarboxylic acid diimide (PDI) acceptor molecule equipped with isocyanide linker groups was synthesized, adsorbed onto Ag, Au and Pt substrates, and the current-voltage (I-V) properties were measured by CP-AFM. The dependence of the low-bias resistance (R) on contact work function indicates that transport is LUMO-assisted ('n-type behavior'). A single-level tunneling model combined with transition voltage spectroscopy (TVS) was employed to analyze the experimental I-V curves and to extract the effective LUMO position ε l = E LUMO - E F and the effective electronic coupling (Γ) between the PDI redox core and the contacts. This analysis revealed a strong Fermi level (E F ) pinning effect in all the junctions, likely due to interface dipoles that significantly increased with increasing contact work function, as revealed by scanning Kelvin probe microscopy (SKPM). Furthermore, the temperature (T) dependence of R was found to be substantial. For Pt/Pt junctions, R varied more than two orders of magnitude in the range 248 K tunneling mechanism and allow independent determination of ε l , giving values compatible with estimates of ε l based on analysis of the full I-V data. Theoretical analysis revealed a general criterion to unambiguously rule out a two-step transport mechanism: namely, if measured resistance data exhibit a pronounced Arrhenius-type temperature dependence, a two-step electron transfer scenario should be excluded in cases where the activation energy depends on contact metallurgy. Overall, our results indicate (1) the generality of the Fermi level pinning phenomenon in molecular junctions, (2) the utility of employing the single level tunneling model for determining essential electronic structure parameters (ε l and Γ), and (3) the importance of changing the nature of the contacts to

  5. Tunneling spectroscopy on grain boundary junctions in electron-doped high-temperature superconductors; Tunnelspektroskopie an Korngrenzenkontakten aus elektronendotierten Hochtemperatur-Supraleitern

    Energy Technology Data Exchange (ETDEWEB)

    Welter, B.

    2007-12-07

    Some methods are developed anf presented, by means of which from experimental tunnel spectra, especially on symmetric SIS contacts, informations about the properties of electrodes and tunnel barriers can be obtained. Especially a procedure for the numerical unfolding of symmetric SIS spectra is proposed. Furthermore a series of models is summarized, which can explain the linear background conductivity observed in many spectra on high-temperature superconductors. The results of resistance measurements on film bridges are presented. Especially different methods for the determination of H{sub c2}(T) respectively H{sub c2}(0) are presented and applied to the experimental data. Finally the results of the tunnel-spectroscopy measurements are shown.

  6. Uncooled tunneling infrared sensor

    Science.gov (United States)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)

    1995-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.

  7. Supramolecular tunneling junctions

    NARCIS (Netherlands)

    Wimbush, K.S.

    2012-01-01

    In this study a variety of supramolecular tunneling junctions were created. The basis of these junctions was a self-assembled monolayer of heptathioether functionalized ß-cyclodextrin (ßCD) formed on an ultra-flat Au surface, i.e., the bottom electrode. This gave a well-defined hexagonally packed

  8. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields.

    Science.gov (United States)

    Misra, S; Zhou, B B; Drozdov, I K; Seo, J; Urban, L; Gyenis, A; Kingsley, S C J; Jones, H; Yazdani, A

    2013-10-01

    We describe the construction and performance of a scanning tunneling microscope capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field.

  9. Tunnelling instability via perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Graffi, S. (Bologna Univ. (Italy). Dip. di Matematica); Grecchi, V. (Moderna Univ. (Italy). Dip. di Matematica); Jona-Lasinio, G. (Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies)

    1984-10-21

    The semiclassical limit of low lying states in a multiwell potential is studied by rigorous perturbative techniques. In particular tunnelling instability and localisation of wave functions is obtained in a simple way under small deformations of symmetric potentials.

  10. Single Electron Tunneling

    International Nuclear Information System (INIS)

    Ruggiero, Steven T.

    2005-01-01

    Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors that add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have

  11. Design of a new reactor-like high temperature near ambient pressure scanning tunneling microscope for catalysis studies.

    Science.gov (United States)

    Tao, Franklin Feng; Nguyen, Luan; Zhang, Shiran

    2013-03-01

    Here, we present the design of a new reactor-like high-temperature near ambient pressure scanning tunneling microscope (HT-NAP-STM) for catalysis studies. This HT-NAP-STM was designed for exploration of structures of catalyst surfaces at atomic scale during catalysis or under reaction conditions. In this HT-NAP-STM, the minimized reactor with a volume of reactant gases of ∼10 ml is thermally isolated from the STM room through a shielding dome installed between the reactor and STM room. An aperture on the dome was made to allow tip to approach to or retract from a catalyst surface in the reactor. This dome minimizes thermal diffusion from hot gas of the reactor to the STM room and thus remains STM head at a constant temperature near to room temperature, allowing observation of surface structures at atomic scale under reaction conditions or during catalysis with minimized thermal drift. The integrated quadrupole mass spectrometer can simultaneously measure products during visualization of surface structure of a catalyst. This synergy allows building an intrinsic correlation between surface structure and its catalytic performance. This correlation offers important insights for understanding of catalysis. Tests were done on graphite in ambient environment, Pt(111) in CO, graphene on Ru(0001) in UHV at high temperature and gaseous environment at high temperature. Atom-resolved surface structure of graphene on Ru(0001) at 500 K in a gaseous environment of 25 Torr was identified.

  12. Recognition tunneling

    Czech Academy of Sciences Publication Activity Database

    Lindsay, S.; He, J.; Sankey, O.; Hapala, Prokop; Jelínek, Pavel; Zhang, P.; Chang, S.; Huang, S.

    2010-01-01

    Roč. 21, č. 26 (2010), 262001/1-262001/12 ISSN 0957-4484 R&D Projects: GA ČR GA202/09/0545 Institutional research plan: CEZ:AV0Z10100521 Keywords : STM * tunneling current * molecular electronics * DFT calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.644, year: 2010

  13. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Parui, Subir; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Casanova, Fèlix; Hueso, Luis E.

    2016-01-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al 2 O 3 /NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  14. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Parui, Subir, E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Bedoya-Pinto, Amilcar [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Max Planck Institute of Microstructure Physics, D-06120 Halle (Germany); Sun, Xiangnan [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); National Center for Nanoscience and Technology, 100190 Beijing (China); Casanova, Fèlix; Hueso, Luis E., E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2016-08-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al{sub 2}O{sub 3}/NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  15. Tunneling time, what is its meaning?

    International Nuclear Information System (INIS)

    McDonald, C R; Orlando, G; Vampa, G; Brabec, T

    2015-01-01

    The tunnel time ionization dynamics for bound systems in laser fields are investigated. Numerical analysis for a step function switch-on of the field allows for the tunnel time to be defined as the time it takes the ground state to develop the under-barrier wavefunction components necessary to achieve the static field ionization rate. A relation between the tunnel time and the Keldysh time is established. The definition of the tunnel time is extended to time varying fields and experimental possibilities for measuring the tunnel time are discussed

  16. A silicon doped hafnium oxide ferroelectric p–n–p–n SOI tunneling field–effect transistor with steep subthreshold slope and high switching state current ratio

    Directory of Open Access Journals (Sweden)

    Saeid Marjani

    2016-09-01

    Full Text Available In this paper, a silicon–on–insulator (SOI p–n–p–n tunneling field–effect transistor (TFET with a silicon doped hafnium oxide (Si:HfO2 ferroelectric gate stack is proposed and investigated via 2D device simulation with a calibrated nonlocal band–to–band tunneling model. Utilization of Si:HfO2 instead of conventional perovskite ferroelectrics such as lead zirconium titanate (PbZrTiO3 and strontium bismuth tantalate (SrBi2Ta2O9 provides compatibility to the CMOS process as well as improved device scalability. By using Si:HfO2 ferroelectric gate stack, the applied gate voltage is effectively amplified that causes increased electric field at the tunneling junction and reduced tunneling barrier width. Compared with the conventional p–n–p–n SOI TFET, the on–state current and switching state current ratio are appreciably increased; and the average subthreshold slope (SS is effectively reduced. The simulation results of Si:HfO2 ferroelectric p–n–p–n SOI TFET show significant improvement in transconductance (∼9.8X enhancement at high overdrive voltage and average subthreshold slope (∼35% enhancement over nine decades of drain current at room temperature, indicating that this device is a promising candidate to strengthen the performance of p–n–p–n and conventional TFET for a switching performance.

  17. Tunneling junction as an open system. Normal tunneling

    International Nuclear Information System (INIS)

    Ono, Y.

    1978-01-01

    The method of the tunneling Hamiltonian is reformulated in the case of normal tunneling by introducing two independent particle baths. Due to the baths, it becomes possible to realize a final stationary state where the electron numbers of the two electrodes in the tunneling system are maintained constant and where there exists a stationary current. The effect of the bath-system couplings on the current-voltage characteristics of the junction is discussed in relation to the usual expression of the current as a function of voltage. (Auth.)

  18. Identifying highly conducting Au–C links through inelastic electron tunneling spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Foti, G.; Vázquez, Héctor; Sanchez-Portal, D.; Arnau, A.; Frederiksen, T.

    2014-01-01

    Roč. 118, OCT (2014), s. 27106-27112 ISSN 1932-7447 Institutional support: RVO:68378271 Keywords : molecular electronics * alkanes * tin-functionalization * anchoring groups * vibrational spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.772, year: 2014

  19. Tunnel - history of

    International Nuclear Information System (INIS)

    1998-11-01

    This book introduces history of tunnel in ancient times, the middle ages and modern times, survey of tunnel and classification of bedrock like environment survey of position, survey of the ground, design of tunnel on basic thing of the design, and design of tunnel of bedrock, analysis of stability of tunnel and application of the data, construction of tunnel like lattice girder and steel fiber reinforced shot crete, and maintenance control and repair of tunnel.

  20. Homoepitaxial graphene tunnel barriers for spin transport (Presentation Recording)

    Science.gov (United States)

    Friedman, Adam L.

    2015-09-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate homoepitaxial tunnel barrier devices in which graphene serves as both the tunnel barrier and the high mobility transport channel. Beginning with multilayer graphene, we fluorinate or hydrogenate the top layer to decouple it from the bottom layer, so that it serves as a single monolayer tunnel barrier for both charge and spin injection into the lower graphene transport channel. We demonstrate successful tunneling by measuring non-linear IV curves, and a weakly temperature dependent zero bias resistance. We perform lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies (~200 ps). However, we also demonstrate the highest spin polarization efficiencies (~45%) yet measured in graphene-based spin devices [1]. [1] A.L. Friedman, et al., Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport, Nat. Comm. 5, 3161 (2014).

  1. Preparation, tunneling, resistivity, and critical current measurements on homogeneous high-T/sub c/ A15 Nb3Ge thin films

    International Nuclear Information System (INIS)

    Kihlstrom, K.E.; Hammond, R.H.; Talvacchio, J.; Geballe, T.H.; Green, A.K.; Rehn, V.

    1982-01-01

    We have prepared homogeneous films of high T/sub c/ Nb 3 Ge as demonstrated by a total transition width of less than 1 K with a resistive T/sub c/ onset of 21.7 K, by paying particular attention to the constancy of substrate temperature. X-ray diffraction analysis done both at Stanford and at Westinghouse shows no evidence of a second phase to the limits of the instruments ( 6 A/cm 2 , which are the highest ever reported for any material at this temperature. In an applied magnetic field of 7.5 tesla, J/sub c/ was 2.5 x 10 6 A/cm 2 at 4.2 K. Tunneling as a function of thickness into Nb 3 Ge where the oxygen had been removed from the system after 1300 A had been deposited but the deposition continued up to 1 μm showed only limited degradation (in terms of gap width, excess conductance below the gap as well as magnitude of gap). This gives some indication that oxygen may only be needed initially during the deposition rather than throughout the entire deposition. T/sub c/ correlates well with composition, as does resistivity, thus we see the correlation between increasing T/sub c/ and decreasing resistivity

  2. Investigation of the structural anisotropy in a self-assembling glycinate layer on Cu(100) by scanning tunneling microscopy and density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, Mikhail [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Ioffe Physical Technical Institute, Russian Academy of Sciences, 26 Polytekhnicheskaya, St Petersburg 194021 (Russian Federation); Lahtonen, Kimmo; Vuori, Leena [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Sánchez-de-Armas, Rocío [Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, S75120 Uppsala (Sweden); Hirsimäki, Mika, E-mail: mikahirsi@gmail.com [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Valden, Mika [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland)

    2017-07-01

    Highlights: • Deprotonation reaction of glycine and self-assembly of glycinate is observed on Cu. • Bias-dependent scanning tunneling microscopy indicates two glycinate geometries. • Density functional theory calculations confirm the two non-identical configurations. • Non-identical adsorption explains the anisotropy in adlayer’s electronic structure. - Abstract: Self-assembling organic molecule-metal interfaces exhibiting free-electron like (FEL) states offers an attractive bottom-up approach to fabricating materials for molecular electronics. Accomplishing this, however, requires detailed understanding of the fundamental driving mechanisms behind the self-assembly process. For instance, it is still unresolved as to why the adsorption of glycine ([NH{sub 2}(CH{sub 2})COOH]) on isotropic Cu(100) single crystal surface leads, via deprotonation and self-assembly, to a glycinate ([NH{sub 2}(CH{sub 2})COO–]) layer that exhibits anisotropic FEL behavior. Here, we report on bias-dependent scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations for glycine adsorption on Cu(100) single crystal surface. We find that after physical vapor deposition (PVD) of glycine on Cu(100), glycinate self-assembles into an overlayer exhibiting c(2 × 4) and p(2 × 4) symmetries with non-identical adsorption sites. Our findings underscore the intricacy of electrical conductivity in nanomolecular organic overlayers and the critical role the structural anisotropy at molecule-metal interface plays in the fabrication of materials for molecular electronics.

  3. Demonstration of short-range wind lidar in a high-performance wind tunnel

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm

    2012-01-01

    -speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good correlation was again found. These measurements all demonstrate the high accuracy of the lidar and indicate a possible...

  4. Design of High Performance Si/SiGe Heterojunction Tunneling FETs with a T-Shaped Gate

    Science.gov (United States)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng; Yang, Zhaonian

    2017-03-01

    In this paper, a new Si/SiGe heterojunction tunneling field-effect transistor with a T-shaped gate (HTG-TFET) is proposed and investigated by Silvaco-Atlas simulation. The two source regions of the HTG-TFET are placed on both sides of the gate to increase the tunneling area. The T-shaped gate is designed to overlap with N+ pockets in both the lateral and vertical directions, which increases the electric field and tunneling rate at the top of tunneling junctions. Moreover, using SiGe in the pocket regions leads to the smaller tunneling distance. Therefore, the proposed HTG-TFET can obtain the higher on-state current. The simulation results show that on-state current of HTG-TFET is increased by one order of magnitude compared with that of the silicon-based counterparts. The average subthreshold swing (SS) of HTG-TFET is 44.64 mV/dec when V g is varied from 0.1 to 0.4 V, and the point SS is 36.59 mV/dec at V g = 0.2 V. Besides, this design cannot bring the sever Miller capacitance for the TFET circuit design. By using the T-shaped gate and SiGe pocket regions, the overall performance of the TFET is optimized.

  5. Design of High Performance Si/SiGe Heterojunction Tunneling FETs with a T-Shaped Gate.

    Science.gov (United States)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng; Yang, Zhaonian

    2017-12-01

    In this paper, a new Si/SiGe heterojunction tunneling field-effect transistor with a T-shaped gate (HTG-TFET) is proposed and investigated by Silvaco-Atlas simulation. The two source regions of the HTG-TFET are placed on both sides of the gate to increase the tunneling area. The T-shaped gate is designed to overlap with N + pockets in both the lateral and vertical directions, which increases the electric field and tunneling rate at the top of tunneling junctions. Moreover, using SiGe in the pocket regions leads to the smaller tunneling distance. Therefore, the proposed HTG-TFET can obtain the higher on-state current. The simulation results show that on-state current of HTG-TFET is increased by one order of magnitude compared with that of the silicon-based counterparts. The average subthreshold swing (SS) of HTG-TFET is 44.64 mV/dec when V g is varied from 0.1 to 0.4 V, and the point SS is 36.59 mV/dec at V g  = 0.2 V. Besides, this design cannot bring the sever Miller capacitance for the TFET circuit design. By using the T-shaped gate and SiGe pocket regions, the overall performance of the TFET is optimized.

  6. Tunneling in cuprate and bismuthate superconductors

    International Nuclear Information System (INIS)

    Zasadzinski, J.F.; Huang, Qiang; Tralshawala, N.

    1991-10-01

    Tunneling measurements using a point-contact technique are reported for the following high temperature superconducting oxides: Ba 1-x K x BiO 3 (BKBO), Nd 2-x Ce x CuO 4 (NCCO), Bi 2 Sr 2 CaCu 2 O 7 (BSCCO) and Tl 2 Ba 2 CaCu 2 O x (TBCCO). For the bismuthate, BKBO, ideal, S-I-N tunneling characteristics are observed using a Au tip. The normalized conductance is fitted to a BCS density of states and thermal smearing only proving there is no fundamental limitation in BKBO for device applications. For the cuprates, the normalized conductance displays BCS-like characteristics, but with a broadening larger than from thermal smearing. Energy gap values are presented for each material. For BKBO and NCCO the Eliashberg functions, α 2 F(ω), obtained from the tunneling are shown to be in good agreement with neutron scattering results. Proximity effect tunneling studies are reported for Au/BSCCO bilayers and show that the energy gap of BSCCO can be observed through Au layers up to 600 Angstrom thick

  7. NbN/AlN/NbN tunnel junctions with high current density up to 54 kA/cm2

    International Nuclear Information System (INIS)

    Wang, Z.; Kawakami, A.; Uzawa, Y.

    1997-01-01

    We report on progress in the development of high current density NbN/AlN/NbN tunnel junctions for applications as submillimeter wave superconductor-insulator-superconductor mixers. A very high current density up to 54 kA/cm 2 , roughly an order of magnitude larger than any reported results for all-NbN tunnel junctions, was achieved in the junctions with about 1 nm thick AlN barriers. The magnetic field and temperature dependence of critical supercurrents were measured to investigate the Josephson tunneling behavior of critical supercurrents in the high-J c junctions. The junctions showed high-quality junction characteristics with a large gap voltage of 5 mV and sharp quasiparticle current rise (ΔV g =0.1 mV). The R sg /R N ratio was about 5 with a V m value of 14 mV measured at 4.2 K. copyright 1997 American Institute of Physics

  8. Executive dysfunction in high functioning autism

    OpenAIRE

    Burnett, Hollie

    2017-01-01

    Background: There is presently a lack of consistency in research designed to measure executive functioning (EF) in autism that may be attributable to lack of homogeneity or comorbid conditions (i.e. learning disability or additional diagnosis) in test samples. Aim: A systematic review focused on a subset of EF (verbal fluency: VF) was conducted, using only studies of high-functioning individuals with autism (HFA) without an additional diagnosis or learning disability. An emp...

  9. Effects of periodic modulation on the nonlinear Landau–Zener tunneling

    International Nuclear Information System (INIS)

    Li-Hua, Wu; Wen-Shan, Duan

    2009-01-01

    We study the Landau–Zener tunneling of a nonlinear two-level system by applying a periodic modulation on its energy bias. We find that the two levels are splitting at the zero points of the zero order Bessel function for high-frequency modulation. Moreover, we obtain the effective coupling constant between two levels at the zero points of the zero order Bessel function by calculating the final tunneling probability at these points. It seems that the effective coupling constant can be regarded as the approximation of the higher order Bessel function at these points. For the low-frequency modulation, we find that the final tunneling probability is a function of the interaction strength. For the weak inter-level coupling case, we find that the final tunneling probability is more disordered as the interaction strength becomes larger. (general)

  10. Asymmetry in the normal-metal to high-Tc superconductor tunnel junction

    International Nuclear Information System (INIS)

    Flensberg, K.; Hedegaard, P.; Brix, M.

    1988-01-01

    We show that the observed asymmetry in the I-V characteristics of high-T c material to normal metal junctions can be explained within the Resonating-Valence-Bond model. For a bias current with electrons moving from the superconductor to the normal metal the current is quadratic in the bias voltage, and in the opposite case with electrons moving from the normal metal to the superconductor the current is linear in V. (orig.)

  11. Quantum resonances in physical tunneling

    International Nuclear Information System (INIS)

    Nieto, M.M.; Truax, D.R.

    1985-01-01

    It has recently been emphasized that the probability of quantum tunneling is a critical function of the shape of the potential. Applying this observation to physical systems, we point out that in principal information on potential surfaces can be obtained by studying tunneling rates. This is especially true in cases where only spectral data is known, since many potentials yield the same spectrum. 13 refs., 10 figs., 1 tab

  12. Visual function of cataract with high myopia

    Directory of Open Access Journals (Sweden)

    Jian-Tao Ren

    2013-09-01

    Full Text Available Cataract with high myopia is research priority associated with the large amount of high myopia patients. The unaided visual acuity and the best-corrected visual acuity are partial for the visual acuity of the patients with cataract. The mechanism and clinical significance of modern visual function measurements associated with cataract and high myopia, including accommodation and convergence, stereoscopic vision, contrast sensitivity, have been introduced. These measurements could be of great value in early diagnosis of cataract, assessment of surgical indication, customized intraocular lens(IOLselection and evaluation of visual performance after IOL implantation. They could also be helpful to the analysis of postoperative impaired visual function and its management. Having an adequate understanding of the contents and significance of visual function was helpful to the improvement of cataract surgery techniques and postoperative visual acuity.

  13. Splitting Functions at High Transverse Momentum

    CERN Document Server

    Moutafis, Rhea Penelope; CERN. Geneva. TH Department

    2017-01-01

    Among the production channels of the Higgs boson one contribution could become significant at high transverse momentum which is the radiation of a Higgs boson from another particle. This note focuses on the calculation of splitting functions and cross sections of such processes. The calculation is first carried out on the example $e\\rightarrow e\\gamma$ to illustrate the way splitting functions are calculated. Then the splitting function of $e\\rightarrow eh$ is calculated in similar fashion. This procedure can easily be generalized to processes such as $q\\rightarrow qh$ or $g\\rightarrow gh$.

  14. Experimental Evidence for Quantum Tunneling Time

    Science.gov (United States)

    Camus, Nicolas; Yakaboylu, Enderalp; Fechner, Lutz; Klaiber, Michael; Laux, Martin; Mi, Yonghao; Hatsagortsyan, Karen Z.; Pfeifer, Thomas; Keitel, Christoph H.; Moshammer, Robert

    2017-07-01

    The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron's classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the "tunnel exit."

  15. Boundary Layer Transition and Trip Effectiveness on an Apollo Capsule in the JAXA High Enthalpy Shock Tunnel (HIEST) Facility

    Science.gov (United States)

    Kirk, Lindsay C.; Lillard, Randolph P.; Olejniczak, Joseph; Tanno, Hideyuki

    2015-01-01

    Computational assessments were performed to size boundary layer trips for a scaled Apollo capsule model in the High Enthalpy Shock Tunnel (HIEST) facility at the JAXA Kakuda Space Center in Japan. For stagnation conditions between 2 MJ/kg and 20 MJ/kg and between 10 MPa and 60 MPa, the appropriate trips were determined to be between 0.2 mm and 1.3 mm high, which provided kappa/delta values on the heatshield from 0.15 to 2.25. The tripped configuration consisted of an insert with a series of diamond shaped trips along the heatshield downstream of the stagnation point. Surface heat flux measurements were obtained on a capsule with a 250 mm diameter, 6.4% scale model, and pressure measurements were taken at axial stations along the nozzle walls. At low enthalpy conditions, the computational predictions agree favorably to the test data along the heatshield centerline. However, agreement becomes less favorable as the enthalpy increases conditions. The measured surface heat flux on the heatshield from the HIEST facility was under-predicted by the computations in these cases. Both smooth and tripped configurations were tested for comparison, and a post-test computational analysis showed that kappa/delta values based on the as-measured stagnation conditions ranged between 0.5 and 1.2. Tripped configurations for both 0.6 mm and 0.8 mm trip heights were able to effectively trip the flow to fully turbulent for a range of freestream conditions.

  16. Contributing to global computing platform: gliding, tunneling standard services and high energy physics application

    International Nuclear Information System (INIS)

    Lodygensky, O.

    2006-09-01

    Centralized computers have been replaced by 'client/server' distributed architectures which are in turn in competition with new distributed systems known as 'peer to peer'. These new technologies are widely spread, and trading, industry and the research world have understood the new goals involved and massively invest around these new technologies, named 'grid'. One of the fields is about calculating. This is the subject of the works presented here. At the Paris Orsay University, a synergy emerged between the Computing Science Laboratory (LRI) and the Linear Accelerator Laboratory (LAL) on grid infrastructure, opening new investigations fields for the first and new high computing perspective for the other. Works presented here are the results of this multi-discipline collaboration. They are based on XtremWeb, the LRI global computing platform. We first introduce a state of the art of the large scale distributed systems, its principles, its architecture based on services. We then introduce XtremWeb and detail modifications and improvements we had to specify and implement to achieve our goals. We present two different studies, first interconnecting grids in order to generalize resource sharing and secondly, be able to use legacy services on such platforms. We finally explain how a research community like the community of high energy cosmic radiation detection can gain access to these services and detail Monte Carlos and data analysis processes over the grids. (author)

  17. Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions

    KAUST Repository

    Jin Hu, Wei; Wang, Zhihong; Yu, Weili; Wu, Tao

    2016-01-01

    Ferroelectric tunnel junctions (FTJs) have recently attracted considerable interest as a promising candidate for applications in the next-generation non-volatile memory technology. In this work, using an ultrathin (3 nm) ferroelectric Sm0.1Bi0.9FeO3 layer as the tunnelling barrier and a semiconducting Nb-doped SrTiO3 single crystal as the bottom electrode, we achieve a tunnelling electroresistance as large as 105. Furthermore, the FTJ memory states could be modulated by light illumination, which is accompanied by a hysteretic photovoltaic effect. These complimentary effects are attributed to the bias- and light-induced modulation of the tunnel barrier, both in height and width, at the semiconductor/ferroelectric interface. Overall, the highly tunable tunnelling electroresistance and the correlated photovoltaic functionalities provide a new route for producing and non-destructively sensing multiple non-volatile electronic states in such FTJs.

  18. Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions

    KAUST Repository

    Jin Hu, Wei

    2016-02-29

    Ferroelectric tunnel junctions (FTJs) have recently attracted considerable interest as a promising candidate for applications in the next-generation non-volatile memory technology. In this work, using an ultrathin (3 nm) ferroelectric Sm0.1Bi0.9FeO3 layer as the tunnelling barrier and a semiconducting Nb-doped SrTiO3 single crystal as the bottom electrode, we achieve a tunnelling electroresistance as large as 105. Furthermore, the FTJ memory states could be modulated by light illumination, which is accompanied by a hysteretic photovoltaic effect. These complimentary effects are attributed to the bias- and light-induced modulation of the tunnel barrier, both in height and width, at the semiconductor/ferroelectric interface. Overall, the highly tunable tunnelling electroresistance and the correlated photovoltaic functionalities provide a new route for producing and non-destructively sensing multiple non-volatile electronic states in such FTJs.

  19. Safety evaluation model of urban cross-river tunnel based on driving simulation.

    Science.gov (United States)

    Ma, Yingqi; Lu, Linjun; Lu, Jian John

    2017-09-01

    Currently, Shanghai urban cross-river tunnels have three principal characteristics: increased traffic, a high accident rate and rapidly developing construction. Because of their complex geographic and hydrological characteristics, the alignment conditions in urban cross-river tunnels are more complicated than in highway tunnels, so a safety evaluation of urban cross-river tunnels is necessary to suggest follow-up construction and changes in operational management. A driving risk index (DRI) for urban cross-river tunnels was proposed in this study. An index system was also constructed, combining eight factors derived from the output of a driving simulator regarding three aspects of risk due to following, lateral accidents and driver workload. Analytic hierarchy process methods and expert marking and normalization processing were applied to construct a mathematical model for the DRI. The driving simulator was used to simulate 12 Shanghai urban cross-river tunnels and a relationship was obtained between the DRI for the tunnels and the corresponding accident rate (AR) via a regression analysis. The regression analysis results showed that the relationship between the DRI and the AR mapped to an exponential function with a high degree of fit. In the absence of detailed accident data, a safety evaluation model based on factors derived from a driving simulation can effectively assess the driving risk in urban cross-river tunnels constructed or in design.

  20. Application of maximum entropy to neutron tunneling spectroscopy

    International Nuclear Information System (INIS)

    Mukhopadhyay, R.; Silver, R.N.

    1990-01-01

    We demonstrate the maximum entropy method for the deconvolution of high resolution tunneling data acquired with a quasielastic spectrometer. Given a precise characterization of the instrument resolution function, a maximum entropy analysis of lutidine data obtained with the IRIS spectrometer at ISIS results in an effective factor of three improvement in resolution. 7 refs., 4 figs

  1. Resonant tunneling via spin-polarized barrier states in a magnetic tunnel junction

    NARCIS (Netherlands)

    Jansen, R.; Lodder, J.C.

