WorldWideScience

Sample records for highly functional tunnelling

  1. High Surface Area Tunnels in Hexagonal WO₃.

    Science.gov (United States)

    Sun, Wanmei; Yeung, Michael T; Lech, Andrew T; Lin, Cheng-Wei; Lee, Chain; Li, Tianqi; Duan, Xiangfeng; Zhou, Jun; Kaner, Richard B

    2015-07-08

    High surface area in h-WO3 has been verified from the intracrystalline tunnels. This bottom-up approach differs from conventional templating-type methods. The 3.67 Å diameter tunnels are characterized by low-pressure CO2 adsorption isotherms with nonlocal density functional theory fitting, transmission electron microscopy, and thermal gravimetric analysis. These open and rigid tunnels absorb H(+) and Li(+), but not Na(+) in aqueous electrolytes without inducing a phase transformation, accessing both internal and external active sites. Moreover, these tunnel structures demonstrate high specific pseudocapacitance and good stability in an H2SO4 aqueous electrolyte. Thus, the high surface area created from 3.67 Å diameter tunnels in h-WO3 shows potential applications in electrochemical energy storage, selective ion transfer, and selective gas adsorption.

  2. Highly functional tunnelling devices integrated in 3D

    DEFF Research Database (Denmark)

    Wernersson, Lars-Erik; Lind, Erik; Lindström, Peter

    2003-01-01

    a new type of tunnelling transistor, namely a resonant-tunnelling permeable base transistor. A simple model based on a piece-wise linear approximation is used in Cadence to describe the current-voltage characteristics of the transistor. This model is further introduced into a small signal equivalent...... simultaneously on both tunnelling structures and the obtained characteristics are the result of the interplay between the two tunnelling structures and the gate. An equivalent circuit model is developed and we show how this interaction influences the current-voltage characteristics. The gate may be used......We present a new technology for integrating tunnelling devices in three dimensions. These devices are fabricated by the combination of the growth of semiconductor heterostructures with the controlled introduction of metallic elements into an epitaxial layer by an overgrowth technique. First, we use...

  3. Further 'comment on 'Generalized Bessel functions in tunnelling ionization''

    International Nuclear Information System (INIS)

    Reiss, H R; Krainov, V P

    2005-01-01

    J Bauer, in commenting on our tunnelling approximation for the generalized Bessel function, points out that when the approximation is applied to strong-field ionization, it is suitable only for the lowest-energy part of an ionization spectrum. We do not disagree. We point out several things: the results of Bauer are to be expected; linear polarization results are dominated by the lowest part of the multiphoton spectrum; and we do not recommend practical use of this tunnelling approximation, since the asymptotic approximation is so much better. We show comparisons of momentum distributions calculated with the tunnelling approximation and those with the complete strong-field approximation, which show in more detail than spectrum comparisons that the tunnelling approximation to the generalized Bessel function is applicable only to the low-momentum part of the distribution, and neglects altogether the high-momentum portion. (reply)

  4. Pain and Function Following Revision Cubital Tunnel Surgery.

    Science.gov (United States)

    Davidge, Kristen M; Ebersole, Gregory C; Mackinnon, Susan E

    2017-11-01

    The purpose of this study was to determine pain and functional outcomes following revision cubital tunnel surgery and to identify predictors of poor postoperative outcome. A retrospective cohort study was conducted of all patients undergoing revision cubital tunnel surgery over a 5-year period at a high-volume peripheral nerve center. Intraoperative findings, demographic and injury factors, and outcomes were reviewed. Average pain, worst pain, and impact of pain on self-perceived quality of life were each measured using a 10-cm visual analog scale (VAS). Function was evaluated using pinch and grip strength, as well as the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire. Differences in preoperative and postoperative pain, strength, and DASH were analyzed using nonparametric tests. Predictors of postoperative average pain were evaluated using odds ratios and linear regression analyses. The final cohort consisted of 50 patients (mean age: 46.3 ± 12.5 years; 29 [68%] male) undergoing 52 revision ulnar nerve transpositions (UNTs). Pain VAS scores decreased significantly following revision UNT. Strength and DASH scores demonstrated nonsignificant improvements postoperatively. Worse preoperative pain and greater than 1 prior cubital tunnel procedure were significant predictors of worse postoperative average pain VAS scores. Patients can and do improve following revision cubital tunnel surgery, particularly as it relates to pain. Intraoperative findings during the revision procedure suggest that adherence to specific principles in the primary operation is key to prevention of secondary cubital tunnel syndrome.

  5. Generalized Bessel functions in tunnelling ionization

    International Nuclear Information System (INIS)

    Reiss, H R; Krainov, V P

    2003-01-01

    We develop two new approximations for the generalized Bessel function that frequently arises in the analytical treatment of strong-field processes, especially in non-perturbative multiphoton ionization theories. Both these new forms are applicable to the tunnelling environment in atomic ionization, and are analytically much simpler than the currently used low-frequency asymptotic approximation for the generalized Bessel function. The second of the new forms is an approximation to the first, and it is the second new form that exhibits the well-known tunnelling exponential

  6. High tunnels: protection for rather than from insect pests?

    Science.gov (United States)

    Ingwell, Laura L; Thompson, Sarah L; Kaplan, Ian; Foster, Ricky E

    2017-12-01

    High tunnels are a season extension tool creating a hybrid of field and greenhouse growing conditions. High tunnels have recently increased in the USA and thus research on their management is lacking. One purported advantage of these structures is protection from common field pests, but evidence to support this claim is lacking. We compared insect pest populations in high tunnels with field production over two years for three crops: tomato, broccoli and cucumber. Greenhouse pests (e.g. aphids, whiteflies) were more prevalent in high tunnels, compared to field plots. Hornworms (tobacco (Manduca sexta L.) and tomato (M. quinquemaculata Haworth)), a common field pest on tomato, were also more abundant in high tunnels, requiring chemical control while field populations were low. The crucifer caterpillar complex (imported cabbageworm (Pieris rapae L.), diamondback moth (Plutella xylostella L.) and cabbage looper (Trichoplusia ni Hübner)) was also more abundant in high tunnels in 2010. Cucumber beetle (striped (Acalymma vittatum F.) and spotted (Diabrotica undecimpunctata Mannerheim)) densities were higher in high tunnels in 2010 and field plots in 2011. The common assumption that high tunnels offer protection from field pests was not supported. Instead, high tunnel growing conditions may facilitate higher pest populations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. A new spin-functional MOSFET based on magnetic tunnel junction technology: pseudo-spin-MOSFET

    OpenAIRE

    Shuto, Yusuke; Nakane, Ryosho; Wang, Wenhong; Sukegawa, Hiroaki; Yamamoto, Shuu'ichirou; Tanaka, Masaaki; Inomata, Koichiro; Sugahara, Satoshi

    2009-01-01

    We fabricated and characterized a new spin-functional MOSFET referred to as a pseudo-spin-MOSFET (PS-MOSFET). The PS-MOSFET is a circuit using an ordinary MOSFET and magnetic tunnel junction (MTJ) for reproducing functions of spin-transistors. Device integration techniques for a bottom gate MOSFET using a silicon-on-insulator (SOI) substrate and for an MTJ with a full-Heusler alloy electrode and MgO tunnel barrier were developed. The fabricated PS-MOSFET exhibited high and low transconductanc...

  8. High Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal

    NWs were contacted in a NW-FET setup. Electrical measurements at room temperature display typical tunnel diode behavior, with a Peak-to-Valley Current Ratio (PVCR) as high as 8.2 and a peak current density as high as 329 A/cm2. Low temperature measurements show improved PVCR of up to 27.6....... is the tunnel (Esaki) diode, which provides a low-resistance connection between junctions. We demonstrate an InP-GaAs NW axial heterostructure with tunnel diode behavior. InP and GaAs can be readily n- and p-doped, respectively, and the heterointerface is expected to have an advantageous type II band alignment...

  9. Rectified tunneling current response of bio-functionalized metal-bridge-metal junctions.

    Science.gov (United States)

    Liu, Yaqing; Offenhäusser, Andreas; Mayer, Dirk

    2010-01-15

    Biomolecular bridged nanostructures allow direct electrical addressing of electroactive biomolecules, which is of interest for the development of bioelectronic and biosensing hybrid junctions. In the present paper, the electroactive biomolecule microperoxidase-11 (MP-11) was integrated into metal-bridge-metal (MBM) junctions assembled from a scanning tunneling microscope (STM) setup. Before immobilization of MP-11, the Au working electrode was first modified by a self-assembled monolayer of 1-undecanethiol (UDT). A symmetric and potential independent response of current-bias voltage (I(t)/V(b)) was observed for the Au (substrate)/UDT/Au (tip) junction. However, the I(t)/V(b) characteristics became potential dependent and asymmetrical after binding of MP-11 between the electrodes of the junction. The rectification ratio of the asymmetric current response varies with gate electrode modulation. A resonant tunneling process between metal electrode and MP-11 enhances the tunneling current and is responsible for the observed rectification. Our investigations demonstrated that functional building blocks of proteins can be reassembled into new conceptual devices with operation modes deviating from their native function, which could prove highly useful in the design of future biosensors and bioelectronic devices. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Highly doped layer for tunnel junctions in solar cells

    Science.gov (United States)

    Fetzer, Christopher M.

    2017-08-01

    A highly doped layer for interconnecting tunnel junctions in multijunction solar cells is presented. The highly doped layer is a delta doped layer in one or both layers of a tunnel diode junction used to connect two or more p-on-n or n-on-p solar cells in a multijunction solar cell. A delta doped layer is made by interrupting the epitaxial growth of one of the layers of the tunnel diode, depositing a delta dopant at a concentration substantially greater than the concentration used in growing the layer of the tunnel diode, and then continuing to epitaxially grow the remaining tunnel diode.

  11. Hybrid High-Temperature-Superconductor–Semiconductor Tunnel Diode

    Directory of Open Access Journals (Sweden)

    Alex Hayat

    2012-12-01

    Full Text Available We report the demonstration of hybrid high-T_{c}-superconductor–semiconductor tunnel junctions, enabling new interdisciplinary directions in condensed matter research. The devices are fabricated by our newly developed mechanical-bonding technique, resulting in high-T_{c}-superconductor–semiconductor tunnel diodes. Tunneling-spectra characterization of the hybrid junctions of Bi_{2}Sr_{2}CaCu_{2}O_{8+δ} combined with bulk GaAs, or a GaAs/AlGaAs quantum well, exhibits excess voltage and nonlinearity, similarly to spectra obtained in scanning-tunneling microscopy, and is in good agreement with theoretical predictions for a d-wave-superconductor–normal-material junction. Additional junctions are demonstrated using Bi_{2}Sr_{2}CaCu_{2}O_{8+δ} combined with graphite or Bi_{2}Te_{3}. Our results pave the way for new methods in unconventional superconductivity studies, novel materials, and quantum technology applications.

  12. Tunable spin-tunnel contacts to silicon using low-work-function ferromagnets

    Science.gov (United States)

    Min, Byoung-Chul; Motohashi, Kazunari; Lodder, Cock; Jansen, Ron

    2006-10-01

    Magnetic tunnel junctions have become ubiquitous components appearing in magnetic random-access memory, read heads of magnetic disk drives and semiconductor-based spin devices. Inserting a tunnel barrier has been key to achieving spin injection from ferromagnetic (FM) metals into GaAs, but spin injection into Si has remained elusive. We show that Schottky barrier formation leads to a huge conductivity mismatch of the FM tunnel contact and Si, which cannot be solved by the well-known method of adjusting the tunnel barrier thickness. We present a radically different approach for spin-tunnelling resistance control using low-work-function ferromagnets, inserted at the FM/tunnel barrier interface. We demonstrate that in this way the resistance-area (RA) product of FM/Al2O3/Si contacts can be tuned over eight orders of magnitude, while simultaneously maintaining a reasonable tunnel spin polarization. This raises prospects for Si-based spintronics and presents a new category of ferromagnetic materials for spin-tunnel contacts in low-RA-product applications.

  13. Spin accumulation in Si channels using CoFe/MgO/Si and CoFe/AlOx/Si tunnel contacts with high quality tunnel barriers prepared by radical-oxygen annealing

    International Nuclear Information System (INIS)

    Akushichi, T.; Shuto, Y.; Sugahara, S.; Takamura, Y.

    2015-01-01

    We investigate spin injection into Si channels using three-terminal spin-accumulation (3T-SA) devices with high-quality CoFe/MgO/n-Si and CoFe/AlO x /n-Si tunnel spin-injectors whose tunnel barriers are formed by radical oxidation of Mg and Al thin films deposited on Si(100) substrates and successive annealing under radical-oxygen exposure. When the MgO and AlO x barriers are not treated by the radical-oxygen annealing, the Hanle-effect signals obtained from the 3T-SA devices are closely fitted by a single Lorentz function representing a signal due to trap spins. On the other hand, when the tunnel barriers are annealed under radical-oxygen exposure, the Hanle-effect signals can be accurately fitted by the superposition of a Lorentz function and a non-Lorentz function representing a signal due to accumulated spins in the Si channel. These results suggest that the quality improvement of tunnel barriers treated by radical-oxygen annealing is highly effective for spin-injection into Si channels

  14. High-resolution sonography in carpal tunnel syndrome

    International Nuclear Information System (INIS)

    Solbiati, L.; De Pra, L.; Rizzatto, G.; Derchi, L.E.

    1986-01-01

    Carpal tunnel syndrome, caused by the compression on the median nerve under the transverse carpal ligament, has multiple causes and clinical presentations. One hundred eighteen patients with carpal tunnel sydrome underwent high-resolution US which demonstrated unpalpable cystic masses in 25 patients (lobulated stalked synovial cysts in 19 and retrotendinous cysts in six, all confirmed at surgery), and diffuse thickening and decreased echogenicity of the tendon sheaths in 87 patients, suggesting tenosynovitis (confirmed at surgery in 64). In six patients simple encasement of muscle bellies in the carpal tunnel was shown. US can delineate the cause of carpal tunnel syndrome, suggest the need for surgery, and aid the surgeon in locating the lesion to be removed

  15. Theory of tunneling and photoemission spectroscopy for high-temperature superconductors

    International Nuclear Information System (INIS)

    Kouznetsov, K.; Coffey, L.

    1996-01-01

    A comprehensive analysis is presented of the tunneling conductance and angle-resolved photoemission spectra in high-temperature superconductors. It is shown that unexplained features of the tunneling and photoemission spectra such as broad backgrounds, dips, and asymmetry of the tunneling conductance can arise in a model of spin-fluctuation mediated inelastic tunneling. Effects of directionality in tunneling play an important role in determining the behavior of the tunneling conductance. copyright 1996 The American Physical Society

  16. Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes

    Science.gov (United States)

    Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.

    1991-01-01

    InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.

  17. Study on Oxygen Supply Standard for Physical Health of Construction Personnel of High-Altitude Tunnels

    Directory of Open Access Journals (Sweden)

    Chun Guo

    2015-12-01

    Full Text Available The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO2. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.

  18. Scanning tunneling spectroscopy on vortex cores in high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, B.W.; Maggio-Aprile, I.; Fischer, Oe. [Geneva Univ. (Switzerland). Dept. de Physique de la Matiere Condensee; Renner, C. [NEC Research Inst., Princeton, NJ (United States)

    2002-07-01

    Scanning tunneling spectroscopy (STS) with its unique capacity for tunneling spectroscopy with sub-nanometer spatial resolution, has opened new ways to look at the flux lines and their distribution in superconductors. In contrast to all other imaging techniques, which are sensitive to the local magnetic field, STM relies on local changes in the density of states near the Fermi level to generate a real space image of the vortex distribution. It is thus sensitive to the vortex cores, which in high temperature superconductors have a size approaching the interatomic distances. The small size of the vortex cores and the anisotropic character of the high temperature superconductors allow pinning to play a large role in determining the vortex core positions. Vortex hopping between different pinning sites, again down to a sub-nanometer scale, has been studied by STM imaging as a function of time. These studies give microscopic indications for quantum tunneling of vortices. Moreover, STM provides new insights into the detailed electronic vortex core structure, revealing localized quasiparticles. (orig.)

  19. Conversion of Low-Flow Priapism to High-Flow State Using T-Shunt with Tunneling.

    Science.gov (United States)

    Mistry, Neil A; Tadros, Nicholas N; Hedges, Jason C

    2017-01-01

    Introduction . The three types of priapism are stuttering, arterial (high-flow, nonischemic), and venoocclusive (low-flow, ischemic). These are usually distinct entities and rarely occur in the same patient. T-shunts and other distal shunts are frequently combined with tunneling, but a seldom recognized potential complication is conversion to a high-flow state. Case Presentation . We describe 2 cases of men who presented with low-flow priapism episodes that were treated using T-shunts with tunneling that resulted with both men having recurrent erections shortly after surgery that were found to be consistent with high-flow states. Case 1 was a 33-year-old male with sickle cell anemia and case 2 was a 24-year-old male with idiopathic thrombocytopenic purpura. In both cases the men were observed over several weeks and both men returned to normal erectile function. Conclusions . Historically, proximal shunts were performed only in cases when distal shunts failed and carry a higher risk of serious complications. T-shunts and other distal shunts combined with tunneling are being used more frequently in place of proximal shunts. These cases illustrate how postoperative erections after T-shunts with tunneling can signify a conversion from low-flow to high-flow states and could potentially be misdiagnosed as an operative failure.

  20. Atomic scale images of acceptors in III-V semiconductors. Band bending, tunneling paths and wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Loth, S.

    2007-10-26

    This thesis reports measurements of single dopant atoms in III-V semiconductors with low temperature Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS). It investigates the anisotropic spatial distribution of acceptor induced tunneling processes at the {l_brace}110{r_brace} cleavage planes. Two different tunneling processes are identified: conventional imaging of the squared acceptor wave function and resonant tunneling at the charged acceptor. A thorough analysis of the tip induced space charge layers identifies characteristic bias windows for each tunnel process. The symmetry of the host crystal's band structure determines the spatial distribution of the tunneling paths for both processes. Symmetry reducing effects at the surface are responsible for a pronounced asymmetry of the acceptor contrasts along the principal [001] axis. Uniaxial strain fields due to surface relaxation and spin orbit interaction of the tip induced electric field are discussed on the basis of band structure calculations. High-resolution STS studies of acceptor atoms in an operating p-i-n diode confirm that an electric field indeed changes the acceptor contrasts. In conclusion, the anisotropic contrasts of acceptors are created by the host crystal's band structure and concomitant symmetry reduction effects at the surface. (orig.)

  1. High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures.

    Science.gov (United States)

    Liu, Yuan; Sheng, Jiming; Wu, Hao; He, Qiyuan; Cheng, Hung-Chieh; Shakir, Muhammad Imran; Huang, Yu; Duan, Xiangfeng

    2016-06-01

    Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Theory of macroscopic quantum tunneling in high-T c cuprate

    International Nuclear Information System (INIS)

    Kawabata, Shiro; Tanaka, Yukio; Kashiwaya, Satoshi; Asano, Yasuhiro

    2006-01-01

    To reveal macroscopic quantum tunneling (MQT) in high-T c superconductor Josephson junctions is an important issue since there is a possibility to fabricate a superconducting quantum bit by use of high T c junctions. Using the functional integral and the instanton theory, we analytically obtain the MQT rate (the inverse lifetime of the metastable state) for the c-axis twist Josephson junctions. In the case of the zero twist angle, the system shows the super-Ohmic dissipation due to the presence of the nodal quasiparticle tunneling. Therefore, the MQT rate is suppressed compared with the finite twist angle cases. Furthermore, the effect of the zero energy bound states (ZES) on the MQT in the in-plane junctions is theoretically investigated. We obtained the analytical formula of the MQT rate and showed that the presence of the ZES at the normal/superconductor interface leads to a strong Ohmic quasiparticle dissipation. Therefore, the MQT rate is noticeably inhibited compared with the c-axis junctions in which the ZES are completely absent

  3. Plastic Zone Analysis of Deep-Buried, Noncircular Tunnel and Application on the High-Speed Railway in the Karst Area

    Directory of Open Access Journals (Sweden)

    Hai Shi

    2017-01-01

    Full Text Available With the conformal mapping function provided by Verruijt, the outland of a noncircular tunnel can be mapped to a circular unit in the complex plane and then spread the analytic function into a Laurent series. The stress unified solution of oval and horseshoe cross section can be determined using Muskhelishvili’s complex variables function method. Subsequently, the solution can be taken into the Griffith strength failure criterion and determine the scale and shape of plastic zone in the tunnel surrounding rock. Aiming at the critical safety thickness between a concealed cave and tunnel in the karst area and determining whether the plastic zone of tunnel surrounding rock is connected with the plastic zone of cave as a judgment standard, the model of critical safety thickness among the concealed caves and tunnels is established. The numerical model is established in comparison with the computing method of rock plate critical safety thickness in actual engineering based on the Doumo tunnel engineering of Shanghai-Kunming (Guizhou segment high-speed railway. The following conclusions can be drawn: the analytical approximation method has less indexes, and the output of this method is approximately close to actual engineering and numerical analysis, in which it is reliable and rational.

  4. Double Tunneling Injection Quantum Dot Lasers for High Speed Operation

    Science.gov (United States)

    2017-10-23

    Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...State University Title: Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation Report Term: 0-Other Email: asryan@vt.edu Distribution

  5. Can Impairment Interfere with Performance by Women with Carpal Tunnel Syndrome According to International Classification of Function?

    Directory of Open Access Journals (Sweden)

    Somayeh Kavousipor

    2015-03-01

    Full Text Available Background: Carpal tunnel syndrome is the most prevalent compression neuropathy of upper extremity which, two of the most important risk factors of that are the female sex and manual works. In the model of international classification of function, disability and health, disease is an impairment, results in functional limitation. The goal of this study is to compare hand function of participants between various severities of carpal tunnel syndrome. Methods: In a cross-sectional study, during 6 months period of time, 30 housekeeper women with carpal tunnel syndrome, with the mean age of 47.03 years, were selected through simple sampling. They were assessed for hand function, by Purdue peg board test and Boston questionnaire, after that a professional practitioner had performed Nerve Conductive Velocity (NCV test and identified the severity of their diseases. Then the data were analyzed with SPSS software, by Kruskal-Wallis test. Results: The mean of Purdue peg board test and Boston questionnaire scores in various clusters of carpal tunnel syndrome severity, were not different (P>0.05. Conclusion: In this research, severity of electrodiagnostic findings of participants, with carpal tunnel syndrome, is not related to their performance and functional limitations.

  6. Numerical investigation on an array of Helmholtz resonators for the reduction of micro-pressure waves in modern and future high-speed rail tunnel systems

    Science.gov (United States)

    Tebbutt, J. A.; Vahdati, M.; Carolan, D.; Dear, J. P.

    2017-07-01

    Previous research has proposed that an array of Helmholtz resonators may be an effective method for suppressing the propagation of pressure and sound waves, generated by a high-speed train entering and moving in a tunnel. The array can be used to counteract environmental noise from tunnel portals and also the emergence of a shock wave in the tunnel. The implementation of an array of Helmholtz resonators in current and future high-speed train-tunnel systems is studied. Wave propagation in the tunnel is modelled using a quasi-one-dimensional formulation, accounting for non-linear effects, wall friction and the diffusivity of sound. A multi-objective genetic algorithm is then used to optimise the design of the array, subject to the geometric constraints of a demonstrative tunnel system and the incident wavefront in order to attenuate the propagation of pressure waves. It is shown that an array of Helmholtz resonators can be an effective countermeasure for various tunnel lengths. In addition, the array can be designed to function effectively over a wide operating envelope, ensuring it will still function effectively as train speeds increase into the future.

  7. Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy.

    Science.gov (United States)

    Jeong, Jaewoo; Ferrante, Yari; Faleev, Sergey V; Samant, Mahesh G; Felser, Claudia; Parkin, Stuart S P

    2016-01-18

    Although high-tunnelling spin polarization has been observed in soft, ferromagnetic, and predicted for hard, ferrimagnetic Heusler materials, there has been no experimental observation to date of high-tunnelling magnetoresistance in the latter. Here we report the preparation of highly textured, polycrystalline Mn3Ge films on amorphous substrates, with very high magnetic anisotropy fields exceeding 7 T, making them technologically relevant. However, the small and negative tunnelling magnetoresistance that we find is attributed to predominant tunnelling from the lower moment Mn-Ge termination layers that are oppositely magnetized to the higher moment Mn-Mn layers. The net spin polarization of the current reflects the different proportions of the two distinct termination layers and their associated tunnelling matrix elements that result from inevitable atomic scale roughness. We show that by engineering the spin polarization of the two termination layers to be of the same sign, even though these layers are oppositely magnetized, high-tunnelling magnetoresistance is possible.

  8. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur

    2011-08-09

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can be aligned parallel or antiparallel with respect to the fixed magnetizations of the left FML and right FMR ferromagnetic electrodes. The transmission coefficients for components of the spin-dependent current, and TMR are calculated as a function of the applied voltage. As a result, we found a high resonant TMR. Thus, DMTJ can serve as highly effective magnetic nanosensor for biological applications, or as magnetic memory cells by switching the magnetization of the inner ferromagnetic layer FMW.© Springer Science+Business Media, LLC 2011.

  9. Internal resistor of multi-functional tunnel barrier for selectivity and switching uniformity in resistive random access memory.

    Science.gov (United States)

    Lee, Sangheon; Woo, Jiyong; Lee, Daeseok; Cha, Euijun; Hwang, Hyunsang

    2014-01-01

    In this research, we analyzed the multi-functional role of a tunnel barrier that can be integrated in devices. This tunnel barrier, acting as an internal resistor, changes its resistance with applied bias. Therefore, the current flow in the devices can be controlled by a tunneling mechanism that modifies the tunnel barrier thickness for non-linearity and switching uniformity of devices. When a device is in a low-resistance state, the tunnel barrier controls the current behavior of the device because most of the bias is applied to the tunnel barrier owing to its higher resistance. Furthermore, the tunnel barrier induces uniform filament formation during set operation with the tunnel barrier controlling the current flow.

  10. Theory of high-resolution tunneling spin transport on a magnetic skyrmion

    OpenAIRE

    Palotás, Krisztián; Rózsa, Levente; Szunyogh, László

    2018-01-01

    Tunneling spin transport characteristics of a magnetic skyrmion are described theoretically in magnetic scanning tunneling microscopy (STM). The spin-polarized charge current in STM (SP-STM) and tunneling spin transport vector quantities, the longitudinal spin current and the spin transfer torque are calculated in high spatial resolution within the same theoretical framework. A connection between the conventional charge current SP-STM image contrasts and the magnitudes of the spin transport v...

  11. Tunneling into quantum wires: regularization of the tunneling Hamiltonian and consistency between free and bosonized fermions

    OpenAIRE

    Filippone, Michele; Brouwer, Piet

    2016-01-01

    Tunneling between a point contact and a one-dimensional wire is usually described with the help of a tunneling Hamiltonian that contains a delta function in position space. Whereas the leading order contribution to the tunneling current is independent of the way this delta function is regularized, higher-order corrections with respect to the tunneling amplitude are known to depend on the regularization. Instead of regularizing the delta function in the tunneling Hamiltonian, one may also obta...

  12. Theory of high-resolution tunneling spin transport on a magnetic skyrmion

    Science.gov (United States)

    Palotás, Krisztián; Rózsa, Levente; Szunyogh, László

    2018-05-01

    Tunneling spin transport characteristics of a magnetic skyrmion are described theoretically in magnetic scanning tunneling microscopy (STM). The spin-polarized charge current in STM (SP-STM) and tunneling spin transport vector quantities, the longitudinal spin current and the spin transfer torque, are calculated in high spatial resolution within the same theoretical framework. A connection between the conventional charge current SP-STM image contrasts and the magnitudes of the spin transport vectors is demonstrated that enables the estimation of tunneling spin transport properties based on experimentally measured SP-STM images. A considerable tunability of the spin transport vectors by the involved spin polarizations is also highlighted. These possibilities and the combined theory of tunneling charge and vector spin transport pave the way for gaining deep insight into electric-current-induced tunneling spin transport properties in SP-STM and to the related dynamics of complex magnetic textures at surfaces.

  13. High resolution imaging of tunnels by magnetic resonance neurography

    Energy Technology Data Exchange (ETDEWEB)

    Subhawong, Ty K.; Thawait, Shrey K.; Machado, Antonio J.; Carrino, John A.; Chhabra, Avneesh [Johns Hopkins Hospital, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Wang, Kenneth C. [Baltimore VA Medical Center, Department of Radiology, Baltimore, MD (United States); Williams, Eric H. [Dellon Institute for Peripheral Nerve Surgery, Towson, MD (United States); Hashemi, Shahreyar Shar [Johns Hopkins Hospital, Division of Plastic and Reconstructive Surgery, Baltimore, MD (United States)

    2012-01-15

    Peripheral nerves often traverse confined fibro-osseous and fibro-muscular tunnels in the extremities, where they are particularly vulnerable to entrapment and compressive neuropathy. This gives rise to various tunnel syndromes, characterized by distinct patterns of muscular weakness and sensory deficits. This article focuses on several upper and lower extremity tunnels, in which direct visualization of the normal and abnormal nerve in question is possible with high resolution 3T MR neurography (MRN). MRN can also serve as a useful adjunct to clinical and electrophysiologic exams by discriminating adhesive lesions (perineural scar) from compressive lesions (such as tumor, ganglion, hypertrophic callous, or anomalous muscles) responsible for symptoms, thereby guiding appropriate treatment. (orig.)

  14. High resolution imaging of tunnels by magnetic resonance neurography

    International Nuclear Information System (INIS)

    Subhawong, Ty K.; Thawait, Shrey K.; Machado, Antonio J.; Carrino, John A.; Chhabra, Avneesh; Wang, Kenneth C.; Williams, Eric H.; Hashemi, Shahreyar Shar

    2012-01-01

    Peripheral nerves often traverse confined fibro-osseous and fibro-muscular tunnels in the extremities, where they are particularly vulnerable to entrapment and compressive neuropathy. This gives rise to various tunnel syndromes, characterized by distinct patterns of muscular weakness and sensory deficits. This article focuses on several upper and lower extremity tunnels, in which direct visualization of the normal and abnormal nerve in question is possible with high resolution 3T MR neurography (MRN). MRN can also serve as a useful adjunct to clinical and electrophysiologic exams by discriminating adhesive lesions (perineural scar) from compressive lesions (such as tumor, ganglion, hypertrophic callous, or anomalous muscles) responsible for symptoms, thereby guiding appropriate treatment. (orig.)

  15. High Response Dew Point Measurement System for a Supersonic Wind Tunnel

    Science.gov (United States)

    Blumenthal, Philip Z.

    1996-01-01

    A new high response on-line measurement system has been developed to continuously display and record the air stream dew point in the NASA Lewis 10 x 10 supersonic wind tunnel. Previous instruments suffered from such problems as very slow response, erratic readings, and high susceptibility to contamination. The system operates over the entire pressure level range of the 10 x 10 SWT, from less than 2 psia to 45 psia, without the need for a vacuum pump to provide sample flow. The system speeds up tunnel testing, provides large savings in tunnel power costs and provides the dew point input for the data-reduction subroutines which calculate test section conditions.

  16. Nonequilibrium states of high tc YBCO superconductors under tunnel injection of quasiparticles

    International Nuclear Information System (INIS)

    Iguchi, I.; Wang, Q.; Lee, K.; Yoshida, K.

    1995-01-01

    The nonequilibrium states of high Tc superconductors are investigated by means of tunnel injection of quasiparticles using Pb(or Au)/MgO/YBCO tunnel junctions. The effective critical-current reduction due to tunnel injection is observed, whose behaviour is different from simple heating. The observed results suggest that the resultant nonequilibrium states may also differ from those described by conventional nonequilibrium models

  17. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    Science.gov (United States)

    Siddiqui, Omar; Kashanianfard, Mani; Ramahi, Omar

    2015-01-01

    We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide. PMID:25835188

  18. Dielectric Sensors Based on Electromagnetic Energy Tunneling

    Directory of Open Access Journals (Sweden)

    Omar Siddiqui

    2015-03-01

    Full Text Available We show that metallic wires embedded in narrow waveguide bends and channels demonstrate resonance behavior at specific frequencies. The electromagnetic energy at these resonances tunnels through the narrow waveguide channels with almost no propagation losses. Under the tunneling behavior, high-intensity electromagnetic fields are produced in the vicinity of the metallic wires. These intense field resonances can be exploited to build highly sensitive dielectric sensors. The sensor operation is explained with the help of full-wave simulations. A practical setup consisting of a 3D waveguide bend is presented to experimentally observe the tunneling phenomenon. The tunneling frequency is predicted by determining the input impedance minima through a variational formula based on the Green function of a probe-excited parallel plate waveguide.

  19. L10-MnGa based magnetic tunnel junction for high magnetic field sensor

    Science.gov (United States)

    Zhao, X. P.; Lu, J.; Mao, S. W.; Yu, Z. F.; Wang, H. L.; Wang, X. L.; Wei, D. H.; Zhao, J. H.

    2017-07-01

    We report on the investigation of the magnetic tunnel junction structure designed for high magnetic field sensors with a perpendicularly magnetized L10-MnGa reference layer and an in-plane magnetized Fe sensing layer. A large linear tunneling magnetoresistance ratio up to 27.4% and huge dynamic range up to 5600 Oe have been observed at 300 K, with a low nonlinearity of 0.23% in the optimized magnetic tunnel junction (MTJ). The field response of tunneling magnetoresistance is discussed to explain the field sensing properties in the dynamic range. These results indicate that L10-MnGa based orthogonal MTJ is a promising candidate for a high performance magnetic field sensor with a large dynamic range, high endurance and low power consumption.

  20. Covariance Method of the Tunneling Radiation from High Dimensional Rotating Black Holes

    Science.gov (United States)

    Li, Hui-Ling; Han, Yi-Wen; Chen, Shuai-Ru; Ding, Cong

    2018-04-01

    In this paper, Angheben-Nadalini-Vanzo-Zerbini (ANVZ) covariance method is used to study the tunneling radiation from the Kerr-Gödel black hole and Myers-Perry black hole with two independent angular momentum. By solving the Hamilton-Jacobi equation and separating the variables, the radial motion equation of a tunneling particle is obtained. Using near horizon approximation and the distance of the proper pure space, we calculate the tunneling rate and the temperature of Hawking radiation. Thus, the method of ANVZ covariance is extended to the research of high dimensional black hole tunneling radiation.

  1. A predictive analytic model for high-performance tunneling field-effect transistors approaching non-equilibrium Green's function simulations

    International Nuclear Information System (INIS)

    Salazar, Ramon B.; Appenzeller, Joerg; Ilatikhameneh, Hesameddin; Rahman, Rajib; Klimeck, Gerhard

    2015-01-01

    A new compact modeling approach is presented which describes the full current-voltage (I-V) characteristic of high-performance (aggressively scaled-down) tunneling field-effect-transistors (TFETs) based on homojunction direct-bandgap semiconductors. The model is based on an analytic description of two key features, which capture the main physical phenomena related to TFETs: (1) the potential profile from source to channel and (2) the elliptic curvature of the complex bands in the bandgap region. It is proposed to use 1D Poisson's equations in the source and the channel to describe the potential profile in homojunction TFETs. This allows to quantify the impact of source/drain doping on device performance, an aspect usually ignored in TFET modeling but highly relevant in ultra-scaled devices. The compact model is validated by comparison with state-of-the-art quantum transport simulations using a 3D full band atomistic approach based on non-equilibrium Green's functions. It is shown that the model reproduces with good accuracy the data obtained from the simulations in all regions of operation: the on/off states and the n/p branches of conduction. This approach allows calculation of energy-dependent band-to-band tunneling currents in TFETs, a feature that allows gaining deep insights into the underlying device physics. The simplicity and accuracy of the approach provide a powerful tool to explore in a quantitatively manner how a wide variety of parameters (material-, size-, and/or geometry-dependent) impact the TFET performance under any bias conditions. The proposed model presents thus a practical complement to computationally expensive simulations such as the 3D NEGF approach

  2. The Conceptual Design of High Pressure Reversible Axial Tunnel Ventilation Fans

    Directory of Open Access Journals (Sweden)

    A. G. Sheard

    2012-01-01

    Full Text Available Tunnel ventilation fans, classically, must have the ability to both supply and extract air from a tunnel system, with the operator's choice dependent on the tunnel ventilation system's operating mode most appropriate at any given point in time. Consequently, tunnel ventilation fans must incorporate a reversible aerodynamic design which limits the maximum fan pressure rise. This paper presents three high pressure reversible fan concepts. These comprise a two-stage counter rotating fan, a single-stage high speed fan, and a two-stage fan with a single motor and impeller on each end of the motor shaft. The authors consider the relative merits of each concept. The third concept offers the most compact fan, transform, silencer, and damper package size. The authors discuss the mechanical design challenges that occur with a two-stage fan with a single motor and impeller on each end of the motor shaft. They present and consider a selected motor bearing arrangement and casing design for maintainability. Finally, the authors present both prototype fan and full-scale package aerodynamic and acoustic performance, before discussing the challenges presented by high temperature certification in accordance with the requirements of EN 12101-3: 2012.

  3. Increased productivity in construction of civil and mining tunnels through the use of high-capacity tunnel-boring machines and continuous belt conveyor muck haulage

    Energy Technology Data Exchange (ETDEWEB)

    Beatty, J.G.; Ganey, R.J.; Killingsworth, J.E. [Perini Corp., Chicago, IL (United States). US Heavy Division

    1994-12-31

    The use of a large diameter high production tunnel boring machine interfaced with a high capacity continuous belt conveyor system provides a highly productive and cost effective construction system for both civil and mining tunnels. Continuous advance of the tunnel boring machine for a distance of 1,000 feet (305 m) allows for very efficient operation of the system. The available cost reductions will likely prove that this approach to waste handling will make marginally viable projects economically feasible. 9 refs., 10 figs., 1 tab.

  4. Highly cited articles in wind tunnel-related research: a bibliometric analysis.

    Science.gov (United States)

    Mo, Ziwei; Fu, Hui-Zhen; Ho, Yuh-Shan

    2018-03-22

    Wind tunnels have been widely employed in aerodynamic research. To characterize the high impact research, a bibliometric analysis was conducted on highly cited articles related to wind tunnel based on the Science Citation Index Expanded (SCI-EXPANDED) database from 1900 to 2014. Articles with at least 100 citations from the Web of Science Core Collection were selected and analyzed in terms of publication years, authors, institutions, countries/territories, journals, Web of Science categories, and citation life cycles. The results show that a total of 77 highly cited articles in 37 journals were published between 1959 and 2008. Journal of Fluid Mechanics published the most of highly cited articles. The USA was the most productive country and most frequent partner of internationally collaboration. The prolific institutions were mainly located in the USA and UK. The authors who were both first author and corresponding author published 88% of the articles. The Y index was also deployed to evaluate the publication characteristics of authors. Moreover, the articles with high citations in both history and the latest year with their citation life cycles were examined to provide insights for high impact research. The highly cited articles were almost earliest wind tunnel experimental data and reports on their own research specialty, and thus attracted high citations. It was revealed that classic works of wind tunnel research was frequently occurred in 1990s but much less in 2000s, probably due to the development of numerical models of computational fluid dynamic (CFD) in recent decades.

  5. Probing spin-polarized tunneling at high bias and temperature with a magnetic tunnel transistor

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Min, B.C.; Sanderink, Johannes G.M.; Lodder, J.C.; Jansen, R.

    2005-01-01

    The magnetic tunnel transistor (MTT) is a three terminal hybrid device that consists of a tunnel emitter, a ferromagnetic (FM) base, and a semiconductor collector. In the MTT with a FM emitter and a single FM base, spin-polarized hot electrons are injected into the base by tunneling. After

  6. Effects of periodic modulation on the nonlinear Landau–Zener tunneling

    International Nuclear Information System (INIS)

    Li-Hua, Wu; Wen-Shan, Duan

    2009-01-01

    We study the Landau–Zener tunneling of a nonlinear two-level system by applying a periodic modulation on its energy bias. We find that the two levels are splitting at the zero points of the zero order Bessel function for high-frequency modulation. Moreover, we obtain the effective coupling constant between two levels at the zero points of the zero order Bessel function by calculating the final tunneling probability at these points. It seems that the effective coupling constant can be regarded as the approximation of the higher order Bessel function at these points. For the low-frequency modulation, we find that the final tunneling probability is a function of the interaction strength. For the weak inter-level coupling case, we find that the final tunneling probability is more disordered as the interaction strength becomes larger. (general)

  7. An ultra-high vacuum scanning tunneling microscope operating at sub-Kelvin temperatures and high magnetic fields for spin-resolved measurements

    Science.gov (United States)

    Salazar, C.; Baumann, D.; Hänke, T.; Scheffler, M.; Kühne, T.; Kaiser, M.; Voigtländer, R.; Lindackers, D.; Büchner, B.; Hess, C.

    2018-06-01

    We present the construction and performance of an ultra-low-temperature scanning tunneling microscope (STM), working in ultra-high vacuum (UHV) conditions and in high magnetic fields up to 9 T. The cryogenic environment of the STM is generated by a single-shot 3He magnet cryostat in combination with a 4He dewar system. At a base temperature (300 mK), the cryostat has an operation time of approximately 80 h. The special design of the microscope allows the transfer of the STM head from the cryostat to a UHV chamber system, where samples and STM tips can be easily exchanged. The UHV chambers are equipped with specific surface science treatment tools for the functionalization of samples and tips, including high-temperature treatments and thin film deposition. This, in particular, enables spin-resolved tunneling measurements. We present test measurements using well-known samples and tips based on superconductors and metallic materials such as LiFeAs, Nb, Fe, and W. The measurements demonstrate the outstanding performance of the STM with high spatial and energy resolution as well as the spin-resolved capability.

  8. Tunneling junction as an open system. Normal tunneling

    International Nuclear Information System (INIS)

    Ono, Y.

    1978-01-01

    The method of the tunneling Hamiltonian is reformulated in the case of normal tunneling by introducing two independent particle baths. Due to the baths, it becomes possible to realize a final stationary state where the electron numbers of the two electrodes in the tunneling system are maintained constant and where there exists a stationary current. The effect of the bath-system couplings on the current-voltage characteristics of the junction is discussed in relation to the usual expression of the current as a function of voltage. (Auth.)

  9. Tunneling emission of electrons from semiconductors' valence bands in high electric fields

    International Nuclear Information System (INIS)

    Kalganov, V. D.; Mileshkina, N. V.; Ostroumova, E. V.

    2006-01-01

    Tunneling emission currents of electrons from semiconductors to vacuum (needle-shaped GaAs photodetectors) and to a metal (silicon metal-insulator-semiconductor diodes with a tunneling-transparent insulator layer) are studied in high and ultrahigh electric fields. It is shown that, in semiconductors with the n-type conductivity, the major contribution to the emission current is made by the tunneling emission of electrons from the valence band of the semiconductor, rather than from the conduction band

  10. Soft errors in 10-nm-scale magnetic tunnel junctions exposed to high-energy heavy-ion radiation

    Science.gov (United States)

    Kobayashi, Daisuke; Hirose, Kazuyuki; Makino, Takahiro; Onoda, Shinobu; Ohshima, Takeshi; Ikeda, Shoji; Sato, Hideo; Inocencio Enobio, Eli Christopher; Endoh, Tetsuo; Ohno, Hideo

    2017-08-01

    The influences of various types of high-energy heavy-ion radiation on 10-nm-scale CoFeB-MgO magnetic tunnel junctions with a perpendicular easy axis have been investigated. In addition to possible latent damage, which has already been pointed out in previous studies, high-energy heavy-ion bombardments demonstrated that the magnetic tunnel junctions may exhibit clear flips between their high- and low-resistance states designed for a digital bit 1 or 0. It was also demonstrated that flipped magnetic tunnel junctions still may provide proper memory functions such as read, write, and hold capabilities. These two findings proved that high-energy heavy ions can produce recoverable bit flips in magnetic tunnel junctions, i.e., soft errors. Data analyses suggested that the resistance flips stem from magnetization reversals of the ferromagnetic layers and that each of them is caused by a single strike of heavy ions. It was concurrently found that an ion strike does not always result in a flip, suggesting a stochastic process behind the flip. Experimental data also showed that the flip phenomenon is dependent on the device and heavy-ion characteristics. Among them, the diameter of the device and the linear energy transfer of the heavy ions were revealed as the key parameters. From their dependences, the physical mechanism behind the flip was discussed. It is likely that a 10-nm-scale ferromagnetic disk loses its magnetization due to a local temperature increase induced by a single strike of heavy ions; this demagnetization is followed by a cooling period associated with a possible stochastic recovery process. On the basis of this hypothesis, a simple analytical model was developed, and it was found that the model accounts for the results reasonably well. This model also predicted that magnetic tunnel junctions provide sufficiently high soft-error reliability for use in space, highlighting their advantage over their counterpart conventional semiconductor memories.

  11. Influence of microclimatic conditions under high tunnels on the physiological and productive responses in blueberry 'O'Neal'

    Directory of Open Access Journals (Sweden)

    Jorge Retamal-Salgado

    2015-09-01

    Full Text Available Blueberry (Vaccinium corymbosum L. production under tunnels has spread in recent years. However, there is little information on the productive and physiological responses of blueberry grown under high tunnels. The objective of this research was to evaluate the effect of high tunnel microclimate on the physiological and productive responses of blueberries. A total of 1296 plants of highbush blueberry 'O'Neal' were grown in high tunnels, leaving the same amount of plants under open fields (control. Environmental temperature (T, °C and relative humidity (RH, %, diffuse and total photosynthetically active radiation (PARdiffuse and PARtotal, /high tunnel than the control, whereas the minimum T averaged only 2-5 °C higher. PARtotal decreased an average of 25% under tunnel, while levels of PARdiffuse increased more than 150%. The g s ranged between 42% and 99% higher in the high tunnel compared to the control, and was positive and statistically related (r² = 0.69** to PARdiffuse variations. Blueberries under high tunnel recorded an accumulated yield 44% higher, while harvest started 14 d earlier compared to control. The results suggest that high tunnels in blueberries increases fruit yield and improves precocity due to higher temperatures during the flowering stage and fruit set. Particular light conditions under tunnels would favor higher leaf stomatal conductance in this crop.

  12. a New Approach for Subway Tunnel Deformation Monitoring: High-Resolution Terrestrial Laser Scanning

    Science.gov (United States)

    Li, J.; Wan, Y.; Gao, X.

    2012-07-01

    With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS) technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400). There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS) and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  13. High performance as-grown and annealed high band gap tunnel junctions: Te behavior at the interface

    Energy Technology Data Exchange (ETDEWEB)

    Bedair, S. M., E-mail: bedair@ncsu.edu; Harmon, Jeffrey L.; Carlin, C. Zachary; Hashem Sayed, Islam E.; Colter, P. C. [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-05-16

    The performance of n{sup +}-InGaP(Te)/p{sup +}-AlGaAs(C) high band gap tunnel junctions (TJ) is critical for achieving high efficiency in multijunction photovoltaics. Several limitations for as grown and annealed TJ can be attributed to the Te doping of InGaP and its behavior at the junction interface. Te atoms in InGaP tend to get attached at step edges, resulting in a Te memory effect. In this work, we use the peak tunneling current (J{sub pk}) in this TJ as a diagnostic tool to study the behavior of the Te dopant at the TJ interface. Additionally, we used our understanding of Te behavior at the interface, guided by device modeling, to modify the Te source shut-off procedure and the growth rate. These modifications lead to a record performance for both the as-grown (2000 A/cm{sup 2}) and annealed (1000 A/cm{sup 2}) high band gap tunnel junction.

  14. Resonant tunneling with high peak to valley current ratio in SiO2/nc-Si/SiO2 multi-layers at room temperature

    International Nuclear Information System (INIS)

    Chen, D. Y.; Sun, Y.; He, Y. J.; Xu, L.; Xu, J.

    2014-01-01

    We have investigated carrier transport in SiO 2 /nc-Si/SiO 2 multi-layers by room temperature current-voltage measurements. Resonant tunneling signatures accompanied by current peaks are observed. Carrier transport in the multi-layers were analyzed by plots of ln(I/V 2 ) as a function of 1/V and ln(I) as a function of V 1/2 . Results suggest that besides films quality, nc-Si and barrier sub-layer thicknesses are important parameters that restrict carrier transport. When thicknesses are both small, direct tunneling dominates carrier transport, resonant tunneling occurs only at certain voltages and multi-resonant tunneling related current peaks can be observed but with peak to valley current ratio (PVCR) values smaller than 1.5. When barrier thickness is increased, trap-related and even high field related tunneling is excited, causing that multi-current peaks cannot be observed clearly, only one current peak with higher PVCR value of 7.7 can be observed. While if the thickness of nc-Si is large enough, quantum confinement is not so strong, a broad current peak with PVCR value as high as 60 can be measured, which may be due to small energy difference between the splitting energy levels in the quantum dots of nc-Si. Size distribution in a wide range may cause un-controllability of the peak voltages

  15. The anisotropic tunneling behavior of spin transport in graphene-based magnetic tunneling junction

    Science.gov (United States)

    Pan, Mengchun; Li, Peisen; Qiu, Weicheng; Zhao, Jianqiang; Peng, Junping; Hu, Jiafei; Hu, Jinghua; Tian, Wugang; Hu, Yueguo; Chen, Dixiang; Wu, Xuezhong; Xu, Zhongjie; Yuan, Xuefeng

    2018-05-01

    Due to the theoretical prediction of large tunneling magnetoresistance (TMR), graphene-based magnetic tunneling junction (MTJ) has become an important branch of high-performance spintronics device. In this paper, the non-collinear spin filtering and transport properties of MTJ with the Ni/tri-layer graphene/Ni structure were studied in detail by utilizing the non-equilibrium Green's formalism combined with spin polarized density functional theory. The band structure of Ni-C bonding interface shows that Ni-C atomic hybridization facilitates the electronic structure consistency of graphene and nickel, which results in a perfect spin filtering effect for tri-layer graphene-based MTJ. Furthermore, our theoretical results show that the value of tunneling resistance changes with the relative magnetization angle of two ferromagnetic layers, displaying the anisotropic tunneling behavior of graphene-based MTJ. This originates from the resonant conduction states which are strongly adjusted by the relative magnetization angles. In addition, the perfect spin filtering effect is demonstrated by fitting the anisotropic conductance with the Julliere's model. Our work may serve as guidance for researches and applications of graphene-based spintronics device.

  16. Point-contact electron tunneling into the high-Tc superconductor Y-Ba-Cu-O

    Science.gov (United States)

    Kirk, M. D.; Smith, D. P. E.; Mitzi, D. B.; Sun, J. Z.; Webb, D. J.

    1987-06-01

    Results are reported from a study of electron tunneling into bulk samples of the new high-Tc superconductor Y-Ba-Cu-O using point-contact tunneling. Based on a superconductive tunneling interpretation, the results show exceptionally large energy gaps in these materials (roughly 2Delta = 100 MeV), implying 2Delta/kBTc = about 13. Similar values were found for La-Sr-Cu-O. The structure in the I-V curves is also similar to that seen in La-Sr-Cu-O. From the asymmetries observed in the I-V characteristics, it is inferred that the natural tunneling barrier on this material is of the Schottky type.

  17. High performance vertical tunneling diodes using graphene/hexagonal boron nitride/graphene hetero-structure

    Energy Technology Data Exchange (ETDEWEB)

    Hwan Lee, Seung; Lee, Jia; Ho Ra, Chang; Liu, Xiaochi; Hwang, Euyheon [Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Sup Choi, Min [Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Hee Choi, Jun [Frontier Research Laboratory, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Yongin, Gyeonggi-do 446-711 (Korea, Republic of); Zhong, Jianqiang; Chen, Wei [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Jong Yoo, Won, E-mail: yoowj@skku.edu [Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2014-02-03

    A tunneling rectifier prepared from vertically stacked two-dimensional (2D) materials composed of chemically doped graphene electrodes and hexagonal boron nitride (h-BN) tunneling barrier was demonstrated. The asymmetric chemical doping to graphene with linear dispersion property induces rectifying behavior effectively, by facilitating Fowler-Nordheim tunneling at high forward biases. It results in excellent diode performances of a hetero-structured graphene/h-BN/graphene tunneling diode, with an asymmetric factor exceeding 1000, a nonlinearity of ∼40, and a peak sensitivity of ∼12 V{sup −1}, which are superior to contending metal-insulator-metal diodes, showing great potential for future flexible and transparent electronic devices.

  18. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Parui, Subir; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Casanova, Fèlix; Hueso, Luis E.

    2016-01-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al 2 O 3 /NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  19. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Parui, Subir, E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu; Ribeiro, Mário; Atxabal, Ainhoa; Llopis, Roger [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Bedoya-Pinto, Amilcar [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); Max Planck Institute of Microstructure Physics, D-06120 Halle (Germany); Sun, Xiangnan [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); National Center for Nanoscience and Technology, 100190 Beijing (China); Casanova, Fèlix; Hueso, Luis E., E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu [CIC nanoGUNE, 20018 Donostia-San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2016-08-01

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al{sub 2}O{sub 3}/NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important for understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.

  20. Local imaging of high mobility two-dimensional electron systems with virtual scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pelliccione, M. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (United States); Bartel, J.; Goldhaber-Gordon, D. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States); Sciambi, A. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Pfeiffer, L. N.; West, K. W. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-11-03

    Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called “virtual scanning tunneling microscopy” that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution.

  1. A NEW APPROACH FOR SUBWAY TUNNEL DEFORMATION MONITORING: HIGH-RESOLUTION TERRESTRIAL LASER SCANNING

    Directory of Open Access Journals (Sweden)

    J. Li

    2012-07-01

    Full Text Available With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400. There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  2. Concept design of the high voltage transmission system for the collider tunnel

    International Nuclear Information System (INIS)

    Norman, L.S.

    1992-03-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations -- such as the Channel Tunnel -- demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design

  3. Concept design of the high-voltage transmission system for the collider tunnel

    International Nuclear Information System (INIS)

    Norman, L.S.

    1992-01-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations-such as the Channel Tunnel-demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design

  4. High-frequency spin-dependent tunnelling in magnetic nanocomposites: Magnetorefractive effect and magnetoimpedance

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, Alexander [Faculty of Physics, Lomonosov Moscow State University, Moscow 119992 (Russian Federation)]. E-mail: granov@magn.ru; Kozlov, Andrey [Faculty of Physics, Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Nedukh, Sergey [Institute of Radiophysics and Electronics NAS of Ukraine, Kharkov 61085 (Ukraine); Tarapov, Sergey [Institute of Radiophysics and Electronics NAS of Ukraine, Kharkov 61085 (Ukraine)

    2005-07-15

    Since the dielectric permittivity is linear with frequency-dependent conductivity, high-frequency properties for any kind of magnetic materials with the high magnetoresistance depend on magnetization. It manifests as magnetorefractive effect (MRE) in the infrared region of spectrum and as magnetoimpedance (MI) in the frequency range between radio and microwaves. The main mechanism of both MRE and MI in nanocomposites with tunnel-type magnetoresistance is high-frequency spin-dependent tunnelling. We report on recent results of theoretical and experimental investigations of MRE and MI in nanocomposites Co{sub 51.5}Al{sub 19.5}O{sub 29}, Co{sub 50.2}Ti{sub 9.1}O{sub 40.7}, Co{sub 52.3}Si{sub 12.2}O{sub 35.5} and (Co{sub 0,4}Fe{sub 0,6}){sub 48}(MgF){sub 52}. Most of the obtained experimental data for MRE and MI are consistent with the theory based on considering the tunnel junction between adjacent granules in percolation cluster as a capacitor.

  5. Microwave-induced co-tunneling in single electron tunneling transistors

    DEFF Research Database (Denmark)

    Ejrnaes, M.; Savolainen, M.; Manscher, M.

    2002-01-01

    on rubber bellows. Cross-talk was minimized by using individual coaxial lines between the sample and the room temperature electronics: The co-tunneling experiments were performed at zero DC bias current by measuring the voltage response to a very small amplitude 2 Hz current modulation with the gate voltage......The influence of microwaves on the co-tunneling in single electron tunneling transistors has been investigated as function of frequency and power in the temperature range from 150 to 500 mK. All 20 low frequency connections and the RF line were filtered, and the whole cryostat was suspended...

  6. Interaction between groundwater and TBM (Tunnel Boring Machine) excavated tunnels

    OpenAIRE

    Font Capó, Jordi

    2012-01-01

    A number of problems, e.g. sudden inflows are encountered during tunneling under the piezometric level, especially when the excavation crosses high transmissivity areas. These inflows may drag materials when the tunnel crosses low competent layers, resulting in subsidence, chimney formation and collapses. Moreover, inflows can lead to a decrease in head level because of aquifer drainage. Tunnels can be drilled by a tunnel boring machine (TBM) to minimize inflows and groundwater impacts, restr...

