WorldWideScience

Sample records for highly excited silicon

  1. Multiple photon excited SF6 interaction with silicon surfaces

    Science.gov (United States)

    Chuang, T. J.

    1981-01-01

    Infrared laser induced SF6-silicon interactions have been studied and the surface reaction yields have been determined as a function of the laser frequency, the laser intensity, and the gas pressure in both perpendicular and parallel beam incidences on the solid surfaces. The results clearly show that vibrationally excited SF6 molecules promoted by CO2 laser pulses are very reactive to silicon, particularly when the solid is simultaneously exposed to the intense ir radiation. The laser excitation of the Si substrate alone cannot cause the heterogeneous reaction to occur. The present gas-solid system thus provides an example which clearly establishes the direct correlation between surface reactivity and vibrational activation. Additional experimental measurements also demonstrate that the thermal fluorine atoms generated by SF6 multiple photon dissociation at high laser intensities can react with silicon to form volatile product. The study thus provides further insight into the silicon-fluorine reaction dynamics.

  2. An Electromagnetically Excited Silicon Nitride Beam Resonant Accelerometer

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available A resonant microbeam accelerometer of a novel highly symmetric structure based on MEMS bulk-silicon technology is proposed and some numerical modeling results for this scheme are presented. The accelerometer consists of two proof masses, four supporting hinges, two anchors, and a vibrating triple beam, which is clamped at both ends to the two proof masses. LPCVD silicon rich nitride is chosen as the resonant triple beam material, and parameter optimization of the triple-beam structure has been performed. The triple beam is excited and sensed electromagnetically by film electrodes located on the upper surface of the beam. Both simulation and experimental results show that the novel structure increases the scale factor of the resonant accelerometer, and ameliorates other performance issues such as cross axis sensitivity of insensitive input acceleration, etc.

  3. Dynamics of optically excited tungsten and silicon for ripples formation

    Science.gov (United States)

    Zhang, Hao; Li, Chen; Colombier, Jean-Philippe; Cheng, Guanghua; Stoian, Razvan

    2015-03-01

    We measured the dielectric constant of optically excited silicon and tungsten using a dual-angle femtosecond reflectivity pump-probe technique. The energy deposition in the formation of laser-induced periodic surface structures (LIPSS) is then investigated by simulating the laser pulse interaction with an initially random distributed rough surface using 3D-Finite Difference Time Domain (FDTD) method, with the measured dielectric constant as a material input. We found in the FDTD simulation periodic energy deposition patterns both perpendicular and parallel to the laser polarization. The origin of them are discussed for originally plasmonic and non-plasmonic material.

  4. An FPGA-Based Silicon Neuronal Network with Selectable Excitability Silicon Neurons.

    Science.gov (United States)

    Li, Jing; Katori, Yuichi; Kohno, Takashi

    2012-01-01

    This paper presents a digital silicon neuronal network which simulates the nerve system in creatures and has the ability to execute intelligent tasks, such as associative memory. Two essential elements, the mathematical-structure-based digital spiking silicon neuron (DSSN) and the transmitter release based silicon synapse, allow us to tune the excitability of silicon neurons and are computationally efficient for hardware implementation. We adopt mixed pipeline and parallel structure and shift operations to design a sufficient large and complex network without excessive hardware resource cost. The network with 256 full-connected neurons is built on a Digilent Atlys board equipped with a Xilinx Spartan-6 LX45 FPGA. Besides, a memory control block and USB control block are designed to accomplish the task of data communication between the network and the host PC. This paper also describes the mechanism of associative memory performed in the silicon neuronal network. The network is capable of retrieving stored patterns if the inputs contain enough information of them. The retrieving probability increases with the similarity between the input and the stored pattern increasing. Synchronization of neurons is observed when the successful stored pattern retrieval occurs.

  5. Effect resonance radiation transfer of excitation porous silicon to I sub 2 molecules sorbed in pores

    CERN Document Server

    Zakharchenko, K V; Kuznetsov, M B; Chistyakov, A A; Karavanskij, V A

    2001-01-01

    One studies the effect of resonance radiation-free transfer of electronic excitation between silicon nanocrystals and iodine molecules sorbed in pores. The experiment procedure includes laser-induced luminescence and laser desorption mass spectrometry. One analyzes photoluminescence spectra prior to and upon iodine sorption. Excitation of iodine through the mechanism of resonance transfer is determined to result in desorption of the iodine sorbed molecules with relatively high kinetic energies (3-1 eV). One evaluated the peculiar distance of resonance transfer the approximate value of which was equal to 2 nm

  6. High Frequency Chandler Wobble Excitation

    Science.gov (United States)

    Seitz, F.; Stuck, J.; Thomas, M.

    2003-04-01

    and OMCT forcing fields give no hint for increased excitation power in the Chandler band. Thus it is assumed, that continuous high frequency excitation due to stochastic weather phenomena is responsible for the perpetuation of the Chandler wobble.

  7. Plasmonic and Photonic Modes Excitation in Graphene on Silicon Photonic Crystal Membrane

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Gu, Tingyi; Hao, Yufeng

    Graphene is a perspective material platform for the infrared (from far-IR to near-IR) optoelectronics due to possibility of extremely confined surface plasmons polaritons excitation at long wavelengths, and large (for atomically thin layer) optical absorbance of 2.3% in the short wavelengths rang...... characterization. Measured data are well correlated with the numerical analysis. Combined graphene – silicon photonic crystal membranes can find applications for infrared absorbers, modulators, filters, sensors and photodetectors.......Graphene is a perspective material platform for the infrared (from far-IR to near-IR) optoelectronics due to possibility of extremely confined surface plasmons polaritons excitation at long wavelengths, and large (for atomically thin layer) optical absorbance of 2.3% in the short wavelengths ranges....... Being deposited on a silicon photonic crystal membrane graphene serves as a highly promising system for modern optoelectronics with rich variety of possible regimes. Depending on the relation between the photonic crystal lattice constant and wavelengths (plasmonic, photonic and free-space) we identify...

  8. Highly nonlinear photoluminescence threshold in porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Akcakir, O. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Therrien, J. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Yamani, Z. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Barry, N. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Yu, W. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Gratton, E. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    1999-12-27

    Porous silicon is excited using near-infrared femtosecond pulsed and continuous wave radiation at an average intensity of {approx}10{sup 6} W/cm{sup 2} (8x10{sup 10} W/cm{sup 2} peak intensity in pulsed mode). Our results demonstrate the presence of micron-size regions for which the intensity of the photoluminescence has a highly nonlinear threshold, rising by several orders of magnitude near this incident intensity for both the pulsed and continuous wave cases. These results are discussed in terms of stimulated emission from quantum confinement engineered intrinsic Si-Si radiative traps in ultrasmall nanocrystallites, populated following two-photon absorption. (c) 1999 American Institute of Physics.

  9. New Perspective of High-Pure Silicon

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The discovery in the middle of 1950s of the semi-con ducting properties of crystalline silicon has led to the impetu ous development of electric power facilities, the sun-power industry, and particularly, the microelectronic industry. The increasing demand for the high-pure silicon requires the production of synthetic crystals. The raw material for the syn thetic crystals, the so-called technical, or metallurgical silicon, is obtained from quartzite and quartz of superior quality by means of carbon-thermal reduction of silicon using an electric arc discharge. The complexity of the technological process, high cost of the related facilities, worsening environmental pollution, and narrow-mindedness of a raw material company are attributed to the rise in price of the final product-silicon plates, resulting in the fall in the production of high-pure silicon, normally used in sun storage batteries.

  10. Photo-excited hot carrier dynamics in hydrogenated amorphous silicon imaged by 4D electron microscopy

    Science.gov (United States)

    Liao, Bolin; Najafi, Ebrahim; Li, Heng; Minnich, Austin J.; Zewail, Ahmed H.

    2017-09-01

    Charge carrier dynamics in amorphous semiconductors has been a topic of intense research that has been propelled by modern applications in thin-film solar cells, transistors and optical sensors. Charge transport in these materials differs fundamentally from that in crystalline semiconductors owing to the lack of long-range order and high defect density. Despite the existence of well-established experimental techniques such as photoconductivity time-of-flight and ultrafast optical measurements, many aspects of the dynamics of photo-excited charge carriers in amorphous semiconductors remain poorly understood. Here, we demonstrate direct imaging of carrier dynamics in space and time after photo-excitation in hydrogenated amorphous silicon (a-Si:H) by scanning ultrafast electron microscopy (SUEM). We observe an unexpected regime of fast diffusion immediately after photoexcitation, together with spontaneous electron-hole separation and charge trapping induced by the atomic disorder. Our findings demonstrate the rich dynamics of hot carrier transport in amorphous semiconductors that can be revealed by direct imaging based on SUEM.

  11. An FPGA-based silicon neuronal network with selectable excitability silicon neurons

    Directory of Open Access Journals (Sweden)

    Jing eLi

    2012-12-01

    Full Text Available This paper presents a digital silicon neuronal network which simulates the nerve system in creatures and has the ability to execute intelligent tasks, such as associative memory. Two essential elements, the mathematical-structure-based digital spiking silicon neuron (DSSN and the transmitter release based silicon synapse, allow the network to show rich dynamic behaviors and are computationally efficient for hardware implementation. We adopt mixed pipeline and parallel structure and shift operations to design a sufficient large and complex network without excessive hardware resource cost. The network with $256$ full-connected neurons is built on a Digilent Atlys board equipped with a Xilinx Spartan-6 LX45 FPGA. Besides, a memory control block and USB control block are designed to accomplish the task of data communication between the network and the host PC. This paper also describes the mechanism of associative memory performed in the silicon neuronal network. The network is capable of retrieving stored patterns if the inputs contain enough information of them. The retrieving probability increases with the similarity between the input and the stored pattern increasing. Synchronization of neurons is observed when the successful stored pattern retrieval occurs.

  12. Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide

    CERN Document Server

    Darvishzadeh-Varcheie, Mahsa; Ragan, Regina; Boyraz, Ozdal; Capolino, Filippo

    2016-01-01

    We investigate the feasibility of CMOS-compatible optical structures to develop novel integrated spectroscopy systems. We show that local field enhancement is achievable utilizing dimers of plasmonic nanospheres that can be assembled from colloidal solutions on top of a CMOS-compatible optical waveguide. The resonant dimer nanoantennas are excited by modes guided in the integrated silicon nitride waveguide. Simulations show that 100 fold electric field enhancement builds up in the dimer gap as compared to the waveguide evanescent field amplitude at the same location. We investigate how the field enhancement depends on dimer location, orientation, distance and excited waveguide modes.

  13. Nuclear reaction excitation functions in the interaction of protons with silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gonchar, A.V.; Kondratyev, S.N.; Lobach, Yo.N.; Sklyarenko, V.D.; Tokarevsky, V.V.; Vysotsky, O.N. (AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Yadernykh Issledovanij)

    1993-12-01

    Nuclear reaction excitation functions have been investigated which result in radioactive and stable nuclide formation following the proton bombardment of silicon with proton energies up to 100 MeV. Summarized experimental data and excitation function calculations have been performed regarding the mechanisms of pre-equilibrium emission and evaporation from compound nuclides based on the ALICE LIVERMORE code. With the aim of nuclear doping, transmutation coefficients for Al, Mg and Na have been calculated as well as the [gamma]-ray activities of the doped material. (Author).

  14. Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Derrien, Thibault J.-Y. [Laboratoire Hubert Curien (LabHC), UMR CNRS 5516 - Université Jean-Monnet. Bâtiment F, 18 rue du Professeur Benoit Lauras, F-42000 Saint-Etienne (France); Laboratoire Lasers, Plasmas et Procédés Photoniques (LP3), UMR CNRS 7341 - Aix-Marseille Université, Parc Technologique et Scientifique de Luminy, Case 917, 163 avenue de Luminy, F-13288 Marseille Cedex 09 (France); Itina, Tatiana E. [Laboratoire Hubert Curien (LabHC), UMR CNRS 5516 - Université Jean-Monnet. Bâtiment F, 18 rue du Professeur Benoit Lauras, F-42000 Saint-Etienne (France); Torres, Rémi; Sarnet, Thierry; Sentis, Marc [Laboratoire Lasers, Plasmas et Procédés Photoniques (LP3), UMR CNRS 7341 - Aix-Marseille Université, Parc Technologique et Scientifique de Luminy, Case 917, 163 avenue de Luminy, F-13288 Marseille Cedex 09 (France)

    2013-08-28

    The mechanisms of ripple formation on silicon surface by femtosecond laser pulses are investigated. We demonstrate the transient evolution of the density of the excited free-carriers. As a result, the experimental conditions required for the excitation of surface plasmon polaritons are revealed. The periods of the resulting structures are then investigated as a function of laser parameters, such as the angle of incidence, laser fluence, and polarization. The obtained dependencies provide a way of better control over the properties of the periodic structures induced by femtosecond laser on the surface of a semiconductor material.

  15. Flux-enhanced monochromator by ultrasound excitation of annealed Czochralski-grown silicon crystals

    CERN Document Server

    Koehler, S; Seitz, C; Magerl, A; Mashkina, E; Demin, A

    2003-01-01

    The neutron flux from monochromator crystals can be increased by ultrasound excitation or by strain fields. Rocking curves of both a perfect float-zone silicon crystal and an annealed Czochralski silicon crystal with oxygen precipitates were measured at various levels of ultrasound excitation on a cold-neutron backscattering spectrometer. We find that the effects of the dynamic strain field from the ultrasound and the static strain field from the defects are not additive. Rocking curves were also taken at different ultrasound frequencies near resonance of the crystal/ultrasound-transducer system with a time resolution of 1 min. Pronounced effects of crystal heating are observed, which render the conditions for maximum neutron reflectivity delicate. (orig.)

  16. Fluorescent porous silicon biological probes with high quantum efficiency and stability.

    Science.gov (United States)

    Tu, Chang-Ching; Chou, Ying-Nien; Hung, Hsiang-Chieh; Wu, Jingda; Jiang, Shaoyi; Lin, Lih Y

    2014-12-01

    We demonstrate porous silicon biological probes as a stable and non-toxic alternative to organic dyes or cadmium-containing quantum dots for imaging and sensing applications. The fluorescent silicon quantum dots which are embedded on the porous silicon surface are passivated with carboxyl-terminated ligands through stable Si-C covalent bonds. The porous silicon bio-probes have shown photoluminescence quantum yield around 50% under near-UV excitation, with high photochemical and thermal stability. The bio-probes can be efficiently conjugated with antibodies, which is confirmed by a standard enzyme-linked immunosorbent assay (ELISA) method.

  17. Integral measurement of break-up excitation function using a multiple silicon telescope

    Energy Technology Data Exchange (ETDEWEB)

    Corre, J.M.; Anne, R.; Lewitowicz, M.; Saint-Laurent, M.G. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Borcea, C.; Carstoiu, F.; Negoita, F. [Institute of Atomic Physics, Bucharest (Romania); Borrel, V.; Guillemaud-Mueller, D.; Mueller, A.C.; Pougheon, F.; Sorlin, O. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Dlouhy, Z. [NPI, Rez (Czech Republic); Fomichev, A.S.; Lukyanov, S.M.; Penoinzhkevich, Y.E.; Skobelev, N.K. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Kordyasz, A. [Warsaw Univ. (Poland). Inst. Fizyki Doswiadczalnej

    1994-12-31

    A simple method is proposed for measuring the inclusive break-up excitation function which the experimental device, consisting of a set of successive silicon detectors, serves the double purpose of decreasing the incident beam energy and of detecting and identifying the reaction products. Monte Carlo simulations revealed the merits and the limitations of the method. Finally, experimental data for tritons are treated in order to obtain relevant physical informations (authors). 9 refs., 9 figs.

  18. Two-photon excitation of porphyrin-functionalized porous silicon nanoparticles for photodynamic therapy.

    Science.gov (United States)

    Secret, Emilie; Maynadier, Marie; Gallud, Audrey; Chaix, Arnaud; Bouffard, Elise; Gary-Bobo, Magali; Marcotte, Nathalie; Mongin, Olivier; El Cheikh, Khaled; Hugues, Vincent; Auffan, Mélanie; Frochot, Céline; Morère, Alain; Maillard, Philippe; Blanchard-Desce, Mireille; Sailor, Michael J; Garcia, Marcel; Durand, Jean-Olivier; Cunin, Frédérique

    2014-12-01

    Porous silicon nanoparticles (pSiNPs) act as a sensitizer for the 2-photon excitation of a pendant porphyrin using NIR laser light, for imaging and photodynamic therapy. Mannose-functionalized pSiNPs can be vectorized to MCF-7 human breast cancer cells through a mannose receptor-mediated endocytosis mechanism to provide a 3-fold enhancement of the 2-photon PDT effect.

  19. Highly sensitive and reproducible silicon-based surface-enhanced Raman scattering sensors for real applications.

    Science.gov (United States)

    Wang, Houyu; Jiang, Xiangxu; He, Yao

    2016-08-15

    During the past few decades, thanks to silicon nanomaterials' outstanding electronic/optical/mechanical properties, large surface-to-volume ratio, abundant surface chemistry, facile tailorability and good compatibility with modern semiconductor industry, different dimensional silicon nanostructures have been widely employed for rationally designing and fabricating high-performance surface-enhanced Raman scattering (SERS) sensors for the detection of various chemical and biological species. Among these, two-dimensional silicon nanostructures made of metal nanoparticle-modified silicon wafers and three-dimensional silicon nanostructures made of metal nanoparticle-decorated SiNW arrays are of particular interest, and have been extensively exploited as promising silicon-based SERS-active substrates for the construction of high-performance SERS sensors. With an aim to retrospect these important and exciting achievements, we herein focus on reviewing recent representative studies on silicon-based SERS sensors for sensing applications from a broad perspective and possible future direction, promoting readers' awareness of these novel powerful silicon-based SERS sensing technologies. Firstly, we summarize the two unique merits of silicon-based SERS sensors, and those are high sensitivity and good reproducibility. Next, we present recent advances of two- and three-dimensional silicon-based SERS sensors, especially for real applications. Finally, we discuss the major challenges and prospects for the development of silicon-based SERS sensors.

  20. Photoluminescence excitation and spectral hole burning spectroscopy of silicon vacancy centers in diamond

    Science.gov (United States)

    Arend, Carsten; Becker, Jonas Nils; Sternschulte, Hadwig; Steinmüller-Nethl, Doris; Becher, Christoph

    2016-07-01

    Silicon-vacancy (SiV) centers in diamond are promising systems for quantum information applications due to their bright single-photon emission and optically accessible spin states. Furthermore, SiV centers in low-strain diamond are insensitive to perturbations of the dielectric environment; i.e., they show very weak spectral diffusion. This property renders ensembles of SiV centers interesting for sensing applications. We here report on photoluminescence excitation (PLE) spectroscopy on an SiV ensemble in a low strain, chemical vapor deposition-grown high-quality diamond layer, where we measure the fine structure with high resolution and obtain the line widths and splittings of the SiV centers. We investigate the temperature dependence of the width and position of the fine structure peaks. Our measurements reveal line widths of about 10 GHz as compared to a lifetime limited width on the order of 0.1 GHz. This difference arises from the inhomogeneous broadening of the transitions caused by residual strain. To overcome inhomogeneous broadening we use spectral hole burning spectroscopy, which enables us to measure a nearly lifetime limited homogeneous line width of 279 MHz. Furthermore, we demonstrate evidence of coherent interaction in the system by driving a Λ scheme. Additional measurements on single emitters created by ion implantation confirm the homogeneous line widths seen in the spectral hole burning experiments and relate the ground-state splitting to the decoherence rate.

  1. Studies of Hot Photoluminescence in Plasmonically Coupled Silicon via Variable Energy Excitation and Temperature-Dependent Spectroscopy

    Science.gov (United States)

    2015-01-01

    By integrating silicon nanowires (∼150 nm diameter, 20 μm length) with an Ω-shaped plasmonic nanocavity, we are able to generate broadband visible luminescence, which is induced by high order hybrid nanocavity-surface plasmon modes. The nature of this super bandgap emission is explored via photoluminescence spectroscopy studies performed with variable laser excitation energies (1.959 to 2.708 eV) and finite difference time domain simulations. Furthermore, temperature-dependent photoluminescence spectroscopy shows that the observed emission corresponds to radiative recombination of unthermalized (hot) carriers as opposed to a resonant Raman process. PMID:25120156

  2. Heavy doping effects in high efficiency silicon solar cells

    Science.gov (United States)

    Lindholm, F. A.; Neugroschel, A.

    1986-01-01

    The temperature dependence of the emitter saturation current for bipolar devices was studied by varying the surface recombination velocity at the emitter surface. From this dependence, the value was derived for bandgap narrowing that is in better agreement with other determinations that were obtained from the temperature dependence measure on devices with ohmic contacts. Results of the first direct measurement of the minority-carrier transit time in a transparent heavily doped emitter layer were reported. The value was obtained by a high-frequency conductance method recently developed and used for doped Si. Experimental evidence is presented for significantly greater charge storage in highly excited silicon near room temperature than conventional theory would predict. These data are compared with various data for delta E sub G in heavily doped silicon.

  3. High-energy excited states in {sup 98}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Norbert; Blazhev, Andrey; Jolie, Jan [Institut fuer Kernphysik, Universitaet Koeln (Germany); Boutachkov, Plamen; Gorska, Magda; Grawe, Hubert; Pietri, Stephane [GSI, Darmstadt (Germany); Brock, Tim; Nara Singh, B.S.; Wadsworth, Robert [Department of Physics, University of York, York (United Kingdom); Liu, Zhong [University of Edinburgh, Edinburgh (United Kingdom)

    2009-07-01

    Studies of isomerism in the proton-rich N {approx_equal}Z nuclei around {sup 100}Sn give important insights into the role of proton-neutron pairing and also serve as testing grounds for nuclear models. In summer 2008, an experiment on {sup 96,97,98}Cd was performed using the FRS fragment separator and the RISING germanium array at GSI. These exotic nuclei of interest were produced using fragmentation of a 850 MeV/u {sup 124}Xe beam on a 4 g/cm{sup 2} {sup 9}Be target and finally implanted into an active stopper consisting of 9 double-sided silicon strip detectors. In {sup 98}Cd, a new high-energy isomeric transition was identified. Preliminary results on {sup 98}Cd are presented and their implications for the high-excitation level scheme are discussed.

  4. Silicon carbide, an emerging high temperature semiconductor

    Science.gov (United States)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  5. Epitaxial Growth of High-Quality Silicon Films on Double-Layer Porous Silicon

    Institute of Scientific and Technical Information of China (English)

    黄宜平; 竺士炀; 李爱珍; 王瑾; 黄靖云; 叶志镇

    2001-01-01

    The epitaxial growth of a high-quality silicon layer on double-layer porous silicon by ultra-high vacuum/chemical vapour deposition has been reported. The two-step anodization process results in a double-layer porous silicon structure with a different porosity. This double-layer porous silicon structure and an extended low-temperature annealing in a vacuum system was found to be helpful in subsequent silicon epitaxial growth. X-ray diffraction,cross-sectional transmission electron microscopy and spreading resistance testing were used in this work to study the properties of epitaxial silicon layers grown on the double-layer porous silicon. The results show that the epitaxial silicon layer is of good crystallinity and the same orientation with the silicon substrate and the porous silicon layer.

  6. Dynamical analysis of highly excited molecular spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, M.E. [Univ. of Oregon, Eugene (United States)

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  7. Hybrid porphyrin-silicon nanowire field-effect transistor by opto-electrical excitation.

    Science.gov (United States)

    Seol, Myeong-Lok; Choi, Sung-Jin; Choi, Ji-Min; Ahn, Jae-Hyuk; Choi, Yang-Kyu

    2012-09-25

    A porphyrin-silicon nanowire (Si-NW) hybrid field-effect transistor is introduced. The hybrid device has separate electrical and optical gates surrounding the Si-NW channel. Porphyrin, a component of chlorophyll, is employed as an optical gate to modulate the potential of the Si-NW channel. Due to the independently formed hybrid gates, both optical and electrical excitation can effectively modulate the device. The exposed porphyrin optical gate responds to the optical excitation, and independently formed electrical gates respond to the electrical excitation. Charge transfer characteristics between a semiconductor channel and the porphyrin optical gate are deeply investigated. Optical, electrical, and opto-electrical excitation methods are employed to analyze the charging and discharging behaviors. Of these methods, opto-electrical excitation enables the strongest charge transfer because the inversion electron formation by an electrical pulse and the photoinduced charge transfer by an optical stimulus are affected simultaneously. Discharging processes, such as rapid discharging, exponential detrapping, and the formation of metastable states are also analyzed.

  8. Excitation dynamics of a low bandgap silicon-bridged dithiophene copolymer and its composites with fullerenes

    Science.gov (United States)

    Othonos, Andreas; Itskos, Grigorios; Neophytou, Marios; Choulis, Stelios A.

    2012-04-01

    We report on excitation dynamics in pristine and bulk heterojunction films of the low bandgap silicon-bridged dithiophene copolymer poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2', 3'-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5'-diyl] with methanofullerene derivatives. The combination of ultrafast transient transmission and photoluminescence allows us to probe the relaxation of both exciton and polaron states in a relatively wide spectral and temporal range. Measurements reveal that the majority of excitations undergo ultrashort non-radiative relaxation while a small fraction of the photoexcited species decays slowly within hundreds of ps. In the blend films, significantly longer decays are observed suggesting the presence of long lived holes and/or charged-transfer type of excitons.

  9. Observation of non-radiative de-excitation processes in silicon nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Milgram, J.N.; Wojcik, J.; Mascher, P. [Department of Engineering Physics, Centre for Emerging Device Technologies, McMaster University, Hamilton, Ontario (Canada); Crowe, I.; Sherliker, B.; Halsall, M.P. [School of Electrical and Electronic Engineering, University of Manchester (United Kingdom); Gwilliam, R.M. [Surrey Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford (United Kingdom); Knights, A.P.

    2009-05-15

    We describe the impact of non-radiative de-excitation mechanisms on the optical emission from silicon nanocrystals formed in SiO{sub 2}. Auger excitation via free carriers deliberately introduced through phosphorus ion implantation, shows a monotonic increase with increasing phosphorus concentration which can be modelled adequately using a simple statistical approach. We also report a reduction in nanocrystal luminescence intensity with increasing exposure to UV radiation and suggest this phenomenon results from the introduction of non-radiative defects in the Si/SiO{sub 2} network. The effect of UV radiation varies significantly depending on the sample preparation. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. TRANSFORMATIONS IN NANO-DIAMONDS WITH FORMATION OF NANO-POROUS SILICON CARBIDE AT HIGH PRESSURE

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2010-01-01

    Full Text Available The paper contains investigations on regularities of diamond - silicon carbide composite structure formation at impact-wave excitation. It has been determined that while squeezing a porous blank containing Si (SiC nano-diamond by explosive detonation products some processes are taking place such as diamond nano-particles consolidation, reverse diamond transition into graphite, fragments formation from silicon carbide. A method for obtaining high-porous composites with the presence of ultra-disperse diamond particles has been developed. Material with three-dimensional high-porous silicon-carbide structure has been received due to nano-diamond graphitation at impact wave transmission and plastic deformation. The paper reveals nano-diamonds inverse transformation into graphite and its subsequent interaction with the silicon accompanied by formation of silicon-carbide fragments with dimensions of up to 100 nm.

  11. Silicon Carbide Nanotube Oxidation at High Temperatures

    Science.gov (United States)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  12. The decay of highly excited open strings

    Science.gov (United States)

    Mitchell, D.; Turok, N.; Wilkinson, R.; Jetzer, P.

    1988-01-01

    The decay rates of leading edge Regge trajectory states are calculated for very high level number in open bosonic string theories, ignoring tachyon final states. The optical theorem simplifies the analysis while enabling identification of the different mass level decay channels. The main result is that (in four dimensions) the greatest single channel is the emission of a single photon and a state of the next mass level down. A simple asymptotic formula for arbitrarily high level number is given for this process. Also calculated is the total decay rate exactly up to N=100. It shows little variation over this range but appears to decrease for larger N. The formalism is checked in examples and the decay rate of the first excited level calculated for open superstring theories. The calculation may also have implications for high spin meson resonances.

  13. High frequency guided wave propagation in monocrystalline silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2017-04-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.

  14. High-efficiency silicon heterojunction solar cells: Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    De Wolf, S.; Geissbuehler, J.; Loper, P.; Martin de Nicholas, S.; Seif, J.; Tomasi, A.; Ballif, C.

    2015-05-11

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on both-sides contacted n-type cells, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short-wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long- wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metallization grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical

  15. High-efficiency silicon heterojunction solar cells: Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    De Wolf, S.

    2015-04-27

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on n-type wafers, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short- wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long-wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metalisation grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The

  16. Analysis of asymmetric resonance response of thermally excited silicon micro-cantilevers for mass-sensitive nanoparticle detection

    Science.gov (United States)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Suryo Wasisto, Hutomo; Uhde, Erik; Peiner, Erwin

    2017-06-01

    In this paper, the asymmetric resonance frequency (f 0) responses of thermally in-plane excited silicon cantilevers for a pocket-sized, cantilever-based airborne nanoparticle detector (Cantor) are analysed. By measuring the shift of f 0 caused by the deposition of nanoparticles (NPs), the cantilevers are used as a microbalance. The cantilever sensors are low cost manufactured from silicon by bulk-micromachining techniques and contain an integrated p-type heating actuator and a sensing piezoresistive Wheatstone bridge. f 0 is tracked by a homemade phase-locked loop (PPL) for real-time measurements. To optimize the sensor performance, a new cantilever geometry was designed, fabricated and characterized by its frequency responses. The most significant characterisation parameters of our application are f 0 and the quality factor (Q), which have high influences on sensitivity and efficiency of the NP detector. Regarding the asymmetric resonance signal, a novel fitting function based on the Fano resonance replacing the conventionally used function of the simple harmonic oscillator and a method to calculate Q by its fitting parameters were developed for a quantitative evaluation. To obtain a better understanding of the resonance behaviours, we analysed the origin of the asymmetric line shapes. Therefore, we compared the frequency response of the on-chip thermal excitation with an external excitation using an in-plane piezo actuator. In correspondence to the Fano effect, we could reconstruct the measured resonance curves by coupling two signals with constant amplitude and the expected signal of the cantilever, respectively. Moreover, the phase of the measurement signal can be analysed by this method, which is important to understand the locking process of the PLL circuit. Besides the frequency analysis, experimental results and calibration measurements with different particle types are presented. Using the described analysis method, decent results to optimize a next

  17. Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I., E-mail: sikudr@sci.lebedev.ru; Makarov, S. V.; Rudenko, A. A. [Lebedev Physical Institute (Russian Federation); Saltuganov, P. N. [Moscow Institute of Physics and Technology (State University) (Russian Federation); Seleznev, L. V.; Yurovskikh, V. I.; Zayarny, D. A. [Lebedev Physical Institute (Russian Federation); Apostolova, T. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energetics (Bulgaria)

    2015-06-15

    Ultrafast intense photoexcitation of a silicon surface is complementarily studied experimentally and theoretically, with its prompt optical dielectric function obtained by means of time-resolved optical reflection microscopy and the underlying electron-hole plasma dynamics modeled numerically, using a quantum kinetic approach. The corresponding transient surface plasmon-polariton (SPP) dispersion curves of the photo-excited material were simulated as a function of the electron-hole plasma density, using the derived optical dielectric function model, and directly mapped at several laser photon energies, measuring spatial periods of the corresponding SPP-mediated surface relief nanogratings. The unusual spectral dynamics of the surface plasmon resonance, initially increasing with the increase in the electron-hole plasma density but damped at high interband absorption losses induced by the high-density electron-hole plasma through instantaneous bandgap renormalization, was envisioned through the multi-color mapping.

  18. Highly Efficient Excitation of Surface Plasmons Using a Si Gable Tip

    CERN Document Server

    Dewanjee, Arnab; Aitchison, J Stewart; Mojahedi, Mo

    2016-01-01

    We propose a novel technique to efficiently excite a surface plasmon polariton (SPP) mode at a gold-glass interface by using an engineered high index (silicon) gabled tip at the telecom wavelengths. The proposed structure can theoretically convert 49% of the input optical power to a SPP mode. Also we experimentally validate the effective high efficiency coupling by the gabled tip. The device is compact, it will facilitate the on-chip excitation of the SPP, its fabrication is compatible with the standard Si fabrication processes, and as such, it is expected to be useful in the design of future integrated sensors.

  19. Asymmetric resonance response analysis of a thermally excited silicon microcantilever for mass-sensitive nanoparticle detection

    Science.gov (United States)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Wasisto, Hutomo Suryo; Peiner, Erwin

    2017-06-01

    The asymmetric resonance responses of a thermally actuated silicon microcantilever of a portable, cantilever-based nanoparticle detector (Cantor) is analysed. For airborne nanoparticle concentration measurements, the cantilever is excited in its first in-plane bending mode by an integrated p-type heating actuator. The mass-sensitive nanoparticle (NP) detection is based on the resonance frequency (f0) shifting due to the deposition of NPs. A homemade phase-locked loop (PLL) circuit is developed for tracking of f0. For deflection sensing the cantilever contains an integrated piezo-resistive Wheatstone bridge (WB). A new fitting function based on the Fano resonance is proposed for analysing the asymmetric resonance curves including a method for calculating the quality factor Q from the fitting parameters. To obtain a better understanding, we introduce an electrical equivalent circuit diagram (ECD) comprising a series resonant circuit (SRC) for the cantilever resonator and voltage sources for the parasitics, which enables us to simulate the asymmetric resonance response and discuss the possible causes. Furthermore, we compare the frequency response of the on-chip thermal excitation with an external excitation using an in-plane piezo actuator revealing parasitic heating of the WB as the origin of the asymmetry. Moreover, we are able to model the phase component of the sensor output using the ECD. Knowing and understanding the phase response is crucial to the design of the PLL and thus the next generation of Cantor.

  20. High deposition rate processes for the fabrication of microcrystalline silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Michard, S. [Institute of Energy and Climate Research 5 - Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany); Meier, M., E-mail: ma.meier@fz-juelich.de [Institute of Energy and Climate Research 5 - Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany); Grootoonk, B.; Astakhov, O.; Gordijn, A.; Finger, F. [Institute of Energy and Climate Research 5 - Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2013-05-15

    The increase of deposition rate of microcrystalline silicon absorber layers is an essential point for cost reduction in the mass production of thin-film silicon solar cells. In this work we explored a broad range of plasma enhanced chemical vapor deposition (PECVD) parameters in order to increase the deposition rate of intrinsic microcrystalline silicon layers keeping the industrial relevant material quality standards. We combined plasma excitation frequencies in the VHF band with the high pressure high power depletion regime using new deposition facilities and achieved deposition rates as high as 2.8 nm/s. The material quality evaluated from photosensitivity and electron spin resonance measurements is similar to standard microcrystalline silicon deposited at low growth rates. The influence of the deposition power and the deposition pressure on the electrical and structural film properties was investigated.

  1. Highly excited strings I: Generating function

    Science.gov (United States)

    Skliros, Dimitri P.; Copeland, Edmund J.; Saffin, Paul M.

    2017-03-01

    This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES). In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators) in general toroidal compactifications E =R D - 1 , 1 ×T Dcr - D (with generic constant Kähler and complex structure target space moduli, background Kaluza-Klein (KK) gauge fields and torsion). We adopt a novel approach that does not rely on a ;reverse engineering; method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particular in relation to black holes in string theory, non-locality and breakdown of local effective field theory, as well as in discussions of cosmic superstrings and their phenomenological relevance. We also discuss the manifestation of wave/particle (or rather wave/string) duality in string theory.

  2. Highly Excited Strings I: Generating Function

    CERN Document Server

    Skliros, Dimitri P; Saffin, Paul M

    2016-01-01

    This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES). In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators) in general toroidal compactifications $\\mathcal{E}=\\mathbb{R}^{D-1,1}\\times \\mathbb{T}^{D_{\\rm cr}-D}$ (with generic constant K\\"ahler and complex structure target space moduli, background Kaluza-Klein (KK) gauge fields and torsion). We adopt a novel approach that does not rely on a "reverse engineering" method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particu...

  3. Highly excited strings I: Generating function

    Directory of Open Access Journals (Sweden)

    Dimitri P. Skliros

    2017-03-01

    Full Text Available This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES. In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators in general toroidal compactifications E=RD−1,1×TDcr−D (with generic constant Kähler and complex structure target space moduli, background Kaluza–Klein (KK gauge fields and torsion. We adopt a novel approach that does not rely on a “reverse engineering” method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particular in relation to black holes in string theory, non-locality and breakdown of local effective field theory, as well as in discussions of cosmic superstrings and their phenomenological relevance. We also discuss the manifestation of wave/particle (or rather wave/string duality in string theory.

  4. High-Index Contrast Silicon Rich Silicon Nitride Optical Waveguides and Devices

    DEFF Research Database (Denmark)

    Philipp, Hugh Taylor

    2004-01-01

    This research focused on the realization of high-density integrated optical devices made with high-index contrast waveguides. The material platform used for to develop these devices was modeled after standard silicon on silicon technology. The high-index waveguide core material was silicon rich...... silicon nitride. This provided a sharp contrast with silica and made low-loss waveguide bending radii less than 25mm possible. An immediate consequence of such small bending radii is the ability to make practical ring resonator based devices with a large free spectral range. Several ring resonator based...

  5. Collisional quenching of highly rotationally excited HF

    CERN Document Server

    Yang, Benhui; Forrey, R C; Stancil, P C; Balakrishnan, N

    2015-01-01

    Collisional excitation rate coefficients play an important role in the dynamics of energy transfer in the interstellar medium. In particular, accurate rotational excitation rates are needed to interpret microwave and infrared observations of the interstellar gas for nonlocal thermodynamic equilibrium line formation. Theoretical cross sections and rate coefficients for collisional deexcitation of rotationally excited HF in the vibrational ground state are reported. The quantum-mechanical close-coupling approach implemented in the nonreactive scattering code MOLSCAT was applied in the cross section and rate coefficient calculations on an accurate 2D HF-He potential energy surface. Estimates of rate coefficients for H and H$_2$ colliders were obtained from the HF-He collisional data with a reduced-potential scaling approach. The calculation of state-to-state rotational quenching cross sections for HF due to He with initial rotational levels up to $j=20$ were performed for kinetic energies from 10$^{-5}$ to 15000...

  6. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith

    2004-01-01

    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss...

  7. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith

    2004-01-01

    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss....... A sample double ring add-drop filter is presented....

  8. Observation of electron excitation into silicon conduction band by slow-ion surface neutralization

    CERN Document Server

    Shchemelinin, S

    2016-01-01

    Bare reverse biased silicon photodiodes were exposed to 3eV He+, Ne+, Ar+, N2+, N+ and H2O+ ions. In all cases an increase of the reverse current through the diode was observed. This effect and its dependence on the ionization energy of the incident ions and on other factors are qualitatively explained in the framework of Auger-type surface neutralization theory. Amplification of the ion-induced charge was observed with an avalanche photodiode under high applied bias. The observed effect can be considered as ion-induced internal potential electron emission into the conduction band of silicon. To the best of our knowledge, no experimental evidence of such effect was previously reported. Possible applications are discussed.

  9. High-performance silicon nanowire bipolar phototransistors

    Science.gov (United States)

    Tan, Siew Li; Zhao, Xingyan; Chen, Kaixiang; Crozier, Kenneth B.; Dan, Yaping

    2016-07-01

    Silicon nanowires (SiNWs) have emerged as sensitive absorbing materials for photodetection at wavelengths ranging from ultraviolet (UV) to the near infrared. Most of the reports on SiNW photodetectors are based on photoconductor, photodiode, or field-effect transistor device structures. These SiNW devices each have their own advantages and trade-offs in optical gain, response time, operating voltage, and dark current noise. Here, we report on the experimental realization of single SiNW bipolar phototransistors on silicon-on-insulator substrates. Our SiNW devices are based on bipolar transistor structures with an optically injected base region and are fabricated using CMOS-compatible processes. The experimentally measured optoelectronic characteristics of the SiNW phototransistors are in good agreement with simulation results. The SiNW phototransistors exhibit significantly enhanced response to UV and visible light, compared with typical Si p-i-n photodiodes. The near infrared responsivities of the SiNW phototransistors are comparable to those of Si avalanche photodiodes but are achieved at much lower operating voltages. Compared with other reported SiNW photodetectors as well as conventional bulk Si photodiodes and phototransistors, the SiNW phototransistors in this work demonstrate the combined advantages of high gain, high photoresponse, low dark current, and low operating voltage.

  10. Catastrophic degradation of the interface of epitaxial silicon carbide on silicon at high temperatures

    Science.gov (United States)

    Pradeepkumar, Aiswarya; Mishra, Neeraj; Kermany, Atieh Ranjbar; Boeckl, John J.; Hellerstedt, Jack; Fuhrer, Michael S.; Iacopi, Francesca

    2016-07-01

    Epitaxial cubic silicon carbide on silicon is of high potential technological relevance for the integration of a wide range of applications and materials with silicon technologies, such as micro electro mechanical systems, wide-bandgap electronics, and graphene. The hetero-epitaxial system engenders mechanical stresses at least up to a GPa, pressures making it extremely challenging to maintain the integrity of the silicon carbide/silicon interface. In this work, we investigate the stability of said interface and we find that high temperature annealing leads to a loss of integrity. High-resolution transmission electron microscopy analysis shows a morphologically degraded SiC/Si interface, while mechanical stress measurements indicate considerable relaxation of the interfacial stress. From an electrical point of view, the diode behaviour of the initial p-Si/n-SiC junction is catastrophically lost due to considerable inter-diffusion of atoms and charges across the interface upon annealing. Temperature dependent transport measurements confirm a severe electrical shorting of the epitaxial silicon carbide to the underlying substrate, indicating vast predominance of the silicon carriers in lateral transport above 25 K. This finding has crucial consequences on the integration of epitaxial silicon carbide on silicon and its potential applications.

  11. Generation of high harmonics from silicon

    CERN Document Server

    Vampa, Giulio; Thiré, Nicolas; Schmidt, Bruno E; Légaré, Francois; Klug, Dennis D; Corkum, Paul B

    2016-01-01

    We generate high-order harmonics of a mid-infrared laser from a silicon single crystal and find their origin in the recollision of coherently accelerated electrons with their holes, analogously to the atomic and molecular case, and to ZnO [Vampa et al., Nature 522, 462-464 (2015)], a direct bandgap material. Therefore indirect bandgap materials are shown to sustain the recollision process as well as direct bandgap materials. Furthermore, we find that the generation is perturbed with electric fields as low as 30 V/$\\mu$m, equal to the DC damage threshold. Our results extend high-harmonic spectroscopy to the most technologically relevant material, and open the possibility to integrate high harmonics with conventional electronics.