    2000-01-01

    Resonant tunneling through states in the barrier of a magnetic tunnel junction has been analyzed theoretically for the case of a spin-polarized density of barrier states. It is shown that for highly spin-polarized barrier states, the magnetoresistance due to resonant tunneling is enhanced compared

  2. Magnetic Fluxtube Tunneling

    Science.gov (United States)

    Dahlburg, Russell B.; Antiochos,, Spiro K.; Norton, D.

    1996-01-01

    We present numerical simulations of the collision and subsequent interaction of two initially orthogonal, twisted, force free field magnetic fluxtubes. The simulations were carried out using a new three dimensional explicit parallelized Fourier collocation algorithm for solving the viscoresistive equations of compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the fluxtubes can 'tunnel' through each other. Two key conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch much greater than 1, and the magnetic Lundquist number must be somewhat large, greater than or equal to 2880. This tunneling behavior has not been seen previously in studies of either vortex tube or magnetic fluxtube interactions. An examination of magnetic field lines shows that tunneling is due to a double reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections and 'pass' through each other. The implications of these results for solar and space plasmas are discussed.

  3. Carpal Tunnel Syndrome

    Science.gov (United States)

    ... a passing cramp? It could be carpal tunnel syndrome. The carpal tunnel is a narrow passageway of ... three times more likely to have carpal tunnel syndrome than men. Early diagnosis and treatment are important ...

  4. Exchange coupling and magnetic anisotropy of exchanged-biased quantum tunnelling single-molecule magnet Ni3Mn2 complexes using theoretical methods based on Density Functional Theory.

    Science.gov (United States)

    Gómez-Coca, Silvia; Ruiz, Eliseo

    2012-03-07

    The magnetic properties of a new family of single-molecule magnet Ni(3)Mn(2) complexes were studied using theoretical methods based on Density Functional Theory (DFT). The first part of this study is devoted to analysing the exchange coupling constants, focusing on the intramolecular as well as the intermolecular interactions. The calculated intramolecular J values were in excellent agreement with the experimental data, which show that all the couplings are ferromagnetic, leading to an S = 7 ground state. The intermolecular interactions were investigated because the two complexes studied do not show tunnelling at zero magnetic field. Usually, this exchange-biased quantum tunnelling is attributed to the presence of intermolecular interactions calculated with the help of theoretical methods. The results indicate the presence of weak intermolecular antiferromagnetic couplings that cannot explain the ferromagnetic value found experimentally for one of the systems. In the second part, the goal is to analyse magnetic anisotropy through the calculation of the zero-field splitting parameters (D and E), using DFT methods including the spin-orbit effect.

  5. Doping dependent tunneling conductance in SDW ordered copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C., E-mail: gcr@iopb.res.in [Condensed Matter Physics Group, Dept. of Applied Physics and Ballistics, F.M. University, 756 019 Balasore, Orissa (India); Panda, S.K. [K.D. Science College, Pochilima, Hinjilicut, 761 101 Ganjam, Orissa (India)

    2011-07-15

    The model calculation reports the co-existences of s-wave superconductivity and spin density wave (SDW) in high-T{sub c} cuprates. The doping dependence of the phase diagram explains the experimental observations qualitatively. The calculated tunneling spectra explains the observed multiple peak structures. This calculation provides an alternative to BCS formalism to calculate order parameters from the spectra. It is observed that doping suppresses the long range anti-ferromagnetic order and induces superconducting phase for a suitable doping. In order to study this effect, we present a model study of the doping dependence of the tunneling conductance in high-T{sub c} systems. The system is described by the Hamiltonian consisting of spin density wave (SDW) and s-wave type superconducting interaction in presence of varying impurity concentrations. The gap equations are calculated by using Green's functions technique of Zubarev. The gap equations and the chemical potential are solved self-consistently. The imaginary part of the electron Green's functions shows the quasi-particle density of states which represent the tunneling conductance observed by the scanning tunneling microscopy (STM). We investigate the effect of impurity on the gap equations as well as on the tunneling conductance. The results will be discussed based on the experimental observations.

  6. Doping dependent tunneling conductance in SDW ordered copper oxide superconductors

    International Nuclear Information System (INIS)

    Rout, G.C.; Panda, S.K.

    2011-01-01

    The model calculation reports the co-existences of s-wave superconductivity and spin density wave (SDW) in high-T c cuprates. The doping dependence of the phase diagram explains the experimental observations qualitatively. The calculated tunneling spectra explains the observed multiple peak structures. This calculation provides an alternative to BCS formalism to calculate order parameters from the spectra. It is observed that doping suppresses the long range anti-ferromagnetic order and induces superconducting phase for a suitable doping. In order to study this effect, we present a model study of the doping dependence of the tunneling conductance in high-T c systems. The system is described by the Hamiltonian consisting of spin density wave (SDW) and s-wave type superconducting interaction in presence of varying impurity concentrations. The gap equations are calculated by using Green's functions technique of Zubarev. The gap equations and the chemical potential are solved self-consistently. The imaginary part of the electron Green's functions shows the quasi-particle density of states which represent the tunneling conductance observed by the scanning tunneling microscopy (STM). We investigate the effect of impurity on the gap equations as well as on the tunneling conductance. The results will be discussed based on the experimental observations.

  7. Doping dependent tunneling conductance in SDW ordered copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C., E-mail: gcr@iopb.res.in [Condensed Matter Physics Group, Dept. of Applied Physics and Ballistics, F.M. University, 756 019 Balasore, Orissa (India); Panda, S K [K.D. Science College, Pochilima, Hinjilicut, 761 101 Ganjam, Orissa (India)

    2011-07-15

    The model calculation reports the co-existences of s-wave superconductivity and spin density wave (SDW) in high-T{sub c} cuprates. The doping dependence of the phase diagram explains the experimental observations qualitatively. The calculated tunneling spectra explains the observed multiple peak structures. This calculation provides an alternative to BCS formalism to calculate order parameters from the spectra. It is observed that doping suppresses the long range anti-ferromagnetic order and induces superconducting phase for a suitable doping. In order to study this effect, we present a model study of the doping dependence of the tunneling conductance in high-T{sub c} systems. The system is described by the Hamiltonian consisting of spin density wave (SDW) and s-wave type superconducting interaction in presence of varying impurity concentrations. The gap equations are calculated by using Green's functions technique of Zubarev. The gap equations and the chemical potential are solved self-consistently. The imaginary part of the electron Green's functions shows the quasi-particle density of states which represent the tunneling conductance observed by the scanning tunneling microscopy (STM). We investigate the effect of impurity on the gap equations as well as on the tunneling conductance. The results will be discussed based on the experimental observations.

  8. Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded membrane resonators for high-Q optomechanics.

    Science.gov (United States)

    Tsaturyan, Yeghishe; Barg, Andreas; Simonsen, Anders; Villanueva, Luis Guillermo; Schmid, Silvan; Schliesser, Albert; Polzik, Eugene S

    2014-03-24

    Dielectric membranes with exceptional mechanical and optical properties present one of the most promising platforms in quantum opto-mechanics. The performance of stressed silicon nitride nanomembranes as mechanical resonators notoriously depends on how their frame is clamped to the sample mount, which in practice usually necessitates delicate, and difficult-to-reproduce mounting solutions. Here, we demonstrate that a phononic bandgap shield integrated in the membrane's silicon frame eliminates this dependence, by suppressing dissipation through phonon tunneling. We dry-etch the membrane's frame so that it assumes the form of a cm-sized bridge featuring a 1-dimensional periodic pattern, whose phononic density of states is tailored to exhibit one, or several, full band gaps around the membrane's high-Q modes in the MHz-range. We quantify the effectiveness of this phononic bandgap shield by optical interferometry measuring both the suppressed transmission of vibrations, as well as the influence of frame clamping conditions on the membrane modes. We find suppressions up to 40 dB and, for three different realized phononic structures, consistently observe significant suppression of the dependence of the membrane's modes on sample clamping-if the mode's frequency lies in the bandgap. As a result, we achieve membrane mode quality factors of 5 × 10(6) with samples that are tightly bolted to the 8 K-cold finger of a cryostat. Q × f -products of 6 × 10(12) Hz at 300 K and 14 × 10(12) Hz at 8 K are observed, satisfying one of the main requirements for optical cooling of mechanical vibrations to their quantum ground-state.

  9. Automated Boundary Conditions for Wind Tunnel Simulations

    Science.gov (United States)

    Carlson, Jan-Renee

    2018-01-01

    Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.

  10. Degradation study of AlAs/GaAs resonant tunneling diode IV curves under influence of high temperatures

    Science.gov (United States)

    Makeev, M. O.; Meshkov, S. A.; Sinyakin, V. Yu

    2017-11-01

    In the present work the thermal degradation of IV curves of AlAs/GaAs resonant tunneling diodes using artificial aging method was investigated. The dependency of AuGeNi specific ohmic contact resistance on time and temperature was determined.

  11. High harmonic generation at the tunneling ionization of atoms by intense laser radiation near the classical cut-off

    Science.gov (United States)

    Gets, A. V.; Krainov, V. P.

    2018-01-01

    The yield of spontaneous photons at the tunneling ionization of atoms by intense low-frequency laser radiation near the classical cut-off is estimated analytically by using the three-step model. The Bell-shaped dependence in the universal photon spectrum is explained qualitatively.

  12. Tunneling Plasmonics in Bilayer Graphene.

    Science.gov (United States)

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  13. Executive Functioning in Highly Talented Soccer Players

    Science.gov (United States)

    Verburgh, Lot; Scherder, Erik J. A.; van Lange, Paul A.M.; Oosterlaan, Jaap

    2014-01-01

    Executive functions might be important for successful performance in sports, particularly in team sports requiring quick anticipation and adaptation to continuously changing situations in the field. The executive functions motor inhibition, attention and visuospatial working memory were examined in highly talented soccer players. Eighty-four highly talented youth soccer players (mean age 11.9), and forty-two age-matched amateur soccer players (mean age 11.8) in the age range 8 to 16 years performed a Stop Signal task (motor inhibition), the Attention Network Test (alerting, orienting, and executive attention) and a visuospatial working memory task. The highly talented soccer players followed the talent development program of the youth academy of a professional soccer club and played at the highest national soccer competition for their age. The amateur soccer players played at a regular soccer club in the same geographical region as the highly talented soccer players and play in a regular regional soccer competition. Group differences were tested using analyses of variance. The highly talented group showed superior motor inhibition as measured by stop signal reaction time (SSRT) on the Stop Signal task and a larger alerting effect on the Attention Network Test, indicating an enhanced ability to attain and maintain an alert state. No group differences were found for orienting and executive attention and visuospatial working memory. A logistic regression model with group (highly talented or amateur) as dependent variable and executive function measures that significantly distinguished between groups as predictors showed that these measures differentiated highly talented soccer players from amateur soccer players with 89% accuracy. Highly talented youth soccer players outperform youth amateur players on suppressing ongoing motor responses and on the ability to attain and maintain an alert state; both may be essential for success in soccer. PMID:24632735

  14. Executive functioning in highly talented soccer players.

    Directory of Open Access Journals (Sweden)

    Lot Verburgh

    Full Text Available Executive functions might be important for successful performance in sports, particularly in team sports requiring quick anticipation and adaptation to continuously changing situations in the field. The executive functions motor inhibition, attention and visuospatial working memory were examined in highly talented soccer players. Eighty-four highly talented youth soccer players (mean age 11.9, and forty-two age-matched amateur soccer players (mean age 11.8 in the age range 8 to 16 years performed a Stop Signal task (motor inhibition, the Attention Network Test (alerting, orienting, and executive attention and a visuospatial working memory task. The highly talented soccer players followed the talent development program of the youth academy of a professional soccer club and played at the highest national soccer competition for their age. The amateur soccer players played at a regular soccer club in the same geographical region as the highly talented soccer players and play in a regular regional soccer competition. Group differences were tested using analyses of variance. The highly talented group showed superior motor inhibition as measured by stop signal reaction time (SSRT on the Stop Signal task and a larger alerting effect on the Attention Network Test, indicating an enhanced ability to attain and maintain an alert state. No group differences were found for orienting and executive attention and visuospatial working memory. A logistic regression model with group (highly talented or amateur as dependent variable and executive function measures that significantly distinguished between groups as predictors showed that these measures differentiated highly talented soccer players from amateur soccer players with 89% accuracy. Highly talented youth soccer players outperform youth amateur players on suppressing ongoing motor responses and on the ability to attain and maintain an alert state; both may be essential for success in soccer.

  15. Tunneling technologies for the collider ring tunnels

    International Nuclear Information System (INIS)

    Frobenius, P.

    1989-01-01

    The Texas site chosen for the Superconducting Super Collider has been studied, and it has been determined that proven, conventional technology and accepted engineering practice are suitable for constructing the collider tunnels. The Texas National Research Laboratory Commission report recommended that two types of tunneling machines be used for construction of the tunnels: a conventional hard rock tunnel boring machine (TBM) for the Austin chalk and a double shielded, rotary TBM for the Taylor marl. Since the tunneling machines usually set the pace for the project, efficient planning, operation, and coordination of the tunneling system components will be critical to the schedule and cost of the project. During design, tunneling rate prediction should be refined by focusing on the development of an effective tunneling system and evaluating its capacity to meet or exceed the required schedules. 8 refs., 13 figs

  16. 18/20 T high magnetic field scanning tunneling microscope with fully low voltage operability, high current resolution, and large scale searching ability.

    Science.gov (United States)

    Li, Quanfeng; Wang, Qi; Hou, Yubin; Lu, Qingyou

    2012-04-01

    We present a home-built 18/20 T high magnetic field scanning tunneling microscope (STM) featuring fully low voltage (lower than ±15 V) operability in low temperatures, large scale searching ability, and 20 fA high current resolution (measured by using a 100 GOhm dummy resistor to replace the tip-sample junction) with a bandwidth of 3.03 kHz. To accomplish low voltage operation which is important in achieving high precision, low noise, and low interference with the strong magnetic field, the coarse approach is implemented with an inertial slider driven by the lateral bending of a piezoelectric scanner tube (PST) whose inner electrode is axially split into two for enhanced bending per volt. The PST can also drive the same sliding piece to inertial slide in the other bending direction (along the sample surface) of the PST, which realizes the large area searching ability. The STM head is housed in a three segment tubular chamber, which is detachable near the STM head for the convenience of sample and tip changes. Atomic resolution images of a graphite sample taken under 17.6 T and 18.0001 T are presented to show its performance. © 2012 American Institute of Physics

  17. Programmable ferroelectric tunnel memristor

    Directory of Open Access Journals (Sweden)

    Andy eQuindeau

    2014-02-01

    Full Text Available We report an analogously programmable memristor based on genuine electronic resistive switching combining ferroelectric switching and electron tunneling. The tunnel current through an 8 unit cell thick epitaxial Pb(Zr[0.2]Ti[0.8]O[3] film sandwiched between La[0.7]Sr[0.3]MnO[3] and cobalt electrodes obeys the Kolmogorov-Avrami-Ishibashi model for bidimensional growth with a characteristic switching time in the order of 10^-7 seconds. The analytical description of switching kinetics allows us to develop a characteristic transfer function that has only one parameter viz. the characteristic switching time and fully predicts the resistive states of this type of memristor.

  18. Theoretical approach to the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Noguera, C.

    1990-01-01

    Within a one-electron approach, based on a Green's-function formalism, a nonperturbative expression for the tunneling current is obtained and used to discuss which spectroscopic information may be deduced from a scanning-tunneling-microscope experiment. It is shown up to which limits the voltage dependence of the tunneling current reproduces the local density of states at the surface, and how the reflection coefficients of the electronic waves at the surface may modify it

  19. Making Mn substitutional impurities in InAs using a scanning tunneling microscope.

    Science.gov (United States)

    Song, Young Jae; Erwin, Steven C; Rutter, Gregory M; First, Phillip N; Zhitenev, Nikolai B; Stroscio, Joseph A

    2009-12-01

    We describe in detail an atom-by-atom exchange manipulation technique using a scanning tunneling microscope probe. As-deposited Mn adatoms (Mn(ad)) are exchanged one-by-one with surface In atoms (In(su)) to create a Mn surface-substitutional (Mn(In)) and an exchanged In adatom (In(ad)) by an electron tunneling induced reaction Mn(ad) + In(su) --> Mn(In) + In(ad) on the InAs(110) surface. In combination with density-functional theory and high resolution scanning tunneling microscopy imaging, we have identified the reaction pathway for the Mn and In atom exchange.

  20. Light emission and finite-frequency shot noise in molecular junctions: from tunneling to contact

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Christensen, Rasmus Bjerregaard; Brandbyge, Mads

    2013-01-01

    Scanning tunneling microscope induced light emission from an atomic or molecular junction has been probed from the tunneling to contact regime in recent experiments. There, the measured light emission yields suggest a strong correlation with the high-frequency current/charge fluctuations. We show...... that this is consistent with the established theory in the tunneling regime, by writing the finite-frequency shot noise as a sum of inelastic transitions between different electronic states. Based on this, we develop a practical scheme to perform calculations on realistic structures using nonequilibrium Green's functions...

  1. A Novel High-Precision Digital Tunneling Magnetic Resistance-Type Sensor for the Nanosatellites’ Space Application

    Directory of Open Access Journals (Sweden)

    Xiangyu Li

    2018-03-01

    Full Text Available Micro-electromechanical system (MEMS magnetic sensors are widely used in the nanosatellites field. We proposed a novel high-precision miniaturized three-axis digital tunneling magnetic resistance-type (TMR sensor. The design of the three-axis digital magnetic sensor includes a low-noise sensitive element and high-performance interface circuit. The TMR sensor element can achieve a background noise of 150 pT/Hz1/2 by the vertical modulation film at a modulation frequency of 5 kHz. The interface circuit is mainly composed of an analog front-end current feedback instrumentation amplifier (CFIA with chopper structure and a fully differential 4th-order Sigma-Delta (ΣΔ analog to digital converter (ADC. The low-frequency 1/f noise of the TMR magnetic sensor are reduced by the input-stage and system-stage chopper. The dynamic element matching (DEM is applied to average out the mismatch between the input and feedback transconductor so as to improve the gain accuracy and gain drift. The digital output is achieved by a switched-capacitor ΣΔ ADC. The interface circuit is implemented by a 0.35 μm CMOS technology. The performance test of the TMR magnetic sensor system shows that: at a 5 V operating voltage, the sensor can achieve a power consumption of 120 mW, a full scale of ±1 Guass, a bias error of 0.01% full scale (FS, a nonlinearity of x-axis 0.13% FS, y-axis 0.11% FS, z-axis 0.15% FS and a noise density of x-axis 250 pT/Hz1/2 (at 1 Hz, y-axis 240 pT/Hz1/2 (at 1 Hz, z-axis 250 pT/Hz1/2 (at 1 Hz, respectively. This work has a less power consumption, a smaller size, and higher resolution than other miniaturized magnetometers by comparison.

  2. Grafting functional antioxidants on highly crosslinked polyethylene

    Science.gov (United States)

    Al-Malaika, S.; Riasat, S.; Lewucha, C.

    2016-05-01

    The problem of interference of antioxidants, such as hindered phenols, with peroxide-initiated crosslinking of polyethylene was addressed through the use of functional (reactive) graftable antioxidants (g-AO). Reactive derivatives of hindered phenol and hindered amine antioxidants were synthesised, characterised and used to investigate their grafting reactions in high density polyethylene; both non-crosslinked (PE) and highly peroxide-crosslinked (PEXa). Assessment of the extent of in-situ grafting of the antioxidants, their retention after exhaustive solvent extraction in PE and PEXa, and the stabilising performance of the grafted antioxidants (g-AO) in the polymer were examined and benchmarked against conventionally stabilised crosslinked & non-crosslinked polyethylene. It was shown that the functional antioxidants graft to a high extent in PEXa, and that the level of interference of the g-AOs with the polymer crosslinking process was minimal compared to that of conventional antioxidants which bear the same antioxidant function. The much higher level of retention of the g-AOs in PEXa after exhaustive solvent extraction, compared to that of the corresponding conventional antioxidants, accounts for their superior long-term thermal stabilising performance under severe extractive conditions.

  3. Dependence of the Josephson coupling of unconventional superconductors on the properties of the tunneling barrier

    International Nuclear Information System (INIS)

    Ledvij, M.; Klemm, R.A.

    1994-01-01

    The Josephson coupling between a conventional and an unconventional superconductor is investigated as a function of the properties of the tunneling barrier. A simple model is adopted for the tunneling probability and it is shown that its variation dramatically affects the I c R n product of an s-d, as opposed to an s-s junction. Based on these conclusions, experiments are proposed to probe the symmetry of the order parameter in high temperature superconductors

  4. Tunnel-Structured KxTiO2 Nanorods by in Situ Carbothermal Reduction as a Long Cycle and High Rate Anode for Sodium-Ion Batteries.

    Science.gov (United States)

    Zhang, Qing; Wei, Yaqing; Yang, Haotian; Su, Dong; Ma, Ying; Li, Huiqiao; Zhai, Tianyou

    2017-03-01

    The low electronic conductivity and the sluggish sodium-ion diffusion in the compact crystal structure of Ti-based anodes seriously restrict their development in sodium-ion batteries. In this study, a new hollandite K x TiO 2 with large (2 × 2) tunnels is synthesized by a facile carbothermal reduction method, and its sodium storage performance is investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses illustrate the formation mechanism of the hollandite K x TiO 2 upon the carbothermal reduction process. Compared to the traditional layered or small (1 × 1) tunnel-type Ti-based materials, the hollandite K x TiO 2 with large (2 × 2) tunnels may accommodate more sodium ions and facilitate the Na + diffusion in the structure; thus, it is expected to get a large capacity and realize high rate capability. The synthesized K x TiO 2 with large (2 × 2) tunnels shows a stable reversible capacity of 131 mAh g -1 (nearly 3 times of (1 × 1) tunnel-structured Na 2 Ti 6 O 13 ) and superior cycling stability with no obvious capacity decay even after 1000 cycles, which is significantly better than the traditional layered Na 2 Ti 3 O 7 (only 40% of capacity retention in 20 cycles). Moreover, the carbothermal process can naturally introduce oxygen vacancy and low-valent titanium as well as the surface carbon coating layer to the structure, which would greatly enhance the electronic conductivity of K x TiO 2 and thus endow this material high rate capability. With a good rate capability and long cyclability, this hollandite K x TiO 2 can serve as a new promising anode material for room-temperature long-life sodium-ion batteries for large-scale energy storage systems, and the carbothermal reduction method is believed to be an effective and facile way to develop novel Ti-based anodes with simultaneous carbon coating and Ti(III) self-doping.

  5. High Pressure Scanning Tunneling Microscopy and High PressureX-ray Photoemission Spectroscopy Studies of Adsorbate Structure,Composition and Mobility during Catalytic Reactions on A Model SingleCrystal

    Energy Technology Data Exchange (ETDEWEB)

    Montano, Max O. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Our research focuses on taking advantage of the ability of scanning tunneling microscopy (STM) to operate at high-temperatures and high-pressures while still providing real-time atomic resolution images. We also utilize high-pressure x-ray photoelectron spectroscopy (HPXPS) to monitor systems under identical conditions thus giving us chemical information to compare and contrast with the structural and dynamic data provided by STM.

  6. The anisotropic tunneling behavior of spin transport in graphene-based magnetic tunneling junction

    Science.gov (United States)

    Pan, Mengchun; Li, Peisen; Qiu, Weicheng; Zhao, Jianqiang; Peng, Junping; Hu, Jiafei; Hu, Jinghua; Tian, Wugang; Hu, Yueguo; Chen, Dixiang; Wu, Xuezhong; Xu, Zhongjie; Yuan, Xuefeng

    2018-05-01

    Due to the theoretical prediction of large tunneling magnetoresistance (TMR), graphene-based magnetic tunneling junction (MTJ) has become an important branch of high-performance spintronics device. In this paper, the non-collinear spin filtering and transport properties of MTJ with the Ni/tri-layer graphene/Ni structure were studied in detail by utilizing the non-equilibrium Green's formalism combined with spin polarized density functional theory. The band structure of Ni-C bonding interface shows that Ni-C atomic hybridization facilitates the electronic structure consistency of graphene and nickel, which results in a perfect spin filtering effect for tri-layer graphene-based MTJ. Furthermore, our theoretical results show that the value of tunneling resistance changes with the relative magnetization angle of two ferromagnetic layers, displaying the anisotropic tunneling behavior of graphene-based MTJ. This originates from the resonant conduction states which are strongly adjusted by the relative magnetization angles. In addition, the perfect spin filtering effect is demonstrated by fitting the anisotropic conductance with the Julliere's model. Our work may serve as guidance for researches and applications of graphene-based spintronics device.

  7. Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors

    International Nuclear Information System (INIS)

    Shih, Chun-Hsing; Dang Chien, Nguyen

    2014-01-01

    Low-bandgap semiconductors, such as InAs and InSb, are widely considered to be ideal for use in tunnel field-effect transistors to ensure sufficient on-current boosting at low voltages. This work elucidates the physical and mathematical considerations of applying conventional band-to-band tunneling models in low-bandgap semiconductors, and presents a new analytical alternative for practical use. The high-bandgap tunneling generates most at maximum field region with shortest tunnel path, whereas the low-bandgap generations occur dispersedly because of narrow tunnel barrier. The local electrical field associated with tunneling-electron numbers dominates in low-bandgap materials. This work proposes decoupled electric-field terms in the pre-exponential factor and exponential function of generation-rate expressions. Without fitting, the analytical results and approximated forms exhibit great agreements with the sophisticated forms both in high- and low-bandgap semiconductors. Neither nonlocal nor local field is appropriate to be used in numerical simulations for predicting the tunneling generations in a variety of low- and high-bandgap semiconductors

  8. Tunnel magnetoresistance in asymmetric double-barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Useinov, N.Kh.; Petukhov, D.A.; Tagirov, L.R.

    2015-01-01

    The spin-polarized tunnel conductance and tunnel magnetoresistance (TMR) through a planar asymmetric double-barrier magnetic tunnel junction (DBMTJ) have been calculated using quasi-classical model. In DBMTJ nanostructure the magnetization of middle ferromagnetic metal layer can be aligned parallel or antiparallel with respect to the fixed magnetizations of the top and bottom ferromagnetic electrodes. The transmission coefficients of an electron to pass through the barriers have been calculated in terms of quantum mechanics. The dependencies of tunnel conductance and TMR on the applied voltage have been calculated in case of non-resonant transmission. Estimated in the framework of our model, the difference between the spin-channels conductances at low voltages was found relatively large. This gives rise to very high magnitude of TMR. - Highlights: • The spin-polarized conductance through the junction is calculated. • Dependencies of the tunnel conductance vs applied bias are shown. • Bias voltage dependence of tunnel magnetoresistance for the structure is shown

  9. Hydrodynamic optical soliton tunneling

    Science.gov (United States)

    Sprenger, P.; Hoefer, M. A.; El, G. A.

    2018-03-01

    A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.

  10. Wing pressure distributions from subsonic tests of a high-wing transport model. [in the Langley 14- by 22-Foot Subsonic Wind Tunnel

    Science.gov (United States)

    Applin, Zachary T.; Gentry, Garl L., Jr.; Takallu, M. A.

    1995-01-01

    A wind tunnel investigation was conducted on a generic, high-wing transport model in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data that document effects of various model configurations and free-stream conditions on wing pressure distributions. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a part-span, double-slotted trailing-edge flap system. The trailing-edge flap was tested at four different deflection angles (20 deg, 30 deg, 40 deg, and 60 deg). Four wing configurations were tested: cruise, flaps only, Krueger flap only, and high lift (Krueger flap and flaps deployed). Tests were conducted at free-stream dynamic pressures of 20 psf to 60 psf with corresponding chord Reynolds numbers of 1.22 x 10(exp 6) to 2.11 x 10(exp 6) and Mach numbers of 0.12 to 0.20. The angles of attack presented range from 0 deg to 20 deg and were determined by wing configuration. The angle of sideslip ranged from minus 20 deg to 20 deg. In general, pressure distributions were relatively insensitive to free-stream speed with exceptions primarily at high angles of attack or high flap deflections. Increasing trailing-edge Krueger flap significantly reduced peak suction pressures and steep gradients on the wing at high angles of attack. Installation of the empennage had no effect on wing pressure distributions. Unpowered engine nacelles reduced suction pressures on the wing and the flaps.

  11. Design of Intelligent Power Supply System for Expressway Tunnel

    Science.gov (United States)

    Wang, Li; Li, Yutong; Lin, Zimian

    2018-01-01

    Tunnel lighting program is one of the key points of tunnel infrastructure construction. As tunnels tend to handle remote locations, power supply line construction generally has been having the distance, investment, high cost characteristics. To solve this problem, we propose a green, environmentally friendly, energy-efficient lighting system. This program uses the piston-wind which cars within tunnel produce as the power and combines with solar energy, physical lighting to achieve it, which solves the problem of difficult and high cost of highway tunnel section, and provides new ideas for the future construction of tunnel power supply.

  12. High Speed SPM of Functional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huey, Bryan D. [Univ. of Connecticut, Storrs, CT (United States)

    2015-08-14

    The development and optimization of applications comprising functional materials necessitates a thorough understanding of their static and dynamic properties and performance at the nanoscale. Leveraging High Speed SPM and concepts enabled by it, efficient measurements and maps with nanoscale and nanosecond temporal resolution are uniquely feasible. This includes recent enhancements for topographic, conductivity, ferroelectric, and piezoelectric properties as originally proposed, as well as newly developed methods or improvements to AFM-based mechanical, friction, thermal, and photoconductivity measurements. The results of this work reveal fundamental mechanisms of operation, and suggest new approaches for improving the ultimate speed and/or efficiency, of data storage systems, magnetic-electric sensors, and solar cells.