  7. First Results at ultra-high Rλ in a wind tunnel

    Science.gov (United States)

    Kuechler, Christian; Bodenschatz, Eberhard; Bewley, Gregory P.

    2017-11-01

    With a new active grid installed, the Variable Density Turbulence Tunnel (VDTT) at the Max-Planck-Institute for Dynamics and Self-Organization produced homogeneous turbulence at Reynolds numbers up to Rλ 7500 . The active grid consisted of 111 individually controllable flaps that produced more intense turbulence than classical fixed grids. We varied the Reynolds number by changing the pressure of sulfur hexafluoride gas in the tunnel between 0.5 and 15 bar, which changes the viscosity of the gas. With hot wire probes called NSTAPs that were 30 microns long, we measured velocity spectra and structure functions. While a bottleneck is present in the spectra at Reynolds numbers up to Rλ < 3000 , the bottleneck weakens and disappears at higher Rλ. We compare this observation with measurements made in the field and with computer simulations.

  8. Tunneling spectroscopy on grain boundary junctions in electron-doped high-temperature superconductors

    International Nuclear Information System (INIS)

    Welter, B.

    2007-01-01

    Some methods are developed anf presented, by means of which from experimental tunnel spectra, especially on symmetric SIS contacts, informations about the properties of electrodes and tunnel barriers can be obtained. Especially a procedure for the numerical unfolding of symmetric SIS spectra is proposed. Furthermore a series of models is summarized, which can explain the linear background conductivity observed in many spectra on high-temperature superconductors. The results of resistance measurements on film bridges are presented. Especially different methods for the determination of H c2 (T) respectively H c2 (0) are presented and applied to the experimental data. Finally the results of the tunnel-spectroscopy measurements are shown

  9. Typical Underwater Tunnels in the Mainland of China and Related Tunneling Technologies

    Directory of Open Access Journals (Sweden)

    Kairong Hong

    2017-12-01

    Full Text Available In the past decades, many underwater tunnels have been constructed in the mainland of China, and great progress has been made in related tunneling technologies. This paper presents the history and state of the art of underwater tunnels in the mainland of China in terms of shield-bored tunnels, drill-and-blast tunnels, and immersed tunnels. Typical underwater tunnels of these types in the mainland of China are described, along with innovative technologies regarding comprehensive geological prediction, grouting-based consolidation, the design and construction of large cross-sectional tunnels with shallow cover in weak strata, cutting tool replacement under limited drainage and reduced pressure conditions, the detection and treatment of boulders, the construction of underwater tunnels in areas with high seismic intensity, and the treatment of serious sedimentation in a foundation channel of immersed tunnels. Some suggestions are made regarding the three potential great strait-crossing tunnels—the Qiongzhou Strait-Crossing Tunnel, Bohai Strait-Crossing Tunnel, and Taiwan Strait-Crossing Tunnel—and issues related to these great strait-crossing tunnels that need further study are proposed. Keywords: Underwater tunnel, Strait-crossing tunnel, Shield-bored tunnel, Immersed tunnel, Drill and blast

  10. Automatic Generation of the Planning Tunnel High Speed Craft Hull Form

    Institute of Scientific and Technical Information of China (English)

    Morteza Ghassabzadeh; Hassan Ghassemi

    2012-01-01

    The creation of geometric model of a ship to determine the characteristics of hydrostatic and hydrodynamic,and also for structural design and equipments arrangement are so important in the ship design process.Planning tunnel high speed craft is one of the crafts in which,achievement to their top speed is more important.These crafts with the use of tunnel have the aero-hydrodynamics properties to diminish the resistance,good sea-keeping behavior,reduce slamming and avoid porpoising.Because of the existence of the tunnel,the hull form generation of these crafts is more complex and difficult.In this paper,it has attempted to provide a method based on geometry creation guidelines and with an entry of the least control and hull form adjustment parameters,to generate automatically the hull form of planning tunnel craft.At first,the equations of mathematical model are described and subsequent,three different models generated based on present method are compared and analyzed.Obviously,the generated model has more application in the early stages of design.

  11. Electrically tunable tunneling rectification magnetoresistance in magnetic tunneling junctions with asymmetric barriers.

    Science.gov (United States)

    Wang, Jing; Huang, Qikun; Shi, Peng; Zhang, Kun; Tian, Yufeng; Yan, Shishen; Chen, Yanxue; Liu, Guolei; Kang, Shishou; Mei, Liangmo

    2017-10-26

    The development of multifunctional spintronic devices requires simultaneous control of multiple degrees of freedom of electrons, such as charge, spin and orbit, and especially a new physical functionality can be realized by combining two or more different physical mechanisms in one specific device. Here, we report the realization of novel tunneling rectification magnetoresistance (TRMR), where the charge-related rectification and spin-dependent tunneling magnetoresistance are integrated in Co/CoO-ZnO/Co magnetic tunneling junctions with asymmetric tunneling barriers. Moreover, by simultaneously applying direct current and alternating current to the devices, the TRMR has been remarkably tuned in the range from -300% to 2200% at low temperature. This proof-of-concept investigation provides an unexplored avenue towards electrical and magnetic control of charge and spin, which may apply to other heterojunctions to give rise to more fascinating emergent functionalities for future spintronics applications.

  12. Cumulative exposure to dust and gases as determinants of lung function decline in tunnel construction workers.

    Science.gov (United States)

    Bakke, B; Ulvestad, B; Stewart, P; Eduard, W

    2004-03-01

    To study the relation between lung function decrease and cumulative exposure to dust and gases in tunnel construction workers. A total of 651 male construction workers (drill and blast workers, tunnel concrete workers, shotcreting operators, and tunnel boring machine workers) were followed up by spirometric measurements in 1989-2002 for an average of six years. Outdoor concrete workers, foremen, and engineers served as a low exposed referent population. The between worker component of variability was considerably reduced within the job groups compared to the whole population, suggesting that the workers within job groups had similar exposure levels. The annual decrease in FEV1 in low-exposed non-smoking workers was 21 ml and 24 ml in low-exposed ever smokers. The annual decrease in FEV1 in tunnel construction workers was 20-31 ml higher than the low exposed workers depending on job group for both non-smokers and ever smokers. After adjustment for age and observation time, cumulative exposure to nitrogen dioxide showed the strongest association with a decrease in FEV1 in both non-smokers, and ever smokers. Cumulative exposure to nitrogen dioxide appeared to be a major risk factor for lung function decreases in these tunnel construction workers, although other agents may have contributed to the observed effect. Contact with blasting fumes should be avoided, diesel exhaust emissions should be reduced, and respiratory devices should be used to protect workers against dust and nitrogen dioxide exposure.

  13. [Remote results of high myopia surgical correction by tunnel keratoplasty ].

    Science.gov (United States)

    Dushin, N V; Beliaev, V S; Gonchar, P A; Barashkov, V I; Kravchinina, V V; Frolov, M A

    2000-01-01

    Remote results evidence high refraction efficiency of tunnel keratoplasty, stable results being observed for up to 15 years. A total of 104 operations (58 patients) were analyzed for a period of observation of more than 10 years. The patients' ages varied from 17 to 52 years, there were 34 women and 24 men. The main advantage of interlamellar refraction meridional keratoplasty is easiness of operation. At present it is the operation of choice for dosed reduction of eye refraction aimed at correction of high myopia and astigmatism. The possibility of correcting residual myopia after keratotomy and repair of refraction abnormalities resultant from perforating keratoplasty is particularly interesting. The possibility of regulating the corrective effect in remote periods by replacing the implants also deserves attention. Hence, low traumatism, high efficiency, and stability of the refraction effect once more confirm our recommendation to use tunnel keratoplasty in clinical practice.

  14. Numerical analysis of the slipstream development around a high-speed train in a double-track tunnel.

    Science.gov (United States)

    Fu, Min; Li, Peng; Liang, Xi-Feng

    2017-01-01

    Analysis of the slipstream development around the high-speed trains in tunnels would provide references for assessing the transient gust loads on trackside workers and trackside furniture in tunnels. This paper focuses on the computational analysis of the slipstream caused by high-speed trains passing through double-track tunnels with a cross-sectional area of 100 m2. Three-dimensional unsteady compressible Reynolds-averaged Navier-Stokes equations and a realizable k-ε turbulence model were used to describe the airflow characteristics around a high-speed train in the tunnel. The moving boundary problem was treated using the sliding mesh technology. Three cases were simulated in this paper, including two tunnel lengths and two different configurations of the train. The train speed in these three cases was 250 km/h. The accuracy of the numerical method was validated by the experimental data from full-scale tests, and reasonable consistency was obtained. The results show that the flow field around the high-speed trains can be divided into three distinct regions: the region in front of the train nose, the annular region and the wake region. The slipstream development along the two sides of train is not in balance and offsets to the narrow side in the double-track tunnels. Due to the piston effect, the slipstream has a larger peak value in the tunnel than in open air. The tunnel length, train length and length ratio affect the slipstream velocities; in particular, the velocities increase with longer trains. Moreover, the propagation of pressure waves also induces the slipstream fluctuations: substantial velocity fluctuations mainly occur in front of the train, and weaken with the decrease in amplitude of the pressure wave.

  15. Experiences with a high-blockage model tested in the NASA Ames 12-foot pressure wind tunnel

    Science.gov (United States)

    Coder, D. W.

    1984-01-01

    Representation of the flow around full-scale ships was sought in the subsonic wind tunnels in order to a Hain Reynolds numbers as high as possible. As part of the quest to attain the largest possible Reynolds number, large models with high blockage are used which result in significant wall interference effects. Some experiences with such a high blockage model tested in the NASA Ames 12-foot pressure wind tunnel are summarized. The main results of the experiment relating to wind tunnel wall interference effects are also presented.

  16. Quantum mechanical tunneling in the automerization of cyclobutadiene

    Science.gov (United States)

    Schoonmaker, R.; Lancaster, T.; Clark, S. J.

    2018-03-01

    Cyclobutadiene has a four-membered carbon ring with two double bonds, but this highly strained molecular configuration is almost square and, via a coordinated motion, the nuclei quantum mechanically tunnels through the high-energy square state to a configuration equivalent to the initial configuration under a 90° rotation. This results in a square ground state, comprising a superposition of two molecular configurations, that is driven by quantum tunneling. Using a quantum mechanical model, and an effective nuclear potential from density functional theory, we calculate the vibrational energy spectrum and the accompanying wavefunctions. We use the wavefunctions to identify the motions of the molecule and detail how different motions can enhance or suppress the tunneling rate. This is relevant for kinematics of tunneling-driven reactions, and we discuss these implications. We are also able to provide a qualitative account of how the molecule will respond to an external perturbation and how this may enhance or suppress infra-red-active vibrational transitions.

  17. Quantum mechanical tunneling in the automerization of cyclobutadiene.

    Science.gov (United States)

    Schoonmaker, R; Lancaster, T; Clark, S J

    2018-03-14

    Cyclobutadiene has a four-membered carbon ring with two double bonds, but this highly strained molecular configuration is almost square and, via a coordinated motion, the nuclei quantum mechanically tunnels through the high-energy square state to a configuration equivalent to the initial configuration under a 90° rotation. This results in a square ground state, comprising a superposition of two molecular configurations, that is driven by quantum tunneling. Using a quantum mechanical model, and an effective nuclear potential from density functional theory, we calculate the vibrational energy spectrum and the accompanying wavefunctions. We use the wavefunctions to identify the motions of the molecule and detail how different motions can enhance or suppress the tunneling rate. This is relevant for kinematics of tunneling-driven reactions, and we discuss these implications. We are also able to provide a qualitative account of how the molecule will respond to an external perturbation and how this may enhance or suppress infra-red-active vibrational transitions.

  18. Anechoic wind tunnel tests on high-speed train bogie aerodynamic noise

    OpenAIRE

    Latorre Iglesias, E.; Thompson, D.; Smith, M.; Kitagawa, T.; Yamazaki, N.

    2016-01-01

    Aerodynamic noise becomes a significant noise source at speeds normally reached by high-speed trains. The train bogies are identified as important sources of aerodynamic noise. Due to the difficulty to assess this noise source carrying out field tests, wind tunnel tests offer many advantages. Tests were performed in the large-scale low-noise anechoic wind tunnel at Maibara, Japan, using a 1/7 scale train car and bogie model for a range of flow speeds between 50, 76, 89 and 100 m/s. The depend...

  19. Doping dependent tunneling conductance in SDW ordered copper oxide superconductors

    International Nuclear Information System (INIS)

    Rout, G.C.; Panda, S.K.

    2011-01-01

    The model calculation reports the co-existences of s-wave superconductivity and spin density wave (SDW) in high-T c cuprates. The doping dependence of the phase diagram explains the experimental observations qualitatively. The calculated tunneling spectra explains the observed multiple peak structures. This calculation provides an alternative to BCS formalism to calculate order parameters from the spectra. It is observed that doping suppresses the long range anti-ferromagnetic order and induces superconducting phase for a suitable doping. In order to study this effect, we present a model study of the doping dependence of the tunneling conductance in high-T c systems. The system is described by the Hamiltonian consisting of spin density wave (SDW) and s-wave type superconducting interaction in presence of varying impurity concentrations. The gap equations are calculated by using Green's functions technique of Zubarev. The gap equations and the chemical potential are solved self-consistently. The imaginary part of the electron Green's functions shows the quasi-particle density of states which represent the tunneling conductance observed by the scanning tunneling microscopy (STM). We investigate the effect of impurity on the gap equations as well as on the tunneling conductance. The results will be discussed based on the experimental observations.

  20. Doping dependent tunneling conductance in SDW ordered copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C., E-mail: gcr@iopb.res.in [Condensed Matter Physics Group, Dept. of Applied Physics and Ballistics, F.M. University, 756 019 Balasore, Orissa (India); Panda, S K [K.D. Science College, Pochilima, Hinjilicut, 761 101 Ganjam, Orissa (India)

    2011-07-15

    The model calculation reports the co-existences of s-wave superconductivity and spin density wave (SDW) in high-T{sub c} cuprates. The doping dependence of the phase diagram explains the experimental observations qualitatively. The calculated tunneling spectra explains the observed multiple peak structures. This calculation provides an alternative to BCS formalism to calculate order parameters from the spectra. It is observed that doping suppresses the long range anti-ferromagnetic order and induces superconducting phase for a suitable doping. In order to study this effect, we present a model study of the doping dependence of the tunneling conductance in high-T{sub c} systems. The system is described by the Hamiltonian consisting of spin density wave (SDW) and s-wave type superconducting interaction in presence of varying impurity concentrations. The gap equations are calculated by using Green's functions technique of Zubarev. The gap equations and the chemical potential are solved self-consistently. The imaginary part of the electron Green's functions shows the quasi-particle density of states which represent the tunneling conductance observed by the scanning tunneling microscopy (STM). We investigate the effect of impurity on the gap equations as well as on the tunneling conductance. The results will be discussed based on the experimental observations.

  1. Doping dependent tunneling conductance in SDW ordered copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C., E-mail: gcr@iopb.res.in [Condensed Matter Physics Group, Dept. of Applied Physics and Ballistics, F.M. University, 756 019 Balasore, Orissa (India); Panda, S.K. [K.D. Science College, Pochilima, Hinjilicut, 761 101 Ganjam, Orissa (India)

    2011-07-15

    The model calculation reports the co-existences of s-wave superconductivity and spin density wave (SDW) in high-T{sub c} cuprates. The doping dependence of the phase diagram explains the experimental observations qualitatively. The calculated tunneling spectra explains the observed multiple peak structures. This calculation provides an alternative to BCS formalism to calculate order parameters from the spectra. It is observed that doping suppresses the long range anti-ferromagnetic order and induces superconducting phase for a suitable doping. In order to study this effect, we present a model study of the doping dependence of the tunneling conductance in high-T{sub c} systems. The system is described by the Hamiltonian consisting of spin density wave (SDW) and s-wave type superconducting interaction in presence of varying impurity concentrations. The gap equations are calculated by using Green's functions technique of Zubarev. The gap equations and the chemical potential are solved self-consistently. The imaginary part of the electron Green's functions shows the quasi-particle density of states which represent the tunneling conductance observed by the scanning tunneling microscopy (STM). We investigate the effect of impurity on the gap equations as well as on the tunneling conductance. The results will be discussed based on the experimental observations.

  2. High-Performance Flexible Magnetic Tunnel Junctions for Smart Miniaturized Instruments

    KAUST Repository

    Amara, Selma.; Sevilla, Gallo. A. Torres; Hawsawi, Mayyada.; Mashraei, Yousof.; Mohammed, Hanan .; Cruz, Melvin E.; Ivanov, Yurii. P.; Jaiswal, Samridh.; Jakob, Gerhard.; Klä ui, Mathias.; Hussain, Muhammad.; Kosel, Jurgen.

    2018-01-01

    , where size and weight are critical parameters. Given their prevalence on the sensors market, flexible magnetic sensors play a major role in this progress. For many high-performance applications, magnetic tunnel junctions (MTJs) have become the first

  3. Investigation of Corner Effect and Identification of Tunneling Regimes in L-Shaped Tunnel Field-Effect-Transistor.

    Science.gov (United States)

    Najam, Faraz; Yu, Yun Seop

    2018-09-01

    Corner-effect existing in L-shaped tunnel field-effect-transistor (LTFET) was investigated using numerical simulations and band diagram analysis. It was found that the corner-effect is caused by the convergence of electric field in the sharp source corner present in an LTFET, thereby increasing the electric field in the sharp source corner region. It was found that in the corner-effect region tunneling starts early, as a function of applied bias, as compared to the rest of the channel not affected by corner-effect. Further, different tunneling regimes as a function of applied bias were identified in the LTFET including source to channel and channel to channel tunneling regimes. Presence of different tunneling regimes in LTFET was analytically justified with a set of equations developed to model source to channel, and channel to channel tunneling currents. Drain-current-gate-voltage (Ids-Vgs) characteristics obtained from the equations is in reasonable qualitative agreement with numerical simulation.

  4. Tunneling-induced shift of the cutoff law for high-order above-threshold ionization

    International Nuclear Information System (INIS)

    Lai, X. Y.; Quan, W.; Liu, X.

    2011-01-01

    We investigate the cutoff law for high-order above-threshold ionization (HATI) within a semiclassical framework. By explicitly adopting the tunneling effect and considering the initial position shift of the tunneled electron from the origin in the model, the cutoff energy position in HATI spectrum exhibits a well-defined upshift from the simple-man model prediction. The comparison between numerical results from our improved semiclassical model and the quantum-orbit theory shows a good agreement for small values of the Keldysh parameter γ, implying the important role of the inherent quantum tunneling effect in HATI dynamics.

  5. Direct, coherent and incoherent intermediate state tunneling and scanning tunnel microscopy (STM)

    International Nuclear Information System (INIS)

    Halbritter, J.

    1997-01-01

    Theory and experiment in tunneling are still qualitative in nature, which hold true also for the latest developments in direct-, resonant-, coherent- and incoherent-tunneling. Those tunnel processes have recently branched out of the field of ''solid state tunnel junctions'' into the fields of scanning tunnel microscopy (STM), single electron tunneling (SET) and semiconducting resonant tunnel structures (RTS). All these fields have promoted the understanding of tunneling in different ways reaching from the effect of coherence, of incoherence and of charging in tunneling, to spin flip or inelastic effects. STM allows not only the accurate measurements of the tunnel current and its voltage dependence but, more importantly, the easy quantification via the (quantum) tunnel channel conductance and the distance dependence. This new degree of freedom entering exponentially the tunnel current allows an unique identification of individual tunnel channels and their quantification. In STM measurements large tunnel currents are observed for large distances d > 1 nm explainable by intermediate state tunneling. Direct tunneling with its reduced tunnel time and reduced off-site Coulomb charging bridges distances below 1 nm, only. The effective charge transfer process with its larger off-site and on-site charging at intermediate states dominates tunnel transfer in STM, biology and chemistry over distances in the nm-range. Intermediates state tunneling becomes variable range hopping conduction for distances larger than d > 2 nm, for larger densities of intermediate states n 1 (ε) and for larger temperatures T or voltages U, still allowing high resolution imaging

  6. The tunneling magnetoresistance and spin-polarized optoelectronic properties of graphyne-based molecular magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Yang, Zhi; Ouyang, Bin; Lan, Guoqing; Xu, Li-Chun; Liu, Ruiping; Liu, Xuguang

    2017-01-01

    Using density functional theory and the non-equilibrium Green’s function method, we investigate the spin-dependent transport and optoelectronic properties of the graphyne-based molecular magnetic tunnel junctions (MMTJs). We find that these MMTJs exhibit an outstanding tunneling magnetoresistance (TMR) effect. The TMR value is as high as 10 6 %. When the magnetization directions of two electrodes are antiparallel under positive or negative bias voltages, two kinds of pure spin currents can be obtained in the systems. Furthermore, under the irradiation of infrared, visible or ultraviolet light, spin-polarized photocurrents can be generated in the MMTJs, but the corresponding microscopic mechanisms are different. More importantly, if the magnetization directions of two electrodes are antiparallel, the photocurrents with different spins are spatially separated, appearing at different electrodes. This phenomenon provides a new way to simultaneously generate two spin currents. (paper)

  7. Tunnel magnetoresistance in asymmetric double-barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Useinov, N.Kh.; Petukhov, D.A.; Tagirov, L.R.

    2015-01-01

    The spin-polarized tunnel conductance and tunnel magnetoresistance (TMR) through a planar asymmetric double-barrier magnetic tunnel junction (DBMTJ) have been calculated using quasi-classical model. In DBMTJ nanostructure the magnetization of middle ferromagnetic metal layer can be aligned parallel or antiparallel with respect to the fixed magnetizations of the top and bottom ferromagnetic electrodes. The transmission coefficients of an electron to pass through the barriers have been calculated in terms of quantum mechanics. The dependencies of tunnel conductance and TMR on the applied voltage have been calculated in case of non-resonant transmission. Estimated in the framework of our model, the difference between the spin-channels conductances at low voltages was found relatively large. This gives rise to very high magnitude of TMR. - Highlights: • The spin-polarized conductance through the junction is calculated. • Dependencies of the tunnel conductance vs applied bias are shown. • Bias voltage dependence of tunnel magnetoresistance for the structure is shown

  8. Resonant tunneling via spin-polarized barrier states in a magnetic tunnel junction

    NARCIS (Netherlands)

    Jansen, R.; Lodder, J.C.

    2000-01-01

    Resonant tunneling through states in the barrier of a magnetic tunnel junction has been analyzed theoretically for the case of a spin-polarized density of barrier states. It is shown that for highly spin-polarized barrier states, the magnetoresistance due to resonant tunneling is enhanced compared

  9. Enhancement of tunneling current in phosphorene tunnel field effect transistors by surface defects.

    Science.gov (United States)

    Lu, Juan; Fan, Zhi-Qiang; Gong, Jian; Chen, Jie-Zhi; ManduLa, Huhe; Zhang, Yan-Yang; Yang, Shen-Yuan; Jiang, Xiang-Wei

    2018-02-21

    The effects of the staggered double vacancies, hydrogen (H), 3d transition metals, for example cobalt, and semiconductor covalent atoms, for example, germanium, nitrogen, phosphorus (P) and silicon adsorption on the transport properties of monolayer phosphorene were studied using density functional theory and non-equilibrium Green's function formalism. It was observed that the performance of the phosphorene tunnel field effect transistors (TFETs) with an 8.8 nm scaling channel length could be improved most effectively, if the adatoms or vacancies were introduced at the source channel interface. For H and P doped devices, the upper limit of on-state currents of phosphorene TFETs were able to be quickly increased to 2465 μA μm -1 and 1652 μA μm -1 , respectively, which not only outperformed the pristine sample, but also met the requirements for high performance logic applications for the next decade in the International Technology Roadmap for Semiconductors (ITRS). It was proved that the defect-induced band gap states make the effective tunneling path between the conduction band (CB) and valence band (VB) much shorter, so that the carriers can be injected easily from the left electrode, then transfer to the channel. In this regard, the tunneling properties of phosphorene TFETs can be manipulated using surface defects. In addition, the effects of spin polarization on the transport properties of doped phosphorene TFETs were also rigorously considered, H and P doped TFETs could achieve a high ON current of 1795 μA μm -1 and 1368 μA μm -1 , respectively, which is closer to realistic nanodevices.

  10. Magnetic quantum tunneling: key insights from multi-dimensional high-field EPR.

    Science.gov (United States)

    Lawrence, J; Yang, E-C; Hendrickson, D N; Hill, S

    2009-08-21

    Multi-dimensional high-field/frequency electron paramagnetic resonance (HFEPR) spectroscopy is performed on single-crystals of the high-symmetry spin S = 4 tetranuclear single-molecule magnet (SMM) [Ni(hmp)(dmb)Cl](4), where hmp(-) is the anion of 2-hydroxymethylpyridine and dmb is 3,3-dimethyl-1-butanol. Measurements performed as a function of the applied magnetic field strength and its orientation within the hard-plane reveal the four-fold behavior associated with the fourth order transverse zero-field splitting (ZFS) interaction, (1/2)B(S + S), within the framework of a rigid spin approximation (with S = 4). This ZFS interaction mixes the m(s) = +/-4 ground states in second order of perturbation, generating a sizeable (12 MHz) tunnel splitting, which explains the fast magnetic quantum tunneling in this SMM. Meanwhile, multi-frequency measurements performed with the field parallel to the easy-axis reveal HFEPR transitions associated with excited spin multiplets (S spin s = 1 Ni(II) ions within the cluster, as well as a characterization of the ZFS within excited states. The combined experimental studies support recent work indicating that the fourth order anisotropy associated with the S = 4 state originates from second order ZFS interactions associated with the individual Ni(II) centers, but only as a result of higher-order processes that occur via S-mixing between the ground state and higher-lying (S spin multiplets. We argue that this S-mixing plays an important role in the low-temperature quantum dynamics associated with many other well known SMMs.

  11. A compact sub-Kelvin ultrahigh vacuum scanning tunneling microscope with high energy resolution and high stability.

    Science.gov (United States)

    Zhang, L; Miyamachi, T; Tomanić, T; Dehm, R; Wulfhekel, W

    2011-10-01

    We designed a scanning tunneling microscope working at sub-Kelvin temperatures in ultrahigh vacuum (UHV) in order to study the magnetic properties on the nanoscale. An entirely homebuilt three-stage cryostat is used to cool down the microscope head. The first stage is cooled with liquid nitrogen, the second stage with liquid (4)He. The third stage uses a closed-cycle Joule-Thomson refrigerator of a cooling power of 1 mW. A base temperature of 930 mK at the microscope head was achieved using expansion of (4)He, which can be reduced to ≈400 mK when using (3)He. The cryostat has a low liquid helium consumption of only 38 ml/h and standing times of up to 280 h. The fast cooling down of the samples (3 h) guarantees high sample throughput. Test experiments with a superconducting tip show a high energy resolution of 0.3 meV when performing scanning tunneling spectroscopy. The vertical stability of the tunnel junction is well below 1 pm (peak to peak) and the electric noise floor of tunneling current is about 6fA/√Hz. Atomic resolution with a tunneling current of 1 pA and 1 mV was achieved on Au(111). The lateral drift of the microscope at stable temperature is below 20 pm/h. A superconducting spilt-coil magnet allows to apply an out-of-plane magnetic field of up to 3 T at the sample surface. The flux vortices of a Nb(110) sample were clearly resolved in a map of differential conductance at 1.1 K and a magnetic field of 0.21 T. The setup is designed for in situ preparation of tip and samples under UHV condition.

  12. Homoepitaxial graphene tunnel barriers for spin transport (Presentation Recording)

    Science.gov (United States)

    Friedman, Adam L.

    2015-09-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate homoepitaxial tunnel barrier devices in which graphene serves as both the tunnel barrier and the high mobility transport channel. Beginning with multilayer graphene, we fluorinate or hydrogenate the top layer to decouple it from the bottom layer, so that it serves as a single monolayer tunnel barrier for both charge and spin injection into the lower graphene transport channel. We demonstrate successful tunneling by measuring non-linear IV curves, and a weakly temperature dependent zero bias resistance. We perform lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies (~200 ps). However, we also demonstrate the highest spin polarization efficiencies (~45%) yet measured in graphene-based spin devices [1]. [1] A.L. Friedman, et al., Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport, Nat. Comm. 5, 3161 (2014).

  13. Metal-organic chemical vapor deposition of high quality, high indium composition N-polar InGaN layers for tunnel devices

    Science.gov (United States)

    Lund, Cory; Romanczyk, Brian; Catalano, Massimo; Wang, Qingxiao; Li, Wenjun; DiGiovanni, Domenic; Kim, Moon J.; Fay, Patrick; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia

    2017-05-01

    In this study, the growth of high quality N-polar InGaN films by metalorganic chemical vapor deposition is presented with a focus on growth process optimization for high indium compositions and the structural and tunneling properties of such films. Uniform InGaN/GaN multiple quantum well stacks with indium compositions up to 0.46 were grown with local compositional analysis performed by energy-dispersive X-ray spectroscopy within a scanning transmission electron microscope. Bright room-temperature photoluminescence up to 600 nm was observed for films with indium compositions up to 0.35. To study the tunneling behavior of the InGaN layers, N-polar GaN/In0.35Ga0.65N/GaN tunnel diodes were fabricated which reached a maximum current density of 1.7 kA/cm2 at 5 V reverse bias. Temperature-dependent measurements are presented and confirm tunneling behavior under reverse bias.

  14. Tunnel magnetoresistance in alumina, magnesia and composite tunnel barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Schebaum, Oliver; Drewello, Volker; Auge, Alexander; Reiss, Guenter; Muenzenberg, Markus; Schuhmann, Henning; Seibt, Michael; Thomas, Andy

    2011-01-01

    Using magnetron sputtering, we have prepared Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions with tunnel barriers consisting of alumina, magnesia, and magnesia-alumina bilayer systems. The highest tunnel magnetoresistance ratios we found were 73% for alumina and 323% for magnesia-based tunnel junctions. Additionally, tunnel junctions with a unified layer stack were prepared for the three different barriers. In these systems, the tunnel magnetoresistance ratios at optimum annealing temperatures were found to be 65% for alumina, 173% for magnesia, and 78% for the composite tunnel barriers. The similar tunnel magnetoresistance ratios of the tunnel junctions containing alumina provide evidence that coherent tunneling is suppressed by the alumina layer in the composite tunnel barrier. - Research highlights: → Transport properties of Co-Fe-B/tunnel barrier/Co-Fe-B magnetic tunnel junctions. → Tunnel barrier consists of MgO, Al-Ox, or MgO/Al-Ox bilayer systems. → Limitation of TMR-ratio in composite barrier tunnel junctions to Al-Ox values. → Limitation indicates that Al-Ox layer is causing incoherent tunneling.

  15. Performance analysis of AlGaAs/GaAs tunnel junctions for ultra-high concentration photovoltaics

    International Nuclear Information System (INIS)

    García, I; Rey-Stolle, I; Algora, C

    2012-01-01

    An n ++ -GaAs/p ++ -AlGaAs tunnel junction with a peak current density of 10 100 A cm -2 is developed. This device is a tunnel junction for multijunction solar cells, grown lattice-matched on standard GaAs or Ge substrates, with the highest peak current density ever reported. The voltage drop for a current density equivalent to the operation of the multijunction solar cell up to 10 000 suns is below 5 mV. Trap-assisted tunnelling is proposed to be behind this performance, which cannot be justified by simple band-to-band tunnelling. The metal-organic vapour-phase epitaxy growth conditions, which are in the limits of the transport-limited regime, and the heavy tellurium doping levels are the proposed origins of the defects enabling trap-assisted tunnelling. The hypothesis of trap-assisted tunnelling is supported by the observed annealing behaviour of the tunnel junctions, which cannot be explained in terms of dopant diffusion or passivation. For the integration of these tunnel junctions into a triple-junction solar cell, AlGaAs barrier layers are introduced to suppress the formation of parasitic junctions, but this is found to significantly degrade the performance of the tunnel junctions. However, the annealed tunnel junctions with barrier layers still exhibit a peak current density higher than 2500 A cm -2 and a voltage drop at 10 000 suns of around 20 mV, which are excellent properties for tunnel junctions and mean they can serve as low-loss interconnections in multijunction solar cells working at ultra-high concentrations. (paper)

  16. Tunneling in cuprate and bismuthate superconductors

    International Nuclear Information System (INIS)

    Zasadzinski, J.F.; Huang, Qiang; Tralshawala, N.

    1991-10-01

    Tunneling measurements using a point-contact technique are reported for the following high temperature superconducting oxides: Ba 1-x K x BiO 3 (BKBO), Nd 2-x Ce x CuO 4 (NCCO), Bi 2 Sr 2 CaCu 2 O 7 (BSCCO) and Tl 2 Ba 2 CaCu 2 O x (TBCCO). For the bismuthate, BKBO, ideal, S-I-N tunneling characteristics are observed using a Au tip. The normalized conductance is fitted to a BCS density of states and thermal smearing only proving there is no fundamental limitation in BKBO for device applications. For the cuprates, the normalized conductance displays BCS-like characteristics, but with a broadening larger than from thermal smearing. Energy gap values are presented for each material. For BKBO and NCCO the Eliashberg functions, α 2 F(ω), obtained from the tunneling are shown to be in good agreement with neutron scattering results. Proximity effect tunneling studies are reported for Au/BSCCO bilayers and show that the energy gap of BSCCO can be observed through Au layers up to 600 Angstrom thick

  17. Wind-tunnel investigations of pressure distribution over high-rise buildings

    CSIR Research Space (South Africa)

    Cwik, M

    2013-09-01

    Full Text Available of evaluating wind loads of high-rise structures. The second part provides a description of the research, conducted at the wind-tunnel of the Council for Scientific and Industrial Research, in Pretoria, South Africa. The aim of this research was to determine...

  18. Tunneling time, what is its meaning?

    International Nuclear Information System (INIS)

    McDonald, C R; Orlando, G; Vampa, G; Brabec, T

    2015-01-01

    The tunnel time ionization dynamics for bound systems in laser fields are investigated. Numerical analysis for a step function switch-on of the field allows for the tunnel time to be defined as the time it takes the ground state to develop the under-barrier wavefunction components necessary to achieve the static field ionization rate. A relation between the tunnel time and the Keldysh time is established. The definition of the tunnel time is extended to time varying fields and experimental possibilities for measuring the tunnel time are discussed

  19. Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors

    International Nuclear Information System (INIS)

    Shih, Chun-Hsing; Dang Chien, Nguyen

    2014-01-01

    Low-bandgap semiconductors, such as InAs and InSb, are widely considered to be ideal for use in tunnel field-effect transistors to ensure sufficient on-current boosting at low voltages. This work elucidates the physical and mathematical considerations of applying conventional band-to-band tunneling models in low-bandgap semiconductors, and presents a new analytical alternative for practical use. The high-bandgap tunneling generates most at maximum field region with shortest tunnel path, whereas the low-bandgap generations occur dispersedly because of narrow tunnel barrier. The local electrical field associated with tunneling-electron numbers dominates in low-bandgap materials. This work proposes decoupled electric-field terms in the pre-exponential factor and exponential function of generation-rate expressions. Without fitting, the analytical results and approximated forms exhibit great agreements with the sophisticated forms both in high- and low-bandgap semiconductors. Neither nonlocal nor local field is appropriate to be used in numerical simulations for predicting the tunneling generations in a variety of low- and high-bandgap semiconductors

  20. Systematic observation of tunneling field-ionization in highly excited Rb Rydberg atoms

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Tada, M.; Kominato, K.; Shibata, M.; Yamada, S.; Haseyama, T.; Ogawa, I.; Funahashi, H.; Yamamoto, K.; Matsuki, S.

    2002-01-01

    Pulsed field ionization of high-n (90≤n≤150) manifold states in Rb Rydberg atoms has been investigated in high slew-rate regime. Two peaks in the field ionization spectra were systematically observed for the investigated n region, where the field values at the lower peak do not almost depend on the excitation energy in the manifold, while those at the higher peak increase with increasing excitation energy. The fraction of the higher peak component to the total ionization signals increases with increasing n, exceeding 80% at n=147. Characteristic behavior of the peak component and the comparison with theoretical predictions indicate that the higher peak component is due to the tunneling process. The obtained results show that the tunneling process plays increasingly the dominant role at such highly excited nonhydrogenic Rydberg atoms

  1. Application of tests of goodness of fit in determining the probability density function for spacing of steel sets in tunnel support system

    Directory of Open Access Journals (Sweden)

    Farnoosh Basaligheh

    2015-12-01

    Full Text Available One of the conventional methods for temporary support of tunnels is to use steel sets with shotcrete. The nature of a temporary support system demands a quick installation of its structures. As a result, the spacing between steel sets is not a fixed amount and it can be considered as a random variable. Hence, in the reliability analysis of these types of structures, the selection of an appropriate probability distribution function of spacing of steel sets is essential. In the present paper, the distances between steel sets are collected from an under-construction tunnel and the collected data is used to suggest a proper Probability Distribution Function (PDF for the spacing of steel sets. The tunnel has two different excavation sections. In this regard, different distribution functions were investigated and three common tests of goodness of fit were used for evaluation of each function for each excavation section. Results from all three methods indicate that the Wakeby distribution function can be suggested as the proper PDF for spacing between the steel sets. It is also noted that, although the probability distribution function for two different tunnel sections is the same, the parameters of PDF for the individual sections are different from each other.

  2. Application of Rapid Prototyping Methods to High-Speed Wind Tunnel Testing

    Science.gov (United States)

    Springer, A. M.

    1998-01-01

    This study was undertaken in MSFC's 14-Inch Trisonic Wind Tunnel to determine if rapid prototyping methods could be used in the design and manufacturing of high speed wind tunnel models in direct testing applications, and if these methods would reduce model design/fabrication time and cost while providing models of high enough fidelity to provide adequate aerodynamic data, and of sufficient strength to survive the test environment. Rapid prototyping methods utilized to construct wind tunnel models in a wing-body-tail configuration were: fused deposition method using both ABS plastic and PEEK as building materials, stereolithography using the photopolymer SL-5170, selective laser sintering using glass reinforced nylon, and laminated object manufacturing using plastic reinforced with glass and 'paper'. This study revealed good agreement between the SLA model, the metal model with an FDM-ABS nose, an SLA nose, and the metal model for most operating conditions, while the FDM-ABS data diverged at higher loading conditions. Data from the initial SLS model showed poor agreement due to problems in post-processing, resulting in a different configuration. A second SLS model was tested and showed relatively good agreement. It can be concluded that rapid prototyping models show promise in preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.

  3. Point-contact electron tunneling into the high-T/sub c/ superconductor Y-Ba-Cu-O

    International Nuclear Information System (INIS)

    Kirk, M.D.; Smith, D.P.E.; Mitzi, D.B.

    1987-01-01

    We report results of a study of electron tunneling into bulk samples of the new high-T/sub c/ superconductor Y-Ba-Cu-O using point-contact tunneling. Based on a superconductive tunneling interpretation, the results show exceptionally large energy gaps in these materials (roughly 2Δ = 100 meV), implying 2Δ/k/sub C/T/sub c/--13. Similar values were found previously by us for La-Sr-Cu-O. We also see Structure in the I-V curves similar to that seen in La-Sr-Cu-O. On the basis of the asymmetries observed in the I-V characteristics, we believe that the natural tunneling barrier on this material is of the Schottky type

  4. Atomic site tunneling spectroscopy on high-Tc superconductors

    International Nuclear Information System (INIS)

    Hasegawa, T.; Nantoh, M.; Takagi, A.; Yamaguchi, W.; Ogino, M.; Kawasaki, M.

    1994-01-01

    Superconducting gap structures of Bi 2 Sr 2 CaCu 2 O y (BSCCO) and YBa 2 Cu 3 O y (YBCO) have been probed by scanning tunneling microscopy (STM) at cryogenic temperatures. The tunneling conductance curves observed on bulk single crystals of BSCCO and epitaxial thin films of YBCO revealed clear obershooting peaks and flat bottom regions around V=0 with quite low zero-bias conductances of ∝1%. Since the electron tunneling process in STM is essentially incoherent, the present observation is favored by the s-wave pairing mechanism. However, the conductance curves were found to be substantially smeared in comparison with the conventional spectra predicted in the BCS (isotropic s-wave) superconductors, suggesting gap anisotropy. (orig.)

  5. Electron tunneling in chemistry

    International Nuclear Information System (INIS)

    Zamaraev, K.I.; Khajrutdinov, R.F.; Zhdanov, V.P.; Molin, Yu.N.

    1985-01-01

    Results of experimental and theoretical investigations are outlined systematically on electron tunnelling in chemical reactions. Mechanism of electron transport to great distances is shown to be characteristic to chemical compounds of a wide range. The function of tunnel reactions is discussed for various fields of chemistry, including radiation chemistry, electrochemistry, chemistry of solids, chemistry of surface and catalysis

  6. Coherent Interlayer Tunneling and Negative Differential Resistance with High Current Density in Double Bilayer Graphene-WSe2 Heterostructures.

    Science.gov (United States)

    Burg, G William; Prasad, Nitin; Fallahazad, Babak; Valsaraj, Amithraj; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; Wang, Qingxiao; Kim, Moon J; Register, Leonard F; Tutuc, Emanuel

    2017-06-14

    We demonstrate gate-tunable resonant tunneling and negative differential resistance between two rotationally aligned bilayer graphene sheets separated by bilayer WSe 2 . We observe large interlayer current densities of 2 and 2.5 μA/μm 2 and peak-to-valley ratios approaching 4 and 6 at room temperature and 1.5 K, respectively, values that are comparable to epitaxially grown resonant tunneling heterostructures. An excellent agreement between theoretical calculations using a Lorentzian spectral function for the two-dimensional (2D) quasiparticle states, and the experimental data indicates that the interlayer current stems primarily from energy and in-plane momentum conserving 2D-2D tunneling, with minimal contributions from inelastic or non-momentum-conserving tunneling. We demonstrate narrow tunneling resonances with intrinsic half-widths of 4 and 6 meV at 1.5 and 300 K, respectively.

  7. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    Science.gov (United States)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  8. Pose Measurement Method and Experiments for High-Speed Rolling Targets in a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Zhenyuan Jia

    2014-12-01

    Full Text Available High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  9. Pose measurement method and experiments for high-speed rolling targets in a wind tunnel.

    Science.gov (United States)

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-12-12

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  10. Measuring fire size in tunnels

    International Nuclear Information System (INIS)

    Guo, Xiaoping; Zhang, Qihui

    2013-01-01

    A new measure of fire size Q′ has been introduced in longitudinally ventilated tunnel as the ratio of flame height to the height of tunnel. The analysis in this article has shown that Q′ controls both the critical velocity and the maximum ceiling temperature in the tunnel. Before the fire flame reaches tunnel ceiling (Q′ 1.0), Fr approaches a constant value. This is also a well-known phenomenon in large tunnel fires. Tunnel ceiling temperature shows the opposite trend. Before the fire flame reaches the ceiling, it increases very slowly with the fire size. Once the flame has hit the ceiling of tunnel, temperature rises rapidly with Q′. The good agreement between the current prediction and three different sets of experimental data has demonstrated that the theory has correctly modelled the relation among the heat release rate of fire, ventilation flow and the height of tunnel. From design point of view, the theoretical maximum of critical velocity for a given tunnel can help to prevent oversized ventilation system. -- Highlights: • Fire sizing is an important safety measure in tunnel design. • New measure of fire size a function of HRR of fire, tunnel height and ventilation. • The measure can identify large and small fires. • The characteristics of different fire are consistent with observation in real fires

  11. Quantum tunneling in the periodically driven SU(2) model

    International Nuclear Information System (INIS)

    Arvieu, R.

    1991-01-01

    The tunneling rate is investigated in the quantum and classical limits using an exactly soluble, periodically driven SU(2) model. The tunneling rate is obtained by solving the time-dependent Schroedinger equation and projecting the exact wave-function on the space of coherent states using the Husimi distribution. The oscillatory, coherent tunneling of the wave-function between two Hartree-Fock minima is observed. The driving plays an important role increasing the tunneling rate by orders of magnitude as compared to the semiclassical results. This is due to the dominant role of excited states in the driven quantum tunneling. (author) 15 refs., 4 figs

  12. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-01-01

    Experiments investigated the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very-small-capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson-phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters. The experiments on small-capacitance tunnel junctions extend the measurements on the large-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wave function has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias

  13. Radioactive airborne species formed in the air in high energy accelerator tunnels

    International Nuclear Information System (INIS)

    Kondo, K.

    2005-01-01

    Many radioactive airborne species have been observed in the air of high energy accelerator tunnels during machine operation. Radiation protection against these induced airborne radioactivities is one of the key issues for radiation safety, especially at high-energy and high-intense proton accelerators such as the J-PARC (Japan Proton Accelerator Research Complex, Joint project of KEK and JAERI), which is now under construction at the TOKAI site of JAERI. Information on the chemical forms and particle sizes of airborne radioactivities is essential for the estimation of internal doses. For that purpose, the study on radioactive airborne species formed in the air of beam-line tunnels at high-energy accelerators have been extensively conducted by our group. For Be-7, Na-24, S-38, Cl-38,-39, C-11, and N-13, formed by various types of nuclear reactions including nuclear spallation reactions, their aerosol and gaseous fractions are determined by a filter technique. A parallel plate diffusion battery is used for the measurement of aerosol size distributions, and the formation of radioactive aerosols is explained by the attachment of radionuclides to ambient non-radioactive aerosols which are formed through radiation induced reactions. The chemical forms of gaseous species are also determined by using a selective collection method based on a filter technique. A review is given of the physico-chemical properties of these airborne radionuclides produced in the air of accelerator beam-line tunnels.

  14. Electronic noise of superconducting tunnel junction detectors

    International Nuclear Information System (INIS)

    Jochum, J.; Kraus, H.; Gutsche, M.; Kemmather, B.; Feilitzsch, F. v.; Moessbauer, R.L.

    1994-01-01

    The optimal signal to noise ratio for detectors based on superconducting tunnel junctions is calculated and compared for the cases of a detector consisting of one single tunnel junction, as well as of series and of parallel connections of such tunnel junctions. The influence of 1 / f noise and its dependence on the dynamical resistance of tunnel junctions is discussed quantitatively. A single tunnel junction yields the minimum equivalent noise charge. Such a tunnel junction exhibits the best signal to noise ratio if the signal charge is independent of detector size. In case, signal charge increases with detector size, a parallel or a series connection of tunnel junctions would provide the optimum signal to noise ratio. The equivalent noise charge and the respective signal to noise ratio are deduced as functions of tunnel junction parameters such as tunneling time, quasiparticle lifetime, etc. (orig.)

  15. Quantum tunneling in the driven SU(2) model

    International Nuclear Information System (INIS)

    Kaminski, P.; Ploszajczak, M.; Arvieu, R.

    1992-01-01

    The tunneling rate is investigated in the quantum and classical limits using an exactly soluble driven SU(2) model. The tunneling rate is obtained by solving the time-dependent Schroedinger equation and projecting the exact wave-function on the space of coherent states using the Husimi distribution. The presence of the classical chaotic structures leads to the enormous growth in the tunneling rate. The results suggest the existence of a new mechanism of quantum tunneling, involving transport of the wave-function between stable regions of the classical phase-space due to a coupling with 'chaotic' levels. (author) 17 refs., 13 figs

  16. High-precision pose measurement method in wind tunnels based on laser-aided vision technology

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2015-08-01

    Full Text Available The measurement of position and attitude parameters for the isolated target from a high-speed aircraft is a great challenge in the field of wind tunnel simulation technology. In this paper, firstly, an image acquisition method for small high-speed targets with multi-dimensional movement in wind tunnel environment is proposed based on laser-aided vision technology. Combining with the trajectory simulation of the isolated model, the reasonably distributed laser stripes and self-luminous markers are utilized to capture clear images of the object. Then, after image processing, feature extraction, stereo correspondence and reconstruction, three-dimensional information of laser stripes and self-luminous markers are calculated. Besides, a pose solution method based on projected laser stripes and self-luminous markers is proposed. Finally, simulation experiments on measuring the position and attitude of high-speed rolling targets are conducted, as well as accuracy verification experiments. Experimental results indicate that the proposed method is feasible and efficient for measuring the pose parameters of rolling targets in wind tunnels.

  17. The comparison between limited open carpal tunnel release using direct vision and tunneling technique and standard open carpal tunnel release: a randomized controlled trial study.

    Science.gov (United States)

    Suppaphol, Sorasak; Worathanarat, Patarawan; Kawinwongkovit, Viroj; Pittayawutwinit, Preecha

    2012-04-01

    To compare the operative outcome of carpal tunnel release between limited open carpal tunnel release using direct vision and tunneling technique (group A) with standard open carpal tunnel release (group B). Twenty-eight patients were enrolled in the present study. A single blind randomized control trial study was conducted to compare the postoperative results between group A and B. The study parameters were Levine's symptom severity and functional score, grip and pinch strength, and average two-point discrimination. The postoperative results between two groups were comparable with no statistical significance. Only grip strength at three months follow up was significantly greater in group A than in group B. The limited open carpal tunnel release in the present study is effective comparable to the standard open carpal tunnel release. The others advantage of this technique are better cosmesis and improvement in grip strength at the three months postoperative period.

  18. Fermi velocity mismatch effects in the tunneling characteristics of high-Tc superconductors

    International Nuclear Information System (INIS)

    Aponte, J.M.; Nunez-Regueiro, J.E.; Bellorin, A.; Octavio, M.

    1994-01-01

    We present a comparative study of the tunneling characteristics of point contacts in which one electrode was a superconducting single crystal of Bi 2 Sr 2 CaCu 2 O x and the other electrode was either a normal metal (N-HTSC point contact), or a non-superconducting rare earth metallic oxide (REMO-HTSC point contact), or another crystal of the same superconductor (HTSC'-HTSC point contact). We show that the mismatch of the Fermi velocities of the electrodes is in part responsible for the irreproducibility of most of the tunneling conductance curves observed in high temperature superconductors. (orig.)

  19. Scanning tunneling microscopic images and scanning tunneling spectra for coupled rectangular quantum corrals

    International Nuclear Information System (INIS)

    Mitsuoka, Shigenori; Tamura, Akira

    2011-01-01

    Assuming that an electron confined by double δ-function barriers lies in a quasi-stationary state, we derived eigenstates and eigenenergies of the electron. Such an electron has a complex eigenenergy, and the imaginary part naturally leads to the lifetime of the electron associated with tunneling through barriers. We applied this point of view to the electron confined in a rectangular quantum corral (QC) on a noble metal surface, and obtained scanning tunneling microscopic images and a scanning tunneling spectrum consistent with experimental ones. We investigated the electron states confined in coupled QCs and obtained the coupled states constructed with bonding and anti-bonding states. Using those energy levels and wavefunctions we specified scanning tunneling microscope (STM) images and scanning tunneling spectra (STS) for the doubly and triply coupled QCs. In addition we pointed out the feature of resonant electron states associated with the same QCs at both ends of the triply coupled QCs.

  20. Outcome of open carpal tunnel release surgery

    International Nuclear Information System (INIS)

    Khan, A.A.; Ali, H.; Muhammad, G.; Gul, N.; Zardan, K.K.; Mushtaq, M.; Ali, S.; Bhatti, S.N.; Ali, K.; Rashid, B.; Saboor, A.

    2015-01-01

    Background: Carpel tunnel syndrome is a common compression neuropathy of the median nerve causing pain, numbness and functional dysfunction of the hand. Among the available treatments, surgical release of the nerve is the most effective and acceptable treatment option. The aim of this study was to see the outcomes of surgical release of carpel tunnel using open technique. Method: This descriptive case series was conducted at the Department of neurosurgery, Ayub Teaching Hospital Abbottabad from April 2013 to March 2014. One hundred consecutive patients with carpel tunnel syndrome were included who underwent open carpel tunnel release surgery. They were followed up at 1, 3 and 6 months. Residual pain, numbness and functional improvement of the hand were the main outcome measures. Results: Out of 100 patients, 19 were males. The age ranged from 32 to 50 years with a mean of 39.29±3.99 years. The duration of symptoms was from 5 to 24 months. In the entire series patient functional outcome and satisfaction was 82 percentage at 1 month, 94 percentage at 3 months and 97 percentage at 6 months. 18 percentage patient had residual pain at 1 month post-operative follow-up, 6percentage at 3 months and 3 percentage at 6 month follow-up. Conclusion: Open carpel tunnel release surgery is an effective procedure for compression neuropathy of the median nerve. It should be offered to all patients with moderate to severe pain and functional disability related to carpel tunnel syndrome. (author)

  1. Design of a High-Reynolds Number Recirculating Water Tunnel

    Science.gov (United States)

    Daniel, Libin; Elbing, Brian

    2014-11-01

    An experimental fluid mechanics laboratory focused on turbulent boundary layers, drag reduction techniques, multiphase flows and fluid-structure interactions has recently been established at Oklahoma State University. This laboratory has three primary components; (1) a recirculating water tunnel, (2) a multiphase pipe flow loop, and (3) a multi-scale flow visualization system. The design of the water tunnel is the focus of this talk. The criteria used for the water tunnel design was that it had to produce a momentum-thickness based Reynolds number in excess of 104, negligible flow acceleration due to boundary layer growth, maximize optical access for use of the flow visualization system, and minimize inlet flow non-uniformity. This Reynolds number was targeted to bridge the gap between typical university/commercial water tunnels (103) and the world's largest water tunnel facilities (105) . These objectives were achieved with a 152 mm (6-inch) square test section that is 1 m long and has a maximum flow speed of 10 m/s. The flow non-uniformity was mitigated with the use of a tandem honeycomb configuration, a settling chamber and an 8.5:1 contraction. The design process that produced this final design will be presented along with its current status.

  2. Making Mn substitutional impurities in InAs using a scanning tunneling microscope.

    Science.gov (United States)

    Song, Young Jae; Erwin, Steven C; Rutter, Gregory M; First, Phillip N; Zhitenev, Nikolai B; Stroscio, Joseph A

    2009-12-01

    We describe in detail an atom-by-atom exchange manipulation technique using a scanning tunneling microscope probe. As-deposited Mn adatoms (Mn(ad)) are exchanged one-by-one with surface In atoms (In(su)) to create a Mn surface-substitutional (Mn(In)) and an exchanged In adatom (In(ad)) by an electron tunneling induced reaction Mn(ad) + In(su) --> Mn(In) + In(ad) on the InAs(110) surface. In combination with density-functional theory and high resolution scanning tunneling microscopy imaging, we have identified the reaction pathway for the Mn and In atom exchange.

  3. Superconducting tunneling with the tunneling Hamiltonian. II. Subgap harmonic structure

    International Nuclear Information System (INIS)

    Arnold, G.B.

    1987-01-01

    The theory of superconducting tunneling without the tunneling Hamiltonian is extended to treat superconductor/insulator/superconductor junctions in which the transmission coefficient of the insulating barrier approaches unity. The solution for the current in such junctions is obtained by solving the problem of a particle hopping in a one-dimensional lattice of sites, with forward and reverse transfer integrals that depend on the site. The results are applied to the problem of subgap harmonic structure in superconducting tunneling. The time-dependent current at finite voltage through a junction exhibiting subgap structure is found to have terms that oscillate at all integer multiples of the Josephson frequency, n(2eV/h). The amplitudes of these new, and as yet unmeasured, ac current contributions as a function of voltage are predicted

  4. Submucosal tunneling techniques: current perspectives.

    Science.gov (United States)

    Kobara, Hideki; Mori, Hirohito; Rafiq, Kazi; Fujihara, Shintaro; Nishiyama, Noriko; Ayaki, Maki; Yachida, Tatsuo; Matsunaga, Tae; Tani, Johji; Miyoshi, Hisaaki; Yoneyama, Hirohito; Morishita, Asahiro; Oryu, Makoto; Iwama, Hisakazu; Masaki, Tsutomu

    2014-01-01

    Advances in endoscopic submucosal dissection include a submucosal tunneling technique, involving the introduction of tunnels into the submucosa. These tunnels permit safer offset entry into the peritoneal cavity for natural orifice transluminal endoscopic surgery. Technical advantages include the visual identification of the layers of the gut, blood vessels, and subepithelial tumors. The creation of a mucosal flap that minimizes air and fluid leakage into the extraluminal cavity can enhance the safety and efficacy of surgery. This submucosal tunneling technique was adapted for esophageal myotomy, culminating in its application to patients with achalasia. This method, known as per oral endoscopic myotomy, has opened up the new discipline of submucosal endoscopic surgery. Other clinical applications of the submucosal tunneling technique include its use in the removal of gastrointestinal subepithelial tumors and endomicroscopy for the diagnosis of functional and motility disorders. This review suggests that the submucosal tunneling technique, involving a mucosal safety flap, can have potential values for future endoscopic developments.