  12. Population of highly excited intermediate resonance states by electron transfer and excitation

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, R. (Manne Siegbahn Institute of Physics, S-104 05 Stockholm, Sweden (SE)); Justiniano, E. (Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353 (USA)); Schulz, M.; Datz, S.; Dittner, P.F.; Giese, J.P.; Krause, H.F.; Schoene, H.; Vane, R. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6377 (USA)); Shafroth, S. (Department of Physics, North Carolina University, Chapel Hill, North Carolina 27599-3255 (USA))

    1991-05-01

    Coincidences between two sulfur {ital K} x rays were detected from collisions of hydrogenlike S ions with H{sub 2} gas in the projectile energy range between 150 and 225 MeV. These {ital K} x rays are emitted in the decay of doubly excited states formed in the collisions via transfer and excitation. The excitation function for two coincident {ital K}{beta} transitions peaks at about 175 MeV, slightly above the expected {ital KMM} resonance energy for resonant transfer and excitation (RTE). This demonstrates the occurrence of {Delta}{ital N}{ge}2 transitions (i.e., {ital KMM} and higher resonances) in the RTE process. The cross sections for the population of the very highly excited states are higher than those predicted by theoretical calculations that use dielectronic recombination rates folded with the Compton profile for the bound electrons.

  13. High mechanical Q-factor measurements on silicon bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Nawrodt, R; Zimmer, A; Koettig, T; Schwarz, C; Heinert, D; Hudl, M; Neubert, R; Thuerk, M; Nietzsche, S; Vodel, W; Seidel, P [Friedrich-Schiller-Universitaet, Institut fuer Festkoerperphysik, Helmholtzweg 5, D-07743 Jena (Germany); Tuennermann, A [Friedrich-Schiller-Universitaet, Institut fuer Angewandte Physik, Max-Wien-Platz 1, D-07743 Jena (Germany)], E-mail: ronny.nawrodt@uni-jena.de

    2008-07-15

    Future gravitational wave detectors will be limited by different kinds of noise. Thermal noise from the coatings and the substrate material will be a serious noise contribution within the detection band of these detectors. Cooling and the use of a high mechanical Q-factor material as a substrate material will reduce the thermal noise contribution from the substrates. Silicon is one of the most interesting materials for a third generation cryogenic detector. Due to the fact that the coefficient of thermal expansion vanishes at 18 and 125 K the thermoelastic contribution to the thermal noise will disappear. We present a systematic analysis of the mechanical Q-factor at low temperatures between 5 and 300 K on bulk silicon (100) samples which are boron doped. The thickness of the cylindrical samples is varied between 6, 12, 24, and 75mm with a constant diameter of 3 inches. For the 75mm substrate a comparison between the (100) and the (111) orientation is presented. In order to obtain the mechanical Q-factor a ring-down measurement is performed. Thus, the substrate is excited to resonant vibrations by means of an electrostatic driving plate and the subsequent ring-down is recorded using a Michelson-like interferometer. The substrate itself is suspended as a pendulum by means of a tungsten wire loop. All measurements are carried out in a special cryostat which provides a temperature stability of better than 0.1K between 5 and 300K during the experiment. The influence of the suspension on the measurements is experimentally investigated and discussed. At 5.8K a highest Q-factor of 4.5 x 10{sup 8} was achieved for the 14.9 kHz mode of a silicon (100) substrate with a diameter of 3 inches and a thickness of 12 mm.

  14. High temperature deformation of silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Calvillo, Pablo, E-mail: pablo.rodriguez@ctm.com.es [CTM - Technologic Centre, Materials Technology Area, Manresa, Cataluna (Spain); Department of Materials Science and Metallurgical Engineering, Universidad Politecnica de Cataluna, Barcelona (Spain); Houbaert, Yvan, E-mail: Yvan.Houbaert@UGent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Petrov, Roumen, E-mail: Roumen.Petrov@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Kestens, Leo, E-mail: Leo.kestens@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Colas, Rafael, E-mail: rafael.colas@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-10-15

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s{sup -1} with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 Degree-Sign C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 Degree-Sign C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the {gamma}-fibre tends to disappear and the {alpha}-fibre to increase towards the higher temperature range. -- Highlights: Black-Right-Pointing-Pointer The plastic deformation of a silicon containing steel is studied by plane strain compression. Black-Right-Pointing-Pointer Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. Black-Right-Pointing-Pointer Texture, by EBSD, is revealed to be similar in either type of grains.

  15. Production of high specific activity silicon-32

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, D.R. [Los Alamos National Lab., NM (United States); Brzezinski, M.A. [Univ. of California, Santa Barbara, CA (United States). Marine Biotechnology Center

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development Project (LDRD) at Los Alamos National Laboratory (LANL). There were two primary objectives for the work performed under this project. The first was to take advantage of capabilities and facilities at Los Alamos to produce the radionuclide {sup 32}Si in unusually high specific activity. The second was to combine the radioanalytical expertise at Los Alamos with the expertise at the University of California to develop methods for the application of {sup 32}Si in biological oceanographic research related to global climate modeling. The first objective was met by developing targetry for proton spallation production of {sup 32}Si in KCl targets and chemistry for its recovery in very high specific activity. The second objective was met by developing a validated field-useable, radioanalytical technique, based upon gas-flow proportional counting, to measure the dynamics of silicon uptake by naturally occurring diatoms.

  16. Excitations

    Energy Technology Data Exchange (ETDEWEB)

    Dorner, B. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1996-12-31

    A short introduction to instrumental resolution is followed by a discussion of visibilities of phonon modes due to their eigenvectors. High precision phonon dispersion curves in GaAs are presented together with `ab initio` calculations. Al{sub 2}O{sub 3} is taken as an example of selected visibility due to group theory. By careful determination of phonon intensities eigenvectors can be determined, such as in Silicon and Diamond. The investigation of magnon modes is shown for the garnet Fe{sub 2}Ca{sub 3}(GeO{sub 4}){sub 3}, where also a quantum gap due to zero point spin fluctuations was observed. The study of the splitting of excitons in CsFeCl{sub 3} in an applied magnetic field demonstrates the possibilities of neutron polarisation analysis, which made it possible to observe a mode crossing. An outlook to inelastic X-ray scattering with very high energy resolution of synchrotron radiation is given with the examples of phonons in Beryllium and in water. (author) 19 figs., 36 refs.

  17. High pressure Raman scattering of silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Khachadorian, Sevak; Scheel, Harald; Thomsen, Christian [Institut fuer Festkoerperphysik, Technische Universitaet Berlin, 10623 Berlin (Germany); Papagelis, Konstantinos [Materials Science Department, University of Patras, 26504 Patras (Greece); Colli, Alan [Nokia Research Centre, 21 J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Ferrari, Andrea C, E-mail: khachadorian@physik.tu-berlin.de [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

    2011-05-13

    We study the high pressure response, up to 8 GPa, of silicon nanowires (SiNWs) with {approx} 15 nm diameter, by Raman spectroscopy. The first order Raman peak shows a superlinear trend, more pronounced compared to bulk Si. Combining transmission electron microscopy and Raman measurements we estimate the SiNWs' bulk modulus and the Grueneisen parameters. We detect an increase of Raman linewidth at {approx} 4 GPa, and assign it to pressure induced activation of a decay process into LO and TA phonons. This pressure is smaller compared to the {approx} 7 GPa reported for bulk Si. We do not observe evidence of phase transitions, such as discontinuities or change in the pressure slopes, in the investigated pressure range.

  18. Preparation of Silicon Carbide with High Properties

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to prepare silicon carbide with high properties, three kinds of SiC powders A, B, and C with different composition and two kinds of additives, which were Y2O3-Al2O3 system and Y2O3-La2O3 system, were used in this experiment. The properties of hot-pressed SiC ceramics were measured. With the same additives, different SiC powder resulted in different properties. On the other hand, with the same SiC powder, increasing the amount of the additive Y2O3-Al2O3 improved properties of SiC ceramics at room temperature, and increasing the amount of the additive Y2O3-La2O3 improved property SiC ceramics at elevated temperature. In addition, the microstructure of SiC ceramics was studied by scanning electron microscopy.

  19. Effect of High Coal Injection on Low Silicon Ironmaking Process

    Institute of Scientific and Technical Information of China (English)

    JIN Yong-long; XU Nan-ping; WU Shi-ying

    2003-01-01

    The effects of different coal ratios and reaction temperatures on silicon content in hot metal were studied under the condition of high powder coal injection (PCI) ratio in laboratory. The samples of coke taken from tuyere were analyzed by chemical methods. According to the remnant silicon dioxide in different samples, the effect of PCI ratio on silicon content in hot metal was studied in tuyere area. The results can not only certify the traditional theory, but also explain the relation between high PCI ratio and low silicon.

  20. Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity.

    Science.gov (United States)

    Shrestha, Vivek Raj; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2014-05-12

    Nanostructure based color filtering has been considered an attractive replacement for current colorant pigmentation in the display technologies, in view of its increased efficiencies, ease of fabrication and eco-friendliness. For such structural filtering, iridescence relevant to its angular dependency, which poses a detrimental barrier to the practical development of high performance display and sensing devices, should be mitigated. We report on a non-iridescent transmissive structural color filter, fabricated in a large area of 76.2 × 25.4 mm(2), taking advantage of a stack of three etalon resonators in dielectric films based on a high-index cavity in amorphous silicon. The proposed filter features a high transmission above 80%, a high excitation purity of 0.93 and non-iridescence over a range of 160°, exhibiting no significant change in the center wavelength, dominant wavelength and excitation purity, which implies no change in hue and saturation of the output color. The proposed structure may find its potential applications to large-scale display and imaging sensor systems.

  1. Non-iridescent Transmissive Structural Color Filter Featuring Highly Efficient Transmission and High Excitation Purity

    Science.gov (United States)

    Shrestha, Vivek Raj; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2014-05-01

    Nanostructure based color filtering has been considered an attractive replacement for current colorant pigmentation in the display technologies, in view of its increased efficiencies, ease of fabrication and eco-friendliness. For such structural filtering, iridescence relevant to its angular dependency, which poses a detrimental barrier to the practical development of high performance display and sensing devices, should be mitigated. We report on a non-iridescent transmissive structural color filter, fabricated in a large area of 76.2 × 25.4 mm2, taking advantage of a stack of three etalon resonators in dielectric films based on a high-index cavity in amorphous silicon. The proposed filter features a high transmission above 80%, a high excitation purity of 0.93 and non-iridescence over a range of 160°, exhibiting no significant change in the center wavelength, dominant wavelength and excitation purity, which implies no change in hue and saturation of the output color. The proposed structure may find its potential applications to large-scale display and imaging sensor systems.

  2. Micro-machined high capacity silicon load cells

    NARCIS (Netherlands)

    Zwijze, A.F.

    2000-01-01

    The aim of the research presented in this thesis is to improve the performance of high capacity conventional load cells or force sensors by using silicon as the base material. Silicon is used because it offers the possibility of realising small, light, low cost and high performance mechanical sensor

  3. High Detectivity Graphene-Silicon Heterojunction Photodetector.

    Science.gov (United States)

    Li, Xinming; Zhu, Miao; Du, Mingde; Lv, Zheng; Zhang, Li; Li, Yuanchang; Yang, Yao; Yang, Tingting; Li, Xiao; Wang, Kunlin; Zhu, Hongwei; Fang, Ying

    2016-02-01

    A graphene/n-type silicon (n-Si) heterojunction has been demonstrated to exhibit strong rectifying behavior and high photoresponsivity, which can be utilized for the development of high-performance photodetectors. However, graphene/n-Si heterojunction photodetectors reported previously suffer from relatively low specific detectivity due to large dark current. Here, by introducing a thin interfacial oxide layer, the dark current of graphene/n-Si heterojunction has been reduced by two orders of magnitude at zero bias. At room temperature, the graphene/n-Si photodetector with interfacial oxide exhibits a specific detectivity up to 5.77 × 10(13) cm Hz(1/2) W(-1) at the peak wavelength of 890 nm in vacuum, which is highest reported detectivity at room temperature for planar graphene/Si heterojunction photodetectors. In addition, the improved graphene/n-Si heterojunction photodetectors possess high responsivity of 0.73 A W(-1) and high photo-to-dark current ratio of ≈10(7) . The current noise spectral density of the graphene/n-Si photodetector has been characterized under ambient and vacuum conditions, which shows that the dark current can be further suppressed in vacuum. These results demonstrate that graphene/Si heterojunction with interfacial oxide is promising for the development of high detectivity photodetectors.

  4. Collisional deactivation of highly vibrationally excited pyrazine

    Science.gov (United States)

    Miller, Laurie A.; Barker, John R.

    1996-07-01

    The collisional deactivation of vibrationally excited pyrazine (C4N2H4) in the electronic ground state by 19 collider gases was studied using the time-resolved infrared fluorescence (IRF) technique. The pyrazine was photoexcited with a 308 nm laser and its vibrational deactivation was monitored following rapid radiationless transitions to produce vibrationally excited molecules in the electronic ground state. The IRF data were analyzed by a simple approximate inversion method, as well as with full collisional master equation simulations. The average energies transferred in deactivating collisions (d) exhibit a near-linear dependence on vibrational energy at lower energies and less dependence at higher energies. The deactivation of ground state pyrazine was found to be similar to that of ground state benzene [J. R. Barker and B. M. Toselli, Int. Rev. Phys. Chem. 12, 305 (1990)], but it is strikingly different from the deactivation of triplet state pyrazine [T. J. Bevilacqua and R. B. Weisman, J. Chem. Phys. 98, 6316 (1993)].

  5. Excitation mechanism and thermal emission quenching of Tb ions in silicon rich silicon oxide thin films grown by plasma-enhanced chemical vapour deposition—Do we need silicon nanoclusters?

    Energy Technology Data Exchange (ETDEWEB)

    Podhorodecki, A., E-mail: artur.p.podhorodecki@pwr.wroc.pl; Golacki, L. W.; Zatryb, G.; Misiewicz, J. [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Wang, J.; Jadwisienczak, W. [School of EECS, Ohio University, Stocker Center 363, Athens, Ohio 45701 (United States); Fedus, K. [Institute of Physics, Nicholas Copernicus University, Grudziadzka 5/7, 87-100 Torun (Poland); Wojcik, J.; Wilson, P. R. J.; Mascher, P. [Department of Engineering Physics and Centre for Emerging Device Technologies, McMaster University, 1280 Main St. W, Hamilton, Ontario L8S4L7 (Canada)

    2014-04-14

    In this work, we will discuss the excitation and emission properties of Tb ions in a Silicon Rich Silicon Oxide (SRSO) matrix obtained at different technological conditions. By means of electron cyclotron resonance plasma-enhanced chemical vapour deposition, undoped and doped SRSO films have been obtained with different Si content (33, 35, 39, 50 at. %) and were annealed at different temperatures (600, 900, 1100 °C). The samples were characterized optically and structurally using photoluminescence (PL), PL excitation, time resolved PL, absorption, cathodoluminescence, temperature dependent PL, Rutherford backscattering spectrometry, Fourier transform infrared spectroscopy and positron annihilation lifetime spectroscopy. Based on the obtained results, we discuss how the matrix modifications influence excitation and emission properties of Tb ions.

  6. Role of Excited States In High-order Harmonic Generation

    Science.gov (United States)

    Beaulieu, S.; Camp, S.; Descamps, D.; Comby, A.; Wanie, V.; Petit, S.; Légaré, F.; Schafer, K. J.; Gaarde, M. B.; Catoire, F.; Mairesse, Y.

    2016-11-01

    We investigate the role of excited states in high-order harmonic generation by studying the spectral, spatial, and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the population of excited states can lead either to direct extreme ultraviolet emission through free induction decay or to the generation of high-order harmonics through ionization from these states and recombination to the ground state. By using the attosecond lighthouse technique, we demonstrate that the high-harmonic emission from excited states is temporally delayed by a few femtoseconds compared to the usual harmonics, leading to a strong nonadiabatic spectral redshift.

  7. Delta-Doping at Wafer Level for High Throughput, High Yield Fabrication of Silicon Imaging Arrays

    Science.gov (United States)

    Hoenk, Michael E. (Inventor); Nikzad, Shoulch (Inventor); Jones, Todd J. (Inventor); Greer, Frank (Inventor); Carver, Alexander G. (Inventor)

    2014-01-01

    Systems and methods for producing high quantum efficiency silicon devices. A silicon MBE has a preparation chamber that provides for cleaning silicon surfaces using an oxygen plasma to remove impurities and a gaseous (dry) NH3 + NF3 room temperature oxide removal process that leaves the silicon surface hydrogen terminated. Silicon wafers up to 8 inches in diameter have devices that can be fabricated using the cleaning procedures and MBE processing, including delta doping.

  8. Low cost routes to high purity silicon and derivatives thereof

    Energy Technology Data Exchange (ETDEWEB)

    Laine, Richard M; Krug, David James; Marchal, Julien Claudius; Mccolm, Andrew Stewart

    2013-07-02

    The present invention is directed to a method for providing an agricultural waste product having amorphous silica, carbon, and impurities; extracting from the agricultural waste product an amount of the impurities; changing the ratio of carbon to silica; and reducing the silica to a high purity silicon (e.g., to photovoltaic silicon).

  9. Intraocular inflammation following endotamponade with high-density silicone oil.

    NARCIS (Netherlands)

    Theelen, T.; Tilanus, M.A.D.; Klevering, B.J.

    2004-01-01

    BACKGROUND: The use of a mixture of silicone oil and partially fluorinated alkanes (high-density silicone oil) has recently been suggested as intraocular tamponade in complicated retinal detachment of the inferior quadrants. We describe a series of patients who developed a clinical picture resemblin

  10. SYNTHESIS OF HIGH THERMOSTABLE SILICONE GELS CONSTRUCTED WITH LADDERLIKE POLYSILSESQUIOXANES

    Institute of Scientific and Technical Information of China (English)

    Huai-zhong Pan; Ming Cao; Jian-hua Luo; Ping Xie; Rong-ben Zhang; Yu-hui Lin; Neal Tai-sheng Chung

    2000-01-01

    Heat-resistant silicone gels were synthesized by replacing the single main chain polymethylhydrosiloxane with reactive ladderlike polyhydrosilsesquioxane copolymers. Because of the interaction between polydimethylsiloxane chains and the ladderlike polysilsesquioxanes chains, the cyclization of the polydimethylsiloxane chains is hindered. The high thermal stability of the ladderlike polymers can improve the thermal stability of the silicone gels without sacrificing their good comprehensive properties.

  11. A review of high-efficiency silicon solar cells

    Science.gov (United States)

    Rohatgi, A.

    1986-01-01

    Various parameters that affect solar cell efficiency were discussed. It is not understood why solar cells produced from less expensive Czochralski (Cz) silicon are less efficient than cells fabricated from more expensive float-zone (Fz) silicon. Performance characteristics were presented for recently produced, high-efficient solar cells fabricated by Westinghouse Electric Corp., Spire Corp., University of New South Wales, and Stanford University.

  12. Intraocular inflammation following endotamponade with high-density silicone oil.

    NARCIS (Netherlands)

    Theelen, T.; Tilanus, M.A.D.; Klevering, B.J.

    2004-01-01

    BACKGROUND: The use of a mixture of silicone oil and partially fluorinated alkanes (high-density silicone oil) has recently been suggested as intraocular tamponade in complicated retinal detachment of the inferior quadrants. We describe a series of patients who developed a clinical picture

  13. The correlation between magneto-optical response and magnetic dipole resonance excitation in subwavelength silicon-nickel nanogratings

    Science.gov (United States)

    Musorin, A. I.; Barsukova, M. G.; Shorokhov, A. S.; Neshev, D. N.; Kivshar, Y. S.; Fedyanin, A. A.

    2017-09-01

    The advantages of gyrotopic materials are combined with the field of high-index metamaterials. The enhancement of the magneto-optical response in the spectral vicinity of the magnetic dipole resonance of a dielectric silicon nanodisks is numerically shown.

  14. Highly excited and exotic meson spectrum from dynamical lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek, Robert Edwards, David Richards, Christopher Thomas

    2009-12-01

    Using a new quark-field construction algorithm and a large variational basis of operators, we extract a highly excited isovector meson spectrum on dynamical anisotropic lattices. We show how carefully constructed operators can be used to identify the continuum spin of extracted states. This method allows us to extract, with confidence, excited states, states of high spin and states with exotic quantum numbers, including, for the first time, spin-four states.

  15. High-frequency and high-quality silicon carbide optomechanical microresonators

    CERN Document Server

    Lu, Xiyuan; Lin, Qiang

    2015-01-01

    Silicon carbide (SiC) exhibits excellent material properties attractive for broad applications. We demonstrate the first SiC optomechanical microresonators that integrate high mechanical frequency, high mechanical quality, and high optical quality into a single device. The radial-breathing mechanical mode has a mechanical frequency up to 1.69 GHz with a mechanical Q around 5500 in atmosphere, which corresponds to a mechanical f-Q product as high as 9.47x10^12 Hz. The strong optomechanical coupling allows us to efficiently excite and probe the coherent mechanical oscillation by optical waves. The demonstrated devices, in combination with the superior thermal property, chemical inertness, and defect characteristics of SiC, show great potential for applications in metrology, sensing, and quantum photonics, particularly in harsh environments that are challenging for other device platforms.

  16. Microwave excitation of localized electrons in phosphorus-doped silicon single electron transistors

    Science.gov (United States)

    Creswell, L. A.; Hasko, D. G.; Williams, D. A.

    2009-05-01

    We investigate the effect of microwave irradiation on the source-drain current of a silicon single electron transistor, with fixed source-drain and gate voltages, at a temperature of 4 K. The source-drain current can be increased, decreased, or even reversed by the radiation, depending on the microwave frequency and dc bias conditions. Some of the source-drain current changes take the form of sharp resonances with high quality factor. We investigate the effect of the microwave irradiation coupling method on the form of these resonances. The coupling method does not modify the center frequency of the resonances however it does alter the resonance shape. We discuss the origin of these resonant features and propose that they originate from the microwave induced spatial redistributions of localized electrons in the single electron transistor.

  17. Excitation of plasmon modes in a graphene monolayer supported on a 2D subwavelength silicon grating

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Jepsen, Peter Uhd;

    2013-01-01

    Graphene is a two-dimensional (2D) carbon-based material, whose unique electronic and optical properties have attracted a great deal of research interest. Despite the fact that graphene is an atomically thin layer the optical absorption of a single layer can be as high as 2.3% (defined by the fine...... structure constant). Nevertheless, for light-matter interactions this number is imposing challenges and restrictions for graphene-based optoelectronic devices. One promising way to enhance optical absorption is to excite graphene-plasmon polaritons (GPPs) supported by graphene....

  18. Recent Progress in Silicon Electro-optic Modulators for High Speed Applications

    Institute of Scientific and Technical Information of China (English)

    XIAO Xi; YU Jin-zhong

    2008-01-01

    Silicon-based high-speed electro-optical modulator is the key component of silicon photonics for future communiction and interconnection systems. In this paper, introduced are the optical mudulation mechanisms in silicon, reviewed are some recent progresses in high-speed silicon modulators, and analyzed are advantages and shortages of the silicon modulators of different types.

  19. Subharmonic and fundamental high amplitude excitation of an axisymmetric jet

    Science.gov (United States)

    Raman, Ganesh; Rice, Edward J.

    1989-01-01

    The effect of simultaneous excitation at the fundamental and subharmonic frequencies on the behavior of a circular jet shear layer is studied. Attention is given to the effect of the initial phase difference, the Strouhal number pair, and amplitudes of the fundamental and subharmonic tones. High-amplitude excitation devices which can provide a wide range of forcing conditions when used in conjunction with equipment that produces complex waveforms are used.

  20. High-resolution, label-free imaging of living cells with direct electron-beam-excitation-assisted optical microscopy.

    Science.gov (United States)

    Nawa, Yasunori; Inami, Wataru; Lin, Sheng; Kawata, Yoshimasa; Terakawa, Susumu

    2015-06-01

    High spatial resolution microscope is desired for deep understanding of cellular functions, in order to develop medical technologies. We demonstrate high-resolution imaging of un-labelled organelles in living cells, in which live cells on a 50 nm thick silicon nitride membrane are imaged by autofluorescence excited with a focused electron beam through the membrane. Electron beam excitation enables ultrahigh spatial resolution imaging of organelles, such as mitochondria, nuclei, and various granules. Since the autofluorescence spectra represent molecular species, this microscopy allows fast and detailed investigations of cellular status in living cells.

  1. Self-Healing, High-Permittivity Silicone Dielectric Elastomer

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Skov, Anne Ladegaard

    2016-01-01

    or cuts made directly to the material due to the reassembly of the ionic bonds that are broken during damage. The dielectric elastomers presented in this paper pave the way to increased lifetimes and the ability of dielectric elastomers to survive millions of cycles in high-voltage conditions....... possesses high dielectric permittivity and consists of an interpenetrating polymer network of silicone elastomer and ionic silicone species that are cross-linked through proton exchange between amines and acids. The ionically cross-linked silicone provides self-healing properties after electrical breakdown...

  2. Silicon nitride ceramic having high fatigue life and high toughness

    Science.gov (United States)

    Yeckley, Russell L.

    1996-01-01

    A sintered silicon nitride ceramic comprising between about 0.6 mol % and about 3.2 mol % rare earth as rare earth oxide, and between about 85 w/o and about 95 w/o beta silicon nitride grains, wherein at least about 20% of the beta silicon nitride grains have a thickness of greater than about 1 micron.

  3. Silicon carbide materials for high duty seal applications

    Energy Technology Data Exchange (ETDEWEB)

    Berroth, K.E. (Schunk Ingenieurkeramik GmbH, Duesseldorf (Germany, F.R.))

    1990-12-01

    Properties, fabrication, and high-duty applications of silicon carbide grades are discussed. The two types of silicon carbide, i.e., reaction-bonded and sintered, are considered. The potential for adhesion and the lack of dry running abilities lead to a variety of microstructures. For reaction-bonded silicon carbide, the microstructure can be a tool for optimization of the tribological behavior. Besides the high corrosion resistance of the material, its thermal conductivity is excellent. Grain sizes of about 40-50 microns are used in high-duty applications. Reaction-bonded silicon carbide with residual content of carbon graphite has improved tribological/hydrodynamic characteristics and performs well in sealing hard faces.

  4. High precision optical finishing of lightweight silicon carbide aspheric mirror

    Science.gov (United States)

    Kong, John; Young, Kevin

    2010-10-01

    Critical to the deployment of large surveillance optics into the space environment is the generation of high quality optics. Traditionally, aluminum, glass and beryllium have been used; however, silicon carbide becomes of increasing interest and availability due to its high strength. With the hardness of silicon carbide being similar to diamond, traditional polishing methods suffer from slow material removal rates, difficulty in achieving the desired figure and inherent risk of causing catastrophic damage to the lightweight structure. Rather than increasing structural capacity and mass of the substrate, our proprietary sub-aperture aspheric surface forming technology offers higher material removal rates (comparable to that of Zerodur or Fused Silica), a deterministic approach to achieving the desired figure while minimizing contact area and the resulting load on the optical structure. The technology performed on computer-controlled machines with motion control software providing precise and quick convergence of surface figure, as demonstrated by optically finishing lightweight silicon carbide aspheres. At the same time, it also offers the advantage of ideal pitch finish of low surface micro-roughness and low mid-spatial frequency error. This method provides a solution applicable to all common silicon carbide substrate materials, including substrates with CVD silicon carbide cladding, offered by major silicon carbide material suppliers. This paper discusses a demonstration mirror we polished using this novel technology. The mirror is a lightweight silicon carbide substrate with CVD silicon carbide cladding. It is a convex hyperbolic secondary mirror with 104mm diameter and approximately 20 microns aspheric departure from best-fit sphere. The mirror has been finished with surface irregularity of better than 1/50 wave RMS @632.8 nm and surface micro-roughness of under 2 angstroms RMS. The technology has the potential to be scaled up for manufacturing capabilities of

  5. High aspect ratio transmission line circuits micromachined in silicon

    Science.gov (United States)

    Todd, Shane Truman

    The performance of complimentary metal-oxide-semiconductor (CMOS) monolithic microwave integrated circuits (MMICs) fabricated on silicon has improved dramatically. The scaling down of silicon transistors has increased the maximum frequency of transistors to the point where silicon MMICs have become a viable alternative to compound semiconductor MMICs in certain applications. A fundamental problem still exists in silicon MMICs however in that transmission lines fabricated on silicon can suffer from high loss due to the finite conductivity of the silicon substrate. A novel approach for creating low-loss transmission lines on silicon is presented in this work. Low-loss transmission lines are created on low resistivity silicon by using a micromachining method that combines silicon deep reactive ion etching (DRIE), thermal oxidation, electroplating, and planarization. Two types of high aspect ratio transmission lines are created with this method including high aspect ratio coplanar waveguide (hicoplanar) and semi-rectangular coaxial (semicoaxial). Transmission lines with impedances ranging from 20--80 O have been fabricated with minimum measured loss lower than 1 dB/cm at 67 GHz. Low-loss dielectrics are created for the high aspect ratio transmission lines using the mesa merging method. The mesa merging method works by creating silicon mesa arrays using DRIE and then converting and merging the mesa arrays into a solid oxide dielectric using thermal oxidation. The transmission lines are designed so that the fields penetrate the low-loss oxide dielectric and are isolated from the lossy silicon substrate. The mesa merging method has successfully created large volume oxide with depth up to 65 microm and width up to 240 microm in short oxidation times. Other advantages of the high aspect ratio transmission lines are demonstrated including low-loss over a wide impedance range, high isolation, and high coupling for coupled-line circuits. Transmission line models have been

  6. 77 GHz MEMS antennas on high-resistivity silicon for linear and circular polarization

    KAUST Repository

    Sallam, M. O.

    2011-07-01

    Two new MEMS antennas operating at 77 GHz are presented in this paper. The first antenna is linearly polarized. It possesses a vertical silicon wall that carries a dipole on top of it. The wall is located on top of silicon substrate covered with a ground plane. The other side of the substrate carries a microstrip feeding network in the form of U-turn that causes 180 phase shift. This phase-shifter feeds the arms of the dipole antenna via two vertical Through-Silicon Vias (TSVs) that go through the entire wafer. The second antenna is circularly polarized and formed using two linearly polarized antennas spatially rotated with respect to each other by 90 and excited with 90 phase shift. Both antennas are fabricated using novel process flow on a single high-resistivity silicon wafer via bulk micromachining. Only three processing steps are required to fabricate these antennas. The proposed antennas have appealing characteristics, such as high polarization purity, high gain, and high radiation efficiency. © 2011 IEEE.

  7. Studies on linear, nonlinear optical and excited state dynamics of silicon nanoparticles prepared by picosecond laser ablation

    Directory of Open Access Journals (Sweden)

    Syed Hamad

    2015-12-01

    Full Text Available We report results from our studies on the fabrication and characterization of silicon (Si nanoparticles (NPs and nanostructures (NSs achieved through the ablation of Si target in four different liquids using ∼2 picosecond (ps pulses. The consequence of using different liquid media on the ablation of Si target was investigated by studying the surface morphology along with material composition of Si based NPs. The recorded mean sizes of these NPs were ∼9.5 nm, ∼37 nm, ∼45 nm and ∼42 nm obtained in acetone, water, dichloromethane (DCM and chloroform, respectively. The generated NPs were characterized by selected area electron diffraction (SAED, high resolution transmission microscopy (HRTEM, Raman spectroscopic techniques and Photoluminescence (PL studies. SAED, HRTEM and Raman spectroscopy data confirmed that the material composition was Si NPs in acetone, Si/SiO2 NPs in water, Si-C NPs in DCM and Si-C NPs in chloroform and all of them were confirmed to be polycrystalline in nature. Surface morphological information of the fabricated Si substrates was obtained using the field emission scanning electron microscopic (FESEM technique. FESEM data revealed the formation of laser induced periodic surface structures (LIPSS for the case of ablation in acetone and water while random NSs were observed for the case of ablation in DCM and chloroform. Femtosecond (fs nonlinear optical properties and excited state dynamics of these colloidal Si NPs were investigated using the Z-scan and pump-probe techniques with ∼150 fs (100 MHz and ∼70 fs (1 kHz laser pulses, respectively. The fs pump-probe data obtained at 600 nm consisted of single and double exponential decays which were tentatively assigned to electron-electron collisional relaxation (1 ps. Large third order optical nonlinearities (∼10−14 e.s.u. for these colloids have been estimated from Z-scan data at an excitation wavelength of 680 nm suggesting that the colloidal Si NPs find

  8. Studies on linear, nonlinear optical and excited state dynamics of silicon nanoparticles prepared by picosecond laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Syed; Nageswara Rao, S. V. S.; Pathak, A. P. [School of Physics, University of Hyderabad, Hyderabad 500046, Telangana (India); Krishna Podagatlapalli, G.; Mounika, R.; Venugopal Rao, S., E-mail: soma-venu@yahoo.com, E-mail: soma-venu@uohyd.ac.in [Advanced Center of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, Telangana (India)

    2015-12-15

    We report results from our studies on the fabrication and characterization of silicon (Si) nanoparticles (NPs) and nanostructures (NSs) achieved through the ablation of Si target in four different liquids using ∼2 picosecond (ps) pulses. The consequence of using different liquid media on the ablation of Si target was investigated by studying the surface morphology along with material composition of Si based NPs. The recorded mean sizes of these NPs were ∼9.5 nm, ∼37 nm, ∼45 nm and ∼42 nm obtained in acetone, water, dichloromethane (DCM) and chloroform, respectively. The generated NPs were characterized by selected area electron diffraction (SAED), high resolution transmission microscopy (HRTEM), Raman spectroscopic techniques and Photoluminescence (PL) studies. SAED, HRTEM and Raman spectroscopy data confirmed that the material composition was Si NPs in acetone, Si/SiO{sub 2} NPs in water, Si-C NPs in DCM and Si-C NPs in chloroform and all of them were confirmed to be polycrystalline in nature. Surface morphological information of the fabricated Si substrates was obtained using the field emission scanning electron microscopic (FESEM) technique. FESEM data revealed the formation of laser induced periodic surface structures (LIPSS) for the case of ablation in acetone and water while random NSs were observed for the case of ablation in DCM and chloroform. Femtosecond (fs) nonlinear optical properties and excited state dynamics of these colloidal Si NPs were investigated using the Z-scan and pump-probe techniques with ∼150 fs (100 MHz) and ∼70 fs (1 kHz) laser pulses, respectively. The fs pump-probe data obtained at 600 nm consisted of single and double exponential decays which were tentatively assigned to electron-electron collisional relaxation (<1 ps) and non-radiative transitions (>1 ps). Large third order optical nonlinearities (∼10{sup −14} e.s.u.) for these colloids have been estimated from Z-scan data at an excitation wavelength of 680 nm

  9. Studies on linear, nonlinear optical and excited state dynamics of silicon nanoparticles prepared by picosecond laser ablation

    Science.gov (United States)

    Hamad, Syed; Krishna Podagatlapalli, G.; Mounika, R.; Nageswara Rao, S. V. S.; Pathak, A. P.; Venugopal Rao, S.

    2015-12-01

    We report results from our studies on the fabrication and characterization of silicon (Si) nanoparticles (NPs) and nanostructures (NSs) achieved through the ablation of Si target in four different liquids using ˜2 picosecond (ps) pulses. The consequence of using different liquid media on the ablation of Si target was investigated by studying the surface morphology along with material composition of Si based NPs. The recorded mean sizes of these NPs were ˜9.5 nm, ˜37 nm, ˜45 nm and ˜42 nm obtained in acetone, water, dichloromethane (DCM) and chloroform, respectively. The generated NPs were characterized by selected area electron diffraction (SAED), high resolution transmission microscopy (HRTEM), Raman spectroscopic techniques and Photoluminescence (PL) studies. SAED, HRTEM and Raman spectroscopy data confirmed that the material composition was Si NPs in acetone, Si/SiO2 NPs in water, Si-C NPs in DCM and Si-C NPs in chloroform and all of them were confirmed to be polycrystalline in nature. Surface morphological information of the fabricated Si substrates was obtained using the field emission scanning electron microscopic (FESEM) technique. FESEM data revealed the formation of laser induced periodic surface structures (LIPSS) for the case of ablation in acetone and water while random NSs were observed for the case of ablation in DCM and chloroform. Femtosecond (fs) nonlinear optical properties and excited state dynamics of these colloidal Si NPs were investigated using the Z-scan and pump-probe techniques with ˜150 fs (100 MHz) and ˜70 fs (1 kHz) laser pulses, respectively. The fs pump-probe data obtained at 600 nm consisted of single and double exponential decays which were tentatively assigned to electron-electron collisional relaxation (1 ps). Large third order optical nonlinearities (˜10-14 e.s.u.) for these colloids have been estimated from Z-scan data at an excitation wavelength of 680 nm suggesting that the colloidal Si NPs find potential applications

  10. A high-Tc superconductor bolometer on a silicon nitridemembrane

    NARCIS (Netherlands)

    Sanchez, S.; Elwenspoek, M.C.; Gui, C.; Nivelle, de M.J.M.E.; Vries, de R.; Korte, de P.A.J.; Bruijn, M.P.; Schwierzi, B.

    1997-01-01

    In this paper we describe the design, fabrication and performance of a high-Tc GdBa2Cu3O7-δ superconductor bolometer positioned on a 2×2 mm2, 1 μm thick silicon nitride membrane. The bolometer structure has an effective area of 0.64 mm2 and was grown on a specially developed silicon-on-nitride layer

  11. Microscale capillary wave turbulence excited by high frequency vibration.

    Science.gov (United States)

    Blamey, Jeremy; Yeo, Leslie Y; Friend, James R

    2013-03-19

    Low frequency (O(10 Hz-10 kHz)) vibration excitation of capillary waves has been extensively studied for nearly two centuries. Such waves appear at the excitation frequency or at rational multiples of the excitation frequency through nonlinear coupling as a result of the finite displacement of the wave, most often at one-half the excitation frequency in so-called Faraday waves and twice this frequency in superharmonic waves. Less understood, however, are the dynamics of capillary waves driven by high-frequency vibration (>O(100 kHz)) and small interface length scales, an arrangement ideal for a broad variety of applications, from nebulizers for pulmonary drug delivery to complex nanoparticle synthesis. In the few studies conducted to date, a marked departure from the predictions of classical Faraday wave theory has been shown, with the appearance of broadband capillary wave generation from 100 Hz to the excitation frequency and beyond, without a clear explanation. We show that weak wave turbulence is the dominant mechanism in the behavior of the system, as evident from wave height frequency spectra that closely follow the Rayleigh-Jeans spectral response η ≈ ω(-17/12) as a consequence of a period-halving, weakly turbulent cascade that appears within a 1 mm water drop whether driven by thickness-mode or surface acoustic Rayleigh wave excitation. However, such a cascade is one-way, from low to high frequencies. The mechanism of exciting the cascade with high-frequency acoustic waves is an acoustic streaming-driven turbulent jet in the fluid bulk, driving the fundamental capillary wave resonance through the well-known coupling between bulk flow and surface waves. Unlike capillary waves, turbulent acoustic streaming can exhibit subharmonic cascades from high to low frequencies; here it appears from the excitation frequency all the way to the fundamental modes of the capillary wave at some four orders of magnitude in frequency less than the excitation frequency

  12. High efficiency silicon solar cell review

    Science.gov (United States)

    Godlewski, M. P. (Editor)

    1975-01-01

    An overview is presented of the current research and development efforts to improve the performance of the silicon solar cell. The 24 papers presented reviewed experimental and analytic modeling work which emphasizes the improvment of conversion efficiency and the reduction of manufacturing costs. A summary is given of the round-table discussion, in which the near- and far-term directions of future efficiency improvements were discussed.

  13. High-Efficient Excitation-Independent Blue Luminescent Carbon Dots

    Science.gov (United States)

    Liu, Hongzhen; Zhao, Xin; Wang, Fei; Wang, Yunpeng; Guo, Liang; Mei, Jingjing; Tian, Cancan; Yang, Xiaotian; Zhao, Dongxu

    2017-06-01

    Blue luminescent carbon dots (CDs) were synthesized by the hydrothermal method. Blue-shifts of the maximum emission wavelength from 480 to 443 nm were observed when the concentration of CD solution decreased. The photoluminescence (PL) spectra of CDs at low concentration showed an excitation-independent behaviour, which is very different from the previous reports. Two different emitting mechanisms might work: the intrinsic luminescence from sp2-carbon networks can be responsible for the shorter wavelength part of emission (excitation-independent) at low concentration and the high polarity of nanosized clusters led to the excitation-dependent behaviour of the longer wavelength part at high concentration of CD solution. The photophysical property and concentration-dependent behaviour of the CDs offered new insights into CDs from the viewpoints of both experiments and mechanisms, which will promote diverse potential applications of CDs in the near future.

  14. Thermal pairing and giant dipole resonance in highly excited nuclei

    CERN Document Server

    Dang, Nguyen Dinh

    2014-01-01

    Recent results are reported showing the effects of thermal pairing in highly excited nuclei. It is demonstrated that thermal pairing included in the phonon damping model (PDM) is responsible for the nearly constant width of the giant dipole resonance (GDR) at low temperature $T $ 170 MeV.

  15. Coherent selection of invisible high-order electromagnetic excitations

    Science.gov (United States)

    Tseng, Ming Lun; Fang, Xu; Savinov, Vassili; Wu, Pin Chieh; Ou, Jun-Yu; Zheludev, Nikolay I.; Tsai, Din Ping

    2017-03-01

    Far-field spectroscopy and mapping of electromagnetic near-field distribution are the two dominant tools for analysis and characterization of the electromagnetic response in nanophotonics. Despite the widespread use, these methods can fail at identifying weak electromagnetic excitations masked by stronger neighboring excitations. This is particularly problematic in ultrafast nanophotonics, including optical sensing, nonlinear optics and nanolasers, where the broad resonant modes can overlap to a significant degree. Here, using plasmonic metamaterials, we demonstrate that coherent spectroscopy can conveniently isolate and detect such hidden high-order photonic excitations. Our results establish that the coherent spectroscopy is a powerful new tool. It complements the conventional methods for analysis of the electromagnetic response, and provides a new route to designing and characterizing novel photonic devices and materials.