  13. High resolution SPM imaging of organic molecules with functionalized tips

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Pavel

    2017-01-01

    Roč. 29, č. 34 (2017), 1-18, č. článku 343002. ISSN 0953-8984 R&D Projects: GA MŠk LM2015087; GA MŠk 8E15B010; GA ČR(CZ) GC14-16963J Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : atomic- force microscopy * scanning tunneling microscope * on-surface synthesis * single-molecule * AFM * STM * high resolution * molecules * surfaces Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.649, year: 2016

  14. Functional enrichment analyses and construction of functional similarity networks with high confidence function prediction by PFP

    Directory of Open Access Journals (Sweden)

    Kihara Daisuke

    2010-05-01

    Full Text Available Abstract Background A new paradigm of biological investigation takes advantage of technologies that produce large high throughput datasets, including genome sequences, interactions of proteins, and gene expression. The ability of biologists to analyze and interpret such data relies on functional annotation of the included proteins, but even in highly characterized organisms many proteins can lack the functional evidence necessary to infer their biological relevance. Results Here we have applied high confidence function predictions from our automated prediction system, PFP, to three genome sequences, Escherichia coli, Saccharomyces cerevisiae, and Plasmodium falciparum (malaria. The number of annotated genes is increased by PFP to over 90% for all of the genomes. Using the large coverage of the function annotation, we introduced the functional similarity networks which represent the functional space of the proteomes. Four different functional similarity networks are constructed for each proteome, one each by considering similarity in a single Gene Ontology (GO category, i.e. Biological Process, Cellular Component, and Molecular Function, and another one by considering overall similarity with the funSim score. The functional similarity networks are shown to have higher modularity than the protein-protein interaction network. Moreover, the funSim score network is distinct from the single GO-score networks by showing a higher clustering degree exponent value and thus has a higher tendency to be hierarchical. In addition, examining function assignments to the protein-protein interaction network and local regions of genomes has identified numerous cases where subnetworks or local regions have functionally coherent proteins. These results will help interpreting interactions of proteins and gene orders in a genome. Several examples of both analyses are highlighted. Conclusion The analyses demonstrate that applying high confidence predictions from PFP

  15. Energy saving in tunnel entrance lighting.

    NARCIS (Netherlands)

    Schreuder, D.A. & Swart, L.

    1993-01-01

    Tunnel entrances may present themselves during the day as a "black hole" in which no details can be perceived. In order to ensure safe and comfortable driving at high speeds, the entrance zone must be lit to a high luminance level. Modern tunnel lighting technology is focused on two aspects:

  16. Luminosity function of high redshift quasars

    International Nuclear Information System (INIS)

    Vaucher, B.G.

    1982-01-01

    Data from ten different emission-line surveys are included in a study of the luminosity function of high redshift quasars. Five of the surveys are analyzed through microdensitometric techniques and the data for new quasars are given. The uncertainties in magnitudes, redshifts, and line equivalent widths are assessed and found to be +-0.3 mag. +-0.04 in z and approx. 30%, respectively. Criteria for selecting the redshift range 1.8 less than or equal to z - 1 Mpc - 1 for each of two cosmologies (q 0 = 1 and q 0 = 0). For either cosmology, the function exhibits a steep increase with magnitude at high luminosities and a gentler increase at intermediate luminosities. Data from the new surveys indicate a possible turnover at the faint end of the distribution. Total volume densities of quasars are computed for each of three extrapolations of the trend of the data to low luminosities. These densities are compared to those of active galaxies and field galaxies

  17. Scanning Tunneling Optical Resonance Microscopy

    Science.gov (United States)

    Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave

    2003-01-01

    Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically tunneling current

  18. Tunnel sealing: concept and feasibility evidence

    International Nuclear Information System (INIS)

    Brenner, R.P.; Eppinger, G.; Mettler, K.

    1991-01-01

    This report discusses first the aim and purpose of tunnel seals as well as the requirements which should be satisfied. The basic seal concept is a zoned plug consisting of key zones and intermediate zones. The key zones act as barrier elements and will be placed into sections of competent and sound rock. The main function of the intermediate zones is that of a support and the requirements for sealing efficiency may be somewhat relaxed. Three sealing concepts have been devised for both the key zones and the intermediate zones. They differ in the materials used for the seal and in the placement method. For the key zones highly compacted bentonite is recommended, but also cement-based materials, such as standard concrete or prepact concrete are considered suitable. For the intermediate zones, the use of pumped concrete with subsequent grouting of the roof zone is favourable, but also a combination of concrete with a sand/gravel mixture or with properly compacted excavation material is feasible. The concepts introduced can all be realized by conventional tunnelling methods. Excavation by tunnel boring machine is most advantageous as it minimizes disturbance of the rock caused by the cavity-forming process. By employing simple material models, it can be shown that the depth of the excavation disturbed zone can be minimized if support of the tunnel is provided as early as possible after excavation. The cutting of a groove in the tunnel wall along the key zone can further contribute to reduce the depth of the excavation-disturbed zone. In order to ensure the quality of a seal, the quantities of the materials used can be checked and the work procedures to place the seal can be supervised. For the latter the experiences obtained from a large-scale test should be available. Finally, it is also shown that when considering safety analytical aspects, the proposed sealing concepts represent adequate solutions in spite of the probably increased permeability in the excavation

  19. Advanced Functionalities for Highly Reliable Optical Networks

    DEFF Research Database (Denmark)

    An, Yi

    This thesis covers two research topics concerning optical solutions for networks e.g. avionic systems. One is to identify the applications for silicon photonic devices for cost-effective solutions in short-range optical networks. The other one is to realise advanced functionalities in order...... to increase the availability of highly reliable optical networks. A cost-effective transmitter based on a directly modulated laser (DML) using a silicon micro-ring resonator (MRR) to enhance its modulation speed is proposed, analysed and experimentally demonstrated. A modulation speed enhancement from 10 Gbit...... interconnects and network-on-chips. A novel concept of all-optical protection switching scheme is proposed, where fault detection and protection trigger are all implemented in the optical domain. This scheme can provide ultra-fast establishment of the protection path resulting in a minimum loss of data...

  20. Superconducting tunneling with the tunneling Hamiltonian. II. Subgap harmonic structure

    International Nuclear Information System (INIS)

    Arnold, G.B.

    1987-01-01

    The theory of superconducting tunneling without the tunneling Hamiltonian is extended to treat superconductor/insulator/superconductor junctions in which the transmission coefficient of the insulating barrier approaches unity. The solution for the current in such junctions is obtained by solving the problem of a particle hopping in a one-dimensional lattice of sites, with forward and reverse transfer integrals that depend on the site. The results are applied to the problem of subgap harmonic structure in superconducting tunneling. The time-dependent current at finite voltage through a junction exhibiting subgap structure is found to have terms that oscillate at all integer multiples of the Josephson frequency, n(2eV/h). The amplitudes of these new, and as yet unmeasured, ac current contributions as a function of voltage are predicted

  1. A modular designed ultra-high-vacuum spin-polarized scanning tunneling microscope with controllable magnetic fields for investigating epitaxial thin films.

    Science.gov (United States)

    Wang, Kangkang; Lin, Wenzhi; Chinchore, Abhijit V; Liu, Yinghao; Smith, Arthur R

    2011-05-01

    A room-temperature ultra-high-vacuum scanning tunneling microscope for in situ scanning freshly grown epitaxial films has been developed. The core unit of the microscope, which consists of critical components including scanner and approach motors, is modular designed. This enables easy adaptation of the same microscope units to new growth systems with different sample-transfer geometries. Furthermore the core unit is designed to be fully compatible with cryogenic temperatures and high magnetic field operations. A double-stage spring suspension system with eddy current damping has been implemented to achieve ≤5 pm z stability in a noisy environment and in the presence of an interconnected growth chamber. Both tips and samples can be quickly exchanged in situ; also a tunable external magnetic field can be introduced using a transferable permanent magnet shuttle. This allows spin-polarized tunneling with magnetically coated tips. The performance of this microscope is demonstrated by atomic-resolution imaging of surface reconstructions on wide band-gap GaN surfaces and spin-resolved experiments on antiferromagnetic Mn(3)N(2)(010) surfaces.

  2. Acoustic Modifications of the Ames 40x80 Foot Wind Tunnel and Test Techniques for High-Speed Research Model Testing

    Science.gov (United States)

    Soderman, Paul T.; Olson, Larry (Technical Monitor)

    1995-01-01

    The NFAC 40- by 80- Foot Wind Tunnel at Ames is being refurbished with a new, deep acoustic lining in the test section which will make the facility nearly anechoic over a large frequency range. The modification history, key elements, and schedule will be discussed. Design features and expected performance gains will be described. Background noise reductions will be summarized. Improvements in aeroacoustic research techniques have been developed and used recently at NFAC on several wind tunnel tests of High Speed Research models. Research on quiet inflow microphones and struts will be described. The Acoustic Survey Apparatus in the 40x80 will be illustrated. A special intensity probe was tested for source localization. Multi-channel, high speed digital data acquisition is now used for acoustics. And most important, phased microphone arrays have been developed and tested which have proven to be very powerful for source identification and increased signal-to-noise ratio. Use of these tools for the HEAT model will be illustrated. In addition, an acoustically absorbent symmetry plane was built to satisfy the HEAT semispan aerodynamic and acoustic requirements. Acoustic performance of that symmetry plane will be shown.

  3. Effect of interlayer tunneling on the electronic structure of bilayer cuprates and quantum phase transitions in carrier concentration and high magnetic field

    International Nuclear Information System (INIS)

    Ovchinnikov, S. G.; Makarov, I. A.; Shneyder, E. I.

    2011-01-01

    We present a theoretical study of the electronic structure of bilayer HTSC cuprates and its evolution under doping and in a high magnetic field. Analysis is based on the t-t′-t″-J* model in the generalized Hartree-Fock approximation. Possibility of tunneling between CuO2 layers is taken into account in the form of a nonzero integral of hopping between the orbitals of adjacent planes and is included in the scheme of the cluster form of perturbation theory. The main effect of the coupling between two CuO 2 layers in a unit cell is the bilayer splitting manifested in the presence of antibonding and bonding bands formed by a combination of identical bands of the layers themselves. A change in the doping level induces reconstruction of the band structure and the Fermi surface, which gives rise to a number of quantum phase transitions. A high external magnetic field leads to a fundamentally different form of electronic structure. Quantum phase transitions in the field are observed not only under doping, but also upon a variation of the field magnitude. Because of tunneling between the layers, quantum transitions are also split; as a result, a more complex sequence of the Lifshitz transitions than in single-layer structures is observed.

  4. From epitaxial growth of ferrite thin films to spin-polarized tunnelling

    International Nuclear Information System (INIS)

    Moussy, Jean-Baptiste

    2013-01-01

    This paper presents a review of the research which is focused on ferrite thin films for spintronics. First, I will describe the potential of ferrite layers for the generation of spin-polarized currents. In the second step, the structural and chemical properties of epitaxial thin films and ferrite-based tunnel junctions will be presented. Particular attention will be given to ferrite systems grown by oxygen-assisted molecular beam epitaxy. The analysis of the structure and chemistry close to the interfaces, a key-point for understanding the spin-polarized tunnelling measurements, will be detailed. In the third part, the magnetic and magneto-transport properties of magnetite (Fe 3 O 4 ) thin films as a function of structural defects such as the antiphase boundaries will be explained. The spin-polarization measurements (spin-resolved photoemission, tunnel magnetoresistance) on this oxide predicted to be half-metallic will be discussed. Fourth, the potential of magnetic tunnel barriers, such as CoFe 2 O 4 , NiFe 2 O 4 or MnFe 2 O 4 , whose insulating behaviour and the high Curie temperatures make it exciting candidates for spin filtering at room temperature will be described. Spin-polarized tunnelling experiments, involving either Meservey–Tedrow or tunnel magnetoresistance measurements, will reveal significant spin-polarizations of the tunnelling current at low temperatures but also at room temperatures. Finally, I will mention a few perspectives with ferrite-based heterostructures. (topical review)

  5. Spin tunnelling in mesoscopic systems

    Science.gov (United States)

    Garg, Anupam

    2001-02-01

    We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic field, vanishing completely at special points in the space of magnetic fields, known as diabolical points. This phenomena is explained in terms of two approaches, one based on spin-coherent-state path integrals, and the other on a generalization of the phase integral (or WKB) method to difference equations. Explicit formulas for the diabolical points are obtained for a model Hamiltonian.

  6. Tunneling induced electron transfer between separated protons

    Science.gov (United States)

    Vindel-Zandbergen, Patricia; Meier, Christoph; Sola, Ignacio R.

    2018-04-01

    We study electron transfer between two separated protons using local control theory. In this symmetric system one can favour a slow transfer by biasing the algorithm, achieving high efficiencies for fixed nuclei. The solution can be parametrized using a sequence of a pump followed by a dump pulse that lead to tunneling-induced electron transfer. Finally, we study the effect of the nuclear kinetic energy on the efficiency. Even in the absence of relative motion between the protons, the spreading of the nuclear wave function is enough to reduce the yield of electronic transfer to less than one half.

  7. Quantum tunneling in the periodically driven SU(2) model

    International Nuclear Information System (INIS)

    Arvieu, R.

    1991-01-01

    The tunneling rate is investigated in the quantum and classical limits using an exactly soluble, periodically driven SU(2) model. The tunneling rate is obtained by solving the time-dependent Schroedinger equation and projecting the exact wave-function on the space of coherent states using the Husimi distribution. The oscillatory, coherent tunneling of the wave-function between two Hartree-Fock minima is observed. The driving plays an important role increasing the tunneling rate by orders of magnitude as compared to the semiclassical results. This is due to the dominant role of excited states in the driven quantum tunneling. (author) 15 refs., 4 figs

  8. Galaxy luminosity function: evolution at high redshift

    Science.gov (United States)

    Martinet, N.; Durret, F.; Guennou, L.; Adami, C.

    2014-12-01

    There are some disagreements about the abundance of faint galaxies in high redshift clusters. DAFT/FADA (Dark energy American French Team) is a medium redshift (0.4functions (GLFs) based on photometric redshifts for 30 clusters in B, V, R and I restframe bands. We show that completeness is a key parameter to understand the different observed behaviors when fitting the GLFs. We also investigate the evolution of GLFs with redshift for red and blue galaxy populations separately. We find a drop of the faint end of red GLFs which is more important at higher redshift while the blue GLF faint end remains flat in our redshift range. These results can be interpreted in terms of galaxy quenching. Faint blue galaxies transform into red ones which enrich the red sequence from high to low redshifts in clusters while some blue galaxies are still accreted from the environment, compensating for this evolution so that the global GLF does not seem to evolve.

  9. Transonic Dynamics Tunnel (TDT)

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Dynamics Tunnel (TDT) is a continuous flow wind-tunnel facility capable of speeds up to Mach 1.2 at stagnation pressures up to one atmosphere. The TDT...

  10. Quantum theory of tunneling

    CERN Document Server

    Razavy, Mohsen

    2014-01-01

    In this revised and expanded edition, in addition to a comprehensible introduction to the theoretical foundations of quantum tunneling based on different methods of formulating and solving tunneling problems, different semiclassical approximations for multidimensional systems are presented. Particular attention is given to the tunneling of composite systems, with examples taken from molecular tunneling and also from nuclear reactions. The interesting and puzzling features of tunneling times are given extensive coverage, and the possibility of measurement of these times with quantum clocks are critically examined. In addition by considering the analogy between evanescent waves in waveguides and in quantum tunneling, the times related to electromagnetic wave propagation have been used to explain certain aspects of quantum tunneling times. These topics are treated in both non-relativistic as well as relativistic regimes. Finally, a large number of examples of tunneling in atomic, molecular, condensed matter and ...

  11. Road and Railroad Tunnels

    Data.gov (United States)

    Department of Homeland Security — Tunnels in the United States According to the HSIP Tiger Team Report, a tunnel is defined as a linear underground passageway open at both ends. This dataset is based...

  12. Hypersonic Tunnel Facility (HTF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypersonic Tunnel Facility (HTF) is a blow-down, non-vitiated (clean air) free-jet wind tunnel capable of testing large-scale, propulsion systems at Mach 5, 6,...

  13. Improved multidimensional semiclassical tunneling theory.

    Science.gov (United States)

    Wagner, Albert F

    2013-12-12

    We show that the analytic multidimensional semiclassical tunneling formula of Miller et al. [Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets, A. Chem. Phys. Lett. 1990, 172, 62] is qualitatively incorrect for deep tunneling at energies well below the top of the barrier. The origin of this deficiency is that the formula uses an effective barrier weakly related to the true energetics but correctly adjusted to reproduce the harmonic description and anharmonic corrections of the reaction path at the saddle point as determined by second order vibrational perturbation theory. We present an analytic improved semiclassical formula that correctly includes energetic information and allows a qualitatively correct representation of deep tunneling. This is done by constructing a three segment composite Eckart potential that is continuous everywhere in both value and derivative. This composite potential has an analytic barrier penetration integral from which the semiclassical action can be derived and then used to define the semiclassical tunneling probability. The middle segment of the composite potential by itself is superior to the original formula of Miller et al. because it incorporates the asymmetry of the reaction barrier produced by the known reaction exoergicity. Comparison of the semiclassical and exact quantum tunneling probability for the pure Eckart potential suggests a simple threshold multiplicative factor to the improved formula to account for quantum effects very near threshold not represented by semiclassical theory. The deep tunneling limitations of the original formula are echoed in semiclassical high-energy descriptions of bound vibrational states perpendicular to the reaction path at the saddle point. However, typically ab initio energetic information is not available to correct it. The Supporting Information contains a Fortran code, test input, and test output that implements the improved semiclassical tunneling formula.

  14. [Clinical auxiliary diagnosis value of high frequency ultrasonographic measurements of the thickness of transverse carpal ligaments in carpal tunnel syndrome patients].

    Science.gov (United States)

    Xu, L; Chen, F M; Wang, L; Zhang, P X; Jiang, X R

    2016-04-18

    To evaluate the meaning and value of high-frequency ultrasound in the diagnosis of carpal tunnel syndrome (CTS). In this study, 48 patients (unilateral hand) with CTS were analyzed. The thickness of transverse carpal ligaments at the pisiform bone was measured using high-frequency ultrasound. Open carpal tunnel release procedure was performed in the 48 CTS patients, and the thickness of transverse carpal ligaments at the hamate hook bone measured using vernier caliper under direct vision. The accuracy of thickness of transverse carpal ligaments was evaluated using high-frequency ultrasound. high-frequency ultrasound measurement of thickness of transverse carpal ligaments at the hamate hook bone and pisiform bone, and determination of the diagnostic threshold measurement index using receiver operating characteristic (ROC) curve, sensitivity and specificity were performed and the correlation between the thickness of transverse carpal ligaments and nerve conduction study (NCS) analyzed. The thickness of transverse carpal ligaments in the CTS patients were (0.42±0.08) cm (high-frequency ultrasound) and (0.41±0.06) cm (operation) at hamate hook bone, and there was no significant difference between the two ways (t=0.672, P>0.05). The optimal cut-off value of the transverse carpal ligaments at hamate hook bone was 0.385 cm, the sensitivity 0.775, and the specificity 0.788. The optimal cut-off value of the transverse carpal ligaments at the pisiform bone was 0.315 cm, the sensitivity 0.950, and the specificity 1.000. The transverse carpal ligaments thickness and wrist-index finger sensory nerve conduction velocity (SCV), wrist-middle finger SCV showed a negative correlation. High frequency ultrasound measurements of thickness of transverse carpal ligaments is a valuable method for the diagnosis of CTS.

  15. Simultaneously measured signals in scanning probe microscopy with a needle sensor: frequency shift and tunneling current.

    Science.gov (United States)

    Morawski, Ireneusz; Voigtländer, Bert

    2010-03-01

    We present combined noncontact scanning force microscopy and tunneling current images of a platinum(111) surface obtained by means of a 1 MHz quartz needle sensor. The low-frequency circuit of the tunneling current was combined with a high-frequency signal of the quartz resonator enabling full electrical operation of the sensor. The frequency shift and the tunneling current were detected simultaneously, while the feedback control loop of the topography signal was fed using one of them. In both cases, the free signal that was not connected to the feedback loop reveals proportional-integral controller errorlike behavior, which is governed by the time derivative of the topography signal. A procedure is proposed for determining the mechanical oscillation amplitude by utilizing the tunneling current also including the average tip-sample work function.

  16. Nonequilibrium green function approach to elastic and inelastic spin-charge transport in topological insulator-based heterostructures and magnetic tunnel junctions

    Science.gov (United States)

    Mahfouzi, Farzad

    Current and future technological needs increasingly motivate the intensive scientific research of the properties of materials at the nano-scale. One of the most important domains in this respect at present concerns nano-electronics and its diverse applications. The great interest in this domain arises from the potential reduction of the size of the circuit components, maintaining their quality and functionality, and aiming at greater efficiency, economy, and storage characteristics for the corresponding physical devices. The aim of this thesis is to present a contribution to the analysis of the electronic charge and spin transport phenomena that occur at the quantum level in nano-structures. This thesis spans the areas of quantum transport theory through time-dependent systems, electron-boson interacting systems and systems of interest to spintronics. A common thread in the thesis is to develop the theoretical foundations and computational algorithms to numerically simulate such systems. In order to optimize the numerical calculations I resort to different techniques (such as graph theory in finding inverse of a sparse matrix, adaptive grids for integrations and programming languages (e.g., MATLAB and C++) and distributed computing tools (MPI, CUDA). Outline of the Thesis: After giving an introduction to the topics covered in this thesis in Chapter 1, I present the theoretical foundations to the field of non-equilibrium quantum statistics in Chapter 2. The applications of this formalism and the results are covered in the subsequent chapters as follows: Spin and charge quantum pumping in time-dependent systems: Covered in Chapters 3, 4 and 5, this topics was initially motivated by experiments on measuring voltage signal from a magnetic tunnel junction (MTJ) exposed to a microwave radiation in ferromagnetic resonance (FMR) condition. In Chapter 3 we found a possible explanation for the finite voltage signal measured from a tunnel junction consisting of only a single

  17. Investigation of the structural anisotropy in a self-assembling glycinate layer on Cu(100) by scanning tunneling microscopy and density functional theory calculations

    Science.gov (United States)

    Kuzmin, Mikhail; Lahtonen, Kimmo; Vuori, Leena; Sánchez-de-Armas, Rocío; Hirsimäki, Mika; Valden, Mika

    2017-07-01

    Self-assembling organic molecule-metal interfaces exhibiting free-electron like (FEL) states offers an attractive bottom-up approach to fabricating materials for molecular electronics. Accomplishing this, however, requires detailed understanding of the fundamental driving mechanisms behind the self-assembly process. For instance, it is still unresolved as to why the adsorption of glycine ([NH2(CH2)COOH]) on isotropic Cu(100) single crystal surface leads, via deprotonation and self-assembly, to a glycinate ([NH2(CH2)COO-]) layer that exhibits anisotropic FEL behavior. Here, we report on bias-dependent scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations for glycine adsorption on Cu(100) single crystal surface. We find that after physical vapor deposition (PVD) of glycine on Cu(100), glycinate self-assembles into an overlayer exhibiting c(2 × 4) and p(2 × 4) symmetries with non-identical adsorption sites. Our findings underscore the intricacy of electrical conductivity in nanomolecular organic overlayers and the critical role the structural anisotropy at molecule-metal interface plays in the fabrication of materials for molecular electronics.

  18. Interpretation of resistivity of Nd1.85Ce0.15CuO4-y using the electron-phonon spectral function determined from tunneling data

    International Nuclear Information System (INIS)

    Tralshawala, N.; Zasadzinski, J.F.; Coffey, L.; Huang, Q.

    1991-01-01

    Tunneling measurements of α 2 F(ω) of Nd 1.85 Ce 0.15 CuO 4-y are shown to be in good agreement with recent published results of the phonon density of states F(ω) from neutron scattering. The locations of peaks and valleys in both functions are similar, but the spectral weights differ, suggesting that α 2 has a strong energy dependence. We have used α 2 F(ω) to estimate the phonon contribution, ρ phonon (T), to published data of the temperature-dependent resistivity, ρ(T), for thin films and single crystals of Nd 1.85 Ce 0.15 CuO 4-y . When the phonon contribution is subtracted from the experimental data, a clear T 2 contribution remains over most of the temperature range. The T 2 contribution is interpreted to be due to three-dimensional electron-electron scattering, ρ e-e . There is also a correlation between the magnitude of ρ e-e , and the value of the plasma frequency, ω p [obtained from the determination of ρ phonon (T)], with a scaling which approximates ω p -10/3 . Such a scaling is expected from the carrier-concentration dependence of electron-electron scattering

  19. Highly excited strings I: Generating function

    Directory of Open Access Journals (Sweden)

    Dimitri P. Skliros

    2017-03-01

    Full Text Available This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES. In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators in general toroidal compactifications E=RD−1,1×TDcr−D (with generic constant Kähler and complex structure target space moduli, background Kaluza–Klein (KK gauge fields and torsion. We adopt a novel approach that does not rely on a “reverse engineering” method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particular in relation to black holes in string theory, non-locality and breakdown of local effective field theory, as well as in discussions of cosmic superstrings and their phenomenological relevance. We also discuss the manifestation of wave/particle (or rather wave/string duality in string theory.

  20. Balance Function in High-Energy Collisions

    International Nuclear Information System (INIS)

    Tawfik, A.; Shalaby, Asmaa G.

    2015-01-01

    Aspects and implications of the balance functions (BF) in high-energy physics are reviewed. The various calculations and measurements depending on different quantities, for example, system size, collisions centrality, and beam energy, are discussed. First, the different definitions including advantages and even short-comings are highlighted. It is found that BF, which are mainly presented in terms of relative rapidity, and relative azimuthal and invariant relative momentum, are sensitive to the interaction centrality but not to the beam energy and can be used in estimating the hadronization time and the hadron-quark phase transition. Furthermore, the quark chemistry can be determined. The chemical evolution of the new-state-of-matter, the quark-gluon plasma, and its temporal-spatial evolution, femtoscopy of two-particle correlations, are accessible. The production time of positive-negative pair of charges can be determined from the widths of BF. Due to the reduction in the diffusion time, narrowed widths refer to delayed hadronization. It is concluded that BF are powerful tools characterizing hadron-quark phase transition and estimating some essential properties

  1. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product

    Energy Technology Data Exchange (ETDEWEB)

    Grezes, C.; Alzate, J. G.; Cai, X.; Wang, K. L. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Ebrahimi, F.; Khalili Amiri, P. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Inston, Inc., Los Angeles, California 90024 (United States); Katine, J. A. [HGST, Inc., San Jose, California 95135 (United States); Langer, J.; Ocker, B. [Singulus Technologies AG, Kahl am Main 63796 (Germany)

    2016-01-04

    We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltage-induced switching. The measured performance enables integration with same-size CMOS transistors in compact memory and logic integrated circuits.

  2. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  3. Modeling of Turbidity Variation in Two Reservoirs Connected by a Water Transfer Tunnel in South Korea

    Directory of Open Access Journals (Sweden)

    Jae Chung Park

    2017-06-01

    Full Text Available The Andong and Imha reservoirs in South Korea are connected by a water transfer tunnel. The turbidity of the Imha reservoir is much higher than that of the Andong reservoir. Thus, it is necessary to examine the movement of turbidity between the two reservoirs via the water transfer tunnel. The aim of this study was to investigate the effect of the water transfer tunnel on the turbidity behavior of the two connecting reservoirs and to further understand the effect of reservoir turbidity distribution as a function of the selective withdrawal depth. This study applied the CE-QUAL-W2, a water quality and 2-dimensional hydrodynamic model, for simulating the hydrodynamic processes of the two reservoirs. Results indicate that, in the Andong reservoir, the turbidity of the released water with the water transfer tunnel was similar to that without the tunnel. However, in the Imha reservoir, the turbidity of the released water with the water transfer tunnel was lower than that without the tunnel. This can be attributed to the higher capacity of the Andong reservoir, which has double the storage of the Imha reservoir. Withdrawal turbidity in the Imha reservoir was investigated using the water transfer tunnel. This study applied three withdrawal selections as elevation (EL. 141.0 m, 146.5 m, and 152.0 m. The highest withdrawal turbidity resulted in EL. 141.0 m, which indicates that the high turbidity current is located at a vertical depth of about 20–30 m because of the density difference. These results will be helpful for understanding the release and selective withdrawal turbidity behaviors for a water transfer tunnel between two reservoirs.

  4. Proton tunneling in solids

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, J.

    1998-10-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  5. Proton tunneling in solids

    International Nuclear Information System (INIS)

    Kondo, J.

    1998-01-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  6. Watertightness of concrete tunnel structures

    OpenAIRE

    Glerum, A.

    1982-01-01

    The Netherlands are situated in the delta. of the rivers Rhine, Meuse and Scheldt. Therefore the ground mainly consists.of sediments, such as sand, clay and silt. In certain regions peat layers of varying thickness are found. The high permeability of some of these materials and the fact that the groundwater table is generally only 1 m below ground level, make an adequate watertightness one of the main features of tunnel engineering in the Netherlands. Tunnels in Holland are both of the immers...