  5. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur

    2012-06-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  6. Asymmetric voltage behavior of the tunnel magnetoresistance in double barrier magnetic tunnel junctions

    KAUST Repository

    Useinov, Arthur; Gooneratne, Chinthaka Pasan; Kosel, Jü rgen

    2012-01-01

    In this paper, we study the value of the tunnel magnetoresistance (TMR) as a function of the applied voltage in double barrier magnetic tunnel junctions (DMTJs) with the left and right ferromagnetic (FM) layers being pinned and numerically estimate the possible difference of the TMR curves for negative and positive voltages in the homojunctions (equal barriers and electrodes). DMTJs are modeled as two single barrier junctions connected in series with consecutive tunneling (CST). We investigated the asymmetric voltage behavior of the TMR for the CST in the range of a general theoretical model. Significant asymmetries of the experimental curves, which arise due to different annealing regimes, are mostly explained by different heights of the tunnel barriers and asymmetries of spin polarizations in magnetic layers. © (2012) Trans Tech Publications.

  7. Complex use of heat-exchange tunnels

    Directory of Open Access Journals (Sweden)

    А. Ф. Галкин

    2017-04-01

    Full Text Available The paper presents separate results of complex research (experimental and theoretical on the application of heat-exchange tunnels – in frozen rocks, among other things – as underground constructions serving two purposes. It is proposed to use heat-exchange tunnels as a separate multi-functional module, which under normal conditions will be used to set standards of heat regime parameters in the mines, and in emergency situations, natural or man-made, will serve as a protective structure to shelter mine workers. Heat-exchange modules can be made from mined-out or specially constructed tunnels. Economic analysis shows that the use of such multi-functional modules does not increase operation and maintenance costs, but enhances safety of mining operations and reliability in case of emergency situations. There are numerous theoretic and experimental investigations in the field of complex use of mining tunnels, which allows to develop regulatory design documents on their basis. Experience of practical application of heat-exchange tunnels has been assessed from the position of regulating heat regime in the mines.

  8. Polymer-mediated tunneling transport between carbon nanotubes in nanocomposites.

    Science.gov (United States)

    Derosa, Pedro A; Michalak, Tyler

    2014-05-01

    Electron transport in nanocomposites has attracted a good deal of attention for some time now; furthermore, the ability to control its characteristics is a necessary step in the design of multifunctional materials. When conductive nanostructures (for example carbon nanotubes) are inserted in a non-conductive matrix, electron transport below the percolation threshold is dominated by tunneling and thus the conductive characteristics of the composite depends heavily on the characteristics of the tunneling currents between nanoinserts. A parameter-free approach to study tunneling transport between carbon nanotubes across a polymer matrix is presented. The calculation is done with a combination of Density Functional Theory and Green functions (an approach heavily used in molecular electronics) which is shown here to be effective in this non-resonant transport condition. The results show that the method can effectively capture the effect of a dielectric layer in tunneling transport. The current is found to exponentially decrease with the size of the gap for both vacuum and polymer, and that the polymer layer lowers the tunneling barrier enhancing tunneling conduction. For a polyacrylonitrile matrix, a four-fold decrease in the tunneling constant, compared to tunneling in vacuum, is observed, a result that is consistent with available information. The method is very versatile as any DFT functional (or any other quantum mechanics method) can be used and thus the most accurate method for each particular system can be chosen. Furthermore as more methods become available, the calculations can be revised and improved. This approach can be used to design functional materials for fine-tunning the tunneling transport, for instance, the effect of modifying the nanoinsert-matrix interface (for example, by adding functional groups to carbon nanotubes) can be captured and the comparative performance of each interface predicted by simulation.

  9. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, Alan J., E-mail: alane@ku.edu, E-mail: jwu@ku.edu; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Wu, Judy Z., E-mail: alane@ku.edu, E-mail: jwu@ku.edu [Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045 (United States); Yu, Haifeng; Zhao, Shiping [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-15

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al{sub 2}O{sub 2}/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ∼1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al{sub 2}O{sub 3} tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  10. Investigation into scanning tunnelling luminescence microscopy

    International Nuclear Information System (INIS)

    Manson-Smith, S.K.

    2001-01-01

    This work reports on the development of a scanning tunnelling luminescence (STL) microscope and its application to the study of Ill-nitride semiconductor materials used in the production of light emitting devices. STL microscopy is a technique which uses the high resolution topographic imaging capabilities of the scanning tunnelling microscope (STM) to generate high resolution luminescence images. The STM tunnelling current acts as a highly localised source of electrons (or holes) which generates luminescence in certain materials. Light generated at the STM tunnelling junction is collected concurrently with the height variation of the tunnelling probe as it is scanned across a sample surface, producing simultaneous topographic and luminescence images. Due to the very localised excitation source, high resolution luminescence images can be obtained. Spectroscopic resolution can be obtained by using filters. Additionally, the variation of luminescence intensity with tunnel current and with bias voltage can provide information on recombination processes and material properties. The design and construction of a scanning tunnelling luminescence microscope is described in detail. Operating under ambient conditions, the microscope has several novel features, including a new type of miniature inertial slider-based approach motor, large solid-angle light collection optical arrangement and a tip-height regulation system which requires the minimum of operator input. (author)

  11. Safety evaluation model of urban cross-river tunnel based on driving simulation.

    Science.gov (United States)

    Ma, Yingqi; Lu, Linjun; Lu, Jian John

    2017-09-01

    Currently, Shanghai urban cross-river tunnels have three principal characteristics: increased traffic, a high accident rate and rapidly developing construction. Because of their complex geographic and hydrological characteristics, the alignment conditions in urban cross-river tunnels are more complicated than in highway tunnels, so a safety evaluation of urban cross-river tunnels is necessary to suggest follow-up construction and changes in operational management. A driving risk index (DRI) for urban cross-river tunnels was proposed in this study. An index system was also constructed, combining eight factors derived from the output of a driving simulator regarding three aspects of risk due to following, lateral accidents and driver workload. Analytic hierarchy process methods and expert marking and normalization processing were applied to construct a mathematical model for the DRI. The driving simulator was used to simulate 12 Shanghai urban cross-river tunnels and a relationship was obtained between the DRI for the tunnels and the corresponding accident rate (AR) via a regression analysis. The regression analysis results showed that the relationship between the DRI and the AR mapped to an exponential function with a high degree of fit. In the absence of detailed accident data, a safety evaluation model based on factors derived from a driving simulation can effectively assess the driving risk in urban cross-river tunnels constructed or in design.

  12. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, Jason D.; Kislitsyn, Dmitry A.; Beaman, Daniel K.; Nazin, George V., E-mail: gnazin@uoregon.edu [Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403 (United States); Ulrich, Stefan [RHK Technology, Inc., 1050 East Maple Road, Troy, Michigan 48083 (United States)

    2014-10-15

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

  13. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat.

    Science.gov (United States)

    Hackley, Jason D; Kislitsyn, Dmitry A; Beaman, Daniel K; Ulrich, Stefan; Nazin, George V

    2014-10-01

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

  14. Analysis of dynamic accumulative damage about the lining structure of high speed railway’s tunnel based on ultrasonic testing technology

    Science.gov (United States)

    Wang, Xiang-qiu; Zhang, Huojun; Xie, Wen-xi

    2017-08-01

    Based on the similar material model test of full tunnel, the theory of elastic wave propagation and the testing technology of intelligent ultrasonic wave had been used to research the dynamic accumulative damage characteristics of tunnel’s lining structure under the dynamic loads of high speed train. For the more, the dynamic damage variable of lining structure of high speed railway’s tunnel was obtained. The results shown that the dynamic cumulative damage of lining structure increases nonlinearly with the times of cumulative vibration, the weakest part of dynamic cumulative damage is the arch foot of tunnel. Much more attention should be paid to the design and operation management of high speed railway’s tunnel.

  15. Spin tunnelling in mesoscopic systems

    Indian Academy of Sciences (India)

    We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic field, vanishing completely at special points in the ...

  16. Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions

    KAUST Repository

    Jin Hu, Wei; Wang, Zhihong; Yu, Weili; Wu, Tao

    2016-01-01

    Ferroelectric tunnel junctions (FTJs) have recently attracted considerable interest as a promising candidate for applications in the next-generation non-volatile memory technology. In this work, using an ultrathin (3 nm) ferroelectric Sm0.1Bi0.9FeO3 layer as the tunnelling barrier and a semiconducting Nb-doped SrTiO3 single crystal as the bottom electrode, we achieve a tunnelling electroresistance as large as 105. Furthermore, the FTJ memory states could be modulated by light illumination, which is accompanied by a hysteretic photovoltaic effect. These complimentary effects are attributed to the bias- and light-induced modulation of the tunnel barrier, both in height and width, at the semiconductor/ferroelectric interface. Overall, the highly tunable tunnelling electroresistance and the correlated photovoltaic functionalities provide a new route for producing and non-destructively sensing multiple non-volatile electronic states in such FTJs.

  17. Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions

    KAUST Repository

    Jin Hu, Wei

    2016-02-29

    Ferroelectric tunnel junctions (FTJs) have recently attracted considerable interest as a promising candidate for applications in the next-generation non-volatile memory technology. In this work, using an ultrathin (3 nm) ferroelectric Sm0.1Bi0.9FeO3 layer as the tunnelling barrier and a semiconducting Nb-doped SrTiO3 single crystal as the bottom electrode, we achieve a tunnelling electroresistance as large as 105. Furthermore, the FTJ memory states could be modulated by light illumination, which is accompanied by a hysteretic photovoltaic effect. These complimentary effects are attributed to the bias- and light-induced modulation of the tunnel barrier, both in height and width, at the semiconductor/ferroelectric interface. Overall, the highly tunable tunnelling electroresistance and the correlated photovoltaic functionalities provide a new route for producing and non-destructively sensing multiple non-volatile electronic states in such FTJs.

  18. The application of cryogenics to high Reynolds number testing in wind tunnels. I - Evolution, theory, and advantages

    Science.gov (United States)

    Kilgore, R. A.; Dress, D. A.

    1984-01-01

    During the time which has passed since the construction of the first wind tunnel in 1870, wind tunnels have been developed to a high degree of sophistication. However, their development has consistently failed to keep pace with the demands placed on them. One of the more serious problems to be found with existing transonic wind tunnels is their inability to test subscale aircraft models at Reynolds numbers sufficiently near full-scale values to ensure the validity of using the wind tunnel data to predict flight characteristics. The Reynolds number capability of a wind tunnel may be increased by a number of different approaches. However, the best solution in terms of model, balance, and model support loads, as well as in terms of capital and operating cost appears to be related to the reduction of the temperature of the test gas to cryogenic temperatures. The present paper has the objective to review the evolution of the cryogenic wind tunnel concept and to describe its more important advantages.

  19. An analytical gate tunneling current model for MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Kazerouni, Iman Abaspur, E-mail: imanabaspur@gmail.com; Hosseini, Seyed Ebrahim [Sabzevar Tarbiat Moallem University, Electrical and Computer Department (Iran, Islamic Republic of)

    2012-03-15

    Gate tunneling current of MOSFETs is an important factor in modeling ultra small devices. In this paper, gate tunneling in present-generation MOSFETs is studied. In the proposed model, we calculate the electron wave function at the semiconductor-oxide interface and inversion charge by treating the inversion layer as a potential well, including some simplifying assumptions. Then we compute the gate tunneling current using the calculated wave function. The proposed model results have an excellent agreement with experimental results in the literature.

  20. Seasonal Occurrence of Key Arthropod Pests and Beneficial Insects in Michigan High Tunnel and Field Grown Raspberries.

    Science.gov (United States)

    Leach, Heather; Isaacs, Rufus

    2018-06-06

    Berry crops are increasingly produced in high tunnels, which provide growers with the opportunity to extend their production season. This is particularly beneficial for the northern region of the United States with short and unpredictable growing seasons and where rainfall limits fruit quality. However, little is known about the effect of high tunnels on the community of pests, natural enemies, or pollinators, especially in berry crops, and there are few reports of the insect community in raspberries in this region. We compared the abundance of these insects during two growing seasons in field-grown and tunnel-grown floricane and primocane producing raspberries through direct observation and trapping at five sites in southwestern and central Michigan. We found eight key pests, including spotted wing Drosophila, leafhoppers, and thrips, and seven key natural enemies including parasitoid wasps, spiders, and lacewings, that were common across all sites. Pest populations were up to 6.6 times higher in tunnels, and pests typical of greenhouse systems became more dominant in this environment. Natural enemies observed on plants under tunnels were also more abundant than in the field, but this trend was reversed for natural enemies trapped on yellow sticky cards. There was also a reduction of both honey bees and wild bees under the high tunnels, which was balanced by use of commercial bumble bees. These data not only provide much-needed information on the phenology of the insect community on raspberry plantings, they also highlight the entomological implications of protected raspberry culture.

  1. Passenger comfort on high-speed trains: effect of tunnel noise on the subjective assessment of pressure variations.

    Science.gov (United States)

    Sanok, Sandra; Mendolia, Franco; Wittkowski, Martin; Rooney, Daniel; Putzke, Matthias; Aeschbach, Daniel

    2015-01-01

    When passing through a tunnel, aerodynamic effects on high-speed trains may impair passenger comfort. These variations in atmospheric pressure are accompanied by transient increases in sound pressure level. To date, it is unclear whether the latter influences the perceived discomfort associated with the variations in atmospheric pressure. In a pressure chamber of the DLR-Institute of Aerospace Medicine, 71 participants (M = 28.3 years ± 8.1 SD) rated randomised pressure changes during two conditions according to a crossover design. The pressure changes were presented together with tunnel noise such that the sound pressure level was transiently elevated by either +6 dB (low noise condition) or +12 dB (high noise condition) above background noise level (65 dB(A)). Data were combined with those of a recent study, in which identical pressure changes were presented without tunnel noise (Schwanitz et al., 2013, 'Pressure Variations on a Train - Where is the Threshold to Railway Passenger Discomfort?' Applied Ergonomics 44 (2): 200-209). Exposure-response relationships for the combined data set comprising all three noise conditions show that pressure discomfort increases with the magnitude and speed of the pressure changes but decreases with increasing tunnel noise. Practitioner Summary: In a pressure chamber, we systematically examined how pressure discomfort, as it may be experienced by railway passengers, is affected by the presence of tunnel noise during pressure changes. It is shown that across three conditions (no noise, low noise (+6 dB), high noise (+12 dB)) pressure discomfort decreases with increasing tunnel noise.

  2. INCAS TRISONIC WIND TUNNEL

    Directory of Open Access Journals (Sweden)

    Florin MUNTEANU

    2009-09-01

    Full Text Available The 1.2 m x 1.2 m Trisonic Blowdown Wind Tunnel is the largest of the experimental facilities at the National Institute for Aerospace Research - I.N.C.A.S. "Elie Carafoli", Bucharest, Romania. The tunnel has been designed by the Canadian company DSMA (now AIOLOS and since its commissioning in 1978 has performed high speed aerodynamic tests for more than 120 projects of aircraft, missiles and other objects among which the twin jet fighter IAR-93, the jet trainer IAR-99, the MIG-21 Lancer, the Polish jet fighter YRYDA and others. In the last years the wind tunnel has been used mostly for experimental research in European projects such as UFAST. The high flow quality parameters and the wide range of testing capabilities ensure the competitivity of the tunnel at an international level.

  3. Single-magnon tunneling through a ferromagnetic nanochain

    International Nuclear Information System (INIS)

    Petrov, E.G.; Ostrovsky, V.

    2010-01-01

    Magnon transmission between ferromagnetic contacts coupled by a linear ferromagnetic chain is studied at the condition when the chain exhibits itself as a tunnel magnon transmitter. It is shown that dependently on magnon energy at the chain, a distant intercontact magnon transmission occurs either in resonant or off-resonant tunneling regime. In the first case, a transmission function depends weakly on the number of chain sites whereas at off-resonant regime the same function manifests an exponential drop with the chain length. Change of direction of external magnetic field in one of ferromagnetic contacts blocks a tunnel transmission of magnon.

  4. Resonant tunnelling and negative differential conductance in graphene transistors

    Science.gov (United States)

    Britnell, L.; Gorbachev, R. V.; Geim, A. K.; Ponomarenko, L. A.; Mishchenko, A.; Greenaway, M. T.; Fromhold, T. M.; Novoselov, K. S.; Eaves, L.

    2013-04-01

    The chemical stability of graphene and other free-standing two-dimensional crystals means that they can be stacked in different combinations to produce a new class of functional materials, designed for specific device applications. Here we report resonant tunnelling of Dirac fermions through a boron nitride barrier, a few atomic layers thick, sandwiched between two graphene electrodes. The resonance occurs when the electronic spectra of the two electrodes are aligned. The resulting negative differential conductance in the device characteristics persists up to room temperature and is gate voltage-tuneable due to graphene’s unique Dirac-like spectrum. Although conventional resonant tunnelling devices comprising a quantum well sandwiched between two tunnel barriers are tens of nanometres thick, the tunnelling carriers in our devices cross only a few atomic layers, offering the prospect of ultra-fast transit times. This feature, combined with the multi-valued form of the device characteristics, has potential for applications in high-frequency and logic devices.

  5. Carrier tunneling in high magnetic fields

    NARCIS (Netherlands)

    Christianen, P.C.M.; Bruggink, I.E.M.; Maan, J.C.; Vleuten, van der W.C.

    1995-01-01

    Proceedings of the XXIV International School of Semiconducting Coinpounds, Jaszowiec 1995. A magnetic field induced coupling is observed between the Landau levels with different quantum number of two GaAs quantum wells separated by a thin (Ga,Al)As tunnel barrier using

  6. Electrical installations of the Channel tunnel; Installations electriques du Tunnel sous la Manche

    Energy Technology Data Exchange (ETDEWEB)

    Kersabiec, G. de [Eurotunnel, Folkestone (United Kingdom)

    2002-08-01

    Like an underground factory, the railway and auxiliary equipments of the Channel tunnel between France and UK, need a reliable and redundant power supply with a high quality maintenance. This article presents: the design criteria of the power distribution systems, the installation itself and the organisation of its exploitation: 1 - transportation system of the Channel tunnel (loads to supply, exploitation imperatives, fundamental criteria); 2 - external power sources (connection to the UK and French grids, values used by the national grids); 3 - exploitation criteria, tunnel design; 4 - description (main UK and French power stations, 25 kV traction network, 21 kV distribution network, tunnels, lighting in railway tunnels, supply of terminals, earthing network); 5 - exploitation; 6 - maintenance and quality. (J.S.)

  7. New generation of free-piston shock tunnels

    Science.gov (United States)

    Morrison, W. R. B.; Stalker, R. J.; Duffin, J.

    1990-01-01

    Consideration is given to three free-piston driven hypersonic tunnels under construction that will greatly enhance existing test capabilities. The tunnel being built at Caltech will feature energy capabilities about 40 percent higher than those of the world's largest operational free-piston tunnel to date. The second tunnel under construction will allow full-size engine hardware at near-orbital speeds. The third facility is a high-performance expansion tube that will be capable of generating high enthalpy flows at speeds of up to 9 km/sec. It will provide flows with dissociation levels much lower than are attainable with a reflected shock tunnel, approaching actual flight conditions. A table shows the tunnels' characteristics.

  8. Atomistic modeling trap-assisted tunneling in hole tunnel field effect transistors

    Science.gov (United States)

    Long, Pengyu; Huang, Jun Z.; Povolotskyi, Michael; Sarangapani, Prasad; Valencia-Zapata, Gustavo A.; Kubis, Tillmann; Rodwell, Mark J. W.; Klimeck, Gerhard

    2018-05-01

    Tunnel Field Effect Transistors (FETs) have the potential to achieve steep Subthreshold Swing (S.S.) below 60 mV/dec, but their S.S. could be limited by trap-assisted tunneling (TAT) due to interface traps. In this paper, the effect of trap energy and location on OFF-current (IOFF) of tunnel FETs is evaluated systematically using an atomistic trap level representation in a full quantum transport simulation. Trap energy levels close to band edges cause the highest leakage. Wave function penetration into the surrounding oxide increases the TAT current. To estimate the effects of multiple traps, we assume that the traps themselves do not interact with each other and as a whole do not modify the electrostatic potential dramatically. Within that model limitation, this numerical metrology study points to the critical importance of TAT in the IOFF in tunnel FETs. The model shows that for Dit higher than 1012/(cm2 eV) IO F F is critically increased with a degraded IO N/IO F F ratio of the tunnel FET. In order to have an IO N/IO F F ratio higher than 104, the acceptable Dit near Ev should be controlled to no larger than 1012/(cm2 eV) .

  9. Single Electron Tunneling

    International Nuclear Information System (INIS)

    Ruggiero, Steven T.

    2005-01-01

    Financial support for this project has led to advances in the science of single-electron phenomena. Our group reported the first observation of the so-called ''Coulomb Staircase'', which was produced by tunneling into ultra-small metal particles. This work showed well-defined tunneling voltage steps of width e/C and height e/RC, demonstrating tunneling quantized on the single-electron level. This work was published in a now well-cited Physical Review Letter. Single-electron physics is now a major sub-field of condensed-matter physics, and fundamental work in the area continues to be conducted by tunneling in ultra-small metal particles. In addition, there are now single-electron transistors that add a controlling gate to modulate the charge on ultra-small photolithographically defined capacitive elements. Single-electron transistors are now at the heart of at least one experimental quantum-computer element, and single-electron transistor pumps may soon be used to define fundamental quantities such as the farad (capacitance) and the ampere (current). Novel computer technology based on single-electron quantum dots is also being developed. In related work, our group played the leading role in the explanation of experimental results observed during the initial phases of tunneling experiments with the high-temperature superconductors. When so-called ''multiple-gap'' tunneling was reported, the phenomenon was correctly identified by our group as single-electron tunneling in small grains in the material. The main focus throughout this project has been to explore single electron phenomena both in traditional tunneling formats of the type metal/insulator/particles/insulator/metal and using scanning tunneling microscopy to probe few-particle systems. This has been done under varying conditions of temperature, applied magnetic field, and with different materials systems. These have included metals, semi-metals, and superconductors. Amongst a number of results, we have

  10. Prediction of tunnel boring machine performance using machine and rock mass data

    International Nuclear Information System (INIS)

    Dastgir, G.

    2012-01-01

    Performance of the tunnel boring machine and its prediction by different methods has been a hot issue since the first TBM came into being. For the sake of safe and sound transport, improvement of hydro-power, mining, civil and many other tunneling projects that cannot be driven efficiently and economically by conventional drill and blast, TBMs are quite frequently used. TBM parameters and rock mass properties, which heavily influence machine performance, should be estimated or known before choice of TBM-type and start of excavation. By applying linear regression analysis (SPSS19), fuzzy logic tools and a special Math-Lab code on actual field data collected from seven TBM driven tunnels (Hieflau expansion, Queen water tunnel, Vereina, Hemerwald, Maen, Pieve and Varzo tunnel), an attempt was made to provide prediction of rock mass class (RMC), rock fracture class (RFC), penetration rate (PR) and advance rate (AR). For detailed analysis of TBM performance, machine parameters (thrust, machine rpm, torque, power etc.), machine types and specification and rock mass properties (UCS, discontinuity in rock mass, RMC, RFC, RMR, etc.) were analyzed by 3-D surface plotting using statistical software R. Correlations between machine parameters and rock mass properties which effectively influence prediction models, are presented as well. In Hieflau expansion tunnel AR linearly decreases with increase of thrust due to high dependence of machine advance rate upon rock strength. For Hieflau expansion tunnel three types of data (TBM, rock mass and seismic data e.g. amplitude, pseudo velocity etc.) were coupled and simultaneously analyzed by plotting 3-D surfaces. No appreciable correlation between seismic data (Amplitude and Pseudo velocity) and rock mass properties and machine parameters could be found. Tool wear as a function of TBM operational parameters was analyzed which revealed that tool wear is minimum if applied thrust is moderate and that tool wear is high when thrust is

  11. Thermodynamics of phonon-modulated tunneling centers

    International Nuclear Information System (INIS)

    Junker, W.; Wagner, M.

    1989-01-01

    In recent years tunneling centers have frequently been used to explain the unusual thermodynamic properties of disordered materials; in these approaches, however, the effect of the tunneling-phonon interaction is neglected. The present study considers the archetype model of phono-assisted tunneling, which is well known from other areas of tunneling physics (quantum diffusion, etc.). It is shown that the full thermodynamic information can be rigorously extracted from a single Green function. An extended factorization procedure beyond Hartree-Fock is introduced, which is checked by sum rules as well as by exact Goldberger-Adams expansions. The phonon-modulated internal energy and specific heat are calculated for different power-law coupling setups

  12. High performance tunnel field-effect transistor by gate and source engineering.

    Science.gov (United States)

    Huang, Ru; Huang, Qianqian; Chen, Shaowen; Wu, Chunlei; Wang, Jiaxin; An, Xia; Wang, Yangyuan

    2014-12-19

    As one of the most promising candidates for future nanoelectronic devices, tunnel field-effect transistors (TFET) can overcome the subthreshold slope (SS) limitation of MOSFET, whereas high ON-current, low OFF-current and steep switching can hardly be obtained at the same time for experimental TFETs. In this paper, we developed a new nanodevice technology based on TFET concepts. By designing the gate configuration and introducing the optimized Schottky junction, a multi-finger-gate TFET with a dopant-segregated Schottky source (mFSB-TFET) is proposed and experimentally demonstrated. A steeper SS can be achieved in the fabricated mFSB-TFET on the bulk Si substrate benefiting from the coupled quantum band-to-band tunneling (BTBT) mechanism, as well as a high I(ON)/I(OFF) ratio (∼ 10(7)) at V(DS) = 0.2 V without an area penalty. By compatible SOI CMOS technology, the fabricated Si mFSB-TFET device was further optimized with a high ION/IOFF ratio of ∼ 10(8) and a steeper SS of over 5.5 decades of current. A minimum SS of below 60 mV dec(-1) was experimentally obtained, indicating its dominant quantum BTBT mechanism for switching.

  13. Physics of Gate Modulated Resonant Tunneling (RT)-FETs: Multi-barrier MOSFET for steep slope and high on-current

    Science.gov (United States)

    Afzalian, Aryan; Colinge, Jean-Pierre; Flandre, Denis

    2011-05-01

    A new concept of nanoscale MOSFET, the Gate Modulated Resonant Tunneling Transistor (RT-FET), is presented and modeled using 3D Non-Equilibrium Green's Function simulations enlightening the main physical mechanisms. Owing to the additional tunnel barriers and the related longitudinal confinement present in the device, the density of state is reduced in its off-state, while remaining comparable in its on-state, to that of a MOS transistor without barriers. The RT-FET thus features both a lower RT-limited off-current and a faster increase of the current with V G, i.e. an improved slope characteristic, and hence an improved Ion/ Ioff ratio. Such improvement of the slope can happen in subthreshold regime, and therefore lead to subthreshold slope below the kT/q limit. In addition, faster increase of current and improved slope occur above threshold and lead to high thermionic on-current and significant Ion/ Ioff ratio improvement, even with threshold voltage below 0.2 V and supply voltage V dd of a few hundreds of mV as critically needed for future technology nodes. Finally RT-FETs are intrinsically immune to source-drain tunneling and are therefore promising candidate for extending the roadmap below 10 nm.

  14. A functional renormalization group application to the scanning tunneling microscopy experiment

    Directory of Open Access Journals (Sweden)

    José Juan Ramos Cárdenas

    2015-12-01

    Full Text Available We present a study of a system composed of a scanning tunneling microscope (STM tip coupled to an absorbed impurity on a host surface using the functional renormalization group (FRG. We include the effect of the STM tip as a correction to the self-energy in addition to the usual contribution of the host surface in the wide band limit. We calculate the differential conductance curves at two different lateral distances from the quantum impurity and find good qualitative agreement with STM experiments where the differential conductance curves evolve from an antiresonance to a Lorentzian shape.

  15. Tunneling technologies for the collider ring tunnels

    International Nuclear Information System (INIS)

    Frobenius, P.

    1989-01-01

    The Texas site chosen for the Superconducting Super Collider has been studied, and it has been determined that proven, conventional technology and accepted engineering practice are suitable for constructing the collider tunnels. The Texas National Research Laboratory Commission report recommended that two types of tunneling machines be used for construction of the tunnels: a conventional hard rock tunnel boring machine (TBM) for the Austin chalk and a double shielded, rotary TBM for the Taylor marl. Since the tunneling machines usually set the pace for the project, efficient planning, operation, and coordination of the tunneling system components will be critical to the schedule and cost of the project. During design, tunneling rate prediction should be refined by focusing on the development of an effective tunneling system and evaluating its capacity to meet or exceed the required schedules. 8 refs., 13 figs

  16. Strain-enhanced tunneling magnetoresistance in MgO magnetic tunnel junctions.

    Science.gov (United States)

    Loong, Li Ming; Qiu, Xuepeng; Neo, Zhi Peng; Deorani, Praveen; Wu, Yang; Bhatia, Charanjit S; Saeys, Mark; Yang, Hyunsoo

    2014-09-30

    While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications such as data storage, transistors, solar cells, and strain gauges, among other things. Here, we demonstrate that quantum transport across magnetic tunnel junctions (MTJs) can be significantly affected by the introduction of controllable mechanical strain, achieving an enhancement factor of ~2 in the experimental tunneling magnetoresistance (TMR) ratio. We further correlate this strain-enhanced TMR with coherent spin tunneling through the MgO barrier. Moreover, the strain-enhanced TMR is analyzed using non-equilibrium Green's function (NEGF) quantum transport calculations. Our results help elucidate the TMR mechanism at the atomic level and can provide a new way to enhance, as well as tune, the quantum properties in nanoscale materials and devices.

  17. Channel selective tunnelling through a nanographene assembly

    International Nuclear Information System (INIS)

    Wong, H S; Durkan, C; Feng, X; Müllen, K; Chandrasekhar, N

    2012-01-01

    We report selective tunnelling through a nanographene intermolecular tunnel junction achieved via scanning tunnelling microscope tip functionalization with hexa-peri-hexabenzocoronene (HBC) molecules. This leads to an offset in the alignment between the energy levels of the tip and the molecular assembly, resulting in the imaging of a variety of distinct charge density patterns in the HBC assembly, not attainable using a bare metallic tip. Different tunnelling channels can be selected by the application of an electric field in the tunnelling junction, which changes the condition of the HBC on the tip. Density functional theory-based calculations relate the imaged HBC patterns to the calculated molecular orbitals at certain energy levels. These patterns bear a close resemblance to the π-orbital states of the HBC molecule calculated at the relevant energy levels, mainly below the Fermi energy of HBC. This correlation demonstrates the ability of an HBC functionalized tip as regards accessing an energy range that is restricted to the usual operating bias range around the Fermi energy with a normal metallic tip at room temperature. Apart from relating to molecular orbitals, some patterns could also be described in association with the Clar aromatic sextet formula. Our observations may help pave the way towards the possibility of controlling charge transport between organic interfaces. (paper)

  18. High-performance silicon nanotube tunneling FET for ultralow-power logic applications

    KAUST Repository

    Fahad, Hossain M.; Hussain, Muhammad Mustafa

    2013-01-01

    To increase typically low output drive currents from tunnel field-effect transistors (FETs), we show a silicon vertical nanotube (NT) architecture-based FET's effectiveness. Using core (inner) and shell (outer) gate stacks, the silicon NT tunneling FET shows a sub-60 mV/dec subthreshold slope, ultralow off -state leakage current, higher drive current compared with gate-all-around nanowire silicon tunnel FETs. © 1963-2012 IEEE.

  19. Palladium Gate All Around - Hetero Dielectric -Tunnel FET based highly sensitive Hydrogen Gas Sensor

    Science.gov (United States)

    Madan, Jaya; Chaujar, Rishu

    2016-12-01

    The paper presents a novel highly sensitive Hetero-Dielectric-Gate All Around Tunneling FET (HD-GAA-TFET) based Hydrogen Gas Sensor, incorporating the advantages of band to band tunneling (BTBT) mechanism. Here, the Palladium supported silicon dioxide is used as a sensing media and sensing relies on the interaction of hydrogen with Palladium-SiO2-Si. The high surface to volume ratio in the case of cylindrical GAA structure enhances the fortuities for surface reactions between H2 gas and Pd, and thus improves the sensitivity and stability of the sensor. Behaviour of the sensor in presence of hydrogen and at elevated temperatures is discussed. The conduction path of the sensor which is dependent on sensors radius has also been varied for the optimized sensitivity and static performance analysis of the sensor where the proposed design exhibits a superior performance in terms of threshold voltage, subthreshold swing, and band to band tunneling rate. Stability of the sensor with respect to temperature affectability has also been studied, and it is found that the device is reasonably stable and highly sensitive over the bearable temperature range. The successful utilization of HD-GAA-TFET in gas sensors may open a new door for the development of novel nanostructure gas sensing devices.

  20. High-performance silicon nanotube tunneling FET for ultralow-power logic applications

    KAUST Repository

    Fahad, Hossain M.

    2013-03-01

    To increase typically low output drive currents from tunnel field-effect transistors (FETs), we show a silicon vertical nanotube (NT) architecture-based FET\\'s effectiveness. Using core (inner) and shell (outer) gate stacks, the silicon NT tunneling FET shows a sub-60 mV/dec subthreshold slope, ultralow off -state leakage current, higher drive current compared with gate-all-around nanowire silicon tunnel FETs. © 1963-2012 IEEE.

  1. A review on all-perovskite multiferroic tunnel junctions

    Directory of Open Access Journals (Sweden)

    Yuewei Yin

    2017-12-01

    Full Text Available Although the basic concept was proposed only about 10 years ago, multiferroic tunnel junctions (MFTJs with a ferroelectric barrier sandwiched between two ferromagnetic electrodes have already drawn considerable interests, driven mainly by its potential applications in multi-level memories and electric field controlled spintronics. The purpose of this article is to review the recent progress of all-perovskite MFTJs. Starting from the key functional properties of the tunneling magnetoresistance, tunneling electroresistance, and tunneling electromagnetoresistance effects, we discuss the main origins of the tunneling electroresistance effect, recent progress in achieving multilevel resistance states in a single device, and the electrical control of spin polarization and transport through the ferroelectric polarization reversal of the tunneling barrier.

  2. Device-quality tunnel junctions on the high Tc superconductor HgBa2CuO4+δ

    International Nuclear Information System (INIS)

    Zasadzinski, J.; Chen, J.; Romano, P.; Gray, K.E.; Wagner, J.L.; Hinks, D.G.

    1995-01-01

    SIN and SIS tunnel junction devices (e.g. photon detectors, logic elements) require quasiparticle characteristics that exhibit sharp current onsets at the gap voltage and very low sub-gap conductances. Progress is reported on the development of such junctions on High Tc cuprates using mechanical point contacts. In general, these contacts display the optimum characteristics that can be obtained from HTS native-surface tunnel barriers. Most cuprates display a sub-gap conductance which monotonically increases with voltage about the minimum value at zero bias. However, tunneling data of unusually high quality have been obtained for the recently discovered Hg-based cuprate, HgBa 2 CuO 4 (T c =96K). SIS' tunneling data using a Nb tip are presented which exhibit very low and flat sub-gap conductances and sharp conductance peaks as expected from a BCS density of states. These results are slightly improved over earlier published results with SIN junctions. Use of the experimental data to simulate the performance of a quasiparticle mixer demonstrates that noise temperatures approaching the quantum limit are possible for SIS and SIN mixers in the range 1-5 THz

  3. Light emission and finite-frequency shot noise in molecular junctions: from tunneling to contact

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Christensen, Rasmus Bjerregaard; Brandbyge, Mads

    2013-01-01

    Scanning tunneling microscope induced light emission from an atomic or molecular junction has been probed from the tunneling to contact regime in recent experiments. There, the measured light emission yields suggest a strong correlation with the high-frequency current/charge fluctuations. We show...... that this is consistent with the established theory in the tunneling regime, by writing the finite-frequency shot noise as a sum of inelastic transitions between different electronic states. Based on this, we develop a practical scheme to perform calculations on realistic structures using nonequilibrium Green's functions...

  4. Tuning the tunneling magnetoresistance by using fluorinated graphene in graphene based magnetic junctions

    Directory of Open Access Journals (Sweden)

    Shweta Meena

    2017-12-01

    Full Text Available Spin polarized properties of fluorinated graphene as tunnel barrier with CrO2 as two HMF electrodes are studied using first principle methods based on density functional theory. Fluorinated graphene with different fluorine coverages is explored as tunnel barriers in magnetic tunnel junctions. Density functional computation for different fluorine coverages imply that with increase in fluorine coverages, there is increase in band gap (Eg of graphene, Eg ∼ 3.466 e V was observed when graphene sheet is fluorine adsorbed on both-side with 100% coverage (CF. The results of CF graphene are compared with C4F (fluorination on one-side of graphene sheet with 25% coverage and out-of-plane graphene based magnetic tunnel junctions. On comparison of the results it is observed that CF graphene based structure offers high TMR ∼100%, and the transport of carrier is through tunneling as there are no transmission states near Fermi level. This suggests that graphene sheet with both-side fluorination with 100% coverages acts as a perfect insulator and hence a better barrier to the carriers which is due to negligible spin down current (I↓ in both Parallel Configuration (PC and Antiparallel Configuration (APC.

  5. Theoretical approach to the scanning tunneling microscope

    International Nuclear Information System (INIS)

    Noguera, C.

    1990-01-01

    Within a one-electron approach, based on a Green's-function formalism, a nonperturbative expression for the tunneling current is obtained and used to discuss which spectroscopic information may be deduced from a scanning-tunneling-microscope experiment. It is shown up to which limits the voltage dependence of the tunneling current reproduces the local density of states at the surface, and how the reflection coefficients of the electronic waves at the surface may modify it

  6. Ultrafast scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  7. Magnetic tunnel junction thermocouple for thermoelectric power harvesting

    Science.gov (United States)

    Böhnert, T.; Paz, E.; Ferreira, R.; Freitas, P. P.

    2018-05-01

    The thermoelectric power generated in magnetic tunnel junctions (MTJs) is determined as a function of the tunnel barrier thickness for a matched electric circuit. This study suggests that lower resistance area product and higher tunnel magnetoresistance will maximize the thermoelectric power output of the MTJ structures. Further, the thermoelectric behavior of a series of two MTJs, a MTJ thermocouple, is investigated as a function of its magnetic configurations. In an alternating magnetic configurations the thermovoltages cancel each other, while the magnetic contribution remains. A large array of MTJ thermocouples could amplify the magnetic thermovoltage signal significantly.

  8. A Klein-tunneling transistor with ballistic graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wilmart, Quentin; Fève, Gwendal; Berroir, Jean-Marc; Plaçais, Bernard [Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université P et M Curie, Université D Diderot, 24, rue Lhomond, 75231 Paris Cedex 05 (France); Berrada, Salim; Hung Nguyen, V; Dollfus, Philippe [Institute of Fundamental Electronics, Univ. Paris-Sud, CNRS, Orsay (France); Torrin, David [Département de Physique, Ecole Polytechnique, 91128 Palaiseau (France)

    2014-06-15

    Today, the availability of high mobility graphene up to room temperature makes ballistic transport in nanodevices achievable. In particular, p-n-p transistors in the ballistic regime give access to Klein tunneling physics and allow the realization of devices exploiting the optics-like behavior of Dirac Fermions (DFs) as in the Veselago lens or the Fabry–Pérot cavity. Here we propose a Klein tunneling transistor based on the geometrical optics of DFs. We consider the case of a prismatic active region delimited by a triangular gate, where total internal reflection may occur, which leads to the tunable suppression of transistor transmission. We calculate the transmission and the current by means of scattering theory and the finite bias properties using non-equilibrium Green's function (NEGF) simulation. (letter)

  9. Possible Concepts for Waterproofing of Norwegian TBM Railway Tunnels

    Science.gov (United States)

    Dammyr, Øyvind; Nilsen, Bjørn; Thuro, Kurosch; Grøndal, Jørn

    2014-05-01

    The aim of this paper is to evaluate and compare the durability, life expectancy and maintenance needs of traditional Norwegian waterproofing concepts to the generally more rigid waterproofing concepts seen in other European countries. The focus will be on solutions for future Norwegian tunnel boring machine railway tunnels. Experiences from operation of newer and older tunnels with different waterproofing concepts have been gathered and analyzed. In the light of functional requirements for Norwegian rail tunnels, some preliminary conclusions about suitable concepts are drawn. Norwegian concepts such as polyethylene panels and lightweight concrete segments with membrane are ruled out. European concepts involving double shell draining systems (inner shell of cast concrete with membrane) and single shell undrained systems (waterproof concrete segments) are generally evaluated as favorable. Sprayable membranes and waterproof/insulating shotcrete are welcomed innovations, but more research is needed to verify their reliability and cost effectiveness compared to the typical European concepts. Increasing traffic and reliance on public transport systems in Norway result in high demand for durable and cost effective solutions.

  10. Quantum resonances in physical tunneling

    International Nuclear Information System (INIS)

    Nieto, M.M.; Truax, D.R.

    1985-01-01

    It has recently been emphasized that the probability of quantum tunneling is a critical function of the shape of the potential. Applying this observation to physical systems, we point out that in principal information on potential surfaces can be obtained by studying tunneling rates. This is especially true in cases where only spectral data is known, since many potentials yield the same spectrum. 13 refs., 10 figs., 1 tab

  11. High-resolution MRI predicts steroid injection response in carpal tunnel syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Takatoshi; Oki, Hodaka; Kinoshita, Shunsuke; Yamashita, Yoshiko; Takahashi, Hiroyuki; Hayashida, Yoshiko; Korogi, Yukunori [University of Occupational and Environmental Health School of Medicine, Department of Radiology, Kitakyushu (Japan); Oshige, Takahisa; Sakai, Akinori [University of Occupational and Environmental Health School of Medicine, Department of Orthopaedic Surgery, Kitakyushu (Japan); Matsuyama, Atsushi; Hisaoka, Masanori [University of Occupational and Environmental Health School of Medicine, Department of Pathology and Oncology, Kitakyushu (Japan)

    2014-03-15

    To correlate median nerve T2 signal and shape at the carpal tunnel with steroid injection (SI) response in carpal tunnel syndrome (CTS) patients. One hundred and sixty-three CTS wrists of 92 consecutive patients who were scheduled to undergo SI were prospectively evaluated with 3-T magnetic resonance imaging (MRI) and a nerve conduction study. All patients underwent axial high-resolution T2-weighted MRI (in-plane resolution of 0.25 x 0.25 mm). The CTS wrists were classified into three groups according to the nerve T2 signal and the flattening ratio at the hook of hamate level: group 1, high and oval; group 2, high and flat; group 3, low and flat. Clinical response to SI was evaluated at 6 months after injection. One hundred and thirteen of the 163 wrists (69.3 %) responded well to SI. The percentage of improvement was 81.7 % (49/60) in group 1, 69.9 % (51/73) in group 2, and 43.3 % (13/30) in group 3 (P < 0.01). On stepwise logistic regression analysis high-resolution MRI was the only significant independent factor for SI response in CTS patients (P < 0.01). High-resolution MRI correlates well with SI response in CTS patients and seems useful for predicting SI response. (orig.)

  12. High performance tunnel field-effect transistor by gate and source engineering

    International Nuclear Information System (INIS)

    Huang, Ru; Huang, Qianqian; Chen, Shaowen; Wu, Chunlei; Wang, Jiaxin; An, Xia; Wang, Yangyuan

    2014-01-01

    As one of the most promising candidates for future nanoelectronic devices, tunnel field-effect transistors (TFET) can overcome the subthreshold slope (SS) limitation of MOSFET, whereas high ON-current, low OFF-current and steep switching can hardly be obtained at the same time for experimental TFETs. In this paper, we developed a new nanodevice technology based on TFET concepts. By designing the gate configuration and introducing the optimized Schottky junction, a multi-finger-gate TFET with a dopant-segregated Schottky source (mFSB-TFET) is proposed and experimentally demonstrated. A steeper SS can be achieved in the fabricated mFSB-TFET on the bulk Si substrate benefiting from the coupled quantum band-to-band tunneling (BTBT) mechanism, as well as a high I ON /I OFF ratio (∼10 7 ) at V DS  = 0.2 V without an area penalty. By compatible SOI CMOS technology, the fabricated Si mFSB-TFET device was further optimized with a high I ON /I OFF ratio of ∼10 8 and a steeper SS of over 5.5 decades of current. A minimum SS of below 60 mV dec −1 was experimentally obtained, indicating its dominant quantum BTBT mechanism for switching. (paper)

  13. High-Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal

    2010-01-01

    We demonstrate single nanowire tunnel diodes with room temperature peak current densities of up to 329 A/cm(2). Despite the large surface to volume ratio of the type-II InP-GaAs axial heterostructure nanowires, we measure peak to valley current ratios (PVCR) of up to 8.2 at room temperature and 27...

  14. Tunneling and resonant conductance in one-dimensional molecular structures

    International Nuclear Information System (INIS)

    Kozhushner, M.A.; Posvyanskii, V.S.; Oleynik, I.I.

    2005-01-01

    We present a theory of tunneling and resonant transitions in one-dimensional molecular systems which is based on Green's function theory of electron sub-barrier scattering off the structural units (or functional groups) of a molecular chain. We show that the many-electron effects are of paramount importance in electron transport and they are effectively treated using a formalism of sub-barrier scattering operators. The method which calculates the total scattering amplitude of the bridge molecule not only predicts the enhancement of the amplitude of tunneling transitions in course of tunneling electron transfer through onedimensional molecular structures but also allows us to interpret conductance mechanisms by calculating the bound energy spectrum of the tunneling electron, the energies being obtained as poles of the total scattering amplitude of the bridge molecule. We found that the resonant tunneling via bound states of the tunneling electron is the major mechanism of electron conductivity in relatively long organic molecules. The sub-barrier scattering technique naturally includes a description of tunneling in applied electric fields which allows us to calculate I-V curves at finite bias. The developed theory is applied to explain experimental findings such as bridge effect due to tunneling through organic molecules, and threshold versus Ohmic behavior of the conductance due to resonant electron transfer

  15. A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields.

    Science.gov (United States)

    Assig, Maximilian; Etzkorn, Markus; Enders, Axel; Stiepany, Wolfgang; Ast, Christian R; Kern, Klaus

    2013-03-01

    We present design and performance of a scanning tunneling microscope (STM) that operates at temperatures down to 10 mK providing ultimate energy resolution on the atomic scale. The STM is attached to a dilution refrigerator with direct access to an ultra high vacuum chamber allowing in situ sample preparation. High magnetic fields of up to 14 T perpendicular and up to 0.5 T parallel to the sample surface can be applied. Temperature sensors mounted directly at the tip and sample position verified the base temperature within a small error margin. Using a superconducting Al tip and a metallic Cu(111) sample, we determined an effective temperature of 38 ± 1 mK from the thermal broadening observed in the tunneling spectra. This results in an upper limit for the energy resolution of ΔE = 3.5 kBT = 11.4 ± 0.3 μeV. The stability between tip and sample is 4 pm at a temperature of 15 mK as demonstrated by topography measurements on a Cu(111) surface.

  16. Low-voltage high-speed programming gate-all-around floating gate memory cell with tunnel barrier engineering

    Science.gov (United States)

    Hamzah, Afiq; Ezaila Alias, N.; Ismail, Razali

    2018-06-01

    The aim of this study is to investigate the memory performances of gate-all-around floating gate (GAA-FG) memory cell implementing engineered tunnel barrier concept of variable oxide thickness (VARIOT) of low-k/high-k for several high-k (i.e., Si3N4, Al2O3, HfO2, and ZrO2) with low-k SiO2 using three-dimensional (3D) simulator Silvaco ATLAS. The simulation work is conducted by initially determining the optimized thickness of low-k/high-k barrier-stacked and extracting their Fowler–Nordheim (FN) coefficients. Based on the optimized parameters the device performances of GAA-FG for fast program operation and data retention are assessed using benchmark set by 6 and 8 nm SiO2 tunnel layer respectively. The programming speed has been improved and wide memory window with 30% increment from conventional SiO2 has been obtained using SiO2/Al2O3 tunnel layer due to its thin low-k dielectric thickness. Furthermore, given its high band edges only 1% of charge-loss is expected after 10 years of ‑3.6/3.6 V gate stress.

  17. Application of maximum entropy to neutron tunneling spectroscopy

    International Nuclear Information System (INIS)

    Mukhopadhyay, R.; Silver, R.N.

    1990-01-01

    We demonstrate the maximum entropy method for the deconvolution of high resolution tunneling data acquired with a quasielastic spectrometer. Given a precise characterization of the instrument resolution function, a maximum entropy analysis of lutidine data obtained with the IRIS spectrometer at ISIS results in an effective factor of three improvement in resolution. 7 refs., 4 figs

  18. Magnetic reconstruction induced magnetoelectric coupling and spin-dependent tunneling in Ni/KNbO_3/Ni multiferroic tunnel junctions

    International Nuclear Information System (INIS)

    Zhang, Hu; Dai, Jian-Qing; Song, Yu-Min

    2016-01-01

    We investigate the magnetoelectric coupling and spin-polarized tunneling in Ni/KNbO_3/Ni multiferroic tunnel junctions with asymmetric interfaces based on density functional theory. The junctions have two stable polarization states. We predict a peculiar magnetoelectric effect in such junctions originating from the magnetic reconstruction of Ni near the KO-terminated interface. This reconstruction is induced by the reversal of the ferroelectric polarization of KNbO_3. Furthermore, the change in the magnetic ordering filters the spin-dependent current. This effect leads to a change in conductance by about two orders of magnitude. As a result we obtain a giant tunneling electroresistance effect. In addition, there exist sizable tunneling magnetoresistance effects for two polarization states. - Highlights: • We study the ME coupling and electron tunneling in Ni/KNbO_3/Ni junctions. • There is magnetic reconstruction of Ni atoms near the KO-terminated interface. • A peculiar magnetoelectric coupling effect is obtained. • Predicted giant tunneling electroresistance effects.

  19. D Modelling of Tunnel Excavation Using Pressurized Tunnel Boring Machine in Overconsolidated Soils

    Science.gov (United States)

    Demagh, Rafik; Emeriault, Fabrice

    2013-06-01

    The construction of shallow tunnels in urban areas requires a prior assessment of their effects on the existing structures. In the case of shield tunnel boring machines (TBM), the various construction stages carried out constitute a highly three-dimensional problem of soil/structure interaction and are not easy to represent in a complete numerical simulation. Consequently, the tunnelling- induced soil movements are quite difficult to evaluate. A 3D simulation procedure, using a finite differences code, namely FLAC3D, taking into account, in an explicit manner, the main sources of movements in the soil mass is proposed in this paper. It is illustrated by the particular case of Toulouse Subway Line B for which experimental data are available and where the soil is saturated and highly overconsolidated. A comparison made between the numerical simulation results and the insitu measurements shows that the 3D procedure of simulation proposed is relevant, in particular regarding the adopted representation of the different operations performed by the tunnel boring machine (excavation, confining pressure, shield advancement, installation of the tunnel lining, grouting of the annular void, etc). Furthermore, a parametric study enabled a better understanding of the singular behaviour origin observed on the ground surface and within the solid soil mass, till now not mentioned in the literature.

  20. Design of Intelligent Power Supply System for Expressway Tunnel

    Science.gov (United States)

    Wang, Li; Li, Yutong; Lin, Zimian

    2018-01-01

    Tunnel lighting program is one of the key points of tunnel infrastructure construction. As tunnels tend to handle remote locations, power supply line construction generally has been having the distance, investment, high cost characteristics. To solve this problem, we propose a green, environmentally friendly, energy-efficient lighting system. This program uses the piston-wind which cars within tunnel produce as the power and combines with solar energy, physical lighting to achieve it, which solves the problem of difficult and high cost of highway tunnel section, and provides new ideas for the future construction of tunnel power supply.

  1. Magnetic Fluxtube Tunneling

    Science.gov (United States)

    Dahlburg, Russell B.; Antiochos,, Spiro K.; Norton, D.

    1996-01-01

    We present numerical simulations of the collision and subsequent interaction of two initially orthogonal, twisted, force free field magnetic fluxtubes. The simulations were carried out using a new three dimensional explicit parallelized Fourier collocation algorithm for solving the viscoresistive equations of compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the fluxtubes can 'tunnel' through each other. Two key conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch much greater than 1, and the magnetic Lundquist number must be somewhat large, greater than or equal to 2880. This tunneling behavior has not been seen previously in studies of either vortex tube or magnetic fluxtube interactions. An examination of magnetic field lines shows that tunneling is due to a double reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections and 'pass' through each other. The implications of these results for solar and space plasmas are discussed.

  2. Stability Analysis of Tunnel-Slope Coupling Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Tao Luo

    2015-07-01

    Full Text Available Subjects in tunnels, being constrained by terrain and routes, entrances and exits to tunnels, usually stay in the terrain with slopes. Thus, it is necessary to carry out stability analysis by treating the tunnel slope as an entity. In this study, based on the Janbu slices method, a model for the calculation of the stability of the original slope-tunnel-bank slope is established. The genetic algorithm is used to implement calculation variables, safety coefficient expression and fitness function design. The stability of the original slope-tunnel-bank slope under different conditions is calculated, after utilizing the secondary development function of the mathematical tool MATLAB for programming. We found that the bearing capacity of the original slopes is reduced as the tunnels are excavated and the safety coefficient is gradually decreased as loads of the embankment construction increased. After the embankment was constructed, the safety coefficient was 1.38, which is larger than the 1.3 value specified by China’s standards. Thus, the original slope-tunnel-bank slope would remain in a stable state.

  3. Signatures of unstable semiclassical trajectories in tunneling

    International Nuclear Information System (INIS)

    Levkov, D G; Panin, A G; Sibiryakov, S M

    2009-01-01

    It was found recently that processes of multidimensional tunneling are generally described at high energies by unstable semiclassical trajectories. We study two observational signatures related to the instability of trajectories. First, we find an additional power-law dependence of the tunneling probability on the semiclassical parameter as compared to the standard case of potential tunneling. The second signature is a substantial widening of the probability distribution over final-state quantum numbers. These effects are studied using a modified semiclassical technique which incorporates stabilization of the tunneling trajectories. The technique is derived from first principles. We obtain expressions for the inclusive and exclusive tunneling probabilities in the case of unstable semiclassical trajectories. We also investigate the 'phase transition' between the cases of stable and unstable trajectories across certain 'critical' values of energy. Finally, we derive the relation between the semiclassical probabilities of tunneling from the low-lying and highly excited initial states. This puts on firm ground a conjecture made previously in the semiclassical description of collision-induced tunneling in field theory

  4. Experimental Evidence for Quantum Tunneling Time

    Science.gov (United States)

    Camus, Nicolas; Yakaboylu, Enderalp; Fechner, Lutz; Klaiber, Michael; Laux, Martin; Mi, Yonghao; Hatsagortsyan, Karen Z.; Pfeifer, Thomas; Keitel, Christoph H.; Moshammer, Robert

    2017-07-01

    The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron's classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the "tunnel exit."

  5. High Pressure Scanning Tunneling Microscopy Studies of AdsorbateStructure and Mobility during Catalytic Reactions: Novel Design of anUltra High Pressure, High Temperature Scanning Tunneling MicroscopeSystem for Probing Catalytic Conversions

    Energy Technology Data Exchange (ETDEWEB)

    Tang, David Chi-Wai [Univ. of California, Berkeley, CA (United States)

    2005-05-16

    The aim of the work presented therein is to take advantage of scanning tunneling microscope’s (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 °C).

  6. Effects of plastic mulches and high tunnel raspberry production systems on soil physicochemical quality indicators

    Science.gov (United States)

    Domagała-Świątkiewicz, Iwona; Siwek, Piotr

    2018-01-01

    In horticulture, degradable materials are desirable alternatives to plastic films. Our aim was to study the impact of soil plastic mulching on the soil properties in the high tunnel and open field production systems of raspberry. The raised beds were mulched with a polypropylene non-woven and two degradable mulches: polypropylene with a photodegradant and non-woven polylactide. The results indicated that the system of raspberry production, as well as the type of mulching had significant impact on soil organic carbon stock, moisture content and water stable aggregate amount. Soils taken from the open field system had a lower bulk density and water stability aggregation index, but higher organic carbon and capillary water content as compared to soils collected from high tunnel conditions. In comparison with the open field system, soil salinity was also found to be higher in high tunnel, as well as with higher P, Mg, Ca, S, Na and B content. Furthermore, mulch covered soils had more organic carbon amount than the bare soils. Soil mulching also enhanced the water capacity expressed as a volume of capillary water content. In addition, mulching improved the soil structure in relation to the bare soil, in particular, in open field conditions. The impact of the compared mulches on soil quality indicators was similar.

  7. Quantum dot resonant tunneling diode single photon detector with aluminum oxide aperture defined tunneling area

    DEFF Research Database (Denmark)

    Li, H.W.; Kardynal, Beata; Ellis, D.J.P.

    2008-01-01

    Quantum dot resonant tunneling diode single photon detector with independently defined absorption and sensing areas is demonstrated. The device, in which the tunneling is constricted to an aperture in an insulating layer in the emitter, shows electrical characteristics typical of high quality res...