  16. Silicone rubber-coated highly sensitive optical fiber sensor for temperature measurement

    Science.gov (United States)

    Bhardwaj, Vanita; Gangwar, Rahul Kumar; Singh, Vinod Kumar

    2016-12-01

    A silicone rubber-coated Mach-Zehnder interferometer (MZI) is proposed and applied to temperature measurement. The MZI is fabricated by splicing single mode fiber between a short section of no-core fiber (NCF) and the ultra-abrupt taper region. The sensing length of MZI is coated with liquid silicone rubber to enhance the temperature sensitivity. Here, NCF is used to excite the higher order cladding mode, the ultra-abrupt taper region acts as a optical fiber coupler, and the silicone rubber coating on sensing length is used as solid cladding material instead of liquid. The enhancement of the sensitivity of a device is due to the high refractive index (1.42) and thermo-optic coefficient (-1.4×10-4/°C) of silicone rubber as compared to liquid cladding temperature sensors. The experiment was performed for both coated and uncoated MZI and the results were compared. The MZI exhibits a high temperature sensitivity of 253.75 and 121.26 pm/°C for coated and uncoated sensing probes, respectively, in the temperature range from 30°C to 75°C.

  17. Silicon-embedded copper nanostructure network for high energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  18. Displacement damage effects in silicon MEMS at high proton doses

    Science.gov (United States)

    Gomes, João; Shea, Herbert R.

    2011-02-01

    We report on a study of the sensitivity of silicon MEMS to proton radiation and mitigation strategies. MEMS can degrade due to ionizing radiation (electron-hole pair creation) and non-ionizing radiation (displacement damage), such as electrons, trapped and solar protons, or cosmic rays, typically found in a space environment. Over the past few years there has been several reports on the effects of ionizing radiation in silicon MEMS, with failure generally linked to trapped charge in dielectrics. However there is near complete lack of studies on displacement damage effects in silicon- MEMS: how does silicon change mechanically due to proton irradiation? We report on an investigation on the susceptibility of 50 μm thick SOI-based MEMS resonators to displacement damages due to proton beams, with energies from 1 to 60 MeV, and annealing of this damage. We measure ppm changes on the Young's modulus and Poisson ratio by means of accurately monitoring the resonant frequency of devices in vacuum using a Laser Doppler Vibrometer. We observed for the first time an increase (up to 0.05%) of the Young's modulus of single-crystal silicon electromagnetically-actuated micromirrors after exposure to low energy protons (1-4 MeV) at high absorbed doses ~ 100 Mrad (Si). This investigation will contribute to a better understanding of the susceptibility of silicon-based MEMS to displacement damages frequently encountered in a space radiation environment, and allow appropriated design margin and shielding to be implemented.

  19. Thermally activated conductance of a silicon inversion layer by electrons excited above the mobility edge

    NARCIS (Netherlands)

    Niederer, H.H.J.M.; Mattey, A.P.M.; Sparnaay, M.J.

    1981-01-01

    The thermally activated conductivity sigma of an n-type inversion layer on a (100) oriented silicon surface and its derivative d sigma /dT were measured in the temperature range 1.4K-4.2K. Above T approximately=2.5K both the temperature dependence of (T/ sigma ) (d sigma /dT) and the relation betwee

  20. Applications of Silicon Carbide for High Temperature Electronics and Sensors

    Science.gov (United States)

    Shields, Virgil B.

    1995-01-01

    Silicon carbide (SiC) is a wide bandgap material that shows great promise in high-power and high temperature electronics applications because of its high thermal conductivity and high breakdown electrical field. The excellent physical and electronic properties of SiC allows the fabrication of devices that can operate at higher temperatures and power levels than devices produced from either silicon or GaAs. Although modern electronics depends primarily upon silicon based devices, this material is not capable of handling may special requirements. Devices which operate at high speeds, at high power levels and are to be used in extreme environments at high temperatures and high radiation levels need other materials with wider bandgaps than that of silicon. Many space and terrestrial applications also have a requirement for wide bandgap materials. SiC also has great potential for high power and frequency operation due to a high saturated drift velocity. The wide bandgap allows for unique optoelectronic applications, that include blue light emitting diodes and ultraviolet photodetectors. New areas involving gas sensing and telecommunications offer significant promise. Overall, the properties of SiC make it one of the best prospects for extending the capabilities and operational regimes of the current semiconductor device technology.

  1. High-energy excited states in 98Cd

    Science.gov (United States)

    Blazhev, A.; Braun, N.; Grawe, H.; Boutachkov, P.; Nara Singh, B. S.; Brock, T.; Liu, Zh; Wadsworth, R.; Górska, M.; Jolie, J.; Nowacki, F.; Pietri, S.; Domingo-Pardo, C.; Kojouharov, I.; Caceres, L.; Engert, T.; Farinon, F.; Gerl, J.; Goel, N.; Grȩbosz, J.; Hoischen, R.; Kurz, N.; Nociforo, C.; Prochazka, A.; Schaffner, H.; Steer, S.; Weick, H.; Wollersheim, H.-J.; Ataç, A.; Bettermann, L.; Eppinger, K.; Faestermann, T.; Finke, F.; Geibel, K.; Hinke, C.; Gottardo, A.; Ilie, G.; Iwasaki, H.; Krücken, R.; Merchan, E.; Nyberg, J.; Pfützner, M.; Podolyák, Zs; Regan, P.; Reiter, P.; Rinta-Antila, S.; Rudolph, D.; Scholl, C.; Söderström, P.-A.; Warr, N.; Woods, P.

    2010-01-01

    In 98Cd a new high-energy isomeric γ-ray transition was identified, which confirms previous spin-parity assignments and enables for the first time the measurement of the E2 and E4 strength for the two decay branches of the isomer. Preliminary results on the 98Cd high-excitation level scheme are presented. A comparison to shell-model calculations as well as implications for the nuclear structure around 100Sn are discussed.

  2. High-energy excited states in {sup 98}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Blazhev, A; Braun, N; Jolie, J [Universitaet zu Koeln, Cologne (Germany); Grawe, H; Boutachkov, P; Gorska, M; Pietri, S; Domingo-Pardo, C; Kojouharov, I; Caceres, L; Engert, T; Farinon, F; Gerl, J; Goel, N [GSI, Darmstadt (Germany); Singh, B S Nara; Brock, T; Wadsworth, R [University of York, York (United Kingdom); Liu, Zh [University of Edinburgh, Edinburgh (United Kingdom); Nowacki, F [IPHC, Strasbourg (France); Grebosz, J, E-mail: a.blazhev@ikp.uni-koeln.d [IFJ PAN, Krakow (Poland)

    2010-01-01

    In {sup 98}Cd a new high-energy isomeric {gamma}-ray transition was identified, which confirms previous spin-parity assignments and enables for the first time the measurement of the E2 and E4 strength for the two decay branches of the isomer. Preliminary results on the {sup 98}Cd high-excitation level scheme are presented. A comparison to shell-model calculations as well as implications for the nuclear structure around {sup 100}Sn are discussed.

  3. Ultra-high-speed Optical Signal Processing using Silicon Photonics

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Jensen, Asger Sellerup

    on silicon photonics. In particular we use nano-engineered silicon waveguides (nanowires) [1] enabling efficient phasematched four-wave mixing (FWM), cross-phase modulation (XPM) or self-phase modulation (SPM) for ultra-high-speed optical signal processing of ultra-high bit rate serial data signals. We show......— In supercomputers, the optical inter-connects are getting closer and closer to the processing cores. Today, a single supercomputer system has as many optical links as the whole worldwide web together, and it is envisaged that future computing chips will contain multiple electronic processor cores...... with a photonic layer on top to interconnect them. For such systems, silicon is an attractive candidate enabling both electronic and photonic control. For some network scenarios, it may be beneficial to use optical on-chip packet switching, and for high data-density environments one may take advantage...

  4. High Quality Factor MBE-grown Aluminum on Silicon Planar Resonators

    Science.gov (United States)

    Megrant, Anthony; Chen, Z.; Chiaro, B.; Dunsworth, A.; Quintana, C.; Campbell, B.; Barends, R.; Chen, Y.; Fowler, A.; Hoi, I.-C.; Jeffrey, E.; Kelly, J.; Mutus, J.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Palmstrom, C.; Martinis, J. M.; Cleland, A. N.

    2015-03-01

    Linear arrays of planer Xmon qubit circuits fabricated using thin aluminum films on sapphire substrates have resulted in long coherence times and high fidelity gates. Scaling up to larger circuits, including two-dimensional qubit arrays, may however benefit from building circuits on silicon instead of sapphire substrates. I will present recent tests in this direction, reporting on measurements of superconducting coplanar waveguide resonators fabricated using aluminum films deposited on silicon in a molecular beam epitaxy (MBE) system. These resonators exhibit exceptional performance, with quality factors at low temperatures and single photon excitation energies exceeding 5x106. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office Grant W911NF-09-1-0375.

  5. High-flux solar furnace processing of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Pitts, J.R.; Landry, M.D.; Menna, P.; Bingham, C.E.; Lewandowski, A.; Ciszek, T.F. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-06-10

    We used a 10-kW, high-flux solar furnace (HFSF) to diffuse the front-surface n{sup +}-p junction and the back-surface p-p{sup +} junction of single-crystal silicon solar cells in one processing step. We found that all of these HFSF-processed cells have better conversion efficiencies than control cells of identical structures fabricated by conventional furnace diffusion methods. We also used the HFSF to crystallize a-Si:H thin films on glass, to texture crystalline silicon surfaces, to deposit gold contacts on silicon wafers, and to getter impurities from metallurgical grade silicon. HFSF processing offers several advantages over conventional furnace processing: (1) it provides a cold-wall process, which reduces contamination; (2) temperature versus time profiles can be precisely controlled; (3) wavelength, intensity, and spatial distribution of the incident solar flux can be controlled and changed rapidly; (4) a number of high-temperature processing steps can be performed simultaneously; and (5) combined quantum and thermal effects may benefit overall cell performance. We conclude that HFSF processing of silicon solar cells has the potential to improve cell efficiency, reduce cell fabrication costs, and also be an environmentally friendly manufacturing method. We have also demonstrated that the HFSF can be used to achieve solid-phase crystallization of a-Si:H at very high speed

  6. High Density Through Silicon Via (TSV)

    CERN Document Server

    Rimskog, Magnus

    2008-01-01

    The Through Silicon Via (TSV) process developed by Silex provides down to 30 micrometers pitch for through wafer connections in up to 600 micrometers thick substrates. Integrated with MEMS designs it enables significantly reduced die size and true "Wafer Level Packaging" - features that are particularly important in consumer market applications. The TSV technology also enables integration of advanced interconnect functions in optical MEMS, sensors and microfluidic devices. In addition the Via technology opens for very interesting possibilities considering integration with CMOS processing. With several companies using the process already today, qualified volume manufacturing in place and a line-up of potential users, the process is becoming a standard in the MEMS industry. We provide a introduction to the via formation process and also present some on the novel solutions made available by the technology.

  7. High deposition rate nanocrystalline silicon with enhanced homogeneity

    NARCIS (Netherlands)

    Verkerk, A.; Rath, J.K.; Schropp, R.E.I.

    2010-01-01

    High rate growth of hydrogenated nanocrystalline silicon (nc-Si:H) brings additional challenges for the homogeneity in the growth direction, since the start-up effects affect a larger portion of the film, and the very high degree of depletion increases the influence of back diffusion from the inacti

  8. Silicon photonics for high-performance interconnection networks

    Science.gov (United States)

    Biberman, Aleksandr

    2011-12-01

    We assert in the course of this work that silicon photonics has the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems, and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. This work showcases that chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, enable unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of this work, we demonstrate such feasibility of waveguides, modulators, switches, and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. Furthermore, we leverage the unique properties of available silicon photonic materials to create novel silicon photonic devices, subsystems, network topologies, and architectures to enable unprecedented performance of these photonic interconnection networks and computing systems. We show that the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. Furthermore, we explore the immense potential of all-optical functionalities implemented using parametric processing in the silicon platform, demonstrating unique methods that have the ability to revolutionize computation and communication. Silicon photonics

  9. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  10. On the nature of highly vibrationally excited states of Thiophosgene

    CERN Document Server

    Keshavamurthy, Srihari

    2011-01-01

    In this work an analysis of the highly vibrationally excited states of thiophosgene (SCCl$_{2}$) is made in order to gain insights into some of the experimental observations and spectral features. The states analyzed herein lie in a spectrally complex region where strong mode mixings are expected due to the overlap of several strong anharmonic Fermi resonances. Two recent techniques, a semiclassical angle space representation of the eigenstates and the parametric variation of the eigenvalues (level-velocities) are used to identify eigenstate sequences exhibiting common localization characteristics. Preliminary results on the influence of highly excited out-of-plane bending modes on the nature of the eigenstates suggest a possible bifurcation in the system.

  11. On the nature of highly vibrationally excited states of thiophosgene

    Indian Academy of Sciences (India)

    Srihari Keshavamurthy

    2012-01-01

    In this work an analysis of the highly vibrationally excited states of thiophosgene (SCCl2) is made in order to gain insights into some of the experimental observations and spectral features. The states analysed here lie in a spectrally complex region where strong mode mixings are expected due to the overlap of several strong anharmonic Fermi resonances. Two recent techniques, a semiclassical angle space representation of the eigenstates and the parametric variation of the eigenvalues (level-velocities) are used to identify eigenstate sequences exhibiting common localization characteristics. Preliminary results on the influence of highly excited out-of-plane bending modes on the nature of the eigenstates suggest a possible bifurcation in the system.

  12. Strange effects of strong high-frequency excitation

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    Three general effects of mechanical high-frequency excitation (HFE) are described: Stiffening - an apparent change in the stiffness associated with an equilibrium; Biasing - a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening...... - a tendency for discontinuities to be apparently smeared out by HFE. Studies of specific physical systems as well as more general models are described....

  13. High-frequency capillary waves excited by oscillating microbubbles

    CERN Document Server

    Pommella, Angelo; Poulichet, Vincent; Garbin, Valeria

    2013-01-01

    This fluid dynamics video shows high-frequency capillary waves excited by the volumetric oscillations of microbubbles near a free surface. The frequency of the capillary waves is controlled by the oscillation frequency of the microbubbles, which are driven by an ultrasound field. Radial capillary waves produced by single bubbles and interference patterns generated by the superposition of capillary waves from multiple bubbles are shown.

  14. High energy density interpenetrating networks from ionic networks and silicone

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren

    2015-01-01

    The energy density of dielectric elastomers (DEs) is sought increased for better exploitation of the DE technology since an increased energy density means that the driving voltage for a certain strain can be lowered in actuation mode or alternatively that more energy can be harvested in generator...... mode. One way to increase the energy density is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permittivity was prepared through the development of interpenetrating networks from ionically assembled silicone polymers and covalently...

  15. High-Q silicon carbide photonic-crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonathan Y. [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Lu, Xiyuan [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Lin, Qiang, E-mail: qiang.lin@rochester.edu [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

    2015-01-26

    We demonstrate one-dimensional photonic-crystal nanobeam cavities in amorphous silicon carbide. The fundamental mode exhibits intrinsic optical quality factor as high as 7.69 × 10{sup 4} with mode volume ∼0.60(λ/n){sup 3} at wavelength 1.5 μm. A corresponding Purcell factor value of ∼10{sup 4} is the highest reported to date in silicon carbide optical cavities. The device exhibits great potential for integrated nonlinear photonics and cavity nano-optomechanics.

  16. Nanocrystalline silicon prepared at high growth rate using helium dilution

    Indian Academy of Sciences (India)

    Koyel Bhattacharya; Debajyoti Das

    2008-06-01

    Growth and optimization of the nanocrystalline silicon (nc-Si : H) films have been studied by varying the electrical power applied to the helium diluted silane plasma in RF glow discharge. Wide optical gap and conducting intrinsic nanocrystalline silicon network of controlled crystalline volume fraction and oriented crystallographic lattice planes have been obtained at a reasonably high growth rate from helium diluted silane plasma, without using hydrogen. Improving crystallinity in the network comprising ∼ 10 nm Si-nanocrystallites and contributing optical gap widening, conductivity ascending and that obtained during simultaneous escalation of the deposition rate, promises significant technological impact.

  17. High power terahertz induced carrier multiplication in Silicon

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Pedersen, Pernille Klarskov; Iwaszczuk, Krzysztof;

    2015-01-01

    The application of an intense THz field results a nonlinear transmission in high resistivity silicon. Upon increasing field strength, the transmission falls from 70% to 62% due to carrier generation through THz-induced impact ionization and subsequent absorption of the THz field by free electrons....

  18. Super soft silicone elastomers with high dielectric permittivity

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Hvilsted, Søren;

    2015-01-01

    Dielectric elastomers (DEs) have many favourable properties. The obstacle of high driving voltages, however, limits the commercial viability of the technology at present. Driving voltage can be lowered by decreasing the Young’s modulus and increasing the dielectric permittivity of silicone elasto...

  19. High-field EPR spectroscopy of thermal donors in silicon

    DEFF Research Database (Denmark)

    Dirksen, R.; Rasmussen, F.B.; Gregorkiewicz, T.

    1997-01-01

    Thermal donors generated in p-type boron-doped Czochralski-grown silicon by a 450 degrees C heat treatment have been studied by high-field magnetic resonance spectroscopy. In the experiments conducted at a microwave frequency of 140 GHz and in a magnetic field of approximately 5 T four individual...

  20. Stark spectrum of barium in highly excited Rydberg states

    Institute of Scientific and Technical Information of China (English)

    Yang Hai-Feng; Gao Wei; Cheng Hong; Liu Xiao-Jun; Liu Hong-Ping

    2013-01-01

    We present observations of Stark spectra of barium in highly excited Rydberg states in the energy region around n =35.The one-photon excitation concerns the π transition.The observed Stark spectra at electric fields ranging from 0 to 60 V·cm-1 are well explained by the diagonalization of the Hamiltonian incorporating the core effects.From the Stark maps,the anti-crossings between energy levels are identified experimentally and theoretically.The time of flight spectra at the specified Stark states are recorded,where the deceleration and acceleration of barium atoms are observed.This is very consistent with the prediction derived from the Stark maps from the point of view of energy conservation.

  1. Achieving a Linear Dose Rate Response in Pulse-Mode Silicon Photodiode Scintillation Detectors Over a Wide Range of Excitations

    Science.gov (United States)

    Carroll, Lewis

    2014-02-01

    We are developing a new dose calibrator for nuclear pharmacies that can measure radioactivity in a vial or syringe without handling it directly or removing it from its transport shield “pig”. The calibrator's detector comprises twin opposing scintillating crystals coupled to Si photodiodes and current-amplifying trans-resistance amplifiers. Such a scheme is inherently linear with respect to dose rate over a wide range of radiation intensities, but accuracy at low activity levels may be impaired, beyond the effects of meager photon statistics, by baseline fluctuation and drift inevitably present in high-gain, current-mode photodiode amplifiers. The work described here is motivated by our desire to enhance accuracy at low excitations while maintaining linearity at high excitations. Thus, we are also evaluating a novel “pulse-mode” analog signal processing scheme that employs a linear threshold discriminator to virtually eliminate baseline fluctuation and drift. We will show the results of a side-by-side comparison of current-mode versus pulse-mode signal processing schemes, including perturbing factors affecting linearity and accuracy at very low and very high excitations. Bench testing over a wide range of excitations is done using a Poisson random pulse generator plus an LED light source to simulate excitations up to ˜106 detected counts per second without the need to handle and store large amounts of radioactive material.

  2. Excitable laser processing network node in hybrid silicon: analysis and simulation.

    Science.gov (United States)

    Nahmias, Mitchell A; Tait, Alexander N; Shastri, Bhavin J; de Lima, Thomas Ferreira; Prucnal, Paul R

    2015-10-01

    The combination of ultrafast laser dynamics and dense on-chip multiwavelength networking could potentially address new domains of real-time signal processing that require both speed and complexity. We present a physically realistic optoelectronic simulation model of a circuit for dynamical laser neural networks and verify its behavior. We describe the physics, dynamics, and parasitics of one network node, which includes a bank of filters, a photodetector, and excitable laser. This unconventional circuit exhibits both cascadability and fan-in, critical properties for the large-scale networking of information processors based on laser excitability. In addition, it can be instantiated on a photonic integrated circuit platform and requires no off-chip optical I/O. Our proposed processing system could find use in emerging applications, including cognitive radio and low-latency control.

  3. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a plan to build a prototype small stroke, high precision deformable mirror suitable for space-based operation in systems for high-resolution...

  4. Silicon-graphene conductive photodetector with ultra-high responsivity

    Science.gov (United States)

    Liu, Jingjing; Yin, Yanlong; Yu, Longhai; Shi, Yaocheng; Liang, Di; Dai, Daoxin

    2017-01-01

    Graphene is attractive for realizing optoelectronic devices, including photodetectors because of the unique advantages. It can easily co-work with other semiconductors to form a Schottky junction, in which the photo-carrier generated by light absorption in the semiconductor might be transported to the graphene layer efficiently by the build-in field. It changes the graphene conduction greatly and provides the possibility of realizing a graphene-based conductive-mode photodetector. Here we design and demonstrate a silicon-graphene conductive photodetector with improved responsivity and response speed. An electrical-circuit model is established and the graphene-sheet pattern is designed optimally for maximizing the responsivity. The fabricated silicon-graphene conductive photodetector shows a responsivity of up to ~105 A/W at room temperature (27 °C) and the response time is as short as ~30 μs. The temperature dependence of the silicon-graphene conductive photodetector is studied for the first time. It is shown that the silicon-graphene conductive photodetector has ultra-high responsivity when operating at low temperature, which provides the possibility to detect extremely weak optical power. For example, the device can detect an input optical power as low as 6.2 pW with the responsivity as high as 2.4 × 107 A/W when operating at −25 °C in our experiment. PMID:28106084

  5. Silicon-graphene conductive photodetector with ultra-high responsivity

    Science.gov (United States)

    Liu, Jingjing; Yin, Yanlong; Yu, Longhai; Shi, Yaocheng; Liang, Di; Dai, Daoxin

    2017-01-01

    Graphene is attractive for realizing optoelectronic devices, including photodetectors because of the unique advantages. It can easily co-work with other semiconductors to form a Schottky junction, in which the photo-carrier generated by light absorption in the semiconductor might be transported to the graphene layer efficiently by the build-in field. It changes the graphene conduction greatly and provides the possibility of realizing a graphene-based conductive-mode photodetector. Here we design and demonstrate a silicon-graphene conductive photodetector with improved responsivity and response speed. An electrical-circuit model is established and the graphene-sheet pattern is designed optimally for maximizing the responsivity. The fabricated silicon-graphene conductive photodetector shows a responsivity of up to ~105 A/W at room temperature (27 °C) and the response time is as short as ~30 μs. The temperature dependence of the silicon-graphene conductive photodetector is studied for the first time. It is shown that the silicon-graphene conductive photodetector has ultra-high responsivity when operating at low temperature, which provides the possibility to detect extremely weak optical power. For example, the device can detect an input optical power as low as 6.2 pW with the responsivity as high as 2.4 × 107 A/W when operating at ‑25 °C in our experiment.

  6. Silicon solar cells with high open-circuit voltage

    Science.gov (United States)

    Minnucci, J. A.; Matthei, K. W.; Kirkpatrick, A. R.; Mccrosky, A.

    1980-01-01

    Open-circuit voltages as high as 0.645 V (AM0-25 C) have been obtained by a new process developed for low-resistivity silicon. The method utilizes high-dose phosphorus implantation, followed by furnace annealing and simultaneous oxide growth to form high-efficiency, shallow junctions. The effect of the thermally grown oxide is a reduction of surface recombination velocity; the oxide also acts as a moderately efficient AR coating. Boron doped silicon with resistivities from 0.1 to 0.3 ohm-cm has been processed according to this sequence; results show highest open-circuit voltage is attained with 0.1-ohm-cm starting material. The effects of bandgap narrowing, caused by high doping concentrations in the junction, were also investigated by implanting phosphorus over a wide range of dose levels.

  7. Ohmic Contacts for High Temperature Integrated Circuits in Silicon Carbide

    OpenAIRE

    2014-01-01

    In electrical devices and integrated circuits, ohmic contacts are necessary and a prerequisite for the current transport over the metal-semiconductor junctions. At the same time, a desired property of the ohmic contacts is to not add resistance or in other way disturb the performance. For high temperature electronics, the material demands are high regarding functionality and stability at elevated working temperatures, during and after temperature cycling and during long time of use.  Silicon ...

  8. Silicon photodiodes with high photoconductive gain at room temperature.

    Science.gov (United States)

    Li, X; Carey, J E; Sickler, J W; Pralle, M U; Palsule, C; Vineis, C J

    2012-02-27

    Silicon photodiodes with high photoconductive gain are demonstrated. The photodiodes are fabricated in a complementary metal-oxide-semiconductor (CMOS)-compatible process. The typical room temperature responsivity at 940 nm is >20 A/W and the dark current density is ≈ 100 nA/cm2 at 5 V reverse bias, yielding a detectivity of ≈ 10(14) Jones. These photodiodes are good candidates for applications that require high detection sensitivity and low bias operation.

  9. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    The paper deals with the wave buoy analogy where a ship is considered as a wave buoy, so that measured ship responses are used as a basis to estimate wave spectra and associated sea state parameters. The study presented follows up on a previous paper, Nielsen [Nielsen UD. Response-based estimation...... processes are carried out in the present paper; however with one of the responses being the relative motion which is a type of response that is sensitive to high-frequency excitations. Based on the present study it is shown that by including the relative motion, the frequency-wise energy distribution can...

  10. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal we describe a plan to build a deformable mirror suitable for space-based operation in systems for high-resolution imaging. The prototype DM will be...

  11. Determination of size and bandgap distributions of Si nanoparticles from photoluminescence excitation and emission spectra in n-type stain etched porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Rustamov, F.A., E-mail: farhad.rustamov@bsu.az; Darvishov, N.H.; Bagiev, V.E.; Mamedov, M.Z.; Bobrova, E.Y.; Qafarova, H.O.

    2014-10-15

    The photoluminescence excitation and emission spectra of n-type stain etched porous silicon layers were investigated. From these spectra the average values of optical bandgap and photoluminescence peak position were determined. Based on these experimental data, the photoluminescence emission spectra of porous silicon were analyzed by the phenomenological theory and the fitting parameters of the theory were defined. The size and bandgap distributions of silicon nanoparticles were determined and their mean values were calculated. It was found that the investigated PS samples are the ensemble of nanoparticles with size between 1.5 nm and 2.8 nm and a bandgap from 2 eV to 3.2 eV distributed with different probabilities depending on the formation time of porous silicon. It is shown that with increasing formation time, the average size of nanocrystals is slightly increasing, while the average bandgap is slightly narrowing. - Highlights: • Stain etched n-type porous silicon layers were formed in modified solution. • Joint theoretical analysis of excitation and emission spectra was performed. • Size and bandgap distributions of nanocrystals were determined. • Mean values of nanocrystal size and bandgap were determined.

  12. High-conductivity silicon based spectrally selective plasmonic surfaces for sensing in the infrared region

    Science.gov (United States)

    Gorgulu, K.; Gok, A.; Yilmaz, M.; Topalli, K.; Okyay, A. K.

    2017-02-01

    Plasmonic perfect absorbers have found a wide range of applications in imaging, sensing, and light harvesting and emitting devices. Traditionally, metals are used to implement plasmonic structures. For sensing applications, it is desirable to integrate nanophotonic active surfaces with biasing and amplification circuitry to achieve monolithic low cost solutions. Commonly used plasmonic metals such as Au and Ag are not compatible with standard silicon complementary metal-oxide-semiconductor (CMOS) technology. Here we demonstrate plasmonic perfect absorbers based on high conductivity silicon. Standard optical lithography and reactive ion etching techniques were used for the patterning of the samples. We present computational and experimental results of surface plasmon resonances excited on a silicon surface at normal and oblique incidences. We experimentally demonstrate our absorbers as ultra-low cost, CMOS-compatible and efficient refractive index sensing surfaces. The experimental results reveal that the structure exhibits a sensitivity of around 11 000 nm/RIU and a figure of merit of up to 2.5. We also show that the sensing performance of the structure can be improved by increasing doping density.

  13. High Performance Electronics on Flexible Silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-09-01

    Over the last few years, flexible electronic systems have gained increased attention from researchers around the world because of their potential to create new applications such as flexible displays, flexible energy harvesters, artificial skin, and health monitoring systems that cannot be integrated with conventional wafer based complementary metal oxide semiconductor processes. Most of the current efforts to create flexible high performance devices are based on the use of organic semiconductors. However, inherent material\\'s limitations make them unsuitable for big data processing and high speed communications. The objective of my doctoral dissertation is to develop integration processes that allow the transformation of rigid high performance electronics into flexible ones while maintaining their performance and cost. In this work, two different techniques to transform inorganic complementary metal-oxide-semiconductor electronics into flexible ones have been developed using industry compatible processes. Furthermore, these techniques were used to realize flexible discrete devices and circuits which include metal-oxide-semiconductor field-effect-transistors, the first demonstration of flexible Fin-field-effect-transistors, and metal-oxide-semiconductors-based circuits. Finally, this thesis presents a new technique to package, integrate, and interconnect flexible high performance electronics using low cost additive manufacturing techniques such as 3D printing and inkjet printing. This thesis contains in depth studies on electrical, mechanical, and thermal properties of the fabricated devices.

  14. Photo-excited charge carriers suppress sub-terahertz phonon mode in silicon at room temperature

    Science.gov (United States)

    Liao, Bolin; Maznev, A. A.; Nelson, Keith A.; Chen, Gang

    2016-01-01

    There is a growing interest in the mode-by-mode understanding of electron and phonon transport for improving energy conversion technologies, such as thermoelectrics and photovoltaics. Whereas remarkable progress has been made in probing phonon–phonon interactions, it has been a challenge to directly measure electron–phonon interactions at the single-mode level, especially their effect on phonon transport above cryogenic temperatures. Here we use three-pulse photoacoustic spectroscopy to investigate the damping of a single sub-terahertz coherent phonon mode by free charge carriers in silicon at room temperature. Building on conventional pump–probe photoacoustic spectroscopy, we introduce an additional laser pulse to optically generate charge carriers, and carefully design temporal sequence of the three pulses to unambiguously quantify the scattering rate of a single-phonon mode due to the electron–phonon interaction. Our results confirm predictions from first-principles simulations and indicate the importance of the often-neglected effect of electron–phonon interaction on phonon transport in doped semiconductors. PMID:27731406

  15. Photoluminescence from single silicon quantum dots excited via surface plasmon polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Matsuhisa, Koji [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Fujii, Minoru, E-mail: fujii@eedept.kobe-u.ac.jp [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan); Imakita, Kenji; Hayashi, Shinji [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan)

    2012-05-15

    Single dot spectroscopy of Si quantum dots (QDs) was performed by using surface plasmon polariton (SPP)-mediated excitation in the attenuated total reflection geometry with a MgF{sub 2}/Ag film on the base of a prism. Thanks to the 16 times enhancement of the incident electric field and very small background signal, PL from single Si QDs was observed clearly. This proves the usefulness of the technique for the detection of inherently weak emission of Si QDs. - Highlights: Black-Right-Pointing-Pointer Metal-enhanced fluorescence for the single dot spectroscopy of Si QDs. Black-Right-Pointing-Pointer Single dot spectroscopy of Si QDs in the attenuated total reflection geometry. Black-Right-Pointing-Pointer Single Si QDs prepared from silica films containing Si QDs.

  16. Observation of interference effects via four photon excitation of highly excited Rydberg states in thermal cesium vapor

    CERN Document Server

    Kondo, Jorge M; Guttridge, Alex; Wade, Christopher G; De Melo, Natalia R; Adams, Charles S; Weatherill, Kevin J

    2015-01-01

    We report on the observation of Electromagnetically Induced Transparency (EIT) and Absorption (EIA) of highly-excited Rydberg states in thermal Cs vapor using a 4-step excitation scheme. The advantage of this 4-step scheme is that the final transition to the Rydberg state has a large dipole moment and one can achieve similar Rabi frequencies to 2 or 3 step excitation schemes using two orders of magnitude less laser power. Consequently each step is driven by a relatively low power infra-red diode laser opening up the prospect for new applications. The observed lineshapes are in good agreement with simulations based on multilevel optical Bloch equations.

  17. Development of high-thermal-conductivity silicon nitride ceramics

    Directory of Open Access Journals (Sweden)

    You Zhou

    2015-09-01

    Full Text Available Silicon nitride (Si3N4 with high thermal conductivity has emerged as one of the most promising substrate materials for the next-generation power devices. This paper gives an overview on recent developments in preparing high-thermal-conductivity Si3N4 by a sintering of reaction-bonded silicon nitride (SRBSN method. Due to the reduction of lattice oxygen content, the SRBSN ceramics could attain substantially higher thermal conductivities than the Si3N4 ceramics prepared by the conventional gas-pressure sintering of silicon nitride (SSN method. Thermal conductivity could further be improved through increasing the β/α phase ratio during nitridation and enhancing grain growth during post-sintering. Studies on fracture resistance behaviors of the SRBSN ceramics revealed that they possessed high fracture toughness and exhibited obvious R-curve behaviors. Using the SRBSN method, a Si3N4 with a record-high thermal conductivity of 177 Wm−1K−1 and a fracture toughness of 11.2 MPa m1/2 was developed. Studies on the influences of two typical metallic impurity elements, Fe and Al, on thermal conductivities of the SRBSN ceramics revealed that the tolerable content limits for the two impurities were different. While 1 wt% of impurity Fe hardly degraded thermal conductivity, only 0.01 wt% of Al caused large decrease in thermal conductivity.

  18. High-power thulium lasers on a silicon photonics platform.

    Science.gov (United States)

    Li, Nanxi; Purnawirman, P; Su, Zhan; Salih Magden, E; Callahan, Patrick T; Shtyrkova, Katia; Xin, Ming; Ruocco, Alfonso; Baiocco, Christopher; Ippen, Erich P; Kärtner, Franz X; Bradley, Jonathan D B; Vermeulen, Diedrik; Watts, Michael R

    2017-03-15

    Mid-infrared laser sources are of great interest for various applications, including light detection and ranging, spectroscopy, communication, trace-gas detection, and medical sensing. Silicon photonics is a promising platform that enables these applications to be integrated on a single chip with low cost and compact size. Silicon-based high-power lasers have been demonstrated at 1.55 μm wavelength, while in the 2 μm region, to the best of our knowledge, high-power, high-efficiency, and monolithic light sources have been minimally investigated. In this Letter, we report on high-power CMOS-compatible thulium-doped distributed feedback and distributed Bragg reflector lasers with single-mode output powers up to 267 and 387 mW, and slope efficiencies of 14% and 23%, respectively. More than 70 dB side-mode suppression ratio is achieved for both lasers. This work extends the applicability of silicon photonic microsystems in the 2 μm region.

  19. Silicon Sensors for Trackers at High-Luminosity Environment

    CERN Document Server

    Peltola, Timo

    2015-01-01

    The planned upgrade of the LHC accelerator at CERN, namely the high luminosity (HL) phase of the LHC (HL-LHC foreseen for 2023), will result in a more intense radiation environment than the present tracking system was designed for. The required upgrade of the all-silicon central trackers at the ALICE, ATLAS, CMS and LHCb experiments will include higher granularity and radiation hard sensors. The radiation hardness of the new sensors must be roughly an order of magnitude higher than the one of LHC detectors. To address this, a massive R&D program is underway within the CERN RD50 collaboration "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" to develop silicon sensors with sufficient radiation tolerance. Research topics include the improvement of the intrinsic radiation tolerance of the sensor material and novel detector designs with benefits like reduced trapping probability (thinned and 3D sensors), maximized sensitive area (active edge sensors) and enhanced charge ...

  20. High-power thermoelectric generators based on nanostructured silicon

    Science.gov (United States)

    Pennelli, G.; Macucci, M.

    2016-05-01

    The low thermal conductivity of silicon nanowires and nanostructures opens interesting opportunities for energy harvesting through the direct, high-efficiency, conversion of waste heat into electrical power. We present solutions for the fabrication and interconnection of a high number of suspended silicon nanostructures, within CMOS compatible top-down processes. Mechanical stability and thermoelectric properties of these devices will be analysed by means of finite element simulations, and opportunities for practical applications will be discussed. It will be shown that, despite the reduced dimensions needed for a strong suppression of thermal conductivity, a considerable amount of electrical power can be delivered to the load as a result of the presence of many interconnected devices on the same chip.

  1. Crystalline silicon solar cells with high resistivity emitter

    Science.gov (United States)

    Panek, P.; Drabczyk, K.; Zięba, P.

    2009-06-01

    The paper presents a part of research targeted at the modification of crystalline silicon solar cell production using screen-printing technology. The proposed process is based on diffusion from POCl3 resulting in emitter with a sheet resistance on the level of 70 Ω/□ and then, shaped by high temperature passivation treatment. The study was focused on a shallow emitter of high resistivity and on its influence on output electrical parameters of a solar cell. Secondary ion mass spectrometry (SIMS) has been employed for appropriate distinguishing the total donor doped profile. The solar cell parameters were characterized by current-voltage characteristics and spectral response (SR) methods. Some aspects playing a role in suitable manufacturing process were discussed. The situation in a photovoltaic industry with emphasis on silicon supply and current prices of solar cells, modules and photovoltaic (PV) systems are described. The economic and quantitative estimation of the PV world market is shortly discussed.

  2. Excitation and Ionisation dynamics in high-frequency plasmas

    Science.gov (United States)

    O'Connell, D.

    2008-07-01

    Non-thermal low temperature plasmas are widely used for technological applications. Increased demands on plasma technology have resulted in the development of various discharge concepts based on different power coupling mechanisms. Despite this, power dissipation mechanisms in these discharges are not yet fully understood. Of particular interest are low pressure radio-frequency (rf) discharges. The limited understanding of these discharges is predominantly due to the complexity of the underlying mechanisms and difficult diagnostic access to important parameters. Optical measurements are a powerful diagnostic tool offering high spatial and temporal resolution. Optical emission spectroscopy (OES) provides non-intrusive access, to the physics of the plasma, with comparatively simple experimental requirements. Improved advances in technology and modern diagnostics now allow deeper insight into fundamental mechanisms. In low pressure rf discharges insight into the electron dynamics within the rf cycle can yield vital information. This requires high temporal resolution on a nano-second time scale. The optical emission from rf discharges exhibits temporal variations within the rf cycle. These variations are particularly strong, in for example capacitively coupled plasmas (CCPs), but also easily observable in inductively coupled plasmas (ICPs), and can be exploited for insight into power dissipation. Interesting kinetic and non-linear coupling effects are revealed in capacitive systems. The electron dynamics exhibits a complex spatio-temporal structure. Excitation and ionisation, and, therefore, plasma sustainment is dominated through directed energetic electrons created through the dynamics of the plasma boundary sheath. In the relatively simple case of an asymmetric capacitively coupled rf plasma the complexity of the power dissipation is exposed and various mode transitions can be clearly observed and investigated. At higher pressure secondary electrons dominate the

  3. Refinement of Eutectic Silicon Phase of Aluminum A356 Alloy Using High-Intensity Ultrasonic Vibration

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Xiaogang [ORNL; Han, Qingyou [ORNL

    2006-01-01

    The eutectic silicon in A356 alloy can be refined and modified using either chemical, quench, or superheating modification. We observed, for the first time, that the eutectic silicon can also be significantly refined using high-intensity ultrasonic vibration. Rosette-like eutectic silicon is formed during solidification of specimen treated with high-intensity ultrasonic vibration.

  4. Silicon-Light: a European FP7 Project Aiming at High Efficiency Thin Film Silicon Solar Cells on Foil

    DEFF Research Database (Denmark)

    Soppe, W.; Haug, F.-J.; Couty, P.

    2011-01-01

    Silicon-Light is a European FP7 project, which started January 1st, 2010 and aims at development of low cost, high-efficiency thin film silicon solar cells on foil. Three main routes are explored to achieve these goals: a) advanced light trapping by implementing nanotexturization through UV Nano...... Imprinting Lithography (UV-NIL); b) growth of crack-free silicon absorber layers on highly textured substrates; c) development of new TCOs which should combine the best properties of presently available materials like ITO and AZO. The paper presents the midterm status of the project results, showing model...

  5. Mesoporous Silicon-Based Anodes for High Capacity, High Performance Li-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new high capacity anode composite based on mesoporous silicon is proposed. By virtue of a structure that resembles a pseudo one-dimensional phase, the active...

  6. Mesoporous Silicon-Based Anodes for High Capacity, High Performance Li-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new high capacity anode composite based on mesoporous silicon is proposed. By virtue of a structure that resembles a pseudo one-dimensional phase, the active anode...

  7. Valley-engineered ultra-thin silicon for high-performance junctionless transistors

    Science.gov (United States)

    Kim, Seung-Yoon; Choi, Sung-Yool; Hwang, Wan Sik; Cho, Byung Jin

    2016-07-01

    Extremely thin silicon show good mechanical flexibility because of their 2-D like structure and enhanced performance by the quantum confinement effect. In this paper, we demonstrate a junctionless FET which reveals a room temperature quantum confinement effect (RTQCE) achieved by a valley-engineering of the silicon. The strain-induced band splitting and a quantum confinement effect induced from ultra-thin-body silicon are the two main mechanisms for valley engineering. These were obtained from the extremely well-controlled silicon surface roughness and high tensile strain in silicon, thereupon demonstrating a device mobility increase of ~500% in a 2.5 nm thick silicon channel device.

  8. Excitation of surface phonon polariton modes in gold gratings with silicon carbide substrate and their potential sensing applications

    Science.gov (United States)

    Zheng, Gaige; Xu, Linhua; Zou, Xiujuan; Liu, Yuzhu

    2017-02-01

    We demonstrate the excitation of surface phonon polaritons (SPhPs) in the mid-infrared (mid-IR) Reststrahlen band (10.288 μm-12.563 μm) on patterned surfaces with silicon carbide (SiC) substrate and gold (Au) gratings. The very large negative permittivity of Au limits its applications in the mid-IR range, and to couple incident light to SPhPs modes, their momentum mismatch can be compensated by patterning Au grating onto the surface of SiC substrate. Samples were fabricated and characterized experimentally by Fourier transform infrared reflection (FTIR) spectroscopy. The optical properties were also simulated by the rigorous coupled wave analysis (RCWA) method. Reflection dips are observed for light polarized vertical to the grating lines (TM-polarized), which are attributed to the coupling of electromagnetic (EM) waves into the SPhP modes. In addition, we present small-volume index sensing with analyte specificity based on mid-IR SPhPs in the fabricated configuration.