  7. Flight and full-scale wind-tunnel comparison of pressure distributions from an F-18 aircraft at high angles of attack. [Conducted in NASA Ames Research Center's 80 by 120 ft wind tunnel

    Science.gov (United States)

    Fisher, David F.; Lanser, Wendy R.

    1994-01-01

    Pressure distributions were obtained at nearly identical fuselage stations and wing chord butt lines in flight on the F-18 HARV at NASA Dryden Flight Research Center and in the NASA Ames Research Center's 80 by 120 ft wind tunnel on a full-scale F/A-18 aircraft. The static pressures were measured at the identical five stations on the forebody, three stations on the left and right leading-edge extensions, and three spanwise stations on the wing. Comparisons of the flight and wind-tunnel pressure distributions were made at alpha = 30 deg, 45 deg, and 60 deg/59 deg. In general, very good agreement was found. Minor differences were noted at the forebody at alpha = 45 deg and 60 deg in the magnitude of the vortex footprints and a Mach number effect was noted at the leading-edge extension at alpha = 30 deg. The inboard leading edge flap data from the wind tunnel at alpha = 59 deg showed a suction peak that did not appear in the flight data. This was the result of a vortex from the corner of the leading edge flap whose path was altered by the lack of an engine simulation in the wind tunnel.

  8. A Top Pilot Tunnel Preconditioning Method for the Prevention of Extremely Intense Rockbursts in Deep Tunnels Excavated by TBMs

    Science.gov (United States)

    Zhang, Chuanqing; Feng, Xiating; Zhou, Hui; Qiu, Shili; Wu, Wenping

    2012-05-01

    The headrace tunnels at the Jinping II Hydropower Station cross the Jinping Mountain with a maximum overburden depth of 2,525 m, where 80% of the strata along the tunnels consist of marble. A number of extremely intense rockbursts occurred during the excavation of the auxiliary tunnels and the drainage tunnel. In particular, a tunnel boring machine (TBM) was destroyed by an extremely intense rockburst in a 7.2-m-diameter drainage tunnel. Two of the four subsequent 12.4-m-diameter headrace tunnels will be excavated with larger size TBMs, where a high risk of extremely intense rockbursts exists. Herein, a top pilot tunnel preconditioning method is proposed to minimize this risk, in which a drilling and blasting method is first recommended for the top pilot tunnel excavation and support, and then the TBM excavation of the main tunnel is conducted. In order to evaluate the mechanical effectiveness of this method, numerical simulation analyses using the failure approaching index, energy release rate, and excess shear stress indices are carried out. Its construction feasibility is discussed as well. Moreover, a microseismic monitoring technique is used in the experimental tunnel section for the real-time monitoring of the microseismic activities of the rock mass in TBM excavation and for assessing the effect of the top pilot tunnel excavation in reducing the risk of rockbursts. This method is applied to two tunnel sections prone to extremely intense rockbursts and leads to a reduction in the risk of rockbursts in TBM excavation.

  9. Low-speed tests of a high-aspect-ratio, supercritical-wing transport model equipped with a high-lift flap system in the Langley 4- by 7-meter and Ames 12-foot pressure tunnels

    Science.gov (United States)

    Morgan, H. L., Jr.; Kjelgaard, S. O.

    1983-01-01

    The Ames 12-Foot Pressure Tunnel was used to determine the effects of Reynolds number on the static longitudinal aerodynamic characteristics of an advanced, high-aspect-ratio, supercritical wing transport model equipped with a full span, leading edge slat and part span, double slotted, trailing edge flaps. The model had a wing span of 7.5 ft and was tested through a free stream Reynolds number range from 1.3 to 6.0 x 10 to 6th power per foot at a Mach number of 0.20. Prior to the Ames tests, an investigation was also conducted in the Langley 4 by 7 Meter Tunnel at a Reynolds number of 1.3 x 10 to 6th power per foot with the model mounted on an Ames strut support system and on the Langley sting support system to determine strut interference corrections. The data obtained from the Langley tests were also used to compare the aerodynamic charactertistics of the rather stiff, 7.5-ft-span steel wing model tested during this investigation and the larger, and rather flexible, 12-ft-span aluminum-wing model tested during a previous investigation. During the tests in both the Langley and Ames tunnels, the model was tested with six basic wing configurations: (1) cruise; (2) climb (slats only extended); (3) 15 deg take-off flaps; (4) 30 deg take-off flaps; (5) 45 deg landing flaps; and (6) 60 deg landing flaps.

  10. Quantum mechanical tunneling in the automerization of cyclobutadiene.

    Science.gov (United States)

    Schoonmaker, R; Lancaster, T; Clark, S J

    2018-03-14

    Cyclobutadiene has a four-membered carbon ring with two double bonds, but this highly strained molecular configuration is almost square and, via a coordinated motion, the nuclei quantum mechanically tunnels through the high-energy square state to a configuration equivalent to the initial configuration under a 90° rotation. This results in a square ground state, comprising a superposition of two molecular configurations, that is driven by quantum tunneling. Using a quantum mechanical model, and an effective nuclear potential from density functional theory, we calculate the vibrational energy spectrum and the accompanying wavefunctions. We use the wavefunctions to identify the motions of the molecule and detail how different motions can enhance or suppress the tunneling rate. This is relevant for kinematics of tunneling-driven reactions, and we discuss these implications. We are also able to provide a qualitative account of how the molecule will respond to an external perturbation and how this may enhance or suppress infra-red-active vibrational transitions.

  11. Quantum mechanical tunneling in the automerization of cyclobutadiene

    Science.gov (United States)

    Schoonmaker, R.; Lancaster, T.; Clark, S. J.

    2018-03-01

    Cyclobutadiene has a four-membered carbon ring with two double bonds, but this highly strained molecular configuration is almost square and, via a coordinated motion, the nuclei quantum mechanically tunnels through the high-energy square state to a configuration equivalent to the initial configuration under a 90° rotation. This results in a square ground state, comprising a superposition of two molecular configurations, that is driven by quantum tunneling. Using a quantum mechanical model, and an effective nuclear potential from density functional theory, we calculate the vibrational energy spectrum and the accompanying wavefunctions. We use the wavefunctions to identify the motions of the molecule and detail how different motions can enhance or suppress the tunneling rate. This is relevant for kinematics of tunneling-driven reactions, and we discuss these implications. We are also able to provide a qualitative account of how the molecule will respond to an external perturbation and how this may enhance or suppress infra-red-active vibrational transitions.

  12. Principles of electron tunneling spectroscopy

    CERN Document Server

    Wolf, E L

    2012-01-01

    Electron tunnelling spectroscopy as a research tool has strongly advanced understanding of superconductivity. This book explains the physics and instrumentation behind the advances illustrated in beautiful images of atoms, rings of atoms and exotic states in high temperature superconductors, and summarizes the state of knowledge that has resulted.

  13. High-Field Quasiparticle Tunneling in Bi2Sr2CaCu2O8+δ : Negative Magnetoresistance in the Superconducting State

    International Nuclear Information System (INIS)

    Morozov, N.; Krusin-Elbaum, L.; Shibauchi, T.; Bulaevskii, L. N.; Maley, M. P.; Latyshev, Yu. I.; Yamashita, T.

    2000-01-01

    We report on the c -axis resistivity ρ c (H) in Bi 2 Sr 2 CaCu 2 O 8+δ that peaks in quasistatic magnetic fields up to 60 T. By suppressing the Josephson part of the two-channel (Cooper pair/quasiparticle) conductivity σ c (H) , we find that the negative slope of ρ c (H) above the peak is due to quasiparticle tunneling conductivity σ q (H) across the CuO 2 layers below H c2 . At high fields (a) σ q (H) grows linearly with H , and (b) ρ c (T) tends to saturate (σ c ≠0 ) as T→0 , consistent with the scattering at the nodes of the d -wave gap. A superlinear σ q (H) marks the normal state above T c . (c) 2000 The American Physical Society

  14. The Effectiveness of Limited Dynamic Wrist Splints on the Symptoms, Function, and Strength of Women with Carpal Tunnel Syndrome: A Controlled Trial Study

    Directory of Open Access Journals (Sweden)

    Seyedeh Marjan Jaladat

    2017-03-01

    Full Text Available Background: Splinting is the most common conservative method of treating patients with mild and moderate Carpal Tunnel Syndrome (CTS. The aim of this study was to determine the effectiveness of the limited dynamic wrist splint on the symptoms, function, and strength of women with CTS. In this controlled trial study, the subjects wore a splint of a new design called the “limited dynamic wrist splint”, which allowed the wrist motion in the range (between 15-degree flexion and 15-degree extension that exerts minimum pressure on the median nerve and prevents extra pressure on the nerve by limiting the range of motions out of the allowed range. Methods: In this study, 24 women diagnosed with mild to moderate CTS were initially evaluated on the basis of the Boston questionnaire, the dexterity test of the Purdue pegboard, grip and pinch strength, distal sensory latency, and sensory nerve conduction velocity. The subjects were randomly divided into two groups, control and treatment. Both groups received routine rehabilitation treatment for six weeks. The treatment group received the limited dynamic wrist splint for about six to eight hours a day. After six weeks, the initial examinations were repeated. The SPSS-16, independent t, and paired t-tests were used for data analysis. Results: All the variables in the treatment and the control groups showed improvement. The function test of the Boston questionnaire, the Purdue pegboard test, and the pinch strength were significantly improved in the treatment group. The “severity of the symptoms” test of the Boston questionnaire and the pinch strength in the control group showed a statistically significant difference (P < 0.05. In a comparison of the two groups, the function test of the Boston questionnaire showed a significant difference. Conclusion: This study showed that the use of the limited dynamic wrist splint for about six weeks for six to eight hours a day could have a significant effect on the

  15. Concept development for HLW disposal research tunnel

    International Nuclear Information System (INIS)

    Queon, S. K.; Kim, K. S.; Park, J. H.; Jeo, W. J.; Han, P. S.

    2003-01-01

    In order to dispose high-level radioactive waste in a geological formation, it is necessary to assess the safety of a disposal concept by excavating a research tunnel in the same geological formation as the host rock mass. The design concept of a research tunnel depends on the actual disposal concept, repository geometry, experiments to be carried at the tunnel, and geological conditions. In this study, analysis of the characteristics of the disposal research tunnel, which is planned to be constructed at KAERI site, calculation of the influence of basting impact on neighbor facilities, and computer simuation for mechanical stability analysis using a three-dimensional code, FLAC3D, had been carried out to develop the design concept of the research tunnel

  16. Investigation into scanning tunnelling luminescence microscopy

    International Nuclear Information System (INIS)

    Manson-Smith, S.K.

    2001-01-01

    This work reports on the development of a scanning tunnelling luminescence (STL) microscope and its application to the study of Ill-nitride semiconductor materials used in the production of light emitting devices. STL microscopy is a technique which uses the high resolution topographic imaging capabilities of the scanning tunnelling microscope (STM) to generate high resolution luminescence images. The STM tunnelling current acts as a highly localised source of electrons (or holes) which generates luminescence in certain materials. Light generated at the STM tunnelling junction is collected concurrently with the height variation of the tunnelling probe as it is scanned across a sample surface, producing simultaneous topographic and luminescence images. Due to the very localised excitation source, high resolution luminescence images can be obtained. Spectroscopic resolution can be obtained by using filters. Additionally, the variation of luminescence intensity with tunnel current and with bias voltage can provide information on recombination processes and material properties. The design and construction of a scanning tunnelling luminescence microscope is described in detail. Operating under ambient conditions, the microscope has several novel features, including a new type of miniature inertial slider-based approach motor, large solid-angle light collection optical arrangement and a tip-height regulation system which requires the minimum of operator input. (author)

  17. Adsorption of selenium atoms at the Si(1 1 1)-7 x 7 surface: A combination of scanning tunnelling microscopy and density functional theory studies

    International Nuclear Information System (INIS)

    Wu, S.Q.; Zhou Yinghui; Wu Qihui; Pakes, C.I.; Zhu Zizhong

    2011-01-01

    Graphical abstract: A selenium atom, which adsorbs at site close to a Si adatom and bonds with this Si adatom and one of its backbonding Si atoms on the Si(1 1 1)-7 x 7 surface, will break the Si-Si bond and consequently disorder the Si reconstruction surface. Research highlights: → STM and DFT are used to study the adsorption properties of Se atoms on a Si surface. → The adsorption site of Se atom on the Si surface has been identified. → The electronic effect of Se atom on the adsorbed Si surface has been ivestigaed. → The Se atom weakens the bond between two Si atom bonding with the Se atom. - Abstract: The adsorption of selenium (Se) atoms at the Si(1 1 1)-7 x 7 surface has been investigated using both scanning tunnelling microscopy (STM) and density functional theory calculations. A single Se atom prefers to adsorb at sites close to a Si adatom and bonds with this Si adatom and one of its backbonding Si atoms. The adsorption sites are referred to as A*-type sites in this article. The density of the conduction band (empty states) of the Si adatom increases as a result of the adsorption of a Se atom, which causes the Si adatom to become brighter in the empty state STM images. At the same time, the adsorption of the Se atom weakens the bonding between the Si adatom and its backbonding Si atom due to the charge transfer from them to the Se atom, and consequently destructs the ordered Si(1 1 1)-7 x 7 surface with increasing Se coverage.

  18. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert's Variational Perturbation Theory.

    Science.gov (United States)

    Wong, Kin-Yiu; Gao, Jiali

    2008-09-09

    In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property

  19. Outcome of open carpal tunnel release surgery

    International Nuclear Information System (INIS)

    Khan, A.A.; Ali, H.; Muhammad, G.; Gul, N.; Zardan, K.K.; Mushtaq, M.; Ali, S.; Bhatti, S.N.; Ali, K.; Rashid, B.; Saboor, A.

    2015-01-01

    Background: Carpel tunnel syndrome is a common compression neuropathy of the median nerve causing pain, numbness and functional dysfunction of the hand. Among the available treatments, surgical release of the nerve is the most effective and acceptable treatment option. The aim of this study was to see the outcomes of surgical release of carpel tunnel using open technique. Method: This descriptive case series was conducted at the Department of neurosurgery, Ayub Teaching Hospital Abbottabad from April 2013 to March 2014. One hundred consecutive patients with carpel tunnel syndrome were included who underwent open carpel tunnel release surgery. They were followed up at 1, 3 and 6 months. Residual pain, numbness and functional improvement of the hand were the main outcome measures. Results: Out of 100 patients, 19 were males. The age ranged from 32 to 50 years with a mean of 39.29±3.99 years. The duration of symptoms was from 5 to 24 months. In the entire series patient functional outcome and satisfaction was 82 percentage at 1 month, 94 percentage at 3 months and 97 percentage at 6 months. 18 percentage patient had residual pain at 1 month post-operative follow-up, 6percentage at 3 months and 3 percentage at 6 month follow-up. Conclusion: Open carpel tunnel release surgery is an effective procedure for compression neuropathy of the median nerve. It should be offered to all patients with moderate to severe pain and functional disability related to carpel tunnel syndrome. (author)

  20. Resonant tunnelling and negative differential conductance in graphene transistors

    Science.gov (United States)

    Britnell, L.; Gorbachev, R. V.; Geim, A. K.; Ponomarenko, L. A.; Mishchenko, A.; Greenaway, M. T.; Fromhold, T. M.; Novoselov, K. S.; Eaves, L.

    2013-04-01

    The chemical stability of graphene and other free-standing two-dimensional crystals means that they can be stacked in different combinations to produce a new class of functional materials, designed for specific device applications. Here we report resonant tunnelling of Dirac fermions through a boron nitride barrier, a few atomic layers thick, sandwiched between two graphene electrodes. The resonance occurs when the electronic spectra of the two electrodes are aligned. The resulting negative differential conductance in the device characteristics persists up to room temperature and is gate voltage-tuneable due to graphene’s unique Dirac-like spectrum. Although conventional resonant tunnelling devices comprising a quantum well sandwiched between two tunnel barriers are tens of nanometres thick, the tunnelling carriers in our devices cross only a few atomic layers, offering the prospect of ultra-fast transit times. This feature, combined with the multi-valued form of the device characteristics, has potential for applications in high-frequency and logic devices.

  1. Possible Concepts for Waterproofing of Norwegian TBM Railway Tunnels

    Science.gov (United States)

    Dammyr, Øyvind; Nilsen, Bjørn; Thuro, Kurosch; Grøndal, Jørn

    2014-05-01

    The aim of this paper is to evaluate and compare the durability, life expectancy and maintenance needs of traditional Norwegian waterproofing concepts to the generally more rigid waterproofing concepts seen in other European countries. The focus will be on solutions for future Norwegian tunnel boring machine railway tunnels. Experiences from operation of newer and older tunnels with different waterproofing concepts have been gathered and analyzed. In the light of functional requirements for Norwegian rail tunnels, some preliminary conclusions about suitable concepts are drawn. Norwegian concepts such as polyethylene panels and lightweight concrete segments with membrane are ruled out. European concepts involving double shell draining systems (inner shell of cast concrete with membrane) and single shell undrained systems (waterproof concrete segments) are generally evaluated as favorable. Sprayable membranes and waterproof/insulating shotcrete are welcomed innovations, but more research is needed to verify their reliability and cost effectiveness compared to the typical European concepts. Increasing traffic and reliance on public transport systems in Norway result in high demand for durable and cost effective solutions.

  2. Quantum dot resonant tunneling diode single photon detector with aluminum oxide aperture defined tunneling area

    DEFF Research Database (Denmark)

    Li, H.W.; Kardynal, Beata; Ellis, D.J.P.

    2008-01-01

    Quantum dot resonant tunneling diode single photon detector with independently defined absorption and sensing areas is demonstrated. The device, in which the tunneling is constricted to an aperture in an insulating layer in the emitter, shows electrical characteristics typical of high quality res...

  3. Mutual seismic interaction between tunnels and the surrounding granular soil

    Directory of Open Access Journals (Sweden)

    Mohamed Ahmed Abdel-Motaal

    2014-12-01

    Study results show that the maximum exerted straining actions in tunnel lining are directly proportional to the relative stiffness between tunnel and surrounding soil (lining thickness and soil shear modulus. Moreover, it is highly affected by the peak ground acceleration and the tunnel location (embedment depth. A comprehensive study is performed to show the effect of tunnel thickness and tunnel diameter on both the induced bending moment and lining deformation. In general, it is concluded that seismic analysis should be considered in regions subjected to peak ground acceleration greater than 0.15g.

  4. Tunneling magnetoresistance in Si nanowires

    KAUST Repository

    Montes Muñoz, Enrique

    2016-11-09

    We investigate the tunneling magnetoresistance of small diameter semiconducting Si nanowires attached to ferromagnetic Fe electrodes, using first principles density functional theory combined with the non-equilibrium Green\\'s functions method for quantum transport. Silicon nanowires represent an interesting platform for spin devices. They are compatible with mature silicon technology and their intrinsic electronic properties can be controlled by modifying the diameter and length. Here we systematically study the spin transport properties for neutral nanowires and both n and p doping conditions. We find a substantial low bias magnetoresistance for the neutral case, which halves for an applied voltage of about 0.35 V and persists up to 1 V. Doping in general decreases the magnetoresistance, as soon as the conductance is no longer dominated by tunneling.

  5. Quantum tunneling time

    International Nuclear Information System (INIS)

    Wang, Z.S.; Lai, C.H.; Oh, C.H.; Kwek, L.C.

    2004-01-01

    We present a calculation of quantum tunneling time based on the transition duration of wave peak from one side of a barrier to the other. In our formulation, the tunneling time comprises a real and an imaginary part. The real part is an extension of the phase tunneling time with quantum corrections whereas the imaginary time is associated with energy derivatives of the probability amplitudes

  6. Charge Islands Through Tunneling

    Science.gov (United States)

    Robinson, Daryl C.

    2002-01-01

    It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but rather it is divided into charge "islands." This paper links the aforementioned phenomenon to tunneling and provides further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. This paper also provides a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.

  7. Josephson tunneling and nanosystems

    OpenAIRE

    Ovchinnikov, Yurii; Kresin, Vladimir

    2010-01-01

    Josephson tunneling between nanoclusters is analyzed. The discrete nature of the electronic energy spectra, including their shell ordering, is explicitly taken into account. The treatment considers the two distinct cases of resonant and non-resonant tunneling. It is demonstrated that the current density greatly exceeds the value discussed in the conventional theory. Nanoparticles are shown to be promising building blocks for nanomaterials-based tunneling networks.

  8. About tunnelling times

    International Nuclear Information System (INIS)

    Olkhovsky, V.S.; Recami, E.

    1991-08-01

    In this paper, first we critically analyse the main theoretical definitions and calculations of the sub-barrier tunnelling and reflection times. Secondly, we propose a new, physically sensible definition of such durations, on the basis of a recent general formalism (already tested for other types of quantum collisions). At last, we discuss some results regarding temporal evolution of the tunnelling processes, and in particular the ''particle'' speed during tunnelling. (author). 36 refs, 1 fig

  9. The tunneling magnetoresistance and spin-polarized optoelectronic properties of graphyne-based molecular magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Yang, Zhi; Ouyang, Bin; Lan, Guoqing; Xu, Li-Chun; Liu, Ruiping; Liu, Xuguang

    2017-01-01

    Using density functional theory and the non-equilibrium Green’s function method, we investigate the spin-dependent transport and optoelectronic properties of the graphyne-based molecular magnetic tunnel junctions (MMTJs). We find that these MMTJs exhibit an outstanding tunneling magnetoresistance (TMR) effect. The TMR value is as high as 10 6 %. When the magnetization directions of two electrodes are antiparallel under positive or negative bias voltages, two kinds of pure spin currents can be obtained in the systems. Furthermore, under the irradiation of infrared, visible or ultraviolet light, spin-polarized photocurrents can be generated in the MMTJs, but the corresponding microscopic mechanisms are different. More importantly, if the magnetization directions of two electrodes are antiparallel, the photocurrents with different spins are spatially separated, appearing at different electrodes. This phenomenon provides a new way to simultaneously generate two spin currents. (paper)

  10. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-01-01

    Experiments investigated the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very-small-capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson-phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters. The experiments on small-capacitance tunnel junctions extend the measurements on the large-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wave function has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias

  11. Homoepitaxial graphene tunnel barriers for spin transport

    Directory of Open Access Journals (Sweden)

    Adam L. Friedman

    2016-05-01

    Full Text Available Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  12. Homoepitaxial graphene tunnel barriers for spin transport

    Science.gov (United States)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  13. Electroweak splitting functions and high energy showering

    Science.gov (United States)

    Chen, Junmou; Han, Tao; Tweedie, Brock

    2017-11-01

    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2) L × U(1) Y and discuss their general features in the collinear and soft-collinear regimes. These are the leading contributions at a splitting scale ( k T ) far above the EW scale ( v). We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in v/ k T . We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching between shower and decay, kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of neutral bosons ( γ/ Z/ h) using density-matrices. We employ the EW showering formalism to study a number of important physical processes at O (1-10 TeV) energies. They include (a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the emergence of "weak jets" such as those initiated by transverse gauge bosons, with individual splitting probabilities as large as O (35%); (c) EW showers initiated by top quarks, including Higgs bosons in the final state; (d) the occurrence of O (1) interference effects within EW showers involving the neutral bosons; and (e) EW corrections to new physics processes, as illustrated by production of a heavy vector boson ( W ') and the subsequent showering of its decay products.

  14. Microsystem Aeromechanics Wind Tunnel

    Data.gov (United States)

    Federal Laboratory Consortium — The Microsystem Aeromechanics Wind Tunnel advances the study of fundamental flow physics relevant to micro air vehicle (MAV) flight and assesses vehicle performance...

  15. Signatures of unstable semiclassical trajectories in tunneling

    International Nuclear Information System (INIS)

    Levkov, D G; Panin, A G; Sibiryakov, S M

    2009-01-01

    It was found recently that processes of multidimensional tunneling are generally described at high energies by unstable semiclassical trajectories. We study two observational signatures related to the instability of trajectories. First, we find an additional power-law dependence of the tunneling probability on the semiclassical parameter as compared to the standard case of potential tunneling. The second signature is a substantial widening of the probability distribution over final-state quantum numbers. These effects are studied using a modified semiclassical technique which incorporates stabilization of the tunneling trajectories. The technique is derived from first principles. We obtain expressions for the inclusive and exclusive tunneling probabilities in the case of unstable semiclassical trajectories. We also investigate the 'phase transition' between the cases of stable and unstable trajectories across certain 'critical' values of energy. Finally, we derive the relation between the semiclassical probabilities of tunneling from the low-lying and highly excited initial states. This puts on firm ground a conjecture made previously in the semiclassical description of collision-induced tunneling in field theory

  16. A high performance Ge/Si0.5Ge0.5/Si heterojunction dual sources tunneling transistor with a U-shaped channel

    Science.gov (United States)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Wang, Qianqiong; Chen, Shupeng

    2017-06-01

    In this paper, a new Ge/Si0.5Ge0.5/Si heterojunction dual sources tunneling transistor with a U-shaped channel (Ge_DUTFET) is proposed and investigated by Silvaco-Atlas simulation. The line tunneling perpendicular to channel and point tunneling parallel to channel simultaneously occur on both sides of the gate. The Ge is chosen as the source region material to increase the line tunneling current. The designed heterojunction between the Ge source and Si channel decreases the point tunneling barrier width to enhance the point tunneling current. And this heterojunction can also promote the Ge_DUTFET to occur point tunneling at the small gate voltage, which makes it obtain the smaller turn-on voltage. Furthermore, the Si0.5Ge0.5 buffer layer is also helpful for the enhancement of performance. The simulation results reveal that Ge_DUTFET has the better performance compared with the Si_DUTFET. The on-state current and average subthreshold swing of Ge_DUTFET are 1.11 × 10-5A/μm and 35.1mV/dec respectively. The max cut-off frequency (fT) and gain bandwidth product (GBW) are 26.6 GHz and 16.6 GHz respectively. The fT and GBW of the Ge_DUTFET are respectively increased by ∼27.4% and ∼84.3% compared with the Si_DUTFET.

  17. Scanning tunneling microscopic images and scanning tunneling spectra for coupled rectangular quantum corrals

    International Nuclear Information System (INIS)

    Mitsuoka, Shigenori; Tamura, Akira

    2011-01-01

    Assuming that an electron confined by double δ-function barriers lies in a quasi-stationary state, we derived eigenstates and eigenenergies of the electron. Such an electron has a complex eigenenergy, and the imaginary part naturally leads to the lifetime of the electron associated with tunneling through barriers. We applied this point of view to the electron confined in a rectangular quantum corral (QC) on a noble metal surface, and obtained scanning tunneling microscopic images and a scanning tunneling spectrum consistent with experimental ones. We investigated the electron states confined in coupled QCs and obtained the coupled states constructed with bonding and anti-bonding states. Using those energy levels and wavefunctions we specified scanning tunneling microscope (STM) images and scanning tunneling spectra (STS) for the doubly and triply coupled QCs. In addition we pointed out the feature of resonant electron states associated with the same QCs at both ends of the triply coupled QCs.

  18. Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Noor Zaman, E-mail: noor_0315@yahoo.com [Department of Mechanical Engineering, Jamia Millia Islamia (A Central University), New Delhi (India); Siddiquee, Arshad Noor; Khan, Zahid A. [Department of Mechanical Engineering, Jamia Millia Islamia (A Central University), New Delhi (India); Shihab, Suha K. [Department of Mechanical Engineering, Engineering College, Diyala University, Diyala (Iraq)

    2015-11-05

    In this paper an attempt has been made to investigate the effect of two Friction Stir Welding (FSW) parameters i.e. tool pin offset and tool plunge depth on the formation of defects such as tunnel (tunneling defect) and kissing bond (KB) during welding of dissimilar aluminum alloys. 4.75 mm thick plates of AA5083-H116 and AA6063-T6 were welded using a novel work-fixture developed in-house which, apart from clamping the plated also imparted continuous variation of offset on both side of the faying line. The tunneling defect was modeled as a function of offset and plunge depth. The welds were characterised using optical microscopy (OM), scanning electron microscopy (SEM) and mechanical testing. The causes of such defects have been analyzed and discussed and recommendations have been made to prevent their occurrence. The findings of the study have revealed that the tunneling defects are formed at all offset (including zero offset) values towards stronger material (advancing side). And the cross-section of the tunnel varied with the amount of offset. Further, KBs are formed at the interface for all pin offset values except 0.5 mm towards weaker material and high plunge depth resulting in the poor mechanical properties. - Highlights: • Two dissimilar aluminum alloys are welded using FSW. • Formation of kissing bond and tunneling defects are investigated. • Defects are formed at pin offsets towards stronger material and also without offset. • The size of tunnel reduces significantly by increasing the plunge depth. • Tool pin offset towards weaker material prevent tunneling defects.

  19. Direct Observation of Double Hydrogen Transfer via Quantum Tunneling in a Single Porphycene Molecule on a Ag(110) Surface.