  8. Energy saving in tunnel entrance lighting.

    NARCIS (Netherlands)

    Schreuder, D.A. & Swart, L.

    1993-01-01

    Tunnel entrances may present themselves during the day as a "black hole" in which no details can be perceived. In order to ensure safe and comfortable driving at high speeds, the entrance zone must be lit to a high luminance level. Modern tunnel lighting technology is focused on two aspects:

  9. Uncooled tunneling infrared sensor

    Science.gov (United States)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)

    1995-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.

  10. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    Science.gov (United States)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  11. A Klein-tunneling transistor with ballistic graphene

    International Nuclear Information System (INIS)

    Wilmart, Quentin; Fève, Gwendal; Berroir, Jean-Marc; Plaçais, Bernard; Berrada, Salim; Hung Nguyen, V; Dollfus, Philippe; Torrin, David

    2014-01-01

    Today, the availability of high mobility graphene up to room temperature makes ballistic transport in nanodevices achievable. In particular, p-n-p transistors in the ballistic regime give access to Klein tunneling physics and allow the realization of devices exploiting the optics-like behavior of Dirac Fermions (DFs) as in the Veselago lens or the Fabry–Pérot cavity. Here we propose a Klein tunneling transistor based on the geometrical optics of DFs. We consider the case of a prismatic active region delimited by a triangular gate, where total internal reflection may occur, which leads to the tunable suppression of transistor transmission. We calculate the transmission and the current by means of scattering theory and the finite bias properties using non-equilibrium Green's function (NEGF) simulation. (letter)

  12. Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM

    International Nuclear Information System (INIS)

    Paul, William; Lutz, Christopher P.; Heinrich, Andreas J.; Baumann, Susanne

    2016-01-01

    We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5–35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.

  13. Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM

    Energy Technology Data Exchange (ETDEWEB)

    Paul, William; Lutz, Christopher P.; Heinrich, Andreas J. [IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Baumann, Susanne [IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2016-07-15

    We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5–35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.

  14. Kondo dynamics of quasiparticle tunneling in a two-reservoir Anderson model.

    Science.gov (United States)

    Hong, Jongbae

    2011-07-13

    We study the Kondo dynamics in a two-reservoir Anderson impurity model in which quasiparticle tunneling occurs between two reservoirs. We show that singlet hopping is an essential component of Kondo dynamics in the quasiparticle tunneling. We prove that two resonant tunneling levels exist in the two-reservoir Anderson impurity model and the quasiparticle tunnels through one of these levels when a bias is applied. The Kondo dynamics is explained by obtaining the retarded Green's function. We obtain the analytic expressions of the spectral weights of coherent peaks by analyzing the Green's function at the atomic limit.

  15. Kondo dynamics of quasiparticle tunneling in a two-reservoir Anderson model

    International Nuclear Information System (INIS)

    Hong, Jongbae

    2011-01-01

    We study the Kondo dynamics in a two-reservoir Anderson impurity model in which quasiparticle tunneling occurs between two reservoirs. We show that singlet hopping is an essential component of Kondo dynamics in the quasiparticle tunneling. We prove that two resonant tunneling levels exist in the two-reservoir Anderson impurity model and the quasiparticle tunnels through one of these levels when a bias is applied. The Kondo dynamics is explained by obtaining the retarded Green's function. We obtain the analytic expressions of the spectral weights of coherent peaks by analyzing the Green's function at the atomic limit.

  16. Tunneling Plasmonics in Bilayer Graphene.

    Science.gov (United States)

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  17. Electron tunneling across a tunable potential barrier

    International Nuclear Information System (INIS)

    Mangin, A; Anthore, A; Rocca, M L Della; Boulat, E; Lafarge, P

    2009-01-01

    We present an experiment where the elementary quantum electron tunneling process should be affected by an independent gate voltage parameter. We have realized nanotransistors where the source and drain electrodes are created by electromigration inducing a nanometer sized gap acting as a tunnel barrier. The barrier potential shape is in first approximation considered trapezoidal. The application of a voltage to the gate electrode close to the barrier region can in principle affect the barrier shape. Simulations of the source drain tunnel current as a function of the gate voltage predict modulations as large as one hundred percent. The difficulty of observing the predicted behaviour in our samples might be due to the peculiar geometry of the realized tunnel junction.

  18. Functional Catastrophe Analysis of Collapse Mechanism for Shallow Tunnels with Considering Settlement

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2016-01-01

    Full Text Available Limit analysis is a practical and meaningful method to predict the stability of geomechanical properties. This work investigates the pore water effect on new collapse mechanisms and possible collapsing block shapes of shallow tunnels with considering the effects of surface settlement. The analysis is performed within the framework of upper bound theorem. Furthermore, the NL nonlinear failure criterion is used to examine the influence of different factors on the collapsing shape and the minimum supporting pressure in shallow tunnels. Analytical solutions derived by functional catastrophe theory for the two different shape curves which describe the distinct characteristics of falling blocks up and down the water level are obtained by virtual work equations under the variational principle. By considering that the mechanical properties of soil are not affected by the presence of underground water, the strength parameters in NL failure criterion can be taken to be the same under and above the water table. According to the numerical results in this work, the influences on the size of collapsing block different parameters have are presented in the tables and the upper bounds on the loads required to resist collapse are derived and illustrated in the form of supporting forces graphs that account for the variation of the embedded depth and other factors.

  19. Fine structures on zero-field steps in low-loss Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Monaco, Roberto; Barbara, Paola; Mygind, Jesper

    1993-01-01

    The first zero-field step in the current-voltage characteristic of intermediate-length, high-quality, low-loss Nb/Al-AlOx/Nb Josephson tunnel junctions has been carefully investigated as a function of temperature. When decreasing the temperature, a number of structures develop in the form...... of regular and slightly hysteretic steps whose voltage position depends on the junction temperature and length. This phenomenon is interesting for the study of nonlinear dynamics and for application of long Josephson tunnel junctions as microwave and millimeter-wavelength oscillators....

  20. Nonadiabatic Dynamics in Single-Electron Tunneling Devices with Time-Dependent Density-Functional Theory

    Science.gov (United States)

    Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole

    2018-04-01

    We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.

  1. Resonant tunneling assisted propagation and amplification of plasmons in high electron mobility transistors

    International Nuclear Information System (INIS)

    Bhardwaj, Shubhendu; Sensale-Rodriguez, Berardi; Xing, Huili Grace; Rajan, Siddharth; Volakis, John L.

    2016-01-01

    A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. It is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures

  2. Supramolecular tunneling junctions

    NARCIS (Netherlands)

    Wimbush, K.S.

    2012-01-01

    In this study a variety of supramolecular tunneling junctions were created. The basis of these junctions was a self-assembled monolayer of heptathioether functionalized ß-cyclodextrin (ßCD) formed on an ultra-flat Au surface, i.e., the bottom electrode. This gave a well-defined hexagonally packed

  3. Model of a tunneling current in a p-n junction based on armchair graphene nanoribbons - an Airy function approach and a transfer matrix method

    International Nuclear Information System (INIS)

    Suhendi, Endi; Syariati, Rifki; Noor, Fatimah A.; Khairurrijal; Kurniasih, Neny

    2014-01-01

    We modeled a tunneling current in a p-n junction based on armchair graphene nanoribbons (AGNRs) by using an Airy function approach (AFA) and a transfer matrix method (TMM). We used β-type AGNRs, in which its band gap energy and electron effective mass depends on its width as given by the extended Huckel theory. It was shown that the tunneling currents evaluated by employing the AFA are the same as those obtained under the TMM. Moreover, the calculated tunneling current was proportional to the voltage bias and inversely with temperature

  4. Step tunneling enhanced asymmetry in metal-insulator-insulator-metal (MIIM) diodes for rectenna applications

    Science.gov (United States)

    Alimardani, N.; Conley, J. F.

    2013-09-01

    We combine nanolaminate bilayer insulator tunnel barriers (Al2O3/HfO2, HfO2/Al2O3, Al2O3/ZrO2) deposited via atomic layer deposition (ALD) with asymmetric work function metal electrodes to produce MIIM diodes with enhanced I-V asymmetry and non-linearity. We show that the improvements in MIIM devices are due to step tunneling rather than resonant tunneling. We also investigate conduction processes as a function of temperature in MIM devices with Nb2O5 and Ta2O5 high electron affinity insulators. For both Nb2O5 and Ta2O5 insulators, the dominant conduction process is established as Schottky emission at small biases and Frenkel-Poole emission at large biases. The energy depth of the traps that dominate Frenkel-Poole emission in each material are estimated.

  5. Tunneling anisotropic magnetoresistance driven by magnetic phase transition.

    Science.gov (United States)

    Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F

    2017-09-06

    The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.

  6. Microscopic superconducting parameters from tunneling in A15 Nb-Sn

    International Nuclear Information System (INIS)

    Rudman, D.A.; Beasley, M.R.

    1984-01-01

    High-quality tunnel junctions have been fabricated on thin films of A15 Nb-Sn (20--25 at. %) using oxidized a-Si tunnel barriers and Pb counterelectrodes. These junctions have been used to measure changes in the gap, the transition temperature T/sub c/, and the tunneling density of states with composition in this important high-T/sub c/ superconductor. With the use of the proximity-effect-modified data reduction scheme developed by Arnold and Wolf, values for α 2 F(ω) and μ( are obtained. As the Sn content approaches stoichiometry, the lowest-energy phonon branch in α 2 F(ω) both increases in weight and shifts to lower energy. These two effects combine to produce the increases in lambda as stoichiometry is approached, and at the same time can account for the observed increase in 2Δ/k/sub B/T/sub c/. The values of μ( remain essentially constant as a function of composition, and hence show no evidence for an increased Coulomb interaction with increasing disorder as recently proposed by Anderson et al

  7. Effect of an Interfacial Layer on Electron Tunneling through Atomically Thin Al2O3 Tunnel Barriers.

    Science.gov (United States)

    Wilt, Jamie; Sakidja, Ridwan; Goul, Ryan; Wu, Judy Z

    2017-10-25

    Electron tunneling through high-quality, atomically thin dielectric films can provide a critical enabling technology for future microelectronics, bringing enhanced quantum coherent transport, fast speed, small size, and high energy efficiency. A fundamental challenge is in controlling the interface between the dielectric and device electrodes. An interfacial layer (IL) will contain defects and introduce defects in the dielectric film grown atop, preventing electron tunneling through the formation of shorts. In this work, we present the first systematic investigation of the IL in Al 2 O 3 dielectric films of 1-6 Å's in thickness on an Al electrode. We integrated several advanced approaches: molecular dynamics to simulate IL formation, in situ high vacuum sputtering atomic layer deposition (ALD) to synthesize Al 2 O 3 on Al films, and in situ ultrahigh vacuum scanning tunneling spectroscopy to probe the electron tunneling through the Al 2 O 3 . The IL had a profound effect on electron tunneling. We observed a reduced tunnel barrier height and soft-type dielectric breakdown which indicate that defects are present in both the IL and in the Al 2 O 3 . The IL forms primarily due to exposure of the Al to trace O 2 and/or H 2 O during the pre-ALD heating step of fabrication. As the IL was systematically reduced, by controlling the pre-ALD sample heating, we observed an increase of the ALD Al 2 O 3 barrier height from 0.9 to 1.5 eV along with a transition from soft to hard dielectric breakdown. This work represents a key step toward the realization of high-quality, atomically thin dielectrics with electron tunneling for the next generation of microelectronics.

  8. Automated Boundary Conditions for Wind Tunnel Simulations

    Science.gov (United States)

    Carlson, Jan-Renee

    2018-01-01

    Computational fluid dynamic (CFD) simulations of models tested in wind tunnels require a high level of fidelity and accuracy particularly for the purposes of CFD validation efforts. Considerable effort is required to ensure the proper characterization of both the physical geometry of the wind tunnel and recreating the correct flow conditions inside the wind tunnel. The typical trial-and-error effort used for determining the boundary condition values for a particular tunnel configuration are time and computer resource intensive. This paper describes a method for calculating and updating the back pressure boundary condition in wind tunnel simulations by using a proportional-integral-derivative controller. The controller methodology and equations are discussed, and simulations using the controller to set a tunnel Mach number in the NASA Langley 14- by 22-Foot Subsonic Tunnel are demonstrated.

  9. Atomistic nature in band-to-band tunneling in two-dimensional silicon pn tunnel diodes

    International Nuclear Information System (INIS)

    Tabe, Michiharu; Tan, Hoang Nhat; Mizuno, Takeshi; Muruganathan, Manoharan; Anh, Le The; Mizuta, Hiroshi; Nuryadi, Ratno; Moraru, Daniel

    2016-01-01

    We study low-temperature transport properties of two-dimensional (2D) Si tunnel diodes, or Si Esaki diodes, with a lateral layout. In ordinary Si Esaki diodes, interband tunneling current is severely limited because of the law of momentum conservation, while nanoscale Esaki diodes may behave differently due to the dopants in the narrow depletion region, by atomistic effects which release such current limitation. In thin-Si lateral highly doped pn diodes, we find clear signatures of interband tunneling between 2D-subbands involving phonon assistance. More importantly, the tunneling current is sharply enhanced in a narrow voltage range by resonance via a pair of a donor- and an acceptor-atom in the pn junction region. Such atomistic behavior is recognized as a general feature showing up only in nanoscale tunnel diodes. In particular, a donor-acceptor pair with deeper ground-state energies is likely to be responsible for such a sharply enhanced current peak, tunable by external biases.

  10. Homoepitaxial graphene tunnel barriers for spin transport

    Directory of Open Access Journals (Sweden)

    Adam L. Friedman

    2016-05-01

    Full Text Available Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  11. Homoepitaxial graphene tunnel barriers for spin transport

    Science.gov (United States)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  12. Excavation of the Surikamigawa dam diversion tunnel. Surikamigawa dam karihaisui tunnel kantsu

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, T.; Konno, T. (Ministry of Construction, Tokyo (Japan))

    1994-04-01

    A bypass tunnel construction has been completed at the Surikamigawa dam (Japan). This paper describes the summary of the construction. The full-swing dam construction work is scheduled to begin in 1995. The soils distributed near the dam site consist of lapillus tuff containing andesite-based light stones and tuff-based conglomerates containing large gravels. Excavation of the dam diversion tunnel has used a blasting method, and the tunnel construction has adopted an automatic tunnel cross section marking system and a non-electric explosion method. This marking system is a system to irradiate a laser beam onto the facing to depict excavation lines that realizes labor saving and high-accuracy excavation. The error at the tunnel completion was found 20 mm. The non-electric explosion method ignites a coated explosive layer with an impact wave, which is electrostatically safe, and reduces blasting vibration. Electric detonators have also been used because of using ANFO explosives. The result obtained from measurements of inner space displacement necessary for the blasting process has indicated that the area near the dam site consists of stable mountains. 6 figs., 4 tabs.

  13. Chiral tunneling in gated inversion symmetric Weyl semimetal

    Science.gov (United States)

    Bai, Chunxu; Yang, Yanling; Chang, Kai

    2016-01-01

    Based on the chirality-resolved transfer-matrix method, we evaluate the chiral transport tunneling through Weyl semimetal multi-barrier structures created by periodic gates. It is shown that, in sharp contrast to the cases of three dimensional normal semimetals, the tunneling coefficient as a function of incident angle shows a strong anisotropic behavior. Importantly, the tunneling coefficients display an interesting periodic oscillation as a function of the crystallographic angle of the structures. With the increasement of the barriers, the tunneling current shows a Fabry-Perot type interferences. For superlattice structures, the fancy miniband effect has been revealed. Our results show that the angular dependence of the first bandgap can be reduced into a Lorentz formula. The disorder suppresses the oscillation of the tunneling conductance, but would not affect its average amplitude. This is in sharp contrast to that in multi-barrier conventional semiconductor structures. Moreover, numerical results for the dependence of the angularly averaged conductance on the incident energy and the structure parameters are presented and contrasted with those in two dimensional relativistic materials. Our work suggests that the gated Weyl semimetal opens a possible new route to access to new type nanoelectronic device. PMID:26888491

  14. NbN/AlN/NbN tunnel junctions with high current density up to 54 kA/cm2

    International Nuclear Information System (INIS)

    Wang, Z.; Kawakami, A.; Uzawa, Y.

    1997-01-01

    We report on progress in the development of high current density NbN/AlN/NbN tunnel junctions for applications as submillimeter wave superconductor-insulator-superconductor mixers. A very high current density up to 54 kA/cm 2 , roughly an order of magnitude larger than any reported results for all-NbN tunnel junctions, was achieved in the junctions with about 1 nm thick AlN barriers. The magnetic field and temperature dependence of critical supercurrents were measured to investigate the Josephson tunneling behavior of critical supercurrents in the high-J c junctions. The junctions showed high-quality junction characteristics with a large gap voltage of 5 mV and sharp quasiparticle current rise (ΔV g =0.1 mV). The R sg /R N ratio was about 5 with a V m value of 14 mV measured at 4.2 K. copyright 1997 American Institute of Physics

  15. Tunnel - history of

    International Nuclear Information System (INIS)

    1998-11-01

    This book introduces history of tunnel in ancient times, the middle ages and modern times, survey of tunnel and classification of bedrock like environment survey of position, survey of the ground, design of tunnel on basic thing of the design, and design of tunnel of bedrock, analysis of stability of tunnel and application of the data, construction of tunnel like lattice girder and steel fiber reinforced shot crete, and maintenance control and repair of tunnel.

  16. Multiple-scanning-probe tunneling microscope with nanoscale positional recognition function.

    Science.gov (United States)

    Higuchi, Seiji; Kuramochi, Hiromi; Laurent, Olivier; Komatsubara, Takashi; Machida, Shinichi; Aono, Masakazu; Obori, Kenichi; Nakayama, Tomonobu

    2010-07-01

    Over the past decade, multiple-scanning-probe microscope systems with independently controlled probes have been developed for nanoscale electrical measurements. We developed a quadruple-scanning-probe tunneling microscope (QSPTM) that can determine and control the probe position through scanning-probe imaging. The difficulty of operating multiple probes with submicrometer precision drastically increases with the number of probes. To solve problems such as determining the relative positions of the probes and avoiding of contact between the probes, we adopted sample-scanning methods to obtain four images simultaneously and developed an original control system for QSPTM operation with a function of automatic positional recognition. These improvements make the QSPTM a more practical and useful instrument since four images can now be reliably produced, and consequently the positioning of the four probes becomes easier owing to the reduced chance of accidental contact between the probes.

  17. Sediment and Cavitation Erosion Studies through Dam Tunnels

    Directory of Open Access Journals (Sweden)

    Muhammad Abid

    2016-01-01

    Full Text Available This paper presents results of sediment and cavitation erosion through Tunnel 2 and Tunnel 3 of Tarbela Dam in Pakistan. Main bend and main branch of Tunnel 2 and outlet 1 and outlet 3 of Tunnel 3 are concluded to be critical for cavitation and sediment erosion. Studies are also performed for increased sediments flow rate, concluding 5 kg/sec as the critical value for sudden increase in erosion rate density. Erosion rate is concluded to be the function of sediment flow rate and head condition. Particulate mass presently observed is reasonably low, hence presently not affecting the velocity and the flow field.

  18. Spin interference of neutrons tunneling through magnetic thin films

    International Nuclear Information System (INIS)

    Hino, Masahiro; Achiwa, Norio; Tasaki, Seiji; Ebisawa, Toru; Akiyoshi, Tsunekazu; Kawai, Takeshi.

    1996-01-01

    Larmor precession of a neutron spin is represented as the superposition of the wave functions of the two Stern-Gerlach states ↑ and ↓. A transverse neutron spin echo (NSE) spectrometer can hence be used as a neutron spin interferometer (NSI) by setting a magnetic film, such as iron and permalloy45 (Fe 55 Ni 45 ), thin enough to permit tunneling at an incident angle above and below the critical angle of the total reflection in the Larmor precession field. The NSI can be used to study spin coherent superposition and rotation of the Larmor precession through a magnetic thin film for a tunneling ↑ spin neutron and a non-tunneling ↓ spin neutron and to get the tunneling time using Larmor clock. The NSI experiments were carried out to measure the shifts of NSE signals transmitted through magnetic iron films with thicknesses of 200 and 400 A and those magnetic permalloy45 films with thicknesses of 200 and 400 A, respectively, as a function of the incident angle. Then even in tunneling ↑ spin neutron and non-tunneling ↓ spin neutron, NSE signal was observed. The phase delay was measured in iron and permalloy45 films with thickness of 200 A, and the tunneling time using Larmor clock was estimated to be 4 ± 0.6 x 10 -9 sec. (author)

  19. The value of high-resolution sonography and MR imaging in the diagnosis and follow-up of carpal tunnel syndrome

    International Nuclear Information System (INIS)

    Buchberger, W.; Judmaier, W.; Birbamer, G.; Hasenoehrl, K.; Schmidauer, C.

    1993-01-01

    120 wrists of 105 patients with carpal tunnel syndrome were studied preoperatively by high-resolution sonography. Follow-up examinations after carpal tunnel release were performed in 72 wrists. In addition, 40 wrists were examined preoperatively, and 20 wrists were examined postoperatively by MR imaging. Based on quantitative analysis of the cross-sectional area and shape of the median nerve and of the palmar bowing of the flexor retinaculum, sonography established the diagnosis in 95% of cases. MR was superior in the evaluation of mild degrees of median nerve compression, and in the detection of possible causes of the carpal tunnel syndrome, such as synovitis of the flexor tendon sheaths or ganglionic cysts. In postoperative follow-up, sonographic demonstration of a normally flattened median nerve was an excellent indicator of the successful carpal tunnel release. In 10 patients with persistent or recurrent symptoms after carpal tunnel release, the underlying pathology could be exactly demonstrated by MR. (orig.) [de

  20. From epitaxial growth of ferrite thin films to spin-polarized tunnelling

    International Nuclear Information System (INIS)

    Moussy, Jean-Baptiste

    2013-01-01

    This paper presents a review of the research which is focused on ferrite thin films for spintronics. First, I will describe the potential of ferrite layers for the generation of spin-polarized currents. In the second step, the structural and chemical properties of epitaxial thin films and ferrite-based tunnel junctions will be presented. Particular attention will be given to ferrite systems grown by oxygen-assisted molecular beam epitaxy. The analysis of the structure and chemistry close to the interfaces, a key-point for understanding the spin-polarized tunnelling measurements, will be detailed. In the third part, the magnetic and magneto-transport properties of magnetite (Fe 3 O 4 ) thin films as a function of structural defects such as the antiphase boundaries will be explained. The spin-polarization measurements (spin-resolved photoemission, tunnel magnetoresistance) on this oxide predicted to be half-metallic will be discussed. Fourth, the potential of magnetic tunnel barriers, such as CoFe 2 O 4 , NiFe 2 O 4 or MnFe 2 O 4 , whose insulating behaviour and the high Curie temperatures make it exciting candidates for spin filtering at room temperature will be described. Spin-polarized tunnelling experiments, involving either Meservey–Tedrow or tunnel magnetoresistance measurements, will reveal significant spin-polarizations of the tunnelling current at low temperatures but also at room temperatures. Finally, I will mention a few perspectives with ferrite-based heterostructures. (topical review)

  1. Tunneling magnetoresistance in Si nanowires

    KAUST Repository

    Montes Muñoz, Enrique

    2016-11-09

    We investigate the tunneling magnetoresistance of small diameter semiconducting Si nanowires attached to ferromagnetic Fe electrodes, using first principles density functional theory combined with the non-equilibrium Green\\'s functions method for quantum transport. Silicon nanowires represent an interesting platform for spin devices. They are compatible with mature silicon technology and their intrinsic electronic properties can be controlled by modifying the diameter and length. Here we systematically study the spin transport properties for neutral nanowires and both n and p doping conditions. We find a substantial low bias magnetoresistance for the neutral case, which halves for an applied voltage of about 0.35 V and persists up to 1 V. Doping in general decreases the magnetoresistance, as soon as the conductance is no longer dominated by tunneling.

  2. Studying the universality of field induced tunnel ionization times via high-order harmonic spectroscopy

    International Nuclear Information System (INIS)

    Soifer, H; Bruner, B D; Dudovich, N; Negro, M; Devetta, M; Vozzi, C; Faccialà, D; Silvestri, S de; Stagira, S

    2014-01-01

    High-harmonic generation spectroscopy is a promising tool for resolving electron dynamics and structure in atomic and molecular systems. This scheme, commonly described by the strong field approximation, requires a deep insight into the basic mechanism that leads to the harmonic generation. Recently, we have demonstrated the ability to resolve the first stage of the process—field induced tunnel ionization—by adding a weak perturbation to the strong fundamental field. Here we generalize this approach and show that the assumptions behind the strong field approximation are valid over a wide range of tunnel ionization conditions. Performing a systematic study—modifying the fundamental wavelength, intensity and atomic system—we observed a good agreement with quantum path analysis over a range of Keldysh parameters. The generality of this scheme opens new perspectives in high harmonics spectroscopy, holding the potential of probing large, complex molecular systems. (paper)

  3. Franck-Condon fingerprinting of vibration-tunneling spectra.

    Science.gov (United States)

    Berrios, Eduardo; Sundaradevan, Praveen; Gruebele, Martin

    2013-08-15

    We introduce Franck-Condon fingerprinting as a method for assigning complex vibration-tunneling spectra. The B̃ state of thiophosgene (SCCl2) serves as our prototype. Despite several attempts, assignment of its excitation spectrum has proved difficult because of near-degenerate vibrational frequencies, Fermi resonance between the C-Cl stretching mode and the Cl-C-Cl bending mode, and large tunneling splittings due to the out-of-plane umbrella mode. Hence, the spectrum has never been fitted to an effective Hamiltonian. Our assignment approach replaces precise frequency information with intensity information, eliminating the need for double resonance spectroscopy or combination differences, neither of which have yielded a full assignment thus far. The dispersed fluorescence spectrum of each unknown vibration-tunneling state images its character onto known vibrational progressions in the ground state. By using this Franck-Condon fingerprint, we were able to determine the predominant character of several vibration-tunneling states and assign them; in other cases, the fingerprinting revealed that the states are strongly mixed and cannot be characterized with a simple normal mode assignment. The assigned transitions from vibration-tunneling wave functions that were not too strongly mixed could be fitted within measurement uncertainty by an effective vibration-tunneling Hamiltonian. A fit of all observed vibration-tunneling states will require a full resonance-tunneling Hamiltonian.

  4. Tunnelling through a Gaussian random barrier

    International Nuclear Information System (INIS)

    Bezak, Viktor

    2008-01-01

    A thorough analysis of the tunnelling of electrons through a laterally inhomogeneous rectangular barrier is presented. The barrier height is defined as a statistically homogeneous Gaussian random function. In order to simplify calculations, we assume that the electron energy is low enough in comparison with the mean value of the barrier height. The randomness of the barrier height is defined vertically by a constant variance and horizontally by a finite correlation length. We present detailed calculations of the angular probability density for the tunnelled electrons (i.e. for the scattering forwards). The tunnelling manifests a remarkably diffusive character if the wavelength of the electrons is comparable with the correlation length of the barrier

  5. Scanning Tunneling Optical Resonance Microscopy

    Science.gov (United States)

    Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave

    2003-01-01

    Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically tunneling current

  6. EXTRACORPOREAL SHOCKWAVE THERAPY FOR POST BURN CARPAL TUNNEL SYNDROME

    OpenAIRE

    Hesham Galal Mahran; Ashraf Hassan Mohammed; Shimaa Nabil Aboelazm

    2015-01-01

    Background: Carpal tunnel syndrome is considered the most common compression neuropathy of the upper extremity. It may lead to work disability and functional impairment. Burns are associated with swelling and eschar which forms a tight band constricting the circulation distally. Purpose: To investigate the effect of shockwave therapy on the carpal tunnel syndrome post burn. Subjects: Thirty male and female patients selected with manifestation of carpal tunnel syndrome post burn evaluated by e...

  7. Combining scanning tunneling microscopy and synchrotron radiation for high-resolution imaging and spectroscopy with chemical, electronic, and magnetic contrast

    International Nuclear Information System (INIS)

    Cummings, M.L.; Chien, T.Y.; Preissner, C.; Madhavan, V.; Diesing, D.; Bode, M.; Freeland, J.W.; Rose, V.

    2012-01-01

    The combination of high-brilliance synchrotron radiation with scanning tunneling microscopy opens the path to high-resolution imaging with chemical, electronic, and magnetic contrast. Here, the design and experimental results of an in-situ synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system are presented. The system is designed to allow monochromatic synchrotron radiation to enter the chamber, illuminating the sample with x-ray radiation, while an insulator-coated tip (metallic tip apex open for tunneling, electron collection) is scanned over the surface. A unique feature of the SXSTM is the STM mount assembly, designed with a two free-flex pivot, providing an angular degree of freedom for the alignment of the tip and sample with respect to the incoming x-ray beam. The system designed successfully demonstrates the ability to resolve atomic-scale corrugations. In addition, experiments with synchrotron x-ray radiation validate the SXSTM system as an accurate analysis technique for the study of local magnetic and chemical properties on sample surfaces. The SXSTM system's capabilities have the potential to broaden and deepen the general understanding of surface phenomena by adding elemental contrast to the high-resolution of STM. -- Highlights: ► Synchrotron enhanced x-ray scanning tunneling microscope (SXSTM) system designed. ► Unique STM mount design allows angular DOF for tip alignment with x-ray beam. ► System demonstrates ability to resolve atomic corrugations on HOPG. ► Studies show chemical sensitivity with STM tip from photocurrent and tunneling. ► Results show system's ability to study local magnetic (XMCD) properties on Fe films.

  8. Programmable ferroelectric tunnel memristor

    Directory of Open Access Journals (Sweden)

    Andy eQuindeau

    2014-02-01

    Full Text Available We report an analogously programmable memristor based on genuine electronic resistive switching combining ferroelectric switching and electron tunneling. The tunnel current through an 8 unit cell thick epitaxial Pb(Zr[0.2]Ti[0.8]O[3] film sandwiched between La[0.7]Sr[0.3]MnO[3] and cobalt electrodes obeys the Kolmogorov-Avrami-Ishibashi model for bidimensional growth with a characteristic switching time in the order of 10^-7 seconds. The analytical description of switching kinetics allows us to develop a characteristic transfer function that has only one parameter viz. the characteristic switching time and fully predicts the resistive states of this type of memristor.

  9. Rate of tunneling nonequilibrium quasiparticles in superconducting qubits

    International Nuclear Information System (INIS)

    Ansari, Mohammad H

    2015-01-01

    In superconducting qubits the lifetime of quantum states cannot be prolonged arbitrarily by decreasing temperature. At low temperature quasiparticles tunneling between the electromagnetic environment and superconducting islands takes the condensate state out of equilibrium due to charge imbalance. We obtain the tunneling rate from a phenomenological model of non-equilibrium, where nonequilibrium quasiparticle tunnelling stimulates a temperature-dependent chemical potential shift in the superconductor. As a result we obtain a non-monotonic behavior for relaxation rate as a function of temperature. Depending on the fabrication parameters for some qubits, the lowest tunneling rate of nonequilibrium quasiparticles can take place only near the onset temperature below which nonequilibrium quasiparticles dominate over equilibrium one. Our theory also indicates that such tunnelings can influence the probability of transitions in qubits through a coupling to the zero-point energy of phase fluctuations. (paper)

  10. On the Feasibility of High Speed Railway mmWave Channels in Tunnel Scenario

    Directory of Open Access Journals (Sweden)

    Guangkai Li

    2017-01-01

    Full Text Available Rail traffic is widely acknowledged as an efficient and green transportation pattern and its evolution attracts a lot of attention. However, the key point of the evolution is how to develop the railway services from traditional handling of the critical signaling applications only to high data rate applications, such as real-time videos for surveillance and entertainments. The promising method is trying to use millimeter wave which includes dozens of GHz bandwidths to bridge the high rate demand and frequency shortage. In this paper, the channel characteristics in an arched railway tunnel are investigated owing to their significance of designing reliable communication systems. Meantime, as millimeter wave suffers from higher propagation loss, directional antenna is widely accepted for designing the communication system. The specific changes that directional antenna brings to the radio channel are studied and compared to the performances of omnidirectional antenna. Note that the study is based on enhanced wide-band ray tracing tool where the electromagnetic and scattering parameters of the main materials of the tunnel are measured and fitted with predicting models.

  11. A high stability and repeatability electrochemical scanning tunneling microscope.

    Science.gov (United States)

    Xia, Zhigang; Wang, Jihao; Hou, Yubin; Lu, Qingyou

    2014-12-01

    We present a home built electrochemical scanning tunneling microscope (ECSTM) with very high stability and repeatability. Its coarse approach is driven by a closely stacked piezo motor of GeckoDrive type with four rigid clamping points, which enhances the rigidity, compactness, and stability greatly. It can give high clarity atomic resolution images without sound and vibration isolations. Its drifting rates in XY and Z directions in solution are as low as 84 pm/min and 59 pm/min, respectively. In addition, repeatable coarse approaches in solution within 2 mm travel distance show a lateral deviation less than 50 nm. The gas environment can be well controlled to lower the evaporation rate of the cell, thus reducing the contamination and elongating the measurement time. Atomically resolved SO4(2-) image on Au (111) work electrode is demonstrated to show the performance of the ECSTM.

  12. Water Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s High-Pressure Water Tunnel Facility in Pittsburgh, PA, re-creates the conditions found 3,000 meters beneath the ocean’s surface, allowing scientists to study...

  13. Dependence of the Josephson coupling of unconventional superconductors on the properties of the tunneling barrier

    International Nuclear Information System (INIS)

    Ledvij, M.; Klemm, R.A.

    1994-01-01

    The Josephson coupling between a conventional and an unconventional superconductor is investigated as a function of the properties of the tunneling barrier. A simple model is adopted for the tunneling probability and it is shown that its variation dramatically affects the I c R n product of an s-d, as opposed to an s-s junction. Based on these conclusions, experiments are proposed to probe the symmetry of the order parameter in high temperature superconductors

  14. Long-term symptomatic, functional, and work outcomes of carpal tunnel syndrome among construction workers.

    Science.gov (United States)

    Evanoff, Bradley; Gardner, Bethany T; Strickland, Jaime R; Buckner-Petty, Skye; Franzblau, Alfred; Dale, Ann Marie

    2016-05-01

    The long-term outcomes of carpal tunnel syndrome (CTS) including symptoms, functional status, work disability, and economic impact are unknown. We conducted a retrospective study of 234 active construction workers with medical claims for CTS and 249 workers without CTS claims; non-cases were matched on age, trade, and insurance eligibility. We conducted telephone interviews with cases and non-cases and collected administrative data on work hours. Compared to non-cases, CTS cases were more likely to report recurrent hand symptoms, decreased work productivity/quality, decreased performance of physical work demands, and greater functional limitations. Surgical cases showed larger improvements on multiple outcomes than non-surgical cases. Minimal differences in paid work hours were seen between cases and non-cases in the years preceding and following CTS claims. Persistent symptoms and functional impairments were present several years after CTS diagnosis. Long-term functional limitations shown by this and other studies indicate the need for improved prevention and treatment. © 2016 Wiley Periodicals, Inc.

  15. Tunneling density of states as a function of thickness in superconductor/ strong ferromagnet bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Reymond, S.

    2010-04-29

    We have made an experimental study of the tunneling density of states (DOS) in strong ferromagnetic thin films (CoFe) in proximity with a thick superconducting film (Nb) as a function of d{sub F}, the ferromagnetic thickness. Remarkably, we find that as d{sub F} increases, the superconducting DOS exhibits a scaling behavior in which the deviations from the normal-state conductance have a universal shape that decreases exponentially in amplitude with characteristic length d* {approx} 0.4 nm. We do not see oscillations in the DOS as a function of d{sub F}, as expected from predictions based on the Usadel equations, although an oscillation in T{sub c}(d{sub F}) has been seen in the same materials.

  16. Tunneling conductance oscillations in spin-orbit coupled metal-insulator-superconductor junctions

    Science.gov (United States)

    Kapri, Priyadarshini; Basu, Saurabh

    2018-01-01

    The tunneling conductance for a device consisting of a metal-insulator-superconductor (MIS) junction is studied in presence of Rashba spin-orbit coupling (RSOC) via an extended Blonder-Tinkham-Klapwijk formalism. We find that the tunneling conductance as a function of an effective barrier potential that defines the insulating layer and lies intermediate to the metallic and superconducting electrodes, displays an oscillatory behavior. The tunneling conductance shows high sensitivity to the RSOC for certain ranges of this potential, while it is insensitive to the RSOC for others. Additionally, when the period of oscillations is an odd multiple of a certain value of the effective potential, the conductance spectrum as a function of the biasing energy demonstrates a contrasting trend with RSOC, compared to when it is not an odd multiple. The explanations for the observation can be found in terms of a competition between the normal and Andreev reflections. Similar oscillatory behavior of the conductance spectrum is also seen for other superconducting pairing symmetries, thereby emphasizing that the insulating layer plays a decisive role in the conductance oscillations of a MIS junction. For a tunable Rashba coupling, the current flowing through the junction can be controlled with precision.

  17. Monitoring pilot projects on bored tunnelling : The Second Heinenoord Tunnel and the Botlek Rail Tunnel

    NARCIS (Netherlands)

    Bakker, K.J.; De Boer, F.; Admiraal, J.B.M.; Van Jaarsveld, E.P.

    1999-01-01

    Two pilot projects for bored tunnelling in soft soil have been undertaken in the Netherlands. The monitoring was commissioned under the authority of the Centre for Underground Construction (COB). A description of the research related to the Second Heinenoord Tunnel and the Botlek Rail Tunnel will be

  18. A Top Pilot Tunnel Preconditioning Method for the Prevention of Extremely Intense Rockbursts in Deep Tunnels Excavated by TBMs

    Science.gov (United States)

    Zhang, Chuanqing; Feng, Xiating; Zhou, Hui; Qiu, Shili; Wu, Wenping

    2012-05-01

    The headrace tunnels at the Jinping II Hydropower Station cross the Jinping Mountain with a maximum overburden depth of 2,525 m, where 80% of the strata along the tunnels consist of marble. A number of extremely intense rockbursts occurred during the excavation of the auxiliary tunnels and the drainage tunnel. In particular, a tunnel boring machine (TBM) was destroyed by an extremely intense rockburst in a 7.2-m-diameter drainage tunnel. Two of the four subsequent 12.4-m-diameter headrace tunnels will be excavated with larger size TBMs, where a high risk of extremely intense rockbursts exists. Herein, a top pilot tunnel preconditioning method is proposed to minimize this risk, in which a drilling and blasting method is first recommended for the top pilot tunnel excavation and support, and then the TBM excavation of the main tunnel is conducted. In order to evaluate the mechanical effectiveness of this method, numerical simulation analyses using the failure approaching index, energy release rate, and excess shear stress indices are carried out. Its construction feasibility is discussed as well. Moreover, a microseismic monitoring technique is used in the experimental tunnel section for the real-time monitoring of the microseismic activities of the rock mass in TBM excavation and for assessing the effect of the top pilot tunnel excavation in reducing the risk of rockbursts. This method is applied to two tunnel sections prone to extremely intense rockbursts and leads to a reduction in the risk of rockbursts in TBM excavation.

  19. Countermeasures for Reducing Unsteady Aerodynamic Force Acting on High-Speed Train in Tunnel by Use of Modifications of Train Shapes

    Science.gov (United States)

    Suzuki, Masahiro; Nakade, Koji; Ido, Atsushi

    As the maximum speed of high-speed trains increases, flow-induced vibration of trains in tunnels has become a subject of discussion in Japan. In this paper, we report the result of a study on use of modifications of train shapes as a countermeasure for reducing an unsteady aerodynamic force by on-track tests and a wind tunnel test. First, we conduct a statistical analysis of on-track test data to identify exterior parts of a train which cause the unsteady aerodynamic force. Next, we carry out a wind tunnel test to measure the unsteady aerodynamic force acting on a train in a tunnel and examined train shapes with a particular emphasis on the exterior parts identified by the statistical analysis. The wind tunnel test shows that fins under the car body are effective in reducing the unsteady aerodynamic force. Finally, we test the fins by an on-track test and confirmed its effectiveness.

  20. Scaling Projections on Spin-Transfer Torque Magnetic Tunnel Junctions

    Science.gov (United States)

    Das, Debasis; Tulapurkar, Ashwin; Muralidharan, Bhaskaran

    2018-02-01

    We investigate scaling of technologically relevant magnetic tunnel junction devices in the trilayer and pentalayer configurations by varying the cross-sectional area along the transverse direction using the non-equilibrium Green's function spin transport formalism. We study the geometry dependence by considering square and circular cross-sections. As the transverse dimension in each case reduces, we demonstrate that the transverse mode energy profile plays a major role in the resistance-area product. Both types of devices show constant tunnel magnetoresistance at larger cross-sectional areas but achieve ultra-high magnetoresistance at small cross-sectional areas, while maintaining low resistance-area products. We notice that although the critical switching voltage for switching the magnetization of the free layer nanomagnet in the trilayer case remains constant at larger areas, it needs more energy to switch at smaller areas. In the pentalayer case, we observe an oscillatory behavior at smaller areas as a result of double barrier tunneling. We also describe how switching characteristics of both kinds of devices are affected by the scaling.

  1. "We Actually Saw Atoms with Our Own Eyes": Conceptions and Convictions in Using the Scanning Tunneling Microscope in Junior High School

    Science.gov (United States)

    Margel, Hannah; Eylon, Bat-Sheva; Scherz, Zahava

    2004-01-01

    The feasibility and the potential contribution of the scanning tunneling microscopy (STM) in junior high school (JHS) as an instructional tool for learning the particulate nature of matter is described. The use and power of new technologies can probably be demonstrated by the scanning tunneling microscopy (STM).

  2. Tunnel sealing: concept and feasibility evidence

    International Nuclear Information System (INIS)

    Brenner, R.P.; Eppinger, G.; Mettler, K.

    1991-01-01

    This report discusses first the aim and purpose of tunnel seals as well as the requirements which should be satisfied. The basic seal concept is a zoned plug consisting of key zones and intermediate zones. The key zones act as barrier elements and will be placed into sections of competent and sound rock. The main function of the intermediate zones is that of a support and the requirements for sealing efficiency may be somewhat relaxed. Three sealing concepts have been devised for both the key zones and the intermediate zones. They differ in the materials used for the seal and in the placement method. For the key zones highly compacted bentonite is recommended, but also cement-based materials, such as standard concrete or prepact concrete are considered suitable. For the intermediate zones, the use of pumped concrete with subsequent grouting of the roof zone is favourable, but also a combination of concrete with a sand/gravel mixture or with properly compacted excavation material is feasible. The concepts introduced can all be realized by conventional tunnelling methods. Excavation by tunnel boring machine is most advantageous as it minimizes disturbance of the rock caused by the cavity-forming process. By employing simple material models, it can be shown that the depth of the excavation disturbed zone can be minimized if support of the tunnel is provided as early as possible after excavation. The cutting of a groove in the tunnel wall along the key zone can further contribute to reduce the depth of the excavation-disturbed zone. In order to ensure the quality of a seal, the quantities of the materials used can be checked and the work procedures to place the seal can be supervised. For the latter the experiences obtained from a large-scale test should be available. Finally, it is also shown that when considering safety analytical aspects, the proposed sealing concepts represent adequate solutions in spite of the probably increased permeability in the excavation

  3. Seismic Design of a Single Bored Tunnel: Longitudinal Deformations and Seismic Joints

    Science.gov (United States)

    Oh, J.; Moon, T.

    2018-03-01

    The large diameter bored tunnel passing through rock and alluvial deposits subjected to seismic loading is analyzed for estimating longitudinal deformations and member forces on the segmental tunnel liners. The project site has challenges including high hydrostatic pressure, variable ground profile and high seismic loading. To ensure the safety of segmental tunnel liner from the seismic demands, the performance-based two-level design earthquake approach, Functional Evaluation Earthquake and Safety Evaluation Earthquake, has been adopted. The longitudinal tunnel and ground response seismic analyses are performed using a three-dimensional quasi-static linear elastic and nonlinear elastic discrete beam-spring elements to represent segmental liner and ground spring, respectively. Three components (longitudinal, transverse and vertical) of free-field ground displacement-time histories evaluated from site response analyses considering wave passage effects have been applied at the end support of the strain-compatible ground springs. The result of the longitudinal seismic analyses suggests that seismic joint for the mitigation measure requiring the design deflection capacity of 5-7.5 cm is to be furnished at the transition zone between hard and soft ground condition where the maximum member forces on the segmental liner (i.e., axial, shear forces and bending moments) are induced. The paper illustrates how detailed numerical analyses can be practically applied to evaluate the axial and curvature deformations along the tunnel alignment under difficult ground conditions and to provide the seismic joints at proper locations to effectively reduce the seismic demands below the allowable levels.

  4. Fabrication of fully epitaxial magnetic tunnel junctions with a Co2MnSi thin film and a MgO tunnel barrier

    International Nuclear Information System (INIS)

    Kijima, H.; Ishikawa, T.; Marukame, T.; Matsuda, K.-I.; Uemura, T.; Yamamoto, M.

    2007-01-01

    Fully epitaxial magnetic tunnel junctions (MTJs) were fabricated with a Co-based full-Heusler alloy Co 2 MnSi (CMS) thin film having the ordered L2 1 structure as a lower electrode, a MgO tunnel barrier, and a Co 50 Fe 50 upper electrode. Reflection high-energy electron diffraction patterns observed in situ for each layer in the MTJ layer structure during fabrication clearly indicated that all layers of the CMS lower electrode, MgO tunnel barrier, and Co 50 Fe 50 upper electrode grew epitaxially. The microfabricated fully epitaxial CMS/MgO/Co 50 Fe 50 MTJs demonstrated relatively high tunnel magnetoresistance ratios of 90% at room temperature and 192% at 4.2 K

  5. Concept development for HLW disposal research tunnel

    International Nuclear Information System (INIS)

    Queon, S. K.; Kim, K. S.; Park, J. H.; Jeo, W. J.; Han, P. S.

    2003-01-01

    In order to dispose high-level radioactive waste in a geological formation, it is necessary to assess the safety of a disposal concept by excavating a research tunnel in the same geological formation as the host rock mass. The design concept of a research tunnel depends on the actual disposal concept, repository geometry, experiments to be carried at the tunnel, and geological conditions. In this study, analysis of the characteristics of the disposal research tunnel, which is planned to be constructed at KAERI site, calculation of the influence of basting impact on neighbor facilities, and computer simuation for mechanical stability analysis using a three-dimensional code, FLAC3D, had been carried out to develop the design concept of the research tunnel

  6. Tunneling and Speedup in Quantum Optimization for Permutation-Symmetric Problems

    Directory of Open Access Journals (Sweden)

    Siddharth Muthukrishnan

    2016-07-01

    Full Text Available Tunneling is often claimed to be the key mechanism underlying possible speedups in quantum optimization via quantum annealing (QA, especially for problems featuring a cost function with tall and thin barriers. We present and analyze several counterexamples from the class of perturbed Hamming weight optimization problems with qubit permutation symmetry. We first show that, for these problems, the adiabatic dynamics that make tunneling possible should be understood not in terms of the cost function but rather the semiclassical potential arising from the spin-coherent path-integral formalism. We then provide an example where the shape of the barrier in the final cost function is short and wide, which might suggest no quantum advantage for QA, yet where tunneling renders QA superior to simulated annealing in the adiabatic regime. However, the adiabatic dynamics turn out not be optimal. Instead, an evolution involving a sequence of diabatic transitions through many avoided-level crossings, involving no tunneling, is optimal and outperforms adiabatic QA. We show that this phenomenon of speedup by diabatic transitions is not unique to this example, and we provide an example where it provides an exponential speedup over adiabatic QA. In yet another twist, we show that a classical algorithm, spin-vector dynamics, is at least as efficient as diabatic QA. Finally, in a different example with a convex cost function, the diabatic transitions result in a speedup relative to both adiabatic QA with tunneling and classical spin-vector dynamics.

  7. High current density 2D/3D MoS2/GaN Esaki tunnel diodes

    Science.gov (United States)

    Krishnamoorthy, Sriram; Lee, Edwin W.; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D.; Johnson, Jared M.; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth

    2016-10-01

    The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at -1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.

  8. Mechanical stability of repository tunnels and factors to be considered for determining tunnel spacing

    International Nuclear Information System (INIS)

    Takeuchi, Kunifumi

    1994-01-01

    Kristallin-1 organized by Nagra is currently advanced as a synthetic project regarding a high level radioactive waste (HLW) repository in Switzerland. Its host rock is granitic rocks, and the potential siting area is located in northern Switzerland. The objective of this project is to demonstrate the long term safety of a HLW repository under more site-specific conditions than before. As the detailed geological data were investigated, the average size of undisturbed crystalline rock blocks is limited horizontally to about several hundred meter, therefore, the HLW repository area must be divided into several panels to avoid fracture zones. It is necessary to make tunnel spacing as small as possible for the purpose of reasonably designing the entire layout of repository tunnels. The main factors to be considered for determining repository tunnel spacing are listed. Rock mass modeling, rock mass material properties, the analysis model and parameters, the numerical analysis of repository tunnel stability and its main conclusion are reported. The numerical analysis of the temperature distribution in near field was carried out. Tunnel spacing should be set more than 20 m in view of the maximum temperature. (K.I.)

  9. Simultaneously measured signals in scanning probe microscopy with a needle sensor: frequency shift and tunneling current.

    Science.gov (United States)

    Morawski, Ireneusz; Voigtländer, Bert

    2010-03-01

    We present combined noncontact scanning force microscopy and tunneling current images of a platinum(111) surface obtained by means of a 1 MHz quartz needle sensor. The low-frequency circuit of the tunneling current was combined with a high-frequency signal of the quartz resonator enabling full electrical operation of the sensor. The frequency shift and the tunneling current were detected simultaneously, while the feedback control loop of the topography signal was fed using one of them. In both cases, the free signal that was not connected to the feedback loop reveals proportional-integral controller errorlike behavior, which is governed by the time derivative of the topography signal. A procedure is proposed for determining the mechanical oscillation amplitude by utilizing the tunneling current also including the average tip-sample work function.

  10. A high stability and repeatability electrochemical scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhigang; Wang, Jihao; Lu, Qingyou, E-mail: qxl@ustc.edu.cn [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hou, Yubin [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-12-15

    We present a home built electrochemical scanning tunneling microscope (ECSTM) with very high stability and repeatability. Its coarse approach is driven by a closely stacked piezo motor of GeckoDrive type with four rigid clamping points, which enhances the rigidity, compactness, and stability greatly. It can give high clarity atomic resolution images without sound and vibration isolations. Its drifting rates in XY and Z directions in solution are as low as 84 pm/min and 59 pm/min, respectively. In addition, repeatable coarse approaches in solution within 2 mm travel distance show a lateral deviation less than 50 nm. The gas environment can be well controlled to lower the evaporation rate of the cell, thus reducing the contamination and elongating the measurement time. Atomically resolved SO{sub 4}{sup 2−} image on Au (111) work electrode is demonstrated to show the performance of the ECSTM.

  11. [The Performance Analysis for Lighting Sources in Highway Tunnel Based on Visual Function].

    Science.gov (United States)

    Yang, Yong; Han, Wen-yuan; Yan, Ming; Jiang, Hai-feng; Zhu, Li-wei

    2015-10-01

    Under the condition of mesopic vision, the spectral luminous efficiency function is shown as a series of curves. Its peak wavelength and intensity are affected by light spectrum, background brightness and other aspects. The impact of light source to lighting visibility could not be carried out via a single optical parametric characterization. The reaction time of visual cognition is regard as evaluating indexes in this experiment. Under the condition of different speed and luminous environment, testing visual cognition based on vision function method. The light sources include high pressure sodium, electrodeless fluorescent lamp and white LED with three kinds of color temperature (the range of color temperature is from 1 958 to 5 537 K). The background brightness value is used for basic section of highway tunnel illumination and general outdoor illumination, its range is between 1 and 5 cd x m(-)2. All values are in the scope of mesopic vision. Test results show that: under the same condition of speed and luminance, the reaction time of visual cognition that corresponding to high color temperature of light source is shorter than it corresponding to low color temperature; the reaction time corresponding to visual target in high speed is shorter than it in low speed. At the end moment, however, the visual angle of target in observer's visual field that corresponding to low speed was larger than it corresponding to high speed. Based on MOVE model, calculating the equivalent luminance of human mesopic vision, which is on condition of different emission spectrum and background brightness that formed by test lighting sources. Compared with photopic vision result, the standard deviation (CV) of time-reaction curve corresponding to equivalent brightness of mesopic vision is smaller. Under the condition of mesopic vision, the discrepancy between equivalent brightness of different lighting source and photopic vision, that is one of the main reasons for causing the

  12. Tunnelling instability via perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Graffi, S. (Bologna Univ. (Italy). Dip. di Matematica); Grecchi, V. (Moderna Univ. (Italy). Dip. di Matematica); Jona-Lasinio, G. (Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies)

    1984-10-21

    The semiclassical limit of low lying states in a multiwell potential is studied by rigorous perturbative techniques. In particular tunnelling instability and localisation of wave functions is obtained in a simple way under small deformations of symmetric potentials.

  13. Investigating superconductivity by tunneling spectroscopy using oxide heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fillis-Tsirakis, Evangelos

    2017-06-19

    Electronic systems which are as highly-functional as the LaAlO{sub 3}/SrTiO{sub 3} interface are rare, as the emergent high-mobility two-dimensional electron system (2DES) exhibits ferromagnetism, incipient ferroelectricity, piezoelectricity, Rashba spin-orbit coupling, superconductivity and high electronic correlations; properties that may also coexist with one another. The possibility of tuning its electrical properties by external parameters such as a gate-field, temperature, pressure and magnetic-field makes the LaAlO{sub 3}/SrTiO{sub 3}-2DES the scientific analogue of a multi-tool. LaAlO{sub 3}/SrTiO{sub 3} samples were grown by pulsed-laser-deposition. Using this system, planar tunnel junctions were constructed that allowed for tunneling spectroscopy measurements. The resemblance of the LaAlO{sub 3}/SrTiO{sub 3} 2DES to the high-temperature superconductors undoubtedly adds value to the findings of this work. Further investigation of its nature has revealed that by depleting from the optimally doped region, the electron-phonon coupling strength increases and accounts for the persisting superconducting behavior within the macroscopically resistive regime at very low doping. Transport measurements at T = 50 mK were performed while tuning the carrier concentration and sweeping magnetic fields in the perpendicular-to-interface orientation, to investigate the superconductor-to-insulator transition by carrier depletion. The transition in LaAlO{sub 3}/SrTiO{sub 3}, induced by tuning the carrier concentration, has thus been characterized as a superconductor-metal-insulator transition (SMIT). One aim of these measurements was to investigate the possible existence of the ''superinsulator'' phase, identified by several authors in thin metallic films. Such a phase has not been observed during transport measurements at the LaAlO{sub 3}/SrTiO{sub 3} 2DES. The nature of superconductivity in the entire phase diagram and particularly across the SMIT has

  14. Investigating superconductivity by tunneling spectroscopy using oxide heterostructures

    International Nuclear Information System (INIS)

    Fillis-Tsirakis, Evangelos

    2017-01-01

    Electronic systems which are as highly-functional as the LaAlO 3 /SrTiO 3 interface are rare, as the emergent high-mobility two-dimensional electron system (2DES) exhibits ferromagnetism, incipient ferroelectricity, piezoelectricity, Rashba spin-orbit coupling, superconductivity and high electronic correlations; properties that may also coexist with one another. The possibility of tuning its electrical properties by external parameters such as a gate-field, temperature, pressure and magnetic-field makes the LaAlO 3 /SrTiO 3 -2DES the scientific analogue of a multi-tool. LaAlO 3 /SrTiO 3 samples were grown by pulsed-laser-deposition. Using this system, planar tunnel junctions were constructed that allowed for tunneling spectroscopy measurements. The resemblance of the LaAlO 3 /SrTiO 3 2DES to the high-temperature superconductors undoubtedly adds value to the findings of this work. Further investigation of its nature has revealed that by depleting from the optimally doped region, the electron-phonon coupling strength increases and accounts for the persisting superconducting behavior within the macroscopically resistive regime at very low doping. Transport measurements at T = 50 mK were performed while tuning the carrier concentration and sweeping magnetic fields in the perpendicular-to-interface orientation, to investigate the superconductor-to-insulator transition by carrier depletion. The transition in LaAlO 3 /SrTiO 3 , induced by tuning the carrier concentration, has thus been characterized as a superconductor-metal-insulator transition (SMIT). One aim of these measurements was to investigate the possible existence of the ''superinsulator'' phase, identified by several authors in thin metallic films. Such a phase has not been observed during transport measurements at the LaAlO 3 /SrTiO 3 2DES. The nature of superconductivity in the entire phase diagram and particularly across the SMIT has been investigated by magnetic-field-dependent tunneling

  15. Understanding quantum tunneling using diffusion Monte Carlo simulations

    Science.gov (United States)

    Inack, E. M.; Giudici, G.; Parolini, T.; Santoro, G.; Pilati, S.