  9. High aspect ratio channels in glass and porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Liang, H.D. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Nanoscience and Nanotechnology Initiative (NNI), National University of Singapore, Singapore 117411 (Singapore); Dang, Z.Y. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Wu, J.F. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Kan, J.A. van; Qureshi, S. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Ynsa, M.D.; Torres-Costa, V. [Department of Applied Physics, Universidad Autónoma de Madrid, Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Centro de Micro-Análisis de Materiales (CMAM), Universidad Autónoma de Madrid, Campus de Cantoblanco Edif. 22, Faraday 3, E-28049 Madrid (Spain); Maira, A. [Department of Applied Physics, Universidad Autónoma de Madrid, Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Venkatesan, T.V. [Nanoscience and Nanotechnology Initiative (NNI), National University of Singapore, Singapore 117411 (Singapore); Breese, M.B.H., E-mail: phymbhb@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore)

    2017-03-01

    We have developed a micromachining process to produce high-aspect-ratio channels and holes in glass and porous silicon. Our process utilizes MeV proton beam irradiation of silicon using direct writing with a focused beam, followed by electrochemical etching. To increase throughput we have also developed another process for large area ion irradiation based on a radiation-resistant gold surface mask, allowing many square inches to be patterned. We present a study of the achievable channel width, depth and period and sidewall verticality for a range of channels which can be over 100 μm deep or 100 nm wide with aspect ratios up to 80. This process overcomes the difficulty of machining glass on a micro- and nanometer scale which has limited many areas of applications in different fields such as microelectronics and microfluidics.

  10. The lattice parameter of highly pure silicon single crystals

    Science.gov (United States)

    Becker, P.; Scyfried, P.; Siegert, H.

    1982-08-01

    From crystal to crystal comparison, the d 220 lattice spacing in PERFX and WASO silicon crystals used in the only two existing absolute measurements have been found to be equal within ±2×10-7 d 220. This demonstrates that generic variabilities of the two crystals account only for a small part of the 1.8×10-6 d 220 difference in the two absolute measurements. In a new series of 336 single measurements, our d 220 value reported recently has been confirmed within ±2×10-8 d 220. From these results we derive the following lattice parameter for highly pure silicon single crystals: a 0=(543 102.018±0.034) fm (at 22.5°C, in vacuum).

  11. Silicon Photomultipliers in High Energy and Space Applications

    CERN Document Server

    Berra, Alessandro; Vallazza, Erik

    In recent years Silicon Photomultipliers (SiPMs) have been proposed as a new type of readout system for scintillating detectors in many experiments. SiPMs consist of a matrix of parallel-connected silicon micro-pixels, which are independent photon counters working in limited Geiger mode with very high gain. The goal of this thesis work is to describe the use of SiPMs as a readout system for plastic scintillators, both for tracking and calorimetry purposes. Different prototypes of scintillating bar tracker and shashlik calorimeters have been tested at CERN on the PS and SPS extracted beamlines. All the tests have been performed in the framework of the FACTOR (Fiber Apparatus for Calorimetry and Tracking with Optoelectronic Read-out) collaboration, a three year R&D project started in 2007 and funded by the Italian Institute of Nuclear Physics (INFN).

  12. High aspect ratio channels in glass and porous silicon

    Science.gov (United States)

    Liang, H. D.; Dang, Z. Y.; Wu, J. F.; van Kan, J. A.; Qureshi, S.; Ynsa, M. D.; Torres-Costa, V.; Maira, A.; Venkatesan, T. V.; Breese, M. B. H.

    2017-03-01

    We have developed a micromachining process to produce high-aspect-ratio channels and holes in glass and porous silicon. Our process utilizes MeV proton beam irradiation of silicon using direct writing with a focused beam, followed by electrochemical etching. To increase throughput we have also developed another process for large area ion irradiation based on a radiation-resistant gold surface mask, allowing many square inches to be patterned. We present a study of the achievable channel width, depth and period and sidewall verticality for a range of channels which can be over 100 μm deep or 100 nm wide with aspect ratios up to 80. This process overcomes the difficulty of machining glass on a micro- and nanometer scale which has limited many areas of applications in different fields such as microelectronics and microfluidics.

  13. Characterization of high density through silicon vias with spectral reflectometry.

    Science.gov (United States)

    Ku, Yi-Sha; Huang, Kuo Cheng; Hsu, Weite

    2011-03-28

    Measurement and control is an important step for production-worthy through silicon vias etch. We demonstrate the use and enhancement of an existing wafer metrology tool, spectral reflectometer by implementing novel theoretical model and measurement algorithm for high density through-silicon via (HDTSV) inspection. It is capable of measuring depth and depth variations of array vias by Discrete Fourier Transform (DFT) analysis in one shot measurement. Surface roughness of via bottom can also be extracted by scattering model fitting. Our non-destructive solution can measure TSV profile diameters as small as 5 μm and aspect ratios greater than 13:1. The measurement precision is in the range of 0.02 μm. Metrology results from actual 3D interconnect processing wafers are presented.

  14. High thermal conductivity of a hydrogenated amorphous silicon film.

    Science.gov (United States)

    Liu, Xiao; Feldman, J L; Cahill, D G; Crandall, R S; Bernstein, N; Photiadis, D M; Mehl, M J; Papaconstantopoulos, D A

    2009-01-23

    We measured the thermal conductivity kappa of an 80 microm thick hydrogenated amorphous silicon film prepared by hot-wire chemical-vapor deposition with the 3omega (80-300 K) and the time-domain thermo-reflectance (300 K) methods. The kappa is higher than any of the previous temperature dependent measurements and shows a strong phonon mean free path dependence. We also applied a Kubo based theory using a tight-binding method on three 1000 atom continuous random network models. The theory gives higher kappa for more ordered models, but not high enough to explain our results, even after extrapolating to lower frequencies with a Boltzmann approach. Our results show that this material is more ordered than any amorphous silicon previously studied.

  15. High current gain silicon-based spin transistor

    CERN Document Server

    Dennis, C L; Ensell, G J; Gregg, J F; Thompson, S M

    2003-01-01

    A silicon-based spin transistor of novel operating principle has been demonstrated in which the current gain at room temperature is 1.4 (n-type) and 0.97 (p-type). This high current gain was obtained from a hybrid metal/semiconductor analogue to the bipolar junction transistor which functions by tunnel-injecting carriers from a ferromagnetic emitter into a diffusion driven silicon base and then tunnel-collecting them via a ferromagnetic collector. The switching of the magnetic state of the collector ferromagnet controls the collector efficiency and the current gain. Furthermore, the magnetocurrent, which is determined to be 98% (140%) for p-type (n-type) in -110 Oe, is attributable to the spin-polarized base diffusion current.

  16. Particle detectors made of high-resistivity Czochralski silicon

    CERN Document Server

    Härkönen, J; Ivanov, A; Li, Z; Luukka, Panja; Pirojenko, A; Riihimaki, I; Tuominen, E; Tuovinen, E; Verbitskaya, E; Virtanen, A

    2005-01-01

    We have processed pin-diodes and strip detectors on n- and p-type high-resistivity silicon wafers grown by magnetic Czochralski method. The Czochralski silicon (Cz-Si) wafers manufactured by Okmetic Oyj have nominal resistivity of 900 Omega cm and 1.9 kOmega cm for n- and p-type, respectively. The oxygen concentration in these substrates is slightly less than typically in wafers used for integrated circuit fabrication. This is optimal for semiconductor fabrication as well as for radiation hardness. The radiation hardness of devices has been investigated with several irradiation campaigns including low- and high-energy protons, neutrons, gamma-rays, lithium ions and electrons. Cz-Si was found to be more radiation hard than standard Float Zone silicon (Fz-Si) or oxygenated Fz-Si. When irradiated with protons, the full depletion voltage in Cz-Si has not exceeded its initial value of 300 V even after the fluence of 5 multiplied by 10**1**4 cm**-**2 1-MeV eq. n cm **-**2 that equals more than 30 years operation of...

  17. Silicon sensors for trackers at high-luminosity environment

    Science.gov (United States)

    Peltola, Timo

    2015-10-01

    The planned upgrade of the LHC accelerator at CERN, namely the high luminosity (HL) phase of the LHC (HL-LHC foreseen for 2023), will result in a more intense radiation environment than the present tracking system that was designed for. The required upgrade of the all-silicon central trackers at the ALICE, ATLAS, CMS and LHCb experiments will include higher granularity and radiation hard sensors. The radiation hardness of the new sensors must be roughly an order of magnitude higher than in the current LHC detectors. To address this, a massive R&D program is underway within the CERN RD50 Collaboration "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" to develop silicon sensors with sufficient radiation tolerance. Research topics include the improvement of the intrinsic radiation tolerance of the sensor material and novel detector designs with benefits like reduced trapping probability (thinned and 3D sensors), maximized sensitive area (active edge sensors) and enhanced charge carrier generation (sensors with intrinsic gain). A review of the recent results from both measurements and TCAD simulations of several detector technologies and silicon materials at radiation levels expected for HL-LHC will be presented.

  18. \\emph{Ab initio} study on the Herzberg-Teller effect in the optical excitation spectrum of silicon-vacancy center in diamond

    CERN Document Server

    Londero, Elisa; Bijeikytė, Monika; Maze, Jeromino R; Alkauskas, Audrius; Gali, Adam

    2016-01-01

    Understanding optical excitation spectra of point defects is still a scientific challenge. We demonstrate by \\emph{ab initio} calculations that a prominent sharp feature in the photoluminescence (PL) spectrum of the negatively charged silicon-vacancy defect in diamond can be only explained within the Herzberg-Teller approximation that goes beyond the commonly applied Franck-Condon approximation. The effect of the dynamic Jahn-Teller effect on the PL spectrum is also discussed. Our implementation of Herzberg-Teller theory paves the way for full \\emph{ab initio} description of the optical excitation spectrum of point defects in solids

  19. Pulsed Nd:YAG laser cladding of high silicon content coating on low silicon steel

    Institute of Scientific and Technical Information of China (English)

    Danyang Dong; Changsheng Liu; Bin Zhang; Jun Miao

    2007-01-01

    A pulsed Nd:YAG (yttrium aluminum garnet) laser-based technique was employed to clad low silicon steel with preplaced Si and Fe mixed powders for high Si content. The surface morphology, microstructural evolution, phase composition, and Si distribution,within the obtained cladding coatings, were characterized by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), with associated energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The microhardness was also measured along the depth direction of the specimens. A crack- and pore-free cladding coating through excellent metallurgical bonding with the substrate was successfully prepared on low silicon steel by means of optimized single-track and multi-track laser cladding. The phases of the coating are α-Fe, γ-Fe, and FeSi. The high microhardness of the lasercladding zone is considered as an increase in Si content and as the refined microstructure produced by the laser treatment. The Si contents of the cladding coatings were about 5.8wt% in the single-track cladding and 6.5wt% in the multi-track cladding, respectively.

  20. Nuclear Level Density at High Spin and Excitation Energy

    Institute of Scientific and Technical Information of China (English)

    A.N. Behkami; Z. Kargar

    2001-01-01

    The intensive studies of equilibrium processes in heavy-ion reaction have produced a need for information on nuclear level densities at high energies and spins. The Fermi gas level density is often used in investigation of heavy-ion reaction studies. Some papers have claimed that nuclear level densities might deviate substantially from the Fermi gas predications at excitations related to heavy-ion reactions. The formulae of calculation of the nuclear level density based on the theory of superconductivity are presented, special attention is paid to the dependence of the level density on the angular momentum. The spin-dependent nuclear level density is evaluated using the pairing interaction. The resulting level density for an average spin of 52h is evaluated for 155Er and compared with experimental data. Excellent agreement between experiment and theory is obtained.``

  1. Effects of DC bias on magnetic performance of high grades grain-oriented silicon steels

    Science.gov (United States)

    Ma, Guang; Cheng, Ling; Lu, Licheng; Yang, Fuyao; Chen, Xin; Zhu, Chengzhi

    2017-03-01

    When high voltage direct current (HVDC) transmission adopting mono-polar ground return operation mode or unbalanced bipolar operation mode, the invasion of DC current into neutral point of alternating current (AC) transformer will cause core saturation, temperature increasing, and vibration acceleration. Based on the MPG-200D soft magnetic measurement system, the influence of DC bias on magnetic performance of 0.23 mm and 0.27 mm series (P1.7=0.70-1.05 W/kg, B8>1.89 T) grain-oriented (GO) silicon steels under condition of AC / DC hybrid excitation were systematically realized in this paper. For the high magnetic induction GO steels (core losses are the same), greater thickness can lead to stronger ability of resisting DC bias, and the reasons for it were analyzed. Finally, the magnetostriction and A-weighted magnetostriction velocity level of GO steel under DC biased magnetization were researched.

  2. Silicon-Light: a European FP7 Project Aiming at High Efficiency Thin Film Silicon Solar Cells on Foil

    DEFF Research Database (Denmark)

    Soppe, W.; Haug, F.-J.; Couty, P.

    2011-01-01

    Silicon-Light is a European FP7 project, which started January 1st, 2010 and aims at development of low cost, high-efficiency thin film silicon solar cells on foil. Three main routes are explored to achieve these goals: a) advanced light trapping by implementing nanotexturization through UV Nano...... calculations of ideal nanotextures for light trapping in thin film silicon solar cells; the fabrication of masters and the replication and roll-to-roll fabrication of these nanotextures. Further, results on ITO variants with improved work function are presented. Finally, the status of cell fabrication on foils...

  3. Silicon Carbide Diodes Performance Characterization at High Temperatures

    Science.gov (United States)

    Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry

    2004-01-01

    NASA Glenn Research center's Electrical Systems Development branch is working to demonstrate and test the advantages of Silicon Carbide (SiC) devices in actual power electronics applications. The first step in this pursuit is to obtain commercially available SiC Schottky diodes and to individually test them under both static and dynamic conditions, and then compare them with current state of the art silicon Schottky and ultra fast p-n diodes of similar voltage and current ratings. This presentation covers the results of electrical tests performed at NASA Glenn. Steady state forward and reverse current-volt (I-V) curves were generated for each device to compare performance and to measure their forward voltage drop at rated current, as well as the reverse leakage current at rated voltage. In addition, the devices were individually connected as freewheeling diodes in a Buck (step down) DC to DC converter to test their reverse recovery characteristics and compare their transient performance in a typical converter application. Both static and transient characterization tests were performed at temperatures ranging from 25 C to 300 C, in order to test and demonstrate the advantages of SiC over Silicon at high temperatures.

  4. Brain inspired high performance electronics on flexible silicon

    KAUST Repository

    Sevilla, Galo T.

    2014-06-01

    Brain\\'s stunning speed, energy efficiency and massive parallelism makes it the role model for upcoming high performance computation systems. Although human brain components are a million times slower than state of the art silicon industry components [1], they can perform 1016 operations per second while consuming less power than an electrical light bulb. In order to perform the same amount of computation with today\\'s most advanced computers, the output of an entire power station would be needed. In that sense, to obtain brain like computation, ultra-fast devices with ultra-low power consumption will have to be integrated in extremely reduced areas, achievable only if brain folded structure is mimicked. Therefore, to allow brain-inspired computation, flexible and transparent platform will be needed to achieve foldable structures and their integration on asymmetric surfaces. In this work, we show a new method to fabricate 3D and planar FET architectures in flexible and semitransparent silicon fabric without comprising performance and maintaining cost/yield advantage offered by silicon-based electronics.

  5. Diamond and silicon pixel detectors in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Jieh-Wen

    2012-10-15

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10{sup 16} particles per cm{sup 2}, which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10{sup 15} particles per cm{sup 2}.

  6. High resolution fluorescent bio-imaging with electron beam excitation.

    Science.gov (United States)

    Kawata, Yoshimasa; Nawa, Yasunori; Inami, Wataru

    2014-11-01

    We have developed electron beam excitation assisted (EXA) optical microscope[1-3], and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nanometric light source is faster than that in conventional near-field scanning optical microscopes. The microscope enables to observe optical constants such as absorption, refractive index, polarization, and their dynamic behavior on a nanometric scale. The microscope opens new microscopy applications in nano-technology and nano-science.Figure 1(a) shows schematic diagram of the proposed EXA microscope. An electron beam is focused on a luminescent film. A specimen is put on the luminescent film directly. The inset in Fig. 1(a) shows magnified image of the luminescent film and the specimen. Nanometric light source is excited in the luminescent film by the focused electron beam. The nanometric light source illuminates the specimen, and the scattered or transmitted radiation is detected with a photomultiplier tube (PMT). The light source is scanned by scanning of the focused electron beam in order to construct on image. Figure 1(b) shows a luminescence image of the cells acquired with the EXA microscope, and Fig. 1(c) shows a phase contrast microscope image. Cells were observed in culture solution without any treatments, such as fixation and drying. The shape of each cell was clearly recognized and some bright spots were observed in cells. We believe that the bright spots indicated with arrows were auto-fluorescence of intracellular granules and light- grey regions were auto-fluorescence of cell membranes. It is clearly demonstrated that the EXA microscope is useful tool for observation of living biological cells in physiological conditions.jmicro;63/suppl_1/i

  7. Feeding of liquid silicon for high performance multicrystalline silicon with increased ingot height and homogenized resistivity

    Science.gov (United States)

    Krenckel, Patricia; Riepe, Stephan; Schindler, Florian; Strauch, Theresa

    2017-04-01

    Feeding of liquid silicon during the directional solidification process is a promising opportunity for cost reduction by increased throughput and improved material homogeneity due to constant resistivity over ingot height. In this work, a liquid feeding apparatus was developed for an industrial type directional solidification furnace. One n-type G2 sized High Performance multicrystalline ingot with liquid feeding of additional 14 kg of undoped silicon feedstock was crystallized. The resistivity was kept within a range of ±0.1 Ω cm of the target resistivity during the feeding sequence. A smaller mean grain area growth was observed during feeding, whereas the area fraction of recombination active dislocation structures was as low as in a reference ingot. Increased interstitial oxygen and substitutional carbon concentrations were measured for the ingot with liquid feeding. The measured mean bulk lifetime of 190 μs for passivated wafers in the feeding sequence can probably be increased by further pre-melting crucible improvements. For this laboratory experiment, energy reductions of 2% per wafer and time savings of 16% per wafer were realized.

  8. Structural and static electric response properties of highly symmetric lithiated silicon cages: theoretical predictions.

    Science.gov (United States)

    Koukaras, Emmanuel N; Zdetsis, Aristides D; Karamanis, Panaghiotis; Pouchan, Claude; Avramopoulos, Aggelos; Papadopoulos, Manthos G

    2012-04-15

    It is shown by density functional theory calculations that high symmetry silicon cages can be designed by coating with Li atoms. The resulting highly symmetric lithiated silicon cages (up to D(5d) symmetry) are low-lying true minima of the energy hypersurface with binding energies of the order of 4.6 eV per Si atom and moderate highest occupied molecular orbital-lowest unoccupied molecular orbital gaps. Moreover, relying on a systematic study of the electric response properties obtained by ab initio (Hartree-Fock, MP2, and configuration interaction singles (CIS)) and density functional (B3LYP, B2PLYP, and CAM-B3LYP) methods, it is shown that lithium coating has a large impact on the magnitude of their second hyperpolarizabilities resulting to highly hyperpolarizable species. Such hyperpolarizable character is directly connected to the increase in the density of the low-lying excited states triggered by the interaction between the Si cage and the surrounding Li atoms.

  9. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  10. High performance high-κ/metal gate complementary metal oxide semiconductor circuit element on flexible silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-02-29

    Thinned silicon based complementary metal oxide semiconductor(CMOS)electronics can be physically flexible. To overcome challenges of limited thinning and damaging of devices originated from back grinding process, we show sequential reactive ion etching of silicon with the assistance from soft polymeric materials to efficiently achieve thinned (40 μm) and flexible (1.5 cm bending radius) silicon based functional CMOSinverters with high-κ/metal gate transistors. Notable advances through this study shows large area of silicon thinning with pre-fabricated high performance elements with ultra-large-scale-integration density (using 90 nm node technology) and then dicing of such large and thinned (seemingly fragile) pieces into smaller pieces using excimer laser. The impact of various mechanical bending and bending cycles show undeterred high performance of flexible siliconCMOSinverters. Future work will include transfer of diced silicon chips to destination site, interconnects, and packaging to obtain fully flexible electronic systems in CMOS compatible way.

  11. Silicon sensors for trackers at high-luminosity environment

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, Timo, E-mail: timo.peltola@helsinki.fi

    2015-10-01

    The planned upgrade of the LHC accelerator at CERN, namely the high luminosity (HL) phase of the LHC (HL-LHC foreseen for 2023), will result in a more intense radiation environment than the present tracking system that was designed for. The required upgrade of the all-silicon central trackers at the ALICE, ATLAS, CMS and LHCb experiments will include higher granularity and radiation hard sensors. The radiation hardness of the new sensors must be roughly an order of magnitude higher than in the current LHC detectors. To address this, a massive R&D program is underway within the CERN RD50 Collaboration “Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders” to develop silicon sensors with sufficient radiation tolerance. Research topics include the improvement of the intrinsic radiation tolerance of the sensor material and novel detector designs with benefits like reduced trapping probability (thinned and 3D sensors), maximized sensitive area (active edge sensors) and enhanced charge carrier generation (sensors with intrinsic gain). A review of the recent results from both measurements and TCAD simulations of several detector technologies and silicon materials at radiation levels expected for HL-LHC will be presented. - Highlights: • An overview of the recent results from the RD50 collaboration. • Accuracy of TCAD simulations increased by including both bulk and surface damage. • Sensors with n-electrode readout and MCz material offer higher radiation hardness. • 3D detectors are a promising choice for the extremely high fluence environments. • Detectors with an enhanced charge carrier generation under systematic investigation.

  12. Accounting for highly excited states in detailed opacity calculations

    CERN Document Server

    Pain, Jean-Christophe

    2015-01-01

    In multiply-charged ion plasmas, a significant number of electrons may occupy high-energy orbitals. These "Rydberg" electrons, when they act as spectators, are responsible for a number of satellites of X-ray absorption or emission lines, yielding a broadening of the red wing of the resonance lines. The contribution of such satellite lines may be important, because of the high degeneracy of the relevant excited configurations which give these large Boltzmann weights. However, it is in general difficult to take these configurations into account since they are likely to give rise to a large number of lines. We propose to model the perturbation induced by the spectators in a way similar to the Partially-Resolved-Transition-Array approach recently published by C. Iglesias. It consists in a partial detailed-line-accounting calculation in which the effect of the Rydberg spectators is included through a shift and width, expressed in terms of the canonical partition functions, which are key-ingredients of the Super-Tr...

  13. Photoluminescence of monocrystalline and stain-etched porous silicon doped with high temperature annealed europium

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Lemus, R; Montesdeoca-Santana, A; Gonzalez-Diaz, B; Diaz-Herrera, B; Hernandez-Rodriguez, C; Jimenez-Rodriguez, E [Departamento de Fisica Basica, Universidad de La Laguna (ULL), Avenida AstrofIsico Francisco Sanchez, 2. 38206 La Laguna, Tenerife (Spain); Velazquez, J J, E-mail: rglemus@ull.es [Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna (ULL), Avenida Astrofisico Francisco Sanchez, 2. 38206 La Laguna, Tenerife (Spain)

    2011-08-24

    In this work, for the first time, the photoluminescent emission and excitation spectra of non-textured layers and stain-etched porous silicon layers (PSLs) doped with high temperature annealed europium (Eu) are evaluated. The PSLs are evaluated as a host for rare earth ions and as an antireflection coating. The applied doping process, which consists in a simple impregnation method followed by a high-temperature annealing step, is compatible with the standard processes in the fabrication of solar cells. The results show down-shifting processes with a maximum photoluminescent intensity at 615 nm, related to the transition {sup 5}D{sub 0} {yields} {sup 7}F{sub 2}. Different initial concentrations of Eu(NO{sub 3}){sub 3} are evaluated to study the influence of the rare earth concentration on the photoluminescent intensity. The chemical composition and the morphology of Eu-doped PSLs are examined by means of x-ray dispersion spectroscopy, Fourier-transform infrared spectroscopy and scanning electron microscopy. These Eu-doped layers are considered to be applied as energy converters in silicon-based third generation solar cells.

  14. High Voltage Operation of heavily irradiated silicon microstrip detectors

    CERN Document Server

    Gu, W H; Angarano, M M; Bader, A; Biggeri, U; Boemi, D; Braibant, S; Breuker, H; Bruzzi, Mara; Caner, A; Catacchini, E; Civinini, C; Creanza, D; D'Alessandro, R; Demaria, N; Eklund, C; Peisert, Anna; Feld, L; Fiore, L; Focardi, E; Fürtjes, A; Glessing, B; Hall, G; Hammerstrom, R; Dollan, Ralph; Huhtinen, M; Karimäki, V; König, S; Lenzi, M; Lübelsmeyer, K; Maggi, G; Mannelli, M; Marchioro, A; Mariotti, C; Mättig, P; McEvoy, B; Meschini, M; My, S; Pandoulas, D; Parrini, G; Pieri, M; Dollan, Ralph; Potenza, R; Raso, G; Raymond, M; Schmitt, B; Selvaggi, G; Siedling, R; Silvestris, L; Skog, K; Stefanini, G; Tempesta, P; Tricomi, A; Watts, S; Wittmer, B; De Palma, M

    1999-01-01

    We discuss the results obtained from the R&D studies, done within the CMS experiment at LHC related to the behaviour of silicon microstrip prototype detectors when they are operated at high bias voltages before and after heavy irradiation, simulating up to 10 years of LHC running conditions. We have found detectors from several manufacturesrs that are able to work at V_bias > 500 Volts before and after the irradiation procedure, maintaining an acceptable performance with S/N > 14, efficiency close to 100% and few ghost hits.

  15. High efficiency interdigitated back contact silicon solar cells

    Science.gov (United States)

    Verlinden, P.; van de Wiele, F.; Stehelin, G.; Floret, F.; David, J. P.

    Interdigitated back contact (IBC) silicon solar cells with 25.6 percent efficiency at 10 W/sq cm and 24.4 percent at 30 W/ sq cm were fabricated. The authors report on the technological process, which produces a high effective carrier lifetime in the bulk (780 microsec), and on the characterization of the cells. The front side of these cells is textured and has an efficient polka-dot floating tandem junction. IBC and point-contact (PC) cells are fabricated on the same substrate and their efficiencies are compared. The possiblity of reaching 29 percent efficiency at 300X is shown.

  16. Brushless exciters using a high temperature superconducting field winding

    Science.gov (United States)

    Garces, Luis Jose; Delmerico, Robert William; Jansen, Patrick Lee; Parslow, John Harold; Sanderson, Harold Copeland; Sinha, Gautam

    2008-03-18

    A brushless exciter for a synchronous generator or motor generally includes a stator and a rotor rotatably disposed within the stator. The rotor has a field winding and a voltage rectifying bridge circuit connected in parallel to the field winding. A plurality of firing circuits are connected the voltage rectifying bridge circuit. The firing circuit is configured to fire a signal at an angle of less than 90.degree. or at an angle greater than 90.degree.. The voltage rectifying bridge circuit rectifies the AC voltage to excite or de-excite the field winding.

  17. Raman active high energy excitations in URu2Si2

    Science.gov (United States)

    Buhot, Jonathan; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Piekarz, Przemysław; Lapertot, Gérard; Aoki, Dai; Méasson, Marie-Aude

    2017-02-01

    We have performed Raman scattering measurements on URu2Si2 single crystals on a large energy range up to ∼1300 cm-1 and in all the Raman active symmetries as a function of temperature down to 15 K. A large excitation, active only in the Eg symmetry, is reported. It has been assigned to a crystal electric field excitation on the Uranium site. We discuss how this constrains the crystal electric field scheme of the Uranium ions. Furthermore, three excitations in the A1g symmetry are observed. They have been associated to double Raman phonon processes consistently with ab initio calculations of the phonons dispersion.

  18. Electrical properties of deuteron irradiated high resistivity silicon

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Jerzy, E-mail: krupka@imio.pw.edu.pl [Insitute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Karcz, Waldemar [H. Niewodniczański Institute of Nuclear Physics Polish Academy of Science, Cracow (Poland); Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna (Russian Federation); Avdeyev, Sergej P. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna (Russian Federation); Kamiński, Paweł; Kozłowski, Roman [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland)

    2014-04-01

    We have investigated resistivity changes introduced on the high-resistivity p-type silicon wafer by the irradiation with deuteron beam with an energy of 4.4 GeV performed in the NUCLOTRON superconducting accelerator. Two contactless techniques were used for the measurements of resistivity changes: namely the microwave split post dielectric resonator (SPDR) technique and capacitance measurements in the frequency domain. The first technique allows resistivity measurements in the plane of the wafer, while the second one in the direction perpendicular to the wafer. The resistivity map obtained with the SPDR technique enabled us to obtain a permanent fingerprint of the accelerator beam intensity profile. It has been shown that after the irradiation, the material resistivity increased to ∼3.9 × 10{sup 5} Ω cm in the wafer region exposed to the maximum beam intensity. Complementary studies of the properties and concentrations of radiation deep-level defects were performed by the high-resolution photo-induced current transient spectroscopy (HRPITS). These studies have shown that the irradiation of the high resistivity silicon with 4.4-GeV deuterons results in the formation of several types of deep-level defects responsible for the charge compensation.

  19. Collective, stochastic and nonequilibrium behavior of highly excited hadronic matter

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, P.

    1983-01-01

    We discuss selected problems concerning the dynamic and stochasticc behavior of highly excited matter, particularly the QCD plasma. For the latter we consider the equation of state, kinetics, quasiparticles, flow properties and possible chaos and turbulence. The promise of phase space distribution functions for covariant transport and kinetic theory is stressed. The possibility and implications of a stochastic bag are spelled out. A simplified space-time model of hadronic collisions is pursued, with applications to A-A collisions and other matters. The domain wall between hadronic and plasma phase is of potential importance: its thickness and relation to surface tension are noticed. Finally we reviewed the recently developed stochastic cell model of multiparticle distributions and KNO scaling. This topic leads to the notion that fractal dimensions are involved in a rather general dynamical context. We speculate that various scaling phenomena are independent of the full dynamical structure, depending only on a general stochastic framework having to do with simple maps and strange attractors. 42 references.

  20. Silicon Needles Fabricated by Highly Selective Anisotropic Dry Etching and Their Field Emission Current Characteristics

    Science.gov (United States)

    Kanechika, Masakazu; Mitsushima, Yasuichi

    2000-12-01

    A new process to fabricate a silicon needle, whose tip radius is about 5 nm and aspect ratio is about 7, was developed. The silicon needles were fabricated by highly selective anisotropic dry etching. The etching mask was oxygen precipitation, which was formed by nitrogen ion implantation and the subsequent oxidation. The process is simple enough to be integrated with complementary metal-oxide-semiconductor (CMOS) circuits. The density of the silicon needle can be controlled by adjusting the dose for nitrogen ion implantation. The position of the silicon needle can be controlled by adjusting the position for nitrogen ion implantation, because silicon needles are formed only in the nitrogen ion implantation area. Furthermore, using these silicon needles as micro emitters, a field emission diode was fabricated. The Fowler-Nordheim plot shows that the field around the tip of the silicon needles was highly enhanced.

  1. Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces

    Science.gov (United States)

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2014-09-09

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  2. Experimental Study of Two-Alpha Emission from High-Lying Excited States of 17'18^Ne

    Institute of Scientific and Technical Information of China (English)

    徐新星; 林承键; 贾会明; 杨峰; 贾飞; 吴振东; 张世涛; 刘祖华; 张焕乔; 徐瑚珊; 孙志宇; 王建松; 胡正国; 王猛; 陈若富; 张雪荧; 李琛; 雷祥国; 徐治国; 肖国青

    2012-01-01

    The experiments of two-alpha emission from 17,18^Ne excited levels were performed at the HIRFL-RIBLL facility of the Institute of Modern Physics, Lanzhou. The beams of 17^Ne at the energy of 49.9 MeV/u and lSNe at 51.8 MeV/u bombarded a 197Au target to populate excited states of 17,18^Ne via Coulomb excitation. Complete kinematics measurements were achieved by the detectors of a silicon strip and CsI+PIN array. The experimental results combined with simple MC simulations show the characteristic of sequential two-alpha emission via 140 excited states for lSNe. The results of two-alpha emission from 17^Ne are preliminary and need further analyses.

  3. High quality crystalline silicon surface passivation by combined intrinsic and n-type hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Schuttauf, J.A.; van der Werf, C.H.M.; Kielen, I.M.; van Sark, W.G.J.H.M.; Rath, J.K.

    2011-01-01

    We investigate the influence of thermal annealing on the passivation quality of crystalline silicon (c-Si) surfaces by intrinsic and n-type hydrogenated amorphous silicon (a-Si:H) films. For temperatures up to 255 C, we find an increase in surface passivation quality, corresponding to a decreased da

  4. Cavity cooling of free silicon nanoparticles in high vacuum.

    Science.gov (United States)

    Asenbaum, Peter; Kuhn, Stefan; Nimmrichter, Stefan; Sezer, Ugur; Arndt, Markus

    2013-01-01

    Laser cooling has given a boost to atomic physics throughout the last 30 years, as it allows one to prepare atoms in motional states, which can only be described by quantum mechanics. Most methods rely, however, on a near-resonant and cyclic coupling between laser light and well-defined internal states, which has remained a challenge for mesoscopic particles. An external cavity may compensate for the lack of internal cycling transitions in dielectric objects and it may provide assistance in the cooling of their centre-of-mass state. Here we demonstrate cavity cooling of the transverse kinetic energy of silicon nanoparticles freely propagating in high vacuum (<10(-8) mbar). We create and launch them with longitudinal velocities down to v≤1 m s(-1) using laser-induced ablation of a pristine silicon wafer. Their interaction with the light of a high-finesse infrared cavity reduces their transverse kinetic energy by up to a factor of 30.

  5. High-flux solar furnace processing of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Pitts, J.R.; Landry, M.D.; Bingham, C.E.; Lewandowski, A.; Ciszek, T.F. [National Renewable Energy Lab., Golden, CO (United States)

    1994-12-31

    The authors used a 10-kW high-flux solar furnace (HFSF) to diffuse the front-surface n{sup +}-p junction and the back-surface p-p{sup +} junction of single-crystal silicon solar cells in one processing step. They found that all of the HFSF-processed cells have better conversion efficiencies than control cells of identical structures fabricated by conventional furnace diffusion methods. HFSF processing offers several advantages that may contribute to improved solar cell efficiency: (1) it provides a cold-wall process, which reduces contamination; (2) temperature versus time profiles can be precisely controlled; (3) wavelength, intensity, and spatial distribution of the incident solar flux can be controlled and changed rapidly; (4) a number of high-temperature processing steps can be performed simultaneously; and (5) combined quantum and thermal effects may benefit overall cell performance. The HFSF has also been successfully used to texture the surface of silicon wafers and to crystallize a-Si:H thin films on glass.

  6. Silicon-carbon interactions in high latitude watersheds

    Science.gov (United States)

    Humborg, C.; Morth, C.; Struyf, E.; Conley, D. J.

    2008-12-01

    Changes in climate and hydrology in high latitude regions could liberate large amounts of previously inactive organic carbon (OC) during a prolonging thawing period, and new studies have shown that a great deal of this organic C is remineralized as CO2 during its transport to the sea. However, OC (with its origin in atmospheric carbon) and dissolved silicate (DSi) concentrations in taiga and tundra rivers are intimately linked, and higher concentrations of weathering products are found in taiga and tundra rivers with a higher percentage of peat in their watersheds. It appears that the weathering regime of taiga and tundra watersheds is tightly linked to carbon-silicon interactions, in which carbon acts both as a weathering agent (soil CO2 from degradation of OC) and as a weathering product (DSi and bicarbonate). Whereas respiration of OC can be regarded as a positive feedback to global warming, weathering can be regarded as a negative feedback to global warming since atmospheric CO2 is converted to bicarbonate and thereby locked into the aquatic phase for geological time scales. Thus, bicarbonate export may compensate for significant amounts of exported OC thereby reducing the positive feedback to atmospheric CO2. However, the silicon-carbon interactions are not straight forward as suggested by classical inverse modelling,using the stochiometry of rock forming minerals as base, since high latitude wetlands contain a massive stock of amorphous silica (diatoms and phytoliths) buffering the actual DSi export, suggesting that the Si cycle is to a large extent biologically controlled.

  7. A microstrip silicon telescope for high performance particle tracking

    Science.gov (United States)

    Lietti, D.; Berra, A.; Prest, M.; Vallazza, E.

    2013-11-01

    Bent crystals are thin silicon/germanium devices that act as a bulk dipole magnet and thus are able to deflect relativistic charged particle beams with high efficiency (up to 98%). To study their behavior on extracted beamlines in terms of deflection capability and efficiency, a fast and high position resolution telescope is needed such as the INSULAB telescope. It consists in several modules equipped with double or single side silicon detectors readout by different ASICs. The Data Acquisition system is designed to work with pulsed beams minimizing the dead time to allow the collection of a large statistics in a short time. It is based on custom VME readout/memory boards for the data storage and 12 bit ADC custom boards for the signal digitization; the present maximum DAQ rate is 6 kHz. A detailed description of the detectors, the ASICs and the readout system together with the results obtained at the SPS H4 and PS T9 CERN beamlines in terms of spatial resolution and charge sharing are presented.

  8. Review of silicon solar cells for high concentrations

    Science.gov (United States)

    Schwartz, R. J.

    1982-06-01

    The factors that limit the performance of high concentration silicon solar cells are reviewed. The design of a conventional high concentration cell is discussed, together with the present state of the art. Unconventional cell designs that have been proposed to overcome the limitations of the conventional design are reviewed and compared. The current status of unconventional cells is reviewed. Among the unconventional cells discussed are the interdigitated back-contact cell, the double-sided cell, the polka dot cell, and the V-groove cell. It is noted that all the designs for unconventional cells require long diffusion lengths for high efficiency operation, even though the demands in this respect are less for those cells with the optical path longer than the diffusion path.

  9. Mechanically flexible optically transparent silicon fabric with high thermal budget devices from bulk silicon (100)

    KAUST Repository

    Hussain, Muhammad Mustafa

    2013-05-30

    Today’s information age is driven by silicon based electronics. For nearly four decades semiconductor industry has perfected the fabrication process of continuingly scaled transistor – heart of modern day electronics. In future, silicon industry will be more pervasive, whose application will range from ultra-mobile computation to bio-integrated medical electronics. Emergence of flexible electronics opens up interesting opportunities to expand the horizon of electronics industry. However, silicon – industry’s darling material is rigid and brittle. Therefore, we report a generic batch fabrication process to convert nearly any silicon electronics into a flexible one without compromising its (i) performance; (ii) ultra-large-scale-integration complexity to integrate billions of transistors within small areas; (iii) state-of-the-art process compatibility, (iv) advanced materials used in modern semiconductor technology; (v) the most widely used and well-studied low-cost substrate mono-crystalline bulk silicon (100). In our process, we make trenches using anisotropic reactive ion etching (RIE) in the inactive areas (in between the devices) of a silicon substrate (after the devices have been fabricated following the regular CMOS process), followed by a dielectric based spacer formation to protect the sidewall of the trench and then performing an isotropic etch to create caves in silicon. When these caves meet with each other the top portion of the silicon with the devices is ready to be peeled off from the bottom silicon substrate. Release process does not need to use any external support. Released silicon fabric (25 μm thick) is mechanically flexible (5 mm bending radius) and the trenches make it semi-transparent (transparency of 7%). © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  10. Silicon carbide high performance optics: a cost-effective, flexible fabrication process

    Science.gov (United States)

    Casstevens, John M.; Rashed, Abuagela; Plummer, Ronald; Bray, Don; Gates, Rob L.; Lara-Curzio, Edgar; Ferber, Matt K.; Kirkland, Tim

    2001-12-01

    Silicon carbide may well be the best known material for the manufacture of high performance optical components. This material offers many advantages over glasses and metals that have historically been used in high performance optical systems. A combination of extremely high specific stiffness (E/r), high thermal conductivity and outstanding dimensional stability make silicon carbide superior overall to beryllium and low-expansion glass ceramics. A major impediment to wide use of silicon carbide in optical systems has been the cost associated with preliminary shaping and final finishing of silicon carbide. Because silicon carbide is an extremely hard and strong material, precision machining can only be done with expensive diamond tooling on very stiff high quality machine tools. Near-net-shape slip casting of silicon carbide can greatly reduce the cost of silicon carbide mirror substrates but this process still requires significant diamond grinding of the cast components. The process described here begins by machining the component from all special type of graphite. This graphite can rapidly be machined with conventional multi-axis CNC machine tools to achieve any level of complexity and lightweighting required. The graphite is then directly converted completely to silicon carbide with very small and very predictable dimensional change. After conversion to silicon carbide the optical surface is coated with very fine grain CVD silicon carbide which is easily polished to extreme smoothness. Details of the fabrication process are described and photos and performance specifications of an eight-inch elliptical demonstration mirror are provided.

  11. Optimization of metallic microheaters for high-speed reconfigurable silicon photonics.

    Science.gov (United States)

    Atabaki, A H; Shah Hosseini, E; Eftekhar, A A; Yegnanarayanan, S; Adibi, A

    2010-08-16

    The strong thermooptic effect in silicon enables low-power and low-loss reconfiguration of large-scale silicon photonics. Thermal reconfiguration through the integration of metallic microheaters has been one of the more widely used reconfiguration techniques in silicon photonics. In this paper, structural and material optimizations are carried out through heat transport modeling to improve the reconfiguration speed of such devices, and the results are experimentally verified. Around 4 micros reconfiguration time are shown for the optimized structures. Moreover, sub-microsecond reconfiguration time is experimentally demonstrated through the pulsed excitation of the microheaters. The limitation of this pulsed excitation scheme is also discussed through an accurate system-level model developed for the microheater response.

  12. Characterization of Three High Efficiency and Blue Sensitive Silicon Photomultipliers

    CERN Document Server

    Otte, Adam Nepomuk; Nguyen, Thanh; Purushotham, Dhruv

    2016-01-01

    We report about the optical and electrical characterization of three high efficiency and blue sensitive Silicon photomultipliers from FBK, Hamamatsu, and SensL. Key features of the tested devices when operated at 90% breakdown probability are peak photon detection efficiencies between 40% and 55%, temperature dependencies of gain and PDE that are less than 1%/$^{\\circ}$C, dark rates of $\\sim$50\\,kHz/mm$^{2}$ at room temperature, afterpulsing of about 2%, and direct optical crosstalk between 6% and 20%. The characteristics of all three devices impressively demonstrate how the Silicon-photomultiplier technology has improved over the past ten years. It is further demonstrated how the voltage and temperature characteristics of a number of quantities can be parameterized on the basis of physical models. The models provide a deeper understanding of the device characteristics over a wide bias and temperature range. They also serve as examples how producers could provide the characteristics of their SiPMs to users. A...