    Science.gov (United States)

    Koch, Matthias; Pagan, Mark; Persson, Mats; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi

    2017-09-13

    Quantum tunneling of hydrogen atoms (or protons) plays a crucial role in many chemical and biological reactions. Although tunneling of a single particle has been examined extensively in various one-dimensional potentials, many-particle tunneling in high-dimensional potential energy surfaces remains poorly understood. Here we present a direct observation of a double hydrogen atom transfer (tautomerization) within a single porphycene molecule on a Ag(110) surface using a cryogenic scanning tunneling microscope (STM). The tautomerization rates are temperature independent below ∼10 K, and a large kinetic isotope effect (KIE) is observed upon substituting the transferred hydrogen atoms by deuterium, indicating that the process is governed by tunneling. The observed KIE for three isotopologues and density functional theory calculations reveal that a stepwise transfer mechanism is dominant in the tautomerization. It is also found that the tautomerization rate is increased by vibrational excitation via an inelastic electron tunneling process. Moreover, the STM tip can be used to manipulate the tunneling dynamics through modification of the potential landscape.

  20. Mechanical tunnel excavation in welded tuff

    International Nuclear Information System (INIS)

    Sperry, P.E.

    1991-01-01

    The Technical Review Board for the US high-level radioactive waste facility at Yucca Mountain has recommended maximum use of open-quotes the most modern mechanical excavation techniques...in order to reduce disturbance to the rock walls and to achieve greater economy of time and cost.close quotes Tunnels for the waste repository at Yucca Mountain can be economically constructed with mechanical excavation equipment. This paper presents the results of mechanical excavation of a tunnel in welded tuff, similar to the tuffs of Yucca Mountain. These results are projected to excavation of emplacement drifts in Yucca Mountain using a current state-of-the-art tunnel boring machine (TBM)

  1. Intrinsic Tunneling in Phase Separated Manganites

    Science.gov (United States)

    Singh-Bhalla, G.; Selcuk, S.; Dhakal, T.; Biswas, A.; Hebard, A. F.

    2009-02-01

    We present evidence of direct electron tunneling across intrinsic insulating regions in submicrometer wide bridges of the phase-separated ferromagnet (La,Pr,Ca)MnO3. Upon cooling below the Curie temperature, a predominantly ferromagnetic supercooled state persists where tunneling across the intrinsic tunnel barriers (ITBs) results in metastable, temperature-independent, high-resistance plateaus over a large range of temperatures. Upon application of a magnetic field, our data reveal that the ITBs are extinguished resulting in sharp, colossal, low-field resistance drops. Our results compare well to theoretical predictions of magnetic domain walls coinciding with the intrinsic insulating phase.

  2. Quantum tunneling in the driven SU(2) model

    International Nuclear Information System (INIS)

    Kaminski, P.; Ploszajczak, M.; Arvieu, R.

    1992-01-01

    The tunneling rate is investigated in the quantum and classical limits using an exactly soluble driven SU(2) model. The tunneling rate is obtained by solving the time-dependent Schroedinger equation and projecting the exact wave-function on the space of coherent states using the Husimi distribution. The presence of the classical chaotic structures leads to the enormous growth in the tunneling rate. The results suggest the existence of a new mechanism of quantum tunneling, involving transport of the wave-function between stable regions of the classical phase-space due to a coupling with 'chaotic' levels. (author) 17 refs., 13 figs

  3. Step tunneling enhanced asymmetry in metal-insulator-insulator-metal (MIIM) diodes for rectenna applications

    Science.gov (United States)

    Alimardani, N.; Conley, J. F.

    2013-09-01

    We combine nanolaminate bilayer insulator tunnel barriers (Al2O3/HfO2, HfO2/Al2O3, Al2O3/ZrO2) deposited via atomic layer deposition (ALD) with asymmetric work function metal electrodes to produce MIIM diodes with enhanced I-V asymmetry and non-linearity. We show that the improvements in MIIM devices are due to step tunneling rather than resonant tunneling. We also investigate conduction processes as a function of temperature in MIM devices with Nb2O5 and Ta2O5 high electron affinity insulators. For both Nb2O5 and Ta2O5 insulators, the dominant conduction process is established as Schottky emission at small biases and Frenkel-Poole emission at large biases. The energy depth of the traps that dominate Frenkel-Poole emission in each material are estimated.

  4. Road drainage system using highly compressible and long-term permeable geotextile. Evaluation of long-term permeability and application to trafficability in a tunnel; Kotaiatsu mezumari taikyugata geotextile haisuizai wo mochiita roban haisui taisaku. Mezumari taikyusei no hyoka to tunnel konai kasetsu doro no trafficability kaizen koka

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S.; Yamagishi, K.; Hirama, K.; Ueno, T. [Obayashi Corp., Tokyo (Japan)

    1998-07-10

    A geotextile drainage material called ART-DRAIN has been developed. It was applied to temporary roads in a tunnel, to evaluate its permeability through a long-term permeability test using a model. The ART-DRAIN is a drainage material for protecting the roads from muddy conditions in a tunnel due to spring water. A filter for permeating fine soil particles was employed to keep the permeability. From the long-term permeability test using a model, appropriate permeability of ART-DRAIN was maintained for three years without blinding. There was only a slight inflow of fine grain soils into the ART-DRAIN. It was confirmed that the permeability was not obstructed by the fine grain soils. The ART-DRAIN was applied to tunnel construction works for the high-speed railway in Kyoto and the national road in mountains. From these applications, factors for enhancing the permeability effect were confirmed, which includes the selection of high quality muck, insurance of the road-bed strength by the initial compaction, use of road drainage materials with high compressible property and permeability of filter, and intervals of drainage. 1 ref., 19 figs., 1 tab.

  5. The comparison between limited open carpal tunnel release using direct vision and tunneling technique and standard open carpal tunnel release: a randomized controlled trial study.

    Science.gov (United States)

    Suppaphol, Sorasak; Worathanarat, Patarawan; Kawinwongkovit, Viroj; Pittayawutwinit, Preecha

    2012-04-01

    To compare the operative outcome of carpal tunnel release between limited open carpal tunnel release using direct vision and tunneling technique (group A) with standard open carpal tunnel release (group B). Twenty-eight patients were enrolled in the present study. A single blind randomized control trial study was conducted to compare the postoperative results between group A and B. The study parameters were Levine's symptom severity and functional score, grip and pinch strength, and average two-point discrimination. The postoperative results between two groups were comparable with no statistical significance. Only grip strength at three months follow up was significantly greater in group A than in group B. The limited open carpal tunnel release in the present study is effective comparable to the standard open carpal tunnel release. The others advantage of this technique are better cosmesis and improvement in grip strength at the three months postoperative period.

  6. Electron tunneling across a tunable potential barrier

    International Nuclear Information System (INIS)

    Mangin, A; Anthore, A; Rocca, M L Della; Boulat, E; Lafarge, P

    2009-01-01

    We present an experiment where the elementary quantum electron tunneling process should be affected by an independent gate voltage parameter. We have realized nanotransistors where the source and drain electrodes are created by electromigration inducing a nanometer sized gap acting as a tunnel barrier. The barrier potential shape is in first approximation considered trapezoidal. The application of a voltage to the gate electrode close to the barrier region can in principle affect the barrier shape. Simulations of the source drain tunnel current as a function of the gate voltage predict modulations as large as one hundred percent. The difficulty of observing the predicted behaviour in our samples might be due to the peculiar geometry of the realized tunnel junction.

  7. Thermodynamics of phonon-modulated tunneling centers

    International Nuclear Information System (INIS)

    Junker, W.; Wagner, M.

    1989-01-01

    In recent years tunneling centers have frequently been used to explain the unusual thermodynamic properties of disordered materials; in these approaches, however, the effect of the tunneling-phonon interaction is neglected. The present study considers the archetype model of phono-assisted tunneling, which is well known from other areas of tunneling physics (quantum diffusion, etc.). It is shown that the full thermodynamic information can be rigorously extracted from a single Green function. An extended factorization procedure beyond Hartree-Fock is introduced, which is checked by sum rules as well as by exact Goldberger-Adams expansions. The phonon-modulated internal energy and specific heat are calculated for different power-law coupling setups

  8. Enhancement of tunneling current in phosphorene tunnel field effect transistors by surface defects.

    Science.gov (United States)

    Lu, Juan; Fan, Zhi-Qiang; Gong, Jian; Chen, Jie-Zhi; ManduLa, Huhe; Zhang, Yan-Yang; Yang, Shen-Yuan; Jiang, Xiang-Wei

    2018-02-21

    The effects of the staggered double vacancies, hydrogen (H), 3d transition metals, for example cobalt, and semiconductor covalent atoms, for example, germanium, nitrogen, phosphorus (P) and silicon adsorption on the transport properties of monolayer phosphorene were studied using density functional theory and non-equilibrium Green's function formalism. It was observed that the performance of the phosphorene tunnel field effect transistors (TFETs) with an 8.8 nm scaling channel length could be improved most effectively, if the adatoms or vacancies were introduced at the source channel interface. For H and P doped devices, the upper limit of on-state currents of phosphorene TFETs were able to be quickly increased to 2465 μA μm -1 and 1652 μA μm -1 , respectively, which not only outperformed the pristine sample, but also met the requirements for high performance logic applications for the next decade in the International Technology Roadmap for Semiconductors (ITRS). It was proved that the defect-induced band gap states make the effective tunneling path between the conduction band (CB) and valence band (VB) much shorter, so that the carriers can be injected easily from the left electrode, then transfer to the channel. In this regard, the tunneling properties of phosphorene TFETs can be manipulated using surface defects. In addition, the effects of spin polarization on the transport properties of doped phosphorene TFETs were also rigorously considered, H and P doped TFETs could achieve a high ON current of 1795 μA μm -1 and 1368 μA μm -1 , respectively, which is closer to realistic nanodevices.

  9. Scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Binnig, G.; Rohrer, H.

    1983-01-01

    Based on vacuum tunneling, a novel type of microscope, the scanning tunneling microscope (STM) was developed. It has an unprecedented resolution in real space on an atomic scale. The authors review the important technical features, illustrate the power of the STM for surface topographies and discuss its potential in other areas of science and technology. (Auth.)

  10. Aerothermal evaluation of a spherically blunted body with a trapezoidal cross section in the Langley 8-foot high-temperature tunnel

    Science.gov (United States)

    Albertson, Cindy W.

    1987-01-01

    A model to be used in the flow studies and curved Thermal Protection System (TPS) evaluations was tested in the Langley 8 Foot High-Temperature Tunnel at a nominal Mach number of 6.8. The purpose of the study was to define the surface pressure and heating rates at high angles of attack (in support of curved metallic TPS studies) and to determine the conditions for which the model would be suitable as a test bed for aerothermal load studies. The present study was conducted at a nominal total temperature of 2400 and 3300 R, dynamic pressures from 2.3 to 10.9 psia, and free-stream Reynolds numbers from 4000,000 to 1,700,000/ft. The measurements consisted primarily of surface pressure and cold-wall (530 R) heating rates. Qualitative comparisons between predictions and data show that for this configuration, aerothermal tests should be limited to angles of attack between 10 and -10 degrees. Outside this range, the effects of free-stream flow nonuniformity appear in the data, as a result of the long length of the model. However, for TPS testing, this is not a concern and tests can be performed at angles of attack ranging from 20 to -20 degrees. Laminar and naturally turbulent boundary layers are available over limited ranges of conditions.

  11. Challenging Stereotypes: Sexual Functioning of Single Adults with High Functioning Autism Spectrum Disorder

    Science.gov (United States)

    Byers, E. Sandra; Nichols, Shana; Voyer, Susan D.

    2013-01-01

    This study examined the sexual functioning of single adults (61 men, 68 women) with high functioning autism and Asperger syndrome living in the community with and without prior relationship experience. Participants completed an on-line questionnaire assessing autism symptoms, psychological functioning, and various aspects of sexual functioning. In…

  12. Tunnel fire dynamics

    CERN Document Server

    Ingason, Haukur; Lönnermark, Anders

    2015-01-01

    This book covers a wide range of issues in fire safety engineering in tunnels, describes the phenomena related to tunnel fire dynamics, presents state-of-the-art research, and gives detailed solutions to these major issues. Examples for calculations are provided. The aim is to significantly improve the understanding of fire safety engineering in tunnels. Chapters on fuel and ventilation control, combustion products, gas temperatures, heat fluxes, smoke stratification, visibility, tenability, design fire curves, heat release, fire suppression and detection, CFD modeling, and scaling techniques all equip readers to create their own fire safety plans for tunnels. This book should be purchased by any engineer or public official with responsibility for tunnels. It would also be of interest to many fire protection engineers as an application of evolving technical principles of fire safety.

  13. EXTRACORPOREAL SHOCKWAVE THERAPY FOR POST BURN CARPAL TUNNEL SYNDROME

    OpenAIRE

    Hesham Galal Mahran; Ashraf Hassan Mohammed; Shimaa Nabil Aboelazm

    2015-01-01

    Background: Carpal tunnel syndrome is considered the most common compression neuropathy of the upper extremity. It may lead to work disability and functional impairment. Burns are associated with swelling and eschar which forms a tight band constricting the circulation distally. Purpose: To investigate the effect of shockwave therapy on the carpal tunnel syndrome post burn. Subjects: Thirty male and female patients selected with manifestation of carpal tunnel syndrome post burn evaluated by e...

  14. Electrical installations of the Channel tunnel; Installations electriques du Tunnel sous la Manche

    Energy Technology Data Exchange (ETDEWEB)

    Kersabiec, G. de [Eurotunnel, Folkestone (United Kingdom)

    2002-08-01

    Like an underground factory, the railway and auxiliary equipments of the Channel tunnel between France and UK, need a reliable and redundant power supply with a high quality maintenance. This article presents: the design criteria of the power distribution systems, the installation itself and the organisation of its exploitation: 1 - transportation system of the Channel tunnel (loads to supply, exploitation imperatives, fundamental criteria); 2 - external power sources (connection to the UK and French grids, values used by the national grids); 3 - exploitation criteria, tunnel design; 4 - description (main UK and French power stations, 25 kV traction network, 21 kV distribution network, tunnels, lighting in railway tunnels, supply of terminals, earthing network); 5 - exploitation; 6 - maintenance and quality. (J.S.)

  15. Tuning the tunneling magnetoresistance by using fluorinated graphene in graphene based magnetic junctions

    Directory of Open Access Journals (Sweden)

    Shweta Meena

    2017-12-01

    Full Text Available Spin polarized properties of fluorinated graphene as tunnel barrier with CrO2 as two HMF electrodes are studied using first principle methods based on density functional theory. Fluorinated graphene with different fluorine coverages is explored as tunnel barriers in magnetic tunnel junctions. Density functional computation for different fluorine coverages imply that with increase in fluorine coverages, there is increase in band gap (Eg of graphene, Eg ∼ 3.466 e V was observed when graphene sheet is fluorine adsorbed on both-side with 100% coverage (CF. The results of CF graphene are compared with C4F (fluorination on one-side of graphene sheet with 25% coverage and out-of-plane graphene based magnetic tunnel junctions. On comparison of the results it is observed that CF graphene based structure offers high TMR ∼100%, and the transport of carrier is through tunneling as there are no transmission states near Fermi level. This suggests that graphene sheet with both-side fluorination with 100% coverages acts as a perfect insulator and hence a better barrier to the carriers which is due to negligible spin down current (I↓ in both Parallel Configuration (PC and Antiparallel Configuration (APC.

  16. A Klein-tunneling transistor with ballistic graphene

    International Nuclear Information System (INIS)

    Wilmart, Quentin; Fève, Gwendal; Berroir, Jean-Marc; Plaçais, Bernard; Berrada, Salim; Hung Nguyen, V; Dollfus, Philippe; Torrin, David

    2014-01-01

    Today, the availability of high mobility graphene up to room temperature makes ballistic transport in nanodevices achievable. In particular, p-n-p transistors in the ballistic regime give access to Klein tunneling physics and allow the realization of devices exploiting the optics-like behavior of Dirac Fermions (DFs) as in the Veselago lens or the Fabry–Pérot cavity. Here we propose a Klein tunneling transistor based on the geometrical optics of DFs. We consider the case of a prismatic active region delimited by a triangular gate, where total internal reflection may occur, which leads to the tunable suppression of transistor transmission. We calculate the transmission and the current by means of scattering theory and the finite bias properties using non-equilibrium Green's function (NEGF) simulation. (letter)

  17. A Klein-tunneling transistor with ballistic graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wilmart, Quentin; Fève, Gwendal; Berroir, Jean-Marc; Plaçais, Bernard [Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université P et M Curie, Université D Diderot, 24, rue Lhomond, 75231 Paris Cedex 05 (France); Berrada, Salim; Hung Nguyen, V; Dollfus, Philippe [Institute of Fundamental Electronics, Univ. Paris-Sud, CNRS, Orsay (France); Torrin, David [Département de Physique, Ecole Polytechnique, 91128 Palaiseau (France)

    2014-06-15

    Today, the availability of high mobility graphene up to room temperature makes ballistic transport in nanodevices achievable. In particular, p-n-p transistors in the ballistic regime give access to Klein tunneling physics and allow the realization of devices exploiting the optics-like behavior of Dirac Fermions (DFs) as in the Veselago lens or the Fabry–Pérot cavity. Here we propose a Klein tunneling transistor based on the geometrical optics of DFs. We consider the case of a prismatic active region delimited by a triangular gate, where total internal reflection may occur, which leads to the tunable suppression of transistor transmission. We calculate the transmission and the current by means of scattering theory and the finite bias properties using non-equilibrium Green's function (NEGF) simulation. (letter)

  18. Microwave-induced co-tunneling in single electron tunneling transistors

    DEFF Research Database (Denmark)

    Ejrnaes, M.; Savolainen, M.; Manscher, M.

    2002-01-01

    on rubber bellows. Cross-talk was minimized by using individual coaxial lines between the sample and the room temperature electronics: The co-tunneling experiments were performed at zero DC bias current by measuring the voltage response to a very small amplitude 2 Hz current modulation with the gate voltage......The influence of microwaves on the co-tunneling in single electron tunneling transistors has been investigated as function of frequency and power in the temperature range from 150 to 500 mK. All 20 low frequency connections and the RF line were filtered, and the whole cryostat was suspended...

  19. Fine structures on zero-field steps in low-loss Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Monaco, Roberto; Barbara, Paola; Mygind, Jesper

    1993-01-01

    The first zero-field step in the current-voltage characteristic of intermediate-length, high-quality, low-loss Nb/Al-AlOx/Nb Josephson tunnel junctions has been carefully investigated as a function of temperature. When decreasing the temperature, a number of structures develop in the form...... of regular and slightly hysteretic steps whose voltage position depends on the junction temperature and length. This phenomenon is interesting for the study of nonlinear dynamics and for application of long Josephson tunnel junctions as microwave and millimeter-wavelength oscillators....

  20. Strata control in tunnels and an evaluation of support units and systems currently used with a view to improving the effectiveness of support, stability and safety of tunnels.

    CSIR Research Space (South Africa)

    Haile, AT

    1998-12-01

    Full Text Available This report details a methodology for rational design of tunnel support systems based on a mechanistic evaluation of the interaction between the components of a tunnel support system and a highly discontinuous rock mass structure. This analysis...

  1. Design and performance of an ultra-high vacuum spin-polarized scanning tunneling microscope operating at 30 mK and in a vector magnetic field.

    Science.gov (United States)

    von Allwörden, Henning; Eich, Andreas; Knol, Elze J; Hermenau, Jan; Sonntag, Andreas; Gerritsen, Jan W; Wegner, Daniel; Khajetoorians, Alexander A

    2018-03-01

    We describe the design and performance of a scanning tunneling microscope (STM) that operates at a base temperature of 30 mK in a vector magnetic field. The cryogenics is based on an ultra-high vacuum (UHV) top-loading wet dilution refrigerator that contains a vector magnet allowing for fields up to 9 T perpendicular and 4 T parallel to the sample. The STM is placed in a multi-chamber UHV system, which allows in situ preparation and exchange of samples and tips. The entire system rests on a 150-ton concrete block suspended by pneumatic isolators, which is housed in an acoustically isolated and electromagnetically shielded laboratory optimized for extremely low noise scanning probe measurements. We demonstrate the overall performance by illustrating atomic resolution and quasiparticle interference imaging and detail the vibrational noise of both the laboratory and microscope. We also determine the electron temperature via measurement of the superconducting gap of Re(0001) and illustrate magnetic field-dependent measurements of the spin excitations of individual Fe atoms on Pt(111). Finally, we demonstrate spin resolution by imaging the magnetic structure of the Fe double layer on W(110).

  2. Design and performance of an ultra-high vacuum spin-polarized scanning tunneling microscope operating at 30 mK and in a vector magnetic field

    Science.gov (United States)

    von Allwörden, Henning; Eich, Andreas; Knol, Elze J.; Hermenau, Jan; Sonntag, Andreas; Gerritsen, Jan W.; Wegner, Daniel; Khajetoorians, Alexander A.

    2018-03-01

    We describe the design and performance of a scanning tunneling microscope (STM) that operates at a base temperature of 30 mK in a vector magnetic field. The cryogenics is based on an ultra-high vacuum (UHV) top-loading wet dilution refrigerator that contains a vector magnet allowing for fields up to 9 T perpendicular and 4 T parallel to the sample. The STM is placed in a multi-chamber UHV system, which allows in situ preparation and exchange of samples and tips. The entire system rests on a 150-ton concrete block suspended by pneumatic isolators, which is housed in an acoustically isolated and electromagnetically shielded laboratory optimized for extremely low noise scanning probe measurements. We demonstrate the overall performance by illustrating atomic resolution and quasiparticle interference imaging and detail the vibrational noise of both the laboratory and microscope. We also determine the electron temperature via measurement of the superconducting gap of Re(0001) and illustrate magnetic field-dependent measurements of the spin excitations of individual Fe atoms on Pt(111). Finally, we demonstrate spin resolution by imaging the magnetic structure of the Fe double layer on W(110).

  3. Power Effects on High Lift, Stability and Control Characteristics of the TCA Model Tested in the LaRC 14 x 22 Ft Wind Tunnel

    Science.gov (United States)

    Glessner, Paul T.

    1999-01-01

    The TCA-2 wind-tunnel test was the second in a series of planned tests utilizing the 5% Technology Concept Airplane (TCA) model. Each of the tests was planned to utilize the unique capabilities of the NASA Langley 14'x22' and the NASA Ames 12' test facilities, in order to assess specific aspects of the high lift and stability and control characteristics of the TCA configuration. However, shortly after the completion of the TCA-1 test, an early projection of the Technology Configuration (TC) identified the need for several significant changes to the baseline TCA configuration. These changes were necessary in order to meet more stringent noise certification levels, as well as, to provide a means to control dynamic structural modes. The projected changes included a change to the outboard wing (increased aspect ratio and lower sweep) and a reconfiguration of the longitudinal control surfaces to include a medium size canard and a reduced horizontal tail. The impact of these proposed changes did not affect the TCA-2 test, because it was specifically planned to address power effects on the empennage and a smaller horizontal tail was in the plan to be tested. However, the focus of future tests was reevaluated and the emphasis was shifted away from assessment of TCA specific configurations to a more general assessment of configurations that encompass the projected design space for the TC.

  4. Tunneling Splittings in Vibronic Structure of CH_3F^+ ( X^2E): Studied by High Resolution Photoelectron Spectra and AB Initio Theoretical Method

    Science.gov (United States)

    Mo, Yuxiang; Gao, Shuming; Dai, Zuyang; Li, Hua

    2013-06-01

    We report a combined experimental and theoretical study on the vibronic structure of CH_3F^+. The results show that the tunneling splittings of vibrational energy levels occur in CH_3F^+ due to the Jahn-Teller effect. Experimentally, we have measured a high resolution ZEKE spectrum of CH_3F up to 3500 cm^-^1 above the ground state. Theoretically, we performed an ab initio calculation based on the diabatic model. The adiabatic potential energy surfaces (APES) of CH_3F^+ have been calculated at the MRCI/CAS/avq(t)z level and expressed by Taylor expansions with normal coordinates as variables. The energy gradients for the lower and upper APES, the derivative couplings between them and also the energies of the APES have been used to determine the coefficients in the Taylor expansion. The spin-vibronic energy levels have been calculated by accounting all six vibrational modes and their couplings. The experimental ZEKE spectra were assigned based on the theoretical calculations. W. Domcke, D. R. Yarkony, and H. Köpple (Eds.), Conical Intersections: Eletronic Structure, Dynamics and Spectroscopy (World Scientific, Singapore, 2004). M. S. Schuurman, D. E. Weinberg, and D. R. Yarkony, J. Chem. Phys. 127, 104309 (2007).

  5. Infrared detection with high-[Tc] bolometers and response of Nb tunnel junctions to picosecond voltage pulses

    Energy Technology Data Exchange (ETDEWEB)

    Verghese, S.

    1993-05-01

    Oxide superconductors with high critical temperature [Tc] make sensitive thermometers for several types of infrared bolometers. The authors built composite bolometers with YBa[sub 2]Cu[sub 3]O[sub 7[minus][delta

  6. Combined Kinesiotaoe and Therapeutic Ultrasound in the Treatment of Carpal Tunnel Syndrome

    International Nuclear Information System (INIS)

    Mohamed, O.G.; Elhafez, H.M.; Alshatoury, H.A.; Refaat, R.

    2016-01-01

    Background : Carpal tunnel syndrome is the most common neuropathy of the upper limb and a significant contributor to hand functional impairment and disability. Hand is an Accepted November 2016 . important part of body to perform the complex daily living activities. Purpose: To find out effect of combined kinesiotape and therapeutic ultrasound in the treatment of carpal tunnel syndrome. Material and Methods :Thirty Carpal Tunnel Syndrome female patients with positive electro diagnostic findings (MMDL >4.2 ms) participated in this study, their ages ranged between 40 and 50 years. Design of study :They were divided randomly into two equal groups. Group (A) received kinesiotape applicatio n on the affected wrist for 3 days, then day off and then another three days each week for 4 weeks combined with a program of 12 sessions of continuous ultrasound, 3 sessions per week for 5 minute persession in addition nerve and tendon gliding exercise . While, Group (B) received a program of 12 sessions of continuous ultrasound, 3 sessions per week for 5 minute per session in addition tendon and nerve gliding exercise. The treatment program continued for 4 weeks. Boston carpal tunnel questionnaire and median motor distallatency, visual analogue scale and hand grip dynamometer were performed before and after the treatment program for all patients of the two groups. Results : The obtained results showed a highly statistically significant (P< 0.0001) improvement in both groups (A and B) concerning Boston carpal tunnel questionnaire , visual analogue scale and hand grip dynamometer but there was significant improvement in group (A) only concerning median motor distal latency. The improvement was highly significant (P< 0.0001) in group (A) when compared with group (B). Conclusion: It could be concluded that the use of combined kinesiotape and therapeutic ultrasound in the treatment of carpal tunnel syndrome appeared to be effective. Yet the combined effect of kinesiotape with

  7. Tunneling anisotropic magnetoresistance driven by magnetic phase transition.

    Science.gov (United States)

    Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F

    2017-09-06

    The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.

  8. Air quality assessment in Salim Slam Tunnel

    International Nuclear Information System (INIS)

    El-Fadel, M.; Hashisho, Z.; Saikaly, P.

    1999-01-01

    Full text.Vehicle emissions constitute a serious occupational environmental hazard particularly in confined spaces such as tunnels and underground parking garages. these emissions at elevated concentrations, can cause adverse health effects, which range from nausea and eye irritation to mutagenicity, carcinogenicity and even death. This paper presents an environmental air quality assessment in a tunnel located in a highly congested urban area. For this purpose, air samples were collected and analyzed for the presence of primary air pollutants, priority metals, and volatile organic carbons. Air quality modeling was conducted to simulate variations of pollutant concentrations in the tunnel under worst case scenarios including traffic congestion and no air ventilation. Field measurements and mathematical simulation results were used to develop a strategy for proper air quality management in tunnels

  9. TBM tunneling on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Morris, J.P.; Hansmire, W.H.

    1995-01-01

    The US Department of Energy's (DOE) Yucca Mountain Project (YMP) is a scientific endeavor to determine the suitability of Yucca Mountain for the first long-term, high-level nuclear waste repository in the United States. The current status of this long-term project from the construction perspective is described. A key element is construction of the Exploratory Studies Facility (ESF) Tunnel, which is being excavated with a 7.6 m (25 ft) diameter tunnel boring machine (TBM). Development of the ESF may include the excavation of over 15 km (9.3 mi) of tunnel varying in size from 3.0 to 7.6 m (10 to 25 ft). Prior to construction, extensive constructability reviews were an interactive part of the final design. The intent was to establish a constructable design that met the long-term stability requirements for radiological safety of a future repository, while maintaining flexibility for the scientific investigations and acceptable tunneling productivity

  10. Tunnel magnetoresistance in alumina, magnesia and composite tunnel barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Schebaum, Oliver; Drewello, Volker; Auge, Alexander; Reiss, Guenter; Muenzenberg, Markus; Schuhmann, Henning; Seibt, Michael; Thomas, Andy

    2011-01-01

    Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia, and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance ratios we found were 73% for alumina and 323% for magnesia-based tunnel junctions. Additionally, tunnel junctions with a unified layer stack were prepared for the three different barriers. In these systems, the tunnel magnetoresistance ratios at optimum annealing temperatures were found to be 65% for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The similar tunnel magnetoresistance ratios of the tunnel junctions containing alumina provide evidence that coherent tunneling is suppressed by the alumina layer in the composite tunnel barrier. - Research highlights: → Transport properties of Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions. → Tunnel barrier consists of MgO, Al-Ox, or MgO/Al-Ox bilayer systems. → Limitation of TMR-ratio in composite barrier tunnel junctions to Al-Ox values. → Limitation indicates that Al-Ox layer is causing incoherent tunneling.