    2018-03-01

    In simple ferromagnetic quantum Ising models characterized by an effective double-well energy landscape the characteristic tunneling time of path-integral Monte Carlo (PIMC) simulations has been shown to scale as the incoherent quantum-tunneling time, i.e., as 1 /Δ2 , where Δ is the tunneling gap. Since incoherent quantum tunneling is employed by quantum annealers (QAs) to solve optimization problems, this result suggests that there is no quantum advantage in using QAs with respect to quantum Monte Carlo (QMC) simulations. A counterexample is the recently introduced shamrock model (Andriyash and Amin, arXiv:1703.09277), where topological obstructions cause an exponential slowdown of the PIMC tunneling dynamics with respect to incoherent quantum tunneling, leaving open the possibility for potential quantum speedup, even for stoquastic models. In this work we investigate the tunneling time of projective QMC simulations based on the diffusion Monte Carlo (DMC) algorithm without guiding functions, showing that it scales as 1 /Δ , i.e., even more favorably than the incoherent quantum-tunneling time, both in a simple ferromagnetic system and in the more challenging shamrock model. However, a careful comparison between the DMC ground-state energies and the exact solution available for the transverse-field Ising chain indicates an exponential scaling of the computational cost required to keep a fixed relative error as the system size increases.

  16. Projection operator method for collective tunneling transitions

    International Nuclear Information System (INIS)

    Kohmura, Toshitake; Ohta, Hirofumi; Hashimoto, Yukio; Maruyama, Masahiro

    2002-01-01

    Collective tunneling transitions take place in the case that a system has two nearly degenerate ground states with a slight energy splitting, which provides the time scale of the tunneling. The Liouville equation determines the evolution of the density matrix, while the Schroedinger equation determines that of a state. The Liouville equation seems to be more powerful for calculating accurately the energy splitting of two nearly degenerate eigenstates. However, no method to exactly solve the Liouville eigenvalue equation has been established. The usual projection operator method for the Liouville equation is not feasible. We analytically solve the Liouville evolution equation for nuclear collective tunneling from one Hartree minimum to another, proposing a simple and solvable model Hamiltonian for the transition. We derive an analytical expression for the splitting of energy eigenvalues from a spectral function of the Liouville evolution using a half-projected operator method. A full-order analytical expression for the energy splitting is obtained. We define the collective tunneling path of a microscopic Hamiltonian for collective tunneling, projecting the nuclear ground states onto n-particle n-hole state spaces. It is argued that the collective tunneling path sector of a microscopic Hamiltonian can be transformed into the present solvable model Hamiltonian. (author)

  17. Spin transport in spin filtering magnetic tunneling junctions.

    Science.gov (United States)

    Li, Yun; Lee, Eok Kyun

    2007-11-01

    Taking into account spin-orbit coupling and s-d interaction, we investigate spin transport properties of the magnetic tunneling junctions with spin filtering barrier using Landauer-Büttiker formalism implemented with the recursive algorithm to calculate the real-space Green function. We predict completely different bias dependence of negative tunnel magnetoresistance (TMR) between the systems composed of nonmagnetic electrode (NM)/ferromagnetic barrier (FB)/ferromagnet (FM) and NM/FB/FM/NM spin filtering tunnel junctions (SFTJs). Analyses of the results provide us possible ways of designing the systems which modulate the TMR in the negative magnetoresistance regime.

  18. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase

    Science.gov (United States)

    Kohen, Amnon; Cannio, Raffaele; Bartolucci, Simonetta; Klinman, Judith P.; Klinman, Judith P.

    1999-06-01

    Biological catalysts (enzymes) speed up reactions by many orders of magnitude using fundamental physical processes to increase chemical reactivity. Hydrogen tunnelling has increasingly been found to contribute to enzyme reactions at room temperature. Tunnelling is the phenomenon by which a particle transfers through a reaction barrier as a result of its wave-like property. In reactions involving small molecules, the relative importance of tunnelling increases as the temperature is reduced. We have now investigated whether hydrogen tunnelling occurs at elevated temperatures in a biological system that functions physiologically under such conditions. Using a thermophilic alcohol dehydrogenase (ADH), we find that hydrogen tunnelling makes a significant contribution at 65°C this is analogous to previous findings with mesophilic ADH at 25°C ( ref. 5). Contrary to predictions for tunnelling through a rigid barrier, the tunnelling with the thermophilic ADH decreases at and below room temperature. These findings provide experimental evidence for a role of thermally excited enzyme fluctuations in modulating enzyme-catalysed bond cleavage.

  19. Tunneling in cosmology and isothermal inflation

    International Nuclear Information System (INIS)

    Brout, R.; Spindel, P.

    1991-01-01

    The wave function for the universe, as proposed by Hartle and Hawking, experiences tunneling for small values of the radius of the universe. This induces thermal effects and so a hot big bang. We first give a detailed analysis of the observer accelerating in Minkowski space in terms of the tunneling of his wave function beyond his turning point. Applied to cosmology one finds a temperature at the big bang equal to the Gibbons-Hawking value. The residual thermal effects which result in an isothermal inflationary expansion give rise to a renormalized self-consistently determined Hubble constant (and hence Gibbons-Hawking temperature) through the trace anomaly. A thermodynamic interpretation is given. These results militate against phase transitions as a motor for inflation. (orig.)

  20. Quantum tunneling of massive flux lines in a high-T{sub c} superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, M.W.; Achar, B.N.N. [Memphis Univ., TN (United States)

    1999-02-01

    We have investigated the quantum tunneling of damped flux lines of finite mass at T = 0 by extending our previous study of tunneling around T{sub 0}, the transition temperature. In the case of a cubic pinning potential, considered here, the action could be evaluated in a closed form for a flux line of finite length. The tunneling rate reaches a finite limit at T = 0, although it is temperature dependent and exhibits a 1/T variation near T{sub 0}. (orig.) 21 refs.

  1. Pulse-burst PIV in a high-speed wind tunnel

    International Nuclear Information System (INIS)

    Beresh, Steven; Kearney, Sean; Wagner, Justin; Guildenbecher, Daniel; Henfling, John; Spillers, Russell; Pruett, Brian; Jiang, Naibo; Slipchenko, Mikhail; Mance, Jason; Roy, Sukesh

    2015-01-01

    Time-resolved particle image velocimetry (TR-PIV) has been achieved in a high-speed wind tunnel, providing velocity field movies of compressible turbulence events. The requirements of high-speed flows demand greater energy at faster pulse rates than possible with the TR-PIV systems developed for low-speed flows. This has been realized using a pulse-burst laser to obtain movies at up to 50 kHz, with higher speeds possible at the cost of spatial resolution. The constraints imposed by use of a pulse-burst laser are limited burst duration of 10.2 ms and a low duty cycle for data acquisition. Pulse-burst PIV has been demonstrated in a supersonic jet exhausting into a transonic crossflow and in transonic flow over a rectangular cavity. The velocity field sequences reveal the passage of turbulent structures and can be used to find velocity power spectra at every point in the field, providing spatial distributions of acoustic modes. The present work represents the first use of TR-PIV in a high-speed ground-test facility. (paper)

  2. Tunneling spectroscopy on grain boundary junctions in electron-doped high-temperature superconductors; Tunnelspektroskopie an Korngrenzenkontakten aus elektronendotierten Hochtemperatur-Supraleitern

    Energy Technology Data Exchange (ETDEWEB)

    Welter, B.

    2007-12-07

    Some methods are developed anf presented, by means of which from experimental tunnel spectra, especially on symmetric SIS contacts, informations about the properties of electrodes and tunnel barriers can be obtained. Especially a procedure for the numerical unfolding of symmetric SIS spectra is proposed. Furthermore a series of models is summarized, which can explain the linear background conductivity observed in many spectra on high-temperature superconductors. The results of resistance measurements on film bridges are presented. Especially different methods for the determination of H{sub c2}(T) respectively H{sub c2}(0) are presented and applied to the experimental data. Finally the results of the tunnel-spectroscopy measurements are shown.

  3. Growth and Yield Responses of Green Pepper (Capsicum annum L. to Manure Rates under Field and High Tunnel Conditions

    Directory of Open Access Journals (Sweden)

    Ima-obong I. DOMINIC

    2017-03-01

    Full Text Available The present study was conducted to determine growth and yield responses of green pepper to varying manure rates under field and high tunnel conditions. Experiment 1 was a pot experiment to evaluate three rates (0.5 and 10 t/ha of poultry manure (PM on green pepper production under high tunnel and open field conditions. Experiment 2 was to determine the performance of green pepper as influenced by different manure rates (0, 5 and 10 t/ha of PM, 300 kg/ha of NPK, 5 t/ha of PM + 200 kg of NPK and 10 t/ha of PM + 100 kg of NPK on the field. High tunnel produced about 3.1 fruits/plant that weighted 102.8 g, which was significantly higher than open field experiment in which 1.7 fruits/plant, with a medium weight of 32.3 g were noted. High tunnel enhanced successful production of green pepper during rainy season, whereas the open field production during the same season was near failure. Application of 10 t/ha of PM produced significantly larger fruits in the pot experiment. Good fertilizer effects on growth and yield components were recorded for the field study. Plant height, number of leaves and branches, number and weight of harvested fruit followed similar trend in 5 and 10 t/ha of PM which gave statistically similar results, and provided the best performance during the experiment. Application of 5 t/ha of PM produced the highest total fruits yield.

  4. Band-to-band tunneling in Γ valley for Ge source lateral tunnel field effect transistor: Thickness scaling

    Science.gov (United States)

    Jain, Prateek; Rastogi, Priyank; Yadav, Chandan; Agarwal, Amit; Chauhan, Yogesh Singh

    2017-07-01

    The direct and indirect valleys in Germanium (Ge) are separated by a very small offset, which opens up the prospect of direct tunneling in the Γ valley of an extended Ge source tunnel field effect transistor (TFET). We explore the impact of thickness scaling of extended Ge source lateral TFET on the band to band tunneling (BTBT) current. The Ge source is extended inside the gate by 2 nm to confine the tunneling in Ge only. We observe that as the thickness is scaled, the band alignment at the Si/Ge heterojunction changes significantly, which results in an increase in Ge to Si BTBT current. Based on density functional calculations, we first obtain the band structure parameters (bandgap, effective masses, etc.) for the Ge and Si slabs of varying thickness, and these are then used to obtain the thickness dependent Kane's BTBT tunneling parameters. We find that electrostatics improves as the thickness is reduced in the ultra-thin Ge film ( ≤ 10 nm). The ON current degrades as we scale down in thickness; however, the subthreshold slope ( S S AVG ) improves remarkably with thickness scaling due to subsurface BTBT. We predict that 8 nm thin devices offer the best option for optimized ON current and S S AVG .

  5. Quantum-limited detection of millimeter waves using superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Mears, C.A.

    1991-09-01

    The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit by studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 ± 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker's theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs

  6. Presentation of Austrians recommended dispersion model for tunnel portals

    Energy Technology Data Exchange (ETDEWEB)

    Oettl, D.; Sturm, P.; Almbauer, R. [Inst. for Internal Combustion Engines and Thermodynamics, Graz Univ. of Technology (Austria)

    2004-07-01

    Street tunnels in cities are often suggested as solution to avoid daily congestions but also to prevent residential areas from high noise and air pollution emissions. In case of longitudinal ventilated tunnels high pollution levels may occur in the vicinity of the portals. The dispersion of pollutants from tunnel portals is considered to differ significantly from those of other sources, such as line or point sources. To the best of the authors knowledge, there exist currently two distinct dispersion models, which are especially designed to treat dispersion from tunnel portals. Okamoto et al proposed a diagnostic wind field model, where the dispersion is modelled using a Taylor-Galerkin-Forester filter method. Oettl et al. developed a Lagrangian-type model (GRAL TM 3.5=Graz Lagrangian model Tunnel Module version 3.5), which is briefly described in the next section. (orig.)

  7. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.; Anane, A.; Petroff, F.; Fert, A.; Dlubak, B.; Seneor, P. [Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau 91767 (France); Caneva, S.; Martin, M.-B.; Weatherup, R. S.; Kidambi, P. R.; Robertson, J.; Hofmann, S. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Xavier, S. [Thales Research and Technology, 1 avenue Augustin Fresnel, Palaiseau 91767 (France)

    2016-03-07

    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  8. Variability in ACL tunnel placement: observational clinical study of surgeon ACL tunnel variability.

    Science.gov (United States)

    Wolf, Brian R; Ramme, Austin J; Wright, Rick W; Brophy, Robert H; McCarty, Eric C; Vidal, Armando R; Parker, Richard D; Andrish, Jack T; Amendola, Annunziato

    2013-06-01

    Multicenter and multisurgeon cohort studies on anterior cruciate ligament (ACL) reconstruction are becoming more common. Minimal information exists on intersurgeon and intrasurgeon variability in ACL tunnel placement. Purpose/ The purpose of this study was to analyze intersurgeon and intrasurgeon variability in ACL tunnel placement in a series of The Multicenter Orthopaedic Outcomes Network (MOON) ACL reconstruction patients and in a clinical cohort of ACL reconstruction patients. The hypothesis was that there would be minimal variability between surgeons in ACL tunnel placement. Cross-sectional study; Level of evidence, 3. Seventy-eight patients who underwent ACL reconstruction by 8 surgeons had postoperative imaging with computed tomography, and ACL tunnel location and angulation were analyzed using 3-dimensional surface processing and measurement. Intersurgeon and intrasurgeon variability in ACL tunnel placement was analyzed. For intersurgeon variability, the range in mean ACL femoral tunnel depth between surgeons was 22%. For femoral tunnel height, there was a 19% range. Tibial tunnel location from anterior to posterior on the plateau had a 16% range in mean results. There was only a small range of 4% for mean tibial tunnel location from the medial to lateral dimension. For intrasurgeon variability, femoral tunnel depth demonstrated the largest ranges, and tibial tunnel location from medial to lateral on the plateau demonstrated the least variability. Overall, surgeons were relatively consistent within their own cases. Using applied measurement criteria, 85% of femoral tunnels and 90% of tibial tunnels fell within applied literature-based guidelines. Ninety-one percent of the axes of the femoral tunnels fell within the boundaries of the femoral footprint. The data demonstrate that surgeons performing ACL reconstructions are relatively consistent between each other. There is, however, variability of average tunnel placement up to 22% of mean condylar depth

  9. Comparison of Electron Transmittance and Tunneling Current through a Trapezoidal Potential Barrier with Spin Polarization Consideration by using Analytical and Numerical Approaches

    Science.gov (United States)

    Nabila, Ezra; Noor, Fatimah A.; Khairurrijal

    2017-07-01

    In this study, we report an analytical calculation of electron transmittance and polarized tunneling current in a single barrier heterostructure of a metal-GaSb-metal by considering the Dresselhaus spin orbit effect. Exponential function, WKB method and Airy function were used in calculating the electron transmittance and tunneling current. A Transfer Matrix Method, as a numerical method, was utilized as the benchmark to evaluate the analytical calculation. It was found that the transmittances calculated under exponential function and Airy function is the same as that calculated under TMM method at low electron energy. However, at high electron energy only the transmittance calculated under Airy function approach is the same as that calculated under TMM method. It was also shown that the transmittances both of spin-up and spin-down conditions increase as the electron energy increases for low energies. Furthermore, the tunneling current decreases with increasing the barrier width.

  10. Intrinsic Tunneling in Phase Separated Manganites

    Science.gov (United States)

    Singh-Bhalla, G.; Selcuk, S.; Dhakal, T.; Biswas, A.; Hebard, A. F.

    2009-02-01

    We present evidence of direct electron tunneling across intrinsic insulating regions in submicrometer wide bridges of the phase-separated ferromagnet (La,Pr,Ca)MnO3. Upon cooling below the Curie temperature, a predominantly ferromagnetic supercooled state persists where tunneling across the intrinsic tunnel barriers (ITBs) results in metastable, temperature-independent, high-resistance plateaus over a large range of temperatures. Upon application of a magnetic field, our data reveal that the ITBs are extinguished resulting in sharp, colossal, low-field resistance drops. Our results compare well to theoretical predictions of magnetic domain walls coinciding with the intrinsic insulating phase.

  11. Spin tunnelling in mesoscopic systems

    Science.gov (United States)

    Garg, Anupam

    2001-02-01

    We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic field, vanishing completely at special points in the space of magnetic fields, known as diabolical points. This phenomena is explained in terms of two approaches, one based on spin-coherent-state path integrals, and the other on a generalization of the phase integral (or WKB) method to difference equations. Explicit formulas for the diabolical points are obtained for a model Hamiltonian.

  12. High-resolution MR imaging of the carpal tunnel and the wrist. Application of a 5-cm surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, J.; Bleschkowski, A.; Tempka, A.; Felix, R. [Medical Faculty of the Humboldt Univ., Berlin (Germany). Dept. of Radiology

    2000-07-01

    In order to make a comparative analysis of transversal tomograms obtained by high-resolution MR imaging with frozen cross-sections of an anatomical forearm specimen, twenty-two healthy volunteers were also examined using the same coil system to test for a range of possible clinical applications and for the depiction of morphological and morphometrical values of normal anatomy in vivo. MR images of the carpal tunnel of 22 healthy volunteers were obtained with a 1.5-T whole-body system with a 5-cm surface coil. Measurements were recorded with a field-of-view between 50x50 mm{sup 2} and 60x60 mm{sup 2} in a 256x256 pixel matrix for the T1 sequence. A slice thickness of 2 mm was used. The images were acquired using a T1-weighted SE sequence (TR/TE 500/38 ms) and a T2-weighted SE sequence (TR/TE 2000/70 ms). Additionally, a formalin-fixed anatomical forearm specimen was imaged for anatomic correlation. The imaged transversal cross-section levels in the specimen were subsequently freeze-sectioned. The anatomical structures of the MR findings were identified and compared with the macroscopical sections of the specimen. Based on the good depiction of details at this coil system with a pixel size in T1 of 0.195x0.195 mm, high-resolution MR imaging enabled identification of the interior structures of the carpal tunnel, as well as delineation of connective tissue. The clinical value of high-resolution MR includes the diagnosis of carpal tunnel syndrome and inflammatory disorders of the wrist. Our results support the feasibility of high-resolution MR imaging of the carpal tunnel and the wrist using small surface coils.

  13. High-resolution MR imaging of the carpal tunnel and the wrist. Application of a 5-cm surface coil

    International Nuclear Information System (INIS)

    Maurer, J.; Bleschkowski, A.; Tempka, A.; Felix, R.

    2000-01-01

    In order to make a comparative analysis of transversal tomograms obtained by high-resolution MR imaging with frozen cross-sections of an anatomical forearm specimen, twenty-two healthy volunteers were also examined using the same coil system to test for a range of possible clinical applications and for the depiction of morphological and morphometrical values of normal anatomy in vivo. MR images of the carpal tunnel of 22 healthy volunteers were obtained with a 1.5-T whole-body system with a 5-cm surface coil. Measurements were recorded with a field-of-view between 50x50 mm 2 and 60x60 mm 2 in a 256x256 pixel matrix for the T1 sequence. A slice thickness of 2 mm was used. The images were acquired using a T1-weighted SE sequence (TR/TE 500/38 ms) and a T2-weighted SE sequence (TR/TE 2000/70 ms). Additionally, a formalin-fixed anatomical forearm specimen was imaged for anatomic correlation. The imaged transversal cross-section levels in the specimen were subsequently freeze-sectioned. The anatomical structures of the MR findings were identified and compared with the macroscopical sections of the specimen. Based on the good depiction of details at this coil system with a pixel size in T1 of 0.195x0.195 mm, high-resolution MR imaging enabled identification of the interior structures of the carpal tunnel, as well as delineation of connective tissue. The clinical value of high-resolution MR includes the diagnosis of carpal tunnel syndrome and inflammatory disorders of the wrist. Our results support the feasibility of high-resolution MR imaging of the carpal tunnel and the wrist using small surface coils

  14. Single-electron charging effects and implications for tunneling measurements of the high-T/sub c/ superconductors

    International Nuclear Information System (INIS)

    Barner, J.B.; Honkanen, M.J.; Ruggiero, S.T.; Mullen, K.; Ben-Jacob, E.; Pelton, A.R.; Michigan Univ., Ann Arbor, MI

    1989-01-01

    The authors present a theory for the dynamics of two voltage-biased, ultra-small-capacitance tunnel junctions connected in series when one or more electrodes are superconducting and experiments performed on parallel arrays of such junctions. Using the semiclassical model, they find that the I-V characteristics display steps and therefore multiple peaks in dI/dV, corresponding to the time-average occupation of the interjunction region by integral numbers of electrons. The voltage at which the first step is located depends on the superconducting gap, Δ(T), and the capacitances of the junctions. The spacing between subsequent steps depends solely on the capacitances. They discuss electron tunneling results performed on metal/Al/sub 2/O/sub 3//2-10 nm-diameter metal particles/Al/sub 2/O/sub 3//metal junctions where this multiple-peak structure is observed. They present preliminary tunneling results in junctions employing Pb-particles, where they observe a shift of the peaks when the sample is cooled below T/sub c/ of Pb consistent with theory. Taken together, these results indicate that the multiple-peak structure commonly observed in tunneling data of high-T/sub c/ oxide superconductors can be explained in terms of charging effects in a material with a single superconducting gap. Finally, they discuss possible applications in a new type of transistor element

  15. Anomalous spin-dependent tunneling statistics in Fe/MgO/Fe junctions induced by disorder at the interface

    Science.gov (United States)

    Yan, Jiawei; Wang, Shizhuo; Xia, Ke; Ke, Youqi

    2018-01-01

    We present first-principles analysis of interfacial disorder effects on spin-dependent tunneling statistics in thin Fe/MgO/Fe magnetic tunnel junctions. We find that interfacial disorder scattering can significantly modulate the tunneling statistics in the minority spin of the parallel configuration (PC) while all other spin channels remain dominated by the Poissonian process. For the minority-spin channel of PC, interfacial disorder scattering favors the formation of resonant tunneling channels by lifting the limitation of symmetry conservation at low concentration, presenting an important sub-Poissonian process in PC, but is destructive to the open channels at high concentration. We find that the important modulation of tunneling statistics is independent of the type of interfacial disorder. A bimodal distribution function of transmission with disorder dependence is introduced and fits very well our first-principles results. The increase of MgO thickness can quickly change the tunneling from a sub-Poissonian to Poissonian dominated process in the minority spin of PC with disorder. Our results provide a sensitive detection method of an ultralow concentration of interfacial defects.

  16. Three-dimensional scanning force/tunneling spectroscopy at room temperature

    International Nuclear Information System (INIS)

    Sugimoto, Yoshiaki; Ueda, Keiichi; Abe, Masayuki; Morita, Seizo

    2012-01-01

    We simultaneously measured the force and tunneling current in three-dimensional (3D) space on the Si(111)-(7 × 7) surface using scanning force/tunneling microscopy at room temperature. The observables, the frequency shift and the time-averaged tunneling current were converted to the physical quantities of interest, i.e. the interaction force and the instantaneous tunneling current. Using the same tip, the local density of states (LDOS) was mapped on the same surface area at constant height by measuring the time-averaged tunneling current as a function of the bias voltage at every lateral position. LDOS images at negative sample voltages indicate that the tip apex is covered with Si atoms, which is consistent with the Si-Si covalent bonding mechanism for AFM imaging. A measurement technique for 3D force/current mapping and LDOS imaging on the equivalent surface area using the same tip was thus demonstrated. (paper)

  17. Magneto-Seebeck effect in magnetic tunnel junctions with perpendicular anisotropy

    Directory of Open Access Journals (Sweden)

    Keyu Ning

    2017-01-01

    Full Text Available As one invigorated filed of spin caloritronics combining with spin, charge and heat current, the magneto-Seebeck effect has been experimentally and theoretically studied in spin tunneling thin films and nanostructures. Here we analyze the tunnel magneto-Seebeck effect in magnetic tunnel junctions with perpendicular anisotropy (p-MTJs under various measurement temperatures. The large tunnel magneto-Seebeck (TMS ratio up to −838.8% for p-MTJs at 200 K is achieved, with Seebeck coefficient S in parallel and antiparallel states of 6.7 mV/K and 62.9 mV/K, respectively. The temperature dependence of the tunnel magneto-Seebeck can be attributed to the contributing transmission function and electron states at the interface between CoFeB electrode and MgO barrier.

  18. Polarization-engineered GaN/InGaN/GaN tunnel diodes

    International Nuclear Information System (INIS)

    Krishnamoorthy, Sriram; Nath, Digbijoy N.; Akyol, Fatih; Park, Pil Sung; Esposto, Michele; Rajan, Siddharth

    2010-01-01

    We report on the design and demonstration of polarization-engineered GaN/InGaN/GaN tunnel junction diodes with high current density and low tunneling turn-on voltage. Wentzel-Kramers-Brillouin calculations were used to model and design tunnel junctions with narrow band gap InGaN-based barrier layers. N-polar p-GaN/In 0.33 Ga 0.67 N/n-GaN heterostructure tunnel diodes were grown using molecular beam epitaxy. Efficient interband tunneling was achieved close to zero bias with a high current density of 118 A/cm 2 at a reverse bias of 1 V, reaching a maximum current density up to 9.2 kA/cm 2 . These results represent the highest current density reported in III-nitride tunnel junctions and demonstrate the potential of III-nitride tunnel devices for a broad range of optoelectronic and electronic applications.

  19. Carpal Tunnel Syndrome

    Science.gov (United States)

    ... a passing cramp? It could be carpal tunnel syndrome. The carpal tunnel is a narrow passageway of ... three times more likely to have carpal tunnel syndrome than men. Early diagnosis and treatment are important ...

  20. Theory of superconducting tunneling without the tunneling Hamiltonian

    International Nuclear Information System (INIS)

    Arnold, G.B.

    1987-01-01

    When a tunneling barrier is nearly transparent, the standard tunneling (or transfer) Hamiltonian approximation fails. The author describes the theory which is necessary for calculating the tunneling current in these cases, and illustrate it by comparing theory and experiment on superconductor/insulator/superconductor (SIS) junctions have ultra-thin tunnel barriers. This theory accurately explains the subgap structure which appears in the dynamical resistance of such SIS junctions, including many observed details which no previous theory has reproduced. The expression for the current through an SIS junction with an ultrathin barrier is given by I(t) = Re{Sigma/sub n/ J/sub n/ (omega/sub o/)e/sup in omega/o/sup t/} where omega/sub o/ = 2eV/h is the Josephson frequency, V is the bias voltage, and the J/sub n/ are voltage dependent coefficients, one for each positive or negative integer, n, and n=0. The relative sign of the terms involving cos(n omega/sub o/t) and sin(n omega/sub o/t) agrees with experiment, in contrast to previous theories of Josephson tunneling

  1. Modality planning for preventing tunnel vision in crisis management

    NARCIS (Netherlands)

    Cao, Y.; Nijholt, Antinus; Theune, Mariët; van der Sluis, Ielka; Bachvarova, Yulia; Andre, Elisabeth

    2008-01-01

    Crisis management is a time-critical task with high uncertainty and high risk. Stress and cognitive overload often result in a set of bias in crisis manager’s situation understanding and information confirming processes, known as 'tunnel vision'. Aiming at preventing tunnel vision, we propose an

  2. Quantum tunneling of Bose-Einstein condensates in optical lattices

    CERN Document Server

    Fan Wen Bin

    2003-01-01

    In quantum tunneling a particle with energy E can pass through a high potential barrier V(>E) due to the wave character of the particle. Bose-Einstein condensates can display very strong tunneling depending on the structure of the trap, which may be a double-well or optical lattices. The employed for the first time to our knowledge the periodic instanton method to investigate tunneling of Bose-Einstein condensates in optical lattices. The results show that there are two kinds of tunneling in this system, Landau-Zener tunneling between extended states of the system and Wannier-Stark tunneling between localized states of the system, and that the latter is 1000 times faster than the former. The also obtain the total decay rate for a wide range of temperature, including classical thermal activation, thermally assisted tunneling and quantum tunneling. The results agree with experimental data in references. Finally, the propose an experimental protocol to observe this new phenomenon in future experiments

  3. Hydrodynamic optical soliton tunneling

    Science.gov (United States)

    Sprenger, P.; Hoefer, M. A.; El, G. A.

    2018-03-01

    A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.

  4. Tunneling times in bianisotropic, dispersive and absorptive metamaterials

    International Nuclear Information System (INIS)

    Radosavljević, Sanja; Radovanović, Jelena; Milanović, Vitomir

    2016-01-01

    Tunneling times in complex bianisotropic materials have been examined in detail, with absorption and dispersion taken into account. Tunneling is characterized by the dwell and the phase tunneling time. In this paper, we have developed a theoretical model and derived the appropriate expressions for each of these quantities, as well as a relationship between them and the corresponding expression for the energy density. The model has been verified through numerical calculations based on experimental data. We have distinguished cases in which the phases of transmitted and incident wave match each other, and showed that for small angles of incidence, the time that the wave spends inside the barrier can be approximated as a linear function of the barrier width. The Hartman effect has been detected, although for very thick layers of metamaterial. - Highlights: • We analyze the tunneling times in bianisotropic, dispersive and absorptive metamaterials. • Conditions of zero phase tunneling time are identified for a range of frequencies of interest. • The Hartman effect has been detected for very thick barriers of metamaterial.

  5. Tunneling times in bianisotropic, dispersive and absorptive metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Radosavljević, Sanja [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia); Photonics Research Group, Ghent University – imec, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium); Radovanović, Jelena, E-mail: radovanovic@etf.bg.ac.rs [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia); Milanović, Vitomir [School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade (Serbia)

    2016-12-09

    Tunneling times in complex bianisotropic materials have been examined in detail, with absorption and dispersion taken into account. Tunneling is characterized by the dwell and the phase tunneling time. In this paper, we have developed a theoretical model and derived the appropriate expressions for each of these quantities, as well as a relationship between them and the corresponding expression for the energy density. The model has been verified through numerical calculations based on experimental data. We have distinguished cases in which the phases of transmitted and incident wave match each other, and showed that for small angles of incidence, the time that the wave spends inside the barrier can be approximated as a linear function of the barrier width. The Hartman effect has been detected, although for very thick layers of metamaterial. - Highlights: • We analyze the tunneling times in bianisotropic, dispersive and absorptive metamaterials. • Conditions of zero phase tunneling time are identified for a range of frequencies of interest. • The Hartman effect has been detected for very thick barriers of metamaterial.

  6. Combined Kinesiotaoe and Therapeutic Ultrasound in the Treatment of Carpal Tunnel Syndrome

    International Nuclear Information System (INIS)

    Mohamed, O.G.; Elhafez, H.M.; Alshatoury, H.A.; Refaat, R.

    2016-01-01

    Background : Carpal tunnel syndrome is the most common neuropathy of the upper limb and a significant contributor to hand functional impairment and disability. Hand is an Accepted November 2016 . important part of body to perform the complex daily living activities. Purpose: To find out effect of combined kinesiotape and therapeutic ultrasound in the treatment of carpal tunnel syndrome. Material and Methods :Thirty Carpal Tunnel Syndrome female patients with positive electro diagnostic findings (MMDL >4.2 ms) participated in this study, their ages ranged between 40 and 50 years. Design of study :They were divided randomly into two equal groups. Group (A) received kinesiotape applicatio n on the affected wrist for 3 days, then day off and then another three days each week for 4 weeks combined with a program of 12 sessions of continuous ultrasound, 3 sessions per week for 5 minute persession in addition nerve and tendon gliding exercise . While, Group (B) received a program of 12 sessions of continuous ultrasound, 3 sessions per week for 5 minute per session in addition tendon and nerve gliding exercise. The treatment program continued for 4 weeks. Boston carpal tunnel questionnaire and median motor distallatency, visual analogue scale and hand grip dynamometer were performed before and after the treatment program for all patients of the two groups. Results : The obtained results showed a highly statistically significant (P< 0.0001) improvement in both groups (A and B) concerning Boston carpal tunnel questionnaire , visual analogue scale and hand grip dynamometer but there was significant improvement in group (A) only concerning median motor distal latency. The improvement was highly significant (P< 0.0001) in group (A) when compared with group (B). Conclusion: It could be concluded that the use of combined kinesiotape and therapeutic ultrasound in the treatment of carpal tunnel syndrome appeared to be effective. Yet the combined effect of kinesiotape with

  7. Hoosac tunnel geothermal heat source. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-10

    The Hoosac Rail Tunnel has been analyzed as a central element in a district heating system for the City of North Adams. The tunnel has been viewed as a collector of the earth's geothermal heat and a seasonal heat storage facility with heat piped to the tunnel in summer from existing facilities at a distance. Heated fluid would be transported in winter from the tunnel to users who would boost the temperature with individual heat pumps. It was concluded the tunnel is a poor source of geothermal heat. The maximum extractable energy is only 2200 million BTU (20000 gallons of oil) at 58/sup 0/F. The tunnel is a poor heat storage facility. The rock conductivity is so high that 75% of the heat injected would escape into the mountain before it could be recaptured for use. A low temperature system, with individual heat pumps for temperature boost could be economically attractive if a low cost fuel (byproduct, solid waste, cogeneration) or a cost effective seasonal heat storage were available.

  8. Direct Observation of Double Hydrogen Transfer via Quantum Tunneling in a Single Porphycene Molecule on a Ag(110) Surface.

    Science.gov (United States)

    Koch, Matthias; Pagan, Mark; Persson, Mats; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi

    2017-09-13

    Quantum tunneling of hydrogen atoms (or protons) plays a crucial role in many chemical and biological reactions. Although tunneling of a single particle has been examined extensively in various one-dimensional potentials, many-particle tunneling in high-dimensional potential energy surfaces remains poorly understood. Here we present a direct observation of a double hydrogen atom transfer (tautomerization) within a single porphycene molecule on a Ag(110) surface using a cryogenic scanning tunneling microscope (STM). The tautomerization rates are temperature independent below ∼10 K, and a large kinetic isotope effect (KIE) is observed upon substituting the transferred hydrogen atoms by deuterium, indicating that the process is governed by tunneling. The observed KIE for three isotopologues and density functional theory calculations reveal that a stepwise transfer mechanism is dominant in the tautomerization. It is also found that the tautomerization rate is increased by vibrational excitation via an inelastic electron tunneling process. Moreover, the STM tip can be used to manipulate the tunneling dynamics through modification of the potential landscape.

  9. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields.

    Science.gov (United States)

    Misra, S; Zhou, B B; Drozdov, I K; Seo, J; Urban, L; Gyenis, A; Kingsley, S C J; Jones, H; Yazdani, A

    2013-10-01

    We describe the construction and performance of a scanning tunneling microscope capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field.

  10. Improving band-to-band tunneling in a tunneling carbon nanotube field effect transistor by multi-level development of impurities in the drain region

    Science.gov (United States)

    Naderi, Ali; Ghodrati, Maryam

    2017-12-01

    In this paper, in order to improve the performance of a tunneling carbon nanotube field effect transistor (T-CNTFET) a new structure is proposed using multi-level impurity distribution along the drain region. The new T-CNTFET structure consists of six parts in the drain with stepwise doping distribution. The impurities on the drain side are n -type and the length of each region is 5nm. Electronic features of the proposed structure are simulated by the solution of Poisson and Schrödinger equations and the self-consistent method using Non-equilibrium Green's Function (NEGF). Simulation results show that the proposed structure reduces the band curvature near the drain-channel connection and widens the tunneling barrier. As a result, band-to-band tunneling and the OFF current are reduced and the ON/OFF current ratio increases in comparison with the conventional structure. In summary, by improving the subthreshold swing parameters, delay time, power delay product ( PDP and cut-off frequency compared to the conventional structure, the proposed structure can be considered as a proper candidate for digital applications with high speed and low power dissipation.

  11. Tunneling works. Tunnel koji

    Energy Technology Data Exchange (ETDEWEB)

    Higo, M [Hazam Gumi, Ltd., Tokyo (Japan)

    1991-10-25

    A mountain tunneling method for rock-beds used to be applied mainly to construction works in the mountains under few restrictions by environmental problems. However, construction works near residential sreas have been increasing. There are such enviromental problems due to tunneling works as vibration, noise, lowering of ground-water level, and influences on other structures. This report mainly describes the measurement examples of vibration and noise accompanied with blasting and the effects of the measures to lessen such influences. When the tunneling works for the railroad was carried out on the natural ground mainly composed of basalt, vibration of the test blasting was measured at three stations with piezoelectric accelerometers. Then, ordinary blasting, mutistage blasting, and ABM blasting methods were used properly besed on the above results, and only a few complaints were made. In the different works, normal noise and low-frequency sound were mesured at 22 stations around the pit mouth. As countermeasures for noise, sound-proof sheets, walls, and single and double doors were installed and foundto be effective. 1 ref., 6 figs., 1 tab.

  12. Fluctuations of tunneling currents in photonic and polaritonic systems

    Science.gov (United States)

    Mantsevich, V. N.; Glazov, M. M.

    2018-04-01

    Here we develop the nonequilibrium Green's function formalism to analyze the fluctuation spectra of the boson tunneling currents. The approach allows us to calculate the noise spectra in both equilibrium and nonequilibrium conditions. The proposed general formalism is applied to several important realizations of boson transport, including the tunneling transport between two reservoirs and the case where the boson current flows through the intermediate region between the reservoirs. Developed theory can be applied for the analysis of the current noise in waveguides, coupled optical resonators, quantum microcavities, etc., where the tunneling of photons, exciton-polaritons, or excitons can be realized.

  13. Setting up tunneling conditions by means of Bohmian mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, A S; Miret-Artes, S, E-mail: asanz@iff.csic.es, E-mail: s.miret@iff.csic.es [Instituto de Fisica Fundamental-CSIC, Serrano 123, 28006 Madrid (Spain)

    2011-12-02

    Usually tunneling is established after imposing some matching conditions on the (time-independent) wavefunction and its first derivative at the boundaries of a barrier. Here an alternative scheme is proposed to determine tunneling and estimate transmission probabilities in time-dependent problems, which takes advantage of the trajectory picture provided by Bohmian mechanics. From this theory, a general functional expression for the transmission probability in terms of the system initial state can be reached. This expression is used here to analyze tunneling properties and estimate transmissions in the case of initial Gaussian wave packets colliding with ramp-like barriers. (paper)

  14. Mechanical tunnel excavation in welded tuff

    International Nuclear Information System (INIS)

    Sperry, P.E.

    1991-01-01

    The Technical Review Board for the US high-level radioactive waste facility at Yucca Mountain has recommended maximum use of open-quotes the most modern mechanical excavation techniques...in order to reduce disturbance to the rock walls and to achieve greater economy of time and cost.close quotes Tunnels for the waste repository at Yucca Mountain can be economically constructed with mechanical excavation equipment. This paper presents the results of mechanical excavation of a tunnel in welded tuff, similar to the tuffs of Yucca Mountain. These results are projected to excavation of emplacement drifts in Yucca Mountain using a current state-of-the-art tunnel boring machine (TBM)

  15. Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Noor Zaman, E-mail: noor_0315@yahoo.com [Department of Mechanical Engineering, Jamia Millia Islamia (A Central University), New Delhi (India); Siddiquee, Arshad Noor; Khan, Zahid A. [Department of Mechanical Engineering, Jamia Millia Islamia (A Central University), New Delhi (India); Shihab, Suha K. [Department of Mechanical Engineering, Engineering College, Diyala University, Diyala (Iraq)

    2015-11-05

    In this paper an attempt has been made to investigate the effect of two Friction Stir Welding (FSW) parameters i.e. tool pin offset and tool plunge depth on the formation of defects such as tunnel (tunneling defect) and kissing bond (KB) during welding of dissimilar aluminum alloys. 4.75 mm thick plates of AA5083-H116 and AA6063-T6 were welded using a novel work-fixture developed in-house which, apart from clamping the plated also imparted continuous variation of offset on both side of the faying line. The tunneling defect was modeled as a function of offset and plunge depth. The welds were characterised using optical microscopy (OM), scanning electron microscopy (SEM) and mechanical testing. The causes of such defects have been analyzed and discussed and recommendations have been made to prevent their occurrence. The findings of the study have revealed that the tunneling defects are formed at all offset (including zero offset) values towards stronger material (advancing side). And the cross-section of the tunnel varied with the amount of offset. Further, KBs are formed at the interface for all pin offset values except 0.5 mm towards weaker material and high plunge depth resulting in the poor mechanical properties. - Highlights: • Two dissimilar aluminum alloys are welded using FSW. • Formation of kissing bond and tunneling defects are investigated. • Defects are formed at pin offsets towards stronger material and also without offset. • The size of tunnel reduces significantly by increasing the plunge depth. • Tool pin offset towards weaker material prevent tunneling defects.

  16. Mutual seismic interaction between tunnels and the surrounding granular soil

    Directory of Open Access Journals (Sweden)

    Mohamed Ahmed Abdel-Motaal

    2014-12-01

    Study results show that the maximum exerted straining actions in tunnel lining are directly proportional to the relative stiffness between tunnel and surrounding soil (lining thickness and soil shear modulus. Moreover, it is highly affected by the peak ground acceleration and the tunnel location (embedment depth. A comprehensive study is performed to show the effect of tunnel thickness and tunnel diameter on both the induced bending moment and lining deformation. In general, it is concluded that seismic analysis should be considered in regions subjected to peak ground acceleration greater than 0.15g.

  17. Tunneling Diode Based on WSe2 /SnS2 Heterostructure Incorporating High Detectivity and Responsivity.

    Science.gov (United States)

    Zhou, Xing; Hu, Xiaozong; Zhou, Shasha; Song, Hongyue; Zhang, Qi; Pi, Lejing; Li, Liang; Li, Huiqiao; Lü, Jingtao; Zhai, Tianyou

    2018-02-01

    van der Waals (vdW) heterostructures based on atomically thin 2D materials have led to a new era in next-generation optoelectronics due to their tailored energy band alignments and ultrathin morphological features, especially in photodetectors. However, these photodetectors often show an inevitable compromise between photodetectivity and photoresponsivity with one high and the other low. Herein, a highly sensitive WSe 2 /SnS 2 photodiode is constructed on BN thin film by exfoliating each material and manually stacking them. The WSe 2 /SnS 2 vdW heterostructure shows ultralow dark currents resulting from the depletion region at the junction and high direct tunneling current when illuminated, which is confirmed by the energy band structures and electrical characteristics fitted with direct tunneling. Thus, the distinctive WSe 2 /SnS 2 vdW heterostructure exhibits both ultrahigh photodetectivity of 1.29 × 10 13 Jones (I ph /I dark ratio of ≈10 6 ) and photoresponsivity of 244 A W -1 at a reverse bias under the illumination of 550 nm light (3.77 mW cm -2 ). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Magnitude of the current in 2D interlayer tunneling devices.

    Science.gov (United States)

    Feenstra, Randall M; de la Barrera, Sergio C; Li, Jun; Nie, Yifan; Cho, Kyeongjae

    2018-01-15

    Using the Bardeen tunneling method with first-principles wave functions, computations are made of the tunneling current in graphene/hexagonal-boron-nitride/graphene (G/h-BN/G) vertical structures. Detailed comparison with prior experimental results is made, focusing on the magnitude of the achievable tunnel current. With inclusion of the effects of translational and rotational misalignment of the graphene and the h-BN, predicted currents are found to be about 15×  larger than experimental values. A reduction in this discrepancy, to a factor of 2.5×, is achieved by utilizing a realistic size for the band gap of the h-BN, hence affecting the exponential decay constant for the tunneling.

  19. Magnitude of the Current in Two-Dimensional Interlayer Tunneling Devices.

    Science.gov (United States)

    Feenstra, Randall; de la Barrera, Sergio; Li, Jun; Nie, Yifan; Cho, Kyeongjae

    2018-01-02

    Using the Bardeen tunneling method with first-principles wave functions, computations are made of the tunneling current in graphene / hexagonal-boron-nitride / graphene (G/h-BN/G) vertical structures. Detailed comparison with prior experimental results is made, focusing on the magnitude of the achievable tunnel current. With inclusion of the effects of translational and rotational misalignment of the graphene and the h-BN, predicted currents are found to be about 15x larger than experimental values. A reduction in this discrepancy, to a factor of 2.5x, is achieved by utilizing a realistic size for the band gap of the h-BN, hence affecting the exponential decay constant for the tunneling. © 2018 IOP Publishing Ltd.

  20. An update of conditions in the Donkin-Morien tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Seedsman, R.W. [Seedsman Geotechnics Pty Ltd., Mt. Kembla (Australia)

    2009-07-01

    Two 7.6 diameter tunnels were constructed in the Donkin-Morien peninsula in Nova Scotia in 1984 and 1985. Ground support designs of the tunnel were based on the identification of rock failure zones using finite element analyses and the Hoek Brown failure criterion. The tunnels were flooded in 1992 when the mining project was abandoned. However, subsequent monitoring data from the tunnels were used to analyze brittle rock behaviour before and after its subsequent dewatering. This paper discussed the results of a feasibility study conducted to compare collapse zones in the roof and sides of the tunnel with results obtained from a simple elastic analysis technique that used brittle parameters, a spalling limit of 5, and a low-dependent shear modulus. Analyses were conducted to examine the potential maximum height of failure as a function of the coal seams. The study showed that coal measure rocks can be analyzed using the brittle failure criterion when both transverse anisotropy and low spalling limits were included. However, it is not possible to determine the contribution of corrosion to the deterioration of the tunnels. The analysis will be used to form a design for re-supporting the tunnels. 7 refs., 2 tabs., 7 figs.

  1. Experimental Evidence for Wigner’s Tunneling Time

    Science.gov (United States)

    Camus, N.; Yakaboylu, E.; Fechner, L.; Klaiber, M.; Laux, M.; Mi, Y.; Hatsagortsyan, K. Z.; Pfeifer, T.; Keitel, C. H.; Moshammer, R.

    2018-04-01

    Tunneling of a particle through a barrier is one of the counter-intuitive properties of quantum mechanical motion. Thanks to advances in the generation of strong laser fields, new opportunities to dynamically investigate this process have been developed. In the so-called attoclock measurements the electron’s properties after tunneling are mapped on its emission direction. We investigate the tunneling dynamics and achieve a high sensitivity thanks to two refinements of the attoclock principle. Using near-IR wavelength we place firmly the ionization process in the tunneling regime. Furthermore, we compare the electron momentum distributions of two atomic species of slightly different atomic potentials (argon and krypton) being ionized under absolutely identical conditions. Experimentally, using a reaction microscope, we succeed in measuring the 3D electron momentum distributions for both targets simultaneously. Theoretically, the time resolved description of tunneling in strong-field ionization is studied using the leading quantum-mechanical Wigner treatment. A detailed analysis of the most probable photoelectron emission for Ar and Kr allows testing the theoretical models and a sensitive check of the electron initial conditions at the tunnel exit. The agreement between experiment and theory provides a clear evidence for a non-zero tunneling time delay and a non-vanishing longitudinal momentum at this point.

  2. Tunneling time, exit time and exit momentum in strong field tunnel ionization

    International Nuclear Information System (INIS)

    Teeny, Nicolas

    2016-01-01

    Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.

  3. Tunneling time, exit time and exit momentum in strong field tunnel ionization

    Energy Technology Data Exchange (ETDEWEB)

    Teeny, Nicolas

    2016-10-18

    Tunnel ionization belongs to the fundamental processes of atomic physics. It is still an open question when does the electron tunnel ionize and how long is the duration of tunneling. In this work we solve the time-dependent Schroedinger equation in one and two dimensions and use ab initio quantum calculations in order to answer these questions. Additionally, we determine the exit momentum of the tunnel ionized electron from first principles. We find out results that are different from the assumptions of the commonly employed two-step model, which assumes that the electron ionizes at the instant of electric field maximum with a zero momentum. After determining the quantum final momentum distribution of tunnel ionized electrons we show that the two-step model fails to predict the correct final momentum. Accordingly we suggest how to correct the two-step model. Furthermore, we determine the instant at which tunnel ionization starts, which turns out to be different from the instant usually assumed. From determining the instant at which it is most probable for the electron to enter the tunneling barrier and the instant at which it exits we determine the most probable time spent under the barrier. Moreover, we apply a quantum clock approach in order to determine the duration of tunnel ionization. From the quantum clock we determine an average tunneling time which is different in magnitude and origin with respect to the most probable tunneling time. By defining a probability distribution of tunneling times using virtual detectors we relate both methods and explain the apparent discrepancy. The results found have in general an effect on the interpretation of experiments that measure the spectra of tunnel ionized electrons, and specifically on the calibration of the so called attoclock experiments, because models with imprecise assumptions are usually employed in order to interpret experimental results.

  4. Ultrafast terahertz scanning tunneling microscopy with atomic resolution

    DEFF Research Database (Denmark)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.

    2016-01-01

    We demonstrate that ultrafast terahertz scanning tunneling microscopy (THz-STM) can probe single atoms on a silicon surface with simultaneous sub-nanometer and sub-picosecond spatio-temporal resolution. THz-STM is established as a new technique for exploring high-field non-equilibrium tunneling...

  5. Quantum theory of tunneling

    CERN Document Server

    Razavy, Mohsen

    2014-01-01

    In this revised and expanded edition, in addition to a comprehensible introduction to the theoretical foundations of quantum tunneling based on different methods of formulating and solving tunneling problems, different semiclassical approximations for multidimensional systems are presented. Particular attention is given to the tunneling of composite systems, with examples taken from molecular tunneling and also from nuclear reactions. The interesting and puzzling features of tunneling times are given extensive coverage, and the possibility of measurement of these times with quantum clocks are critically examined. In addition by considering the analogy between evanescent waves in waveguides and in quantum tunneling, the times related to electromagnetic wave propagation have been used to explain certain aspects of quantum tunneling times. These topics are treated in both non-relativistic as well as relativistic regimes. Finally, a large number of examples of tunneling in atomic, molecular, condensed matter and ...

  6. Watertightness of concrete tunnel structures

    OpenAIRE

    Glerum, A.

    1982-01-01

    The Netherlands are situated in the delta. of the rivers Rhine, Meuse and Scheldt. Therefore the ground mainly consists.of sediments, such as sand, clay and silt. In certain regions peat layers of varying thickness are found. The high permeability of some of these materials and the fact that the groundwater table is generally only 1 m below ground level, make an adequate watertightness one of the main features of tunnel engineering in the Netherlands. Tunnels in Holland are both of the immers...

  7. Very high precision survey equipment for great distances Surface surveys used to map out the surface network and the tunnelling machines then gyroscopically steered underground.

    CERN Document Server

    1983-01-01

    At the beginning of the 1980s, CERN embarked on the enormous Large Electron-Positron Collider construction project. The excavation of the 27-kilometre LEP tunnel was a huge technical challenge. The tunnel-boring machines excavated the tunnel in 3.3 km octants and had to be operated with extraordinary precision to ensure that they reached their destination - the bottom of the next vertical shaft - precisely on target. The tunnel was excavated before high-performance instruments were developed for the construction of the Channel Tunnel. As no firms were willing to perform the surveying work, CERN's own surveyors, with experience from the SPS behind them, took up the challenge. At the surface, the surveyors established the world's most accurate geodetic network, performing measurements to an accuracy of 10-7, or 1mm per 10 km, using the Terrameter (see photo). The excavation of the tunnel was completed in 1988 and the finished tunnel's trajectory was found to diverge from the theoretical value specified by the p...

  8. ``Phantom'' Modes in Ab Initio Tunneling Calculations: Implications for Theoretical Materials Optimization, Tunneling, and Transport

    Science.gov (United States)

    Barabash, Sergey V.; Pramanik, Dipankar

    2015-03-01

    Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.

  9. Transport and Quantum Coherence in Graphene Rings: Aharonov-Bohm Oscillations, Klein Tunneling, and Particle Localization

    Science.gov (United States)

    Filusch, Alexander; Wurl, Christian; Pieper, Andreas; Fehske, Holger

    2018-06-01

    Simulating quantum transport through mesoscopic, ring-shaped graphene structures, we address various quantum coherence and interference phenomena. First, a perpendicular magnetic field, penetrating the graphene ring, gives rise to Aharonov-Bohm oscillations in the conductance as a function of the magnetic flux, on top of the universal conductance fluctuations. At very high fluxes, the interference gets suppressed and quantum Hall edge channels develop. Second, applying an electrostatic potential to one of the ring arms, nn'n- or npn-junctions can be realized with particle transmission due to normal tunneling or Klein tunneling. In the latter case, the Aharonov-Bohm oscillations weaken for smooth barriers. Third, if potential disorder comes in to play, both Aharonov-Bohm and Klein tunneling effects rate down, up to the point where particle localization sets in.

  10. Long-term reliable physically unclonable function based on oxide tunnel barrier breakdown on two-transistors two-magnetic-tunnel-junctions cell-based embedded spin transfer torque magnetoresistive random access memory

    Science.gov (United States)

    Takaya, Satoshi; Tanamoto, Tetsufumi; Noguchi, Hiroki; Ikegami, Kazutaka; Abe, Keiko; Fujita, Shinobu

    2017-04-01

    Among the diverse applications of spintronics, security for internet-of-things (IoT) devices is one of the most important. A physically unclonable function (PUF) with a spin device (spin transfer torque magnetoresistive random access memory, STT-MRAM) is presented. Oxide tunnel barrier breakdown is used to realize long-term stability for PUFs. A secure PUF has been confirmed by evaluating the Hamming distance of a 32-bit STT-MRAM-PUF fabricated using 65 nm CMOS technology.

  11. Energy-gap spectroscopy of superconductors using a tunneling microscope

    International Nuclear Information System (INIS)

    Le Duc, H.G.; Kaiser, W.J.; Stern, J.A.

    1987-01-01

    A unique scanning tunneling microscope (STM) system has been developed for spectroscopy of the superconducting energy gap. High-resolution control of tunnel current and voltage allows for measurement of superconducting properties at tunnel resistance levels 10 2 --10 3 greater than that achieved in prior work. The previously used STM methods for superconductor spectroscopy are compared to those developed for the work reported here. Superconducting energy-gap spectra are reported for three superconductors, Pb, PbBi, and NbN, over a range of tunnel resistance. The measured spectra are compared directly to theory

  12. Efficacy of high frequency ultrasound in postoperative evaluation of carpal tunnel syndrome treatment

    Directory of Open Access Journals (Sweden)

    Katarzyna Kapuścińska

    2016-03-01

    Full Text Available Carpal tunnel syndrome (CTS is the most common entrapment neuropathy and a frequent cause of sick leave because of work-related hand overload. The main treatment is operation. Aim: The aim of the study is to assess the usefulness of high frequency ultrasound in the postoperative evaluation of CTS treatment efficacy. Material and methods: Sixty-two patients (50 women and 12 men aged 28–70, mean age 55.2 underwent surgical treatment of CTS. Ultrasound examinations of the wrist in all carpal tunnel sufferers were performed 3 months after the procedure with the use of a high frequency broadband linear array transducer (6–18 MHz, using 18 MHz band of MyLab 70/Esaote. On the basis of the collected data, the author has performed multiple analyses to confirm the usefulness of ultrasound imaging for postoperative evaluation of CTS treatment efficacy. Results: Among all 62 patients, 3 months after surgical median nerve decompression: in 40 patients, CTS symptoms subsided completely, and sonographic evaluation did not show median nerve entrapment signs; in 9 patients, CTS symptoms persisted or exacerbated, and ultrasound proved nerve compression revealing preserved flexor retinaculum fibers; in 13 patients, scar tissue symptoms occurred, and in 5 of them CTS did not subside completely (although ultrasound showed no signs of compression. Conclusions: Ultrasound imaging with the use of a high frequency transducer is a valuable diagnostic tool for postoperative assessment of CTS treatment efficacy.

  13. Improved multidimensional semiclassical tunneling theory.

    Science.gov (United States)

    Wagner, Albert F

    2013-12-12

    We show that the analytic multidimensional semiclassical tunneling formula of Miller et al. [Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets, A. Chem. Phys. Lett. 1990, 172, 62] is qualitatively incorrect for deep tunneling at energies well below the top of the barrier. The origin of this deficiency is that the formula uses an effective barrier weakly related to the true energetics but correctly adjusted to reproduce the harmonic description and anharmonic corrections of the reaction path at the saddle point as determined by second order vibrational perturbation theory. We present an analytic improved semiclassical formula that correctly includes energetic information and allows a qualitatively correct representation of deep tunneling. This is done by constructing a three segment composite Eckart potential that is continuous everywhere in both value and derivative. This composite potential has an analytic barrier penetration integral from which the semiclassical action can be derived and then used to define the semiclassical tunneling probability. The middle segment of the composite potential by itself is superior to the original formula of Miller et al. because it incorporates the asymmetry of the reaction barrier produced by the known reaction exoergicity. Comparison of the semiclassical and exact quantum tunneling probability for the pure Eckart potential suggests a simple threshold multiplicative factor to the improved formula to account for quantum effects very near threshold not represented by semiclassical theory. The deep tunneling limitations of the original formula are echoed in semiclassical high-energy descriptions of bound vibrational states perpendicular to the reaction path at the saddle point. However, typically ab initio energetic information is not available to correct it. The Supporting Information contains a Fortran code, test input, and test output that implements the improved semiclassical tunneling formula.