  13. Characterization of three high efficiency and blue sensitive silicon photomultipliers

    Science.gov (United States)

    Otte, Adam Nepomuk; Garcia, Distefano; Nguyen, Thanh; Purushotham, Dhruv

    2017-02-01

    We report about the optical and electrical characterization of three high efficiency and blue sensitive Silicon photomultipliers from FBK, Hamamatsu, and SensL. Key features of the tested devices when operated at 90% breakdown probability are peak photon detection efficiencies between 40% and 55%, temperature dependencies of gain and PDE that are less than 1%/°C, dark rates of ∼50 kHz/mm2 at room temperature, afterpulsing of about 2%, and direct optical crosstalk between 6% and 20%. The characteristics of all three devices impressively demonstrate how the Silicon-photomultiplier technology has improved over the past ten years. It is further demonstrated how the voltage and temperature characteristics of a number of quantities can be parameterized on the basis of physical models. The models provide a deeper understanding of the device characteristics over a wide bias and temperature range. They also serve as examples how producers could provide the characteristics of their SiPMs to users. A standardized parameterization of SiPMs would enable users to find the optimal SiPM for their application and the operating point of SiPMs without having to perform measurements thus significantly reducing design and development cycles.

  14. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on tunable functionalized copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede;

    2015-01-01

    High driving voltages currently limit the commercial potential of dielectric elastomers (DEs). One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permittivity was prepared through the synthesis o...

  15. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on tunable functionalized copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    High driving voltages currently limit the commercial potential of dielectric elastomers (DEs). One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permittivity was prepared through the synthesis o...

  16. Synthetic Strategies for High Dielectric Constant Silicone Elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt

    Dielectric electroactive polymers (DEAPs) are a new and promising transducer technology and are often referred to as ‘artificial muscles’, due to their ability to undergo large deformations when stimulated by electric fields. DEAPs consist of a soft and thin elastomeric film (an elastomer...... synthetic strategies were developed in this Ph.D. thesis, in order to create silicone elastomers with high dielectric constants and thereby higher energy densities. The work focused on maintaining important properties such as dielectric loss, electrical breakdown strength and elastic modulus....... The methodology therefore involved chemically grafting high dielectric constant chemical groups onto the elastomer network, as this would potentially provide a stable elastomer system upon continued activation of the material. The first synthetic strategy involved the synthesis of a new type of cross...

  17. Patterned growth of high aspect ratio silicon wire arrays at moderate temperature

    Science.gov (United States)

    Morin, Christine; Kohen, David; Tileli, Vasiliki; Faucherand, Pascal; Levis, Michel; Brioude, Arnaud; Salem, Bassem; Baron, Thierry; Perraud, Simon

    2011-04-01

    High aspect ratio silicon wire arrays with excellent pattern fidelity over wafer-scale area were grown by chemical vapor deposition at moderate temperature, using a gas mixture of silane and hydrogen chloride. An innovative two-step process was developed for in situ doping of silicon wires by diborane. This process led to high p-type doping levels, up to 10 18-10 19 cm -3, without degradation of the silicon wire array pattern fidelity.

  18. Stability Analysis of an Inverted Pendulum Subjected to Combined High Frequency Harmonics and Stochastic Excitations

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhi-Long; JIN Xiao-Ling; ZHU Zi-Qi

    2008-01-01

    Stability of vertical upright position of an inverted pendulum with its suspension point subjected to high frequency harmonics and stochastic excitations is investigated. Two classes of excitations, i.e., combined high frequency harmonic excitation and Gaussian white noise excitation, and high frequency bounded noise excitation, respectively,are considered. Firstly, the terms of high frequency harmonic excitations in the equation of motion of the system can be set equivalent to nonlinear stiffness terms by using the method of direct separation of motions. Then the stochastic averaging method of energy envelope is used to derive the averaged It(o) stochastic differential equation for system energy. Finally, the stability with probability 1 of the system is studied by using the largest Lyapunov exponent obtained from the averaged It(o) stochastic differential equation. The effects of system parameters on the stability of the system are discussed, and some examples are given to illustrate the efficiency of the proposed procedure.

  19. Electron impact excitation of highly charged sodium-like ions

    Science.gov (United States)

    Blaha, M.; Davis, J.

    1978-01-01

    Optical transition probabilities and electron collision strengths for Ca X, Fe XVI, Zn XX, Kr XXVI and Mo XXXII are calculated for transitions between n equal to 3 and n equal to 4 levels. The calculations neglect relativistic effects on the radial functions. A semi-empirical approach provides wave functions of the excited states; a distorted wave function without exchange is employed to obtain the excitation cross sections. The density dependence of the relative intensities of certain emission lines in the sodium isoelectronic sequence is also discussed.

  20. Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes

    KAUST Repository

    Cui, Li-Feng

    2009-01-14

    Silicon is an attractive alloy-type anode material for lithium ion batteries because of its highest known capacity (4200 mAh/g). However silicon\\'s large volume change upon lithium insertion and extraction, which causes pulverization and capacity fading, has limited its applications. Designing nanoscale hierarchical structures is a novel approach to address the issues associated with the large volume changes. In this letter, we introduce a core-shell design of silicon nanowires for highpower and long-life lithium battery electrodes. Silicon crystalline- amorphous core-shell nanowires were grown directly on stainless steel current collectors by a simple one-step synthesis. Amorphous Si shells instead of crystalline Si cores can be selected to be electrochemically active due to the difference of their lithiation potentials. Therefore, crystalline Si cores function as a stable mechanical support and an efficient electrical conducting pathway while amorphous shells store Li ions. We demonstrate here that these core-shell nanowires have high charge storage capacity (̃1000 mAh/g, 3 times of carbon) with ̃90% capacity retention over 100 cycles. They also show excellent electrochemical performance at high rate charging and discharging (6.8 A/g, ̃20 times of carbon at 1 h rate). © 2009 American Chemical Society.

  1. Kinetics of diamond-silicon reaction under high pressure-high temperature conditions

    Science.gov (United States)

    Pantea, Cristian

    In this dissertation work, the kinetics of the reaction between diamond and silicon at high pressure-high temperature conditions was investigated. This study was motivated by the extremely limited amount of information related to the kinetics of the reaction in diamond-silicon carbide composites formation. It was found that the reaction between diamond and melted silicon and the subsequent silicon carbide formation is a two-stage process. The initial stage is a result of direct reaction of melted silicon with carbon atoms from the diamond surface, the phase boundary reaction. Further growth of SiC is much more complicated and when the outer surfaces of diamond crystals are covered with the silicon carbide layer it involves diffusion of carbon and silicon atoms through the SiC layer. The reaction takes place differently for the two regions of stability of carbon. In the graphite-stable region, the reaction between diamond and melted silicon is associated with the diamond-to-graphite phase transition, while in the diamond-stable region there is no intermediary step for the reaction. The data obtained at HPHT were fitted by the Avrami-Erofeev equation. It was found that the reaction is isotropic, the beta-SiC grown on different faces of the diamond crystals showing the same reaction rate, and that the controlling mechanism for the reaction is the diffusion. In the graphite-stable region the activation energy, 402 kJ/mol is slightly higher than in the diamond-stable region, 260 kJ/mol, as the reaction between diamond and melted silicon is associated with the diamond-to-graphite phase transition, which has higher activation energy. In the diamond-stable region, the calculated activation energy is higher for micron size diamond powders (≈260 kJ/mol), while for nanocrystalline diamond powders a lower value of 170 kJ/mol was obtained. This effect was attributed to nanocrystalline structure and strained bonds within grain boundaries in SiC formed from nanosize diamond

  2. Method of Assembling a Silicon Carbide High Temperature Anemometer

    Science.gov (United States)

    Okojie, Robert S. (Inventor); Fralick, Gustave C. (Inventor); Saad, George J. (Inventor)

    2004-01-01

    A high temperature anemometer includes a pair of substrates. One of the substrates has a plurality of electrodes on a facing surface, while the other of the substrates has a sensor cavity on a facing surface. A sensor is received in the sensor cavity, wherein the sensor has a plurality of bondpads, and wherein the bondpads contact the plurality of electrodes when the facing surfaces are mated with one another. The anemometer further includes a plurality of plug-in pins, wherein the substrate with the cavity has a plurality of trenches with each one receiving a plurality of plug-in pins. The plurality of plug-in pins contact the plurality of electrodes when the substrates are mated with one another. The sensor cavity is at an end of one of the substrates such that the sensor partially extends from the substrate. The sensor and the substrates are preferably made of silicon carbide.

  3. High Strength Silicon Carbide Foams and Their Deformation Behavior

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Silicon carbide (SiC) foams with a continuously connected open-cell structure were prepared and characterized for their mechanical performance. The apparent densities of SiC foams were controlled between about 0.4 and 1.3 g/cm3, with corresponding compressive strengths ranging from about 13 to 60 MPa and flexural strengths from about 8 to 30 MPa. Compressive testing of the SiC foams yielded stress-strain curves with only one linear-elastic region, which is different from those reported on ceramic foams in literature. This can possibly be attributed to the existence of filaments with fine, dense and high strength microstructures. The SiC and the filaments respond homogeneously to applied loading.

  4. Silicon Carbide Diodes Characterization at High Temperature and Comparison With Silicon Devices

    Science.gov (United States)

    Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry D., Jr.

    2004-01-01

    Commercially available silicon carbide (SiC) Schottky diodes from different manufacturers rated at 200, 300, 600, and 1200 V, were electrically tested and characterized as a function of temperature up to 300 C. Electrical tests included both steady state and dynamic tests. Steady state tests produced forward and reverse I-V characteristic curves. Transient tests evaluated the switching performance of the diodes in either a hard-switched DC to DC buck converter or a half-bridge boost converter. For evaluation and comparison purposes, the same tests were performed with current state-of-the-art ultra fast silicon (Si) pn-junction diodes of similar ratings and also a Si Schottky diode. The comparisons made were forward voltage drop at rated current, reverse current at rated voltage, and turn-off peak reverse recovery current and reverse recovery time. In addition, efficiency measurements were taken for the buck DC to DC converter using both the SiC Schottky diodes and the Si pn-junction diodes at different temperatures and frequencies. The test results showed that at high temperature, the forward voltage drop for SiC Schottky diodes is higher than the forward drop of the ultra fast Si pn-junction diodes. As the temperature increased, the forward voltage drop of the SiC Schottky increased while for the ultra fast Si pn-junction diodes, the forward voltage drop decreased as temperature increased. For the elevated temperature steady state reverse voltage tests, the SiC Schottky diodes showed low leakage current at their rated voltage. Likewise, for the transient tests, the SiC Schottky diodes displayed low reverse recovery currents over the range of temperatures tested. Conversely, the Si pn-junction diodes showed increasing peak reverse current values and reverse recovery times with increasing temperature. Efficiency measurements in the DC to DC buck converter showed the advantage of the SiC Schottky diodes over the ultra fast Si pn-junction diodes, especially at the

  5. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  6. HIGH FREQUENCY INDUCTION WELDING OF HIGH SILICON STEEL TUBES

    Directory of Open Access Journals (Sweden)

    Ricardo Miranda Alé

    2012-06-01

    Full Text Available High-Si steel is a low cost alternative for the fabrication of tubular structures resistant to atmospheric corrosion. However, the literature has often pointed out that steels presenting a higher Si content and/or a lower Mn/Si ratio have higher susceptibility to defects at the weld bond line during HFIW (High Frequency Induction Welding process, which has been widely used for manufacturing small diameter tubes. In this study the effect of the HFIW conditions on the quality of steel tubes with high-Si content and low Mn/Si ratio is investigated. The quality of welded tubes was determined by flare test and the defects in the bond line were identified by SEM. It has been found that higher welding speeds, V-convergence angles and power input should be applied in welding of high-Si steel, when compared to similar strength C-Mn steel.

  7. Fabrication of High-Temperature-Stable Thermoelectric Generator Modules Based on Nanocrystalline Silicon

    Science.gov (United States)

    Kessler, V.; Dehnen, M.; Chavez, R.; Engenhorst, M.; Stoetzel, J.; Petermann, N.; Hesse, K.; Huelser, T.; Spree, M.; Stiewe, C.; Ziolkowski, P.; Schierning, G.; Schmechel, R.

    2014-05-01

    High-temperature-stable thermoelectric generator modules (TGMs) based on nanocrystalline silicon have been fabricated, characterized by the Harman technique, and measured in a generator test facility at the German Aerospace Center. Starting with highly doped p- and n-type silicon nanoparticles from a scalable gas-phase process, nanocrystalline bulk silicon was obtained using a current-activated sintering technique. Electrochemical plating methods were employed to metalize the nanocrystalline silicon. The specific electrical contact resistance ρ c of the semiconductor-metal interface was characterized by a transfer length method. Values as low as ρ c cold-side temperature of 300°C.

  8. Silicon clathrates and carbon analogs: high pressure synthesis, structure, and superconductivity.

    Science.gov (United States)

    Yamanaka, Shoji

    2010-02-28

    Compounds with cage-like structures of elemental silicon and carbon are comparatively reviewed. Barium containing silicon clathrate compounds isomorphous with type I gas hydrates were prepared using high pressure and high temperature (HPHT) conditions, and found to become superconductors. The application of HPHT conditions to Zintl binary silicides have produced a number of silicon-rich cage-like structures including new clathrate structures; most of them are superconductors. Carbon analogs of silicon clathrates can be prepared by 3D polymerization of C(60) under HPHT conditions, which are new allotropes of carbon with expanded framework structures. The crystal chemistry and characteristic properties of some related compounds are also reviewed.

  9. Scattering effect of the high-index dielectric nanospheres for high performance hydrogenated amorphous silicon thin-film solar cells

    Science.gov (United States)

    Yang, Zhenhai; Gao, Pingqi; Zhang, Cheng; Li, Xiaofeng; Ye, Jichun

    2016-07-01

    Dielectric nanosphere arrays are considered as promising light-trapping designs with the capability of transforming the freely propagated sunlight into guided modes. This kinds of designs are especially beneficial to the ultrathin hydrogenated amorphous silicon (a-Si:H) solar cells due to the advantages of using lossless material and easily scalable assembly. In this paper, we demonstrate numerically that the front-sided integration of high-index subwavelength titanium dioxide (TiO2) nanosphere arrays can significantly enhance the light absorption in 100 nm-thick a-Si:H thin films and thus the power conversion efficiencies (PCEs) of related solar cells. The main reason behind is firmly attributed to the strong scattering effect excited by TiO2 nanospheres in the whole waveband, which contributes to coupling the light into a-Si:H layer via two typical ways: 1) in the short-waveband, the forward scattering of TiO2 nanospheres excite the Mie resonance, which focuses the light into the surface of the a-Si:H layer and thus provides a leaky channel; 2) in the long-waveband, the transverse waveguided modes caused by powerful scattering effectively couple the light into almost the whole active layer. Moreover, the finite-element simulations demonstrate that photocurrent density (Jph) can be up to 15.01 mA/cm2, which is 48.76% higher than that of flat system.

  10. Low noise high-Tc superconducting bolometers on silicon nitride membranes for far-infrared detection

    NARCIS (Netherlands)

    Nivelle, de M.J.M.E.; Bruijn, M.P.; Vries, de R.; Wijnbergen, J.J.; Korte, de P.A.J.; Sanchez, S.; Elwenspoek, M.; Heidenblut, T.; Schwierzi, B.; Michalke, W.; Steinbeiss, E.

    1997-01-01

    High-Tc GdBa2Cu3O7 – delta superconductor bolometers with operation temperatures near 89 K, large receiving areas of 0.95 mm2 and very high detectivity have been made. The bolometers are supported by 0.62 µm thick silicon nitride membranes. A specially developed silicon-on-nitride layer was used to

  11. Deep anisotropic dry etching of silicon microstructures by high-density plasmas

    NARCIS (Netherlands)

    Blauw, M.A.

    2004-01-01

    This thesis deals with the dry etching of deep anisotropic microstructures in monocrystalline silicon by high-density plasmas. High aspect ratio trenches are necessary in the fabrication of sensitive inertial devices such as accellerometers and gyroscopes. The etching of silicon in fluorine-based

  12. Impurity distribution and reduction behaviour of quartz in the production of high purity silicon

    OpenAIRE

    Dal Martello, Elena

    2012-01-01

    The production of solar grade silicon is based on the use of expensive high purity carbon and quartz feedstock as well as various silicon refining techniques. Impurities in the feedstock materials enter the silicon during the carbothermic reduction of quartz. The knowledge of the impurity distribution/removal in the feedstock and in the carbothermic reduction process is necessary for targeting less pure and cheaper raw materials.The aim of the present study is to investigate the impurity dist...

  13. High-flux solar furnace processing of crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Pitts, J.R. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Menna, P. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)]|[ENEA-Centro Ricerche Fotovoltaiche, Portici 80055 (Italy); Landry, M.D. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Gee, J.M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)]|[Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Ciszek, T.F. [National Renewable Energy Laboratory, Golden, Colorado, 80401 (United States)

    1997-02-01

    We studied the processing of crystalline-silicon solar cells using a 10-kW, high-flux solar furnace (HFSF). Major findings of this study include: (1) hydrogenated amorphous silicon films deposited on glass substrates can be converted to microcrystalline silicon by solid-phase crystallization in 5 seconds or less in the HFSF; (2) the presence of concentrated sunlight enhances the diffusion of phosphorus into silicon from a spin-on dopant source; (3) the combination of a porous-silicon surface layer and photo-enhanced impurity diffusion is very effective in gettering impurities from a metallurgical-grade silicon wafer or thin-layer silicon deposited using liquid-phase epitaxy; (4) a 14.1{percent}-efficient crystalline-silicon solar cell with an area of 4.6cm{sup 2} was fabricated using the HFSF for simultaneous diffusion of front n{sup +}-p and back p-p{sup +} junctions; and (5) we have shown that the HFSF can be used to texture crystalline-silicon surfaces and to anneal metal contacts printed on a silicon solar cell. {copyright} {ital 1997 American Institute of Physics.}

  14. High-flux solar furnace processing of crystalline silicon solar cells

    Science.gov (United States)

    Tsuo, Y. S.; Pitts, J. R.; Menna, P.; Landry, M. D.; Gee, J. M.; Ciszek, T. F.

    1997-02-01

    We studied the processing of crystalline-silicon solar cells using a 10-kW, high-flux solar furnace (HFSF). Major findings of this study include: (1) hydrogenated amorphous silicon films deposited on glass substrates can be converted to microcrystalline silicon by solid-phase crystallization in 5 seconds or less in the HFSF; (2) the presence of concentrated sunlight enhances the diffusion of phosphorus into silicon from a spin-on dopant source; (3) the combination of a porous-silicon surface layer and photo-enhanced impurity diffusion is very effective in gettering impurities from a metallurgical-grade silicon wafer or thin-layer silicon deposited using liquid-phase epitaxy; (4) a 14.1%-efficient crystalline-silicon solar cell with an area of 4.6 cm2 was fabricated using the HFSF for simultaneous diffusion of front n+-p and back p-p+ junctions; and (5) we have shown that the HFSF can be used to texture crystalline-silicon surfaces and to anneal metal contacts printed on a silicon solar cell.

  15. Low Cost, High Efficiency, Silicon Based Photovoltaic Devices

    Science.gov (United States)

    2015-08-27

    93 (2004). [102] C. Chartier , S. Bastide, C. Lévy-Clément, Metal-assisted chemical etching of silicon in HF–H2O2, Electrochimica Acta, 53 (2008...ACS Applied Materials & Interfaces, 3 (2011) 3866-3873. [104] C. Chartier , S. Bastide, C. Levyclement, Metal-assisted chemical etching of silicon in

  16. Highly permeable and mechanically robust silicon carbide hollow fiber membranes

    NARCIS (Netherlands)

    de Wit, Patrick; Kappert, Emiel; Lohaus, T.; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck Edwin

    2015-01-01

    Silicon carbide (SiC) membranes have shown large potential for applications in water treatment. Being able to make these membranes in a hollow fiber geometry allows for higher surface-to-volume ratios. In this study, we present a thermal treatment procedure that is tuned to produce porous silicon

  17. Highly permeable and mechanically robust silicon carbide hollow fiber membranes

    NARCIS (Netherlands)

    Wit, de P.; Kappert, Emiel J.; Lohaus, T.; Wessling, M.; Nijmeijer, A.; Benes, N.E.

    2015-01-01

    Silicon carbide (SiC) membranes have shown large potential for applications in water treatment. Being able to make these membranes in a hollow fiber geometry allows for higher surface-to-volume ratios. In this study, we present a thermal treatment procedure that is tuned to produce porous silicon ca

  18. High deposition rate nanocrystalline silicon with enhanced homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Verkerk, Arjan; Rath, Jatindra K.; Schropp, Ruud [Section Nanophotonics-Physics of Devices, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, P.O. Box 80000, 3508 TA Utrecht (Netherlands)

    2010-03-15

    High rate growth of hydrogenated nanocrystalline silicon (nc-Si:H) brings additional challenges for the homogeneity in the growth direction, since the start-up effects affect a larger portion of the film, and the very high degree of depletion increases the influence of back diffusion from the inactive region into the plasma zone. It was calculated that back diffusion plays a role in the regime for high deposition rate (4.5 nm/s) via the residence time for particles in the plasma and the corresponding diffusion length for silane from outside the plasma. The stabilization time for back diffusion was derived and found to be on the order of tens of seconds. Experiment showed that the incubation layer for nc-Si:H is very thick in films deposited at a high rate compared to films deposited in a regime of lower deposition rate. The use of a hydrogen plasma start greatly reduced this incubation layer. Further control of the crystalline fraction could be achieved via slight reduction of the degree of depletion via the silane flow. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  19. Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede;

    2014-01-01

    Dielectric elastomers (DES) are a promising new transducer technology, but high driving voltages limit their current commercial potential. One method used to lower driving voltage is to increase dielectric permittivity of the elastomer. A novel silicone elastomer system with high dielectric permi......-4-nitrobenzene. Here, a high increase in dielectric permittivity (similar to 70%) was obtained without compromising other favourable DE properties such as elastic modulus, gel fraction, dielectric loss and electrical breakdown strength. © 2014 Elsevier Ltd. All rights reserved....

  20. Atomic layer deposition of highly-doped Er:Al2O3 and Tm:Al2O3 for silicon-based waveguide amplifiers (Conference Presentation)

    Science.gov (United States)

    Roenn, John; Karvonen, Lasse; Pyymäki-Perros, Alexander; Peyghambarian, Nasser; Lipsanen, Harri; Säynätjoki, Antti; Sun, Zhipei

    2016-05-01

    Recently, rare-earth doped waveguide amplifiers (REDWAs) have drawn significant attention as a promising solution to on-chip amplification of light in silicon photonics and integrated optics by virtue of their high excited state lifetime (up to 10 ms) and broad emission spectrum (up to 200 nm) at infrared wavelengths. In the family of rare-earths, at least erbium, holmium, thulium, neodymium and ytterbium have been demonstrated to be good candidates for amplifier operation at moderate concentrations (technology.

  1. Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries.

    Science.gov (United States)

    Vallaitis, Thomas; Bogatscher, Siegwart; Alloatti, Luca; Dumon, Pieter; Baets, Roel; Scimeca, Michelle L; Biaggio, Ivan; Diederich, François; Koos, Christian; Freude, Wolfgang; Leuthold, Juerg

    2009-09-28

    Geometry, nonlinearity, dispersion and two-photon absorption figure of merit of three basic silicon-organic hybrid waveguide designs are compared. Four-wave mixing and heterodyne pump-probe measurements show that all designs achieve high nonlinearities. The fundamental limitation of two-photon absorption in silicon is overcome using silicon-organic hybrid integration, with a five-fold improvement for the figure of merit (FOM). The value of FOM = 2.19 measured for silicon-compatible nonlinear slot waveguides is the highest value published.

  2. A Statistical Approach to Describe Highly Excited Heavy and Superheavy Nuclei

    CERN Document Server

    Chen, Peng-Hui; Li, Jun-Qing; Zhang, Hong-Fei

    2016-01-01

    A statistical approach based on the Weisskopf evaporation theory has been developed to describe the de-excitation process of highly excited heavy and superheavy nuclei, in particular for the proton-rich nuclei. The excited nucleus is cooled by evaporating $\\gamma$-ray, light particles (neutrons, protons, $\\alpha$ etc) in competition with the binary fission, in which the structure effects (shell correction, fission barrier, particle separation energy) contribute to the processes. The formation of residual nuclei is evaluated via sequential emission of possible particles above the separation energies. The available data of fusion-evaporation excitation functions in the $^{28}$Si+$^{198}$Pt reaction can be reproduced nicely well within the approach.

  3. Suppression effect of silicon (Si) on Er3+ 1.54μm excitation in ZnO thin films

    Science.gov (United States)

    Xu, Bo; Lu, Fei; Ma, Changdong; Fan, Ranran

    2016-08-01

    We have investigated the photoluminescence (PL) characteristics of ZnO:Er thin films on Si (100) single crystal and SiO2-on-silicon (SiO2) substrates, synthesized by radio frequency magnetron sputtering. Rutherford backscattering/channeling spectrometry (RBS), X-ray diffraction (XRD) and atomic force microscope (AFM) were used to analyze the properties of thin films. The diffusion depth profiles of Si were determined by second ion mass spectrometry (SIMS). Infrared spectra were obtained from the spectrometer and related instruments. Compared with the results at room temperature (RT), PL (1.54μm) intensity increased when samples were annealed at 250°C and decreased when at 550°C. A new peak at 1.15μm from silicon (Si) appeared in 550°C samples. The Si dopants in ZnO film, either through the diffusion of Si from the substrate or ambient, directly absorbed the energy of pumping light and resulted in the suppression of Er3+ 1.54μm excitation. Furthermore, the energy transmission efficiency between Si and Er3+ was very low when compared with silicon nanocrystal (Si-NC). Both made the PL (1.54μm) intensity decrease. All the data in experiments proved the negative effects of Si dopants on PL at 1.54μm. And further research is going on.

  4. Suppression effect of silicon (Si on Er3+ 1.54μm excitation in ZnO thin films

    Directory of Open Access Journals (Sweden)

    Bo Xu

    2016-08-01

    Full Text Available We have investigated the photoluminescence (PL characteristics of ZnO:Er thin films on Si (100 single crystal and SiO2-on-silicon (SiO2 substrates, synthesized by radio frequency magnetron sputtering. Rutherford backscattering/channeling spectrometry (RBS, X-ray diffraction (XRD and atomic force microscope (AFM were used to analyze the properties of thin films. The diffusion depth profiles of Si were determined by second ion mass spectrometry (SIMS. Infrared spectra were obtained from the spectrometer and related instruments. Compared with the results at room temperature (RT, PL (1.54μm intensity increased when samples were annealed at 250°C and decreased when at 550°C. A new peak at 1.15μm from silicon (Si appeared in 550°C samples. The Si dopants in ZnO film, either through the diffusion of Si from the substrate or ambient, directly absorbed the energy of pumping light and resulted in the suppression of Er3+ 1.54μm excitation. Furthermore, the energy transmission efficiency between Si and Er3+ was very low when compared with silicon nanocrystal (Si-NC. Both made the PL (1.54μm intensity decrease. All the data in experiments proved the negative effects of Si dopants on PL at 1.54μm. And further research is going on.

  5. Preparation of electrochemically active silicon nanotubes in highly ordered arrays

    Directory of Open Access Journals (Sweden)

    Tobias Grünzel

    2013-10-01

    Full Text Available Silicon as the negative electrode material of lithium ion batteries has a very large capacity, the exploitation of which is impeded by the volume changes taking place upon electrochemical cycling. A Si electrode displaying a controlled porosity could circumvent the difficulty. In this perspective, we present a preparative method that yields ordered arrays of electrochemically competent silicon nanotubes. The method is based on the atomic layer deposition of silicon dioxide onto the pore walls of an anodic alumina template, followed by a thermal reduction with lithium vapor. This thermal reduction is quantitative, homogeneous over macroscopic samples, and it yields amorphous silicon and lithium oxide, at the exclusion of any lithium silicides. The reaction is characterized by spectroscopic ellipsometry for thin silica films, and by nuclear magnetic resonance and X-ray photoelectron spectroscopy for nanoporous samples. After removal of the lithium oxide byproduct, the silicon nanotubes can be contacted electrically. In a lithium ion electrolyte, they then display the electrochemical waves also observed for other bulk or nanostructured silicon systems. The method established here paves the way for systematic investigations of how the electrochemical properties (capacity, charge/discharge rates, cyclability of nanoporous silicon negative lithium ion battery electrode materials depend on the geometry.

  6. High-{ital j} Neutron Excitations Outside {sup 136}Xe

    Energy Technology Data Exchange (ETDEWEB)

    Talwar, R.; Kay, B. P.; Mitchell, A. J.; Adachi, S.; Entwisle, J. P.; Fujita, Y.; Gey, G.; Noji, S.; Ong, H. J.; Schiffer, J. P.; Tamii, A

    2017-08-17

    The nu 0h(9/2) and nu 0i(13/2) strength at Xe-137, a single neutron outside the N = 82 shell closure, has been determined using the Xe-136(alpha, He-3)Xe-137 reaction carried out at 100 MeV. We confirm the recent observation of the second 13/2(+) state and reassess previous data on the 9/2(-) states, obtaining spectroscopic factors. These new data provide additional constraints on predictions of the same single-neutron excitations at Sn-133.

  7. High Power Broadband Multispectral Source on a Hybrid Silicon Chip

    Science.gov (United States)

    2017-03-14

    silicon photonic network on chip,” Optica 3(7), 785–786 (2016). [8] Stanton, E. J., Heck, M. J. R., Bovington, J., Spott, A., and Bowers, J. E...Hutchinson, J., Shin, J.-H., Fish, G., and Fang, A., “Integrated silicon photonic laser sources for telecom and datacom,” in [National Fiber Optic...Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom -band-derived pump source,” Nat. Photon. 4(8), 561–564 (2010

  8. Effective properties of mechanical systems under high-frequency excitation at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2008-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical p...

  9. Some general effects of strong high-frequency excitation: stiffening, biasing, and smoothening

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2002-01-01

    Mechanical high-frequency (HF) excitation provides a working principle behind many industrial and natural applications and phenomena. This paper concerns three particular effects of HF excitation, that may change the apparent characteristics of mechanical systems: 1) stiffening, by which the appa...

  10. Non trivial effect of strong high-frequency excitation on a nonlinear controlled system

    DEFF Research Database (Denmark)

    Fidlin, A.; Thomsen, Jon Juel

    2004-01-01

    due to control is usually high compared to uncontrolled systems. A standard optimal controller for a standard nonlinear system (a movable cart used to balance a pendulum vertically) is shown to exhibit pronounced bias error in presence of HF-excitation. The bias increases with increased excitation...

  11. Effect of high-frequency excitation on natural frequencies of spinning discs

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2000-01-01

    The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural frequenc...

  12. Silicon/Porous Silicon Composite Membrane for High Sensitivity Pressure Sensor

    Science.gov (United States)

    2009-07-21

    Francia et al 2000). Stoney’s stress equation is given by equation 3.1 as Valve Vacuum Pump Pressure sensor with Si/PS composite membrane DC... Francia D G, V. La Ferrara, L. Lancellotti and L. Quercia (2000) Stress measurement technique to monitor porous silicon processing, Journal of

  13. Silicon Valley: Planet Startup : Disruptive Innovation, Passionate Entrepreneurship & High-tech Startups

    NARCIS (Netherlands)

    Ester, P.; Maas, A.

    2016-01-01

    For decades now, Silicon Valley has been the home of the future. It's the birthplace of the world's most successful high-tech companies-including Apple, Yahoo, Google, Facebook, Twitter, and many more. So what's the secret? What is it about Silicon Valley that fosters entrepreneurship and innovation

  14. Fabrication of High-Frequency pMUT Arrays on Silicon Substrates

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Zawada, Tomasz; Hansen, Karsten

    2010-01-01

    A novel technique based on silicon micromachining for fabrication of linear arrays of high-frequency piezoelectric micromachined ultrasound transducers (pMUT) is presented. Piezoelectric elements are formed by deposition of lead zirconia titanate into etched features of a silicon substrate...

  15. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  16. Silicon Avalanche Pixel Sensor for High Precision Tracking

    CERN Document Server

    D'Ascenzo, N; Moon, C S; Morsani, F; Ratti, L; Saveliev, V; Navarro, A Savoy; Xie, Q

    2013-01-01

    The development of an innovative position sensitive pixelated sensor to detect and measure with high precision the coordinates of the ionizing particles is proposed. The silicon avalanche pixel sensors (APiX) is based on the vertical integration of avalanche pixels connected in pairs and operated in coincidence in fully digital mode and with the processing electronics embedded on the chip. The APiX sensor addresses the need to minimize the material budget and related multiple scattering effects in tracking systems requiring a high spatial resolution in the presence of a large occupancy. The expected operation of the new sensor features: low noise, low power consumption and suitable radiation tolerance. The APiX device provides on-chip digital information on the position of the coordinate of the impinging charged particle and can be seen as the building block of a modular system of pixelated arrays, implementing a sparsified readout. The technological challenges are the 3D integration of the device under CMOS ...

  17. High-temperature quantum kinetic effect in silicon nanosandwiches

    Science.gov (United States)

    Bagraev, N. T.; Grigoryev, V. Yu.; Klyachkin, L. E.; Malyarenko, A. M.; Mashkov, V. A.; Romanov, V. V.; Rul, N. I.

    2017-01-01

    The negative-U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport, with the reduction of the electron-electron interaction. The aforesaid promotes also the creation of composite bosons and fermions by the capture of single magnetic flux quanta on the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of the quantum kinetic phenomena in weak magnetic fields at high-temperatures up to the room temperature. As a certain version noted above we present the first findings of the high temperature de Haas-van Alphen, 300 K, quantum Hall, 77 K, effects as well as quantum conductance staircase in the silicon sandwich structure that represents the ultra-narrow, 2 nm, p-type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n-type Si (100) surface.

  18. Twin photon pairs in a high-Q silicon microresonator

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Steven; Lu, Xiyuan [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Jiang, Wei C. [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Lin, Qiang, E-mail: qiang.lin@rochester.edu [Institute of Optics, University of Rochester, Rochester, New York 14627 (United States); Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2015-07-27

    We report the generation of high-purity twin photon pairs through cavity-enhanced non-degenerate four-wave mixing (FWM) in a high-Q silicon microdisk resonator. Twin photon pairs are created within the same cavity mode and are consequently expected to be identical in all degrees of freedom. The device is able to produce twin photons at telecommunication wavelengths with a pair generation rate as large as (3.96 ± 0.03) × 10{sup 5} pairs/s, within a narrow bandwidth of 0.72 GHz. A coincidence-to-accidental ratio of 660 ± 62 was measured, the highest value reported to date for twin photon pairs, at a pair generation rate of (2.47 ± 0.04) × 10{sup 4} pairs/s. Through careful engineering of the dispersion matching window, we have reduced the ratio of photons resulting from degenerate FWM to non-degenerate FWM to less than 0.15.

  19. Mobility and impact ionization in silicon at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Corvasce, C.

    2007-07-01

    In the field of the high-temperature modelling and simulation of semiconductor devices, most of the physical models available to date have been validated only to 400 K, in spite of the fact that the local heating during the stress event can lead to local temperatures well in excess of this limit. This work deals with the mobility and the impact ionization in silicon at high temperature. The mobility has been measured by the Hall technique up to 1000 K thanks to the use of dedicated Ti/TiN interconnections in combination with junction-free van der Pauw resistors, which are intrinsically immune of spurious thermal leakage currents. The hole and the electron impact ionization coefficients have been determined as a function of the electric field up to 673 K and 613 K, respectively, by measurements of the multiplication factor in bipolar and static induction transistors. The results collected in this work represent an extensive reference data set, which is suitable for the calibration of compact models for numerical simulation. (orig.)

  20. Composite silicone rubber of high piezoresistance repeatability filled with nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The ruthenium oxide nanoparticles with size less than 20 nm were fabricated by annealing the metallic ruthenium nanoparticles in air,which were synthesized by using the thermal reduction in the polyol solution.The rutile structure of the ruthenium oxide was proved by using transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS).The oxide has good electron conductivity. The surface of the ruthenium oxide was modified by a vinyl silane coupling agent.The assembling of the silane to the oxide surface was proved by Infrared(IR)absorption spectroscopy.By mixing the nanoparticles with poly(methylvinylsiloxane)(PMVS)silicone rubber,a composite filled with dispersive conducting phase was fabricated.The temperature dependent conductivity shows that the electron transportation through composite is mainly dominated by tunneling.The measurement of piezoresistance shows that the composite at low strain has high piezoresistance repeatability.The 3D reconstruction images of the composite filled with carbon black or ruthenium oxide show that the aggregation of the nanoparticles differs much for two composites.The narrow distribution range of the particle size was thought to be the main factor for the high piezoresistance recurrence.

  1. A Compact Cosmic Ray Telescope using Silicon Photomultipliers for use in High Schools

    Science.gov (United States)

    Castro, Luis; Elizondo, Leonardo; Shelor, Mark; Cervantes, Omar; Fan, Sewan; Ritt, Stefan

    2016-03-01

    Over the years, the QuarkNet and the LBL Cosmic Ray Project have helped trained thousands of high school students and teachers to explore cosmic ray physics. To get high school students in the Salinas, CA area also excited about cosmic rays, we constructed a cosmic ray telescope as a physics outreach apparatus. Our apparatus includes a pair of plastic scintillators coupled to silicon photomultipliers (SiPM) and a coincidence circuit board. We designed and constructed custom circuit boards for mounting the SiPM detectors, the high voltage power supplies and coincidence AND circuit. The AND logic signals can be used for triggering data acquisition devices including an oscilloscope, a waveform digitizer or an Arduino microcontroller. To properly route the circuit wire traces, the circuit boards were layout in Eagle and fabricated in-house using a circuit board maker from LPKF LASER, model Protomat E33. We used a Raspberry Pi computer to control a fast waveform sampler, the DRS4 to digitize the SiPM signal waveforms. The CERN PAW software package was used to analyze the amplitude and time distributions of SiPM detector signals. At this conference, we present our SiPM experimental setup, circuit board fabrication procedures and the data analysis work flow. AIP Megger's Award, Dept. of Ed. Title V Grant PO31S090007.

  2. High-Quality Alkyl Monolayers on Silicon Surfaces

    NARCIS (Netherlands)

    Sieval, A.B.; Linke, R.; Zuilhof, H.; Sudh"lter, E.J.R.

    2000-01-01

    Covalent attachment of functionalized monolayers onto silicon surfaces (see Figure for examples) is presented here as a strategy for surface modification. The preparation and structure of both unfunctionalized and functionalized alkyl-based monolayers are described, as are potential applications,

  3. Silicon Carbide Threads For High-Temperature Service

    Science.gov (United States)

    Sawko, Paul M.; Vasudev, Anand

    1991-01-01

    New thread material outperforms silica. Sewing threads containing silicon carbide (SiC) yarn withstand temperatures of more than 1,100 degrees C. Intended for use in stitching thermally insulating blankets.

  4. Field effect passivation of high efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Aberle, A.G. (Fraunhofer-Inst. fuer Solare Energiesysteme (ISE), Freiburg (Germany)); Glunz, S. (Fraunhofer-Inst. fuer Solare Energiesysteme (ISE), Freiburg (Germany)); Warta, W. (Fraunhofer-Inst. fuer Solare Energiesysteme (ISE), Freiburg (Germany))

    1993-03-01

    In this paper effective surface recombination velocities S[sub eff] at the rear Si-SiO[sub 2] interface of the presently best one-sun silicon solar cell structure are calculated on the basis of measured oxide parameters. A new cell design is proposed allowing for a control of the surface space charge region by a gate voltage. It is shown that the electric field introduced by the positive fixed oxide charge density typically found at thermally oxidized silicon surfaces and the favorable work function difference between the gate metal aluminum and silicon leads to a reduction of S[sub eff] to values well below 1 cm/s at AM1.5 illumination for n-type as well as p-type silicon. At low illumination levels, however, oxidized n-type silicon has much better surface passivation properties than p-type silicon due to the small hole capture cross section ([sigma][sub n]/[sigma][sub p][approx]1000 at midgap). Only at small illumination intensities for p-type substrates or in the case of poor Si-SiO[sub 2] interface quality the incorporation of a gate electrode on the rear surface is a promising tool for further reducing surface recombination losses. (orig.)

  5. Fission of highly excited nuclei investigated in complete kinematic measurements

    Directory of Open Access Journals (Sweden)

    Rodríguez-Sánchez J.L.

    2013-12-01

    Full Text Available Fission is an extremely complex mechanism that requires a dynamical approach to describe the evolution of the process in terms of intrinsic and collective excitations of the nuclear constituents. In order to determine these effects a complex experimental setup was mounted at GSI, which allowed us for the first time the full identification in charge and mass of all fission fragments thanks to a magnetic separation and the use of the inverse kinematic technique. Moreover, we also measured the neutron multiplicities and the light-charged particles emitted in coincidence with fission. These complete kinematic measurements will be used to define sensitive observables to dissipative and transient effects in fission. In this manuscript we present the first results for the total fission cross sections.

  6. Highly excited hydrogen in strong d. c. electric fields: atomic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, M.H.

    1988-03-01

    We excite atomic hydrogen from the ground state via a three-photon process to high-lying excited states in the presence of strong d.c. electric fields. The external field is used to manipulate, control, and design specific atomic structures. We can construct nearly 'one-dimensional' atoms whose electronic distributions are highly extended along the field, and which may have enormous electric dipole moments ('giant-dipole atoms').

  7. A new analytical model of high voltage silicon on insulator (SOI) thin film devices

    Institute of Scientific and Technical Information of China (English)

    Hu Sheng-Dong; Zhang Bo; Li Zhao-Ji

    2009-01-01

    A new analytical model of high voltage silicon on insulator (SOI) thin film devices is proposed, and a formula of silicon critical electric field is derived as a function of silicon film thickness by solving a 2D Poisson equation from an effective ionization rate, with a threshold energy taken into account for electron multiplying. Unlike a conventional silicon critical electric field that is constant and independent of silicon film thickness, the proposed silicon critical electric field increases sharply with silicon film thickness decreasing especially in the case of thin films, and can come to 141 V/μm at a film thickness of 0.1 μm which is much larger than the normal value of about 30 V/μm. From the proposed formula of silicon critical electric field, the expressions of dielectric layer electric field and vertical breakdown voltage (VB,V) are obtained. Based on the model, an ultra thin film can be used to enhance dielectric layer electric field and so increase vertical breakdown voltage for SOI devices because of its high silicon critical electric field, and with a dielectric layer thickness of 2 μm the vertical breakdown voltages reach 852 and 300V for the silicon film thicknesses of 0.1 and 5μm, respectively. In addition, a relation between dielectric layer thickness and silicon film thickness is obtained, indicating a minimum vertical breakdown voltage that should be avoided when an SOI device is designed. 2D simulated results and some experimental results are in good agreement with analytical results.