  11. Electrically tunable tunneling rectification magnetoresistance in magnetic tunneling junctions with asymmetric barriers.

    Science.gov (United States)

    Wang, Jing; Huang, Qikun; Shi, Peng; Zhang, Kun; Tian, Yufeng; Yan, Shishen; Chen, Yanxue; Liu, Guolei; Kang, Shishou; Mei, Liangmo

    2017-10-26

    The development of multifunctional spintronic devices requires simultaneous control of multiple degrees of freedom of electrons, such as charge, spin and orbit, and especially a new physical functionality can be realized by combining two or more different physical mechanisms in one specific device. Here, we report the realization of novel tunneling rectification magnetoresistance (TRMR), where the charge-related rectification and spin-dependent tunneling magnetoresistance are integrated in Co/CoO-ZnO/Co magnetic tunneling junctions with asymmetric tunneling barriers. Moreover, by simultaneously applying direct current and alternating current to the devices, the TRMR has been remarkably tuned in the range from -300% to 2200% at low temperature. This proof-of-concept investigation provides an unexplored avenue towards electrical and magnetic control of charge and spin, which may apply to other heterojunctions to give rise to more fascinating emergent functionalities for future spintronics applications.

  12. Thermal analysis in the near field for geological disposal of high-level radioactive waste. Establishment of the disposal tunnel spacing and waste package pitch on the 2nd progress report for the geological disposal of HLW in Japan

    International Nuclear Information System (INIS)

    Taniguchi, Wataru; Iwasa, Kengo

    1999-11-01

    For the underground facility of the geological disposal of high-level radioactive waste (HLW), the space is needed to set the engineered barrier, and the set engineered barrier and rock-mass of near field are needed to satisfy some conditions or constraints for their performance. One of the conditions above mentioned is thermal condition arising from heat outputs of vitrified waste and initial temperature at the disposal depth. Hence, it is needed that the temperature of the engineered barrier and rock mass is less degree than the constraint temperature of each other. Therefore, the design of engineered barrier and underground facility is conducted so that the temperature of the engineered barrier and rock mass is less degree than the constraint temperature of each other. One of these design is establishment of the disposal tunnel spacing and waste package pitch. In this report, thermal analysis is conducted to establish the disposal tunnel spacing and waste package pitch to satisfy the constraint temperature in the near field. Also, other conditions or constraints for establishment of the disposal tunnel spacing and waste package pitch are investigated. Then, design of the disposal tunnel spacing and waste package pitch, considering these conditions or constraints, is conducted. For the near field configuration using the results of the design above mentioned, the temperature with time dependency is studied by analysis, and then the temperature variation due to the gaps, that will occur within the engineered barrier and between the engineered barrier and rock mass in setting engineered barrier in the disposal tunnel or pit, is studied. At last, the disposal depth variation is studied to satisfy the temperature constraint in the near field. (author)

  13. Projection operator method for collective tunneling transitions

    International Nuclear Information System (INIS)

    Kohmura, Toshitake; Ohta, Hirofumi; Hashimoto, Yukio; Maruyama, Masahiro

    2002-01-01

    Collective tunneling transitions take place in the case that a system has two nearly degenerate ground states with a slight energy splitting, which provides the time scale of the tunneling. The Liouville equation determines the evolution of the density matrix, while the Schroedinger equation determines that of a state. The Liouville equation seems to be more powerful for calculating accurately the energy splitting of two nearly degenerate eigenstates. However, no method to exactly solve the Liouville eigenvalue equation has been established. The usual projection operator method for the Liouville equation is not feasible. We analytically solve the Liouville evolution equation for nuclear collective tunneling from one Hartree minimum to another, proposing a simple and solvable model Hamiltonian for the transition. We derive an analytical expression for the splitting of energy eigenvalues from a spectral function of the Liouville evolution using a half-projected operator method. A full-order analytical expression for the energy splitting is obtained. We define the collective tunneling path of a microscopic Hamiltonian for collective tunneling, projecting the nuclear ground states onto n-particle n-hole state spaces. It is argued that the collective tunneling path sector of a microscopic Hamiltonian can be transformed into the present solvable model Hamiltonian. (author)

  14. Tunneling current between graphene layers

    OpenAIRE

    Poklonski, Nikolai A.; Siahlo, Andrei I.; Vyrko, Sergey A.; Popov, Andrey M.; Lozovik, Yurii E.

    2013-01-01

    The physical model that allows to calculate the values of the tunneling current be-tween graphene layers is proposed. The tunneling current according to the pro-posed model is proportional to the area of tunneling transition. The calculated value of tunneling conductivity is in qualitative agreement with experimental data.

  15. Seismic Design of a Single Bored Tunnel: Longitudinal Deformations and Seismic Joints

    Science.gov (United States)

    Oh, J.; Moon, T.

    2018-03-01

    The large diameter bored tunnel passing through rock and alluvial deposits subjected to seismic loading is analyzed for estimating longitudinal deformations and member forces on the segmental tunnel liners. The project site has challenges including high hydrostatic pressure, variable ground profile and high seismic loading. To ensure the safety of segmental tunnel liner from the seismic demands, the performance-based two-level design earthquake approach, Functional Evaluation Earthquake and Safety Evaluation Earthquake, has been adopted. The longitudinal tunnel and ground response seismic analyses are performed using a three-dimensional quasi-static linear elastic and nonlinear elastic discrete beam-spring elements to represent segmental liner and ground spring, respectively. Three components (longitudinal, transverse and vertical) of free-field ground displacement-time histories evaluated from site response analyses considering wave passage effects have been applied at the end support of the strain-compatible ground springs. The result of the longitudinal seismic analyses suggests that seismic joint for the mitigation measure requiring the design deflection capacity of 5-7.5 cm is to be furnished at the transition zone between hard and soft ground condition where the maximum member forces on the segmental liner (i.e., axial, shear forces and bending moments) are induced. The paper illustrates how detailed numerical analyses can be practically applied to evaluate the axial and curvature deformations along the tunnel alignment under difficult ground conditions and to provide the seismic joints at proper locations to effectively reduce the seismic demands below the allowable levels.

  16. Vacuum phonon tunneling.

    Science.gov (United States)

    Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K

    2010-10-15

    Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.

  17. Sediment and Cavitation Erosion Studies through Dam Tunnels

    Directory of Open Access Journals (Sweden)

    Muhammad Abid

    2016-01-01

    Full Text Available This paper presents results of sediment and cavitation erosion through Tunnel 2 and Tunnel 3 of Tarbela Dam in Pakistan. Main bend and main branch of Tunnel 2 and outlet 1 and outlet 3 of Tunnel 3 are concluded to be critical for cavitation and sediment erosion. Studies are also performed for increased sediments flow rate, concluding 5 kg/sec as the critical value for sudden increase in erosion rate density. Erosion rate is concluded to be the function of sediment flow rate and head condition. Particulate mass presently observed is reasonably low, hence presently not affecting the velocity and the flow field.

  18. A review on all-perovskite multiferroic tunnel junctions

    Directory of Open Access Journals (Sweden)

    Yuewei Yin

    2017-12-01

    Full Text Available Although the basic concept was proposed only about 10 years ago, multiferroic tunnel junctions (MFTJs with a ferroelectric barrier sandwiched between two ferromagnetic electrodes have already drawn considerable interests, driven mainly by its potential applications in multi-level memories and electric field controlled spintronics. The purpose of this article is to review the recent progress of all-perovskite MFTJs. Starting from the key functional properties of the tunneling magnetoresistance, tunneling electroresistance, and tunneling electromagnetoresistance effects, we discuss the main origins of the tunneling electroresistance effect, recent progress in achieving multilevel resistance states in a single device, and the electrical control of spin polarization and transport through the ferroelectric polarization reversal of the tunneling barrier.

  19. Channel selective tunnelling through a nanographene assembly

    International Nuclear Information System (INIS)

    Wong, H S; Durkan, C; Feng, X; Müllen, K; Chandrasekhar, N

    2012-01-01

    We report selective tunnelling through a nanographene intermolecular tunnel junction achieved via scanning tunnelling microscope tip functionalization with hexa-peri-hexabenzocoronene (HBC) molecules. This leads to an offset in the alignment between the energy levels of the tip and the molecular assembly, resulting in the imaging of a variety of distinct charge density patterns in the HBC assembly, not attainable using a bare metallic tip. Different tunnelling channels can be selected by the application of an electric field in the tunnelling junction, which changes the condition of the HBC on the tip. Density functional theory-based calculations relate the imaged HBC patterns to the calculated molecular orbitals at certain energy levels. These patterns bear a close resemblance to the π-orbital states of the HBC molecule calculated at the relevant energy levels, mainly below the Fermi energy of HBC. This correlation demonstrates the ability of an HBC functionalized tip as regards accessing an energy range that is restricted to the usual operating bias range around the Fermi energy with a normal metallic tip at room temperature. Apart from relating to molecular orbitals, some patterns could also be described in association with the Clar aromatic sextet formula. Our observations may help pave the way towards the possibility of controlling charge transport between organic interfaces. (paper)

  20. Investigating superconductivity by tunneling spectroscopy using oxide heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fillis-Tsirakis, Evangelos

    2017-06-19

    Electronic systems which are as highly-functional as the LaAlO{sub 3}/SrTiO{sub 3} interface are rare, as the emergent high-mobility two-dimensional electron system (2DES) exhibits ferromagnetism, incipient ferroelectricity, piezoelectricity, Rashba spin-orbit coupling, superconductivity and high electronic correlations; properties that may also coexist with one another. The possibility of tuning its electrical properties by external parameters such as a gate-field, temperature, pressure and magnetic-field makes the LaAlO{sub 3}/SrTiO{sub 3}-2DES the scientific analogue of a multi-tool. LaAlO{sub 3}/SrTiO{sub 3} samples were grown by pulsed-laser-deposition. Using this system, planar tunnel junctions were constructed that allowed for tunneling spectroscopy measurements. The resemblance of the LaAlO{sub 3}/SrTiO{sub 3} 2DES to the high-temperature superconductors undoubtedly adds value to the findings of this work. Further investigation of its nature has revealed that by depleting from the optimally doped region, the electron-phonon coupling strength increases and accounts for the persisting superconducting behavior within the macroscopically resistive regime at very low doping. Transport measurements at T = 50 mK were performed while tuning the carrier concentration and sweeping magnetic fields in the perpendicular-to-interface orientation, to investigate the superconductor-to-insulator transition by carrier depletion. The transition in LaAlO{sub 3}/SrTiO{sub 3}, induced by tuning the carrier concentration, has thus been characterized as a superconductor-metal-insulator transition (SMIT). One aim of these measurements was to investigate the possible existence of the ''superinsulator'' phase, identified by several authors in thin metallic films. Such a phase has not been observed during transport measurements at the LaAlO{sub 3}/SrTiO{sub 3} 2DES. The nature of superconductivity in the entire phase diagram and particularly across the SMIT has

  1. Investigating superconductivity by tunneling spectroscopy using oxide heterostructures

    International Nuclear Information System (INIS)

    Fillis-Tsirakis, Evangelos

    2017-01-01

    Electronic systems which are as highly-functional as the LaAlO 3 /SrTiO 3 interface are rare, as the emergent high-mobility two-dimensional electron system (2DES) exhibits ferromagnetism, incipient ferroelectricity, piezoelectricity, Rashba spin-orbit coupling, superconductivity and high electronic correlations; properties that may also coexist with one another. The possibility of tuning its electrical properties by external parameters such as a gate-field, temperature, pressure and magnetic-field makes the LaAlO 3 /SrTiO 3 -2DES the scientific analogue of a multi-tool. LaAlO 3 /SrTiO 3 samples were grown by pulsed-laser-deposition. Using this system, planar tunnel junctions were constructed that allowed for tunneling spectroscopy measurements. The resemblance of the LaAlO 3 /SrTiO 3 2DES to the high-temperature superconductors undoubtedly adds value to the findings of this work. Further investigation of its nature has revealed that by depleting from the optimally doped region, the electron-phonon coupling strength increases and accounts for the persisting superconducting behavior within the macroscopically resistive regime at very low doping. Transport measurements at T = 50 mK were performed while tuning the carrier concentration and sweeping magnetic fields in the perpendicular-to-interface orientation, to investigate the superconductor-to-insulator transition by carrier depletion. The transition in LaAlO 3 /SrTiO 3 , induced by tuning the carrier concentration, has thus been characterized as a superconductor-metal-insulator transition (SMIT). One aim of these measurements was to investigate the possible existence of the ''superinsulator'' phase, identified by several authors in thin metallic films. Such a phase has not been observed during transport measurements at the LaAlO 3 /SrTiO 3 2DES. The nature of superconductivity in the entire phase diagram and particularly across the SMIT has been investigated by magnetic-field-dependent tunneling

  2. New generation of free-piston shock tunnels

    Science.gov (United States)

    Morrison, W. R. B.; Stalker, R. J.; Duffin, J.

    1990-01-01

    Consideration is given to three free-piston driven hypersonic tunnels under construction that will greatly enhance existing test capabilities. The tunnel being built at Caltech will feature energy capabilities about 40 percent higher than those of the world's largest operational free-piston tunnel to date. The second tunnel under construction will allow full-size engine hardware at near-orbital speeds. The third facility is a high-performance expansion tube that will be capable of generating high enthalpy flows at speeds of up to 9 km/sec. It will provide flows with dissociation levels much lower than are attainable with a reflected shock tunnel, approaching actual flight conditions. A table shows the tunnels' characteristics.

  3. Prediction of tunnel boring machine performance using machine and rock mass data

    International Nuclear Information System (INIS)

    Dastgir, G.

    2012-01-01

    Performance of the tunnel boring machine and its prediction by different methods has been a hot issue since the first TBM came into being. For the sake of safe and sound transport, improvement of hydro-power, mining, civil and many other tunneling projects that cannot be driven efficiently and economically by conventional drill and blast, TBMs are quite frequently used. TBM parameters and rock mass properties, which heavily influence machine performance, should be estimated or known before choice of TBM-type and start of excavation. By applying linear regression analysis (SPSS19), fuzzy logic tools and a special Math-Lab code on actual field data collected from seven TBM driven tunnels (Hieflau expansion, Queen water tunnel, Vereina, Hemerwald, Maen, Pieve and Varzo tunnel), an attempt was made to provide prediction of rock mass class (RMC), rock fracture class (RFC), penetration rate (PR) and advance rate (AR). For detailed analysis of TBM performance, machine parameters (thrust, machine rpm, torque, power etc.), machine types and specification and rock mass properties (UCS, discontinuity in rock mass, RMC, RFC, RMR, etc.) were analyzed by 3-D surface plotting using statistical software R. Correlations between machine parameters and rock mass properties which effectively influence prediction models, are presented as well. In Hieflau expansion tunnel AR linearly decreases with increase of thrust due to high dependence of machine advance rate upon rock strength. For Hieflau expansion tunnel three types of data (TBM, rock mass and seismic data e.g. amplitude, pseudo velocity etc.) were coupled and simultaneously analyzed by plotting 3-D surfaces. No appreciable correlation between seismic data (Amplitude and Pseudo velocity) and rock mass properties and machine parameters could be found. Tool wear as a function of TBM operational parameters was analyzed which revealed that tool wear is minimum if applied thrust is moderate and that tool wear is high when thrust is

  4. Electrical Transport Through Tunnel Barriers and Thin Dielectric Layers and Physical Properties of the High Tc Oxide Superconductors

    Science.gov (United States)

    1990-03-26

    Josephson Tipo Emparedado con Barrera de (Nb-Si)-Amorto," PhD. Thesis, Universidad Nacional Autonoma de Mexico, May 1989. 17. E.S. Hellman, D.G...A15 Nb-Sn," Phys. Rev. B 30, p. 2590 (1984). 4. S.J. Bending, R.H. Hammond, and M.R. Beasley, "Superconductivity in the High-Tc A15 V-6a System," Bull

  5. Quantum tunneling with friction

    Science.gov (United States)

    Tokieda, M.; Hagino, K.

    2017-05-01

    Using the phenomenological quantum friction models introduced by P. Caldirola [Nuovo Cimento 18, 393 (1941), 10.1007/BF02960144] and E. Kanai [Prog. Theor. Phys. 3, 440 (1948), 10.1143/ptp/3.4.440], M. D. Kostin [J. Chem. Phys. 57, 3589 (1972), 10.1063/1.1678812], and K. Albrecht [Phys. Lett. B 56, 127 (1975), 10.1016/0370-2693(75)90283-X], we study quantum tunneling of a one-dimensional potential in the presence of energy dissipation. To this end, we calculate the tunneling probability using a time-dependent wave-packet method. The friction reduces the tunneling probability. We show that the three models provide similar penetrabilities to each other, among which the Caldirola-Kanai model requires the least numerical effort. We also discuss the effect of energy dissipation on quantum tunneling in terms of barrier distributions.

  6. Wind Tunnel Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...

  7. The ISI Tunnel

    Science.gov (United States)

    1993-10-01

    DP /etc/tunnelvisa p zephyr dark -star TCP /etc/tunnelvisa p zephyr dak’star ICMP /etc/tunnelvisa p zephyr quark MDP /etc/tunnelvisa p zephyr quark ...drax-net-yp 128.9.32.2 1 route add quark -net-yp 128.9.32.3 1 route add vlsi-net-yp 128.9.32.4 1 route add darkstar-net-yp 128.9.32.3 1 route add rocky...TCP /etc/tunnel-visa p zephyr quark ICMP /etc/tunnel-visa p zephyr drax tTI)P /etc/tunnel-visa p zephyr drax TCP /etc/tunnel_visa p zephyr drax ICMP

  8. Wind Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This ARDEC facility consists of subsonic, transonic, and supersonic wind tunnels to acquire aerodynamic data. Full-scale and sub-scale models of munitions are fitted...

  9. Transport and Quantum Coherence in Graphene Rings: Aharonov-Bohm Oscillations, Klein Tunneling, and Particle Localization

    Science.gov (United States)

    Filusch, Alexander; Wurl, Christian; Pieper, Andreas; Fehske, Holger

    2018-06-01

    Simulating quantum transport through mesoscopic, ring-shaped graphene structures, we address various quantum coherence and interference phenomena. First, a perpendicular magnetic field, penetrating the graphene ring, gives rise to Aharonov-Bohm oscillations in the conductance as a function of the magnetic flux, on top of the universal conductance fluctuations. At very high fluxes, the interference gets suppressed and quantum Hall edge channels develop. Second, applying an electrostatic potential to one of the ring arms, nn'n- or npn-junctions can be realized with particle transmission due to normal tunneling or Klein tunneling. In the latter case, the Aharonov-Bohm oscillations weaken for smooth barriers. Third, if potential disorder comes in to play, both Aharonov-Bohm and Klein tunneling effects rate down, up to the point where particle localization sets in.

  10. Multi-camera and structured-light vision system (MSVS) for dynamic high-accuracy 3D measurements of railway tunnels.

    Science.gov (United States)

    Zhan, Dong; Yu, Long; Xiao, Jian; Chen, Tanglong

    2015-04-14

    Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV) of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS). First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results.

  11. Multi-Camera and Structured-Light Vision System (MSVS for Dynamic High-Accuracy 3D Measurements of Railway Tunnels

    Directory of Open Access Journals (Sweden)

    Dong Zhan

    2015-04-01

    Full Text Available Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS. First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results.

  12. Growth and optical characteristics of InAs quantum dot structures with tunnel injection quantum wells for 1.55 μ m high-speed lasers

    Science.gov (United States)

    Bauer, Sven; Sichkovskyi, Vitalii; Reithmaier, Johann Peter

    2018-06-01

    InP based lattice matched tunnel injection structures consisting of a InGaAs quantum well, InAlGaAs barrier and InAs quantum dots designed to emit at 1.55 μ m were grown by molecular beam epitaxy and investigated by photoluminescence spectroscopy and atomic force microscopy. The strong influence of quantum well and barrier thicknesses on the samples emission properties at low and room temperatures was investigated. The phenomenon of a decreased photoluminescence linewidth of tunnel injection structures compared to a reference InAs quantum dots sample could be explained by the selection of the emitting dots through the tunneling process. Morphological investigations have not revealed any effect of the injector well on the dot formation and their size distribution. The optimum TI structure design could be defined.

  13. Wind-Tunnel Investigation of Wind Loads on a Post-Panamax Container Ship as a Function of the Container Configuration on Deck

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent

    2012-01-01

    An investigation of the wind forces acting on a 9,000+ TEU container ship has been carried out through a series of wind tunnel tests. It was investigated how the wind forces depend on the container configuration on the deck using a 1:450 scale model and a series of appropriate container...... are presented as nondimensional coefficients. It is concluded, that the measured forces and moment depend on the container configuration on deck, and the results may provide a general idea of how the magnitude of the wind forces is affected by a given container stacking configuration on a similar container ship....

  14. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    Science.gov (United States)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  15. Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM

    International Nuclear Information System (INIS)

    Paul, William; Lutz, Christopher P.; Heinrich, Andreas J.; Baumann, Susanne

    2016-01-01

    We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5–35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.

  16. Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM

    Energy Technology Data Exchange (ETDEWEB)

    Paul, William; Lutz, Christopher P.; Heinrich, Andreas J. [IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Baumann, Susanne [IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2016-07-15

    We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5–35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.

  17. Hoosac tunnel geothermal heat source. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-10

    The Hoosac Rail Tunnel has been analyzed as a central element in a district heating system for the City of North Adams. The tunnel has been viewed as a collector of the earth's geothermal heat and a seasonal heat storage facility with heat piped to the tunnel in summer from existing facilities at a distance. Heated fluid would be transported in winter from the tunnel to users who would boost the temperature with individual heat pumps. It was concluded the tunnel is a poor source of geothermal heat. The maximum extractable energy is only 2200 million BTU (20000 gallons of oil) at 58/sup 0/F. The tunnel is a poor heat storage facility. The rock conductivity is so high that 75% of the heat injected would escape into the mountain before it could be recaptured for use. A low temperature system, with individual heat pumps for temperature boost could be economically attractive if a low cost fuel (byproduct, solid waste, cogeneration) or a cost effective seasonal heat storage were available.

  18. Tunnelling of a molecule

    International Nuclear Information System (INIS)

    Jarvis, P.D.; Bulte, D.P.

    1998-01-01

    A quantum-mechanical description of tunnelling is presented for a one-dimensional system with internal oscillator degrees of freedom. The 'charged diatomic molecule' is frustrated on encountering a barrier potential by its centre of charge not being coincident with its centre of mass, resulting in transitions amongst internal states. In an adiabatic limit, the tunnelling of semiclassical coherent-like oscillator states is shown to exhibit the Hartman and Bueuttiker-Landauer times t H and t BL , with the time dependence of the coherent state parameter for the tunnelled state given by α(t) = α e -iω(t+Δt) , Δt = t H - it BL . A perturbation formalism is developed, whereby the exact transfer matrix can be expanded to any desired accuracy in a suitable limit. An 'intrinsic' time, based on the oscillator transition rate during tunnelling, transmission or reflection, is introduced. In simple situations the resulting intrinsic tunnelling time is shown to vanish to lowest order. In the general case a particular (nonzero) parametrisation is inferred, and its properties discussed in comparison with the literature on tunnelling times for both wavepackets and internal clocks. Copyright (1998) CSIRO Australia

  19. Modality planning for preventing tunnel vision in crisis management

    NARCIS (Netherlands)

    Cao, Y.; Nijholt, Antinus; Theune, Mariët; van der Sluis, Ielka; Bachvarova, Yulia; Andre, Elisabeth

    2008-01-01

    Crisis management is a time-critical task with high uncertainty and high risk. Stress and cognitive overload often result in a set of bias in crisis manager’s situation understanding and information confirming processes, known as 'tunnel vision'. Aiming at preventing tunnel vision, we propose an

  20. Tunnels: different construction methods and its use for pipelines installation

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Tales; Soares, Ana Cecilia; Assis, Slow de; Bolsonaro, Ralfo; Sanandres, Simon [Petroleo do Brasil S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    In a continental dimensions country like Brazil, the pipeline modal faces the challenge of opening ROW's in the most different kind of soils with the most different geomorphology. To safely fulfill the pipeline construction demand, the ROW opening uses all techniques in earthworks and route definition and, where is necessary, no digging techniques like horizontal directional drilling, micro tunneling and also full size tunnels design for pipelines installation in high topography terrains to avoid geotechnical risks. PETROBRAS has already used the tunnel technique to cross higher terrains with great construction difficult, and mainly to make it pipeline maintenance and operation easier. For the GASBOL Project, in Aparados da Serra region and in GASYRG, in Bolivia, two tunnels were opened with approximately 700 meters and 2,000 meters each one. The GASBOL Project had the particularity of being a gallery with only one excavation face, finishing under the hill and from this point was drilled a vertical shaft was drilled until the top to install the pipeline section, while in GASYRG Project the tunnel had two excavation faces. Currently, two projects are under development with tunnels, one of then is the Caraguatatuba-Taubate gas pipeline (GASTAU), with a 5 km tunnel, with the same concepts of the GASBOL tunnel, with a gallery to be opened with the use of a TBM (Tunneling Boring Machine), and a shaft to the surface, and the gas pipeline Cabiunas-Reduc III (GASDUC III) project is under construction with a 3.7 km tunnel, like the GASYRG tunnel with two faces. This paper presents the main excavation tunneling methods, conventional and mechanized, presenting the most relevant characteristics from both and, in particular, the use of tunnels for pipelines installation. (author)

  1. On locally uniformly linearizable high breakdown location and scale functionals

    NARCIS (Netherlands)

    Davies, P.L.

    1998-01-01

    This article gives two constructions of a weighted mean which has a large domain, is affinely equivariant, has a locally high breakdown point and is locally uniformly linearizable. One construction is based on $M$-functionals with smooth defining $\\psi$- and $\\chi$ -functions which are used to

  2. Evaluation of internal and external doses from $^{11}C$ produced in the air in high energy proton accelerator tunnels

    CERN Document Server

    Endo, A; Kanda, Y; Oishi, T; Kondo, K

    2001-01-01

    Air has been irradiated with high energy protons at the 12 GeV proton synchrotron to obtain the following parameters essential for the internal dose evaluation from airborne /sup 11/C produced through nuclear spallation reactions: the abundance of gaseous and particulate /sup 11/C, chemical forms, and particle size distribution. It was found that more than 98% of /sup 11/C is present as gas and the rest is aerosol. The gaseous components were only /sup 11/CO and /sup 11/CO/sub 2/ and their proportions were approximately 80% and 20%, respectively. The particulate /sup 11/C was found to be sulphate and/or nitrate aerosols having a log-normal size distribution; the measurement using a diffusion battery showed a geometric mean radius of 0.035 mu m and a geometric standard deviation of 1.8 at a beam intensity of 6.8*10/sup 11/ proton.pulse /sup -1/ and an irradiation time of 9.6 min. By taking the chemical composition and particle size into account, effective doses both from internal and from external exposures pe...

  3. Functions and Design Scheme of Tibet High Altitude Test Base

    Institute of Scientific and Technical Information of China (English)

    Yu Yongqing; Guo Jian; Yin Yu; Mao Yan; Li Guangfan; Fan Jianbin; Lu Jiayu; Su Zhiyi; Li Peng; Li Qingfeng; Liao Weiming; Zhou Jun

    2010-01-01

    @@ The functional orientation of the Tibet High Altitude Test Base, subordinated to the State Grid Corporation of China (SGCC), is to serve power transmission projects in high altitude areas, especially to provide technical support for southwestern hydropower delivery projects by UHVDC transmission and Qinghai-Tibet grid interconnection project. This paper presents the matters concerned during siting and planning, functions,design scheme, the main performances and parameters of the test facilities, as well as the tests and research tasks already carried out.

  4. Complex use of heat-exchange tunnels

    Directory of Open Access Journals (Sweden)

    А. Ф. Галкин

    2017-04-01

    Full Text Available The paper presents separate results of complex research (experimental and theoretical on the application of heat-exchange tunnels – in frozen rocks, among other things – as underground constructions serving two purposes. It is proposed to use heat-exchange tunnels as a separate multi-functional module, which under normal conditions will be used to set standards of heat regime parameters in the mines, and in emergency situations, natural or man-made, will serve as a protective structure to shelter mine workers. Heat-exchange modules can be made from mined-out or specially constructed tunnels. Economic analysis shows that the use of such multi-functional modules does not increase operation and maintenance costs, but enhances safety of mining operations and reliability in case of emergency situations. There are numerous theoretic and experimental investigations in the field of complex use of mining tunnels, which allows to develop regulatory design documents on their basis. Experience of practical application of heat-exchange tunnels has been assessed from the position of regulating heat regime in the mines.