  14. High Pressure Scanning Tunneling Microscopy Studies of Adsorbate Structure and Mobility during Catalytic Reactions. Novel Design of an Ultra High Pressure, High Temperature Scanning Tunneling Microscope System for Probing Catalytic Conversions

    International Nuclear Information System (INIS)

    Tang, David Chi-Wai

    2005-01-01

    The aim of the work presented therein is to take advantage of scanning tunneling microscope's (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 C). The design of a high pressure, high temperature scanning tunneling microscope system, that is capable of monitoring reactions in situ at conditions from UHV and ambient temperature up to 1 atm and 250 C, is briefly presented along with vibrational and thermal analysis, as this system serves as a template to improve upon during the design of the new ultra high pressure, high temperature STM. Using this existing high pressure scanning tunneling microscope we monitored the co-adsorption of hydrogen, ethylene and carbon dioxide on platinum (111) and rhodium (111) crystal faces in the mTorr pressure range at 300 K in equilibrium with the gas phase. During the catalytic hydrogenation of ethylene to ethane in the absence of CO the metal surfaces are covered by an adsorbate layer that is very mobile on the time scale of STM imaging. We found that the addition of CO poisons the hydrogenation reaction and induces ordered structures on the single crystal surfaces. Several ordered structures were observed upon CO addition to the surfaces pre-covered with hydrogen and ethylene: a rotated (√19 x √19)R23.4 o on Pt(111), and domains of c(4 x 2)-CO+C 2 H 3 , previously unobserved (4 x 2)-CO+3C 2 H 3 , and (2 x 2)-3CO on Rh(111). A mechanism for CO poisoning of ethylene hydrogenation on the metal single crystals was proposed, in which CO blocks surface metal sites and reduces adsorbate mobility to limit adsorption and reaction rate of ethylene and hydrogen. In order to observe heterogeneous catalytic reactions that occur well above ambient pressure and temperature that more closely

  15. Scanning Tunneling Spectroscopy on Electron-Boson Interactions in Superconductors

    OpenAIRE

    Schackert, Michael Peter

    2014-01-01

    This thesis describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  16. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schackert, Michael Peter

    2014-07-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  17. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    CERN Document Server

    Schackert, Michael Peter

    2015-01-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  18. Time-dependent resonant tunnelling for parallel-coupled double quantum dots

    International Nuclear Information System (INIS)

    Dong Bing; Djuric, Ivana; Cui, H L; Lei, X L

    2004-01-01

    We derive the quantum rate equations for an Aharonov-Bohm interferometer with two vertically coupled quantum dots embedded in each of two arms by means of the nonequilibrium Green function in the sequential tunnelling regime. Based on these equations, we investigate time-dependent resonant tunnelling under a small amplitude irradiation and find that the resonant photon-assisted tunnelling peaks in photocurrent demonstrate a combination behaviour of Fano and Lorentzian resonances due to the interference effect between the two pathways in this parallel configuration, which is controllable by threading the magnetic flux inside this device

  19. Negative tunneling magnetoresistance of Fe/MgO/NiO/Fe magnetic tunnel junction: Role of spin mixing and interface state

    Science.gov (United States)

    Zhang, Y.; Yan, X. H.; Guo, Y. D.; Xiao, Y.

    2017-08-01

    Motivated by a recent tunneling magnetoresistance (TMR) measurement in which the negative TMR is observed in MgO/NiO-based magnetic tunnel junctions (MTJs), we have performed systematic calculations of transmission, current, and TMR of Fe/MgO/NiO/Fe MTJ with different thicknesses of NiO and MgO layers based on noncollinear density functional theory and non-equilibrium Green's function theory. The calculations show that, as the thickness of NiO and MgO layers is small, the negative TMR can be obtained which is attributed to the spin mixing effect and interface state. However, in the thick MTJ, the spin-flipping scattering becomes weaker, and thus, the MTJs recover positive TMR. Based on our theoretical results, we believe that the interface state at Fe/NiO interface and the spin mixing effect induced by noncollinear interfacial magnetization will play important role in determining transmission and current of Fe/MgO/NiO/Fe MTJ. The results reported here will be important in understanding the electron tunneling in MTJ with the barrier made by transition metal oxide.

  20. Coherent Destruction of Tunneling of Bosons with Effective Three-Body Interactions

    International Nuclear Information System (INIS)

    Niu Zhen-Xia; Yu Zi-Fa; Xue Ju-Kui

    2015-01-01

    The tunneling dynamics of dilute boson gases with three-body interactions in a periodically driven double wells are investigated both theoretically and numerically. In our findings, when the system is with only repulsive two-body interactions or only three-body interactions, the tunneling will be suppressed; while in the case of the coupling between two- and three-body interactions, the tunneling can be either suppressed or enhanced. Particularly, when attractive three-body interactions are twice large as repulsive two-body interactions, CDT occurs at isolated points of driving force, which is similar to the linear case. Considering different interaction, the system can experience different transformation from coherent tunneling to coherent destruction of tunneling (CDT). The quasi-energy of the system as the function of the periodically driving force shows a triangular structure, which provides a deep insight into the tunneling dynamics of the system. (paper)

  1. Gate-controlled current and inelastic electron tunneling spectrum of benzene: a self-consistent study.

    Science.gov (United States)

    Liang, Y Y; Chen, H; Mizuseki, H; Kawazoe, Y

    2011-04-14

    We use density functional theory based nonequilibrium Green's function to self-consistently study the current through the 1,4-benzenedithiol (BDT). The elastic and inelastic tunneling properties through this Au-BDT-Au molecular junction are simulated, respectively. For the elastic tunneling case, it is found that the current through the tilted molecule can be modulated effectively by the external gate field, which is perpendicular to the phenyl ring. The gate voltage amplification comes from the modulation of the interaction between the electrodes and the molecules in the junctions. For the inelastic case, the electron tunneling scattered by the molecular vibrational modes is considered within the self-consistent Born approximation scheme, and the inelastic electron tunneling spectrum is calculated.

  2. Design of a high-speed electrochemical scanning tunneling microscope.

    Science.gov (United States)

    Yanson, Y I; Schenkel, F; Rost, M J

    2013-02-01

    In this paper, we present a bottom-up approach to designing and constructing a high-speed electrochemical scanning tunneling microscope (EC-STM). Using finite element analysis (FEA) calculations of the frequency response of the whole mechanical loop of the STM, we analyzed several geometries to find the most stable one that could facilitate fast scanning. To test the FEA results, we conducted measurements of the vibration amplitudes using a prototype STM setup. Based on the FEA analysis and the measurement results, we identified the potentially most disturbing vibration modes that could impair fast scanning. By modifying the design of some parts of the EC-STM, we reduced the amplitudes as well as increased the resonance frequencies of these modes. Additionally, we designed and constructed an electrochemical flow-cell that allows STM imaging in a flowing electrolyte, and built a bi-potentiostat to achieve electrochemical potential control during the measurements. Finally, we present STM images acquired during high-speed imaging in air as well as in an electrochemical environment using our newly-developed EC-STM.

  3. Two-dimensional analytical model for dual-material control-gate tunnel FETs

    Science.gov (United States)

    Xu, Hui Fang; Dai, Yue Hua; Gui Guan, Bang; Zhang, Yong Feng

    2016-09-01

    An analytical model for a dual-material control-gate (DMCG) tunnel field effect transistor (TFET) is presented for the first time in this paper, and the influence of the mobile charges on the potential profile is taken into account. On the basis of the potential profile, the lateral electric field is derived and the expression for the drain current is obtained by integrating the band-to-band tunneling (BTBT) generation rate applicable to low-bandgap and high-bandgap materials over the tunneling region. The model also predicts the impacts of the control-gate work function on the potential and drain current. The advantage of this work is that it not only offers physical insight into device physics but also provides the basic designing guideline for DMCG TFETs, enabling the designer to optimize the device in terms of the on-state current, the on-off current ratio, and suppressed ambipolar behavior. Very good agreements for both the potential and drain current are observed between the model calculations and the simulated results.

  4. The critical role of the barrier thickness in spin filter tunneling

    International Nuclear Information System (INIS)

    Miller, Casey W.

    2009-01-01

    Spin filter tunneling is considered in the low bias limit as functions of the temperature dependent barrier parameters. We demonstrate the generation of spin polarized tunneling currents in relation to the magnetic order parameter, and discuss how an interfacially suppressed order parameter leads to a temperature dependent tunneling current asymmetry. Analyzing the full parameter space reveals that the often overlooked barrier thickness plays a critical role in spin filter tunneling. With all else fixed, thicker barriers yield higher spin polarization, and allow a given polarization to be achieved at higher temperatures. This insight may open the door for new materials to serve as spin filter barriers.

  5. First-principles theory of inelastic currents in a scanning tunneling microscope

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Hu, Ben Yu-Kuang; Thirstrup, C.

    1998-01-01

    A first-principles theory of inelastic tunneling between a model probe tip and an atom adsorbed on a surface is presented, extending the elastic tunneling theory of Tersoff and Hamann. The inelastic current is proportional to the change in the local density of states at the center of the tip due...... to the addition of the adsorbate. We use the theory to investigate the vibrational heating of an adsorbate below a scanning tunneling microscopy tip. We calculate the desorption rate of PI from Si(100)-H(2 X 1) as a function of the sample bias and tunnel current, and find excellent a,agreement with recent...

  6. Wind-tunnel Tests of a Hall High-life Wing

    Science.gov (United States)

    Weick, Fred E; Sanders, Robert

    1932-01-01

    Wind-tunnel tests have been made to find the lift, drag, and center-of-pressure characteristics of a Hall high-lift wing model. The Hall wing is essentially a split-flap airfoil with an internal air passage. Air enters the passage through an opening in the lower surface somewhat back of and parallel to the leading edge, and flows out through an opening made by deflecting the rear portion of the under surface downward as a flap. For ordinary flight conditions the front opening and the rear flap can be closed, providing in effect a conventional airfoil (the Clark Y in this case). The tests were made with various flap settings and with the entrance to the passage both open and closed. The highest lift coefficient found, C(sub L) = 2.08, was obtained with the passage closed.

  7. Spin-dependent tunnelling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Tsymbal, Evgeny Y; Mryasov, Oleg N; LeClair, Patrick R

    2003-01-01

    The phenomenon of electron tunnelling has been known since the advent of quantum mechanics, but continues to enrich our understanding of many fields of physics, as well as creating sub-fields on its own. Spin-dependent tunnelling (SDT) in magnetic tunnel junctions (MTJs) has recently aroused enormous interest and has developed in a vigorous field of research. The large tunnelling magnetoresistance (TMR) observed in MTJs garnered much attention due to possible applications in non-volatile random-access memories and next-generation magnetic field sensors. This led to a number of fundamental questions regarding the phenomenon of SDT. In this review article we present an overview of this field of research. We discuss various factors that control the spin polarization and magnetoresistance in MTJs. Starting from early experiments on SDT and their interpretation, we consider thereafter recent experiments and models which highlight the role of the electronic structure of the ferromagnets, the insulating layer, and the ferromagnet/insulator interfaces. We also discuss the role of disorder in the barrier and in the ferromagnetic electrodes and their influence on TMR. (topical review)

  8. A New XOR Structure Based on Resonant-Tunneling High Electron Mobility Transistor

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Sharifi

    2009-01-01

    Full Text Available A new structure for an exclusive-OR (XOR gate based on the resonant-tunneling high electron mobility transistor (RTHEMT is introduced which comprises only an RTHEMT and two FETs. Calculations are done by utilizing a new subcircuit model for simulating the RTHEMT in the SPICE simulator. Details of the design, input, and output values and margins, delay of each transition, maximum operating frequency, static and dynamic power dissipations of the new structure are discussed and calculated and the performance is compared with other XOR gates which confirm that the presented structure has a high performance. Furthermore, to the best of authors' knowledge, it has the least component count in comparison to the existing structures.

  9. Air quality assessment in Salim Slam Tunnel

    International Nuclear Information System (INIS)

    El-Fadel, M.; Hashisho, Z.; Saikaly, P.

    1999-01-01

    Full text.Vehicle emissions constitute a serious occupational environmental hazard particularly in confined spaces such as tunnels and underground parking garages. these emissions at elevated concentrations, can cause adverse health effects, which range from nausea and eye irritation to mutagenicity, carcinogenicity and even death. This paper presents an environmental air quality assessment in a tunnel located in a highly congested urban area. For this purpose, air samples were collected and analyzed for the presence of primary air pollutants, priority metals, and volatile organic carbons. Air quality modeling was conducted to simulate variations of pollutant concentrations in the tunnel under worst case scenarios including traffic congestion and no air ventilation. Field measurements and mathematical simulation results were used to develop a strategy for proper air quality management in tunnels

  10. Work function and temperature dependence of electron tunneling through an N-type perylene diimide molecular junction with isocyanide surface linkers.

    Science.gov (United States)

    Smith, Christopher E; Xie, Zuoti; Bâldea, Ioan; Frisbie, C Daniel

    2018-01-18

    Conducting probe atomic force microscopy (CP-AFM) was employed to examine electron tunneling in self-assembled monolayer (SAM) junctions. A 2.3 nm long perylene tetracarboxylic acid diimide (PDI) acceptor molecule equipped with isocyanide linker groups was synthesized, adsorbed onto Ag, Au and Pt substrates, and the current-voltage (I-V) properties were measured by CP-AFM. The dependence of the low-bias resistance (R) on contact work function indicates that transport is LUMO-assisted ('n-type behavior'). A single-level tunneling model combined with transition voltage spectroscopy (TVS) was employed to analyze the experimental I-V curves and to extract the effective LUMO position ε l = E LUMO - E F and the effective electronic coupling (Γ) between the PDI redox core and the contacts. This analysis revealed a strong Fermi level (E F ) pinning effect in all the junctions, likely due to interface dipoles that significantly increased with increasing contact work function, as revealed by scanning Kelvin probe microscopy (SKPM). Furthermore, the temperature (T) dependence of R was found to be substantial. For Pt/Pt junctions, R varied more than two orders of magnitude in the range 248 K tunneling mechanism and allow independent determination of ε l , giving values compatible with estimates of ε l based on analysis of the full I-V data. Theoretical analysis revealed a general criterion to unambiguously rule out a two-step transport mechanism: namely, if measured resistance data exhibit a pronounced Arrhenius-type temperature dependence, a two-step electron transfer scenario should be excluded in cases where the activation energy depends on contact metallurgy. Overall, our results indicate (1) the generality of the Fermi level pinning phenomenon in molecular junctions, (2) the utility of employing the single level tunneling model for determining essential electronic structure parameters (ε l and Γ), and (3) the importance of changing the nature of the contacts to

  11. Radiation environment in the tunnel of a high-energy proton accelerator at energies near 1 TeV

    International Nuclear Information System (INIS)

    McCaslin, J.B.; Sun, R.K.S.; Swanson, W.P.

    1987-12-01

    Neutron energy spectra, fluence distributions and rates in the FNAL Tevatron tunnel are summarized. This work has application to radiation damage to electronics and research equipment at high energy accelerators, as well as to radiological protection. 7 refs., 4 figs

  12. Hybrid tunnel junction contacts to III–nitride light-emitting diodes

    KAUST Repository

    Young, Erin C.; Yonkee, Benjamin P.; Wu, Feng; Oh, Sang Ho; DenBaars, Steven P.; Nakamura, Shuji; Speck, James S.

    2016-01-01

    In this work, we demonstrate highly doped GaN p–n tunnel junction (TJ) contacts on III–nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10−4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a ($20\\bar{2}\\bar{1}$) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  13. Hybrid tunnel junction contacts to III–nitride light-emitting diodes

    KAUST Repository

    Young, Erin C.

    2016-01-26

    In this work, we demonstrate highly doped GaN p–n tunnel junction (TJ) contacts on III–nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10−4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a ($20\\\\bar{2}\\\\bar{1}$) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  14. Tunneling current noise spectra of biased impurity with a phonon mode

    Energy Technology Data Exchange (ETDEWEB)

    Maslova, N. S. [Moscow State University (Russian Federation); Arseev, P. I. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Mantsevich, V. N., E-mail: vmantsev@gmail.com [Moscow State University (Russian Federation)

    2016-11-15

    We report the results of theoretical investigations of the tunneling current noise spectra through a single-level impurity both in the presence and in the absence of electron–phonon interaction based on the nonequilibrium Green’s functions formalism. We show that due to the quantum nature of tunneling, the Fano factor is dramatically different from the Poisson limit both in the presence and in the absence of inelastic processes. The results are demonstrated to be sensitive to the tunneling contact parameters.

  15. Coherent tunneling of atoms from Bose-condensed gases at finite temperatures

    International Nuclear Information System (INIS)

    Luxat, David L.; Griffin, Allan

    2002-01-01

    Tunneling of atoms between two trapped Bose-condensed gases at finite temperatures is explored using a many-body linear-response tunneling formalism similar to that used in superconductors. To lowest order, the tunneling currents can be expressed quite generally in terms of the single-particle Green's functions of isolated Bose gases. A coherent first-order tunneling Josephson current between two atomic Bose-Einstein condensates is found, in addition to coherent and dissipative contributions from second-order condensate-noncondensate and noncondensate-noncondensate tunneling. Our work is a generalization of Meier and Zwerger, who recently treated tunneling between uniform atomic Bose gases. We apply our formalism to the analysis of an out-coupling experiment induced by light wave fields, using a simple Bogoliubov-Popov quasiparticle approximation for the trapped Bose gas. For tunneling into the vacuum, we recover the results of Japha, Choi, Burnett, and Band, who recently pointed out the usefulness of studying the spectrum of out-coupled atoms. In particular, we show that the small tunneling current of noncondensate atoms from a trapped Bose gas has a broad spectrum of energies, with a characteristic structure associated with the Bogoliubov quasiparticle u 2 and v 2 amplitudes

  16. Valley current characterization of high current density resonant tunnelling diodes for terahertz-wave applications

    Science.gov (United States)

    Jacobs, K. J. P.; Stevens, B. J.; Baba, R.; Wada, O.; Mukai, T.; Hogg, R. A.

    2017-10-01

    We report valley current characterisation of high current density InGaAs/AlAs/InP resonant tunnelling diodes (RTDs) grown by metal-organic vapour phase epitaxy (MOVPE) for THz emission, with a view to investigate the origin of the valley current and optimize device performance. By applying a dual-pass fabrication technique, we are able to measure the RTD I-V characteristic for different perimeter/area ratios, which uniquely allows us to investigate the contribution of leakage current to the valley current and its effect on the PVCR from a single device. Temperature dependent (20 - 300 K) characteristics for a device are critically analysed and the effect of temperature on the maximum extractable power (PMAX) and the negative differential conductance (NDC) of the device is investigated. By performing theoretical modelling, we are able to explore the effect of typical variations in structural composition during the growth process on the tunnelling properties of the device, and hence the device performance.

  17. STM tunneling through a quantum wire with a side-attached impurity

    International Nuclear Information System (INIS)

    Kwapinski, T.; Krawiec, M.; Jalochowski, M.

    2008-01-01

    The STM tunneling through a quantum wire (QW) with a side-attached impurity (atom, island) is investigated using a tight-binding model and the non-equilibrium Keldysh Green function method. The impurity can be coupled to one or more QW atoms. The presence of the impurity strongly modifies the local density of states of the wire atoms, thus influences the STM tunneling through all the wire atoms. The transport properties of the impurity itself are also investigated mainly as a function of the wire length and the way it is coupled to the wire. It is shown that the properties of the impurity itself and the way it is coupled to the wire strongly influence the STM tunneling, the density of states and differential conductance

  18. Efficient evaluation of atom tunneling combined with electronic structure calculations.

    Science.gov (United States)

    Ásgeirsson, Vilhjálmur; Arnaldsson, Andri; Jónsson, Hannes

    2018-03-14

    Methodology for finding optimal tunneling paths and evaluating tunneling rates for atomic rearrangements is described. First, an optimal JWKB tunneling path for a system with fixed energy is obtained using a line integral extension of the nudged elastic band method. Then, a calculation of the dynamics along the path is used to determine the temperature at which it corresponds to an optimal Feynman path for thermally activated tunneling (instanton) and a harmonic approximation is used to estimate the transition rate. The method is illustrated with calculations for a modified two-dimensional Müller-Brown surface but is efficient enough to be used in combination with electronic structure calculations of the energy and atomic forces in systems containing many atoms. An example is presented where tunneling is the dominant mechanism well above room temperature as an H 3 BNH 3 molecule dissociates to form H 2 . Also, a solid-state example is presented where density functional theory calculations of H atom tunneling in a Ta crystal give close agreement with experimental measurements on hydrogen diffusion over a wide range in temperature.

  19. Energy Tunneling Behavior in Geometrically Separated Wave Guides

    Directory of Open Access Journals (Sweden)

    M. Omar

    2017-10-01

    Full Text Available In this paper, characteristics of energy tunneling channel between the waveguides geometrically separated by a coaxial cable are studied.  The novel aspect of design is use of coaxial channel to connect the waveguides while maintaining the energy tunneling phenomena. As anticipated the tunneling frequency depends upon the length of wire inside the waveguide and the length of the coaxial cable. The tunneling frequency also depends upon the dielectric constant of the material inside the waveguide and coaxial cable.  At tunneling frequency the field strength (E and H in the channel is extremely high, making the channel extremely sensitive to small change in permittivity of dielectric occupying the channel.  The advantage of the proposed design is, its ability to tune to desired tunneling frequency just by changing the length of the coaxial cable without the need to redesign the waveguide height to accommodate the long tunneling wires. This structure can be used as dielectric sensor both for solid or liquid dielectrics just by placing the sample in coaxial cable cavity, contrary to previously report work where the sample has to be placed inside the waveguide.

  20. Predicting Tunnel Squeezing Using Multiclass Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2018-01-01

    Full Text Available Tunnel squeezing is one of the major geological disasters that often occur during the construction of tunnels in weak rock masses subjected to high in situ stresses. It could cause shield jamming, budget overruns, and construction delays and could even lead to tunnel instability and casualties. Therefore, accurate prediction or identification of tunnel squeezing is extremely important in the design and construction of tunnels. This study presents a modified application of a multiclass support vector machine (SVM to predict tunnel squeezing based on four parameters, that is, diameter (D, buried depth (H, support stiffness (K, and rock tunneling quality index (Q. We compiled a database from the literature, including 117 case histories obtained from different countries such as India, Nepal, and Bhutan, to train the multiclass SVM model. The proposed model was validated using 8-fold cross validation, and the average error percentage was approximately 11.87%. Compared with existing approaches, the proposed multiclass SVM model yields a better performance in predictive accuracy. More importantly, one could estimate the severity of potential squeezing problems based on the predicted squeezing categories/classes.

  1. Features of carrier tunneling between the silicon valence band and metal in devices based on the Al/high-K oxide/SiO_2/Si structure

    International Nuclear Information System (INIS)

    Vexler, M. I.; Grekhov, I. V.

    2016-01-01

    The features of electron tunneling from or into the silicon valence band in a metal–insulator–semiconductor system with the HfO_2(ZrO_2)/SiO_2 double-layer insulator are theoretically analyzed for different modes. It is demonstrated that the valence-band current plays a less important role in structures with HfO_2(ZrO_2)/SiO_2 than in structures containing only silicon dioxide. In the case of a very wide-gap high-K oxide ZrO_2, nonmonotonic behavior related to tunneling through the upper barrier is predicted for the valence-band–metal current component. The use of an insulator stack can offer certain advantages for some devices, including diodes, bipolar tunnel-emitter transistors, and resonant-tunneling diodes, along with the traditional use of high-K insulators in a field-effect transistor.

  2. Tunneling induced electron transfer between separated protons

    Science.gov (United States)

    Vindel-Zandbergen, Patricia; Meier, Christoph; Sola, Ignacio R.

    2018-04-01

    We study electron transfer between two separated protons using local control theory. In this symmetric system one can favour a slow transfer by biasing the algorithm, achieving high efficiencies for fixed nuclei. The solution can be parametrized using a sequence of a pump followed by a dump pulse that lead to tunneling-induced electron transfer. Finally, we study the effect of the nuclear kinetic energy on the efficiency. Even in the absence of relative motion between the protons, the spreading of the nuclear wave function is enough to reduce the yield of electronic transfer to less than one half.

  3. Tunnel fire dynamics

    CERN Document Server

    Ingason, Haukur; Lönnermark, Anders

    2015-01-01

    This book covers a wide range of issues in fire safety engineering in tunnels, describes the phenomena related to tunnel fire dynamics, presents state-of-the-art research, and gives detailed solutions to these major issues. Examples for calculations are provided. The aim is to significantly improve the understanding of fire safety engineering in tunnels. Chapters on fuel and ventilation control, combustion products, gas temperatures, heat fluxes, smoke stratification, visibility, tenability, design fire curves, heat release, fire suppression and detection, CFD modeling, and scaling techniques all equip readers to create their own fire safety plans for tunnels. This book should be purchased by any engineer or public official with responsibility for tunnels. It would also be of interest to many fire protection engineers as an application of evolving technical principles of fire safety.

  4. Proton tunneling in solids

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, J.

    1998-10-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  5. Proton tunneling in solids

    International Nuclear Information System (INIS)

    Kondo, J.

    1998-01-01

    The tunneling rate of the proton and its isotopes between interstitial sites in solids is studied theoretically. The phonons and/or the electrons in the solid have two effects on the tunneling phenomenon. First, they suppress the transfer integral between two neighbouring states. Second, they give rise to a finite lifetime of the proton state. Usually the second effect is large and the tunneling probability per unit time (tunneling rate) can be defined. In some cases, however, a coherent tunneling is expected and actually observed. (author)

  6. Scanning Tunneling Microscopic Observation of Adatom-Mediated Motifs on Gold-Thiol Self-assembled Monolayers at High Coverage

    DEFF Research Database (Denmark)

    Wang, Yun; Chi, Qijin; Hush, Noel S.

    2009-01-01

    the structural motifs observed on surfaces at low coverage and on gold nanoparticles to the observed spectroscopic properties of high-coverage SAMs formed by methanethiol. However, the significant role attributed to intermolecular steric packing effects suggests a lack of generality for the adatom-mediated motif......Self-assembled monolayers (SAMs) formed by chemisorption of a branched-chain alkanethiol, 2-methyl-1-propanethiol, on Au(111) surfaces were studied by in situ scanning tunneling microscopy (STM) under electrochemical potential control and analyzed using extensive density functional theory (DFT...... two R−S−Au−S−R adatom-mediated motifs per surface cell, with steric-induced variations in the adsorbate alignment inducing the observed STM image contrasts. Observed pits covering 5.6 ± 0.5% of the SAM surface are consistent with this structure. These results provide the missing link from...

  7. New directions in scanning-tunneling microscopy

    International Nuclear Information System (INIS)

    Ferrell, T.L.; Warmack, R.J.; Reddick, R.C.

    1989-01-01

    The tunneling of electrons in scanning-tunneling microscopy (STM) has permitted imaging of the electronic distribution about individual atoms on surfaces. The need for use of conducting surfaces in STM limits its applicability, and new forms of scanning microscopy have emerged as a result of interest in poorly conducting samples. Atomic force microscopy has demonstrated that the force between a surface and a probe tip can be used to image selected materials. Now being developed are magnetic probe STM's and photon tunneling microscopes in which the probe is a sharpened optical fiber. Also of great interest presently is the measurement of differential conductance of surfaces using electron STM's. This method supplies spectral information and contrast enhancement in images. At present there remains much theoretical work to be carried out in order to better characterize related data on inelastic electron tunneling, and valuable insight may be gained from data being gathered on the local work function of materials. As matters stand today, the key problems lie in determining tip and contamination effects, preparation of samples, and understanding conductivity mechanisms in very thin materials on conducting substrates. Resolution of these problems and introduction of new forms of scanning microscopy may permit novel and important applications in biology as well as surface science

  8. Laser-assisted spin-polarized transport in graphene tunnel junctions

    International Nuclear Information System (INIS)

    Ding Kaihe; Zhu Zhengang; Berakdar, Jamal

    2012-01-01

    The Keldysh nonequilibrium Green’s function method is utilized to theoretically study spin-polarized transport through a graphene spin valve irradiated by a monochromatic laser field. It is found that the bias dependence of the differential conductance exhibits successive peaks corresponding to the resonant tunneling through the photon-assisted sidebands. The multi-photon processes originate from the combined effects of the radiation field and the graphene tunneling properties, and are shown to be substantially suppressed in a graphene spin valve which results in a decrease of the differential conductance for a high bias voltage. We also discuss the appearance of a dynamical gap around zero bias due to the radiation field. The gap width can be tuned by changing the radiation electric field strength and the frequency. This leads to a shift of the resonant peaks in the differential conductance. We also demonstrate numerically the dependences of the radiation and spin valve effects on the parameters of the external fields and those of the electrodes. We find that the combined effects of the radiation field, the graphene and the spin valve properties bring about an oscillatory behavior in the tunnel magnetoresistance, and this oscillatory amplitude can be changed by scanning the radiation field strength and/or the frequency. (paper)

  9. Small-size low-temperature scanning tunnel microscope

    International Nuclear Information System (INIS)

    Al'tfeder, I.B.; Khajkin, M.S.

    1989-01-01

    A small-size scanning tunnel microscope, designed for operation in transport helium-filled Dewar flasks is described. The microscope design contains a device moving the pin to the tested sample surface and a piezoelectric fine positioning device. High vibration protection of the microscope is provided by its suspension using silk threads. The small-size scanning tunnel microscope provides for atomic resolution

  10. Effective mass approximation for tunneling states with dissipation

    International Nuclear Information System (INIS)

    Chen Hong; Wu Xiang.

    1987-08-01

    The dissipative tunneling in an asymmetric double-well potential is studied at low temperature. With effective mass approximation, the dissipation can be replaced by a temperature-dependent effective mass. The effective mass increases with decreasing temperature and becomes infinite at T=0. The partition function of the system is derived, which has the same form as that of a non-dissipative tunneling system. Some possible applications in glasses and heavy fermion system are also discussed. (author). 21 refs, 1 fig

  11. Gate tunneling current and quantum capacitance in metal-oxide-semiconductor devices with graphene gate electrodes

    Science.gov (United States)

    An, Yanbin; Shekhawat, Aniruddh; Behnam, Ashkan; Pop, Eric; Ural, Ant

    2016-11-01

    Metal-oxide-semiconductor (MOS) devices with graphene as the metal gate electrode, silicon dioxide with thicknesses ranging from 5 to 20 nm as the dielectric, and p-type silicon as the semiconductor are fabricated and characterized. It is found that Fowler-Nordheim (F-N) tunneling dominates the gate tunneling current in these devices for oxide thicknesses of 10 nm and larger, whereas for devices with 5 nm oxide, direct tunneling starts to play a role in determining the total gate current. Furthermore, the temperature dependences of the F-N tunneling current for the 10 nm devices are characterized in the temperature range 77-300 K. The F-N coefficients and the effective tunneling barrier height are extracted as a function of temperature. It is found that the effective barrier height decreases with increasing temperature, which is in agreement with the results previously reported for conventional MOS devices with polysilicon or metal gate electrodes. In addition, high frequency capacitance-voltage measurements of these MOS devices are performed, which depict a local capacitance minimum under accumulation for thin oxides. By analyzing the data using numerical calculations based on the modified density of states of graphene in the presence of charged impurities, it is shown that this local minimum is due to the contribution of the quantum capacitance of graphene. Finally, the workfunction of the graphene gate electrode is extracted by determining the flat-band voltage as a function of oxide thickness. These results show that graphene is a promising candidate as the gate electrode in metal-oxide-semiconductor devices.

  12. The design of an aerosol test tunnel for occupational hygiene investigations

    Science.gov (United States)

    Blackford, D. B.; Heighington, K.

    An aerosol test tunnel which provides large working sections is described and its performance evaluated. Air movement within the tunnel is achieved with a powerful D.C. motor and centrifugal fan. Test dusts are dispersed and injected into the tunnel by means of an aerosol generator. A unique divertor valve allows aerosol laden air to be either cleaned by a commercial pulse jet filtration unit or recycled around the tunnel to obtain a high aerosol concentration. The tunnel instrumentation is managed by a microcomputer which automatically controls the airspeed and aerosol concentration.

  13. Fluctuation Dominated Josephson Tunneling with a Scanning Tunneling Microscope

    International Nuclear Information System (INIS)

    Naaman, O.; Teizer, W.; Dynes, R. C.

    2001-01-01

    We demonstrate Josephson tunneling in vacuum tunnel junctions formed between a superconducting scanning tunneling microscope tip and a Pb film, for junction resistances in the range 50--300 k Omega. We show that the superconducting phase dynamics is dominated by thermal fluctuations, and that the Josephson current appears as a peak centered at small finite voltage. In the presence of microwave fields (f=15.0 GHz) the peak decreases in magnitude and shifts to higher voltages with increasing rf power, in agreement with theory

  14. Effect Of Agrotechnical Measures And Varieties On Seasonal Dynamics Of Tetranychus Urticae Koch (Acari, Trombidiformes, Tetranychidae On High Tunnel-Cultivated Garden Strawberries

    Directory of Open Access Journals (Sweden)

    Salmane Ineta

    2015-04-01

    Full Text Available The aim of the present study was to determine the seasonal pattern of two-spotted spider mite Tetranychus urticae on strawberries cultivated in polythene-covered high tunnels in temperate climatic conditions. Various cultivars were used and the effect of modification of plant covering indices on abundance and incidence of these mites was also tested. The number of two-spotted spider mites was relatively low at the beginning of the vegetation season and started to increase when average air temperature rose above 20 to 25 °C. In the experiment two types of tunnels differing in additional plant cover were used. The maximum mite abundance did not significantly vary between varieties in tunnel 1 conditions, but it was significantly lower for variety 'Sonata' in tunnel 2 conditions. Mite numbers significantly declined after strawberry foliage mowing and removal of polythene cover. Mite development was prolonged in tunnel 1, where additional cover of plants was used and higher early season air temperature was recorded in comparison to tunnel 2. It was concluded that increase in early season temperature can increase two-spotted spider mite abundance and have a more negative effect on strawberry plants in respect of foliage damage by mites.

  15. The ISI Tunnel

    Science.gov (United States)

    1993-10-01

    DP /etc/tunnelvisa p zephyr dark -star TCP /etc/tunnelvisa p zephyr dak’star ICMP /etc/tunnelvisa p zephyr quark MDP /etc/tunnelvisa p zephyr quark ...drax-net-yp 128.9.32.2 1 route add quark -net-yp 128.9.32.3 1 route add vlsi-net-yp 128.9.32.4 1 route add darkstar-net-yp 128.9.32.3 1 route add rocky...TCP /etc/tunnel-visa p zephyr quark ICMP /etc/tunnel-visa p zephyr drax tTI)P /etc/tunnel-visa p zephyr drax TCP /etc/tunnel_visa p zephyr drax ICMP

  16. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur; Useinov, Niazbeck Kh H; Tagirov, Lenar R.; Kosel, Jü rgen

    2011-01-01

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can

  17. Cryogenic wind tunnel technology. A way to measurement at higher Reynolds numbers

    Science.gov (United States)

    Beck, J. W.

    1984-01-01

    The goals, design, problems, and value of cryogenic transonic wind tunnels being developed in Europe are discussed. The disadvantages inherent in low-Reynolds-number (Re) wind tunnel simulations of aircraft flight at high Re are reviewed, and the cryogenic tunnel is shown to be the most practical method to achieve high Re. The design proposed for the European Transonic Wind tunnel (ETW) is presented: parameters include cross section. DISPLAY 83A46484/2 = 4 sq m, operating pressure = 5 bar, temperature = 110-120 K, maximum Re = 40 x 10 to the 6th, liquid N2 consumption = 40,000 metric tons/year, and power = 39,5 MW. The smaller Cologne subsonic tunnel being adapted to cryogenic use for preliminary studies is described. Problems of configuration, materials, and liquid N2 evaporation and handling and the research underway to solve them are outlined. The benefits to be gained by the construction of these costly installations are seen more in applied aerodynamics than in basic research in fluid physics. The need for parallel development of both high Re tunnels and computers capable of performing high-Re numerical analysis is stressed.

  18. Tunneling through landsliding zone; Jisuberi chitainai no tunnel seko

    Energy Technology Data Exchange (ETDEWEB)

    Konbu, A; Hatabu, K; Kano, T [Tekken Corp., Tokyo (Japan)

    1994-08-01

    At the new tunnel construction site of the Shirakata tunnel on the Obama line in Yamaguchi Prefecture, a landsliding occurred at about 60 meters to the upper portion obliquely to the right hand side of the shaft when the excavation progressed to about 10 meters from the starting side. The landslide caused displacement at the shaft opening and change in the supports. As a result of the re-investigation, it was confirmed that the slide face went through the tunnel cross section. The measures taken were removal of the upper soil and an adoption of the all ground fastening (AGF) method (injection type long tip fastening method) as an auxiliary construction to stop loosening of the natural ground associated with the tunnel excavation. The result was a completion of tunneling the landsliding zone without a problem. This paper reports the AGF method adopted in the above construction, together with the construction works and natural ground conditions. The AGF method is about the same as the pipe roof method with regard to the natural ground accepting mechanism and the materials used. The difference is building an improved body in a limited area in the natural ground around the steel pipes by injecting the fixing material. The use of this method caused no problems in subsidence and displacement in the surrounding ground, and completed the tunneling construction without an unusual event. 1 ref., 7 figs., 2 tabs.

  19. Comparison of Ares I-X Wind-Tunnel Derived Buffet Environment with Flight Data

    Science.gov (United States)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.

    2011-01-01

    The Ares I-X Flight Test Vehicle (FTV), launched in October 2009, carried with it over 243 buffet verification pressure sensors and was one of the most heavily instrumented launch vehicle flight tests. This flight test represented a unique opportunity for NASA and its partners to compare the wind-tunnel derived buffet environment with that measured during the flight of Ares I-X. It is necessary to define the launch vehicle buffet loads to ensure that structural components and vehicle subsystems possess adequate strength, stress, and fatigue margins when the vehicle structural dynamic response to buffet forcing functions are considered. Ares I-X buffet forcing functions were obtained via wind-tunnel testing of a rigid buffet model (RBM) instrumented with hundreds of unsteady pressure transducers designed to measure the buffet environment across the desired frequency range. This paper discusses the comparison of RBM and FTV buffet environments, including fluctuating pressure coefficient and normalized sectional buffet forcing function root-mean-square magnitudes, frequency content of power-spectral density functions, and force magnitudes of an alternating flow phenomena. Comparison of wind-tunnel model and flight test vehicle buffet environments show very good agreement with root-mean-square magnitudes of buffet forcing functions at the majority of vehicle stations. Spectra proved a challenge to compare because of different wind-tunnel and flight test conditions and data acquisition rates. However, meaningful and promising comparisons of buffet spectra are presented. Lastly, the buffet loads resulting from the transition of subsonic separated flow to supersonic attached flow were significantly over-predicted by wind-tunnel results.

  20. Tunneling current in HfO2 and Hf0.5Zr0.5O2-based ferroelectric tunnel junction

    Science.gov (United States)

    Dong, Zhipeng; Cao, Xi; Wu, Tong; Guo, Jing

    2018-03-01

    Ferroelectric tunnel junctions (FTJs) have been intensively explored for future low power data storage and information processing applications. Among various ferroelectric (FE) materials studied, HfO2 and H0.5Zr0.5O2 (HZO) have the advantage of CMOS process compatibility. The validity of the simple effective mass approximation, for describing the tunneling process in these materials, is examined by computing the complex band structure from ab initio simulations. The results show that the simple effective mass approximation is insufficient to describe the tunneling current in HfO2 and HZO materials, and quantitative accurate descriptions of the complex band structures are indispensable for calculation of the tunneling current. A compact k . p Hamiltonian is parameterized to and validated by ab initio complex band structures, which provides a method for efficiently and accurately computing the tunneling current in HfO2 and HZO. The device characteristics of a metal/FE/metal structure and a metal/FE/semiconductor (M-F-S) structure are investigated by using the non-equilibrium Green's function formalism with the parameterized effective Hamiltonian. The result shows that the M-F-S structure offers a larger resistance window due to an extra barrier in the semiconductor region at off-state. A FTJ utilizing M-F-S structure is beneficial for memory design.

  1. Effects of statistical distribution of joint trace length on the stability of tunnel excavated in jointed rock mass

    Directory of Open Access Journals (Sweden)

    Kayvan Ghorbani

    2015-12-01

    Full Text Available The rock masses in a construction site of underground cavern are generally not continuous, due to the presence of discontinuities, such as bedding, joints, faults, and fractures. The performance of an underground cavern is principally ruled by the mechanical behaviors of the discontinuities in the vicinity of the cavern. During underground excavation, many surrounding rock failures have close relationship with joints. The stability study on tunnel in jointed rock mass is of importance to rock engineering, especially tunneling and underground space development. In this study, using the probability density distribution functions of negative exponential, log-normal and normal, we investigated the effect of joint trace length on the stability parameters such as stress and displacement of tunnel constructed in rock mass using UDEC (Universal Distinct Element Code. It was obtained that normal distribution function of joint trace length is more critical on the stability of tunnel, and exponential distribution function has less effect on the tunnel stability compared to the two other distribution functions.

  2. Development of the tunneling junction simulation environment for scanning tunneling microscope evaluation

    International Nuclear Information System (INIS)

    Gajewski, Krzysztof; Piasecki, Tomasz; Kopiec, Daniel; Gotszalk, Teodor

    2017-01-01

    Proper configuration of scanning tunneling microscope electronics plays an important role in the atomic scale resolution surface imaging. Device evaluation in the tunneling contact between scanning tip and sample may be prone to the surface quality or mechanical disturbances. Thus the use of tunneling junction simulator makes electronics testing more reliable and increases its repeatability. Here, we present the theoretical background enabling the proper selection of electronic components circuitry used as a tunneling junction simulator. We also show how to simulate mechanics related to the piezoelectric scanner, which is applied in real experiments. Practical use of the proposed simulator and its application in metrological characterization of the developed scanning tunneling microscope is also shown. (paper)

  3. Tunneling in green tea: understanding the antioxidant activity of catechol-containing compounds. A variational transition-state theory study.

    Science.gov (United States)

    Tejero, Ismael; Gonzalez-García, Núria; Gonzalez-Lafont, Angels; Lluch, José M

    2007-05-09

    The catechol functionality present in the catechins is responsible for the protective effects exerted by green tea against a wide range of human diseases. High-level electronic structure calculations and canonical variational transition-state theory including multidimensional tunneling corrections have allowed us to understand the key factors of the antioxidant effectiveness of the catechol group. This catechol group forms two hydrogen bonds with the two oxygen atoms of the lipid peroxyl radical, leading to a very compact reactant complex. This fact produces an extremely narrow adiabatic potential-energy profile corresponding to the hydrogen abstraction by the peroxyl radical, which makes it possible for a huge tunneling contribution to take place. So, quantum-mechanical tunneling highly increases the corresponding rate constant value, in such a way that catechins become able to trap the lipid peroxyl radicals in a dominant competition with the very damaging free-radical chain-lipid peroxidation reaction.

  4. Fabrication of magnetic tunnel junctions with a single-crystalline LiF tunnel barrier

    Science.gov (United States)

    Krishna Narayananellore, Sai; Doko, Naoki; Matsuo, Norihiro; Saito, Hidekazu; Yuasa, Shinji

    2018-04-01

    We fabricated Fe/LiF/Fe magnetic tunnel junctions (MTJs) by molecular beam epitaxy on a MgO(001) substrate, where LiF is an insulating tunnel barrier with the same crystal structure as MgO (rock-salt type). Crystallographical studies such as transmission electron microscopy and nanobeam electron diffraction observations revealed that the LiF tunnel barrier is single-crystalline and has a LiF(001)[100] ∥ bottom Fe(001)[110] crystal orientation, which is constructed in the same manner as MgO(001) on Fe(001). Also, the in-plane lattice mismatch between the LiF tunnel barrier and the Fe bottom electrode was estimated to be small (about 0.5%). Despite such advantages for the tunnel barrier of the MTJ, the observed tunnel magnetoresistance (MR) ratio was low (˜6% at 20 K) and showed a significant decrease with increasing temperature (˜1% at room temperature). The results imply that indirect tunneling and/or thermally excited carriers in the LiF tunnel barrier, in which the current basically is not spin-polarized, play a major role in electrical transport in the MTJ.

  5. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials

    Science.gov (United States)

    Wang, Pan; Krasavin, Alexey V.; Nasir, Mazhar E.; Dickson, Wayne; Zayats, Anatoly V.

    2018-02-01

    Non-equilibrium hot carriers formed near the interfaces of semiconductors or metals play a crucial role in chemical catalysis and optoelectronic processes. In addition to optical illumination, an efficient way to generate hot carriers is by excitation with tunnelling electrons. Here, we show that the generation of hot electrons makes the nanoscale tunnel junctions highly reactive and facilitates strongly confined chemical reactions that can, in turn, modulate the tunnelling processes. We designed a device containing an array of electrically driven plasmonic nanorods with up to 1011 tunnel junctions per square centimetre, which demonstrates hot-electron activation of oxidation and reduction reactions in the junctions, induced by the presence of O2 and H2 molecules, respectively. The kinetics of the reactions can be monitored in situ following the radiative decay of tunnelling-induced surface plasmons. This electrically driven plasmonic nanorod metamaterial platform can be useful for the development of nanoscale chemical and optoelectronic devices based on electron tunnelling.

  6. Atomic scale investigations of the gate controlled tunneling effect in graphyne nanoribbon

    International Nuclear Information System (INIS)

    Yang, Wen; Wang, Lu-Hao; Geng, Yang; Sun, Qing-Qing; Zhou, Peng; Ding, Shi-Jing; Wei Zhang, David

    2013-01-01

    Configuration and transport properties of zigzag graphyne nanoribbon (n = 2) are investigated by means of the first-principles calculations and non-equilibrium Green's function in this work. We demonstrated the controllability of the graphyne's conductivity by gate bias, and the tunneling behavior induced by gate and drain voltages was investigated systemically. The characteristics of I d -V d , I d -V g , as well as the evolutions of current with electron temperature elevation were explored. The device exhibits a tunneling ratio around 10 3 , and the state art of tunneling operations of the tunneling field effect transistor in this split-new material was achieved

  7. Spin-dependent tunneling conductance in 2D structures in zero magnetic field

    International Nuclear Information System (INIS)

    Rozhansky, I.V.; Averkiev, N.S.

    2009-01-01

    The influence of the spin-orbit interaction on the tunneling between two-dimensional electron layers is considered. A general expression for the tunneling current is obtained with the Rashba and Dresselhaus effects and also elastic scattering of charge carriers on impurities taken into account. It is shown that the particular form of the tunneling conductance as a function of the voltage between layers is extremely sensitive to the relationship between the Rashba and Dresselhaus parameters. This makes it possible to determine the parameters of the spin-orbit interaction and the quantum scattering time directly from measurements of the tunneling conductance in the absence of magnetic field

  8. Transmittance and Tunneling Current through a Trapezoidal Barrier under Spin Polarization Consideration

    Science.gov (United States)

    Noor, F. A.; Nabila, E.; Mardianti, H.; Ariani, T. I.; Khairurrijal

    2018-04-01

    The transmittance and tunneling current in heterostructures under spin polarization consideration were studied by employing a zinc-blended structure for the heterostructures. An electron tunnels through a potential barrier by applying a bias voltage to the barrier, which is called the trapezoidal potential barrier. In order to study the transmittance, an Airy wave function approach was employed to find the transmittance. The obtained transmittance was then utilized to compute the tunneling current by using a Gauss quadrature method. It was shown that the transmittances were asymmetric with the incident angle of the electron. It was also shown that the tunneling currents increased as the bias voltage increased.

  9. Quasiparticle lifetimes and tunneling times in a superconductor-insulator-superconductor tunnel junction with spatially inhomogeneous electrodes

    International Nuclear Information System (INIS)

    Golubov, A.A.; Houwman, E.P.; Gijsbertsen, J.G.; Flokstra, J.; Rogalla, H.; le Grand, J.B.; de Korte, P.A.J.

    1994-01-01

    The low-energy quasiparticle scattering and recombination lifetimes for a proximity sandwich of two superconductors S and S' with different bulk energy gaps, are calculated as a function of the spatial coordinate and temperature. The spatial dependence of the order parameter and density of states are calculated on the basis of a microscopic model of the proximity effect, based on the Usadel equations, for dirty superconductors in thermal equilibrium. A zero boundary resistance between S and S' and a Boltzmann-like energy distribution of the excess quasiparticles are assumed. In the case of a small diffusion time constant an effective quasiparticle relaxation rate into and excitation rate out of the reduced gap region in the SS' sandwich are obtained as a function of (finite, but low) temperature and strength of the proximity effect, determined by the parameter γ m , by averaging over the energies and positions of the quasiparticles. In the same way effective tunneling times for electrons and holes tunneling out of the trap in the SS' sandwich to the other electrode of an SS'IS''S junction are determined as a function of temperature, voltage, and γ m

  10. Quantum tunneling time

    International Nuclear Information System (INIS)

    Wang, Z.S.; Lai, C.H.; Oh, C.H.; Kwek, L.C.

    2004-01-01

    We present a calculation of quantum tunneling time based on the transition duration of wave peak from one side of a barrier to the other. In our formulation, the tunneling time comprises a real and an imaginary part. The real part is an extension of the phase tunneling time with quantum corrections whereas the imaginary time is associated with energy derivatives of the probability amplitudes

  11. Modeling Open-Loop MEMS Tunneling Accelerometer Based on Circular Plate

    Directory of Open Access Journals (Sweden)

    Hossein Jodat Kordlar

    2007-04-01

    Full Text Available In this paper open-loop MEMS tunneling accelerometer was modeled based on a clamped micro circular plate with a tip tunneling at its centre. Mechanical behavior of the micro plate was studied deriving governing equation based on classic Kirchhoff thin plate theory and it was discretized using Galerkin method. Dynamic response of the proposed accelerometer due to step and harmonic external excitation was studied and the magnitude of the applied acceleration was identified by measuring of the changing of tunneling current. Obtained results show that the proposed tunneling accelerometer very sensitive and it can be measure acceleration with very high resolution but very small gap of tip tunneling limit the range of measurable acceleration.

  12. Importance of interlayer pair tunneling: A variational perspective

    International Nuclear Information System (INIS)

    Medhi, Amal; Basu, Saurabh

    2011-01-01

    We study the effect of interlayer pair tunneling in a bilayer superconductor where each layer is described by a two dimensional t-J model and the two layers are connected by the Josephson pair tunneling term. We study this model using a grand canonical variational Monte Carlo (GVMC) method, for which we develop a new algorithm to perform Monte Carlo simulation of a system with fluctuating particle number. The variational wavefunction is taken to be the product of two Gutzwiller projected d-wave BCS wavefunctions with variable particle densities, one for each layer. We calculate the energy of the above state as a function of the d-wave superconducting gap parameter, Δ. We find that the interlayer pair tunneling energy, E perpendicular shows interesting variation with Δ. E perpendicular tends to enhance the optimal value of Δ, thereby the superconducting pairing. However the magnitude of the tunneling energy is found to be too small to have any appreciable effect on the physical properties. While the result is supported by early experiments and hence may appear known to the community, the current work presents a new approach to the problem and confirms the diminished role of interlayer pair tunneling by directly calculating its contribution to superconducting condensation energy.

  13. Tunneling spectroscopy in NbN based Josephson junctions

    International Nuclear Information System (INIS)

    Chicault, R.; Villegier, J.C.

    1984-08-01

    Tunneling spectroscopy in high quality NbN-oxide-Pb(In) diodes offers a direct observation of various NbN and Pb phonon frequences as other vibrating modes existing near the tunnel barrier. The large number of peaks attribuated to dips in the transverses and longitudinal acoustic branches of NbN dispersion curves are found to confirm the previous theory developing the contribution of these modes to the strong coupling and high Tc behavior of NbN

  14. Tunneling processes into localized subgap states in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, Michael; Heinrich, Benjamin W.; Franke, Katharina J. [Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Pientka, Falko; Peng, Yang; Oppen, Felix von [Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Dahlem Center for Complex Quantum Systems, Freie Universitaet Berlin, 14195 Berlin (Germany)

    2016-07-01

    The Yu-Shiba-Rusinov states bound by magnetic impurities in conventional s-wave superconductors are a simple model system for probing the competition between superconducting and magnetic correlations. Shiba states can be observed in scanning tunneling spectroscopy (STS) as a pair of resonances at positive and negative bias voltages in the superconducting gap. These resonances have been interpreted in terms of single-electron tunneling into the localized sub-gap states. This requires relaxation mechanisms that depopulate the state after an initial tunneling event. Recently, theory suggests that the current can also be carried by Andreev processes which resonantly transfer a Cooper pair into the superconductor. We performed high-resolution STS experiments on single adatom Shiba states on the superconductor Pb, and provide evidence for the existence of two transport regimes. The single-electron processes dominate at large tip-sample distances and small tunneling currents, whereas Andreev processes become important at stronger tunneling. Our conclusions are based on a careful comparison of experiment and theory.

  15. Modeling of Turbidity Variation in Two Reservoirs Connected by a Water Transfer Tunnel in South Korea

    Directory of Open Access Journals (Sweden)

    Jae Chung Park

    2017-06-01

    Full Text Available The Andong and Imha reservoirs in South Korea are connected by a water transfer tunnel. The turbidity of the Imha reservoir is much higher than that of the Andong reservoir. Thus, it is necessary to examine the movement of turbidity between the two reservoirs via the water transfer tunnel. The aim of this study was to investigate the effect of the water transfer tunnel on the turbidity behavior of the two connecting reservoirs and to further understand the effect of reservoir turbidity distribution as a function of the selective withdrawal depth. This study applied the CE-QUAL-W2, a water quality and 2-dimensional hydrodynamic model, for simulating the hydrodynamic processes of the two reservoirs. Results indicate that, in the Andong reservoir, the turbidity of the released water with the water transfer tunnel was similar to that without the tunnel. However, in the Imha reservoir, the turbidity of the released water with the water transfer tunnel was lower than that without the tunnel. This can be attributed to the higher capacity of the Andong reservoir, which has double the storage of the Imha reservoir. Withdrawal turbidity in the Imha reservoir was investigated using the water transfer tunnel. This study applied three withdrawal selections as elevation (EL. 141.0 m, 146.5 m, and 152.0 m. The highest withdrawal turbidity resulted in EL. 141.0 m, which indicates that the high turbidity current is located at a vertical depth of about 20–30 m because of the density difference. These results will be helpful for understanding the release and selective withdrawal turbidity behaviors for a water transfer tunnel between two reservoirs.

  16. Enhanced voltage-controlled magnetic anisotropy in magnetic tunnel junctions with an MgO/PZT/MgO tunnel barrier

    Science.gov (United States)

    Chien, Diana; Li, Xiang; Wong, Kin; Zurbuchen, Mark A.; Robbennolt, Shauna; Yu, Guoqiang; Tolbert, Sarah; Kioussis, Nicholas; Khalili Amiri, Pedram; Wang, Kang L.; Chang, Jane P.

    2016-03-01

    Compared with current-controlled magnetization switching in a perpendicular magnetic tunnel junction (MTJ), electric field- or voltage-induced magnetization switching reduces the writing energy of the memory cell, which also results in increased memory density. In this work, an ultra-thin PZT film with high dielectric constant was integrated into the tunneling oxide layer to enhance the voltage-controlled magnetic anisotropy (VCMA) effect. The growth of MTJ stacks with an MgO/PZT/MgO tunnel barrier was performed using a combination of sputtering and atomic layer deposition techniques. The fabricated MTJs with the MgO/PZT/MgO barrier demonstrate a VCMA coefficient, which is ˜40% higher (19.8 ± 1.3 fJ/V m) than the control sample MTJs with an MgO barrier (14.3 ± 2.7 fJ/V m). The MTJs with the MgO/PZT/MgO barrier also possess a sizeable tunneling magnetoresistance (TMR) of more than 50% at room temperature, comparable to the control MTJs with an MgO barrier. The TMR and enhanced VCMA effect demonstrated simultaneously in this work make the MgO/PZT/MgO barrier-based MTJs potential candidates for future voltage-controlled, ultralow-power, and high-density magnetic random access memory devices.