  8. Self-heated silicon nanowires for high performance hydrogen gas detection

    Science.gov (United States)

    Ahn, Jae-Hyuk; Yun, Jeonghoon; Moon, Dong-Il; Choi, Yang-Kyu; Park, Inkyu

    2015-03-01

    Self-heated silicon nanowire sensors for high-performance, ultralow-power hydrogen detection have been developed. A top-down nanofabrication method based on well-established semiconductor manufacturing technology was utilized to fabricate silicon nanowires in wafer scale with high reproducibility and excellent compatibility with electronic readout circuits. Decoration of palladium nanoparticles onto the silicon nanowires enables sensitive and selective detection of hydrogen gas at room temperature. Self-heating of silicon nanowire sensors allows us to enhance response and recovery performances to hydrogen gas, and to reduce the influence of interfering gases such as water vapor and carbon monoxide. A short-pulsed heating during recovery was found to be effective for additional reduction of operation power as well as recovery characteristics. This self-heated silicon nanowire gas sensor will be suitable for ultralow-power applications such as mobile telecommunication devices and wireless sensing nodes.

  9. Stability of high temperature chemical vapor deposited silicon based structures on metals for solar conversion.

    Science.gov (United States)

    Gelard, Isabelle; Chichignoud, Guy; Blanquet, Elisabeth; Xuan, Hoan Nguyen; Cruz, Ruben; Jimenez, Carmen; Sarigiannidou, Eirini; Zaidat, Kader

    2011-09-01

    Highly crystallized silicon layers were grown on metal sheets at high temperature (950 degrees C) by thermal CVD from silane. An intermediate buffer layer was mandatory to prevent interdiffusion and silicide formation but also to compensate lattice parameters and thermal expansion coefficients mismatches between metal and silicon and ideally transfer some crystalline properties (grain size, texture) from the substrate to the silicon layer. After a thermodynamic study, aluminum nitride or titanium nitride diffusion barrier layers were selected and processed by CVD. The structure and the interfaces stabilities of these silicon/nitride/metal stacks were studied by field effect gun scanning and transmission electron microscopy, X-ray diffraction, Raman and energy dispersive X-ray spectroscopy. As a result, TiN deposited by CVD appears to be an efficient material as a buffer layer between steel and silicon.

  10. Silicon photomultipliers. Properties and applications in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Feege, Nils

    2008-12-15

    Silicon Photomultipliers (SiPMs) are novel semiconductor-based photodetectors operated in Geiger mode. Their response is not linear, and both their gain and their photon detection efficiency depend on the applied bias voltage and on temperature. The CALICE collaboration investigates several technology options for highly granular calorimeters for the future ILC. The prototype of a scintillator-steel sampling calorimeter with analogue readout for hadrons constructed at DESY and successfully operated in testbeam experiments at DESY, CERN and FNAL by this collaboration is the first large scale application for 7608 SiPMs developed by MEPhI. This thesis deals with properties of the SiPMs used in the calorimeter prototype. The effective numer of pixels of the SiPMs, which influences their saturation behaviour, is extracted from in situ measurements and compared to results obtained for the bare SiPMs. In addition, the effects of temperature and voltage changes on the parameters necessary for the calibration of the SiPMs and the detector are determined. Methods which allow for correcting or compensating these effects are evaluated. An approach to improve the absolute calibration of the temperature sensors in the prototype is described and temperature profiles are studied. Finally, a procedure to adjust the light yield of the cells of the prototype is presented. The results of the application of this procedure during the commissioning of the detector at FNAL are discussed. (orig.)

  11. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  12. Developing a High Thermal Conductivity Fuel with Silicon Carbide Additives

    Energy Technology Data Exchange (ETDEWEB)

    baney, Ronald; Tulenko, James

    2012-11-20

    The objective of this research is to increase the thermal conductivity of uranium oxide (UO{sub 2}) without significantly impacting its neutronic properties. The concept is to incorporate another high thermal conductivity material, silicon carbide (SiC), in the form of whiskers or from nanoparticles of SiC and a SiC polymeric precursor into UO{sub 2}. This is expected to form a percolation pathway lattice for conductive heat transfer out of the fuel pellet. The thermal conductivity of SiC would control the overall fuel pellet thermal conductivity. The challenge is to show the effectiveness of a low temperature sintering process, because of a UO{sub 2}-SiC reaction at 1,377°C, a temperature far below the normal sintering temperature. Researchers will study three strategies to overcome the processing difficulties associated with pore clogging and the chemical reaction of SiC and UO{sub 2} at temperatures above 1,300°C:

  13. Towards high frequency heterojunction transistors: Electrical characterization of N-doped amorphous silicon-graphene diodes

    Science.gov (United States)

    Strobel, C.; Chavarin, C. A.; Kitzmann, J.; Lupina, G.; Wenger, Ch.; Albert, M.; Bartha, J. W.

    2017-06-01

    N-type doped amorphous hydrogenated silicon (a-Si:H) is deposited on top of graphene (Gr) by means of very high frequency (VHF) and radio frequency plasma-enhanced chemical vapor deposition (PECVD). In order to preserve the structural integrity of the monolayer graphene, a plasma excitation frequency of 140 MHz was successfully applied during the a-Si:H VHF-deposition. Raman spectroscopy results indicate the absence of a defect peak in the graphene spectrum after the VHF-PECVD of (n)-a-Si:H. The diode junction between (n)-a-Si:H and graphene was characterized using temperature dependent current-voltage (IV) and capacitance-voltage measurements, respectively. We demonstrate that the current at the (n)-a-Si:H-graphene interface is dominated by thermionic emission and recombination in the space charge region. The Schottky barrier height (qΦB), derived by temperature dependent IV-characteristics, is about 0.49 eV. The junction properties strongly depend on the applied deposition method of (n)-a-Si:H with a clear advantage of the VHF(140 MHz)-technology. We have demonstrated that (n)-a-Si:H-graphene junctions are a promising technology approach for high frequency heterojunction transistors.

  14. Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells.

    Science.gov (United States)

    Zhang, Y; Jia, B; Gu, M

    2016-03-21

    Designing effective light-trapping structures for the insufficiently absorbed long-wavelength light in ultrathin silicon solar cells represents a key challenge to achieve low cost and highly efficient solar cells. We propose a hybrid structure based on the biomimetic silicon moth-eye structure combined with Ag nanoparticles to achieve advanced light trapping in 2 μm thick crystalline silicon solar cells approaching the Yablonovitch limit. By synergistically using the Mie resonances of the silicon moth-eye structure and the plasmonic resonances of the Ag nanoparticles, the integrated absorption enhancement achieved across the usable solar spectrum is 69% compared with the cells with the conventional light trapping design. This is significantly larger than both the silicon moth-eye structure (58%) and Ag nanoparticle (41%) individual light trapping. The generated photocurrent in the 2 μm thick silicon layer is as large as 33.4 mA/cm2, which is equivalent to that generated by a 30 μm single-pass absorption in the silicon. The research paves the way for designing highly efficient light trapping structures in ultrathin silicon solar cells.

  15. Small signal modeling of high electron mobility transistors on silicon and silicon carbide substrate with consideration of substrate loss mechanism

    Science.gov (United States)

    Sahoo, A. K.; Subramani, N. K.; Nallatamby, J. C.; Sylvain, L.; Loyez, C.; Quere, R.; Medjdoub, F.

    2016-01-01

    In this paper, we present a comparative study on small-signal modeling of AlN/GaN/AlGaN double hetero-structure high electron mobility transistors (HEMTs) grown on silicon (Si) and silicon carbide (SiC) substrate. The traditional small signal equivalent circuit model is modified to take into account the transmission loss mechanism of coplanar waveguide (CPW) line which cannot be neglected at high frequencies. CPWs and HEMTs-on-AlN/GaN/AlGaN epitaxial layers are fabricated on both the Si and SiC substrates. S-parameter measurements at room temperature are performed over the frequency range from 0.5 GHz to 40 GHz. Transmission loss of CPW lines are modeled with a distributed transmission line (TL) network and an equivalent circuit model is included in the small-signal transistor model topology. Measurements and simulations are compared and found to be in good agreement.

  16. High-performance fused indium gallium arsenide/silicon photodiode

    Science.gov (United States)

    Kang, Yimin

    Modern long haul, high bit rate fiber-optic communication systems demand photodetectors with high sensitivity. Avalanche photodiodes (APDs) exhibit superior sensitivity performance than other types of photodetectors by virtual of its internal gain mechanism. This dissertation work further advances the APD performance by applying a novel materials integration technique. It is the first successful demonstration of wafer fused InGaAs/Si APDs with low dark current and low noise. APDs generally adopt separate absorption and multiplication (SAM) structure, which allows independent optimization of materials properties in two distinct regions. While the absorption material needs to have high absorption coefficient in the target wavelength range to achieve high quantum efficiency, it is desirable for the multiplication material to have large discrepancy between its electron and hole ionization coefficients to reduce noise. According to these criteria, InGaAs and Si are the ideal materials combination. Wafer fusion is the enabling technique that makes this theoretical ideal an experimental possibility. APDs fabricated on the fused InGaAs/Si wafer with mesa structure exhibit low dark current and low noise. Special device fabrication techniques and high quality wafer fusion reduce dark current to nano ampere level at unity gain, comparable to state-of-the-art commercial III/V APDs. The small excess noise is attributed to the large difference in ionization coefficients between electrons and holes in silicon. Detailed layer structure designs are developed specifically for fused InGaAs/Si APDs based on principles similar to those used in traditional InGaAs/InP APDs. An accurate yet straightforward technique for device structural parameters extraction is also proposed. The extracted results from the fabricated APDs agree with device design parameters. This agreement also confirms that the fusion interface has negligible effect on electric field distributions for devices fabricated

  17. High-frequency and high-quality silicon carbide optomechanical microresonators

    OpenAIRE

    Xiyuan Lu; Lee, Jonathan Y.; Qiang Lin

    2015-01-01

    Silicon carbide (SiC) exhibits excellent material properties attractive for broad applications. We demonstrate the first SiC optomechanical microresonators that integrate high mechanical frequency, high mechanical quality, and high optical quality into a single device. The radial-breathing mechanical mode has a mechanical frequency up to 1.69 GHz with a mechanical Q around 5500 in atmosphere, which corresponds to a mechanical f-Q product as high as 9.47x10^12 Hz. The strong optomechanical cou...

  18. Synthesis and Characterization of Mesoporous Silicon Oxynitride MCM-41 with High Nitrogen Content

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cunman; XU Zheng; LIU Qian

    2005-01-01

    Mesoporous silicon oxynitrides MCM-41 were synthesized successfully. The resulting materials not only have high nitrogen contents and good structural characteristics of MCM-41 (high surface area, narrow pore size distribution and good order), but also are amorphous. The composition and structure of the materials were investigated by CNH element analysis, XPS, Si MAS NMR, XRD, HRTEM and N2 sorption, respectively. Mesoporous silicon oxynitrides MCM-41 with a high nitrogen content are still non-crystal (amorphous).

  19. Proceedings of the 1984 workshop on high-energy excitations in condensed matter. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Silver, R.N. (comp.)

    1984-12-01

    This volume covers electronic excitations, momentum distributions, high energy photons, and a wrap-up session. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  20. High impact ionization rate in silicon by sub-picosecond THz electric field pulses (Conference Presentation)

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Hirori, Hideki

    2017-01-01

    Summary form only given. Metallic antenna arrays fabricated on high resistivity silicon are used to localize and enhance the incident THz field resulting in high electric field pulses with peak electric field strength reaching several MV/cm on the silicon surface near the antenna tips. In such high...... electric field strengths high density of carriers are generated in silicon through impact ionization process. The high density of generated carriers induces a change of refractive index in silicon. By measuring the change of reflectivity of tightly focused 800 nm light, the local density of free carriers...... near the antenna tips is measured. Using the NIR probing technique, we observed that the density of carriers increases by over 8 orders of magnitude in a time duration of approximately 500 fs with an incident THz pulse of peak electric field strength 700 kV/cm. This shows that a single impact...

  1. Flexible Thermoelectric Generators on Silicon Fabric

    KAUST Repository

    Sevilla, Galo T.

    2012-11-01

    In this work, the development of a Thermoelectric Generator on Flexible Silicon Fabric is explored to extend silicon electronics for flexible platforms. Low cost, easily deployable plastic based flexible electronics are of great interest for smart textile, wearable electronics and many other exciting applications. However, low thermal budget processing and fundamentally limited electron mobility hinders its potential to be competitive with well established and highly developed silicon technology. The use of silicon in flexible electronics involve expensive and abrasive materials and processes. In this work, high performance flexible thermoelectric energy harvesters are demonstrated from low cost bulk silicon (100) wafers. The fabrication of the micro- harvesters was done using existing silicon processes on silicon (100) and then peeled them off from the original substrate leaving it for reuse. Peeled off silicon has 3.6% thickness of bulk silicon reducing the thermal loss significantly and generating nearly 30% more output power than unpeeled harvesters. The demonstrated generic batch processing shows a pragmatic way of peeling off a whole silicon circuitry after conventional fabrication on bulk silicon wafers for extremely deformable high performance integrated electronics. In summary, by using a novel, low cost process, this work has successfully integrated existing and highly developed fabrication techniques to introduce a flexible energy harvester for sustainable applications.

  2. Photoionization study of doubly-excited helium at ultra-high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kaindl, G.; Schulz, K.; Domke, M. [Freie Universitaet Berlin (Germany)] [and others

    1997-04-01

    Ever since the pioneering work of Madden & Codling and Cooper, Fano & Prats on doubly-excited helium in the early sixties, this system may be considered as prototypical for the study of electron-electron correlations. More detailed insight into these states could be reached only much later, when improved theoretical calculations of the optically-excited {sup 1}P{sup 0} double-excitation states became available and sufficiently high energy resolution ({delta}E=4.0 meV) was achieved. This allowed a systematic investigation of the double-excitation resonances of He up to excitation energies close to the double-ionization threshold, I{sub infinity}=79.003 eV, which stimulated renewed theoretical interest into these correlated electron states. The authors report here on striking progress in energy resolution in this grazing-incidence photon-energy range of grating monochromators and its application to hitherto unobservable states of doubly-excited He. By monitoring an extremely narrow double-excitation resonance of He, with a theoretical lifetime width of less than or equal to 5 {mu}eV, a resolution of {delta}E=1.0 meV (FWHM) at 64.1 eV could be achieved. This ultra-high spectral resolution, combined with high photon flux, allowed the investigation of new Rydberg resonances below the N=3 ionization threshold, I{sub 3}, as well as a detailed comparison with ab-initio calculations.

  3. Stable passivations for high-efficiency silicon solar cells

    Science.gov (United States)

    Gruenbaum, P. E.; Gan, J. Y.; King, R. R.; Swanson, R. M.

    Initial designs of single-crystal silicon point-contact solar cells have shown a degradation in their efficiency after being exposed to concentrated sunlight. The main mechanism appears to be an increase in recombination centers at the Si/SiO2 interface due to ultraviolet light photoinjecting electrons from the silicon conduction band into the silicon dioxide that passivates the cell's front surface. Trichloroethane, texturization, and aluminum during the forming gas anneal all contribute to the instability of the interface. A reasonably good resistance to UV light can be obtained by putting a phosphorus diffusion at the surface and can be improved further by stripping off the deposited oxide after the diffusion and regrowing a dry thermal oxide. A second technique, which utilizes ultrathin oxides and thin polysilicon films and can yield stable point-contact solar cells that are more efficient at higher concentrations, is also described.

  4. High quality 3D shapes by silicon anodization

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Alexey; Kovacs, Andras; Mescheder, Ulrich [Institute for Applied Research and Faculty of Computer and Electrical Engineering, Hochschule Furtwangen University, Robert-Gerwig-Platz 1, 78120 Furtwangen (Germany)

    2011-06-15

    In this paper some process considerations and optimizations of anodization for three-dimensional (3D)-structuring of silicon are discussed. For the shape controlling of etched form different approaches, such as frontside masking design, local backside doping and surface pre-structuring are presented. Influences of the opening size and etch depth on the shape of the etching form are investigated. The surface quality of the resulting 3D structures is critically dependent on the specific process parameters and process flow. Best surface quality was obtained for electropolishing in 7 wt.% hydrofluoric acid (HF) at applied current densities of 100-300 mA/cm{sup 2}. Application of 3D silicon forms for injection moulding is demonstrated and further implementations of the process for optical and fluidic devices are discussed. 3D silicon shapes fabricated using anodization process with local backside doping design. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Collective and single-particle states at high excitation energy

    NARCIS (Netherlands)

    van den Berg, AM; Akimune, H; Daito, [No Value; Fujimura, H; Fujiwara, M; Fujita, Y; Harakeh, MN; Ihara, F; Inomata, T; Ishibashi, K; Janecke, J; Kalantar-Nayestanaki, N; Laurent, H; Lhenry, [No Value; van der Molen, HKT; O'Donnell, T; Rodin, VA; Tamii, A; Toyokawa, H; Urin, MH; Yoshida, H; Yosoi, M

    2001-01-01

    Damping of high-lying single-particle states was investigated by the study of decay by proton emission from high-lying states in Nb-91, populated by the Zr-90(alpha, t) reaction at E-alpha = 180 MeV. In addition to decay to the ground state of Zr-90, semi-direct decay was observed to the low-lying (

  6. Intermittent Very High Frequency Plasma Deposition on Microcrystalline Silicon Solar Cells Enabling High Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    Mitsuoki Hishida

    2016-01-01

    Full Text Available Stopping the plasma-enhanced chemical vapor deposition (PECVD once and maintaining the film in a vacuum for 30 s were performed. This was done several times during the formation of a film of i-layer microcrystalline silicon (μc-Si:H used in thin-film silicon tandem solar cells. This process aimed to reduce defect regions which occur due to collision with neighboring grains as the film becomes thicker. As a result, high crystallinity (Xc of μc-Si:H was obtained. Eventually, a solar cell using this process improved the conversion efficiency by 1.3% (0.14 points, compared with a normal-condition cell. In this paper, we propose an easy method to improve the conversion efficiency with PECVD.

  7. Dirac Coupled Channel Analyses of the high-lying excited states at $^{22}$Ne(p,p$'$)$^{22}$Ne

    CERN Document Server

    Shim, Sugie

    2015-01-01

    Dirac phenomenological coupled channel analyses are performed using an optical potential model for the high-lying excited vibrational states at 800 MeV unpolarized proton inelastic scatterings from $^{22}$Ne nucleus. Lorentz-covariant scalar and time-like vector potentials are used as direct optical potentials and the first-order vibrational collective model is used for the transition optical potentials to describe the high-lying excited vibrational collective states. The complicated Dirac coupled channel equations are solved phenomenologically using a sequential iteration method by varying the optical potential and the deformation parameters. Relativistic Dirac coupled channel calculations are able to describe the high-lying excited states of the vibrational bands in $^{22}$Ne clearly better than the nonrelativistic coupled channel calculations. The channel-coupling effects of the multistep process for the excited states of the vibrational bands are investigated. The deformation parameters obtained from the ...

  8. Electrical properties of as-grown and proton-irradiated high purity silicon

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Jerzy, E-mail: krupka@imio.pw.edu.pl [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Karcz, Waldemar [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna (Russian Federation); Kamiński, Paweł [Institute of Electronic Materials Technology, Wólczyńska 13, 301-919 Warsaw (Poland); Jensen, Leif [Topsil Semiconductor Materials A/S, Siliciumvej 1, DK-3600 Frederikssund (Denmark)

    2016-08-01

    The complex permittivity of as-grown and proton-irradiated samples of high purity silicon obtained by the floating zone method was measured as a function of temperature at a few frequencies in microwave spectrum by employing the quasi TE{sub 011} and whispering gallery modes excited in the samples under test. The resistivity of the samples was determined from the measured imaginary part of the permittivity. The resistivity was additionally measured at RF frequencies employing capacitive spectroscopy as well as in a standard direct current experiment. The sample of as-grown material had the resistivity of ∼85 kΩ cm at room temperature. The sample irradiated with 23-MeV protons had the resistivity of ∼500 kΩ cm at 295 K and its behavior was typical of the intrinsic material at room and at elevated temperatures. For the irradiated sample, the extrinsic conductivity region is missing and at temperatures below 250 K hopping conductivity occurs. Thermal cycle hysteresis of the resistivity for the sample of as-grown material is observed. After heating and subsequent cooling of the sample, its resistivity decreases and then slowly (∼50 h) returns to the initial value.

  9. The Silicon Valley Eco System. High-energetic in many ways; Het Silicon Valley Eco Systeem: hoogenergetisch in vele opzichten

    Energy Technology Data Exchange (ETDEWEB)

    Van den Heuvel, J.

    2012-04-15

    The highly commended Silicon Valley Eco System is bubbling with energy with regard to the subjects that are focused upon, including sustainable energy, or the widely available expertise that is needed for the developments, good ideas, capital and optimism, fed by frequent examples of extraordinarily successful companies. The sheer endlessness of network opportunities joins all these elements frequently. This article addresses several noteworthy interactions in the field of sustainable energy over the last period. [Dutch] Het veel geroemde Silicon Valley eco systeem bruist van energie in de vorm van de onderwerpen waar men zich op richt, waaronder duurzame energie, of de ruim aanwezige expertise die nodig is voor de ontwikkelingen, goede ideeen, kapitaal, en optimisme, gevoed door regelmatige voorbeelden van buitensporig succesvolle bedrijven. De schier oneindige netwerkmogelijkheden brengen al deze elementen met grote regelmaat bij elkaar. In dit artikel volgen enkele vermeldenswaardige interacties op het vlak van duurzame energie uit de afgelopen periode.

  10. Thermal Transport in Silicon Nanowires at High Temperature up to 700 K.

    Science.gov (United States)

    Lee, Jaeho; Lee, Woochul; Lim, Jongwoo; Yu, Yi; Kong, Qiao; Urban, Jeffrey J; Yang, Peidong

    2016-07-13

    Thermal transport in silicon nanowires has captured the attention of scientists for understanding phonon transport at the nanoscale, and the thermoelectric figure-of-merit (ZT) reported in rough nanowires has inspired engineers to develop cost-effective waste heat recovery systems. Thermoelectric generators composed of silicon target high-temperature applications due to improved efficiency beyond 550 K. However, there have been no studies of thermal transport in silicon nanowires beyond room temperature. High-temperature measurements also enable studies of unanswered questions regarding the impact of surface boundaries and varying mode contributions as the highest vibrational modes are activated (Debye temperature of silicon is 645 K). Here, we develop a technique to investigate thermal transport in nanowires up to 700 K. Our thermal conductivity measurements on smooth silicon nanowires show the classical diameter dependence from 40 to 120 nm. In conjunction with Boltzmann transport equation, we also probe an increasing contribution of high-frequency phonons (optical phonons) in smooth silicon nanowires as the diameter decreases and the temperature increases. Thermal conductivity of rough silicon nanowires is significantly reduced throughout the temperature range, demonstrating a potential for efficient thermoelectric generation (e.g., ZT = 1 at 700 K).

  11. Effects of hemodiafiltration and high flux hemodialysis on nerve excitability in end-stage kidney disease.

    Directory of Open Access Journals (Sweden)

    Ria Arnold

    Full Text Available OBJECTIVES: Peripheral neuropathy is the most common neurological complication in end-stage kidney disease. While high flux hemodialysis (HFHD and hemodiafiltration (HDF have become the preferred options for extracorporeal dialysis therapy, the effects of these treatments on nerve excitability have not yet been examined. METHODS: An observational proof-of-concept study of nerve excitability and neuropathy was undertaken in an incident dialysis population (n = 17 receiving either HFHD or HDF. Nerve excitability techniques were utilised to assess nerve ion channel function and membrane potential, in conjunction with clinical assessment and standard nerve conduction studies. A mathematical model of axonal excitability was used to investigate the underlying basis of the observed changes. Nerve excitability was recorded from the median nerve, before, during and after a single dialysis session and correlated with corresponding biochemical markers. Differences in nerve excitability were compared to normal controls with longitudinal follow-up over an 18 month period. RESULTS: Nerve excitability was performed in patient cohorts treated with either HFHD (n = 9 or online HDF (n = 8, with similar neuropathy status. Nerve excitability measures in HDF-treated patients were significantly closer to normal values compared to HFHD patients obtained over the course of a dialysis session (p<0.05. Longitudinal studies revealed stability of nerve excitability findings, and thus maintenance of improved nerve function in the HDF group. CONCLUSIONS: This study has provided evidence that nerve excitability in HDF-treated patients is significantly closer to normal values prior to dialysis, across a single dialysis session and at longitudinal follow-up. These findings offer promise for the management of neuropathy in ESKD and should be confirmed in randomised trials.

  12. State-selective high-energy excitation of nuclei by resonant positron annihilation

    Directory of Open Access Journals (Sweden)

    Nikolay A. Belov

    2015-02-01

    Full Text Available In the annihilation of a positron with a bound atomic electron, the virtual γ photon created may excite the atomic nucleus. We put forward this effect as a spectroscopic tool for an energy-selective excitation of nuclear transitions. This scheme can efficiently populate nuclear levels of arbitrary multipolarities in the MeV regime, including giant resonances and monopole transitions. In certain cases, it may have higher cross sections than the conventionally used Coulomb excitation and it can even occur with high probability when the latter is energetically forbidden.

  13. Silicon solar cell monitors high temperature furnace operation

    Science.gov (United States)

    Zellner, G. J.

    1968-01-01

    Silicon solar cell, attached to each viewpoint, monitors that incandescent emission from the hot interior of a furnace without interfering with the test assembly or optical pyrometry during the test. This technique can provide continuous indication of hot spots or provide warning of excessive temperatures in cooler regions.

  14. Experimental study of highly excited even-parity bound states of the Sm atom

    Institute of Scientific and Technical Information of China (English)

    Qin Wen-Jie; Dai Chang-Jian; Xiao Ying; Zhao Hong-Ying

    2009-01-01

    In this work,a three-step autoionization detection method and direct photoionization detection method are employed to measure the highly excited even-parity states of the Sm atom in the energy region between 36360 cm-1 and 40800 cm-1.Comparisons between the results from the two detection techniques enable us to discriminate the Rydberg states from the valence states in the same energy region with the information of level energies,possible J values and their relative intensities.Furthermore,in the experiment two different excitation schemes are designed to obtain the spectra of highly excited even-purity states of the Sm atom.With a detailed analysis of the experimental data,this work not only confirms the results about many spectral data from the literature with different excitation schemes,but also reports new spectral data on 29 Rydberg states and 23 valence states.

  15. Synthesis of Silicon Nitride and Silicon Carbide Nanocomposites through High Energy Milling of Waste Silica Fume for Structural Applications

    Science.gov (United States)

    Suri, Jyothi

    Nanocomposites have been widely used in a multitude of applications in electronics and structural components because of their improved mechanical, electrical, and magnetic properties. Silicon nitride/Silicon carbide (Si 3N4/SiC) nanocomposites have been studied intensively for low and high temperature structural applications, such as turbine and automobile engine components, ball bearings, turbochargers, as well as energy applications due to their superior wear resistance, high temperature strength, high oxidation resistance and good creep resistance. Silica fume is the waste material produced during the manufacture of silicon and ferro-silicon alloys, and contains 94 to 97 wt.% SiO2. In the present dissertation, the feasibility of using waste silica fume as the raw material was investigated to synthesize (I) advanced nanocomposites of Si3N4/SiC, and (2) porous silicon carbide (SiC) for membrane applications. The processing approach used to convert the waste material to advanced ceramic materials was based on a novel process called, integrated mechanical and thermal activation process (IMTA) process. In the first part of the dissertation, the effect of parameters such as carbothermic nitridation and reduction temperature and the graphite concentration in the starting silica fume plus graphite mixture, were explored to synthesize nanocomposite powders with tailored amounts of Si3N4 and SiC phases. An effective way to synthesize carbon-free Si3N 4/SiC composite powders was studied to provide a clear pathway and fundamental understanding of the reaction mechanisms. Si3N4/SiC nanocomposite powders were then sintered using two different approaches, based on liquid phase sintering and spark plasma sintering processes, with Al 2O3 and Y2O3 as the sintering aids. The nanocomposites were investigated for their densification behavior, microstructure, and mechanical properties. Si3N4/SiC nanocomposites thus obtained were found to possess superior mechanical properties at much

  16. A semiconductor laser excitation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Kaadzunari, O.; Masaty, K.

    1984-03-27

    A semiconductor laser excitation circuit is patented that is designed for operation in a pulsed mode with a high pulse repetition frequency. This circuit includes, in addition to a semiconductor laser, a high speed photodetector, a reference voltage source, a comparator, and a pulse oscillator and modulator. If the circuit is built using standard silicon integrated circuits, its speed amounts to several hundred megahertz, if it is constructed using gallium arsenide integrated circuits, its speed is several gigahertz.

  17. Ultra-high-speed wavelength conversion in a silicon photonic chip

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael

    2011-01-01

    We have successfully demonstrated all-optical wavelength conversion of a 640-Gbit/s line-rate return-to-zero differential phase-shift keying (RZ-DPSK) signal based on low-power four wave mixing (FWM) in a silicon photonic chip with a switching energy of only ~110 fJ/bit. The waveguide dispersion...... of the silicon nanowire is nano-engineered to optimize phase matching for FWM and the switching power used for the signal processing is low enough to reduce nonlinear absorption from twophoton- absorption (TPA). These results demonstrate that high-speed wavelength conversion is achievable in silicon chips...

  18. Fully-depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Stephen E.; Groom, Donald E.; Palaio, Nick P.; Stover, Richard J.; Wei, Mingzhi

    2002-03-28

    Charge-coupled devices (CCD's) have been fabricated on high-resistivity silicon. The resistivity, on the order of 10,000 {Omega}-cm, allows for depletion depths of several hundred microns. Fully-depleted, back-illuminated operation is achieved by the application of a bias voltage to a ohmic contact on the wafer back side consisting of a thin in-situ doped polycrystalline silicon layer capped by indium tin oxide and silicon dioxide. This thin contact allows for good short wavelength response, while the relatively large depleted thickness results in good near-infrared response.

  19. Fabrication of novel AFM probe with high-aspect-ratio ultra-sharp three-face silicon nitride tips

    NARCIS (Netherlands)

    Vermeer, Rolf; Berenschot, Erwin; Sarajlic, Edin; Tas, Niels; Jansen, Henri

    2014-01-01

    In this paper we present the wafer-scale fabrication of molded AFM probes with high aspect ratio ultra-sharp three-plane silicon nitride tips. Using (111) silicon wafers a dedicated process is developed to fabricate molds in the silicon wafer that have a flat triangular bottom surface enclosed by th

  20. Evolution of arsenic in high fluence plasma immersion ion implanted silicon : Behavior of the as-implanted surface

    NARCIS (Netherlands)

    Vishwanath, V.; Demenev, E.; Giubertoni, D.; Vanzetti, L.; Koh, A. L.; Steinhauser, G.; Pepponi, G.; Bersani, M.; Meirer, F.; Foad, M. A.

    2015-01-01

    High fluence (>1015 ions/cm2) low-energy (3 + on (1 0 0) silicon was investigated, with the focus on stability and retention of the dopant. At this dose, a thin (∼3 nm) amorphous layer forms at the surface, which contains about 45% arsenic (As) in a silicon and oxygen matrix. The presence of silicon

  1. Evolution of arsenic in high fluence plasma immersion ion implanted silicon : Behavior of the as-implanted surface

    NARCIS (Netherlands)

    Vishwanath, V.; Demenev, E.; Giubertoni, D.; Vanzetti, L.; Koh, A. L.; Steinhauser, G.; Pepponi, G.; Bersani, M.; Meirer, F.; Foad, M. A.

    2015-01-01

    High fluence (>1015 ions/cm2) low-energy (3 + on (1 0 0) silicon was investigated, with the focus on stability and retention of the dopant. At this dose, a thin (∼3 nm) amorphous layer forms at the surface, which contains about 45% arsenic (As) in a silicon and oxygen matrix. The presence of silicon

  2. Extremely high Q -factor metamaterials due to anapole excitation

    Science.gov (United States)

    Basharin, Alexey A.; Chuguevsky, Vitaly; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N.

    2017-01-01

    We have designed and fabricated a metamaterial consisting of planar metamolecules which exhibit unusual, almost perfect anapole behavior in the sense that the electric dipole radiation is almost canceled by the toroidal dipole one, producing thus an extremely high Q -factor at the resonance frequency. Thus we have demonstrated theoretically and experimentally that metamaterials approaching ideal anapole behavior have very high Q -factor. The size of the system, at the millimeter range, and the parasitic magnetic quadrupole radiation are the factors limiting the size of the Q -factor. In spite of the very low radiation losses the estimated local fields at the metamolecules are extremely high, of the order of 104 higher than the external incoming field.

  3. Extremely High Q-factor metamaterials due to Anapole Excitation

    CERN Document Server

    Basharin, Alexey A; Volsky, Nikita; Kafesaki, Maria; Economou, Eleftherios N

    2016-01-01

    We demonstrate that ideal anapole metamaterials have infinite Q-factor. We have designed and fabricated a metamaterial consisting of planar metamolecules which exhibit anapole behavior in the sense that the electric dipole radiation is almost cancelled by the toroidal dipole one, producing thus an extremely high Q-factor at the resonance frequency. The size of the system, at the mm range, and the parasitic magnetic quadrupole radiation are the factors limiting the size of the Q-factor. In spite of the very low radiation losses the local fields at the metamolecules are extremely high, of the order of higher than the external incoming field.

  4. Polarization and dissociation of a high energy photon-excited state in conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-xue, E-mail: sps_lixx@ujn.edu.cn

    2015-02-20

    We use the tight-binding Su–Schrieffer–Heeger model for the one-dimensional conjugated polymers to explore the static polarization behavior of a high energy photon-excited state under the electric field. An obvious reverse polarization is obtained although the electric field is weak. With the increase of field strength, the degree of polarization increases first and then decreases. When the electric field is strong enough, the excited state is dissociated into the polaron pair. In addition, the effects of electron–electron interaction and interchain coupling are also discussed. The results indicate that the electron–electron interaction could weaken the reverse polarization of the high energy photon-excited state, which tends to be dissociated into a high-energy exciton and a pair of solitons with the including of interchain coupling. - Highlights: • We explore the polarization of a high energy photon-excited state in polymers. • An obvious reverse polarization under the moderate electric field is obtained. • High energy photon-excited state is dissociated into polaron pair at strong field. • Increasing electron–electron interaction will weaken the reverse polarization. • Interchain coupling induces dissociation into high-energy exciton and solitons.

  5. Research on the Fe-silicon nitride material self-producing N2 at high temperature

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Fe-silicon nitride synthesized by flashing combustion process was studied to determine the reaction temperature between Fe and silicon nitride, the account of N2 given out in the course of the reaction, and the change of the microstructure during calcination. The results showed that at 1127.2℃ the Fe-silicon nitride self-reacts and releases N2 and under 101.3 kPa the volume of N2 given out in the course of the reaction is 20 times more than that of the starting material. N2 is produced quickly, and completes in several decade seconds. With the producing of N2, the structure of Silicon Nitride around Fe becomes loose and porous, or cracks are formed by the reaction between Fe and silicon nitride. So if it is made use of that Fe-silicon nitride self-producing N2 at the high temperature, the performance of the material on a base of Fe-silicon nitride could be greatly improved.

  6. High temperature mechanical performance of a hot isostatically pressed silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, A.A.; Ferber, M.K.; Jenkins, M.G.; Lin, C.K.J. [and others

    1996-01-01

    Silicon nitride ceramics are an attractive material of choice for designers and manufacturers of advanced gas turbine engine components for many reasons. These materials typically have potentially high temperatures of usefulness (up to 1400{degrees}C), are chemically inert, have a relatively low specific gravity (important for inertial effects), and are good thermal conductors (i.e., resistant to thermal shock). In order for manufacturers to take advantage of these inherent properties of silicon nitride, the high-temperature mechanical performance of the material must first be characterized. The mechanical response of silicon nitride to static, dynamic, and cyclic conditions at elevated temperatures, along with reliable and representative data, is critical information that gas turbine engine designers and manufacturers require for the confident insertion of silicon nitride components into gas turbine engines. This final report describes the high-temperature mechanical characterization and analyses that were conducted on a candidate structural silicon nitride ceramic. The high-temperature strength, static fatigue (creep rupture), and dynamic and cyclic fatigue performance were characterized. The efforts put forth were part of Work Breakdown Structure Subelement 3.2.1, {open_quotes}Rotor Data Base Generation.{close_quotes} PY6 is comparable to other hot isostatically pressed (HIPed) silicon nitrides currently being considered for advanced gas turbine engine applications.

  7. Plasma undulator excited by high-order mode lasers

    Science.gov (United States)

    Wang, Jingwei; Rykovanov, Sergey

    2016-10-01

    A laser-created plasma undulator together with a laser-plasma accelerator makes it possible to construct an economical and extremely compact XFEL. However, the spectrum spread of the radiation from the current plasma undulators is too large for XFELs, because of the different values of strength parameters. The phase slippage between the electrons and the wakefield also limits the number of the electron oscillation cycles, thus reduces the performance of XFEL. Here we proposed a phase-locked plasma undulator created by high-order mode lasers. The modulating field is uniform along the transverse direction by choosing appropriate laser intensities of the modes, which enables all the electrons oscillate with the same strength parameter. The plasma density is tapered to lock the phase between the electrons and the wakefield, which signally increases the oscillation cycles. As a result, X-ray radiation with high brightness and narrow bandwidth is generated by injecting a high-energy electron beam into the novel plasma undulator. The beam loading limit indicates that the current of the electron beam could be hundreds of Ampere. These properties imply that such a plasma undulator may have great potential in compact XFELs. This work was supported by the Helmholtz Association (Young Investigator's Group No. VH-NG-1037).

  8. Controlling the toroidal excitations in metamaterials for high-Q response

    CERN Document Server

    Fan, Yuancheng; Fu, Quanhong; Wei, Zeyong; Li, Hongqiang

    2016-01-01

    The excitation of toroidal multipoles in metamaterials was investigated for high-Q response at a subwavelength scale. In this study, we explored the optimization of toroidal excitations in a planar metamaterial comprised of asymmetric split ring resonators (ASRRs). It was found that the scattering power of toroidal dipole can be remarkably strengthened by adjusting the characteristic parameter of ASRRs: asymmetric factor. Interestingly, the improvement in toroidal excitation accompanies increasing of the Q-factor of the toroidal metamaterial, it is shown that both the scattering power of toroidal dipole and the Q-factor were increased near one order by changing the asymmetric factor of ASRRs. The optimization in excitation of toroidal multipoles provide opportunity to further increase the Q-factor of toroidal metamaterial and boost light-matter interactions at the subwavelength scale for potential applications in low-power nonlinear processing and sensitive photonic applications.

  9. Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

    Science.gov (United States)

    Kotaki, Hideyuki; Kando, Masaki; Oketa, Takatsugu; Masuda, Shinichi; Koga, James K.; Kondo, Shuji; Kanazawa, Shuhei; Yokoyama, Takashi; Matoba, Toru; Nakajima, Kazuhisa

    2002-10-01

    We investigate a laser wakefield excited by intense laser pulses, and the possibility of generating an intense bright electron source by an intense laser pulse. The coherent wakefield excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 1018 cm-3 is measured with a time-resolved frequency domain interferometer (FDI). The results show an accelerating wakefield excitation of 20 GeV/m with good coherency. This is the first time-resolved measurement of laser wakefield excitation in a gas-jet plasma. The experimental results agree with the simulation results and linear theory. The pump-probe interferometer system of FDI will be modified to the optical injection system as a relativistic electron beam injector. In 1D particle in cell simulation we obtain results of high quality intense electron beam generation.

  10. Input Excitation Techniques for Aerodynamic Derivatives Estimation of Highly Augmented Fighter Aircraft

    Directory of Open Access Journals (Sweden)

    N. Shantha Kumar

    1999-07-01

    Full Text Available This paper presents the results of an investigation related to the estimation of lateral-directional aerodynamic derivatives of highly augmented and advanced fighter aircraft from the flight like response data. Different types of pilot inputs are used to generate aircraft response data in the engineer-in-loop flight simulator to determine which input excitation flight provide the most accurate estimates of aircraft stability and control derivatives. Also, MATILABI SIMULINK-based simulation platform is used to generate aircraft response with single-surface excitation to evaluate the usefulness of the method for stability and control derivatives estimation. The maximum likelihood estimation, based on output error utilisation technique is used to estimate the derivatives from the aircraft simulation response data. The results indicate that accuracy of the estimated derivatives improve with persistence excitation and single-surface excitation.

  11. A statistical approach to describe highly excited heavy and superheavy nuclei

    Science.gov (United States)

    Chen, Peng-Hui; Feng, Zhao-Qing; Li, Jun-Qing; Zhang, Hong-Fei

    2016-09-01

    A statistical approach based on the Weisskopf evaporation theory has been developed to describe the de-excitation process of highly excited heavy and superheavy nuclei, in particular for the proton-rich nuclei. The excited nucleus is cooled by evaporating γ-rays, light particles (neutrons, protons, α etc) in competition with binary fission, in which the structure effects (shell correction, fission barrier, particle separation energy) contribute to the processes. The formation of residual nuclei is evaluated via sequential emission of possible particles above the separation energies. The available data of fusion-evaporation excitation functions in the 28Si+198Pt reaction can be reproduced nicely within the approach. Supported by Major State Basic Research Development Program in China (2015CB856903), National Natural Science Foundation of China Projects (11175218, U1332207, 11475050, 11175074), and Youth Innovation Promotion Association of Chinese Academy of Sciences

  12. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    Some nontrivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial (depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based...... on a slightly modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical...

  13. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    2008-01-01

    Some non-trivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based on a slightly...... modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical optimally...

  14. Surface-Decorated Silicon Nanowires: A Route to High-ZT Thermoelectrics

    DEFF Research Database (Denmark)

    Markussen, Troels; Jauho, Antti-Pekka; Brandbyge, Mads

    2009-01-01

    Based on atomistic calculations of electron and phonon transport, we propose to use surface-decorated silicon nanowires for thermoelectric applications. Two examples of surface decorations are studied to illustrate the underlying ideas: nanotrees and alkyl functionalized silicon nanowires. For both...... systems we find (i) that the phonon conductance is significantly reduced compared to the electronic conductance leading to high thermoelectric figure of merit ZT, and (ii) for ultrathin wires, surface decoration leads to significantly better performance than surface disorder....