  5. Gaze recognition in high-functioning autistic patients. Evidence from functional MRI

    International Nuclear Information System (INIS)

    Takebayashi, Hiroko; Ogai, Masahiro; Matsumoto, Hideo

    2006-01-01

    We examined whether patients with high-functioning autistic disorder (AD) would exhibit abnormal activation in brain regions implicated in the functioning of theory of mind (TOM) during gaze recognition. We investigated brain activity during gaze recognition in 5 patients with high-functioning AD and 9 normal subjects, using functional magnetic resonance imaging. On the gaze task, more activation was found in the left middle frontal gyrus, the right intraparietal sulcus, and the precentral and inferior parietal gyri bilaterally in controls than in AD patients, whereas the patient group showed more powerful signal changes in the left superior temporal gyrus, the right insula, and the right medial frontal gyrus. These results suggest that high-functioning AD patients have functional abnormalities not only in TOM-related brain regions, but also in widely distributed brain regions that are not normally activated upon the processing of information from another person's gaze. (author)

  6. Experimental Study of Slat Noise from 30P30N Three-Element High-Lift Airfoil in JAXA Hard-Wall Low-Speed Wind Tunnel

    Science.gov (United States)

    Murayama, Mitsuhiro; Nakakita, Kazuyuki; Yamamoto, Kazuomi; Ura, Hiroki; Ito, Yasushi; Choudhari, Meelan M.

    2014-01-01

    Aeroacoustic measurements associated with noise radiation from the leading edge slat of the canonical, unswept 30P30N three-element high-lift airfoil configuration have been obtained in a 2 m x 2 m hard-wall wind tunnel at the Japan Aerospace Exploration Agency (JAXA). Performed as part of a collaborative effort on airframe noise between JAXA and the National Aeronautics and Space Administration (NASA), the model geometry and majority of instrumentation details are identical to a NASA model with the exception of a larger span. For an angle of attack up to 10 degrees, the mean surface Cp distributions agree well with free-air computational fluid dynamics predictions corresponding to a corrected angle of attack. After employing suitable acoustic treatment for the brackets and end-wall effects, an approximately 2D noise source map is obtained from microphone array measurements, thus supporting the feasibility of generating a measurement database that can be used for comparison with free-air numerical simulations. Both surface pressure spectra obtained via KuliteTM transducers and the acoustic spectra derived from microphone array measurements display a mixture of a broad band component and narrow-band peaks (NBPs), both of which are most intense at the lower angles of attack and become progressively weaker as the angle of attack is increased. The NBPs exhibit a substantially higher spanwise coherence in comparison to the broadband portion of the spectrum and, hence, confirm the trends observed in previous numerical simulations. Somewhat surprisingly, measurements show that the presence of trip dots between the stagnation point and slat cusp enhances the NBP levels rather than mitigating them as found in a previous experiment.

  7. Challenging stereotypes: sexual functioning of single adults with high functioning autism spectrum disorder.

    Science.gov (United States)

    Byers, E Sandra; Nichols, Shana; Voyer, Susan D

    2013-11-01

    This study examined the sexual functioning of single adults (61 men, 68 women) with high functioning autism and Asperger syndrome living in the community with and without prior relationship experience. Participants completed an on-line questionnaire assessing autism symptoms, psychological functioning, and various aspects of sexual functioning. In general participants reported positive sexual functioning. Participants without prior relationship experience were significantly younger and more likely to be male and identify as heterosexual. They reported significantly higher sexual anxiety, lower sexual arousability, lower dyadic desire, and fewer positive sexual cognitions. The men reported better sexual function than did the women in a number of areas. These results counter negative societal perceptions about the sexuality of high functioning individuals on the autism spectrum.

  8. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur

    2012-06-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  9. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur; Gooneratne, Chinthaka Pasan; Kosel, Jü rgen

    2012-01-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  10. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials

    Science.gov (United States)

    Wang, Pan; Krasavin, Alexey V.; Nasir, Mazhar E.; Dickson, Wayne; Zayats, Anatoly V.

    2018-02-01

    Non-equilibrium hot carriers formed near the interfaces of semiconductors or metals play a crucial role in chemical catalysis and optoelectronic processes. In addition to optical illumination, an efficient way to generate hot carriers is by excitation with tunnelling electrons. Here, we show that the generation of hot electrons makes the nanoscale tunnel junctions highly reactive and facilitates strongly confined chemical reactions that can, in turn, modulate the tunnelling processes. We designed a device containing an array of electrically driven plasmonic nanorods with up to 1011 tunnel junctions per square centimetre, which demonstrates hot-electron activation of oxidation and reduction reactions in the junctions, induced by the presence of O2 and H2 molecules, respectively. The kinetics of the reactions can be monitored in situ following the radiative decay of tunnelling-induced surface plasmons. This electrically driven plasmonic nanorod metamaterial platform can be useful for the development of nanoscale chemical and optoelectronic devices based on electron tunnelling.

  11. Anomalous spin-dependent tunneling statistics in Fe/MgO/Fe junctions induced by disorder at the interface

    Science.gov (United States)

    Yan, Jiawei; Wang, Shizhuo; Xia, Ke; Ke, Youqi

    2018-01-01

    We present first-principles analysis of interfacial disorder effects on spin-dependent tunneling statistics in thin Fe/MgO/Fe magnetic tunnel junctions. We find that interfacial disorder scattering can significantly modulate the tunneling statistics in the minority spin of the parallel configuration (PC) while all other spin channels remain dominated by the Poissonian process. For the minority-spin channel of PC, interfacial disorder scattering favors the formation of resonant tunneling channels by lifting the limitation of symmetry conservation at low concentration, presenting an important sub-Poissonian process in PC, but is destructive to the open channels at high concentration. We find that the important modulation of tunneling statistics is independent of the type of interfacial disorder. A bimodal distribution function of transmission with disorder dependence is introduced and fits very well our first-principles results. The increase of MgO thickness can quickly change the tunneling from a sub-Poissonian to Poissonian dominated process in the minority spin of PC with disorder. Our results provide a sensitive detection method of an ultralow concentration of interfacial defects.

  12. Spin-dependent tunnelling at infrared frequencies: magnetorefractive effect in magnetic nanocomposites

    International Nuclear Information System (INIS)

    Granovsky, A.B.; Inoue, Mitsuteru

    2004-01-01

    We present a brief review of recent experimental and theoretical results on magnetorefractive effect in magnetic metal-insulator nanogranular alloys with tunnel-type magnetoresistance focusing on its relation with high-frequency spin-dependent tunnelling

  13. Spin-dependent tunnelling at infrared frequencies: magnetorefractive effect in magnetic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, A.B. E-mail: granov@magn.ru; Inoue, Mitsuteru

    2004-05-01

    We present a brief review of recent experimental and theoretical results on magnetorefractive effect in magnetic metal-insulator nanogranular alloys with tunnel-type magnetoresistance focusing on its relation with high-frequency spin-dependent tunnelling.

  14. Hydrogen-atom tunneling through a very high barrier; spontaneous thiol → thione conversion in thiourea isolated in low-temperature Ar, Ne, H2 and D2 matrices.

    Science.gov (United States)

    Rostkowska, Hanna; Lapinski, Leszek; Nowak, Maciej J

    2018-05-23

    Spontaneous thiol → thione hydrogen-atom transfer has been investigated for molecules of thiourea trapped in Ar, Ne, normal-H2 (n-H2) and normal-D2 (n-D2) low-temperature matrices. The most stable thione isomer was the only form of the compound present in the matrices after their deposition. According to MP2/6-311++G(2d,p) calculations, the thiol tautomer should be higher in energy by 62.5 kJ mol-1. This less stable thiol form of the compound was photochemically generated in a thione → thiol process, occurring upon UV irradiation of the matrix. Subsequently, a very slow spontaneous conversion of the thiol tautomer into the thione form was observed for the molecules isolated in Ar, Ne, n-H2 and n-D2 matrices kept at 3.5 K and in the dark. Since the thiol → thione transformation in thiourea is a process involving the dissociation of a chemical bond, the barrier for this hydrogen-atom transfer is very high (104-181 kJ mol-1). Crossing such a high potential-energy barrier at a temperature as low as 3.5 K, is possible only by hydrogen-atom tunneling. The experimentally measured time constants of this tunneling process: 52 h (Ar), 76 h (Ne), 94 h (n-H2) and 94 h (n-D2), do not differ much from one another. Hence, the dependence of the tunneling rate on the matrix environment is not drastic. The progress of the thiol → thione conversion was also monitored for Ar matrices at different temperature: 3.5 K, 9 K and 15 K. For this temperature range, the experiments revealed no detectable temperature dependence of the rate of the tunneling process.

  15. High performance tunnel injection InGaN/GaN quantum Dot light emitting diodes emitting in the green (λ=495nm)

    KAUST Repository

    Zhang, Meng; Banerjee, Animesh; Bhattacharya, Pallab

    2011-01-01

    peak at 495 nm at 300 K. The characteristics of tunnel injection InGaN/GaN quantum dot light emitting diodes are presented. The current density at maximum efficiency is 90.2 A/cm 2, which is superior to equivalent multiquantum well devices. © 2010

  16. Energy-gap spectroscopy of superconductors using a tunneling microscope

    International Nuclear Information System (INIS)

    Le Duc, H.G.; Kaiser, W.J.; Stern, J.A.

    1987-01-01

    A unique scanning tunneling microscope (STM) system has been developed for spectroscopy of the superconducting energy gap. High-resolution control of tunnel current and voltage allows for measurement of superconducting properties at tunnel resistance levels 10 2 --10 3 greater than that achieved in prior work. The previously used STM methods for superconductor spectroscopy are compared to those developed for the work reported here. Superconducting energy-gap spectra are reported for three superconductors, Pb, PbBi, and NbN, over a range of tunnel resistance. The measured spectra are compared directly to theory

  17. Characterisation of work function fluctuations for high-precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kahlenberg, Jan; Bickmann, Edward; Heil, Werner; Otten, Ernst W.; Schmidt, Christian; Wunderle, Alexander [Johannes Gutenberg-Universitaet Mainz (Germany); Babutzka, Martin; Schoenung, Kerstin [Karlsruher Institut fuer Technologie (Germany); Beck, Marcus [Johannes Gutenberg-Universitaet Mainz (Germany); Helmholtz-Institut Mainz (Germany)

    2016-07-01

    For a wide range of high-precision experiments in physics, well-defined electric potentials for achieving high measurement accuracies are required. An accurate determination of the electric potential is crucial for the measurement of the neutrino mass (KATRIN) as well as the measurement of the e{sup -} anti ν{sub e} correlation coefficient a in free neutron decay (aSPECT). Work function fluctuations on the electrodes lead to uncertainties in the distribution of the electric potential. For aSPECT, the electric potential has to be known at an accuracy of 10 mV. However, due to the patch effect of gold, work function fluctuations of several 100 meV can occur. Therefore, the work function distributions of the gold-plated electrodes have been measured using a Kelvin probe. Furthermore, the change of work function distributions over time as well as the influence of relative humidity on the work function measurement have been investigated. For aSPECT, the work function distributions of the gold-plated electrodes have been measured using a Kelvin probe. Due to the patch effect of gold, work function fluctuations of up to 160 meV occur. This would lead to a significant uncertainty of the potential barrier, which should be known at an accuracy of 10 mV. Furthermore, the change of work function distributions over time as well as the influence of relative humidity on the work function measurement have been investigated.

  18. Irreducible Greens' Functions method in the theory of highly correlated systems

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.

    1994-09-01

    The self-consistent theory of the correlation effects in Highly Correlated Systems (HCS) is presented. The novel Irreducible Green's Function (IGF) method is discussed in detail for the Hubbard model and random Hubbard model. The interpolation solution for the quasiparticle spectrum, which is valid for both the atomic and band limit is obtained. The (IGF) method permits to calculate the quasiparticle spectra of many-particle systems with the complicated spectra and strong interaction in a very natural and compact way. The essence of the method deeply related to the notion of the Generalized Mean Fields (GMF), which determine the elastic scattering corrections. The inelastic scattering corrections leads to the damping of the quasiparticles and are the main topic of the present consideration. The calculation of the damping has been done in a self-consistent way for both limits. For the random Hubbard model the weak coupling case has been considered and the self-energy operator has been calculated using the combination of the IGF method and Coherent Potential Approximation (CPA). The other applications of the method to the s-f model, Anderson model, Heisenberg antiferromagnet, electron-phonon interaction models and quasiparticle tunneling are discussed briefly. (author). 79 refs

  19. El strength function at high spin and excitation energy

    International Nuclear Information System (INIS)

    Barrette, J.

    1983-04-01

    Recently giant dipole resonance-like concentration of the dipole strength function in nuclei was observed at both high excitation energies and high spins. This observation raises the possibility of obtaining new information on the shape of rapidly rotating heated nuclei. Recent experimental results on this subject are reviewed

  20. Scaling Projections on Spin-Transfer Torque Magnetic Tunnel Junctions

    Science.gov (United States)

    Das, Debasis; Tulapurkar, Ashwin; Muralidharan, Bhaskaran

    2018-02-01

    We investigate scaling of technologically relevant magnetic tunnel junction devices in the trilayer and pentalayer configurations by varying the cross-sectional area along the transverse direction using the non-equilibrium Green's function spin transport formalism. We study the geometry dependence by considering square and circular cross-sections. As the transverse dimension in each case reduces, we demonstrate that the transverse mode energy profile plays a major role in the resistance-area product. Both types of devices show constant tunnel magnetoresistance at larger cross-sectional areas but achieve ultra-high magnetoresistance at small cross-sectional areas, while maintaining low resistance-area products. We notice that although the critical switching voltage for switching the magnetization of the free layer nanomagnet in the trilayer case remains constant at larger areas, it needs more energy to switch at smaller areas. In the pentalayer case, we observe an oscillatory behavior at smaller areas as a result of double barrier tunneling. We also describe how switching characteristics of both kinds of devices are affected by the scaling.

  1. Comparison of Electron Transmittance and Tunneling Current through a Trapezoidal Potential Barrier with Spin Polarization Consideration by using Analytical and Numerical Approaches

    Science.gov (United States)

    Nabila, Ezra; Noor, Fatimah A.; Khairurrijal

    2017-07-01

    In this study, we report an analytical calculation of electron transmittance and polarized tunneling current in a single barrier heterostructure of a metal-GaSb-metal by considering the Dresselhaus spin orbit effect. Exponential function, WKB method and Airy function were used in calculating the electron transmittance and tunneling current. A Transfer Matrix Method, as a numerical method, was utilized as the benchmark to evaluate the analytical calculation. It was found that the transmittances calculated under exponential function and Airy function is the same as that calculated under TMM method at low electron energy. However, at high electron energy only the transmittance calculated under Airy function approach is the same as that calculated under TMM method. It was also shown that the transmittances both of spin-up and spin-down conditions increase as the electron energy increases for low energies. Furthermore, the tunneling current decreases with increasing the barrier width.

  2. Rare species support vulnerable functions in high-diversity ecosystems.

    Science.gov (United States)

    Mouillot, David; Bellwood, David R; Baraloto, Christopher; Chave, Jerome; Galzin, Rene; Harmelin-Vivien, Mireille; Kulbicki, Michel; Lavergne, Sebastien; Lavorel, Sandra; Mouquet, Nicolas; Paine, C E Timothy; Renaud, Julien; Thuiller, Wilfried

    2013-01-01

    Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across

  3. Rare species support vulnerable functions in high-diversity ecosystems.

    Directory of Open Access Journals (Sweden)

    David Mouillot

    Full Text Available Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees, we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by

  4. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur; Useinov, Niazbeck Kh H; Tagirov, Lenar R.; Kosel, Jü rgen

    2011-01-01

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can

  5. Resonant tunneling in a pulsed phonon field

    DEFF Research Database (Denmark)

    Kral, P.; Jauho, Antti-Pekka

    1999-01-01

    , The nonequilibrium spectral function for the resonance displays the formation and decay of the phonon sidebands on ultrashort time scales. The time-dependent tunneling current through the individual phonon satellites reflects this quasiparticle formation by oscillations, whose time scale is set by the frequency...

  6. New vision of magnetic tunnelling

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Jonathan R. [Amherst College, Amhurst, MA (United States)

    2002-01-01

    Recent experiments support the idea that crystal defects may be responsible for the quantum tunnelling of magnetic moments in molecular magnets at low temperatures. The magnetic moment of a typical bar magnet will never spontaneously reverse direction. However, thermal fluctuations can flip the moment of a magnetic particle just a few nanometres across. The particle can be cooled to nearly absolute zero to suppress this process, but the moment may still find a way to reverse via quantum tunnelling. Quantum tunnelling of magnetization has been the subject of decades of research. Until a few years ago, however, there had only been circumstantial evidence for the phenomenon. This is because most systems of small magnetic particles are hard to characterize - the particles have a variety of shapes, sizes and other properties, making it difficult to compare data with theory. Some real progress was made a few years ago through research into high-spin single-molecule magnets. With dimensions of about a nanometre, these magnets are usually composed of a magnetic core that is surrounded by organic complexes. When they crystallize into a regular lattice, the organic ions keep neighbouring magnets well separated so that they interact only weakly. Ideally all the molecules are identical because they have been built chemically, which means that they can be characterized precisely and that any data can be analysed quantitatively. The most studied of these molecules is manganese-12 acetate (Mn{sub 12}). Within each molecule, the spins of the eight Mn{sup 3+} ions (each with S=2) are antiparallel to the spins of the four Mn{sup 4+} ions (each with S=3/2), giving Mn{sub 12} a total spin of S=10. Or, to put it another way, the magnetic moment of Mn{sub 12} is 20 times larger than that of the electron. Now Eugene Chudnovsky of Lehman College in New York and Dmitry Garanin of the University of Mainz in Germany have suggested a new mechanism for producing tunnelling in Mn{sub 12

  7. Modelling of optoelectronic circuits based on resonant tunneling diodes

    Science.gov (United States)

    Rei, João. F. M.; Foot, James A.; Rodrigues, Gil C.; Figueiredo, José M. L.

    2017-08-01

    Resonant tunneling diodes (RTDs) are the fastest pure electronic semiconductor devices at room temperature. When integrated with optoelectronic devices they can give rise to new devices with novel functionalities due to their highly nonlinear properties and electrical gain, with potential applications in future ultra-wide-band communication systems (see e.g. EU H2020 iBROW Project). The recent coverage on these devices led to the need to have appropriated simulation tools. In this work, we present RTD based optoelectronic circuits simulation packages to provide circuit signal level analysis such as transient and frequency responses. We will present and discuss the models, and evaluate the simulation packages.

  8. Interferometry of Klein tunnelling electrons in graphene quantum rings

    Science.gov (United States)

    de Sousa, D. J. P.; Chaves, Andrey; Pereira, J. M.; Farias, G. A.

    2017-01-01

    We theoretically study a current switch that exploits the phase acquired by a charge carrier as it tunnels through a potential barrier in graphene. The system acts as an interferometer based on an armchair graphene quantum ring, where the phase difference between interfering electronic wave functions for each path can be controlled by tuning either the height or the width of a potential barrier in the ring arms. By varying the parameters of the potential barriers, the interference can become completely destructive. We demonstrate how this interference effect can be used for developing a simple graphene-based logic gate with a high on/off ratio.

  9. Tunneling and resonant conductance in one-dimensional molecular structures

    International Nuclear Information System (INIS)

    Kozhushner, M.A.; Posvyanskii, V.S.; Oleynik, I.I.

    2005-01-01

    We present a theory of tunneling and resonant transitions in one-dimensional molecular systems which is based on Green's function theory of electron sub-barrier scattering off the structural units (or functional groups) of a molecular chain. We show that the many-electron effects are of paramount importance in electron transport and they are effectively treated using a formalism of sub-barrier scattering operators. The method which calculates the total scattering amplitude of the bridge molecule not only predicts the enhancement of the amplitude of tunneling transitions in course of tunneling electron transfer through onedimensional molecular structures but also allows us to interpret conductance mechanisms by calculating the bound energy spectrum of the tunneling electron, the energies being obtained as poles of the total scattering amplitude of the bridge molecule. We found that the resonant tunneling via bound states of the tunneling electron is the major mechanism of electron conductivity in relatively long organic molecules. The sub-barrier scattering technique naturally includes a description of tunneling in applied electric fields which allows us to calculate I-V curves at finite bias. The developed theory is applied to explain experimental findings such as bridge effect due to tunneling through organic molecules, and threshold versus Ohmic behavior of the conductance due to resonant electron transfer

  10. Spectroscopic Imaging Scanning Tunneling Microscopy Studies of Electronic Structure in the Superconducting and Pseudogap Phases of Cuprate High-Tc Superconductors

    Science.gov (United States)

    Fujita, Kazuhiro; Schmidt, Andrew R.; Kim, Eun-Ah; Lawler, Michael J.; Lee, Dung Hai; Davis, J. C.; Eisaki, Hiroshi; Uchida, Shin-ichi

    2012-01-01

    One of the key motivations for the development of atomically resolved spectroscopic imaging scanning tunneling microscopy (SI-STM) has been to probe the electronic structure of cuprate high temperature superconductors. In both the d-wave superconducting (dSC) and the pseudogap (PG) phases of underdoped cuprates, two distinct classes of electronic states are observed using SI-STM. The first class consists of the dispersive Bogoliubov quasiparticles of a homogeneous d-wave superconductor. These are detected below a lower energy scale |E|=Δ0 and only upon a momentum space (k-space) arc which terminates near the lines connecting k=±(π/a0,0) to k=±(0,π/a0). Below optimal doping, this ``nodal'' arc shrinks continuously with decreasing hole density. In both the dSC and PG phases, the only broken symmetries detected in the |E|≤Δ0 states are those of a d-wave superconductor. The second class of states occurs at energies near the pseudogap energy scale |E|˜ Δ1 which is associated conventionally with the ``antinodal'' states near k=±(π/a0,0) and k=±(0,π/a0). We find that these states break the expected 90°-rotational (C4) symmetry of electronic structure within CuO2 unit cells, at least down to 180°-rotational (C2) symmetry (nematic) but in a spatially disordered fashion. This intra-unit-cell C4 symmetry breaking coexists at |E|˜Δ1 with incommensurate conductance modulations locally breaking both rotational and translational symmetries (smectic). The characteristic wavevector Q of the latter is determined, empirically, by the k-space points where Bogoliubov quasiparticle interference terminates, and therefore evolves continuously with doping. The properties of these two classes of |E|˜Δ1 states are indistinguishable in the dSC and PG phases. To explain this segregation of k-space into the two regimes distinguished by the symmetries of their electronic states and their energy scales |E|˜Δ1 and |E|≤Δ0, and to understand how this impacts the electronic

  11. Tunnelling through a Gaussian random barrier

    International Nuclear Information System (INIS)

    Bezak, Viktor

    2008-01-01

    A thorough analysis of the tunnelling of electrons through a laterally inhomogeneous rectangular barrier is presented. The barrier height is defined as a statistically homogeneous Gaussian random function. In order to simplify calculations, we assume that the electron energy is low enough in comparison with the mean value of the barrier height. The randomness of the barrier height is defined vertically by a constant variance and horizontally by a finite correlation length. We present detailed calculations of the angular probability density for the tunnelled electrons (i.e. for the scattering forwards). The tunnelling manifests a remarkably diffusive character if the wavelength of the electrons is comparable with the correlation length of the barrier

  12. High-throughput screening of chemicals as functional ...

    Science.gov (United States)

    Identifying chemicals that provide a specific function within a product, yet have minimal impact on the human body or environment, is the goal of most formulation chemists and engineers practicing green chemistry. We present a methodology to identify potential chemical functional substitutes from large libraries of chemicals using machine learning based models. We collect and analyze publicly available information on the function of chemicals in consumer products or industrial processes to identify a suite of harmonized function categories suitable for modeling. We use structural and physicochemical descriptors for these chemicals to build 41 quantitative structure–use relationship (QSUR) models for harmonized function categories using random forest classification. We apply these models to screen a library of nearly 6400 chemicals with available structure information for potential functional substitutes. Using our Functional Use database (FUse), we could identify uses for 3121 chemicals; 4412 predicted functional uses had a probability of 80% or greater. We demonstrate the potential application of the models to high-throughput (HT) screening for “candidate alternatives” by merging the valid functional substitute classifications with hazard metrics developed from HT screening assays for bioactivity. A descriptor set could be obtained for 6356 Tox21 chemicals that have undergone a battery of HT in vitro bioactivity screening assays. By applying QSURs, we wer

  13. Seepage into PEP tunnel

    International Nuclear Information System (INIS)

    Weidner, H.

    1990-01-01

    The current rate of seepage into the PEP tunnel in the vicinity of IR-10 is very low compared to previous years. Adequate means of handling this low flow are in place. It is not clear whether the reduction in the flow is temporary, perhaps due to three consecutive dry years, or permanent due to drainage of a perched water table. During PEP construction a large amount of effort was expended in attempts to seal the tunnel, with no immediate effect. The efforts to ''manage'' the water flow are deemed to be successful. By covering equipment to protect it from dripping water and channeling seepage into the drainage gutters, the seepage has been reduced to a tolerable nuisance. There is no sure, safe procedure for sealing a leaky shotcreted tunnel

  14. Renewing functionalized graphene as electrodes for high-performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yan [National Center for Nanoscience and Technology, Zhongguancun, Beiyitiao No.11, Beijing, 100190 (China); Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Luo, Bin; Jia, Yuying; Li, Xianglong; Wang, Bin; Song, Qi [National Center for Nanoscience and Technology, Zhongguancun, Beiyitiao No.11, Beijing, 100190 (China); Kang, Feiyu [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Zhi, Linjie [National Center for Nanoscience and Technology, Zhongguancun, Beiyitiao No.11, Beijing, 100190 (China); School of Materials Science and Engineering, University of Shanghai for Science and Technology, Jungong Road 516, 200093, Shanghai (China)

    2012-12-11

    An acid-assisted ultrarapid thermal strategy is developed for constructing specifically functionalized graphene. The electrochemical performance of functionalized graphene can be boosted via elaborate coupling between the pseudocapacitance and the electronic double layer capacitance through rationally tailoring the structure of graphene sheets. This presents an opportunity for developing further high-performance graphene-based electrodes to bridge the performance gap between traditional capacitors and batteries. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Renewing functionalized graphene as electrodes for high-performance supercapacitors.

    Science.gov (United States)

    Fang, Yan; Luo, Bin; Jia, Yuying; Li, Xianglong; Wang, Bin; Song, Qi; Kang, Feiyu; Zhi, Linjie

    2012-12-11

    An acid-assisted ultrarapid thermal strategy is developed for constructing specifically functionalized graphene. The electrochemical performance of functionalized graphene can be boosted via elaborate coupling between the pseudocapacitance and the electronic double layer capacitance through rationally tailoring the structure of graphene sheets. This presents an opportunity for developing further high-performance graphene-based electrodes to bridge the performance gap between traditional capacitors and batteries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Small-size low-temperature scanning tunnel microscope

    International Nuclear Information System (INIS)

    Al'tfeder, I.B.; Khajkin, M.S.

    1989-01-01

    A small-size scanning tunnel microscope, designed for operation in transport helium-filled Dewar flasks is described. The microscope design contains a device moving the pin to the tested sample surface and a piezoelectric fine positioning device. High vibration protection of the microscope is provided by its suspension using silk threads. The small-size scanning tunnel microscope provides for atomic resolution

  17. 2D Vertical Heterostructures for Novel Tunneling Device Applications

    Science.gov (United States)

    2017-03-01

    2D Vertical Heterostructures for Novel Tunneling Device Applications Philip M. Campbell, Christopher J. Perini, W. Jud Ready, and Eric M. Vogel...School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA, USA 30332 Abstract: Vertical heterostructures...digital logic, signal processing, analog-to-digital conversion, and high-frequency communications, vertical heterostructure tunneling devices have

  18. Tunneling cracks in full scale wind turbine blade joints

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn; Sørensen, Bent F.; Kildegaard, C.

    2017-01-01

    A novel approach is presented and used in a generic tunneling crack tool for the prediction of crack growth rates for tunneling cracks propagating across a bond-line in a wind turbine blade under high cyclic loadings. In order to test and demonstrate the applicability of the tool, model predictions...

  19. Ultrafast terahertz scanning tunneling microscopy with atomic resolution

    DEFF Research Database (Denmark)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.

    2016-01-01

    We demonstrate that ultrafast terahertz scanning tunneling microscopy (THz-STM) can probe single atoms on a silicon surface with simultaneous sub-nanometer and sub-picosecond spatio-temporal resolution. THz-STM is established as a new technique for exploring high-field non-equilibrium tunneling...

  20. CASE SERIES Cubital tunnel syndrome: A report of two cases

    African Journals Online (AJOL)

    Cubital tunnel syndrome occurs as a result of compression of the ulnar nerve between the medial ... A 40-year-old man revealed high signal on T2W (T2 weighted). MRI in a thickened ... Pathological compression gives rise to cubital tunnel ...

  1. Instabilities in thin tunnel junctions

    International Nuclear Information System (INIS)

    Konkin, M.K.; Adler, J.G.