  17. Convexity, gauge-dependence and tunneling rates

    Energy Technology Data Exchange (ETDEWEB)

    Plascencia, Alexis D.; Tamarit, Carlos [Institute for Particle Physics Phenomenology, Durham University,South Road, DH1 3LE (United Kingdom)

    2016-10-19

    We clarify issues of convexity, gauge-dependence and radiative corrections in relation to tunneling rates. Despite the gauge dependence of the effective action at zero and finite temperature, it is shown that tunneling and nucleation rates remain independent of the choice of gauge-fixing. Taking as a starting point the functional that defines the transition amplitude from a false vacuum onto itself, it is shown that decay rates are exactly determined by a non-convex, false vacuum effective action evaluated at an extremum. The latter can be viewed as a generalized bounce configuration, and gauge-independence follows from the appropriate Nielsen identities. This holds for any election of gauge-fixing that leads to an invertible Faddeev-Popov matrix.

  18. Convexity, gauge-dependence and tunneling rates

    International Nuclear Information System (INIS)

    Plascencia, Alexis D.; Tamarit, Carlos

    2016-01-01

    We clarify issues of convexity, gauge-dependence and radiative corrections in relation to tunneling rates. Despite the gauge dependence of the effective action at zero and finite temperature, it is shown that tunneling and nucleation rates remain independent of the choice of gauge-fixing. Taking as a starting point the functional that defines the transition amplitude from a false vacuum onto itself, it is shown that decay rates are exactly determined by a non-convex, false vacuum effective action evaluated at an extremum. The latter can be viewed as a generalized bounce configuration, and gauge-independence follows from the appropriate Nielsen identities. This holds for any election of gauge-fixing that leads to an invertible Faddeev-Popov matrix.

  19. Numerical Simulation of Tunneling Current in an Anisotropic Metal-Oxide-Semiconductor Capacitor

    Directory of Open Access Journals (Sweden)

    Khairurrijal khairurrijal

    2012-09-01

    Full Text Available In this paper, we have developed a model of the tunneling currents through a high-k dielectric stack in MOS capacitors with anisotropic masses. The transmittance was numerically calculated by employing a transfer matrix method and including longitudinal-transverse kinetic energy coupling which is represented by an electron phase velocity in the gate. The transmittance was then applied to calculate tunneling currents in TiN/HfSiOxN/SiO2/p-Si MOS capacitors. The calculated results show that as the gate electron velocity increases, the transmittance decreases and therefore the tunneling current reduces. The tunneling current becomes lower as the effective oxide thickness (EOT of HfSiOxN layer increases. When the incident electron passed through the barriers in the normal incident to the interface, the electron tunneling process becomes easier. It was also shown that the tunneling current was independent of the substrate orientation. Moreover, the model could be used in designing high speed MOS devices with low tunneling currents.

  20. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian

    2014-12-08

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green\\'s function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  1. Spin-transfer torque in spin filter tunnel junctions

    KAUST Repository

    Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek

    2014-01-01

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  2. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  3. Effect of low and staggered gap quantum wells inserted in GaAs tunnel junctions

    Science.gov (United States)

    Louarn, K.; Claveau, Y.; Marigo-Lombart, L.; Fontaine, C.; Arnoult, A.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.

    2018-04-01

    In this article, we investigate the impact of the insertion of either a type I InGaAs or a type II InGaAs/GaAsSb quantum well on the performances of MBE-grown GaAs tunnel junctions (TJs). The devices are designed and simulated using a quantum transport model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We experimentally observe significant improvements of the peak tunneling current density on both heterostructures with a 460-fold increase for a moderately doped GaAs TJ when the InGaAs QW is inserted at the junction interface, and a 3-fold improvement on a highly doped GaAs TJ integrating a type II InGaAs/GaAsSb QW. Thus, the simple insertion of staggered band lineup heterostructures enables us to reach a tunneling current well above the kA cm‑2 range, equivalent to the best achieved results for Si-doped GaAs TJs, implying very interesting potential for TJ-based components, such as multi-junction solar cells, vertical cavity surface emitting lasers and tunnel-field effect transistors.

  4. Strongly Enhanced Tunneling at Total Charge Neutrality in Double-Bilayer Graphene-WSe_{2} Heterostructures.

    Science.gov (United States)

    Burg, G William; Prasad, Nitin; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; MacDonald, Allan H; Register, Leonard F; Tutuc, Emanuel

    2018-04-27

    We report the experimental observation of strongly enhanced tunneling between graphene bilayers through a WSe_{2} barrier when the graphene bilayers are populated with carriers of opposite polarity and equal density. The enhanced tunneling increases sharply in strength with decreasing temperature, and the tunneling current exhibits a vertical onset as a function of interlayer voltage at a temperature of 1.5 K. The strongly enhanced tunneling at overall neutrality departs markedly from single-particle model calculations that otherwise match the measured tunneling current-voltage characteristics well, and suggests the emergence of a many-body state with condensed interbilayer excitons when electrons and holes of equal densities populate the two layers.

  5. Strongly Enhanced Tunneling at Total Charge Neutrality in Double-Bilayer Graphene-WSe2 Heterostructures

    Science.gov (United States)

    Burg, G. William; Prasad, Nitin; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; MacDonald, Allan H.; Register, Leonard F.; Tutuc, Emanuel

    2018-04-01

    We report the experimental observation of strongly enhanced tunneling between graphene bilayers through a WSe2 barrier when the graphene bilayers are populated with carriers of opposite polarity and equal density. The enhanced tunneling increases sharply in strength with decreasing temperature, and the tunneling current exhibits a vertical onset as a function of interlayer voltage at a temperature of 1.5 K. The strongly enhanced tunneling at overall neutrality departs markedly from single-particle model calculations that otherwise match the measured tunneling current-voltage characteristics well, and suggests the emergence of a many-body state with condensed interbilayer excitons when electrons and holes of equal densities populate the two layers.

  6. Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor

    International Nuclear Information System (INIS)

    Jiang Zhi; Zhuang Yi-Qi; Li Cong; Wang Ping; Liu Yu-Qi

    2016-01-01

    Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (D it ) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. (paper)

  7. Four-state non-volatile memory in a multiferroic spin filter tunnel junction

    Science.gov (United States)

    Ruan, Jieji; Li, Chen; Yuan, Zhoushen; Wang, Peng; Li, Aidong; Wu, Di

    2016-12-01

    We report a spin filter type multiferroic tunnel junction with a ferromagnetic/ferroelectric bilayer barrier. Memory functions of a spin filter magnetic tunnel junction and a ferroelectric tunnel junction are combined in this single device, producing four non-volatile resistive states that can be read out in a non-destructive manner. This concept is demonstrated in a LaNiO3/Pr0.8Ca0.2MnO3/BaTiO3/La0.7Sr0.3MnO3 all-oxide tunnel junction. The ferromagnetic insulator Pr0.8Ca0.2MnO3 serves as the spin filter and the ferromagnetic metal La0.7Sr0.3MnO3 is the spin analyzer. The ferroelectric polarization reversal in the BaTiO3 barrier switches the tunneling barrier height to produce a tunneling electroresistance. The ferroelectric switching also modulates the spin polarization and the spin filtering efficiency in Pr0.8Ca0.2MnO3.

  8. Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance.

    Science.gov (United States)

    Wang, Mengxing; Cai, Wenlong; Cao, Kaihua; Zhou, Jiaqi; Wrona, Jerzy; Peng, Shouzhong; Yang, Huaiwen; Wei, Jiaqi; Kang, Wang; Zhang, Youguang; Langer, Jürgen; Ocker, Berthold; Fert, Albert; Zhao, Weisheng

    2018-02-14

    Perpendicular magnetic tunnel junctions based on MgO/CoFeB structures are of particular interest for magnetic random-access memories because of their excellent thermal stability, scaling potential, and power dissipation. However, the major challenge of current-induced switching in the nanopillars with both a large tunnel magnetoresistance ratio and a low junction resistance is still to be met. Here, we report spin transfer torque switching in nano-scale perpendicular magnetic tunnel junctions with a magnetoresistance ratio up to 249% and a resistance area product as low as 7.0 Ω µm 2 , which consists of atom-thick W layers and double MgO/CoFeB interfaces. The efficient resonant tunnelling transmission induced by the atom-thick W layers could contribute to the larger magnetoresistance ratio than conventional structures with Ta layers, in addition to the robustness of W layers against high-temperature diffusion during annealing. The critical switching current density could be lower than 3.0 MA cm -2 for devices with a 45-nm radius.

  9. Design and simulation of a novel GaN based resonant tunneling high electron mobility transistor on a silicon substrate

    International Nuclear Information System (INIS)

    Chowdhury, Subhra; Biswas, Dhrubes; Chattaraj, Swarnabha

    2015-01-01

    For the first time, we have introduced a novel GaN based resonant tunneling high electron mobility transistor (RTHEMT) on a silicon substrate. A monolithically integrated GaN based inverted high electron mobility transistor (HEMT) and a resonant tunneling diode (RTD) are designed and simulated using the ATLAS simulator and MATLAB in this study. The 10% Al composition in the barrier layer of the GaN based RTD structure provides a peak-to-valley current ratio of 2.66 which controls the GaN based HEMT performance. Thus the results indicate an improvement in the current–voltage characteristics of the RTHEMT by controlling the gate voltage in this structure. The introduction of silicon as a substrate is a unique step taken by us for this type of RTHEMT structure. (paper)

  10. Thermovoltages in vacuum tunneling investigated by scanning tunneling microscopy

    OpenAIRE

    Hoffmann, D. H.; Rettenberger, Armin; Grand, Jean Yves; Läuger, K.; Leiderer, Paul; Dransfeld, Klaus; Möller, Rolf

    1995-01-01

    By heating the tunneling tip of a scanning tunneling microscope the thermoelectric properties of a variable vacuum barrier have been investigated. The lateral variation of the observed thermovoltage will be discussed for polycrystalline gold, stepped surfaces of silver, as well as for copper islands on silver.

  11. First Principles Study of Electron Tunneling through Ice

    KAUST Repository

    Cucinotta, Clotilde S.; Rungger, Ivan; Sanvito, Stefano

    2012-01-01

    With the aim of understanding electrochemical scanning tunnel microscopy experiments in an aqueous environment, we investigate electron transport through ice in the coherent limit. This is done by using the nonequilibrium Greens functions method, implemented within density functional theory, in the self-interaction corrected local density approximation. In particular, we explore different ice structures and different Au electrode surface orientations. By comparing the decay coefficient for different thicknesses to the ice complex band structure, we find that the electron transport occurs via tunneling with almost one-dimensional character. The slow decay of the current with the ice thickness is largely due to the small effective mass of the conduction electrons. Furthermore, we find that the calculated tunneling decay coefficients at the Fermi energy are not sensitive to the structural details of the junctions and are at the upper end of the experimental range for liquid water. This suggests that linear response transport measurements are not capable of distinguishing between different ordered ice structures. However, we also demonstrate that a finite bias measurement may be capable of sorting polar from nonpolar interfaces due to the asymmetry of the current-voltage curves for polar interfaces. © 2012 American Chemical Society.

  12. First Principles Study of Electron Tunneling through Ice

    KAUST Repository

    Cucinotta, Clotilde S.

    2012-10-25

    With the aim of understanding electrochemical scanning tunnel microscopy experiments in an aqueous environment, we investigate electron transport through ice in the coherent limit. This is done by using the nonequilibrium Greens functions method, implemented within density functional theory, in the self-interaction corrected local density approximation. In particular, we explore different ice structures and different Au electrode surface orientations. By comparing the decay coefficient for different thicknesses to the ice complex band structure, we find that the electron transport occurs via tunneling with almost one-dimensional character. The slow decay of the current with the ice thickness is largely due to the small effective mass of the conduction electrons. Furthermore, we find that the calculated tunneling decay coefficients at the Fermi energy are not sensitive to the structural details of the junctions and are at the upper end of the experimental range for liquid water. This suggests that linear response transport measurements are not capable of distinguishing between different ordered ice structures. However, we also demonstrate that a finite bias measurement may be capable of sorting polar from nonpolar interfaces due to the asymmetry of the current-voltage curves for polar interfaces. © 2012 American Chemical Society.

  13. Free-flight measurement technique in the free-piston high-enthalpy shock tunnel

    Science.gov (United States)

    Tanno, H.; Komuro, T.; Sato, K.; Fujita, K.; Laurence, S. J.

    2014-04-01

    A novel multi-component force-measurement technique has been developed and implemented at the impulse facility JAXA-HIEST, in which the test model is completely unrestrained during the test and thus experiences free-flight conditions for a period on the order of milliseconds. Advantages over conventional free-flight techniques include the complete absence of aerodynamic interference from a model support system and less variation in model position and attitude during the test itself. A miniature on-board data recorder, which was a key technology for this technique, was also developed in order to acquire and store the measured data. The technique was demonstrated in a HIEST wind-tunnel test campaign in which three-component aerodynamic force measurement was performed on a blunted cone of length 316 mm, total mass 19.75 kg, and moment of inertia 0.152 kgm2. During the test campaign, axial force, normal forces, and pitching moment coefficients were obtained at angles of attack from 14° to 32° under two conditions: H0 = 4 MJ/kg, P0 = 14 MPa; and H0 = 16 MJ/kg, P0 = 16 MPa. For the first, low-enthalpy condition, the test flow was considered a perfect gas; measurements were thus directly compared with those obtained in a conventional blow-down wind tunnel (JAXA-HWT2) to evaluate the accuracy of the technique. The second test condition was a high-enthalpy condition in which 85% of the oxygen molecules were expected to be dissociated; high-temperature real-gas effects were therefore evaluated by comparison with results obtained in perfect-gas conditions. The precision of the present measurements was evaluated through an uncertainty analysis, which showed the aerodynamic coefficients in the HIEST low enthalpy test agreeing well with those of JAXA-HWT2. The pitching-moment coefficient, however, showed significant differences between low- and high-enthalpy tests. These differences are thought to result from high-temperature real-gas effects.

  14. Rupture of a high pressure gas or steam pipe in a tunnel: a preliminary investigation of the jet thrust exerted on a tunnel barrier

    International Nuclear Information System (INIS)

    Baum, M.R.

    1988-04-01

    On power plant, if a high pressure pipe containing high temperature gas or steam were to rupture, sensitive equipment necessary for safety shutdown of the plant could possibly be incapacitated if exposed to the subsequent high temperature environment. In many plant configurations the high pressure pipework is contained in tunnels where it is possible to construct barriers which isolate one section of the plant from another, thereby restricting the spread of the high temperature fluid/air mixture. This paper describes a preliminary experimental investigation of the magnitude of the thrust likely to be exerted on such barriers by a gas jet issuing from the failed pipe. Measurements of the thrust exerted on a flat plate by normal impingement of a highly underexpanded gas jet are in agreement with a semi-quantitative analysis assuming conservation of the axial momentum of the jet. (author)

  15. Calculating electronic tunnel currents in networks of disordered irregularly shaped nanoparticles by mapping networks to arrays of parallel nonlinear resistors

    Energy Technology Data Exchange (ETDEWEB)

    Aghili Yajadda, Mir Massoud [CSIRO Manufacturing Flagship, P.O. Box 218, Lindfield NSW 2070 (Australia)

    2014-10-21

    We have shown both theoretically and experimentally that tunnel currents in networks of disordered irregularly shaped nanoparticles (NPs) can be calculated by considering the networks as arrays of parallel nonlinear resistors. Each resistor is described by a one-dimensional or a two-dimensional array of equal size nanoparticles that the tunnel junction gaps between nanoparticles in each resistor is assumed to be equal. The number of tunnel junctions between two contact electrodes and the tunnel junction gaps between nanoparticles are found to be functions of Coulomb blockade energies. In addition, the tunnel barriers between nanoparticles were considered to be tilted at high voltages. Furthermore, the role of thermal expansion coefficient of the tunnel junction gaps on the tunnel current is taken into account. The model calculations fit very well to the experimental data of a network of disordered gold nanoparticles, a forest of multi-wall carbon nanotubes, and a network of few-layer graphene nanoplates over a wide temperature range (5-300 K) at low and high DC bias voltages (0.001 mV–50 V). Our investigations indicate, although electron cotunneling in networks of disordered irregularly shaped NPs may occur, non-Arrhenius behavior at low temperatures cannot be described by the cotunneling model due to size distribution in the networks and irregular shape of nanoparticles. Non-Arrhenius behavior of the samples at zero bias voltage limit was attributed to the disorder in the samples. Unlike the electron cotunneling model, we found that the crossover from Arrhenius to non-Arrhenius behavior occurs at two temperatures, one at a high temperature and the other at a low temperature.

  16. Tunnel flexibility effect on the ground surface acceleration response

    Science.gov (United States)

    Baziar, Mohammad Hassan; Moghadam, Masoud Rabeti; Choo, Yun Wook; Kim, Dong-Soo

    2016-09-01

    Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas.

  17. Macroscopic quantum tunneling in Josephson tunnel junctions and Coulomb blockade in single small tunnel junctions

    International Nuclear Information System (INIS)

    Cleland, A.N.

    1991-04-01

    Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q ∼ 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement

  18. Closed-loop conductance scanning tunneling spectroscopy: demonstrating the equivalence to the open-loop alternative.

    Science.gov (United States)

    Hellenthal, Chris; Sotthewes, Kai; Siekman, Martin H; Kooij, E Stefan; Zandvliet, Harold J W

    2015-01-01

    We demonstrate the validity of using closed-loop z(V) conductance scanning tunneling spectroscopy (STS) measurements for the determination of the effective tunneling barrier by comparing them to more conventional open-loop I(z) measurements. Through the development of a numerical model, the individual contributions to the effective tunneling barrier present in these experiments, such as the work function and the presence of an image charge, are determined quantitatively. This opens up the possibility of determining tunneling barriers of both vacuum and molecular systems in an alternative and more detailed manner.

  19. Design of double gate vertical tunnel field effect transistor using HDB and its performance estimation

    Science.gov (United States)

    Seema; Chauhan, Sudakar Singh

    2018-05-01

    In this paper, we demonstrate the double gate vertical tunnel field-effect transistor using homo/hetero dielectric buried oxide (HDB) to obtain the optimized device characteristics. In this concern, the existence of double gate, HDB and electrode work-function engineering enhances DC performance and Analog/RF performance. The use of electrostatic doping helps to achieve higher on-current owing to occurrence of higher tunneling generation rate of charge carriers at the source/epitaxial interface. Further, lightly doped drain region and high- k dielectric below channel and drain region are responsible to suppress the ambipolar current. Simulated results clarifies that proposed device have achieved the tremendous performance in terms of driving current capability, steeper subthreshold slope (SS), drain induced barrier lowering (DIBL), hot carrier effects (HCEs) and high frequency parameters for better device reliability.

  20. Process of long-term tunnel instability by temperature and humidity variation in sedimentary rock

    International Nuclear Information System (INIS)

    Sawada, Masataka; Okada, Tetsuji; Nakata, Eiji

    2009-01-01

    It is concerned that tunnels in the sedimentary rock are seriously damaged during the long operation after excavation, while there are various plans to construct significant underground facilities such as a high-level radioactive waste disposal facility. A case history study on tunnel instability is important in order to assess and evaluate tunnel instability behavior. In this respect, an accelerated tunnel deformation test by removing tunnel supports was conducted. Instability of tunnel wall was observed before and after this test in the summer, when it is warm and humid in the test tunnel. Fiber optic sensing detected the instability. Scale of collapsed rock was evaluated from the variation of shape of tunnel cross-section measured by a 3-D lazar measurement tool. The maximum size of collapsed rock block is 1m in diameter. Surrounding sandstone has such a characteristic that crack growth is much faster and its strength decreases gradually in the condition of high relative humidity. Numerical simulation considering this decrease of rock strength reproduced the instable zone around the test tunnel. (author)

  1. About tunnelling times

    International Nuclear Information System (INIS)

    Olkhovsky, V.S.; Recami, E.

    1991-08-01

    In this paper, first we critically analyse the main theoretical definitions and calculations of the sub-barrier tunnelling and reflection times. Secondly, we propose a new, physically sensible definition of such durations, on the basis of a recent general formalism (already tested for other types of quantum collisions). At last, we discuss some results regarding temporal evolution of the tunnelling processes, and in particular the ''particle'' speed during tunnelling. (author). 36 refs, 1 fig

  2. Studies of superconductors using a low-temperature, high-field scanning tunneling microscope

    International Nuclear Information System (INIS)

    Kirtley, J.R.; Feenstra, R.M.; Fein, A.P.

    1988-01-01

    We have developed a scanning tunneling microscope (STM) capable of operating at temperatures as low as 0.4 K and fields as high as 8 T. We have used this STM to study the energy gap of the high-T/sub c/ superconductors La--Sr--Cu--O and Y--Ba--Cu--O. We find that the reduced gap for these oxide superconductors falls in the range 3<2Δ/k/sub B/T/sub c/<7, for polycrystalline, single-crystal, and thin-film samples. We have also simultaneously imaged the surface topography and superconducting energy gap for thin films of the granular superconductor NbN. We occasionally see regions with smaller best-fit gaps that correlate with surface topographical features, but have been unable so far to image flux vortices

  3. Tunnel splitting for a high-spin molecule in an in-plane field

    Science.gov (United States)

    Zhu, Jia-Lin

    2000-08-01

    Direction and strength effects of a magnetic field on the ground-state tunnel splitting for a biaxial spin molecule with the model Hamiltonian H = k1Sz2 + k2Sy2- gµBHzSz- gµBHySy have been investigated within a continuous-spin approach including the Wess-Zumino-Berry term. The topological oscillation and the non-Kramers freezing indicated in the approach are in agreement with those observed in a recent experiment on Fe8 molecular nanomagnets. The behaviour of tunnel splitting with multiple orbits induced by strong fields has been revealed clearly.

  4. Tunneling current between graphene layers

    OpenAIRE

    Poklonski, Nikolai A.; Siahlo, Andrei I.; Vyrko, Sergey A.; Popov, Andrey M.; Lozovik, Yurii E.

    2013-01-01

    The physical model that allows to calculate the values of the tunneling current be-tween graphene layers is proposed. The tunneling current according to the pro-posed model is proportional to the area of tunneling transition. The calculated value of tunneling conductivity is in qualitative agreement with experimental data.

  5. TBM tunneling on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Morris, J.P.; Hansmire, W.H.

    1995-01-01

    The US Department of Energy's (DOE) Yucca Mountain Project (YMP) is a scientific endeavor to determine the suitability of Yucca Mountain for the first long-term, high-level nuclear waste repository in the United States. The current status of this long-term project from the construction perspective is described. A key element is construction of the Exploratory Studies Facility (ESF) Tunnel, which is being excavated with a 7.6 m (25 ft) diameter tunnel boring machine (TBM). Development of the ESF may include the excavation of over 15 km (9.3 mi) of tunnel varying in size from 3.0 to 7.6 m (10 to 25 ft). Prior to construction, extensive constructability reviews were an interactive part of the final design. The intent was to establish a constructable design that met the long-term stability requirements for radiological safety of a future repository, while maintaining flexibility for the scientific investigations and acceptable tunneling productivity

  6. Preparation of ITO/SiOx/n-Si solar cells with non-decline potential field and hole tunneling by magnetron sputtering

    Science.gov (United States)

    Du, H. W.; Yang, J.; Li, Y. H.; Xu, F.; Xu, J.; Ma, Z. Q.

    2015-03-01

    Complete photo-generated minority carrier's quantum tunneling device under AM1.5 illumination is fabricated by depositing tin-doped indium oxide (ITO) on n-type silicon to form a structure of ITO/SiOx/n-Si heterojunction. The work function difference between ITO and n-Si materials essentially acts as the origin of built-in-field. Basing on the measured value of internal potential (Vbi = 0.61 V) and high conversion efficiency (9.27%), we infer that this larger photo-generated holes tunneling occurs when a strong inversion layer at the c-Si surface appears. Also, the mixed electronic states in the ultra-thin intermediate region between ITO and n-Si play a defect-assisted tunneling.

  7. The two Josephson junction flux qubit with large tunneling amplitude

    International Nuclear Information System (INIS)

    Shnurkov, V.I.; Soroka, A.A.; Mel'nik, S.I.

    2008-01-01

    In this paper we discuss solid-state nanoelectronic realizations of Josephson flux qubits with large tunneling amplitude between the two macroscopic states. The latter can be controlled via the height and form of the potential barrier, which is determined by quantum-state engineering of the flux qubit circuit. The simplest circuit of the flux qubit is a superconducting loop interrupted by a Josephson nanoscale tunnel junction. The tunneling amplitude between two macroscopically different states can be increased substantially by engineering of the qubit circuit if the tunnel junction is replaced by a ScS contact. However, only Josephson tunnel junctions are particularly suitable for large-scale integration circuits and quantum detectors with present-day technology. To overcome this difficulty we consider here a flux qubit with high energy-level separation between the 'ground' and 'excited' states, consisting of a superconducting loop with two low-capacitance Josephson tunnel junctions in series. We demonstrate that for real parameters of resonant superposition between the two macroscopic states the tunneling amplitude can reach values greater than 1 K. Analytical results for the tunneling amplitude obtained within the semiclassical approximation by the instanton technique show good correlation with a numerical solution

  8. Design of High Performance Si/SiGe Heterojunction Tunneling FETs with a T-Shaped Gate

    Science.gov (United States)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng; Yang, Zhaonian

    2017-03-01

    In this paper, a new Si/SiGe heterojunction tunneling field-effect transistor with a T-shaped gate (HTG-TFET) is proposed and investigated by Silvaco-Atlas simulation. The two source regions of the HTG-TFET are placed on both sides of the gate to increase the tunneling area. The T-shaped gate is designed to overlap with N+ pockets in both the lateral and vertical directions, which increases the electric field and tunneling rate at the top of tunneling junctions. Moreover, using SiGe in the pocket regions leads to the smaller tunneling distance. Therefore, the proposed HTG-TFET can obtain the higher on-state current. The simulation results show that on-state current of HTG-TFET is increased by one order of magnitude compared with that of the silicon-based counterparts. The average subthreshold swing (SS) of HTG-TFET is 44.64 mV/dec when V g is varied from 0.1 to 0.4 V, and the point SS is 36.59 mV/dec at V g = 0.2 V. Besides, this design cannot bring the sever Miller capacitance for the TFET circuit design. By using the T-shaped gate and SiGe pocket regions, the overall performance of the TFET is optimized.

  9. Design of High Performance Si/SiGe Heterojunction Tunneling FETs with a T-Shaped Gate.

    Science.gov (United States)

    Li, Wei; Liu, Hongxia; Wang, Shulong; Chen, Shupeng; Yang, Zhaonian

    2017-12-01

    In this paper, a new Si/SiGe heterojunction tunneling field-effect transistor with a T-shaped gate (HTG-TFET) is proposed and investigated by Silvaco-Atlas simulation. The two source regions of the HTG-TFET are placed on both sides of the gate to increase the tunneling area. The T-shaped gate is designed to overlap with N + pockets in both the lateral and vertical directions, which increases the electric field and tunneling rate at the top of tunneling junctions. Moreover, using SiGe in the pocket regions leads to the smaller tunneling distance. Therefore, the proposed HTG-TFET can obtain the higher on-state current. The simulation results show that on-state current of HTG-TFET is increased by one order of magnitude compared with that of the silicon-based counterparts. The average subthreshold swing (SS) of HTG-TFET is 44.64 mV/dec when V g is varied from 0.1 to 0.4 V, and the point SS is 36.59 mV/dec at V g  = 0.2 V. Besides, this design cannot bring the sever Miller capacitance for the TFET circuit design. By using the T-shaped gate and SiGe pocket regions, the overall performance of the TFET is optimized.

  10. Drill and blast tunnelling; Konvensjonell drift av tunneler

    Energy Technology Data Exchange (ETDEWEB)

    Roenn, Paal-Egil

    1997-12-31

    This thesis treats drill and blast tunnelling. The rapid technological advance necessitates revised and updated design criteria, quality requirements and quality control. In situ blast experiments were carried out in order to test new methods and improve the basis for calculation and design. The main topics of the experiments were (1) longer rounds and increased drillhole diameter, (2) emulsion slurry as explosives in tunnelling, and (3) electronic detonators in contour blasting. The experiments show that it is technically feasible to blast rounds of up to 8.6 m length. Using current technology, the economical optimum round length is substantially shorter. Dust, low visibility, noise and toxic fumes are occupational environmental strains for the tunnel workers. Several of the environmental factors are strongly influenced by the type of explosives used. For example, emulsion slurry resulted in 4 to 5 times better visibility than Anolit and the concentration of respirable dust and total dust was reduced by 30-50 %. Electronic detonators were tested and found to give a higher percentage of remaining drillholes in the contour than Nonel detonators. The thesis includes a chapter on economic design of hydropower tunnels. 42 refs., 83 figs., 45 tabs.

  11. Resonant tunnel magnetoresistance in double-barrier planar magnetic tunnel junctions

    KAUST Repository

    Useinov, A. N.

    2011-08-24

    We present a theoretical approach to calculate the spin-dependent current and tunnel magnetoresistance (TMR) in a double-barrier magnetic tunnel junction (DMTJ), in which the magnetization of the middle ferromagnetic metal layer can be aligned parallel or antiparallel in relation to the fixed magnetizations of the left and right ferromagnetic electrodes. The electron transport through the DMTJ is considered as a three-dimensional problem, taking into account all transmitting electron trajectories as well as the spin-dependent momentum conservation law. The dependence of the transmission coefficient and spin-polarized currents on the applied voltage is derived as an exact solution to the quantum-mechanical problem for the spin-polarized transport. In the range of the developed physical model, the resonant tunneling, nonresonant tunneling, and enhanced spin filtering can be explained; the simulation results are in good agreement with experimental data.

  12. Resonant tunnel magnetoresistance in double-barrier planar magnetic tunnel junctions

    KAUST Repository

    Useinov, A. N.; Kosel, Jü rgen; Useinov, N. Kh.; Tagirov, L. R.

    2011-01-01

    We present a theoretical approach to calculate the spin-dependent current and tunnel magnetoresistance (TMR) in a double-barrier magnetic tunnel junction (DMTJ), in which the magnetization of the middle ferromagnetic metal layer can be aligned parallel or antiparallel in relation to the fixed magnetizations of the left and right ferromagnetic electrodes. The electron transport through the DMTJ is considered as a three-dimensional problem, taking into account all transmitting electron trajectories as well as the spin-dependent momentum conservation law. The dependence of the transmission coefficient and spin-polarized currents on the applied voltage is derived as an exact solution to the quantum-mechanical problem for the spin-polarized transport. In the range of the developed physical model, the resonant tunneling, nonresonant tunneling, and enhanced spin filtering can be explained; the simulation results are in good agreement with experimental data.

  13. Ab initio simulation study of defect assisted Zener tunneling in GaAs diode

    Science.gov (United States)

    Lu, Juan; Fan, Zhi-Qiang; Gong, Jian; Jiang, Xiang-Wei

    2017-06-01

    The band to band tunneling of defective GaAs nano-junction is studied by using the non-equilibrium Green's function formalism with density functional theory. Aiming at performance improvement, two types of defect-induced transport behaviors are reported in this work. By examining the partial density of states of the system, we find the substitutional defect OAs that locates in the middle of tunneling region will introduce band-gap states, which can be used as stepping stones to increase the tunneling current nearly 3 times higher at large bias voltage (Vb≥0.3V). Another type of defects SeAs and VGa (Ga vacancy) create donor and acceptor states at the edge of conduction band (CB) and valence band (VB)respectively, which can change the band bending of the junction as well as increase the tunneling field obtaining a 1.5 times higher ON current. This provides an effective defect engineering approach for next generation TFET device design.

  14. Tunneling spectroscopy study of YBa2Cu3O7 thin films using a cryogenic scanning tunneling microscope

    International Nuclear Information System (INIS)

    Wilkins, R.; Amman, M.; Soltis, R.E.; Ben-Jacob, E.; Jaklevic, R.C.

    1990-01-01

    We have measured reproducible tunneling spectra on YBa 2 Cu 3 O 7 (T c ∼85 K) thin films (thickness ∼2 μm) with a cryogenic scanning tunneling microscope. We find that the I-V curves are generally of three types. The most common type, featured in a large majority of the data, shows a region of high conductance at zero bias. The amplitude of this region is inversely proportional to the tunneling resistance between the tip and sample. It is possible that this can be explained in terms of Josephson effects within the films, although an alternative is given based on electronic self-energy corrections. Data showing capacitive charging steps are analyzed in terms of two ultrasmall tunnel junctions in series.. Theoretical fits to the data give specific values of the junction parameters that are consistent with the assumed geometry of the tip probing an individual grain of the film. The third type of I-V curves exhibits negative differential resistance. We conclude that this phenomenon is probably due to tunneling to localized states in the surface oxide. We also present and discuss data with energy-gap-like behavior; the best example gives Δ to be about 27 mV

  15. Flexible MgO Barrier Magnetic Tunnel Junctions.

    Science.gov (United States)

    Loong, Li Ming; Lee, Wonho; Qiu, Xuepeng; Yang, Ping; Kawai, Hiroyo; Saeys, Mark; Ahn, Jong-Hyun; Yang, Hyunsoo

    2016-07-01

    Flexible MgO barrier magnetic tunnel junction (MTJ) devices are fabricated using a transfer printing process. The flexible MTJ devices yield significantly enhanced tunneling magnetoresistance of ≈300% and improved abruptness of switching, as residual strain in the MTJ structure is released during the transfer process. This approach could be useful for flexible electronic systems that require high-performance memory components. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Multiband corrections for the semi-classical simulation of interband tunneling in GaAs tunnel junctions

    Science.gov (United States)

    Louarn, K.; Claveau, Y.; Hapiuk, D.; Fontaine, C.; Arnoult, A.; Taliercio, T.; Licitra, C.; Piquemal, F.; Bounouh, A.; Cavassilas, N.; Almuneau, G.

    2017-09-01

    The aim of this study is to investigate the impact of multiband corrections on the current density in GaAs tunnel junctions (TJs) calculated with a refined yet simple semi-classical interband tunneling model (SCITM). The non-parabolicity of the considered bands and the spin-orbit effects are considered by using a recently revisited SCITM available in the literature. The model is confronted to experimental results from a series of molecular beam epitaxy grown GaAs TJs and to numerical results obtained with a full quantum model based on the non-equilibrium Green’s function formalism and a 6-band k.p Hamiltonian. We emphasize the importance of considering the non-parabolicity of the conduction band by two different measurements of the energy-dependent electron effective mass in N-doped GaAs. We also propose an innovative method to compute the non-uniform electric field in the TJ for the SCITM simulations, which is of prime importance for a successful operation of the model. We demonstrate that, when considering the multiband corrections and this new computation of the non-uniform electric field, the SCITM succeeds in predicting the electrical characteristics of GaAs TJs, and are also in agreement with the quantum model. Besides the fundamental study of the tunneling phenomenon in TJs, the main benefit of this SCITM is that it can be easily embedded into drift-diffusion software, which are the most widely-used simulation tools for electronic and opto-electronic devices such as multi-junction solar cells, tunnel field-effect transistors, or vertical-cavity surface-emitting lasers.

  17. Quantum size effects on spin-tunneling time in a magnetic resonant tunneling diode

    OpenAIRE

    Saffarzadeh, Alireza; Daqiq, Reza

    2009-01-01

    We study theoretically the quantum size effects of a magnetic resonant tunneling diode (RTD) with a (Zn,Mn)Se dilute magnetic semiconductor layer on the spin-tunneling time and the spin polarization of the electrons. The results show that the spin-tunneling times may oscillate and a great difference between the tunneling time of the electrons with opposite spin directions can be obtained depending on the system parameters. We also study the effect of structural asymmetry which is related to t...

  18. Atomically Thin Al2O3 Films for Tunnel Junctions

    Science.gov (United States)

    Wilt, Jamie; Gong, Youpin; Gong, Ming; Su, Feifan; Xu, Huikai; Sakidja, Ridwan; Elliot, Alan; Lu, Rongtao; Zhao, Shiping; Han, Siyuan; Wu, Judy Z.

    2017-06-01

    Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M -I interface and a significantly enhanced barrier height compared to thermal AlOx . These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions.

  19. Tunneling cracks in full scale wind turbine blade joints

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn; Sørensen, Bent F.; Kildegaard, C.

    2017-01-01

    A novel approach is presented and used in a generic tunneling crack tool for the prediction of crack growth rates for tunneling cracks propagating across a bond-line in a wind turbine blade under high cyclic loadings. In order to test and demonstrate the applicability of the tool, model predictions...

  20. Dynamic Response of Underground Circular Lining Tunnels Subjected to Incident P Waves

    Directory of Open Access Journals (Sweden)

    Hua Xu

    2014-01-01

    Full Text Available Dynamic stress concentration in tunnels and underground structures during earthquakes often leads to serious structural damage. A series solution of wave equation for dynamic response of underground circular lining tunnels subjected to incident plane P waves is presented by Fourier-Bessel series expansion method in this paper. The deformation and stress fields of the whole medium of surrounding rock and tunnel were obtained by solving the equations of seismic wave propagation in an elastic half space. Based on the assumption of a large circular arc, a series of solutions for dynamic stress were deduced by using a wave function expansion approach for a circular lining tunnel in an elastic half space rock medium subjected to incident plane P waves. Then, the dynamic response of the circular lining tunnel was obtained by solving a series of algebraic equations after imposing its boundary conditions for displacement and stress of the circular lining tunnel. The effects of different factors on circular lining rock tunnels, including incident frequency, incident angle, buried depth, rock conditions, and lining stiffness, were derived and several application examples are presented. The results may provide a good reference for studies on the dynamic response and aseismic design of tunnels and underground structures.

  1. Aespoe HRL. Experiences of blasting of the TASQ tunnel

    International Nuclear Information System (INIS)

    Olsson, Mats; Niklasson, Bengt; Wilson, Lasse; Andersson, Christer; Christiansson, Rolf

    2004-11-01

    A new tunnel was developed at the Aespoe Hard Rock Laboratory (AHRL) during the spring and summer 2003. The tunnel was specially designed for a rock mechanics experiment, the Aespoe Pillar Stability Experiment (APSE). In this pillar experiment there was a high demand to initiate high in-situ stresses and therefore the tunnel was designed with a large height/ width ratio and with a circular floor. There were high requirements on bore hole precision and of a minimized EDZ (Excavation damaged zone) in the pillar area. This included a maximum borehole deviation of 10 mm/m, a maximum overbreak due to the lookout angle of 0.3 m and an EDZ of 0.3 m. To make a charge control feasible cartridged explosives was prescribed. The initiation was made with Nonel. The last three rounds used electronic initiation to enable studies of possibility to further reduce the EDZ. The collar of the tunnel was very close to installations and shaft and it was very important to avoid fly-rock and vibrations. Special types of stemming were used as well as steel plates and rubber mats. The excavation works was divided in three different phases. The first phase of the tunnel was an ordinary 26 m 2 tunnel. After approximately 30 m a ramp separated the tunnel section into a top heading and a bench, total 33 m 2 . After the last top heading round was excavated and the roof had been reinforced with fibre reinforced shotcrete the bench was taken out with horizontal holes as the third phase. The drilling precision was very good and 95% of all half-pipes fulfilled the demands. The total amount of visible half-pipes in the APSE-tunnel was high and indicated a successful smooth blasting. The EDZ was examined further by cutting slots in the wall and roof. Existing cracks appear very clearly when a dye penetrant is sprayed on the cleaned surface. A typical crack pattern consists of blast cracks, induced cracks (cracks from the distressing caused by blasting) and natural cracks. The maximum crack length in

  2. Aespoe HRL. Experiences of blasting of the TASQ tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Mats [Swebrec, Luleaa (Sweden); Niklasson, Bengt [Skanska Teknik, Stockholm (Sweden); Wilson, Lasse [Skanska Stora Projekt, Stockholm (Sweden); Andersson, Christer; Christiansson, Rolf [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2004-11-01

    A new tunnel was developed at the Aespoe Hard Rock Laboratory (AHRL) during the spring and summer 2003. The tunnel was specially designed for a rock mechanics experiment, the Aespoe Pillar Stability Experiment (APSE). In this pillar experiment there was a high demand to initiate high in-situ stresses and therefore the tunnel was designed with a large height/ width ratio and with a circular floor. There were high requirements on bore hole precision and of a minimized EDZ (Excavation damaged zone) in the pillar area. This included a maximum borehole deviation of 10 mm/m, a maximum overbreak due to the lookout angle of 0.3 m and an EDZ of 0.3 m. To make a charge control feasible cartridged explosives was prescribed. The initiation was made with Nonel. The last three rounds used electronic initiation to enable studies of possibility to further reduce the EDZ. The collar of the tunnel was very close to installations and shaft and it was very important to avoid fly-rock and vibrations. Special types of stemming were used as well as steel plates and rubber mats. The excavation works was divided in three different phases. The first phase of the tunnel was an ordinary 26 m{sup 2} tunnel. After approximately 30 m a ramp separated the tunnel section into a top heading and a bench, total 33 m{sup 2}. After the last top heading round was excavated and the roof had been reinforced with fibre reinforced shotcrete the bench was taken out with horizontal holes as the third phase. The drilling precision was very good and 95% of all half-pipes fulfilled the demands. The total amount of visible half-pipes in the APSE-tunnel was high and indicated a successful smooth blasting. The EDZ was examined further by cutting slots in the wall and roof. Existing cracks appear very clearly when a dye penetrant is sprayed on the cleaned surface. A typical crack pattern consists of blast cracks, induced cracks (cracks from the distressing caused by blasting) and natural cracks. The maximum crack

  3. Modelling band-to-band tunneling current in InP-based heterostructure photonic devices

    NARCIS (Netherlands)

    van Engelen, J.P.; Shen, L.; van der Tol, J.J.G.M.; Smit, M.K.; Kockaert, P.; Emplit, P.; Gorza, S.-P.; Massar, S.

    2015-01-01

    Some semiconductor photonic devices show large discontinuities in the band structure. Short tunnel paths caused by this band structure may lead to an excessive tunneling current, especially in highly doped layers. Modelling of this tunnelling current is therefore important when designing photonic

  4. Scanning tunneling spectroscopy of Pb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Michael

    2010-12-13

    The present thesis deals with the electronic structure, work function and single-atom contact conductance of Pb thin films, investigated with a low-temperature scanning tunneling microscope. The electronic structure of Pb(111) thin films on Ag(111) surfaces is investigated using scanning tunneling spectroscopy (STS). Quantum size effects, in particular, quantum well states (QWSs), play a crucial role in the electronic and physical properties of these films. Quantitative analysis of the spectra yields the QWS energies as a function of film thickness, the Pb bulk-band dispersion in {gamma}-L direction, scattering phase shifts at the Pb/Ag interface and vacuum barrier as well as the lifetime broadening at anti {gamma}. The work function {phi} is an important property of surfaces, which influences catalytic reactivity and charge injection at interfaces. It controls the availability of charge carriers in front of a surface. Modifying {phi} has been achieved by deposition of metals and molecules. For investigating {phi} at the atomic scale, scanning tunneling microscopy (STM) has become a widely used technique. STM measures an apparent barrier height {phi}{sub a}, which is commonly related to the sample work function {phi}{sub s} by: {phi}{sub a}=({phi}{sub s}+{phi}{sub t}- vertical stroke eV vertical stroke)/2, with {phi}{sub t} the work function of the tunneling tip, V the applied tunneling bias voltage, and -e the electron charge. Hence, the effect of the finite voltage in STM on {phi}{sub a} is assumed to be linear and the comparison of {phi}{sub a} measured at different surface sites is assumed to yield quantitative information about work function differences. Here, the dependence of {phi}{sub a} on the Pb film thickness and applied bias voltage V is investigated. {phi}{sub a} is found to vary significantly with V. This bias dependence leads to drastic changes and even inversion of contrast in spatial maps of {phi}{sub a}, which are related to the QWSs in the Pb

  5. Influence of trap-assisted tunneling on trap-assisted tunneling current in double gate tunnel field-effect transistor

    Science.gov (United States)

    Zhi, Jiang; Yi-Qi, Zhuang; Cong, Li; Ping, Wang; Yu-Qi, Liu

    2016-02-01

    Trap-assisted tunneling (TAT) has attracted more and more attention, because it seriously affects the sub-threshold characteristic of tunnel field-effect transistor (TFET). In this paper, we assess subthreshold performance of double gate TFET (DG-TFET) through a band-to-band tunneling (BTBT) model, including phonon-assisted scattering and acoustic surface phonons scattering. Interface state density profile (Dit) and the trap level are included in the simulation to analyze their effects on TAT current and the mechanism of gate leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 61574109 and 61204092).

  6. Continuous Mapping of Tunnel Walls in a Gnss-Denied Environment

    Science.gov (United States)

    Chapman, Michael A.; Min, Cao; Zhang, Deijin

    2016-06-01

    The need for reliable systems for capturing precise detail in tunnels has increased as the number of tunnels (e.g., for cars and trucks, trains, subways, mining and other infrastructure) has increased and the age of these structures and, subsequent, deterioration has introduced structural degradations and eventual failures. Due to the hostile environments encountered in tunnels, mobile mapping systems are plagued with various problems such as loss of GNSS signals, drift of inertial measurements systems, low lighting conditions, dust and poor surface textures for feature identification and extraction. A tunnel mapping system using alternate sensors and algorithms that can deliver precise coordinates and feature attributes from surfaces along the entire tunnel path is presented. This system employs image bridging or visual odometry to estimate precise sensor positions and orientations. The fundamental concept is the use of image sequences to geometrically extend the control information in the absence of absolute positioning data sources. This is a non-trivial problem due to changes in scale, perceived resolution, image contrast and lack of salient features. The sensors employed include forward-looking high resolution digital frame cameras coupled with auxiliary light sources. In addition, a high frequency lidar system and a thermal imager are included to offer three dimensional point clouds of the tunnel walls along with thermal images for moisture detection. The mobile mapping system is equipped with an array of 16 cameras and light sources to capture the tunnel walls. Continuous images are produced using a semi-automated mosaicking process. Results of preliminary experimentation are presented to demonstrate the effectiveness of the system for the generation of seamless precise tunnel maps.

  7. Study of tunneling transport in Si-based tunnel field-effect transistors with ON current enhancement utilizing isoelectronic trap

    Science.gov (United States)

    Mori, Takahiro; Morita, Yukinori; Miyata, Noriyuki; Migita, Shinji; Fukuda, Koichi; Mizubayashi, Wataru; Masahara, Meishoku; Yasuda, Tetsuji; Ota, Hiroyuki

    2015-02-01

    The temperature dependence of the tunneling transport characteristics of Si diodes with an isoelectronic impurity has been investigated in order to clarify the mechanism of the ON-current enhancement in Si-based tunnel field-effect transistors (TFETs) utilizing an isoelectronic trap (IET). The Al-N complex impurity was utilized for IET formation. We observed three types of tunneling current components in the diodes: indirect band-to-band tunneling (BTBT), trap-assisted tunneling (TAT), and thermally inactive tunneling. The indirect BTBT and TAT current components can be distinguished with the plot described in this paper. The thermally inactive tunneling current probably originated from tunneling consisting of two paths: tunneling between the valence band and the IET trap and tunneling between the IET trap and the conduction band. The probability of thermally inactive tunneling with the Al-N IET state is higher than the others. Utilization of the thermally inactive tunneling current has a significant effect in enhancing the driving current of Si-based TFETs.

  8. CASE SERIES Cubital tunnel syndrome: A report of two cases

    African Journals Online (AJOL)

    Cubital tunnel syndrome occurs as a result of compression of the ulnar nerve between the medial ... A 40-year-old man revealed high signal on T2W (T2 weighted). MRI in a thickened ... Pathological compression gives rise to cubital tunnel ...

  9. Heavy-Atom Tunneling Calculations in Thirteen Organic Reactions: Tunneling Contributions are Substantial, and Bell's Formula Closely Approximates Multidimensional Tunneling at ≥250 K.

    Science.gov (United States)

    Doubleday, Charles; Armas, Randy; Walker, Dana; Cosgriff, Christopher V; Greer, Edyta M

    2017-10-09

    Multidimensional tunneling calculations are carried out for 13 reactions, to test the scope of heavy-atom tunneling in organic chemistry, and to check the accuracy of one-dimensional tunneling models. The reactions include pericyclic, cycloaromatization, radical cyclization and ring opening, and S N 2. When compared at the temperatures that give the same effective rate constant of 3×10 -5  s -1 , tunneling accounts for 25-95 % of the rate in 8 of the 13 reactions. Values of transmission coefficients predicted by Bell's formula, κ Bell  , agree well with multidimensional tunneling (canonical variational transition state theory with small curvature tunneling), κ SCT . Mean unsigned deviations of κ Bell vs. κ SCT are 0.08, 0.04, 0.02 at 250, 300 and 400 K. This suggests that κ Bell is a useful first choice for predicting transmission coefficients in heavy-atom tunnelling. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The possibility to determine a constant of spin-orbit interaction by scanning tunneling microscopy method

    International Nuclear Information System (INIS)

    Khotkevich, N.V.; Kolesnichenko, Yu.A.; Vovk, N.P.

    2016-01-01

    The electron tunneling from the quasi-two-dimensional (surface) states with the spin-orbit interaction into bulk-mode states is studied in the framework of a model of an infinitely thin inhomogeneous tunnel magnetic barrier. The influence of the scattering of quasi-two-dimensional electrons by a single magnetic defect on the tunnel current is analyzed. Analytic formulas for the conductance of a tunnel point-contact as a function of its distance from the defect are obtained. It is shown that the analysis of the local magnetization density around the defect by means of spin-polarized scanning tunneling microscopy allows finding the constant of spin orbit interaction.

  11. Resonant tunneling in a pulsed phonon field

    DEFF Research Database (Denmark)

    Kral, P.; Jauho, Antti-Pekka

    1999-01-01

    , The nonequilibrium spectral function for the resonance displays the formation and decay of the phonon sidebands on ultrashort time scales. The time-dependent tunneling current through the individual phonon satellites reflects this quasiparticle formation by oscillations, whose time scale is set by the frequency...

  12. Lidars for Wind Tunnels - an IRPWind Joint Experiment Project

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Vignaroli, Andrea; Angelou, Nikolas

    2017-01-01

    Measurement campaigns with continuous-wave Doppler Lidars (Light detection and ranging) developed at DTU Wind Energy in Denmark were performed in two very different wind tunnels. Firstly, a measurement campaign in a small icing wind tunnel chamber at VTT in Finland was performed with high frequency...... used in blind test comparisons for wind turbine wake modelers. These Lidar measurement activities constitute the Joint Experiment Project” L4WT - Lidars for Wind Tunnels, with applications to wakes and atmospheric icing in a prospective Nordic Network” with the aim of gaining and sharing knowledge...... about possibilities and limitations with lidar instrumentation in wind tunnels, which was funded by the IRPWind project within the community of the European Energy Research Alliance (EERA) Joint Programme on Wind Energy....

  13. Tunnels: different construction methods and its use for pipelines installation

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Tales; Soares, Ana Cecilia; Assis, Slow de; Bolsonaro, Ralfo; Sanandres, Simon [Petroleo do Brasil S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    In a continental dimensions country like Brazil, the pipeline modal faces the challenge of opening ROW's in the most different kind of soils with the most different geomorphology. To safely fulfill the pipeline construction demand, the ROW opening uses all techniques in earthworks and route definition and, where is necessary, no digging techniques like horizontal directional drilling, micro tunneling and also full size tunnels design for pipelines installation in high topography terrains to avoid geotechnical risks. PETROBRAS has already used the tunnel technique to cross higher terrains with great construction difficult, and mainly to make it pipeline maintenance and operation easier. For the GASBOL Project, in Aparados da Serra region and in GASYRG, in Bolivia, two tunnels were opened with approximately 700 meters and 2,000 meters each one. The GASBOL Project had the particularity of being a gallery with only one excavation face, finishing under the hill and from this point was drilled a vertical shaft was drilled until the top to install the pipeline section, while in GASYRG Project the tunnel had two excavation faces. Currently, two projects are under development with tunnels, one of then is the Caraguatatuba-Taubate gas pipeline (GASTAU), with a 5 km tunnel, with the same concepts of the GASBOL tunnel, with a gallery to be opened with the use of a TBM (Tunneling Boring Machine), and a shaft to the surface, and the gas pipeline Cabiunas-Reduc III (GASDUC III) project is under construction with a 3.7 km tunnel, like the GASYRG tunnel with two faces. This paper presents the main excavation tunneling methods, conventional and mechanized, presenting the most relevant characteristics from both and, in particular, the use of tunnels for pipelines installation. (author)

  14. Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    Science.gov (United States)

    Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.

    1993-01-01

    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angle-of-attack and sideslip regions studied.

  15. Spin-dependent tunnelling at infrared frequencies: magnetorefractive effect in magnetic nanocomposites

    International Nuclear Information System (INIS)

    Granovsky, A.B.; Inoue, Mitsuteru

    2004-01-01

    We present a brief review of recent experimental and theoretical results on magnetorefractive effect in magnetic metal-insulator nanogranular alloys with tunnel-type magnetoresistance focusing on its relation with high-frequency spin-dependent tunnelling

  16. Spin-dependent tunnelling at infrared frequencies: magnetorefractive effect in magnetic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, A.B. E-mail: granov@magn.ru; Inoue, Mitsuteru

    2004-05-01

    We present a brief review of recent experimental and theoretical results on magnetorefractive effect in magnetic metal-insulator nanogranular alloys with tunnel-type magnetoresistance focusing on its relation with high-frequency spin-dependent tunnelling.

  17. Effect of tunnel cross section on gas temperatures and heat fluxes in case of large heat release rate

    International Nuclear Information System (INIS)

    Fan, Chuan Gang; Li, Ying Zhen; Ingason, Haukur; Lönnermark, Anders

    2016-01-01

    Highlights: • The effect of tunnel cross section together with ventilation velocity was studied. • Ceiling temperature varies clearly with tunnel height, but little with tunnel width. • Downstream temperature decreases with increasing tunnel dimensions. • HRR is an important factor that influences decay rate of excess gas temperature. • An equation considering both tunnel dimensions and HRR was developed. - Abstract: Tests with liquid and solid fuels in model tunnels (1:20) were performed and analysed in order to study the effect of tunnel cross section (width and height) together with ventilation velocity on ceiling gas temperatures and heat fluxes. The model tunnel was 10 m long with varying width (0.3 m, 0.45 m and 0.6 m) and height (0.25 m and 0.4 m). Test results show that the maximum temperature under the ceiling is a weak function of heat release rate (HRR) and ventilation velocity for cases with HRR more than 100 MW at full scale. It clearly varies with the tunnel height and is a weak function of the tunnel width. With a lower tunnel height, the ceiling is closer to the base of continuous flame zone and the temperatures become higher. Overall, the gas temperature beneath the ceiling decreases with the increasing tunnel dimensions, and increases with the increasing longitudinal ventilation velocity. The HRR is also an important factor that influences the decay rate of excess gas temperature, and a dimensionless HRR integrating HRR and other two key parameters, tunnel cross-sectional area and distance between fuel centre and tunnel ceiling, was introduced to account for the effect. An equation for the decay rate of excess gas temperature, considering both the tunnel dimensions and HRR, was developed. Moreover, a larger tunnel cross-sectional area will lead to a smaller heat flux.

  18. Interpreting tunneling time in circularly polarized strong-laser ionization

    OpenAIRE

    Yuan, MingHu; Xin, PeiPei; Chu, TianShu; Liu, HongPing

    2016-01-01

    We propose a method to study the tunneling process by analyzing the time-dependent ionization yield in circularly polarized laser. A numerical calculation shows that for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs. the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obviou...

  19. Nonequilibrium thermodynamics of interacting tunneling transport: variational grand potential, density functional formulation and nature of steady-state forces

    International Nuclear Information System (INIS)

    Hyldgaard, P

    2012-01-01

    The standard formulation of tunneling transport rests on an open-boundary modeling. There, conserving approximations to nonequilibrium Green function or quantum statistical mechanics provide consistent but computational costly approaches; alternatively, the use of density-dependent ballistic-transport calculations (e.g., Lang 1995 Phys. Rev. B 52 5335), here denoted ‘DBT’, provides computationally efficient (approximate) atomistic characterizations of the electron behavior but has until now lacked a formal justification. This paper presents an exact, variational nonequilibrium thermodynamic theory for fully interacting tunneling and provides a rigorous foundation for frozen-nuclei DBT calculations as a lowest-order approximation to an exact nonequilibrium thermodynamic density functional evaluation. The theory starts from the complete electron nonequilibrium quantum statistical mechanics and I identify the operator for the nonequilibrium Gibbs free energy which, generally, must be treated as an implicit solution of the fully interacting many-body dynamics. I demonstrate a minimal property of a functional for the nonequilibrium thermodynamic grand potential which thus uniquely identifies the solution as the exact nonequilibrium density matrix. I also show that the uniqueness-of-density proof from a closely related Lippmann-Schwinger collision density functional theory (Hyldgaard 2008 Phys. Rev. B 78 165109) makes it possible to express the variational nonequilibrium thermodynamic description as a single-particle formulation based on universal electron-density functionals; the full nonequilibrium single-particle formulation improves the DBT method, for example, by a more refined account of Gibbs free energy effects. I illustrate a formal evaluation of the zero-temperature thermodynamic grand potential value which I find is closely related to the variation in the scattering phase shifts and hence to Friedel density oscillations. This paper also discusses the

  20. Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope.