  15. High-efficient n-i-p thin-film silicon solar cells

    NARCIS (Netherlands)

    Yang, G.

    2015-01-01

    In this thesis we present results of the development of n-i-p thin-film silicon solar cells on randomly textured substrates, aiming for highly efficient micromorph solar cells (i.e., solar cells based on a μc-Si:H bottom cell and a-Si:H top cell). For the efficiency of n-i-p thin-film silicon solar

  16. A high-Tc superconductor bolometer on a silicon nitride membrane

    NARCIS (Netherlands)

    Sánchez, S.; Elwenspoek, M.C.; Gui, C.; Nivelle, de M.J.M.E.; Vries, de R.J.; Korte, de P.A.J.; Bruijn, M.P.; Wijnbergen, J.J.; Michalke, W.; Steinbeiss, E.; Heidenblut, T.; Schwierzi, B.

    1997-01-01

    In this paper we describe the design, fabrication and performance of a high-Tc GdBa2Cu3O7-δ superconductor bolometer positioned on a 2×2 mm2, 1 μm thick silicon nitride membrane. The bolometer structure has an effective area of 0.64 mm2, and was grown on a specially developed Silicon-On-Nitride laye

  17. High-efficient n-i-p thin-film silicon solar cells

    NARCIS (Netherlands)

    Yang, G.

    2015-01-01

    In this thesis we present results of the development of n-i-p thin-film silicon solar cells on randomly textured substrates, aiming for highly efficient micromorph solar cells (i.e., solar cells based on a μc-Si:H bottom cell and a-Si:H top cell). For the efficiency of n-i-p thin-film silicon solar

  18. High Temperature Oxidation and Mechanical properties of Silicon Nitride.

    Science.gov (United States)

    1980-11-30

    Rowcliffe, and R. H. Lamoreaux Prepared for: Air Force Office of Scientific Research/NE Building 410 Boiling Air Force Base, D.C. 20332 Attention: Captain...samples were examined by x-ray dif- fraction. Cristobalite and a-Si 3N4 lines were found, but there was no evidence of silicon oxynitride. In most... cristobalite is the stable form.𔃾 A large amount of evi- dence indicates that this phase transiticn was not the primary reason for the increased

  19. High-power pulse trains excited by modulated continuous waves

    CERN Document Server

    Wang, Yan; Li, Lu; Malomed, Boris A

    2015-01-01

    Pulse trains growing from modulated continuous waves (CWs) are considered, using solutions of the Hirota equation for solitons on a finite background. The results demonstrate that pulses extracted from the maximally compressed trains can propagate preserving their shape and forming robust arrays. The dynamics of double high-power pulse trains produced by modulated CWs in a model of optical fibers, including the Raman effect and other higher-order terms, is considered in detail too. It is demonstrated that the double trains propagate in a robust form, with frequencies shifted by the Raman effect.

  20. Bread board float zone experiment system for high purity silicon

    Science.gov (United States)

    Kern, E. L.; Gill, G. L., Jr.

    1982-01-01

    A breadboard float zone experimental system has been established at Westech Systems for use by NASA in the float zone experimental area. A used zoner of suitable size and flexibility was acquired and installed with the necessary utilities. Repairs, alignments and modifications were made to provide for dislocation free zoning of silicon. The zoner is capable of studying process parameters used in growing silicon in gravity and is flexible to allow trying of new features that will test concepts of zoning in microgravity. Characterizing the state of the art molten zones of a growing silicon crystal will establish the data base against which improvements of zoning in gravity or growing in microgravity can be compared. 25 mm diameter was chosen as the reference size, since growth in microgravity will be at that diameter or smaller for about the next 6 years. Dislocation free crystals were growtn in the 100 and 111 orientations, using a wide set of growth conditions. The zone shape at one set of conditions was measured, by simultaneously aluminum doping and freezing the zone, lengthwise slabbing and delineating by etching. The whole set of crystals, grown under various conditions, were slabbed, polished and striation etched, revealing the growth interface shape and the periodic and aperiodic natures of the striations.

  1. High dynamic range, hyper-terahertz detection with silicon photoconductors

    Science.gov (United States)

    Muir, A. C.; Hussain, A.; Andrews, S. R.

    2016-06-01

    The frequency response of ion implanted silicon photoconductive devices designed for coherent detection in time domain terahertz spectroscopy has been studied between 0.2 and 30 THz. Unlike devices using polar photoconductors or ones having polar substrates, which have a complicated response spectrum in the region of their reststrahlen bands, the response of silicon detectors fabricated on silicon substrates is relatively featureless. When used with amplified laser systems, the dynamic range of Si detectors is shown to be very similar to that of GaAs devices with the same geometry over a 20 THz range, superior to air-biased coherent detection (ABCD) at frequencies below ˜7 THz and comparable with both ABCD and electro-optic sampling in thin ZnTe crystals between 7 and 20 THz. Together with their ease of use and linear response in terahertz fields approaching 1 MV/cm, this suggests that Si photoconductors could be a competitive choice for sensitive detection in nonlinear hyper-terahertz spectroscopy.

  2. Silicon dioxide with a silicon interfacial layer as an insulating gate for highly stable indium phosphide metal-insulator-semiconductor field effect transistors

    Science.gov (United States)

    Kapoor, V. J.; Shokrani, M.

    1991-01-01

    A novel gate insulator consisting of silicon dioxide (SiO2) with a thin silicon (Si) interfacial layer has been investigated for high-power microwave indium phosphide (InP) metal-insulator-semiconductor field effect transistors (MISFETs). The role of the silicon interfacial layer on the chemical nature of the SiO2/Si/InP interface was studied by high-resolution X-ray photoelectron spectroscopy. The results indicated that the silicon interfacial layer reacted with the native oxide at the InP surface, thus producing silicon dioxide, while reducing the native oxide which has been shown to be responsible for the instabilities in InP MISFETs. While a 1.2-V hysteresis was present in the capacitance-voltage (C-V) curve of the MIS capacitors with silicon dioxide, less than 0.1 V hysteresis was observed in the C-V curve of the capacitors with the silicon interfacial layer incorporated in the insulator. InP MISFETs fabricated with the silicon dioxide in combination with the silicon interfacial layer exhibited excellent stability with drain current drift of less than 3 percent in 10,000 sec, as compared to 15-18 percent drift in 10,000 sec for devices without the silicon interfacial layer. High-power microwave InP MISFETs with Si/SiO2 gate insulators resulted in an output power density of 1.75 W/mm gate width at 9.7 GHz, with an associated power gain of 2.5 dB and 24 percent power added efficiency.

  3. Modeling the splitting of thin silicon films from porosified crystalline silicon upon high temperature annealing in hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ghannam, Moustafa Y.; Raheem, Yaser Abdul; Alomar, Abdul Azeez [EE Department, College of Engineering and Petroleum, Kuwait University, Safat (Kuwait); Poortmans, Jef [IMEC, Leuven (Belgium)

    2012-10-15

    The role of hydrogen in promoting thin film splitting from crystalline silicon wafers with pores or trenches during high temperature annealing is investigated. During the treatment, trenches are transformed into spherical voids that may laterally channel and split off the substrate. It is shown that the conditions necessary for hydrogen to contribute to the establishment of high stress levels around transformed voids or of pressure inside the voids are usually not satisfied. Hence promoting void coalescence by substantial void volume growth resulting from stress enhanced vacancy diffusion and/or exfoliation of separated voids are unlikely to occur. Also, there are no experimental evidence that confirms the role of hydrogen in triggering premature void collapse by Griffith fracture at relatively lower stress levels in conjunction with reduced surface energy. Therefore, it is concluded that splitting occurs during high temperature annealing only when neighboring voids are close enough to systematically coalesce. In that case, hydrogen may react at high temperature with the internal silicon surface of the voids (walls) and contribute to breaking the thin straps separating the voids which promotes channelling and film splitting (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  5. High excitation rovibrational molecular analysis in warm environments

    Science.gov (United States)

    Zhang, Ziwei; Stancil, Phillip C.; Cumbee, Renata; Ferland, Gary J.

    2017-06-01

    Inspired by advances in infrared observation (e.g., Spitzer, Herschel and ALMA), we investigate rovibrational emission CO and SiO in warm astrophysical environments. With recent innovation in collisional rate coefficients and rescaling methods, we are able to construct more comprehensive collisional data with high rovibrational states (vibration up to v=5 and rotation up to J=40) and multiple colliders (H2, H and He). These comprehensive data sets are used in spectral simulations with the radiative transfer codes RADEX and Cloudy. We obtained line ratio diagnostic plots and line spectra for both near- and far-infrared emission lines over a broad range of density and temperature for the case of a uniform medium. Considering the importance of both molecules in probing conditions and activities of UV-irradiated interstellar gas, we model rovibrational emission in photodissociation region (PDR) and AGB star envelopes (such as VY Canis Majoris, IK Tau and IRC +10216) with Cloudy. Rotational diagrams, energy distribution diagrams, and spectra are produced to examine relative state abundances, line emission intensity, and other properties. With these diverse models, we expect to have a better understanding of PDRs and expand our scope in the chemical architecture and evolution of AGB stars and other UV-irradiated regions. The soon to be launched James Webb Space Telescope (JWST) will provide high resolution observations at near- to mid-infrared wavelengths, which opens a new window to study molecular vibrational emission calling for more detailed chemical modeling and comprehensive laboratory astrophysics data on more molecules. This work was partially supported by NASA grants NNX12AF42G and NNX15AI61G. We thank Benhui Yang, Kyle Walker, Robert Forrey, and N. Balakrishnan for collaborating on the collisional data adopted in the current work.

  6. Ultra--fast carriers relaxation in bulk silicon following photo--excitation with a short and polarized laser pulse

    CERN Document Server

    Sangalli, Davide

    2014-01-01

    A novel approach based on the merging of the out--of--equilibrium Green's function method with the ab-initio, Density--Functional--Theory is used to describe the ultra--fast carriers relaxation in Silicon. The results are compared with recent two photon photo--emission measurements. We show that the interpretation of the carrier relaxation in terms of L -> X inter--valley scattering is not correct. The ultra--fast dynamics measured experimentally is, instead, due to the scattering between degenerate $L$ states that is activated by the non symmetric population of the conduction bands induced by the laser field. This ultra--fast relaxation is, then, entirely due to the specific experimental setup and it can be interpreted by introducing a novel definition of the quasi--particle lifetimes in an out--of--equilibrium context.

  7. Efficient continuous-wave nonlinear frequency conversion in high-Q Gallium Nitride photonic crystal cavities on Silicon

    CERN Document Server

    Mohamed, Mohamed Sabry; Carlin, Jean-François; Minkov, Momchil; Gerace, Dario; Savona, Vincenzo; Grandjean, Nicolas; Galli, Matteo; Houdré, Romuald

    2016-01-01

    We report on nonlinear frequency conversion from the telecom range via second harmonic generation (SHG) and third harmonic generation (THG) in suspended gallium nitride slab photonic crystal (PhC) cavities on silicon, under continuous-wave resonant excitation. Optimized two-dimensional PhC cavities with augmented far-field coupling have been characterized with quality factors as high as 4.4$\\times10^{4}$, approaching the computed theoretical values. The strong enhancement in light confinement has enabled efficient SHG, achieving normalized conversion efficiency of 2.4$\\times10^{-3}$ $W^{-1}$, as well as simultaneous THG. SHG emission power of up to 0.74 nW has been detected without saturation. The results herein validate the suitability of gallium nitride for integrated nonlinear optical processing.

  8. Doping dependence of spin excitations and its correlations with high-temperature superconductivity in iron pnictides.

    Science.gov (United States)

    Wang, Meng; Zhang, Chenglin; Lu, Xingye; Tan, Guotai; Luo, Huiqian; Song, Yu; Wang, Miaoyin; Zhang, Xiaotian; Goremychkin, E A; Perring, T G; Maier, T A; Yin, Zhiping; Haule, Kristjan; Kotliar, Gabriel; Dai, Pengcheng

    2013-01-01

    High-temperature superconductivity in iron pnictides occurs when electrons and holes are doped into their antiferromagnetic parent compounds. Since spin excitations may be responsible for electron pairing and superconductivity, it is important to determine their electron/hole-doping evolution and connection with superconductivity. Here we use inelastic neutron scattering to show that while electron doping to the antiferromagnetic BaFe₂As₂ parent compound modifies the low-energy spin excitations and their correlation with superconductivity (100 meV), hole-doping suppresses the high-energy spin excitations and shifts the magnetic spectral weight to low-energies. In addition, our absolute spin susceptibility measurements for the optimally hole-doped iron pnictide reveal that the change in magnetic exchange energy below and above T(c) can account for the superconducting condensation energy. These results suggest that high-T(c) superconductivity in iron pnictides is associated with both the presence of high-energy spin excitations and a coupling between low-energy spin excitations and itinerant electrons.

  9. Synthesis of high-quality mesoporous silicon particles for enhanced lithium storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chundong, E-mail: apcdwang@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Ren, Jianguo [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Chen, Hao [Department of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Zhang, Yi [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430073 (China); Ostrikov, Kostya [School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane 4000, QLD (Australia); Manufacturing Flagship, CSIRO, P. O. Box 218, Lindfield, NSW 2070 (Australia); Zhang, Wenjun [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Li, Yi, E-mail: liyi@suda.edu.cn [Department of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR (China)

    2016-04-15

    Silicon has been considered as one of the most promising anode materials for high-capacity lithium-ion batteries (LIBs) due to its ultrahigh theoretical capacity, abundance, and environmentally benign nature. Nonetheless, the severe break during the prolonged cycling results in poor electrochemical performance, which hinders its practical application. Herein, we report the synthesis of novel mesoporous silicon particles with a facile template method by using a magnesiothermic reduction for LIBs. The obtained silicon nanoparticles are highly porous with densely porous cavities (20–40 nm) on the wall, of which it presents good crystallization. Electrochemical measurements showed that the mesoporous silicon nanoparticles delivered a high reversible specific capacity of 910 mA h g{sup −1} at a high current density of 1200 mA g{sup −1} over 50 cycles. The specific capacity at such high current density is still over twofold than that of commercial graphite anode, suggesting that the nanoporous Si architectures is suitable for high-performance Si-based anodes for lithium ion batteries in terms of capacity, cycle life, and rate capacity. - Highlights: • Silica nanotubes were prepared with a facile template method. • Novel mesoporous silicon particles were obtained by magnesiothermic reduction. • High-Performance LIBs were achieved by using mesoporous Si particle Electrodes.

  10. High efficiency photoluminescence from silicon nanocrystals prepared by plasma synthesis and organic surface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Mangolini, L.; Kortshagen, U. [Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Jurbergs, D.; Rogojina, E. [Innovalight Inc., 3303 Octavius Drive Suite 104, Santa Clara, CA 95054 (United States)

    2006-07-01

    An efficient synthesis route for highly luminescent silicon quantum dots is presented. Silicon nanocrystals were synthesized in the gas phase using an argon-silane non-thermal plasma in a continuous flow reactor. Liquid phase surface passivation was used to improve the optical properties and avoid surface oxidation of the silicon quantum dots. Various alkenes, such as octadecene, dodecene and styrene, were covalently bonded to the plasma-produced particles, while strictly avoiding exposure of the raw powder to oxidizing agents. Stable colloidal solutions of silicon quantum dots with ensemble quantum yields between 60% and 70% were achieved. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells

    Science.gov (United States)

    Wiesmann, H.; Dolan, J.; Fricano, G.; Danginis, V.

    1987-02-01

    A study was undertaken of the optoelectronic properties of amorphous silicon-hydrogen thin films deposited from disilane at high deposition rates. The information derived from this study was used to fabricate amorphous silicon solar cells with efficiencies exceeding 7%. The intrinsic layer of these solar cells was deposited at 15 angstroms/second. Material properties investigated included dark conductivity, photoconductivity, minority carrier diffusion length, and density of states. The solar cells properties characterized were absolute quantum yield and simulated global AM 1.5 efficiencies. Investigations were undertaken utilizing optical and infrared spectroscopy to optimize the microstructures of the intrinsic amorphous silicon. That work was sponsored by the New York State Energy Research and Development Authority. The information was used to optimize the intrinsic layer of amorphous silicon solar cells, resulting in AM 1.5 efficiencies exceeding 7%.

  12. Preparation of highly aligned silicon oxide nanowires with stable intensive photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M., E-mail: duraia_physics@yahoo.co [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Mansurov, Z.A. [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Tokmolden, S. [Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Beall, Gary W. [Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States)

    2010-02-15

    In this work we report the successful formation of highly aligned vertical silicon oxide nanowires. The source of silicon was from the substrate itself without any additional source of silicon. X-ray measurement demonstrated that our nanowires are amorphous. Photoluminescence measurements were conducted through 18 months and indicated that there is a very good intensive emission peaks near the violet regions. The FTIR measurements indicated the existence of peaks at 463, 604, 795 and a wide peak at 1111 cm{sup -1} and this can be attributed to Si-O-Si and Si-O stretching vibrations. We also report the formation of the octopus-like silicon oxide nanowires and the growth mechanism of these structures was discussed.

  13. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.

    Science.gov (United States)

    Lee, Sung-Min; Biswas, Roshni; Li, Weigu; Kang, Dongseok; Chan, Lesley; Yoon, Jongseung

    2014-10-28

    Nanostructured forms of crystalline silicon represent an attractive materials building block for photovoltaics due to their potential benefits to significantly reduce the consumption of active materials, relax the requirement of materials purity for high performance, and hence achieve greatly improved levelized cost of energy. Despite successful demonstrations for their concepts over the past decade, however, the practical application of nanostructured silicon solar cells for large-scale implementation has been hampered by many existing challenges associated with the consumption of the entire wafer or expensive source materials, difficulties to precisely control materials properties and doping characteristics, or restrictions on substrate materials and scalability. Here we present a highly integrable materials platform of nanostructured silicon solar cells that can overcome these limitations. Ultrathin silicon solar microcells integrated with engineered photonic nanostructures are fabricated directly from wafer-based source materials in configurations that can lower the materials cost and can be compatible with deterministic assembly procedures to allow programmable, large-scale distribution, unlimited choices of module substrates, as well as lightweight, mechanically compliant constructions. Systematic studies on optical and electrical properties, photovoltaic performance in experiments, as well as numerical modeling elucidate important design rules for nanoscale photon management with ultrathin, nanostructured silicon solar cells and their interconnected, mechanically flexible modules, where we demonstrate 12.4% solar-to-electric energy conversion efficiency for printed ultrathin (∼ 8 μm) nanostructured silicon solar cells when configured with near-optimal designs of rear-surface nanoposts, antireflection coating, and back-surface reflector.

  14. Development of microscopic systems for high-speed dual-excitation ratiometric Ca2+ imaging.

    Science.gov (United States)

    Fukano, Takashi; Shimozono, Satoshi; Miyawaki, Atsushi

    2008-08-01

    For quantitative measurements of Ca(2+) concentration ([Ca(2+)]), ratiometric dyes are preferable, because the use of such dyes allows for correction of uneven loading or partitioning of dye within the cell as well as variations in cell thickness. Although dual-excitation ratiometric dyes for measuring [Ca(2+)], such as Fura-2, Fura-Red, and ratiometric-pericam, are widely used for a variety of applications, it has been difficult to use them for monitoring very fast Ca(2+) dynamics or Ca(2+) changes in highly motile cells. To overcome this problem, we have developed three new dual-excitation ratiometry systems. (1) A system in which two laser beams are alternated on every scanning line, allowing us to obtain confocal images using dual-excitation ratiometric dyes. This system increases the rate at which ratio measurements can be made to 200 Hz and provides confocal images at 1-10 Hz depending on the image size. (2) A truly simultaneous dual-excitation ratiometry system that used linearly polarized excitation light and polarization detection, allowing us to obtain ratiometric images without any time lag. This system, however, is based on statistical features of the fluorescence polarization and is limited to samples that contain a large number of fluorophores. In addition, this method requires complicated calculations. (3) An efficient, nearly simultaneous dual-excitation ratiometry system that allows us to rapidly switch between two synchronized excitation-detection components by employing two high-power light-emitting diodes (LEDs) and two high-speed liquid crystal shutters. The open/close operation of the two shutters is synchronized with the on/off switching of the two LEDs. This system increases the rate at which ratio measurements are made to 1 kHz, and provides ratio images at 10-100 Hz depending on the signal intensity.

  15. High-Dimensional Nonlinear Envelope Equations and Nonlinear Localized Excitations in Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    HANG Chao; HUANG Guo-Xiang

    2006-01-01

    We investigate the nonlinear localized structures of optical pulses propagating in a one-dimensional photonic crystal with a quadratic nonlinearity. Using a method of multiple scales we show that the nonlinear evolution of a wave packet, formed by the superposition of short-wavelength excitations, and long-wavelength mean fields, generated by the self-interaction of the wave packet, are governed by a set of coupled high-dimensional nonlinear envelope equations, which can be reduced to Davey-Stewartson equations and thus support dromionlike high-dimensional nonlinear excitations in the system.

  16. Raman Spectra of High-κ Dielectric Layers Investigated with Micro-Raman Spectroscopy Comparison with Silicon Dioxide

    Directory of Open Access Journals (Sweden)

    P. Borowicz

    2013-01-01

    Full Text Available Three samples with dielectric layers from high-κ dielectrics, hafnium oxide, gadolinium-silicon oxide, and lanthanum-lutetium oxide on silicon substrate were studied by Raman spectroscopy. The results obtained for high-κ dielectrics were compared with spectra recorded for silicon dioxide. Raman spectra suggest the similarity of gadolinium-silicon oxide and lanthanum-lutetium oxide to the bulk nondensified silicon dioxide. The temperature treatment of hafnium oxide shows the evolution of the structure of this material. Raman spectra recorded for as-deposited hafnium oxide are similar to the results obtained for silicon dioxide layer. After thermal treatment especially at higher temperatures (600°C and above, the structure of hafnium oxide becomes similar to the bulk non-densified silicon dioxide.

  17. High Performance Optical Waveguides based on Boron and Phosphorous doped Silicon Oxynitride

    NARCIS (Netherlands)

    Sun, F.; Driessen, A.; Worhoff, Kerstin; Broquin, Jean-Emmanuel; Greiner, Christoph M.

    2010-01-01

    Silicon oxynitride (SiON) is a highly attractive material for integrated optics, due to its excellent properties such as high transparency, adjustable refractive index and good stability. In general, the growth of SiON layers by plasma enhanced chemical vapor deposition (PECVD) is followed by a high

  18. Development of manufacturing capability for high-concentration, high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, R.A.; Verlinden, P.J.; Crane, R.A.; Swanson, R.N. [SunPower Corp., Sunnyvale, CA (United States)

    1996-10-01

    This report presents a summary of the major results from a program to develop a manufacturable, high-efficiency silicon concentrator solar cell and a cost-effective manufacturing facility. The program was jointly funded by the Electric Power Research Institute, Sandia National Laboratories through the Concentrator Initiative, and SunPower Corporation. The key achievements of the program include the demonstration of 26%-efficient silicon concentrator solar cells with design-point (20 W/cm{sup 2}) efficiencies over 25%. High-performance front-surface passivations; that were developed to achieve this result were verified to be absolutely stable against degradation by 475 days of field exposure at twice the design concentration. SunPower demonstrated pilot production of more than 1500 of these cells. This cell technology was also applied to pilot production to supply 7000 17.7-cm{sup 2} one-sun cells (3500 yielded wafers) that demonstrated exceptional quality control. The average efficiency of 21.3% for these cells approaches the peak efficiency ever demonstrated for a single small laboratory cell within 2% (absolute). Extensive cost models were developed through this program and calibrated by the pilot-production project. The production levels achieved indicate that SunPower could produce 7-10 MW of concentrator cells per year in the current facility based upon the cell performance demonstrated during the program.

  19. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices

    Science.gov (United States)

    Pinero, Luis R.; Scheidegger, Robert J.; Aulsio, Michael V.; Birchenough, Arthur G.

    2014-01-01

    A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.

  20. Transient Loschmidt Echo and Orthogonality Catastrophe in highly excited Quantum Ising Spin Chains

    Science.gov (United States)

    Schiro, Marco; Lupo, Carla

    We study the response to sudden local perturbations of highly excited Quantum Ising Spin Chains. The key quantity encoding this response is the overlap between time-dependent wave functions, which we write as a transient Loschmidt echo. We compute the Echo perturbatively in the case of a weak local quench and study its asymptotics at long times, which contains crucial information about the structure of the highly excited non-equilibrium environment induced by the quench. Our results reveal that the Echo decays exponentially, rather than power law as in the low-energy Orthogonality Catastrophe, a further example of quench-induced decoherence. The emerging decoherence scale is set by the strenght of the local potential and the bulk excitation energy. In addition, the transient evolution features aging behavior at the Ising quantum critical point.

  1. High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp

    Energy Technology Data Exchange (ETDEWEB)

    Beleznai, Sz; Mihajlik, G; Richter, P [Department of Atomic Physics, Budapest University of Technology and Economics, 3-9.Muegyetem rkp., Budapest H-1111 (Hungary); Maros, I; Balazs, L, E-mail: beleznai@dept.phy.bme.h [GE Consumer and Industrial-Lighting, 77 Vaci ut, Budapest H-1344 (Hungary)

    2010-01-13

    The application of a high frequency ({approx}2.5 MHz) burst (amplitude-modulated sinusoidal) excitation voltage waveform is investigated for driving a fluorescent dielectric barrier discharge (DBD) light source. The excitation waveform presents a novel method for generating spatially stable homogeneous Xe DBD possessing a high conversion efficiency from electrical energy to VUV Xe{sub 2}{sup *} excimer radiation ({approx}172 nm), even at a significantly higher electrical energy deposition than realized by pulsed excitation. Simulation and experimental results predict discharge efficiencies around 60%. Lamp efficacy above 74 lm W{sup -1} has been achieved. VUV emission and loss mechanisms are investigated extensively and the performance of burst and pulsed waveforms is compared both theoretically and experimentally.

  2. High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp

    Science.gov (United States)

    Beleznai, Sz; Mihajlik, G.; Maros, I.; Balázs, L.; Richter, P.

    2010-01-01

    The application of a high frequency (~2.5 MHz) burst (amplitude-modulated sinusoidal) excitation voltage waveform is investigated for driving a fluorescent dielectric barrier discharge (DBD) light source. The excitation waveform presents a novel method for generating spatially stable homogeneous Xe DBD possessing a high conversion efficiency from electrical energy to VUV Xe_{2}^{\\ast} excimer radiation (~172 nm), even at a significantly higher electrical energy deposition than realized by pulsed excitation. Simulation and experimental results predict discharge efficiencies around 60%. Lamp efficacy above 74 lm W-1 has been achieved. VUV emission and loss mechanisms are investigated extensively and the performance of burst and pulsed waveforms is compared both theoretically and experimentally.

  3. Finding Matrix Product State Representations of Highly Excited Eigenstates of Many-Body Localized Hamiltonians

    Science.gov (United States)

    Yu, Xiongjie; Pekker, David; Clark, Bryan K.

    2017-01-01

    A key property of many-body localized Hamiltonians is the area law entanglement of even highly excited eigenstates. Matrix product states (MPS) can be used to efficiently represent low entanglement (area law) wave functions in one dimension. An important application of MPS is the widely used density matrix renormalization group (DMRG) algorithm for finding ground states of one-dimensional Hamiltonians. Here, we develop two algorithms, the shift-and-invert MPS (SIMPS) and excited state DMRG which find highly excited eigenstates of many-body localized Hamiltonians. Excited state DMRG uses a modified sweeping procedure to identify eigenstates, whereas SIMPS applies the inverse of the shifted Hamiltonian to a MPS multiple times to project out the targeted eigenstate. To demonstrate the power of these methods, we verify the breakdown of the eigenstate thermalization hypothesis in the many-body localized phase of the random field Heisenberg model, show the saturation of entanglement in the many-body localized phase, and generate local excitations.

  4. In situ transmission infrared spectroscopy of high-kappa oxide atomic layer deposition onto silicon surfaces

    Science.gov (United States)

    Ho, Ming-Tsung

    -H...Hf interactions or by the dielectric screening effect of as-grown high-kappa moiety. A summary of local bonding models with vibrational mode assignments of the adsorbed TMA and TEMAH on silicon surfaces is presented based on the analysis of the substructure of silicate interfacial band at 900--1100 cm-1.

  5. Silicon sheet with molecular beam epitaxy for high efficiency solar cells

    Science.gov (United States)

    Allen, F. G.

    1983-01-01

    The capabilities of the new technique of Molecular Beam Epitaxy (MBE) are applied to the growth of high efficiency silicon solar cells. Because MBE can provide well controlled doping profiles of any desired arbitrary design, including doping profiles of such complexity as built-in surface fields or tandem junction cells, it would appear to be the ideal method for development of high efficiency solar cells. It was proposed that UCLA grow and characterize silicon films and p-n junctions of MBE to determine whether the high crystal quality needed for solar cells could be achieved.

  6. Interfacial Engineering of Silicon Carbide Nanowire/Cellulose Microcrystal Paper toward High Thermal Conductivity.

    Science.gov (United States)

    Yao, Yimin; Zeng, Xiaoliang; Pan, Guiran; Sun, Jiajia; Hu, Jiantao; Huang, Yun; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2016-11-16

    Polymer composites with high thermal conductivity have attracted much attention, along with the rapid development of electronic devices toward higher speed and better performance. However, high interfacial thermal resistance between fillers and matrix or between fillers and fillers has been one of the primary bottlenecks for the effective thermal conduction in polymer composites. Herein, we report on engineering interfacial structure of silicon carbide nanowire/cellulose microcrystal paper by generating silver nanostructures. We show that silver nanoparticle-deposited silicon carbide nanowires as fillers can effectively enhance the thermal conductivity of the matrix. The in-plane thermal conductivity of the resultant composite paper reaches as high as 34.0 W/m K, which is one order magnitude higher than that of conventional polymer composites. Fitting the measured thermal conductivity with theoretical models qualitatively demonstrates that silver nanoparticles bring the lower interfacial thermal resistances both at silicon carbide nanowire/cellulose microcrystal and silicon carbide nanowire/silicon carbide nanowire interfaces. This interfacial engineering approach provides a powerful tool for sophisticated fabrication of high-performance thermal-management materials.

  7. High quality silicon-based substrates for microwave and millimeter wave passive circuits

    Science.gov (United States)

    Belaroussi, Y.; Rack, M.; Saadi, A. A.; Scheen, G.; Belaroussi, M. T.; Trabelsi, M.; Raskin, J.-P.

    2017-09-01

    Porous silicon substrate is very promising for next generation wireless communication requiring the avoidance of high-frequency losses originating from the bulk silicon. In this work, new variants of porous silicon (PSi) substrates have been introduced. Through an experimental RF performance, the proposed PSi substrates have been compared with different silicon-based substrates, namely, standard silicon (Std), trap-rich (TR) and high resistivity (HR). All of the mentioned substrates have been fabricated where identical samples of CPW lines have been integrated on. The new PSi substrates have shown successful reduction in the substrate's effective relative permittivity to values as low as 3.7 and great increase in the substrate's effective resistivity to values higher than 7 kΩ cm. As a concept proof, a mm-wave bandpass filter (MBPF) centred at 27 GHz has been integrated on the investigated substrates. Compared with the conventional MBPF implemented on standard silicon-based substrates, the measured S-parameters of the PSi-based MBPF have shown high filtering performance, such as a reduction in insertion loss and an enhancement of the filter selectivity, with the joy of having the same filter performance by varying the temperature. Therefore, the efficiency of the proposed PSi substrates has been well highlighted. From 1994 to 1995, she was assistant of physics at (USTHB), Algiers . From 1998 to 2011, she was a Researcher at characterization laboratory in ionized media and laser division at the Advanced Technologies Development Center. She has integrated the Analog Radio Frequency Integrated Circuits team as Researcher since 2011 until now in Microelectronic and Nanotechnology Division at Advanced Technologies Development Center (CDTA), Algiers. She has been working towards her Ph.D. degree jointly at CDTA and Ecole Nationale Polytechnique, Algiers, since 2012. Her research interest includes fabrication and characterization of microwave passive devices on porous

  8. Scaling of collision strengths for highly-excited states of ions of the H- and He-like sequences

    CERN Document Server

    Fernandez-Menchero, L; Badnell, N R

    2016-01-01

    Emission lines from highly-excited states (n >= 5) of H- and He-like ions have been detected in astrophysical sources and fusion plasmas. For such excited states, R-matrix or distorted wave calculations for electron-impact excitation are very limited, due to the large size of the atomic basis set needed to describe them. Calculations for n >= 6 are also not generally available. We study the behaviour of the electron-impact excitation collision strengths and effective collision strengths for the most important transitions used to model electron collision dominated astrophysical plasmas, solar, for example. We investigate the dependence on the relevant parameters: the principal quantum number n or the nuclear charge Z. We also estimate the importance of coupling to highly-excited states and the continuum by comparing the results of different sized calculations. We provide analytic formulae to calculate the electron-impact excitation collision strengths and effective collision strengths to highly-excited states ...

  9. High Temperature Joining and Characterization of Joint Properties in Silicon Carbide-Based Composite Materials

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    Advanced silicon carbide-based ceramics and composites are being developed for a wide variety of high temperature extreme environment applications. Robust high temperature joining and integration technologies are enabling for the fabrication and manufacturing of large and complex shaped components. The development of a new joining approach called SET (Single-step Elevated Temperature) joining will be described along with the overview of previously developed joining approaches including high temperature brazing, ARCJoinT (Affordable, Robust Ceramic Joining Technology), diffusion bonding, and REABOND (Refractory Eutectic Assisted Bonding). Unlike other approaches, SET joining does not have any lower temperature phases and will therefore have a use temperature above 1315C. Optimization of the composition for full conversion to silicon carbide will be discussed. The goal is to find a composition with no remaining carbon or free silicon. Green tape interlayers were developed for joining. Microstructural analysis and preliminary mechanical tests of the joints will be presented.

  10. Graphene oxide-immobilized NH₂-terminated silicon nanoparticles by cross-linked interactions for highly stable silicon negative electrodes.

    Science.gov (United States)

    Sun, Cheng; Deng, Yuanfu; Wan, Lina; Qin, Xusong; Chen, Guohua

    2014-07-23

    There is a great interest in the utilization of silicon-based anodes for lithium-ion batteries. However, its poor cycling stability, which is caused by a dramatic volume change during lithium-ion intercalation, and intrinsic low electric conductivity hamper its industrial applications. A facile strategy is reported here to fabricate graphene oxide-immobilized NH2-terminated silicon nanoparticles (NPs) negative electrode (Si@NH2/GO) directed by hydrogen bonding and cross-linked interactions to enhance the capacity retention of the anode. The NH2-modified Si NPs first form strong hydrogen bonds and covalent bonds with GO. The Si@NH2/GO composite further forms hydrogen bonds and covalent bonds with sodium alginate, which acts as a binder, to yield a stable composite negative electrode. These two chemical cross-linked/hydrogen bonding interactions-one between NH2-modified Si NPs and GO, and another between the GO and sodium alginate-along with highly mechanically flexible graphene oxide, produced a robust network in the negative electrode system to stabilize the electrode during discharge and charge cycles. The as-prepared Si@NH2/GO electrode exhibits an outstanding capacity retention capability and good rate performance, delivering a reversible capacity of 1000 mAh g(-1) after 400 cycles at a current of 420 mA g(-1) with almost 100% capacity retention. The results indicated the importance of system-level strategy for fabricating stable electrodes with improved electrochemical performance.

  11. Structural analysis of [Fe(ptz) sub 6)](BF sub 4) sub 2 under photo-excitation. Condensation of photo-excited high-spin ions

    CERN Document Server

    Moritomo, Y; Sakata, M; Kato, K; Kuriki, A; Nakamoto, A; Kojima, N

    2002-01-01

    We have performed in situ synchrotron-radiation X-ray powder structural analysis in a spin-crossover complex ([Fe(ptz) sub 6](BF sub 4) sub 2 : ptz=propyltetrazole) under a photo-excitation with a continuous-wave (CW) green (532 nm) laser at 91 K. The Fe sup 2 sup + ions in the Fe(ptz) sub 6 molecules take the low-spin (LS: S=0) state at the ground state, and are photo-excited selectively into the high-spin (HS: S=2) state. When the excitation power P exceeds the critical value, we observed a novel secondary phase which can be ascribed to the condensation of the photo-excited HS ions. (author)

  12. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries

    Science.gov (United States)

    Ko, Minseong; Chae, Sujong; Ma, Jiyoung; Kim, Namhyung; Lee, Hyun-Wook; Cui, Yi; Cho, Jaephil

    2016-09-01

    Existing anode technologies are approaching their limits, and silicon is recognized as a potential alternative due to its high specific capacity and abundance. However, to date the commercial use of silicon has not satisfied electrode calendering with limited binder content comparable to commercial graphite anodes for high energy density. Here we demonstrate the feasibility of a next-generation hybrid anode using silicon-nanolayer-embedded graphite/carbon. This architecture allows compatibility between silicon and natural graphite and addresses the issues of severe side reactions caused by structural failure of crumbled graphite dust and uncombined residue of silicon particles by conventional mechanical milling. This structure shows a high first-cycle Coulombic efficiency (92%) and a rapid increase of the Coulombic efficiency to 99.5% after only 6 cycles with a capacity retention of 96% after 100 cycles, with an industrial electrode density of >1.6 g cm-3, areal capacity loading of >3.3 mAh cm-2, and <4 wt% binding materials in a slurry. As a result, a full cell using LiCoO2 has demonstrated a higher energy density (1,043 Wh l-1) than with standard commercial graphite electrodes.

  13. Dispersive excitations in the high-temperature superconductor La2-xSrxCuO4

    DEFF Research Database (Denmark)

    Christensen, N.B.; McMorrow, D.F.; Rønnow, H.M.

    2004-01-01

    High-resolution neutron scattering experiments on optimally doped La(2-x)Sr(x)CuO(4) (x=0.16) reveal that the magnetic excitations are dispersive. The dispersion is the same as in YBa(2)Cu(3)O(6.85), and is quantitatively related to that observed with charge sensitive probes. The associated veloc...

  14. Computer simulation of effect of conditions on discharge-excited high power gas flow CO laser

    Science.gov (United States)

    Ochiai, Ryo; Iyoda, Mitsuhiro; Taniwaki, Manabu; Sato, Shunichi

    2017-01-01

    The authors have developed the computer simulation codes to analyze the effect of conditions on the performances of discharge excited high power gas flow CO laser. The six be analyzed. The simulation code described and executed by Macintosh computers consists of some modules to calculate the kinetic processes. The detailed conditions, kinetic processes, results and discussions are described in this paper below.

  15. Interqubit coupling mediated by a high-excitation-energy quantum object

    NARCIS (Netherlands)

    Ashhab, S.; Niskanen, A.O.; Harrabi, K.; Nakamura, Y.; Picot, T.; De Groot, P.C.; Harmans, C.J.P.M.; Mooij, J.E.; Nori, F.

    2008-01-01

    We consider a system composed of two qubits and a high excitation energy quantum object used to mediate coupling between the qubits. We treat the entire system quantum mechanically and analyze the properties of the eigenvalues and eigenstates of the total Hamiltonian. After reproducing well known re

  16. Enhanced Electron Attachment to Highly-Excited Molecules and Its Applications in Pulsed Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ding, W.X.; Ma, C.Y.; McCorkle, D.L.; Pinnaduwage, L.A.

    1999-06-27

    Studies conducted over the past several years have shown that electron attachment to highly-excited states of molecules have extremely large cross sections. We will discuss the implications of this for pulsed discharges used for H- generation, material processing, and plasma remediation.

  17. Theories and experiments on the stiffening effect of high-frequency excitation for continuous elastic systems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    One effect of strong mechanical high-frequency excitation may be to apparently "stiffen" a structure, a well-described phenomenon for discrete systems. The present study provides theoretical and experimental results on this effect for continuous elastic structures. A laboratory experiment is set ...

  18. High power continuous wave atomic Xe laser with radio frequency excitation

    Science.gov (United States)

    Vitruk, P. P.; Morley, R. J.; Baker, H. J.; Hall, D. R.

    1995-09-01

    Radio frequency discharges in Ar/He/Xe gas mixtures have been studied in the range 5-150 MHz, and the importance of the ion sheaths in Xe laser excitation has been recognized. The discharge data have been used to improve the cw Xe laser performance, and efficiencies up to 0.8% observed. Area scaling in the slab geometry has been studied for α discharge excitation at 49 MHz, and multimode cw laser power up to 5.5 W has been observed. High quality beams have been produced at 4.9 W using a hybrid waveguide/unstable resonator.

  19. High excitation power photoluminescence studies of ultra-low density GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sonnenberg, D.; Graf, A.; Paulava, V.; Heyn, Ch.; Hansen, W. [Institut für Angewandte Physik und Zentrum für Mikrostrukturforschung, Universität Hamburg, Jungiusstr. 11, 20355 Hamburg (Germany)

    2013-12-04

    We fabricate GaAs epitaxial quantum dots (QDs) by filling of self-organized nanoholes in AlGaAs. The QDs are fabricated under optimized process conditions and have ultra-low density in the 10{sup 6} cm{sup −2} regime. At low excitation power the optical emission of single QDs exhibit sharp excitonic lines, which are attributed to the recombination of excitonic and biexcitonic states. High excitation power measurements reveal surprisingly broad emission lines from at least six QD shell states.

  20. High surface area silicon carbide-coated carbon aerogel

    Science.gov (United States)

    Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

    2014-01-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.

  1. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Chu, P.M.Y.

    1991-10-01

    The vibrational to translational (V{yields}T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V{yields}T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH{sub 3} production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam.

  2. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Pamela Mei-Ying [Univ. of California, Berkeley, CA (United States)

    1991-10-01

    The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH3 production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam.

  3. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density

    Science.gov (United States)

    Son, In Hyuk; Hwan Park, Jong; Kwon, Soonchul; Park, Seongyong; Rümmeli, Mark H.; Bachmatiuk, Alicja; Song, Hyun Jae; Ku, Junhwan; Choi, Jang Wook; Choi, Jae-man; Doo, Seok-Gwang; Chang, Hyuk

    2015-01-01

    Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge–discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carbide formation. The graphene layers anchored onto the silicon surface accommodate the volume expansion of silicon via a sliding process between adjacent graphene layers. When paired with a commercial lithium cobalt oxide cathode, the silicon carbide-free graphene coating allows the full cell to reach volumetric energy densities of 972 and 700 Wh l−1 at first and 200th cycle, respectively, 1.8 and 1.5 times higher than those of current commercial lithium-ion batteries. This observation suggests that two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology. PMID:26109057

  4. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density.