    1978-01-01

    Tunnel junctions prepared for inelastic electron tunneling spectroscopy are often plagued by instabilities in the 0-500-meV range. This paper relates the bias at which the instability occurs to the barrier thickness

  2. RITD – Wind tunnel testing

    Science.gov (United States)

    Haukka, Harri; Harri, Ari-Matti; Aleksashkin, Sergei; Koryanov, Valeri; Schmidt, Walter; Heilimo, Jyri; Finchenko, Valeri; Martynov, Maxim; Ponomarenko, Andrey; Kazakovtsev, Victor; Arruego, Ignazio

    2015-04-01

    An atmospheric re-entry and descent and landing system (EDLS) concept based on inflatable hypersonic decelerator techniques is highly promising for the Earth re-entry missions. We developed such EDLS for the Earth re-entry utilizing a concept that was originally developed for Mars. This EU-funded project is called RITD - Re-entry: Inflatable Technology Development - and it was to assess the bene¬fits of this technology when deploying small payloads from low Earth orbits to the surface of the Earth with modest costs. The principal goal was to assess and develope a preliminary EDLS design for the entire relevant range of aerodynamic regimes expected to be encountered in Earth's atmosphere during entry, descent and landing. The RITD entry and descent system utilizes an inflatable hypersonic decelerator. Development of such system requires a combination of wind tunnel tests and numerical simulations. This included wind tunnel tests both in transsonic and subsonic regimes. The principal aim of the wind tunnel tests was the determination of the RITD damping factors in the Earth atmosphere and recalculation of the results for the case of the vehicle descent in the Mars atmosphere. The RITD mock-up model used in the tests was in scale of 1:15 of the real-size vehicle as the dimensions were (midsection) diameter of 74.2 mm and length of 42 mm. For wind tunnel testing purposes the frontal part of the mock-up model body was manufactured by using a PolyJet 3D printing technology based on the light curing of liquid resin. The tail part of the mock-up model body was manufactured of M1 grade copper. The structure of the mock-up model placed th center of gravity in the same position as that of the real-size RITD. The wind tunnel test program included the defining of the damping factor at seven values of Mach numbers 0.85; 0.95; 1.10; 1.20; 1.25; 1.30 and 1.55 with the angle of attack ranging from 0 degree to 40 degrees with the step of 5 degrees. The damping characteristics of

  3. Tunneling in axion monodromy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo [Department of Physics, University of Wisconsin,Madison, WI 53706 (United States)

    2016-10-06

    The Coleman formula for vacuum decay and bubble nucleation has been used to estimate the tunneling rate in models of axion monodromy in recent literature. However, several of Coleman’s original assumptions do not hold for such models. Here we derive a new estimate with this in mind using a similar Euclidean procedure. We find that there are significant regions of parameter space for which the tunneling rate in axion monodromy is not well approximated by the Coleman formula. However, there is also a regime relevant to large field inflation in which both estimates parametrically agree. We also briefly comment on the applications of our results to the relaxion scenario.

  4. LEP tunnel monorail

    CERN Multimedia

    1985-01-01

    A monorail from CERN's Large Electron Positron collider (LEP, for short). It ran around the 27km tunnel, transporting equipment and personnel. With its 27-kilometre circumference, LEP was the largest electron-positron accelerator ever built and ran from 1989 to 2000. During 11 years of research, LEP's experiments provided a detailed study of the electroweak interaction. Measurements performed at LEP also proved that there are three – and only three – generations of particles of matter. LEP was closed down on 2 November 2000 to make way for the construction of the Large Hadron Collider in the same tunnel.

  5. Excavating a transfer tunnel

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    The transfer tunnel being dug here will take the 450 GeV beam from the SPS and inject it into the LHC where the beam energies will be increased to 7 TeV. In order to transfer this beam from the SPS to the LHC, two transfer tunnels are used to circulate the beams in opposite directions. When excavated, the accelerator components, including magnets, beam pipes and cryogenics will be installed and connected to both the SPS and LHC ready for operation to begin in 2008.

  6. Gap anisotropy and tunneling currents. [MPS3

    DEFF Research Database (Denmark)

    Lazarides, N.; Sørensen, Mads Peter

    1996-01-01

    The tunneling Hamiltonian formalism is applied to calculate the tunnelingcurrents through a small superconducting tunnel junction. The formalism isextended to nonconstant tunneling matrix elements. The electrodes of thejunction are assumed to......The tunneling Hamiltonian formalism is applied to calculate the tunnelingcurrents through a small superconducting tunnel junction. The formalism isextended to nonconstant tunneling matrix elements. The electrodes of thejunction are assumed to...

  7. Breaking through the tranfer tunnel

    CERN Document Server

    Laurent Guiraud

    2001-01-01

    This image shows the tunnel boring machine breaking through the transfer tunnel into the LHC tunnel. Proton beams will be transferred from the SPS pre-accelerator to the LHC at 450 GeV through two specially constructed transfer tunnels. From left to right: LHC Project Director, Lyn Evans; CERN Director-General (at the time), Luciano Maiani, and Director for Accelerators, Kurt Hubner.

  8. Control of tunneling in heterostructures

    International Nuclear Information System (INIS)

    Volokhov, V M; Tovstun, C A; Ivlev, B

    2007-01-01

    A tunneling current between two rectangular potential wells can be effectively controlled by applying an external ac field. A variation of the ac frequency by 10% may lead to the suppression of the tunneling current by two orders of magnitude, which is a result of quantum interference under the action of the ac field. This effect of destruction of tunneling can be used as a sensitive control of tunneling current across nanosize heterostructures

  9. Calculating electronic tunnel currents in networks of disordered irregularly shaped nanoparticles by mapping networks to arrays of parallel nonlinear resistors

    Energy Technology Data Exchange (ETDEWEB)

    Aghili Yajadda, Mir Massoud [CSIRO Manufacturing Flagship, P.O. Box 218, Lindfield NSW 2070 (Australia)

    2014-10-21

    We have shown both theoretically and experimentally that tunnel currents in networks of disordered irregularly shaped nanoparticles (NPs) can be calculated by considering the networks as arrays of parallel nonlinear resistors. Each resistor is described by a one-dimensional or a two-dimensional array of equal size nanoparticles that the tunnel junction gaps between nanoparticles in each resistor is assumed to be equal. The number of tunnel junctions between two contact electrodes and the tunnel junction gaps between nanoparticles are found to be functions of Coulomb blockade energies. In addition, the tunnel barriers between nanoparticles were considered to be tilted at high voltages. Furthermore, the role of thermal expansion coefficient of the tunnel junction gaps on the tunnel current is taken into account. The model calculations fit very well to the experimental data of a network of disordered gold nanoparticles, a forest of multi-wall carbon nanotubes, and a network of few-layer graphene nanoplates over a wide temperature range (5-300 K) at low and high DC bias voltages (0.001 mV–50 V). Our investigations indicate, although electron cotunneling in networks of disordered irregularly shaped NPs may occur, non-Arrhenius behavior at low temperatures cannot be described by the cotunneling model due to size distribution in the networks and irregular shape of nanoparticles. Non-Arrhenius behavior of the samples at zero bias voltage limit was attributed to the disorder in the samples. Unlike the electron cotunneling model, we found that the crossover from Arrhenius to non-Arrhenius behavior occurs at two temperatures, one at a high temperature and the other at a low temperature.

  10. High-Order Hamilton's Principle and the Hamilton's Principle of High-Order Lagrangian Function

    International Nuclear Information System (INIS)

    Zhao Hongxia; Ma Shanjun

    2008-01-01

    In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.

  11. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs.

    Science.gov (United States)

    Mouillot, David; Villéger, Sébastien; Parravicini, Valeriano; Kulbicki, Michel; Arias-González, Jesus Ernesto; Bender, Mariana; Chabanet, Pascale; Floeter, Sergio R; Friedlander, Alan; Vigliola, Laurent; Bellwood, David R

    2014-09-23

    When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought.

  12. An analytical gate tunneling current model for MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Kazerouni, Iman Abaspur, E-mail: imanabaspur@gmail.com; Hosseini, Seyed Ebrahim [Sabzevar Tarbiat Moallem University, Electrical and Computer Department (Iran, Islamic Republic of)

    2012-03-15

    Gate tunneling current of MOSFETs is an important factor in modeling ultra small devices. In this paper, gate tunneling in present-generation MOSFETs is studied. In the proposed model, we calculate the electron wave function at the semiconductor-oxide interface and inversion charge by treating the inversion layer as a potential well, including some simplifying assumptions. Then we compute the gate tunneling current using the calculated wave function. The proposed model results have an excellent agreement with experimental results in the literature.

  13. Magnetic tunnel junction thermocouple for thermoelectric power harvesting

    Science.gov (United States)

    Böhnert, T.; Paz, E.; Ferreira, R.; Freitas, P. P.

    2018-05-01

    The thermoelectric power generated in magnetic tunnel junctions (MTJs) is determined as a function of the tunnel barrier thickness for a matched electric circuit. This study suggests that lower resistance area product and higher tunnel magnetoresistance will maximize the thermoelectric power output of the MTJ structures. Further, the thermoelectric behavior of a series of two MTJs, a MTJ thermocouple, is investigated as a function of its magnetic configurations. In an alternating magnetic configurations the thermovoltages cancel each other, while the magnetic contribution remains. A large array of MTJ thermocouples could amplify the magnetic thermovoltage signal significantly.

  14. Single-magnon tunneling through a ferromagnetic nanochain

    International Nuclear Information System (INIS)

    Petrov, E.G.; Ostrovsky, V.

    2010-01-01

    Magnon transmission between ferromagnetic contacts coupled by a linear ferromagnetic chain is studied at the condition when the chain exhibits itself as a tunnel magnon transmitter. It is shown that dependently on magnon energy at the chain, a distant intercontact magnon transmission occurs either in resonant or off-resonant tunneling regime. In the first case, a transmission function depends weakly on the number of chain sites whereas at off-resonant regime the same function manifests an exponential drop with the chain length. Change of direction of external magnetic field in one of ferromagnetic contacts blocks a tunnel transmission of magnon.

  15. High taxonomic variability despite stable functional structure across microbial communities.

    Science.gov (United States)

    Louca, Stilianos; Jacques, Saulo M S; Pires, Aliny P F; Leal, Juliana S; Srivastava, Diane S; Parfrey, Laura Wegener; Farjalla, Vinicius F; Doebeli, Michael

    2016-12-05

    Understanding the processes that are driving variation of natural microbial communities across space or time is a major challenge for ecologists. Environmental conditions strongly shape the metabolic function of microbial communities; however, other processes such as biotic interactions, random demographic drift or dispersal limitation may also influence community dynamics. The relative importance of these processes and their effects on community function remain largely unknown. To address this uncertainty, here we examined bacterial and archaeal communities in replicate 'miniature' aquatic ecosystems contained within the foliage of wild bromeliads. We used marker gene sequencing to infer the taxonomic composition within nine metabolic functional groups, and shotgun environmental DNA sequencing to estimate the relative abundances of these groups. We found that all of the bromeliads exhibited remarkably similar functional community structures, but that the taxonomic composition within individual functional groups was highly variable. Furthermore, using statistical analyses, we found that non-neutral processes, including environmental filtering and potentially biotic interactions, at least partly shaped the composition within functional groups and were more important than spatial dispersal limitation and demographic drift. Hence both the functional structure and taxonomic composition within functional groups of natural microbial communities may be shaped by non-neutral and roughly separate processes.

  16. Hydrophilic functionalized silicon nanoparticles produced by high energy ball milling

    Science.gov (United States)

    Hallmann, Steffen

    The mechanochemical synthesis of functionalized silicon nanoparticles using High Energy Ball Milling (HEBM) is described. This method facilitates the fragmentation of mono crystalline silicon into the nanometer regime and the simultaneous surface functionalization of the formed particles. The surface functionalization is induced by the reaction of an organic liquid, such as alkynes and alkenes with reactive silicon sites. This method can be applied to form water soluble silicon nanoparticles by lipid mediated micelle formation and the milling in organic liquids containing molecules with bi-functional groups, such as allyl alcohol. Furthermore, nanometer sized, chloroalkyl functionalized particles can be synthesized by milling the silicon precursor in the presence of an o-chloroalkyne with either alkenes or alkynes as coreactants. This process allows tuning of the concentration of the exposed, alkyl linked chloro groups, simply by varying the relative amounts of the coreactant. The silicon nanoparticles that are formed serve as the starting point for a wide variety of chemical reactions, which may be used to alter the surface properties of the functionalized nanoparticles. Finally, the use of functionalized silicon particles for the production of superhydrophobic films is described. Here HEBM proves to be an efficient method to produce functionalized silicon particles, which can be deposited to form a stable coating exhibiting superhydrophobic properties. The hydrophobicity of the silicon film can be tuned by the milling time and thus the resulting surface roughness of the films.

  17. Ivar Giaever, Tunneling, and Superconductors

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Ivar Giaever, Tunneling, and Superconductors Resources with in Superconductors Measured by Electron Tunneling; Physical Review Letters, Vol. 5 Issue 4: 147 - 148 ; August 15, 1960 Electron Tunneling Between Two Superconductors; Physical Review Letters, Vol. 5 Issue 10

  18. Scanning tunneling microscope nanoetching method

    Science.gov (United States)

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  19. Physics of optimal resonant tunneling

    NARCIS (Netherlands)

    Racec, P.N.; Stoica, T.; Popescu, C.; Lepsa, M.I.; Roer, van de T.G.

    1997-01-01

    The optimal resonant tunneling, or the complete tunneling transparence of a biased double-barrier resonant-tunneling (DBRT) structure, is discussed. It is shown that its physics does not rest on the departure from the constant potential within the barriers and well, due to the applied electric

  20. Tunneling in green tea: understanding the antioxidant activity of catechol-containing compounds. A variational transition-state theory study.

    Science.gov (United States)

    Tejero, Ismael; Gonzalez-García, Núria; Gonzalez-Lafont, Angels; Lluch, José M

    2007-05-09

    The catechol functionality present in the catechins is responsible for the protective effects exerted by green tea against a wide range of human diseases. High-level electronic structure calculations and canonical variational transition-state theory including multidimensional tunneling corrections have allowed us to understand the key factors of the antioxidant effectiveness of the catechol group. This catechol group forms two hydrogen bonds with the two oxygen atoms of the lipid peroxyl radical, leading to a very compact reactant complex. This fact produces an extremely narrow adiabatic potential-energy profile corresponding to the hydrogen abstraction by the peroxyl radical, which makes it possible for a huge tunneling contribution to take place. So, quantum-mechanical tunneling highly increases the corresponding rate constant value, in such a way that catechins become able to trap the lipid peroxyl radicals in a dominant competition with the very damaging free-radical chain-lipid peroxidation reaction.

  1. Polymer-mediated tunneling transport between carbon nanotubes in nanocomposites.

    Science.gov (United States)

    Derosa, Pedro A; Michalak, Tyler

    2014-05-01

    Electron transport in nanocomposites has attracted a good deal of attention for some time now; furthermore, the ability to control its characteristics is a necessary step in the design of multifunctional materials. When conductive nanostructures (for example carbon nanotubes) are inserted in a non-conductive matrix, electron transport below the percolation threshold is dominated by tunneling and thus the conductive characteristics of the composite depends heavily on the characteristics of the tunneling currents between nanoinserts. A parameter-free approach to study tunneling transport between carbon nanotubes across a polymer matrix is presented. The calculation is done with a combination of Density Functional Theory and Green functions (an approach heavily used in molecular electronics) which is shown here to be effective in this non-resonant transport condition. The results show that the method can effectively capture the effect of a dielectric layer in tunneling transport. The current is found to exponentially decrease with the size of the gap for both vacuum and polymer, and that the polymer layer lowers the tunneling barrier enhancing tunneling conduction. For a polyacrylonitrile matrix, a four-fold decrease in the tunneling constant, compared to tunneling in vacuum, is observed, a result that is consistent with available information. The method is very versatile as any DFT functional (or any other quantum mechanics method) can be used and thus the most accurate method for each particular system can be chosen. Furthermore as more methods become available, the calculations can be revised and improved. This approach can be used to design functional materials for fine-tunning the tunneling transport, for instance, the effect of modifying the nanoinsert-matrix interface (for example, by adding functional groups to carbon nanotubes) can be captured and the comparative performance of each interface predicted by simulation.

  2. Rate of tunneling nonequilibrium quasiparticles in superconducting qubits

    International Nuclear Information System (INIS)

    Ansari, Mohammad H

    2015-01-01

    In superconducting qubits the lifetime of quantum states cannot be prolonged arbitrarily by decreasing temperature. At low temperature quasiparticles tunneling between the electromagnetic environment and superconducting islands takes the condensate state out of equilibrium due to charge imbalance. We obtain the tunneling rate from a phenomenological model of non-equilibrium, where nonequilibrium quasiparticle tunnelling stimulates a temperature-dependent chemical potential shift in the superconductor. As a result we obtain a non-monotonic behavior for relaxation rate as a function of temperature. Depending on the fabrication parameters for some qubits, the lowest tunneling rate of nonequilibrium quasiparticles can take place only near the onset temperature below which nonequilibrium quasiparticles dominate over equilibrium one. Our theory also indicates that such tunnelings can influence the probability of transitions in qubits through a coupling to the zero-point energy of phase fluctuations. (paper)

  3. Modelling band-to-band tunneling current in InP-based heterostructure photonic devices

    NARCIS (Netherlands)

    van Engelen, J.P.; Shen, L.; van der Tol, J.J.G.M.; Smit, M.K.; Kockaert, P.; Emplit, P.; Gorza, S.-P.; Massar, S.

    2015-01-01

    Some semiconductor photonic devices show large discontinuities in the band structure. Short tunnel paths caused by this band structure may lead to an excessive tunneling current, especially in highly doped layers. Modelling of this tunnelling current is therefore important when designing photonic

  4. Presentation of Austrians recommended dispersion model for tunnel portals

    Energy Technology Data Exchange (ETDEWEB)

    Oettl, D.; Sturm, P.; Almbauer, R. [Inst. for Internal Combustion Engines and Thermodynamics, Graz Univ. of Technology (Austria)

    2004-07-01

    Street tunnels in cities are often suggested as solution to avoid daily congestions but also to prevent residential areas from high noise and air pollution emissions. In case of longitudinal ventilated tunnels high pollution levels may occur in the vicinity of the portals. The dispersion of pollutants from tunnel portals is considered to differ significantly from those of other sources, such as line or point sources. To the best of the authors knowledge, there exist currently two distinct dispersion models, which are especially designed to treat dispersion from tunnel portals. Okamoto et al proposed a diagnostic wind field model, where the dispersion is modelled using a Taylor-Galerkin-Forester filter method. Oettl et al. developed a Lagrangian-type model (GRAL TM 3.5=Graz Lagrangian model Tunnel Module version 3.5), which is briefly described in the next section. (orig.)

  5. Differentiating High-Functioning Autism and Social Phobia

    Science.gov (United States)

    Tyson, Katherine E.; Cruess, Dean G.

    2012-01-01

    Both high-functioning autism (HFA) and social phobia (SP) involve profound social interaction deficits. Although these disorders share some similar symptoms, they are conceptualized as distinct. Because both HFA and SP are defined behaviorally, the degree of overlap between the two disorders may result in misinterpretation of symptoms. However,…

  6. Fluorination of some highly functionalized cycloalkanes: chemoselectivity and substrate dependence

    Directory of Open Access Journals (Sweden)

    Attila Márió Remete

    2017-11-01

    Full Text Available A study exploring the chemical behavior of some dihydroxylated β-amino ester stereo- and regioisomers, derived from unsaturated cyclic β-amino acids is described. The nucleophilic fluorinations involving hydroxy–fluorine exchange of some highly functionalized alicyclic diol derivatives have been carried out in view of selective fluorination, investigating substrate dependence, neighboring group assistance and chemodifferentiation.

  7. Audiovisual Integration in High Functioning Adults with Autism

    Science.gov (United States)

    Keane, Brian P.; Rosenthal, Orna; Chun, Nicole H.; Shams, Ladan

    2010-01-01

    Autism involves various perceptual benefits and deficits, but it is unclear if the disorder also involves anomalous audiovisual integration. To address this issue, we compared the performance of high-functioning adults with autism and matched controls on experiments investigating the audiovisual integration of speech, spatiotemporal relations, and…

  8. Who Are Most, Average, or High-Functioning Adults?

    Science.gov (United States)

    Gregg, Noel; Coleman, Chris; Lindstrom, Jennifer; Lee, Christopher

    2007-01-01

    The growing number of high-functioning adults seeking accommodations from testing agencies and postsecondary institutions presents an urgent need to ensure reliable and valid diagnostic decision making. The potential for this population to make significant contributions to society will be greater if we provide the learning and testing…

  9. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    De Hosson, J. T. M.; Ocelik, V.; Chandra, T; Torralba, JM; Sakai, T

    2003-01-01

    In this keynote paper two examples will be present of functionally graded materials produced with high power Nd:YAG lasers. In particular the conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of A18Si and Ti6Al4V alloys are presented. The formation of

  10. Fluorination of some highly functionalized cycloalkanes: chemoselectivity and substrate dependence.

    Science.gov (United States)

    Remete, Attila Márió; Nonn, Melinda; Fustero, Santos; Haukka, Matti; Fülöp, Ferenc; Kiss, Loránd

    2017-01-01

    A study exploring the chemical behavior of some dihydroxylated β-amino ester stereo- and regioisomers, derived from unsaturated cyclic β-amino acids is described. The nucleophilic fluorinations involving hydroxy-fluorine exchange of some highly functionalized alicyclic diol derivatives have been carried out in view of selective fluorination, investigating substrate dependence, neighboring group assistance and chemodifferentiation.

  11. Tunneling path toward spintronics

    International Nuclear Information System (INIS)

    Miao Guoxing; Moodera, Jagadeesh S; Muenzenberg, Markus

    2011-01-01

    The phenomenon of quantum tunneling, which was discovered almost a century ago, has led to many subsequent discoveries. One such discovery, spin polarized tunneling, was made 40 years ago by Robert Meservey and Paul Tedrow (Tedrow and Meservey 1971 Phys. Rev. Lett. 26 192), and it has resulted in many fundamental observations and opened up an entirely new field of study. Until the mid-1990s, this field developed at a steady, low rate, after which a huge increase in activity suddenly occurred as a result of the unraveling of successful spin tunneling between two ferromagnets. In the past 15 years, several thousands of papers related to spin polarized tunneling and transport have been published, making this topic one of the hottest areas in condensed matter physics from both fundamental science and applications viewpoints. Many review papers and book chapters have been written in the past decade on this subject. This paper is not exhaustive by any means; rather, the emphases are on recent progress, technological developments and informing the reader about the current direction in which this topic is moving.

  12. Tunnel nitrogen spill experiment

    International Nuclear Information System (INIS)

    Ageyev, A.I.; Alferov, V.N.; Mulholland, G.T.

    1983-01-01

    The Energy Saver Safety Analysis Report (SAR) found the tunnel oxygen deficiency considerations emphasized helium spills. These reports concluded the helium quickly warms and because of its low denisty, rises to the apex of the tunnel. The oxygen content below the apex and in all but the immediate vicinity of the helium spill is essentially unchanged and guarantees an undisturbed source of oxygen especially important to fallen personnel. In contrast nitrogen spills warm slower than helium due to the ratio of the enthalpy changes per unit volume spilled spread more uniformly across the tunnel cross-section when warmed because of the much smaller density difference with air, and generally provides a greater hazard than helium spills as a result. In particular there was concern that personnel that might fall to the floor for oxygen deficiency or other reasons might find less, and not more, oxygen with dire consequences. The SAR concluded tunnel nitrogen spills were under-investigated and led to this work

  13. The scanning tunneling microscope

    International Nuclear Information System (INIS)

    Salvan, F.

    1986-01-01

    A newly conceived microscope, based on a pure quantum phenomenon, is an ideal tool to study atom by atom the topography and properties of surfaces. Applications are presented: surface ''reconstruction'' of silicon, lamellar compound study, etc... Spectroscopy by tunnel effect will bring important information on electronic properties; it is presented with an application on silicon [fr

  14. Franck-Condon fingerprinting of vibration-tunneling spectra.

    Science.gov (United States)

    Berrios, Eduardo; Sundaradevan, Praveen; Gruebele, Martin

    2013-08-15

    We introduce Franck-Condon fingerprinting as a method for assigning complex vibration-tunneling spectra. The B̃ state of thiophosgene (SCCl2) serves as our prototype. Despite several attempts, assignment of its excitation spectrum has proved difficult because of near-degenerate vibrational frequencies, Fermi resonance between the C-Cl stretching mode and the Cl-C-Cl bending mode, and large tunneling splittings due to the out-of-plane umbrella mode. Hence, the spectrum has never been fitted to an effective Hamiltonian. Our assignment approach replaces precise frequency information with intensity information, eliminating the need for double resonance spectroscopy or combination differences, neither of which have yielded a full assignment thus far. The dispersed fluorescence spectrum of each unknown vibration-tunneling state images its character onto known vibrational progressions in the ground state. By using this Franck-Condon fingerprint, we were able to determine the predominant character of several vibration-tunneling states and assign them; in other cases, the fingerprinting revealed that the states are strongly mixed and cannot be characterized with a simple normal mode assignment. The assigned transitions from vibration-tunneling wave functions that were not too strongly mixed could be fitted within measurement uncertainty by an effective vibration-tunneling Hamiltonian. A fit of all observed vibration-tunneling states will require a full resonance-tunneling Hamiltonian.

  15. Understanding quantum tunneling using diffusion Monte Carlo simulations

    Science.gov (United States)

    Inack, E. M.; Giudici, G.; Parolini, T.; Santoro, G.; Pilati, S.

    2018-03-01

    In simple ferromagnetic quantum Ising models characterized by an effective double-well energy landscape the characteristic tunneling time of path-integral Monte Carlo (PIMC) simulations has been shown to scale as the incoherent quantum-tunneling time, i.e., as 1 /Δ2 , where Δ is the tunneling gap. Since incoherent quantum tunneling is employed by quantum annealers (QAs) to solve optimization problems, this result suggests that there is no quantum advantage in using QAs with respect to quantum Monte Carlo (QMC) simulations. A counterexample is the recently introduced shamrock model (Andriyash and Amin, arXiv:1703.09277), where topological obstructions cause an exponential slowdown of the PIMC tunneling dynamics with respect to incoherent quantum tunneling, leaving open the possibility for potential quantum speedup, even for stoquastic models. In this work we investigate the tunneling time of projective QMC simulations based on the diffusion Monte Carlo (DMC) algorithm without guiding functions, showing that it scales as 1 /Δ , i.e., even more favorably than the incoherent quantum-tunneling time, both in a simple ferromagnetic system and in the more challenging shamrock model. However, a careful comparison between the DMC ground-state energies and the exact solution available for the transverse-field Ising chain indicates an exponential scaling of the computational cost required to keep a fixed relative error as the system size increases.

  16. Monitoring pilot projects on bored tunnelling : The Second Heinenoord Tunnel and the Botlek Rail Tunnel

    NARCIS (Netherlands)

    Bakker, K.J.; De Boer, F.; Admiraal, J.B.M.; Van Jaarsveld, E.P.

    1999-01-01

    Two pilot projects for bored tunnelling in soft soil have been undertaken in the Netherlands. The monitoring was commissioned under the authority of the Centre for Underground Construction (COB). A description of the research related to the Second Heinenoord Tunnel and the Botlek Rail Tunnel will be

  17. Fire Resistant Panels for the Tunnel Linings

    Directory of Open Access Journals (Sweden)

    Gravit Marina

    2016-01-01

    Full Text Available Presents the results of studies of innovative materials in the field of experimental and theoretical research fire resistance fireproof panels Pyro-Safe Aestuver T. Owing to the assembly simplicity, materials cheapness, high ecological standard, recycling, reuse potential, are benefit. Research work is running to improve the knowledge about fireproof panels Pyro-Safe Aestuver T for tunnel lining, its basic performance, its long term behavior and in particular also its fire proof for example when used for the lining of road tunnels.

  18. Dihydroazulene photoswitch operating in sequential tunneling regime

    DEFF Research Database (Denmark)

    Broman, Søren Lindbæk; Lara-Avila, Samuel; Thisted, Christine Lindbjerg

    2012-01-01

    to electrodes so that the electron transport goes by sequential tunneling. To assure weak coupling, the DHA switching kernel is modified by incorporating p-MeSC6H4 end-groups. Molecules are prepared by Suzuki cross-couplings on suitable halogenated derivatives of DHA. The synthesis presents an expansion of our......, incorporating a p-MeSC6H4 anchoring group in one end, has been placed in a silver nanogap. Conductance measurements justify that transport through both DHA (high resistivity) and VHF (low resistivity) forms goes by sequential tunneling. The switching is fairly reversible and reenterable; after more than 20 ON...

  19. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    This section presents the results obtained during the experimental campaign that was conducted in the wind tunnel at LM Wind Power in Lunderskov from August 16th to 26th, 2010. The goal of this study is to validate the so-called TNO trailing edge noise model through measurements of the boundary...... layer turbulence characteristics and the far-field noise generated by the acoustic scattering of the turbulent boundary layer vorticies as they convect past the trailing edge. This campaign was conducted with a NACA0015 airfoil section that was placed in the wind tunnel section. It is equipped with high...

  20. Functional magnetic resonance imaging with ultra-high fields

    International Nuclear Information System (INIS)

    Windischberger, C.; Schoepf, V.; Sladky, R.; Moser, E.; Fischmeister, F.P.S.

    2010-01-01

    Functional magnetic resonance imaging (fMRI) is currently the primary method for non-invasive functional localization in the brain. With the emergence of MR systems with field strengths of 4 Tesla and above, neuronal activation may be studied with unprecedented accuracy. In this article we present different approaches to use the improved sensitivity and specificity for expanding current fMRT resolution limits in space and time based on several 7 Tesla studies. In addition to the challenges that arise with ultra-high magnetic fields possible solutions will be discussed. (orig.) [de