    Science.gov (United States)

    Nazin, G V; Wu, S W; Ho, W

    2005-06-21

    The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electron transport occurs via vibronic states of the molecules. The intensity of spectral peaks corresponding to the individual vibronic states depends on the relative electron tunneling rates through the two barriers of the junction, as found by varying the vacuum gap tunneling rate by changing the height of the scanning tunneling microscope tip above the molecule. A simple, sequential tunneling model explains the observed trends.

  1. Proceedings of the IS-HTS-TP'94: 2nd international symposium on high temperature superconductivity and tunneling phenomena

    International Nuclear Information System (INIS)

    Svistunov, V.M.

    1995-01-01

    The main purpose of this symposium is to discuss a problem of the current transfer in HTS: direct and tunneling mechanisms. It was proposed to consider a series of questions concerning spectral function of the electron-phonon interactions in HTS, the linear background conductance, the critical current in magnetic fields in bulk materials, studying in details the role of the weak superconducting links and the different natural contributions in current transfer of HTS

  2. Vacuum phonon tunneling.

    Science.gov (United States)

    Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K

    2010-10-15

    Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.

  3. Breaking through the tranfer tunnel

    CERN Document Server

    Laurent Guiraud

    2001-01-01

    This image shows the tunnel boring machine breaking through the transfer tunnel into the LHC tunnel. Proton beams will be transferred from the SPS pre-accelerator to the LHC at 450 GeV through two specially constructed transfer tunnels. From left to right: LHC Project Director, Lyn Evans; CERN Director-General (at the time), Luciano Maiani, and Director for Accelerators, Kurt Hubner.

  4. New Tunneling Features in Polar III-Nitride Resonant Tunneling Diodes

    Directory of Open Access Journals (Sweden)

    Jimy Encomendero

    2017-10-01

    Full Text Available For the past two decades, repeatable resonant tunneling transport of electrons in III-nitride double barrier heterostructures has remained elusive at room temperature. In this work we theoretically and experimentally study III-nitride double-barrier resonant tunneling diodes (RTDs, the quantum transport characteristics of which exhibit new features that are unexplainable using existing semiconductor theory. The repeatable and robust resonant transport in our devices enables us to track the origin of these features to the broken inversion symmetry in the uniaxial crystal structure, which generates built-in spontaneous and piezoelectric polarization fields. Resonant tunneling transport enabled by the ground state as well as by the first excited state is demonstrated for the first time over a wide temperature window in planar III-nitride RTDs. An analytical transport model for polar resonant tunneling heterostructures is introduced for the first time, showing a good quantitative agreement with experimental data. From this model we realize that tunneling transport is an extremely sensitive measure of the built-in polarization fields. Since such electric fields play a crucial role in the design of electronic and photonic devices, but are difficult to measure, our work provides a completely new method to accurately determine their magnitude for the entire class of polar heterostructures.

  5. Energy Optimization of Road Tunnel Lighting Systems

    Directory of Open Access Journals (Sweden)

    Ferdinando Salata

    2015-07-01

    Full Text Available A road tunnel is an enclosed and covered infrastructure for the vehicular traffic. Its lighting system provides 24 h of artificial sources only, with a higher amount of electric power used during the day. Due to safety reasons, when there is natural lighting outside the tunnel, the lighting levels in the stretches right after the entrance and before the exit must be high, in order to guide the driver’s eye towards the middle of the tunnel where the luminance must guarantee safe driving, avoid any over-dimensioning of the lighting systems, and produce energy savings. Such effects can be reached not only through the technological advances in the field of artificial lighting sources with high luminous efficiency, but also through new materials for road paving characterized by a higher reflection coefficient than other ordinary asphalts. This case study examines different technical scenarios, analyzing and comparing possible energy and economic savings. Traditional solutions are thus compared with scenarios suggesting the solutions previously mentioned. Special asphalts are interesting from an economic point of view, whereas the high costs of LED sources nowadays represent an obstacle for their implementation.

  6. A novel gate and drain engineered charge plasma tunnel field-effect transistor for low sub-threshold swing and ambipolar nature

    Science.gov (United States)

    Yadav, Dharmendra Singh; Raad, Bhagwan Ram; Sharma, Dheeraj

    2016-12-01

    In this paper, we focus on the improvement of figures of merit for charge plasma based tunnel field-effect transistor (TFET) in terms of ON-state current, threshold voltage, sub-threshold swing, ambipolar nature, and gate to drain capacitance which provides better channel controlling of the device with improved high frequency response at ultra-low supply voltages. Regarding this, we simultaneously employ work function engineering on the drain and gate electrode of the charge plasma TFET. The use of gate work function engineering modulates the barrier on the source/channel interface leads to improvement in the ON-state current, threshold voltage, and sub-threshold swing. Apart from this, for the first time use of work function engineering on the drain electrode increases the tunneling barrier for the flow of holes on the drain/channel interface, it results into suppression of ambipolar behavior. The lowering of gate to drain capacitance therefore enhanced high frequency parameters. Whereas, the presence of dual work functionality at the gate electrode and over the drain region improves the overall performance of the charge plasma based TFET.

  7. Observation of a photoinduced, resonant tunneling effect in a carbon nanotube–silicon heterojunction

    Directory of Open Access Journals (Sweden)

    Carla Aramo

    2015-03-01

    Full Text Available A significant resonant tunneling effect has been observed under the 2.4 V junction threshold in a large area, carbon nanotube–silicon (CNT–Si heterojunction obtained by growing a continuous layer of multiwall carbon nanotubes on an n-doped silicon substrate. The multiwall carbon nanostructures were grown by a chemical vapor deposition (CVD technique on a 60 nm thick, silicon nitride layer, deposited on an n-type Si substrate. The heterojunction characteristics were intensively studied on different substrates, resulting in high photoresponsivity with a large reverse photocurrent plateau. In this paper, we report on the photoresponsivity characteristics of the device, the heterojunction threshold and the tunnel-like effect observed as a function of applied voltage and excitation wavelength. The experiments are performed in the near-ultraviolet to near-infrared wavelength range. The high conversion efficiency of light radiation into photoelectrons observed with the presented layout allows the device to be used as a large area photodetector with very low, intrinsic dark current and noise.

  8. Theoretical consideration of spin-polarized resonant tunneling in magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Mu Haifeng; Zhu Zhengang; Zheng Qingrong; Jin Biao; Wang Zhengchuan; Su Gang

    2004-01-01

    A recent elegant experimental realization [S. Yuasa et al., Science 297 (2002) 234] of the spin-polarized resonant tunneling in magnetic tunnel junctions is interpreted in terms of a two-band model. It is shown that the tunnel magnetoresistance (TMR) decays oscillatorily with the thickness of the normal metal (NM) layer, being fairly in agreement with the experimental observation. The tunnel conductance is found to decay with slight oscillations with the increase of the NM layer thickness, which is also well consistent with the experiment. In addition, when the magnetizations of both ferromagnet electrodes are not collinearly aligned, TMR is found to exhibit sharp resonant peaks at some particular thickness of the NM layer. The peaked TMR obeys nicely a Gaussian distribution against the relative orientation of the magnetizations

  9. Histological Observation of Regions around Bone Tunnels after Compression of the Bone Tunnel Wall in Ligament Reconstruction

    International Nuclear Information System (INIS)

    Maeda, Shintaro; Ishikawa, Hiroki; Tanigawa, Naoaki; Miyazaki, Kyosuke; Shioda, Seiji

    2012-01-01

    The objectives of this study were to investigate the time-course of influence of compression of bone tunnel wall in ligament reconstruction on tissue around the bone tunnel and to histologically examine the mechanism of preventing the complication of bone tunnel dilation, using rabbit tibia. A model in which the femoral origin of the extensor digitorum longus tendon was cut and inserted into a bone tunnel made proximal to the tibia was prepared in the bilateral hind legs of 20 Japanese white rabbits. In each animal, a tunnel was made using a drill only in the right leg, while an undersized bone tunnel was made by drilling and then dilated by compression using a dilator to the same tunnel size as that in the right leg. Animals were sacrificed at 0, 2, 4, 8 and 12 weeks after surgery (4 animals at each time point). Observation of bone tunnels by X-ray radiography showed osteosclerosis in the 2- and 4-week dilation groups. Osteosclerosis appeared as white lines around the bone tunnel on X-ray radiography. This suggests that dilation promotes callus formation in the bone tunnel wall and prevents the complication of bone tunnel enlargement after ligament reconstruction

  10. Vibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy.

    Science.gov (United States)

    Jung, Suyong; Park, Minkyu; Park, Jaesung; Jeong, Tae-Young; Kim, Ho-Jong; Watanabe, Kenji; Taniguchi, Takashi; Ha, Dong Han; Hwang, Chanyong; Kim, Yong-Sung

    2015-11-13

    Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems.

  11. Engineering few-layer MoTe2 devices by Co/hBN tunnel contacts

    Science.gov (United States)

    Zhu, Mengjian; Luo, Wei; Wu, Nannan; Zhang, Xue-ao; Qin, Shiqiao

    2018-04-01

    2H phase Molybdenum ditelluride (MoTe2) is a layered two-dimensional (2D) semiconductor that has recently gained extensive attention for its intriguing properties, demonstrating great potential for nanoelectronics and optoelectronics. Optimizing the electric contacts to MoTe2 is a critical step for realizing high performance devices. Here, we demonstrate Co/hBN tunnel contacts to few-layer MoTe2. In sharp contrast to the p-type conduction of Co contacted MoTe2, Co/hBN tunnel contacted MoTe2 devices show clear n-type transport properties. Our first principles calculation reveals that the inserted few-layer hBN strongly interacts with Co and significantly reduces its work-function by ˜1.2 eV, while MoTe2 itself has a much weaker influence on the work-function of Co. This allows us to build MoTe2 diodes using the mixed Co/hBN and Co contact architecture, which can be switched from p-n type to n-p type by changing the gate-voltage, paving the way for engineering multi-functional devices based on atomically thin 2D semiconductors.

  12. Tunneling magnetoresistance in junctions composed of ferromagnets and time-reversal invariant topological superconductors

    International Nuclear Information System (INIS)

    Yan, Zhongbo; Wan, Shaolong

    2016-01-01

    Tunneling magnetoresistance between two ferrromagnets is an issue of fundamental importance in spintronics. In this work, we show that tunneling magnetoresistance can also emerge in junctions composed of ferromagnets and time-reversal invariant topological superconductors without spin-rotation symmetry. Here the physical origin is that when the spin-polarization direction of an injected electron from the ferromagnet lies in the same plane of the spin-polarization direction of Majorana zero modes, the electron will undergo a perfect spin-equal Andreev reflection, while injected electrons with other spin-polarization directions will be partially Andreev reflected and partially normal reflected, which consequently has a lower conductance, and therefore, the magnetoresistance effect emerges. Compared to conventional magnetic tunnel junctions, an unprecedented advantage of the junctions studied here is that arbitrary high tunneling magnetoresistance can be obtained even when the magnetization of the ferromagnets are weak and the insulating tunneling barriers are featureless. Our findings provide a new fascinating mechanism to obtain high tunneling magnetoresistance. (paper)

  13. Energy-Saving Tunnel Illumination System Based on LED's Intelligent Control

    International Nuclear Information System (INIS)

    Guo Shanshan; Wu Lan; Gu Hanting; Jiang Shuixiu

    2011-01-01

    At present there is a lot of electric energy wastage in tunnel illumination, whose design is based on the maximum brightness outside and the maximum vehicle speed all year round. LED's energy consumption is low, and the control of its brightness is simple and effective. It can be quickly adjusted between 0-100% of its maximum brightness, and will not affect the service life. Therefore, using LED as tunnel's illumination source, we can achieve a good energy saving effect. According to real-time data acquisition of vehicle speed, traffic flow and brightness outside the tunnel, the auto real-time control of tunnel illumination can be achieved. And the system regulated the LED luminance by means of combination of LED power module and intelligent control module. The tunnel information was detected by inspection equipments, which included luminometer, vehicle detector, and received by RTU(Remote Terminal Unit), then synchronously transmitted to PC. After data processing, RTU emitted the dimming signal to the LED driver to adjust the brightness of LED. Despite the relatively high cost of high-power LED lights, the enormous energy-saving effect and the well-behaved controllability is beyond compare to other lighting devices.

  14. Thermionic emission and tunneling at carbon nanotube-organic semiconductor interface.

    Science.gov (United States)

    Sarker, Biddut K; Khondaker, Saiful I

    2012-06-26

    We study the charge carrier injection mechanism across the carbon nanotube (CNT)-organic semiconductor interface using a densely aligned carbon nanotube array as electrode and pentacene as organic semiconductor. The current density-voltage (J-V) characteristics measured at different temperatures show a transition from a thermal emission mechanism at high temperature (above 200 K) to a tunneling mechanism at low temperature (below 200 K). A barrier height of ∼0.16 eV is calculated from the thermal emission regime, which is much lower compared to the metal/pentacene devices. At low temperatures, the J-V curves exhibit a direct tunneling mechanism at low bias, corresponding to a trapezoidal barrier, while at high bias the mechanism is well described by Fowler-Nordheim tunneling, which corresponds to a triangular barrier. A transition from direct tunneling to Fowler-Nordheim tunneling further signifies a small injection barrier at the CNT/pentacene interface. Our results presented here are the first direct experimental evidence of low charge carrier injection barrier between CNT electrodes and an organic semiconductor and are a significant step forward in realizing the overall goal of using CNT electrodes in organic electronics.

  15. Photothermal modulation of the gap distance in scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Amer, N.M.; Skumanich, A.; Ripple, D.

    1986-01-01

    We have employed the photothermal effect to modulate the gap distance in a tunneling microscope. In this approach, optical heating induces the expansion and buckling of laser-illuminated sample surface. The surface displacement can be modulated over a wide frequency range, and its height (typically <1 A-circle) can be varied by changing the illumination intensity and modulation frequency. This novel method provides an alternative means for performing tunneling spectroscopy and microscopy, and for determining work functions of materials

  16. New concept of tunnel boring machine: high performance using water jet and diamond wire as rock cutting technology

    Directory of Open Access Journals (Sweden)

    Rafael Pacheco dos Santos

    Full Text Available Abstract Tunnel boring machines are important tools in underground infrastructure projects. Although being well established equipment, these machinesare based on designsof more than 60 years ago and are characterized by big dimensions, enormous weight and high power consumption. Commercial aspects should be noted too. The model adopted by the TBM industry requires constant replacement of cutter discs and specific labor skills, usually offered by the same manufacturingcompany. In some cases the cost of replacement parts and technical assistance can be higher than the acquisition cost of an entire machine. These aspects are no longer compatible with the concept of sustainability that is an important aspect of currentsociety. While the technical characteristics require a large quantity of steel and several inputs, the adoptedmodel is not competitive. One alternative is looking for new technologies that break the old paradigms and allow the development of high performance concepts with lower social and environmental impact. This studydealswith this opportunity by proposing a high performance tunnel boring machine that makes use of high power water jet and diamond wire to compose a double shield cutter head. It works in two stages. In the fristone, an annular cut is executed by hydrodemolition,and in the second one, the diamond wire station slices the rock core. Only with the action of diamond wire is the rock core separated from the rock mass and the removal process is finished. A smart water jet nozzle movement system is described and non circular tunnels can be executed. The new technologies involved requirea different type of backup system, lighter and smaller. The non-existence of mechanical contact between the equipment and the rock mass at theexcavation front allows low power consumption. The advanced rate and primary excavation cost analyses can also be encountered herein. It shows that it is possible to reach an advanced rate of 174 m/day in

  17. Dynamics of spin-flip photon-assisted tunneling

    NARCIS (Netherlands)

    Braakman, F.R.; Danon, J.; Schreiber, L.R.; Wegscheider, W.; Vandersypen, L.M.K.

    2014-01-01

    We present time-resolved measurements of spin-flip photon-assisted tunneling and spin-flip relaxation in a doubly occupied double quantum dot. The photon-assisted excitation rate as a function of magnetic field indicates that spin-orbit coupling is the dominant mechanism behind the spin-flip under

  18. Damage functions for the vulnerability assessment of masonry buildings subjected to tunneling

    NARCIS (Netherlands)

    Giardina, C.; Hendriks, M.A.N.; Rots, J.G.

    2015-01-01

    This paper describes a new framework for the assessment of potential damage caused by tunneling-induced settlement to surface masonry buildings. Finite element models in two and three dimensions, validated through comparison with experimental results and field observations, are used to investigate

  19. Tunnel fire testing and modeling the Morgex North tunnel experiment

    CERN Document Server

    Borghetti, Fabio; Gandini, Paolo; Frassoldati, Alessio; Tavelli, Silvia

    2017-01-01

    This book aims to cast light on all aspects of tunnel fires, based on experimental activities and theoretical and computational fluid dynamics (CFD) analyses. In particular, the authors describe a transient full-scale fire test (~15 MW), explaining how they designed and performed the experimental activity inside the Morgex North tunnel in Italy. The entire organization of the experiment is described, from preliminary evaluations to the solutions found for management of operational difficulties and safety issues. This fire test allowed the collection of different measurements (temperature, air velocity, smoke composition, pollutant species) useful for validating and improving CFD codes and for testing the real behavior of the tunnel and its safety systems during a diesel oil fire with a significant heat release rate. Finally, the fire dynamics are compared with empirical correlations, CFD simulations, and literature measurements obtained in other similar tunnel fire tests. This book will be of interest to all ...

  20. Optimization of a tunneling barrier in magnetic tunneling junction by tilted-plasma oxidation

    International Nuclear Information System (INIS)

    Nam, C.H.; Shim, Heejae; Kim, K.S.; Cho, B.K.

    2004-01-01

    Oxidation of an AlO x insulating barrier in a magnetic tunneling junction (MTJ) was carried out by a tilted-plasma oxidation method. It was found that the tilted-plasma oxidation induced a gradual change in the extent of oxidation of an insulating layer, which consequently led to a gradual change in the tunneling magnetoresistance (TMR) and specific junction resistance (RA) of the MTJ. We found a linear relation in the TMR versus RA curve with positive and negative slopes for less- and overoxidized junctions, respectively, and a parabolic relation for optimally oxidized junctions. The crossover in the TMR versus RA curves provides an effective and useful way to optimize (and monitor) the oxidation condition of a tunneling barrier in MTJs especially of a tunneling barrier less than 10 A thick. The tunneling junctions were also investigated after thermal annealing at various temperatures. The observations after thermal annealing were found to be consistent with transmission electrons microscopy images and a scenario of the partial formation of an additional ultrathin tunneling barrier at the top surface of the bottom magnetic layer

  1. Structural and tunneling properties of Si nanowires

    KAUST Repository

    Montes Muñoz, Enrique

    2013-12-06

    We investigate the electronic structure and electron transport properties of Si nanowires attached to Au electrodes from first principles using density functional theory and the nonequilibrium Green\\'s function method. We systematically study the dependence of the transport properties on the diameter of the nanowires, on the growth direction, and on the length. At the equilibrium Au-nanowire distance we find strong electronic coupling between the electrodes and nanowires, which results in a low contact resistance. With increasing nanowire length we study the transition from metallic to tunneling conductance for small applied bias. For the tunneling regime we investigate the decay of the conductance with the nanowire length and rationalize the results using the complex band structure of the pristine nanowires. The conductance is found to depend strongly on the growth direction, with nanowires grown along the ⟨110⟩ direction showing the smallest decay with length and the largest conductance and current.

  2. Tunneling of heat: Beyond linear response regime

    Science.gov (United States)

    Walczak, Kamil; Saroka, David

    2018-02-01

    We examine nanoscale processes of heat (energy) transfer as carried by electrons tunneling via potential barriers and molecular interconnects between two heat reservoirs (thermal baths). For that purpose, we use Landauer-type formulas to calculate thermal conductance and quadratic correction to heat flux flowing via quantum systems. As an input, we implement analytical expressions for transmission functions related to simple potential barriers and atomic bridges. Our results are discussed with respect to energy of tunneling electrons, temperature, the presence of resonant states, and specific parameters characterizing potential barriers as well as heat carriers. The simplicity of semi-analytical models developed by us allows to fit experimental data and extract crucial information about the values of model parameters. Further investigations are expected for more realistic transmission functions, while time-dependent aspects of nanoscale heat transfer may be addressed by using the concept of wave packets scattered on potential barriers and point-like defects within regular (periodic) nanostructures.

  3. Structural and tunneling properties of Si nanowires

    KAUST Repository

    Montes Muñ oz, Enrique; Gkionis, Konstantinos; Rungger, Ivan; Sanvito, Stefano; Schwingenschlö gl, Udo

    2013-01-01

    We investigate the electronic structure and electron transport properties of Si nanowires attached to Au electrodes from first principles using density functional theory and the nonequilibrium Green's function method. We systematically study the dependence of the transport properties on the diameter of the nanowires, on the growth direction, and on the length. At the equilibrium Au-nanowire distance we find strong electronic coupling between the electrodes and nanowires, which results in a low contact resistance. With increasing nanowire length we study the transition from metallic to tunneling conductance for small applied bias. For the tunneling regime we investigate the decay of the conductance with the nanowire length and rationalize the results using the complex band structure of the pristine nanowires. The conductance is found to depend strongly on the growth direction, with nanowires grown along the ⟨110⟩ direction showing the smallest decay with length and the largest conductance and current.

  4. Chloride Transport in Undersea Concrete Tunnel

    Directory of Open Access Journals (Sweden)

    Yuanzhu Zhang

    2016-01-01

    Full Text Available Based on water penetration in unsaturated concrete of underwater tunnel, a diffusion-advection theoretical model of chloride in undersea concrete tunnel was proposed. The basic parameters including porosity, saturated hydraulic conductivity, chloride diffusion coefficient, initial water saturation, and moisture retention function of concrete specimens with two water-binder ratios were determined through lab-scale experiments. The variation of chloride concentration with pressuring time, location, solution concentration, initial saturation, hydraulic pressure, and water-binder ratio was investigated through chloride transport tests under external water pressure. In addition, the change and distribution of chloride concentration of isothermal horizontal flow were numerically analyzed using TOUGH2 software. The results show that chloride transport in unsaturated concrete under external water pressure is a combined effect of diffusion and advection instead of diffusion. Chloride concentration increased with increasing solution concentration for diffusion and increased with an increase in water pressure and a decrease in initial saturation for advection. The dominant driving force converted with time and saturation. When predicting the service life of undersea concrete tunnel, it is suggested that advection is taken into consideration; otherwise the durability tends to be unsafe.

  5. Tunneling effects in the current-voltage characteristics of high-efficiency GaAs solar cells

    Science.gov (United States)

    Kachare, R.; Anspaugh, B. E.; Garlick, G. F. J.

    1988-01-01

    Evidence is that tunneling via states in the forbidden gap is the dominant source of excess current in the dark current-voltage (I-V) characteristics of high-efficiency DMCVD grown Al(x)Ga(1-x)As/GaAs(x is equal to or greater than 0.85) solar cells. The dark forward and reverse I-V measurements were made on several solar cells, for the first time, at temperatures between 193 and 301 K. Low-voltage reverse-bias I-V data of a number of cells give a thermal activation energy for excess current of 0.026 + or - 0.005 eV, which corresponds to the carbon impurity in GaAs. However, other energy levels between 0.02 eV and 0.04 eV were observed in some cells which may correspond to impurity levels introduced by Cu, Si, Ge, or Cd. The forward-bias excess current is mainly due to carrier tunneling between localized levels created in the space-charge layer by impurities such as carbon, which are incorporated during the solar cell growth process. A model is suggested to explain the results.

  6. Petrology and geochemistry of samples from bed-contact zones in Tunnel Bed 5, U12g-Tunnel, Nevada Test Site

    International Nuclear Information System (INIS)

    Connolly, J.R.; Keil, K.; Mansker, W.L.; Allen, C.C.; Husler, J.; Lowy, R.; Fortney, D.R.; Lappin, A.R.

    1984-10-01

    This report summarizes the detailed geologic characterization of samples of bed-contact zones and surrounding nonwelded bedded tuffs, both within Tunnel Bed 5, that are exposed in the G-Tunnel complex beneath Rainier Mesa on the Nevada Test Site (NTS). Original planning studies treated the bed-contact zones in Tunnel Bed 5 as simple planar surfaces of relatively high permeability. Detailed characterization, however, indicates that these zones have a finite thickness, are depositional in origin, vary considerably over short vertical and horizontal distances, and are internally complex. Fluid flow in a sequence of nonwelded zeolitized ash-flow or bedded tuffs and thin intervening reworked zones appears to be a porous-medium phenomenon, regardless of the presence of layering. There are no consistent differences in either bulk composition or detailed mineralogy between bedded tuffs and bed-contact zones in Tunnel Bed 5. Although the original bulk composition of Tunnel Bed 5 was probably peralkaline, extensive zeolitization has resulted in a present peraluminous bulk composition of both bedded tuffs and bed-contact zones. The major zeolite present, clinoptilolite, is intermediate (Ca:K:Na = 26:35:39) and effectively uniform in composition. This composition is similar to that of clinoptilolite from the tuffaceous beds of Calico Hills above the static water level in hole USW G-1, but somewhat different from that reported for zeolites from below the static water level in USW G-2. Tunnel Bed 5 also contains abundant hydrous manganese oxides. The similarity in composition of the clinoptilolites from Tunnel Bed 5 and those above the static water level at Yucca Mountain indicates that many of the results of nuclide-migration experiments in Tunnel Bed 5 would be transferrable to zeolitized nonwelded tuffs above the static water level at Yucca Mountain

  7. 2D Vertical Heterostructures for Novel Tunneling Device Applications

    Science.gov (United States)

    2017-03-01

    2D Vertical Heterostructures for Novel Tunneling Device Applications Philip M. Campbell, Christopher J. Perini, W. Jud Ready, and Eric M. Vogel...School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA, USA 30332 Abstract: Vertical heterostructures...digital logic, signal processing, analog-to-digital conversion, and high-frequency communications, vertical heterostructure tunneling devices have

  8. Electrospray deposition of fullerenes in ultra-high vacuum: in situ scanning tunneling microscopy and photoemission spectroscopy

    International Nuclear Information System (INIS)

    Satterley, Christopher J; Perdigao, LuIs M A; Saywell, Alex; Magnano, Graziano; Rienzo, Anna; Mayor, Louise C; Dhanak, Vinod R; Beton, Peter H; O'Shea, James N

    2007-01-01

    Electrospray deposition of fullerenes on gold has been successfully observed by in situ room temperature scanning tunneling microscopy and photoemission spectroscopy. Step-edge decoration and hexagonal close-packed islands with a periodicity of 1 nm are observed at low and multilayer coverages respectively, in agreement with thermal evaporation studies. Photoemission spectroscopy shows that fullerenes are being deposited in high purity and are coupling to the gold surface as for thermal evaporation. These results open a new route for the deposition of thermally labile molecules under ultra-high vacuum conditions for a range of high resolution surface science techniques

  9. Analytical model for vibration prediction of two parallel tunnels in a full-space

    Science.gov (United States)

    He, Chao; Zhou, Shunhua; Guo, Peijun; Di, Honggui; Zhang, Xiaohui

    2018-06-01

    This paper presents a three-dimensional analytical model for the prediction of ground vibrations from two parallel tunnels embedded in a full-space. The two tunnels are modelled as cylindrical shells of infinite length, and the surrounding soil is modelled as a full-space with two cylindrical cavities. A virtual interface is introduced to divide the soil into the right layer and the left layer. By transforming the cylindrical waves into the plane waves, the solution of wave propagation in the full-space with two cylindrical cavities is obtained. The transformations from the plane waves to cylindrical waves are then used to satisfy the boundary conditions on the tunnel-soil interfaces. The proposed model provides a highly efficient tool to predict the ground vibration induced by the underground railway, which accounts for the dynamic interaction between neighbouring tunnels. Analysis of the vibration fields produced over a range of frequencies and soil properties is conducted. When the distance between the two tunnels is smaller than three times the tunnel diameter, the interaction between neighbouring tunnels is highly significant, at times in the order of 20 dB. It is necessary to consider the interaction between neighbouring tunnels for the prediction of ground vibrations induced underground railways.

  10. A model study of tunneling conductance spectra of ferromagnetically ordered manganites

    Science.gov (United States)

    Panda, Saswati; Kar, J. K.; Rout, G. C.

    2018-02-01

    We report here the interplay of ferromagnetism (FM) and charge density wave (CDW) in manganese oxide systems through the study of tunneling conductance spectra. The model Hamiltonian consists of strong Heisenberg coupling in core t2g band electrons within mean-field approximation giving rise to ferromagnetism. Ferromagnetism is induced in the itinerant eg electrons due to Kubo-Ohata type double exchange (DE) interaction among the t2g and eg electrons. The charge ordering (CO) present in the eg band giving rise to CDW interaction is considered as the extra-mechanism to explain the colossal magnetoresistance (CMR) property of manganites. The magnetic and CDW order parameters are calculated using Zubarev's Green's function technique and solved self-consistently and numerically. The eg electron density of states (DOS) calculated from the imaginary part of the Green's function explains the experimentally observed tunneling conductance spectra. The DOS graph exhibits a parabolic gap near the Fermi energy as observed in tunneling conductance spectra experiments.

  11. Quantum mechanical tunneling in chemical physics

    CERN Document Server

    Nakamura, Hiroki

    2016-01-01

    Quantum mechanical tunneling plays important roles in a wide range of natural sciences, from nuclear and solid-state physics to proton transfer and chemical reactions in chemistry and biology. Responding to the need for further understanding of multidimensional tunneling, the authors have recently developed practical methods that can be applied to multidimensional systems. Quantum Mechanical Tunneling in Chemical Physics presents basic theories, as well as original ones developed by the authors. It also provides methodologies and numerical applications to real molecular systems. The book offers information so readers can understand the basic concepts and dynamics of multidimensional tunneling phenomena and use the described methods for various molecular spectroscopy and chemical dynamics problems. The text focuses on three tunneling phenomena: (1) energy splitting, or tunneling splitting, in symmetric double well potential, (2) decay of metastable state through tunneling, and (3) tunneling effects in chemical...

  12. Achievement of high diode sensitivity via spin torque-induced resonant expulsion in vortex magnetic tunnel junction

    Science.gov (United States)

    Tsunegi, Sumito; Taniguchi, Tomohiro; Yakushiji, Kay; Fukushima, Akio; Yuasa, Shinji; Kubota, Hitoshi

    2018-05-01

    We investigated the spin-torque diode effect in a magnetic tunnel junction with FeB free layer. Vortex-core expulsion was observed near the boundary between vortex and uniform states. A high diode voltage of 24 mV was obtained with alternative input power of 0.3 µW, corresponding to huge diode sensitivity of 80,000 mV/mW. In the expulsion region, a broad peak in the high frequency region was observed, which is attributed to the weak excitation of uniform magnetization by thermal noise. The high diode sensitivity is of great importance for device applications such as telecommunications, radar detectors, and high-speed magnetic-field sensors.

  13. Tunnelling of a molecule

    International Nuclear Information System (INIS)

    Jarvis, P.D.; Bulte, D.P.

    1998-01-01

    A quantum-mechanical description of tunnelling is presented for a one-dimensional system with internal oscillator degrees of freedom. The 'charged diatomic molecule' is frustrated on encountering a barrier potential by its centre of charge not being coincident with its centre of mass, resulting in transitions amongst internal states. In an adiabatic limit, the tunnelling of semiclassical coherent-like oscillator states is shown to exhibit the Hartman and Bueuttiker-Landauer times t H and t BL , with the time dependence of the coherent state parameter for the tunnelled state given by α(t) = α e -iω(t+Δt) , Δt = t H - it BL . A perturbation formalism is developed, whereby the exact transfer matrix can be expanded to any desired accuracy in a suitable limit. An 'intrinsic' time, based on the oscillator transition rate during tunnelling, transmission or reflection, is introduced. In simple situations the resulting intrinsic tunnelling time is shown to vanish to lowest order. In the general case a particular (nonzero) parametrisation is inferred, and its properties discussed in comparison with the literature on tunnelling times for both wavepackets and internal clocks. Copyright (1998) CSIRO Australia

  14. A simulation-based proposed high-k heterostructure AlGaAs/Si junctionless n-type tunnel FET

    International Nuclear Information System (INIS)

    Rahi Shiromani Balmukund; Asthana Pranav; Ghosh Bahniman

    2014-01-01

    We propose a heterostructure junctionless tunnel field effect transistor (HJL-TFET) using AlGaAs/Si. In the proposed HJL-TFET, low band gap silicon is used in the source side and higher band gap AlGaAs in the drain side. The whole AlGaAs/Si region is heavily doped n-type. The proposed HJL-TFET uses two isolated gates (named gate, gate1) with two different work functions (gate = 4.2 eV, gate1 = 5.2 eV respectively). The 2-D nature of HJL-TFET current flow is studied. The proposed structure is simulated in Silvaco with different gate dielectric materials. This structure exhibits a high on current in the range of 1.4 × 10 −6 A/μm, the off current remains as low as 9.1 × 10 −14 A/μm. So I ON /I OFF ratio of ≃ 10 8 is achieved. Point subthreshold swing has also been reduced to a value of ≃ 41 mV/decade for TiO 2 gate material. (semiconductor devices)

  15. Influence of quasiparticle multi-tunneling on the energy flow through the superconducting tunnel junction

    International Nuclear Information System (INIS)

    Samedov, V. V.; Tulinov, B. M.

    2011-01-01

    Superconducting tunnel junction (STJ) detector consists of two layers of superconducting material separated by thin insulating barrier. An incident particle produces in superconductor excess nonequilibrium quasiparticles. Each quasiparticle in superconductor should be considered as quantum superposition of electron-like and hole-like excitations. This duality nature of quasiparticle leads to the effect of multi-tunneling. Quasiparticle starts to tunnel back and forth through the insulating barrier. After tunneling from biased electrode quasiparticle loses its energy via phonon emission. Eventually, the energy that equals to the difference in quasiparticle energy between two electrodes is deposited in the signal electrode. Because of the process of multi-tunneling, one quasiparticle can deposit energy more than once. In this work, the theory of branching cascade processes was applied to the process of energy deposition caused by the quasiparticle multi-tunneling. The formulae for the mean value and variance of the energy transferred by one quasiparticle into heat were derived. (authors)

  16. Tunnelling anomalous and planar Hall effects (Conference Presentation)

    Science.gov (United States)

    Matos-Abiague, Alex; Scharf, Benedikt; Han, Jong E.; Hankiewicz, Ewelina M.; Zutic, Igor

    2016-10-01

    We theoretically show how the interplay between spin-orbit coupling (SOC) and magnetism can result in a finite tunneling Hall conductance, transverse to the applied bias. For two-dimensional tunnel junctions with a ferromagnetic lead and magnetization perpendicular to the current flow, the detected anomalous Hall voltage can be used to extract information not only about the spin polarization but also about the strength of the interfacial SOC. In contrast, a tunneling current across a ferromagnetic barrier on the surface of a three-dimensional topological insulator (TI) can induce a planar Hall response even when the magnetization is oriented along the current flow[1]. The tunneling nature of the states contributing to the planar Hall conductance can be switched from the ordinary to the Klein regimes by the electrostatic control of the barrier strength. This allows for an enhancement of the transverse response and a giant Hall angle, with the tunneling planar Hall conductance exceeding the longitudinal component. Despite the simplicity of a single ferromagnetic region, the TI/ferromagnet system exhibits a variety of functionalities. In addition to a spin-valve operation for magnetic sensing and storing information, positive, negative, and negative differential conductances can be tuned by properly adjusting the barrier potential and/or varying the magnetization direction. Such different resistive behaviors in the same system are attractive for potential applications in reconfigurable spintronic devices. [1] B. Scharf, A. Matos-Abiague, J. E. Han, E. M. Hankiewicz, and I. Zutic, arXiv:1601.01009 (2016).

  17. Resonant tunneling across a ferroelectric domain wall

    Science.gov (United States)

    Li, M.; Tao, L. L.; Velev, J. P.; Tsymbal, E. Y.

    2018-04-01

    Motivated by recent experimental observations, we explore electron transport properties of a ferroelectric tunnel junction (FTJ) with an embedded head-to-head ferroelectric domain wall, using first-principles density-functional theory calculations. We consider a FTJ with L a0.5S r0.5Mn O3 electrodes separated by a BaTi O3 barrier layer and show that an in-plane charged domain wall in the ferroelectric BaTi O3 can be induced by polar interfaces. The resulting V -shaped electrostatic potential profile across the BaTi O3 layer creates a quantum well and leads to the formation of a two-dimensional electron gas, which stabilizes the domain wall. The confined electronic states in the barrier are responsible for resonant tunneling as is evident from our quantum-transport calculations. We find that the resonant tunneling is an orbital selective process, which leads to sharp spikes in the momentum- and energy-resolved transmission spectra. Our results indicate that domain walls embedded in FTJs can be used to control the electron transport.

  18. Two-dimensional computational modeling of high-speed transient flow in gun tunnel

    Science.gov (United States)

    Mohsen, A. M.; Yusoff, M. Z.; Hasini, H.; Al-Falahi, A.

    2018-03-01

    In this work, an axisymmetric numerical model was developed to investigate the transient flow inside a 7-meter-long free piston gun tunnel. The numerical solution of the gun tunnel was carried out using the commercial solver Fluent. The governing equations of mass, momentum, and energy were discretized using the finite volume method. The dynamic zone of the piston was modeled as a rigid body, and its motion was coupled with the hydrodynamic forces from the flow solution based on the six-degree-of-freedom solver. A comparison of the numerical data with the theoretical calculations and experimental measurements of a ground-based gun tunnel facility showed good agreement. The effects of parameters such as working gases and initial pressure ratio on the test conditions in the facility were examined. The pressure ratio ranged from 10 to 50, and gas combinations of air-air, helium-air, air-nitrogen, and air-CO2 were used. The results showed that steady nozzle reservoir conditions can be maintained for a longer duration when the initial conditions across the diaphragm are adjusted. It was also found that the gas combination of helium-air yielded the highest shock wave strength and speed, but a longer test time was achieved in the test section when using the CO2 test gas.

  19. Electron-spin polarization in tunnel junctions with ferromagnetic EuS barriers

    International Nuclear Information System (INIS)

    Hao, X.; Moodera, J.S.; Meservey, R.

    1989-01-01

    The authors report here spin-polarized tunneling experiments using non-ferromagnetic electrodes and ferromagnetic EuS barriers. Because of the conduction band in EuS splits into spin-up and spin-down subbands when the temperature is below 16.7 K, the Curie temperature of EuS, the tunnel barrier for electrons with different spin directions is different, therefore giving rise to tunnel current polarization. The spin-filter effect, as it may be called, was observed earlier, directly or indirectly, by several groups: Esaki et al. made a tunneling study on junctions having EuS and EuSe barriers; Thompson et al. studied Schottky barrier tunneling between In and doped EuS; Muller et al. and Kisker et al. performed electron field emission experiments on EuS-coated tungsten tips. The field emission experiments gave a maximum polarization of (89 + 7)% for the emitted electrons. Although the previous tunneling studies did not directly show electron polarization, their results were explained by the same spin- filter effect. This work uses the spin-polarized tunneling technique to show directly that tunnel current is indeed polarized and polarization can be as high as 85%

  20. The time of discrete spectrum identical particles tunneling at their simultaneous passing over rectangular quantum barrier

    International Nuclear Information System (INIS)

    Martsenyuk, L.S.

    2010-01-01

    Research of influence of exchange interaction of identical particles for the time of their simultaneous tunneling through a rectangular quantum barrier is lead. The account of identity leads to necessity of symmetrisation of wave function owing to what in the formula describing interaction of two particles, arises an additional element. In result the parameters of tunneling, including time of tunneling change. Time of tunneling is calculated from the formula received in work from the size of exchange interaction of two particles simultaneously crossing a rectangular quantum barrier.

  1. Planar edge Schottky barrier-tunneling transistors using epitaxial graphene/SiC junctions.

    Science.gov (United States)

    Kunc, Jan; Hu, Yike; Palmer, James; Guo, Zelei; Hankinson, John; Gamal, Salah H; Berger, Claire; de Heer, Walt A

    2014-09-10

    A purely planar graphene/SiC field effect transistor is presented here. The horizontal current flow over one-dimensional tunneling barrier between planar graphene contact and coplanar two-dimensional SiC channel exhibits superior on/off ratio compared to conventional transistors employing vertical electron transport. Multilayer epitaxial graphene (MEG) grown on SiC(0001̅) was adopted as the transistor source and drain. The channel is formed by the accumulation layer at the interface of semi-insulating SiC and a surface silicate that forms after high vacuum high temperature annealing. Electronic bands between the graphene edge and SiC accumulation layer form a thin Schottky barrier, which is dominated by tunneling at low temperatures. A thermionic emission prevails over tunneling at high temperatures. We show that neglecting tunneling effectively causes the temperature dependence of the Schottky barrier height. The channel can support current densities up to 35 A/m.

  2. Enhanced MRI in carpal tunnel syndrome

    International Nuclear Information System (INIS)

    Hayakawa, Katsuhiko; Nakane, Takashi; Kobayashi, Shigeru; Asai, Takahiro; Wada, Kunio; Yoshizawa, Hidezo

    1998-01-01

    In this study, we performed contrast-enhanced MRI in patients with idiopathic carpal tunnel syndrome and examined the morphologic change in the carpal tunnel. In the transverse section of the opening of carpal tunnel where scaphoid and pisiform bones are figured out, we measured and examined 4 items, viz. the soft carpal tunnel volume, flat rate of median nerve, position of median nerve and thickness of palmer ligaments composing the base of carpal tunnel, with an image analyzer attached to the MRI apparatus. Whereas the average carpal tunnel volume in 12 hands of normal controls was 166.8 mm 2 , that in 74 hands of carpal tunnel syndrome was 207.2 mm 2 , a significant increase compared with the normal controls. The flat rate of median nerve was 46% in the controls, but that was 37.5% in the carpal tunnel syndrome, a significant flattening was noted. We connected the peaks of the scaphoid node and pisiform bone with a line and named it standard line. When we observed the position of median nerve in the carpal tunnel, the nerve in 9 of 12 hands, 75%, lay below the standard line in the controls, but the nerve in 65 of 74 hands, 87.8%, lay above the standard line in the carpal tunnel syndrome, clearly showing that the median nerve had shifted to the palmar side. Regarding these morphologic changes of the carpal tunnel, the internal pressure of the carpal tunnel is considered to be raised with swelling of the soft tissues mainly composing the inside of carpal tunnel, thus the area of cross section of carpal tunnel to be increased, the median nerve to be shifted to the palmar side and the median nerve to be compressed by the transverse carpal ligament at that time. Although we can observe these morphological changes readily in MRI images, these images show only the results of carpal tunnel syndrome after all, and do not specify the direct causes. However, we believe that these facts are important factors in the manifestation of idiopathic carpal tunnel syndrome. (author)

  3. Josephson tunneling and nanosystems

    OpenAIRE

    Ovchinnikov, Yurii; Kresin, Vladimir

    2010-01-01

    Josephson tunneling between nanoclusters is analyzed. The discrete nature of the electronic energy spectra, including their shell ordering, is explicitly taken into account. The treatment considers the two distinct cases of resonant and non-resonant tunneling. It is demonstrated that the current density greatly exceeds the value discussed in the conventional theory. Nanoparticles are shown to be promising building blocks for nanomaterials-based tunneling networks.

  4. AlGaAs/InGaAlP tunnel junctions for multijunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    SHARPS,P.R.; LI,N.Y.; HILLS,J.S.; HOU,H.; CHANG,PING-CHIH; BACA,ALBERT G.

    2000-05-16

    Optimization of GaInP{sub 2}/GaAs dual and GaInP{sub 2}/GaAs/Ge triple junction cells, and development of future generation monolithic multi-junction cells will involve the development of suitable high bandgap tunnel junctions. There are three criteria that a tunnel junction must meet. First, the resistance of the junction must be kept low enough so that the series resistance of the overall device is not increased. For AMO, 1 sun operation, the tunnel junction resistance should be below 5 x 10{sup {minus}2} {Omega}-cm. Secondly, the peak current density for the tunnel junction must also be larger than the J{sub sc} of the cell so that the tunnel junction I-V curve does not have a deleterious effect on the I-V curve of the multi-junction device. Finally, the tunnel junction must be optically transparent, i.e., there must be a minimum of optical absorption of photons that will be collected by the underlying subcells. The paper reports the investigation of four high bandgap tunnel junctions grown by metal-organic chemical vapor deposition.

  5. Control of tunneling in heterostructures

    International Nuclear Information System (INIS)

    Volokhov, V M; Tovstun, C A; Ivlev, B

    2007-01-01

    A tunneling current between two rectangular potential wells can be effectively controlled by applying an external ac field. A variation of the ac frequency by 10% may lead to the suppression of the tunneling current by two orders of magnitude, which is a result of quantum interference under the action of the ac field. This effect of destruction of tunneling can be used as a sensitive control of tunneling current across nanosize heterostructures

  6. Suppression of tunneling leakage current in junctionless nanowire transistors

    International Nuclear Information System (INIS)

    Lou, Haijun; Li, Dan; Dong, Yan; Lin, Xinnan; He, Jin; Yang, Shengqi; Chan, Mansun

    2013-01-01

    In this paper, the characteristics of tunneling leakage current for the dual-material gate junctionless nanowire transistor (DMG-JNT) are investigated by three-dimensional numerical simulations and compared with conventional junctionless nanowire transistor (JNT). The suppression of the tunneling leakage current on the JNT by introducing an energy band step with the DMG structure is verified and presented for the first time. The effects of channel length on the DMG-JNT and the JNT are also studied. Results showed that the tunneling leakage current of the DMG-JNT is two orders smaller than that of the JNT, and further, the DMG-JNT exhibits superior scaling capability. Two key design parameters of the DMG-JNT, control gate ratio (Ra) and work function difference (δW), have been optimized and the optimal ranges of Ra and δW are pointed out. (paper)

  7. Suppression of tunneling leakage current in junctionless nanowire transistors

    Science.gov (United States)

    Lou, Haijun; Li, Dan; Dong, Yan; Lin, Xinnan; He, Jin; Yang, Shengqi; Chan, Mansun

    2013-12-01

    In this paper, the characteristics of tunneling leakage current for the dual-material gate junctionless nanowire transistor (DMG-JNT) are investigated by three-dimensional numerical simulations and compared with conventional junctionless nanowire transistor (JNT). The suppression of the tunneling leakage current on the JNT by introducing an energy band step with the DMG structure is verified and presented for the first time. The effects of channel length on the DMG-JNT and the JNT are also studied. Results showed that the tunneling leakage current of the DMG-JNT is two orders smaller than that of the JNT, and further, the DMG-JNT exhibits superior scaling capability. Two key design parameters of the DMG-JNT, control gate ratio (Ra) and work function difference (δW), have been optimized and the optimal ranges of Ra and δW are pointed out.

  8. Analysis of labour accidents in tunnel construction and introduction of prevention measures.

    Science.gov (United States)

    Kikkawa, Naotaka; Itoh, Kazuya; Hori, Tomohito; Toyosawa, Yasuo; Orense, Rolando P

    2015-01-01

    At present, almost all mountain tunnels in Japan are excavated and constructed utilizing the New Austrian Tunneling Method (NATM), which was advocated by Prof. Rabcewicz of Austria in 1964. In Japan, this method has been applied to tunnel construction since around 1978, after which there has been a subsequent decrease in the number of casualties during tunnel construction. However, there is still a relatively high incidence of labour accidents during tunnel construction when compared to incidence rates in the construction industry in general. During tunnel construction, rock fall events at the cutting face are a particularly characteristic of the type of accident that occurs. In this study, we analysed labour accidents that possess the characteristics of a rock fall event at a work site. We also introduced accident prevention measures against rock fall events.

  9. Evaluation of TBM tunnels with respect to stability against spalling

    Science.gov (United States)

    Shaalan, Heyam; Ismail, Mohd Ashraf Mohd; Azit, Romziah

    2017-10-01

    As the depth of tunnels and underground construction increases, instability occurs in the form of rock bursting or spalling because of the induced stresses. Spalling may appear as a strong compressive stress causing crack growth behind the excavated surface and buckling of the thin rock slabs. In this paper, we describe how to reduce the rock spalling failure to increase the underground safety and the tunnel stability. Thus, a parametric study is implemented using 2-D Elasto-plastic finite elements stress analysis software to investigate the parameters that can minimize the extent and depth of the failure zone. The critical section of Pahang Selangor Raw Water Transfer Tunnel under high overburden is analyzed. The effect of the shotcrete lining thickness, tunnel size and the removal of fallouts or scaled v-notch on the failure zone depth is investigated. The results demonstrate that the shotcrete lining thickness has less influence on the failure depth, while a small tunnel diameter minimizes the failure depth. In addition, the stability of the tunnel improves by removing the loose rock mass.

  10. Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.

    Science.gov (United States)

    Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan

    2016-04-22

    We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.

  11. Smoke flow temperature beneath tunnel ceiling for train fire at subway station: Reduced-scale experiments and correlations

    International Nuclear Information System (INIS)

    Meng, Na; Wang, Qiang; Liu, Zhaoxia; Li, Xiao; Yang, He

    2017-01-01

    Highlights: • Reduced-scale experiments on train fire at subway station. • Smoke flow temperature beneath tunnel ceiling measured and correlated. • Effect of platform-tunnel conjunction door type on smoke temperature is clarified. - Abstract: This paper is to investigate the smoke flow temperature beneath tunnel ceiling for a train on fire stopping besides a subway station. Experiments were carried out in a reduced-scale (1:10) subway station model to study the maximum smoke temperature and the longitudinal temperature distribution beneath the tunnel ceiling by considering platform-tunnel conjunction doors of two types: the full-seal platform screen door (PSD) and the full-height safety door. For the maximum temperature beneath the tunnel ceiling, it is found to be well correlated non-dimensionally with heat release rate by a 3.65 and a 2.92 power law function for the full-seal platform screen door and the full-height safety door, respectively. For the longitudinal temperature distribution along the tunnel ceiling, it can be well correlated by an exponential function for both types of platform-tunnel conjunction doors. Concerning the effect of the door type, the maximum temperature is lower and the longitudinal temperature decays faster for full-height safety door than that for full-seal PSD. This is due to that with the full-height safety door, the effective width of the tunnel ceiling is widened, which results in more heat losses from the smoke flow to the ceiling.

  12. Tunnelling in Soft Soil : Tunnel Boring Machine Operation and Soil Response

    NARCIS (Netherlands)

    Festa, D.; Broere, W.; Bosch, J.W.

    2013-01-01

    Constructing tunnels in soft soil with the use of Tunnel Boring Machines may induce settlements including soil movements ahead of the face, soil relaxation into the tail void, possible heave due to grouting, long lasting consolidation processes, and potentially several other mechanisms. A

  13. Seismic prediction ahead of tunnel constructions

    Science.gov (United States)

    Jetschny, S.; Bohlen, T.; Nil, D. D.; Giese, R.

    2007-12-01

    To increase safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel can become a valuable tool. Within the \\it OnSite project founded by the BMBF (German Ministry of Education and Research) within \\it GeoTechnologien a new forward looking seismic imaging technique is developed to e.g. determine weak and water bearing zones ahead of the constructions. Our approach is based on the excitation and registration of \\it tunnel surface waves. These waves are excited at the tunnel face behind the cutter head of a tunnel boring machine and travel into drilling direction. Arriving at the front face they generate body waves (mainly S-waves) propagating further ahead. Reflected S-waves are back- converted into tunnel surface waves. For a theoretical description of the conversion process and for finding optimal acquisition geometries it is of importance to study the propagation characteristics of tunnel surface waves. 3D seismic finite difference modeling and analytic solutions of the wave equation in cylindric coordinates revealed that at higher frequencies, i.e. if the tunnel diameter is significantly larger than the wavelength of S-waves, these surface waves can be regarded as Rayleigh-waves circulating the tunnel. For smaller frequencies, i.e. when the S-wavelength approaches the tunnel diameter, the propagation characteristics of these surface waves are then similar to S- waves. Field measurements performed by the GeoForschungsZentrum Potsdam, Germany at the Gotthard Base Tunnel (Switzerland) show both effects, i.e. the propagation of Rayleigh- and body-wave like waves along the tunnel. To enhance our understanding of the excitation and propagation characteristics of tunnel surface waves the transition of Rayleigh to tube-waves waves is investigated both analytically and by numerical simulations.

  14. Revisiting the role of trap-assisted-tunneling process on current-voltage characteristics in tunnel field-effect transistors

    Science.gov (United States)

    Omura, Yasuhisa; Mori, Yoshiaki; Sato, Shingo; Mallik, Abhijit

    2018-04-01

    This paper discusses the role of trap-assisted-tunneling process in controlling the ON- and OFF-state current levels and its impacts on the current-voltage characteristics of a tunnel field-effect transistor. Significant impacts of high-density traps in the source region are observed that are discussed in detail. With regard to recent studies on isoelectronic traps, it has been discovered that deep level density must be minimized to suppress the OFF-state leakage current, as is well known, whereas shallow levels can be utilized to control the ON-state current level. A possible mechanism is discussed based on simulation results.

  15. Tunneling current into the vortex lattice states of s-and p- wave superconductors

    International Nuclear Information System (INIS)

    Kowalewski, L.; Nogala, M.M.; Thomas, M.; Wojciechowski, R.J.

    2000-01-01

    The tunneling current between the metallic tip of a scanning microscope and s- and p-wave superconductors in quantizing magnetic field is investigated. The differential conductance is calculated both as a function of bias voltage at the centre of the vortex line and for varying position of the scanning tunneling microscope tip at a stable voltage. (author)

  16. Solid-State Quantum Computer Based on Scanning Tunneling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berman, G. P.; Brown, G. W.; Hawley, M. E.; Tsifrinovich, V. I.

    2001-08-27

    We propose a solid-state nuclear-spin quantum computer based on application of scanning tunneling microscopy (STM) and well-developed silicon technology. It requires the measurement of tunneling-current modulation caused by the Larmor precession of a single electron spin. Our envisioned STM quantum computer would operate at the high magnetic field ({approx}10 T) and at low temperature {approx}1 K .

  17. Solid-State Quantum Computer Based on Scanning Tunneling Microscopy

    International Nuclear Information System (INIS)

    Berman, G. P.; Brown, G. W.; Hawley, M. E.; Tsifrinovich, V. I.

    2001-01-01

    We propose a solid-state nuclear-spin quantum computer based on application of scanning tunneling microscopy (STM) and well-developed silicon technology. It requires the measurement of tunneling-current modulation caused by the Larmor precession of a single electron spin. Our envisioned STM quantum computer would operate at the high magnetic field (∼10 T) and at low temperature ∼1 K

  18. In situ scanning tunneling microscope tip treatment device for spin polarization imaging

    Science.gov (United States)

    Li, An-Ping [Oak Ridge, TN; Jianxing, Ma [Oak Ridge, TN; Shen, Jian [Knoxville, TN

    2008-04-22

    A tip treatment device for use in an ultrahigh vacuum in situ scanning tunneling microscope (STM). The device provides spin polarization functionality to new or existing variable temperature STM systems. The tip treatment device readily converts a conventional STM to a spin-polarized tip, and thereby converts a standard STM system into a spin-polarized STM system. The tip treatment device also has functions of tip cleaning and tip flashing a STM tip to high temperature (>2000.degree. C.) in an extremely localized fashion. Tip coating functions can also be carried out, providing the tip sharp end with monolayers of coating materials including magnetic films. The device is also fully compatible with ultrahigh vacuum sample transfer setups.

  19. Fire Resistant Panels for the Tunnel Linings

    Directory of Open Access Journals (Sweden)

    Gravit Marina

    2016-01-01

    Full Text Available Presents the results of studies of innovative materials in the field of experimental and theoretical research fire resistance fireproof panels Pyro-Safe Aestuver T. Owing to the assembly simplicity, materials cheapness, high ecological standard, recycling, reuse potential, are benefit. Research work is running to improve the knowledge about fireproof panels Pyro-Safe Aestuver T for tunnel lining, its basic performance, its long term behavior and in particular also its fire proof for example when used for the lining of road tunnels.

  20. Gap anisotropy and tunneling currents. [MPS3

    DEFF Research Database (Denmark)

    Lazarides, N.; Sørensen, Mads Peter

    1996-01-01

    The tunneling Hamiltonian formalism is applied to calculate the tunnelingcurrents through a small superconducting tunnel junction. The formalism isextended to nonconstant tunneling matrix elements. The electrodes of thejunction are assumed to......The tunneling Hamiltonian formalism is applied to calculate the tunnelingcurrents through a small superconducting tunnel junction. The formalism isextended to nonconstant tunneling matrix elements. The electrodes of thejunction are assumed to...