    Science.gov (United States)

    Son, In Hyuk; Hwan Park, Jong; Kwon, Soonchul; Park, Seongyong; Rümmeli, Mark H; Bachmatiuk, Alicja; Song, Hyun Jae; Ku, Junhwan; Choi, Jang Wook; Choi, Jae-Man; Doo, Seok-Gwang; Chang, Hyuk

    2015-06-25

    Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge-discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carbide formation. The graphene layers anchored onto the silicon surface accommodate the volume expansion of silicon via a sliding process between adjacent graphene layers. When paired with a commercial lithium cobalt oxide cathode, the silicon carbide-free graphene coating allows the full cell to reach volumetric energy densities of 972 and 700 Wh l(-1) at first and 200th cycle, respectively, 1.8 and 1.5 times higher than those of current commercial lithium-ion batteries. This observation suggests that two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology.

  5. High performance self-excited reluctance generator for mini/micro hydro electric power generation

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, A.; Goel, S.K. [G.B.P.U.A. and T, Pantnagar (India). Dept. of Electrical Engineering

    2007-07-01

    Recent interest in the synchronous reluctance generator has increased because it offers the solution to the problems faced by induction generators while including almost all of the benefits of induction machines. This paper discussed the development of a mathematical model of a self excited synchronous reluctance generator using Park's transformation which can be used to obtain its performance by simulation. Almost all of the important performance parameters of reluctance machine depend on the saliency ratio .The paper focused on the fabrication, design and testing of an axially laminated anisotropic (ALA) rotor self-excited reluctance generator. The paper discussed SRM as a self-excited generator; maximization of saliency ratio; the assumptions made in obtaining the mathematical model of SRM; the laboratory machine; and results and discussion. It was concluded that compared to other rotor configurations, the ALA rotor with high saliency ratio performed better. 6 refs., 12 figs.

  6. Design and analysis of the hybrid excitation rail eddy brake system of high-speed trains

    Institute of Scientific and Technical Information of China (English)

    Ji-en MA; Bin ZHANG; Xiao-yan HUANG; You-tong FANG; Wen-ping CAO

    2011-01-01

    Compared to the current eddy braking patterns using a single magnetic source,hybrid excitation rail eddy brakes have many advantages,such as controllability,energy saving,and various operating models.Considering the large braking power consumption of the high-speed train,a hybrid excitation rail eddy brake system,which is based on the principle of electromagnetic field,is proposed to fulfill the needs of safety and reliability.Then the working processes of the mechanical lifting system and electromagnetic system are demonstrated.With the electromagnetic system analyzed using the finite element method,the factors such as speed,air gap,and exciting current have influences on the braking force and attractive force.At last,the structure optimization of the brake system is discussed.

  7. Nonlinear Response of High Arch Dams to Nonuniform Seismic Excitation Considering Joint Effects

    Directory of Open Access Journals (Sweden)

    Masoomeh Akbari

    2013-01-01

    Full Text Available Nonuniform excitation due to spatially varying ground motions on nonlinear responses of concrete arch dams is investigated. A high arch dam was selected as numerical example, reservoir was modelled as incompressible material, foundation was assumed as mass-less medium, and all contraction and peripheral joints were modelled considering the ability of opening/closing. This study used Monte-Carlo simulation approach for generating spatially nonuniform ground motion. In this approach, random seismic characteristics due to incoherence and wave passage effects were investigated and finally their effects on structural response were compared with uniform excitation at design base level earthquake. Based on the results, nonuniform input leads to some differences than uniform input. Moreover using nonuniform excitation increase, stresses on dam body.

  8. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    Science.gov (United States)

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  9. Role of vibrationally excited HBr in a HBr/He inductively coupled plasma used for etching of silicon

    Science.gov (United States)

    Tinck, Stefan; Bogaerts, Annemie

    2016-06-01

    In this work, the role of vibrationally excited HBr (HBr(vib)) is computationally investigated for a HBr/He inductively coupled plasma applied for Si etching. It is found that at least 50% of all dissociations of HBr occur through HBr(vib). This additional dissociation pathway through HBr(vib) makes the plasma significantly more atomic. It also results in a slightly higher electron temperature (i.e. about 0.2 eV higher compared to simulation results where HBr(vib) is not included), as well as a higher gas temperature (i.e. about 50 K higher than without including HBr(vib)), due to the enhanced Franck-Condon heating through HBr(vib) dissociation, at the conditions investigated. Most importantly, the calculated etch rate with HBr(vib) included in the model is a factor 3 higher than in the case without HBr(vib), due to the higher fluxes of etching species (i.e. H and Br), while the chemical composition of the wafer surface shows no significant difference. Our calculations clearly show the importance of including HBr(vib) for accurate modeling of HBr-containing plasmas.

  10. High-Q silicon-on-insulator optical rib waveguide racetrack resonators

    Science.gov (United States)

    Kiyat, Isa; Aydinli, Atilla; Dagli, Nadir

    2005-03-01

    In this work, detailed design and realization of high quality factor (Q) racetrack resonators based on silicon-on-insulator rib waveguides are presented. Aiming to achieve critical coupling, suitable waveguide geometry is determined after extensive numerical studies of bending loss. The final design is obtained after coupling factor calculations and estimation of propagation loss. Resonators with quality factors (Q) as high as 119000 has been achieved, the highest Q value for resonators based on silicon-on-insulator rib waveguides to date with extinction ratios as large as 12 dB.

  11. Shear dependent nonlinear vibration in a high quality factor single crystal silicon micromechanical resonator

    Science.gov (United States)

    Zhu, H.; Shan, G. C.; Shek, C. H.; Lee, J. E.-Y.

    2012-07-01

    The frequency response of a single crystal silicon resonator under nonlinear vibration is investigated and related to the shear property of the material. The shear stress-strain relation of bulk silicon is studied using a first-principles approach. By incorporating the calculated shear property into a device-level model, our simulation closely predicts the frequency response of the device obtained by experiments and further captures the nonlinear features. These results indicate that the observed nonlinearity stems from the material's mechanical property. Given the high quality factor (Q) of the device reported here (˜2 × 106), this makes it highly susceptible to such mechanical nonlinear effects.

  12. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

    2000-05-01

    The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

  13. Radiation-hard silicon photonics for high energy physics and beyond

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Silicon photonics (SiPh) is currently being investigated as a promising technology for future radiation hard optical links. The possibility of integrating SiPh devices with electronics and/or silicon particle sensors as well as an expected very high resistance against radiation damage make this technology particularly interesting for potential use close to the interaction points in future in high energy physics experiments and other radiation-sensitive applications. The presentation will summarize the outcomes of the research on radiation hard SiPh conducted within the ICE-DIP projected.

  14. High-Q silicon-on-insulator optical rib waveguide racetrack resonators.

    Science.gov (United States)

    Kiyat, Isa; Aydinli, Atilla; Dagli, Nadir

    2005-03-21

    In this work, detailed design and realization of high quality factor (Q) racetrack resonators based on silicon-on-insulator rib waveguides are presented. Aiming to achieve critical coupling, suitable waveguide geometry is determined after extensive numerical studies of bending loss. The final design is obtained after coupling factor calculations and estimation of propagation loss. Resonators with quality factors (Q) as high as 119000 has been achieved, the highest Q value for resonators based on silicon-on-insulator rib waveguides to date with extinction ratios as large as 12 dB.

  15. A new Design for an High Gain Vacuum Photomultiplier: The Silicon PMT Used as Amplification Stage

    Energy Technology Data Exchange (ETDEWEB)

    Barbarino, Giancarlo [Universita di Napoli ' Federico II' , Dipartimento di Scienze fisiche, via Cintia 80126 Napoli (Italy); Asmundis, Riccardo de; De Rosa, Gianfranca [Istituto Nazionale di fisica Nucleare, sezione di Napoli, Complesso di Monte S. Angelo Ed. 6, via Cintia 80126 Napoli (Italy); Fiorillo, Giuliana; Russo, Stefano [Universita di Napoli ' Federico II' , Dipartimento di Scienze fisiche, via Cintia 80126 Napoli (Italy)

    2009-12-15

    Photons detection will continue to be a channel of great interest in the High Energy Physics and Astroparticle Physics fields for medium and big scale experiments in the next future. Thus, new solutions for photon detectors, that overcome the current limits of classical photomultipliers, are welcomed. We propose an innovative design for a hybrid, modern, high gain Vacuum Silicon Photomultiplier Tube (VSiPMT) which is boosted by the recent Geiger-mode avalanche silicon photodiode (G-APD) for which a massive production is today available.

  16. Transport coefficients and heat fluxes in non-equilibrium high-temperature flows with electronic excitation

    Science.gov (United States)

    Istomin, V. A.; Kustova, E. V.

    2017-02-01

    The influence of electronic excitation on transport processes in non-equilibrium high-temperature ionized mixture flows is studied. Two five-component mixtures, N 2 / N2 + / N / N + / e - and O 2 / O2 + / O / O + / e - , are considered taking into account the electronic degrees of freedom for atomic species as well as the rotational-vibrational-electronic degrees of freedom for molecular species, both neutral and ionized. Using the modified Chapman-Enskog method, the transport coefficients (thermal conductivity, shear viscosity and bulk viscosity, diffusion and thermal diffusion) are calculated in the temperature range 500-50 000 K. Thermal conductivity and bulk viscosity coefficients are strongly affected by electronic states, especially for neutral atomic species. Shear viscosity, diffusion, and thermal diffusion coefficients are not sensible to electronic excitation if the size of excited states is assumed to be constant. The limits of applicability for the Stokes relation are discussed; at high temperatures, this relation is violated not only for molecular species but also for electronically excited atomic gases. Two test cases of strongly non-equilibrium flows behind plane shock waves corresponding to the spacecraft re-entry (Hermes and Fire II) are simulated numerically. Fluid-dynamic variables and heat fluxes are evaluated in gases with electronic excitation. In inviscid flows without chemical-radiative coupling, the flow-field is weakly affected by electronic states; however, in viscous flows, their influence can be more important, in particular, on the convective heat flux. The contribution of different dissipative processes to the heat transfer is evaluated as well as the effect of reaction rate coefficients. The competition of diffusion and heat conduction processes reduces the overall effect of electronic excitation on the convective heating, especially for the Fire II test case. It is shown that reliable models of chemical reaction rates are of great

  17. A High-Voltage SOI CMOS Exciter Chip for a Programmable Fluidic Processor System.

    Science.gov (United States)

    Current, K W; Yuk, K; McConaghy, C; Gascoyne, P R C; Schwartz, J A; Vykoukal, J V; Andrews, C

    2007-06-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport fluidic droplet samples on programmable paths across the array of driving electrodes on its hydrophobically coated surface. This exciter chip is the engine for dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip systems, creating field excitations that inject and move fluidic droplets onto and about the manipulation surface. The architecture of this chip is expandable to arrays of N X N identical HV electrode driver circuits and electrodes. The exciter chip is programmable in several senses. The routes of multiple droplets may be set arbitrarily within the bounds of the electrode array. The electrode excitation waveform voltage amplitude, phase, and frequency may be adjusted based on the system configuration and the signal required to manipulate a particular fluid droplet composition. The voltage amplitude of the electrode excitation waveform can be set from the minimum logic level up to the maximum limit of the breakdown voltage of the fabrication technology. The frequency of the electrode excitation waveform can also be set independently of its voltage, up to a maximum depending upon the type of droplets that must be driven. The exciter chip can be coated and its oxide surface used as the droplet manipulation surface or it can be used with a top-mounted, enclosed fluidic chamber consisting of a variety of materials. The HV capability of the exciter chip allows the generated DEP forces to penetrate into the enclosed chamber region and an adjustable voltage amplitude can accommodate a variety of chamber floor thicknesses. This demonstration exciter chip has a 32 x 32 array of nominally 100 V electrode drivers that are individually programmable at each time point in the procedure to either of two phases: 0deg and 180deg with respect to the reference clock. For this demonstration chip, while operating the electrodes with a 100-V peak-to-peak periodic waveform, the maximum HV electrode

  18. Application of Excitation from Multiple Locations on a Simplified High-Lift System

    Science.gov (United States)

    Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2004-01-01

    A series of active flow control experiments were recently conducted on a simplified high-lift system. The purpose of the experiments was to explore the prospects of eliminating all but simply hinged leading and trailing edge flaps, while controlling separation on the supercritical airfoil using multiple periodic excitation slots. Excitation was provided by three. independently controlled, self-contained, piezoelectric actuators. Low frequency excitation was generated through amplitude modulation of the high frequency carrier wave, the actuators' resonant frequencies. It was demonstrated, for the first time, that pulsed modulated signal from two neighboring slots interact favorably to increase lift. Phase sensitivity at the low frequency was measured, even though the excitation was synthesized from the high-frequency carrier wave. The measurements were performed at low Reynolds numbers and included mean and unsteady surface pressures, surface hot-films, wake pressures and particle image velocimetry. A modest (6%) increase in maximum lift (compared to the optimal baseline) was obtained due t o the activation of two of the three actuators.

  19. Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries

    Science.gov (United States)

    Piwko, Markus; Kuntze, Thomas; Winkler, Sebastian; Straach, Steffen; Härtel, Paul; Althues, Holger; Kaskel, Stefan

    2017-05-01

    Silicon is a promising anode material for next generation lithium secondary batteries. To significantly increase the energy density of state of the art batteries with silicon, new concepts have to be developed and electrode structuring will become a key technology. Structuring is essential to reduce the macroscopic and microscopic electrode deformation, caused by the volume change during cycling. We report pulsed laser structuring for the generation of hierarchical columnar silicon films with outstanding high areal capacities up to 7.5 mAh cm-2 and good capacity retention. Unstructured columnar electrodes form a micron-sized block structure during the first cycle to compensate the volume expansion leading to macroscopic electrode deformation. At increased silicon loading, without additional structuring, pronounced distortion and the formation of cracks through the current collector causes cell failure. Pulsed laser ablation instead is demonstrated to avoid macroscopic electrode deformation by initial formation of the block structure. A full cell with lithiated silicon versus a carbon-sulfur cathode is assembled with only 15% overbalanced anode and low electrolyte amount (8 μl mgsulfur-1). While the capacity retention over 50 cycles is identical to a cell with high excess lithium anode, the volumetric energy density could be increased by 30%.

  20. A modified approach to actively remove high viscosity silicone oil through 23-gauge cannula.

    Science.gov (United States)

    Song, Zong-Ming; Hu, Xu-Ting; Wang, Lei; Hu, Zhi-Xiang; Zhao, Pei-Quan; Chen, Ding

    2016-01-01

    To report a simple approach to actively remove high viscosity silicone oil through a 23-gauge cannula via pars plana. Forty-eight eyes of 48 patients underwent silicone oil (5700 centistokes) removal (SOR) were enrolled. A section of blood transfusion set was prepared to connect a standard 23-gauge cannula and vitrectomy machine. Silicone oil was removed with suction of 500-mm Hg vacuum through the cannula. Main outcome measures were SOR duration, number of sutured sites, intraocular pressure (IOP), best-corrected visual acuity (BCVA), and complications. Silicone oil was successfully removed in all cases. The mean SOR time was 5.70±0.85min. Nine eyes (18.75%) needed suture partial sclerotomies. No intraoperative complications were noted. Transient hypotony (≤8 mm Hg) was seen in 3 eyes (6.25%) on postoperative day 1, but all resolved within 1wk. Retinal reattachment was achieved in all cases and no other postoperative complications were noted during 3-month following-up. BCVA at the final visit improved or stabilized in all patients comparing to the preoperative level. Active removal of high viscosity silicone oil through a 23-gauge instrument cannula jointed with blood transfusion set is a practical and reliable technique when considering two sides of efficacy and safety.

  1. Novel Ag-doped glass frits for high-efficiency crystalline silicon solar cells.

    Science.gov (United States)

    Yuan, Sheng; Chen, Yongji; Mei, Zongwei; Zhang, Ming-Jian; Gao, Zhou; Wang, Xingbo; Jiang, Xing; Pan, Feng

    2017-06-06

    Glass frits play an important role in the front contact electrodes of crystalline silicon (c-Si) solar cells. In this work, we developed a novel glass frit by doping Ag into a glass frit in the process of high-temperature synthesis. When the Ag paste including this novel glass frit was used as the front contact electrode of silicon solar cells, the conversion efficiency of poly-crystalline silicon (pc-Si) solar cells was improved by 1.9% compared to the glass frit without Ag. Through SEM characterisation and calculation of series resistance, we further found that the interface between Ag and Si was improved and the contact resistance of Ag and Si was greatly reduced, which were believed to be responsible for the improvement of solar cell performance. This work shows great guidance significance to develop novel and highly efficient commercial glass frits applied in solar cells in the future.

  2. An Investigation of High Performance Heterojunction Silicon Solar Cell Based on n-type Si Substrate

    Directory of Open Access Journals (Sweden)

    N. Memarian

    2016-12-01

    Full Text Available In this study, high efficient heterojunction crystalline silicon solar cells without using an intrinsic layer were systematically investigated. The effect of various parameters such as work function of transparent conductive oxide (ϕTCO, density of interface defects, emitter and crystalline silicon thickness on heterojunction silicon solar cell performance was studied. In addition, the effect of band bending and internal electric field on solar cell performance together with the dependency of cell performance on work function and reflectance of the back contact were investigated in full details. The optimum values of the solar cell properties for the highest efficiency are presented based on the results of the current study. The results represent a complete set of optimum values for a heterojunction solar cell with high efficiency up to the 24.1 % with VOC  0.87 V and JSC  32.69 mAcm – 2.

  3. High-density G-centers, light-emitting point defects in silicon crystal

    Directory of Open Access Journals (Sweden)

    Koichi Murata

    2011-09-01

    Full Text Available We propose a new method of creating light-emitting point defects, or G-centers, by modifying a silicon surface with hexamethyldisilazane followed by laser annealing of the surface region. This laser annealing process has two advantages: creation of highly dense G-centers by incorporating carbon atoms into the silicon during heating; freezing in the created G-centers during rapid cooling. The method provides a surface region of up to 200 nm with highly dense carbon atoms of up to 4 × 1019 cm−3 to create G-centers, above the solubility limit of carbon atoms in silicon crystal (3 × 1017 cm−3. Photoluminescence measurement reveals that the higher-speed laser annealing produces stronger G-center luminescence. We demonstrate electrically-driven emission from the G-centers in samples made using our new method.

  4. Quality of silicon convex lenses fabricated by ultra-high precision diamond machining

    Directory of Open Access Journals (Sweden)

    Abou-El-Hossein, K.

    2013-05-01

    Full Text Available Infra-red optical components are made mainly from hard and brittle materials such as germanium and silicon. Silicon machining is characterised by some difficulties when ultra-high precision machined by mono-crystalline single-point diamond. Accelerated tool wear and machined-surface deterioration may take place if the machining parameters are not properly selected. In this study, we conducted a machining test on an ultra-high precision machine tool, using ductile regime cutting conditions when fabricating a convex surface on a silicon lens of aperture of 60 mm diameter, and using a mono-crystalline diamond. It was found that the cutting conditions for shaping a convex surface of 500 mm radius resulted in good form accuracy. However, more attention should be paid to optimising the holding force of the vacuum chuck employed.

  5. High-pressure synthesis at the origin of new developments in silicon clathrate physical chemistry

    CERN Document Server

    Reny, E; Cros, C; Pouchard, M

    2002-01-01

    Since their discovery in 1965, various compositions of clathrate phases of silicon have been investigated and have revealed a direct correlation between the doping element and their properties. The recent development of a new synthesis technique using high-pressure and high-temperature (HPHT) conditions allows the synthesis of peculiar clathrate compositions which can show fascinating properties, such as Ba sub 8 Si sub 4 sub 6 which is a sp sup 3 silicon-based structure with superconducting characteristics. This work reports the synthesis of the first binary silicon clathrate doped with an electronegative element and prepared using HPHT: I sub 8 Si sub 4 sub 6 sub sub - sub x I sub x. Some chemical and structural results are also presented.

  6. High-pressure synthesis at the origin of new developments in silicon clathrate physical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Reny, Edouard [Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan); Yamanaka, S [Department of Applied Chemistry, Faculty of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527 (Japan); Cros, C [Institut de Chimie de la Matiere Condensee de Bordeaux, UPR/CNRS 9048, 33608 Pessac (France); Pouchard, M [Institut de Chimie de la Matiere Condensee de Bordeaux, UPR/CNRS 9048, 33608 Pessac (France)

    2002-11-11

    Since their discovery in 1965, various compositions of clathrate phases of silicon have been investigated and have revealed a direct correlation between the doping element and their properties. The recent development of a new synthesis technique using high-pressure and high-temperature (HPHT) conditions allows the synthesis of peculiar clathrate compositions which can show fascinating properties, such as Ba{sub 8}Si{sub 46} which is a sp{sup 3} silicon-based structure with superconducting characteristics. This work reports the synthesis of the first binary silicon clathrate doped with an electronegative element and prepared using HPHT: I{sub 8}Si{sub 46-x}I{sub x}. Some chemical and structural results are also presented.

  7. Silicon Nanocrystal Synthesis in Microplasma Reactor

    Science.gov (United States)

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with grains smaller than 5 nm are widely recognized as a key material in optoelectronic devices, lithium battery electrodes, and bio-medical labels. Another important characteristic is that silicon is an environmentally safe material that is used in numerous silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma-enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. In this study, we explore the possibility of microplasma technologies for efficient production of mono-dispersed nanocrystalline silicon particles on a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using a very-high-frequency (144 MHz) power source in a capillary glass tube with volume of less than 1 μl. Fundamental plasma parameters of the microplasma were characterized using optical emission spectroscopy, which respectively indicated electron density of 1015 cm-3, argon excitation temperature of 5000 K, and rotational temperature of 1500 K. Such high-density non-thermal reactive plasma can decompose silicon tetrachloride into atomic silicon to produce supersaturated silicon vapor, followed by gas-phase nucleation via three-body collision: particle synthesis in high-density plasma media is beneficial for promoting nucleation processes. In addition, further growth of silicon nuclei can be terminated in a short-residence-time reactor. Micro-Raman scattering spectra showed that as-deposited particles are mostly amorphous silicon with a small fraction of silicon nanocrystals. Transmission electron micrography confirmed individual 3-15 nm silicon nanocrystals. Although particles were not mono-dispersed, they were well separated and not coagulated.

  8. Controlling light with high-Q silicon photonic crystal nanocavities: Photon confinement, nonlinearity and coherence

    Science.gov (United States)

    Yang, Xiaodong

    The strong light localization and long photon lifetimes in two-dimensional silicon photonic crystal nanocavities with high quality factor (Q ) and subwavelength modal volume (V) significantly enhance the light-matter interactions, presenting many opportunities to explore new functionalities in silicon nanophotonic integrated circuits for on-chip all-optical information processing, optical computation and optical communications. This thesis will focus on the design, nanofabrication, and experimental characterization of both passive and active silicon nanophotonic devices based on two-dimensional high-Q silicon photonic crystal nanocavities. Three topics of controlling light with these high-Q nanocavities will be presented, including (1) photon confinement mechanism and cavity resonance tuning, (2) enhancement of optical nonlinearities, and (3) all-optical analogue to coherent interferences. The first topic is photon confinement in two-dimensional high- Q silicon photonic crystal nanocavities. In Chapter 2, the role of Q/V as the figure of merit for the enhanced light-matter interaction in optical microcavities and nanocavities is explained and different types of high-Q optical microcavities and nanocavities are reviewed with an emphasis on two-dimensional photonic crystal nanocavities. Then the nanofabrication process and the Q characterization are illustrated for the two-dimensional silicon photonic crystal nanocavities. In Chapter 3, the post-fabrication digital resonance tuning of high-Q silicon photonic crystal nanocavities using atomic layer deposition is proposed and demonstrated, with wide tuning range and precise control of cavity resonances while preserving high quality factors. The second topic is the enhancement of optical nonlinearities in two-dimensional high-Q silicon photonic crystal nanocavities, including stimulated Raman scattering and thermo-optical nonlinearities. In Chapter 4, the enhanced stimulated Raman scattering for low threshold Raman

  9. Silicon nanostructures for cancer diagnosis and therapy.

    Science.gov (United States)

    Peng, Fei; Cao, Zhaohui; Ji, Xiaoyuan; Chu, Binbin; Su, Yuanyuan; He, Yao

    2015-01-01

    The emergence of nanotechnology suggests new and exciting opportunities for early diagnosis and therapy of cancer. During the recent years, silicon-based nanomaterials featuring unique properties have received great attention, showing high promise for myriad biological and biomedical applications. In this review, we will particularly summarize latest representative achievements on the development of silicon nanostructures as a powerful platform for cancer early diagnosis and therapy. First, we introduce the silicon nanomaterial-based biosensors for detecting cancer markers (e.g., proteins, tumor-suppressor genes and telomerase activity, among others) with high sensitivity and selectivity under molecular level. Then, we summarize in vitro and in vivo applications of silicon nanostructures as efficient nanoagents for cancer therapy. Finally, we discuss the future perspective of silicon nanostructures for cancer diagnosis and therapy.

  10. Spintronics: Silicon takes a spin

    NARCIS (Netherlands)

    Jansen, Ron

    2007-01-01

    An efficient way to transport electron spins from a ferromagnet into silicon essentially makes silicon magnetic, and provides an exciting step towards integration of magnetism and mainstream semiconductor electronics.

  11. Current status of free radicals and electronically excited metastable species as high energy propellants

    Science.gov (United States)

    Rosen, G.

    1973-01-01

    A survey is presented of free radicals and electronically excited metastable species as high energy propellants for rocket engines. Nascent or atomic forms of diatomic gases are considered free radicals as well as the highly reactive diatomic triatomic molecules that posess unpaired electrons. Manufacturing and storage problems are described, and a review of current experimental work related to the manufacture of atomic hydrogen propellants is presented.

  12. Very High Excitation Lines of H2 in the Orion Molecular Cloud Outflow

    Science.gov (United States)

    Geballe, T. R.; Burton, M. G.; Pike, R. E.

    2017-03-01

    Vibration-rotation lines of H2 from highly excited levels approaching the dissociation limit have been detected at a number of locations in the shocked gas of the Orion Molecular Cloud (OMC-1), including in a Herbig-Haro object near the tip of one of the OMC-1 “fingers.” Population diagrams show that, while the excited H2 is almost entirely at a kinetic temperature of ˜1800 K (typical for vibrationally shock-excited H2), as in the previously reported case of Herbig-Haro object HH 7 up to a few percent of the H2 is at a kinetic temperature of ˜5000 K. The location with the largest fraction of hot H2 is the Herbig-Haro object, where the outflowing material is moving at a higher speed than at the other locations. Although theoretical work is required for a better understanding of the 5000 K H2 (including how it cools), its existence and the apparent dependence of its abundance relative to that of the cooler component on the relative velocities of the outflow and the surrounding ambient gas appear broadly consistent with it having recently reformed. The existence of this high-temperature H2 appears to be a common characteristic of shock-excited molecular gas.

  13. Boosting brain excitability by transcranial high frequency stimulation in the ripple range.

    Science.gov (United States)

    Moliadze, Vera; Antal, Andrea; Paulus, Walter

    2010-12-15

    Alleviating the symptoms of neurological diseases by increasing cortical excitability through transcranial stimulation is an ongoing scientific challenge. Here, we tackle this issue by interfering with high frequency oscillations (80–250 Hz) via external application of transcranial alternating current stimulation (tACS) over the human motor cortex (M1). Twenty-one subjects participated in three different experimental studies and they received on separate days tACS at three frequencies (80 Hz, 140 Hz and 250 Hz) and sham stimulation in a randomized order. tACS with 140 Hz frequency increased M1 excitability as measured by transcranial magnetic stimulation-generated motor evoked potentials (MEPs) during and for up to 1 h after stimulation. Control experiments with sham and 80 Hz stimulation were without any effect, and 250 Hz stimulation was less efficient with a delayed excitability induction and reduced duration. After-effects elicited by 140 Hz stimulation were robust against inversion of test MEP amplitudes seen normally under activation. Stimulation at 140 Hz reduced short interval intracortical inhibition, but left intracortical facilitation, long interval cortical inhibition and cortical silent period unchanged. Implicit motor learning was not facilitated by 140 Hz stimulation. High frequency stimulation in the ripple range is a new promising non-invasive brain stimulation protocol to increase human cortical excitability during and after the end of stimulation.

  14. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics

    KAUST Repository

    Ghoneim, Mohamed T.

    2017-02-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems.

  15. High Reflectance Silicon Dielectric Mirrors for Infrared Astronomy Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional high reflectance optical coatings consisting of multilayer stacks of alternating high and low refractive index dielectric materials can achieve high...

  16. One step lithography-less silicon nanomanufacturing for low cost high-efficiency solar cell production

    Science.gov (United States)

    Chen, Yi; Liu, Logan

    2014-03-01

    To improve light absorption, previously various antireflection material layers were created on solar wafer surface including multilayer dielectric film, nanoparticle sludges, microtextures, noble metal plasmonic nanoparticles and 3D silicon nanostructure arrays. All of these approaches involve nanoscale prepatterning, surface-area-sensitive assembly processes or extreme fabrication conditions; therefore, they are often limited by the associated high cost and low yield as well as the consequent industry incompatibility. In comparison, our nanomanufacturing, an unique synchronized and simultaneous top-down and bottom-up nanofabrication approach called simultaneous plasma enhanced reactive ion synthesis and etching (SPERISE), offers a better antireflection solution along with the potential to increase p-n junction surface area. High density and high aspect ratio anechoic nanocone arrays are repeatedly and reliably created on the entire surface of single and poly crystalline silicon wafers as well as amorphous silicon thin films within 5 minutes under room temperature. The nanocone surface had lower than 5% reflection over the entire solar spectrum and a desirable omnidirectional absorption property. Using the nanotextured solar wafer, a 156mm × 156mm 18.1%-efficient black silicon solar cell was fabricated, which was an 18.3% enhancement over the cell fabricated by standard industrial processes. This process also reduces silicon loss during the texturing step and enables tighter process control by creating more uniform surface structures. Considering all the above advantages, the demonstrated nanomanufacturing process can be readily translated into current industrial silicon solar cell fabrication lines to replace the costly and ineffective wet chemical texturing and antireflective coatings.

  17. High temperature C/C–SiC composite by liquid silicon infiltration: a literature review

    Indian Academy of Sciences (India)

    Manish Patel; Kumar Saurabh; V V Bhanu Prasad; J Subrahmanyam

    2012-02-01

    The ceramic matrix carbon fibre (CMC) reinforced composite has received great attention for use in aerospace engineering. In aerospace, the atmosphere is highly oxidative and experiences very high temperature. In addition to this, the materials require high thermal stability and high abrasion resistance in that atmosphere. The C/C–SiC composite meets with these requirements. In this paper, the C/C–SiC composite by liquid silicon infiltration is reviewed thoroughly.

  18. Thermodynamic Calculations of Melt in Melt Pool During Laser Cladding High Silicon Coatings

    Institute of Scientific and Technical Information of China (English)

    DONG Dan-yang; LIU Chang-sheng; ZHANG Bin

    2008-01-01

    Based on the Miedema's formation heat model for binary alloys and the Toop's asymmetric model for terna-ry alloys, the formation heat, excess entropy, and activity coefficients of silicon ranging from 1 900 K to 4 100 K in the Fe-Si-C melt formed during the laser cladding high silicon coatings process were calculated. The results indicated that all values of InγOSi, εCSi, ρSiSi and ρCSi are negative in the temperature range and these values increase as the tempera-ture increases. And all values of εSiSi and ρSi-CSi are positive and these values decrease with increasing temperature. The iso-activity lines of silicon are distributed axisymmetrically to the incident laser beam in the melt pool vertical to the laser scanning direction. And the iso-activity lines of silicon in the front of the melt pool along the laser scanning direction are more intensive than those in the back of the melt pool. The activity of silicon on the bottom of the melt pool is lower than that in the effecting center of laser beam on the top surface of the melt pool and it may be the im-portant reason for the formation of the silicides and excellent metallurgical bonding between the laser cladding coating and the substrate.

  19. Plastic Deformation of Micromachined Silicon Diaphragms with a Sealed Cavity at High Temperatures

    Directory of Open Access Journals (Sweden)

    Juan Ren

    2016-02-01

    Full Text Available Single crystal silicon (SCS diaphragms are widely used as pressure sensitive elements in micromachined pressure sensors. However, for harsh environments applications, pure silicon diaphragms are hardly used because of the deterioration of SCS in both electrical and mechanical properties. To survive at the elevated temperature, the silicon structures must work in combination with other advanced materials, such as silicon carbide (SiC or silicon on insulator (SOI, for improved performance and reduced cost. Hence, in order to extend the operating temperatures of existing SCS microstructures, this work investigates the mechanical behavior of pressurized SCS diaphragms at high temperatures. A model was developed to predict the plastic deformation of SCS diaphragms and was verified by the experiments. The evolution of the deformation was obtained by studying the surface profiles at different anneal stages. The slow continuous deformation was considered as creep for the diaphragms with a radius of 2.5 mm at 600 °C. The occurrence of plastic deformation was successfully predicted by the model and was observed at the operating temperature of 800 °C and 900 °C, respectively.

  20. High-efficiency deflection of high energy protons due to channeling along the axis of a bent silicon crystal

    Science.gov (United States)

    Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Lechner, A.; Masi, A.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Rossi, R.; Smirnov, G.; Breton, D.; Burmistrov, L.; Chaumat, V.; Dubos, S.; Maalmi, J.; Puill, V.; Stocchi, A.; Bagli, E.; Bandiera, L.; Germogli, G.; Guidi, V.; Mazzolari, A.; Dabagov, S.; Murtas, F.; Addesa, F.; Cavoto, G.; Iacoangeli, F.; Galluccio, F.; Afonin, A. G.; Chesnokov, Yu. A.; Durum, A. A.; Maisheev, V. A.; Sandomirskiy, Yu. E.; Yanovich, A. A.; Kovalenko, A. D.; Taratin, A. M.; Denisov, A. S.; Gavrikov, Yu. A.; Ivanov, Yu. M.; Lapina, L. P.; Malyarenko, L. G.; Skorobogatov, V. V.; James, T.; Hall, G.; Pesaresi, M.; Raymond, M.

    2016-09-01

    A deflection efficiency of about 61% was observed for 400 GeV/c protons due to channeling, most strongly along the axis of a bent silicon crystal. It is comparable with the deflection efficiency in planar channeling and considerably larger than in the case of the axis. The measured probability of inelastic nuclear interactions of protons in channeling along the axis is only about 10% of its amorphous level whereas in channeling along the (110) planes it is about 25%. High efficiency deflection and small beam losses make this axial orientation of a silicon crystal a useful tool for the beam steering of high energy charged particles.

  1. Coherent time evolution of highly excited Rydberg states in pulsed electric field Opening a stringent way to selectively field-ionize the highly excited states

    CERN Document Server

    Tada, M; Ogawa, I; Funahashi, H; Yamamoto, K; Matsuki, S

    2000-01-01

    Coherent time evolution of highly excited Rydberg states in Rb (98 < n < 150) under pulsed electric field in high slew-rate regime was investigated with the field ionization detection. The electric field necessary to ionize the Rydberg states was found to take discrete values successively depending on the slew rate. Specifically the slew-rate dependence of the ionization field varies with the quantum defect value of the states, i.e. with the energy position of the states relative to the adjacent manifold. This discrete transitional behavior of the ionization field observed for the first time is considered to be a manifestation of the strong coherence effect in the time evolution of the Rydberg states in pulsed electric field and opens a new effective way to stringently select a low-l state from the nearby states by field ionization.

  2. Ultra-high cell-density silicon photomultipliers with high detection efficiency

    Science.gov (United States)

    Acerbi, Fabio; Gola, Alberto; Regazzoni, Veronica; Paternoster, Giovanni; Borghi, Giacomo; Piemonte, Claudio; Zorzi, Nicola

    2017-05-01

    Silicon photomultipliers (SiPMs) are arrays of many single-photon avalanche diodes (SPADs), all connected in parallel. Each SPAD is sensitive to single photons and the SiPM gives an output proportional to the number of detected photons. These sensors are becoming more and more popular in different applications, from high-energy physics to spectroscopy, and they have been significantly improved over last years, decreasing the noise, increasing the cell fill-factor (FF) and thus achieving very high photon-detection efficiency (PDE). In FBK (Trento, Italy), we developed new SiPM technologies with high-density (HD) and, more recently, ultra-high-density (UHD) of cells (i.e. density of SPADs). These technologies employ deep-trenches between cells, for electrical and optical isolation. As an extreme case the smallest-cell, SiPM, i.e. with 5μm cell pitch, has about 40000 SPADs per squared millimeter. Such small SPAD dimensions gives a significantly high dynamic range to the SiPM. These small-cells SiPM have a lower correlated noise (including lower afterpulsing probability) and a faster recharge time (in the order of few nanoseconds), and they also preserve a very good detection efficiency (despite the small SPAD dimension).

  3. Recoil implantation of boron into silicon by high energy silicon ions

    Science.gov (United States)

    Shao, L.; Lu, X. M.; Wang, X. M.; Rusakova, I.; Mount, G.; Zhang, L. H.; Liu, J. R.; Chu, Wei-Kan

    2001-07-01

    A recoil implantation technique for shallow junction formation was investigated. After e-gun deposition of a B layer onto Si, 10, 50, or 500 keV Si ion beams were used to introduce surface deposited B atoms into Si by knock-on. It has been shown that recoil implantation with high energy incident ions like 500 keV produces a shallower B profile than lower energy implantation such as 10 keV and 50 keV. This is due to the fact that recoil probability at a given angle is a strong function of the energy of the primary projectile. Boron diffusion was showed to be suppressed in high energy recoil implantation and such suppression became more obvious at higher Si doses. It was suggested that vacancy rich region due to defect imbalance plays the role to suppress B diffusion. Sub-100 nm junction can be formed by this technique with the advantage of high throughput of high energy implanters.

  4. Memory effects in metal-oxide-semiconductor capacitors incorporating dispensed highly monodisperse 1 nm silicon nanoparticles

    Science.gov (United States)

    Nayfeh, Osama M.; Antoniadis, Dimitri A.; Mantey, Kevin; Nayfeh, Munir H.

    2007-04-01

    Metal-oxide-semiconductor capacitors containing various densities of ex situ produced, colloidal, highly monodisperse, spherical, 1nm silicon nanoparticles were fabricated and evaluated for potential use as charge storage elements in future nonvolatile memory devices. The capacitance-voltage characteristics are well behaved and agree with similarly fabricated zero-nanoparticle control samples and with an ideal simulation. Unlike larger particle systems, the demonstrated memory effect exhibits effectively pure hole storage. The nature of charging, hole type versus electron type may be understood in terms of the characteristics of ultrasmall silicon nanoparticles: large energy gap, large charging energy, and consequently a small electron affinity.

  5. Silicon as anode for high-energy lithium ion batteries: From molten ingot to nanoparticles

    Science.gov (United States)

    Leblanc, Dominic; Hovington, Pierre; Kim, Chisu; Guerfi, Abdelbast; Bélanger, Daniel; Zaghib, Karim

    2015-12-01

    In this work, we demonstrate that a new mechanical attrition process can be used to prepare nanosilicon powder from metallurgical grade silicon lumps. Composite Li-ion anode made from this nanometer-size powder was found to have a high reversible capacity of 2400 mAh g-1 and an improved cycling stability compared to micrometer-sized powder. It is proposed that improved battery cycling performance is ascribed to the nanoscale silicon particles which supresses the volume expansion owing to its superplasticity.

  6. Interface Engineering of High Efficiency Organic-Silicon Heterojunction Solar Cells.

    Science.gov (United States)

    Yang, Lixia; Liu, Yaoping; Chen, Wei; Wang, Yan; Liang, Huili; Mei, Zengxia; Kuznetsov, Andrej; Du, Xiaolong

    2016-01-13

    Insufficient interface conformity is a challenge faced in hybrid organic-silicon heterojunction solar cells because of using conventional pyramid antireflection texturing provoking the porosity of interface. In this study, we tested alternative textures, in particular rounded pyramids and inverted pyramids to compare the performance. It was remarkably improved delivering 7.61%, 8.91% and 10.04% efficiency employing conventional, rounded, and inverted pyramids, respectively. The result was interpreted in terms of gradually improving conformity of the Ag/organic/silicon interface, together with the gradually decreasing serial resistance. Altogether, the present data may guide further efforts arising the interface engineering for mastering high efficient heterojunction solar cells.

  7. Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation

    CERN Document Server

    Chen, Charlton J; Gu, Tingyi; McMillan, James F; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee; Wong, Chee Wei

    2011-01-01

    We examine the cavity resonance tuning of high-Q silicon photonic crystal heterostructures by localized laser-assisted thermal oxidation using a 532 nm continuous wave laser focused to a 2.5 mm radius spot-size. The total shift is consistent with the parabolic rate law. A tuning range of up to 8.7 nm is achieved with ~ 30 mW laser powers. Over this tuning range, the cavity Q decreases from 3.2\\times10^5 to 1.2\\times10^5. Numerical simulations model the temperature distributions in the silicon photonic crystal membrane and the cavity resonance shift from oxidation.

  8. High-resolution tracking with silicon strip detectors for relativistic ions

    CERN Document Server

    Hou, S R; Ambrosi, G; Balboni, C; Battiston, R; Burger, W J; Chang, Y H; Geissel, H; Ionica, M; Lustermann, W; Maehlum, G; Menichelli, M; Pauluzzi, M; Postolache, V; Produit, N; Rapin, D; Ren, D; Ribordy, M; Sann, H; Schardt, D; Sümmerer, K; Viertel, Gert M

    1999-01-01

    Tracking with silicon strip detectors for relativistic ions has been investigated using a sup 1 sup 2 C beam of 1.5 GeV/u at GSI. The ionization charge spectrum and the charge sharing between strips are presented. The strip cluster of carbon ion can be selected based on the cluster charge with high efficiency and little contamination. The spatial resolution of the silicon strip detectors is evaluated. The angular distribution of multiple Coulomb scattering was investigated with lead absorbers. The results are compared to the Moliere theory and the Gaussian approximation of GEANT calculations. (author)

  9. Controlled fabrication of individual silicon quantum rods yielding high intensity, polarized light emission

    Science.gov (United States)

    Bruhn, Benjamin; Valenta, Jan; Linnros, Jan

    2009-12-01

    Elongated silicon quantum dots (also referred to as rods) were fabricated using a lithographic process which reliably yields sufficient numbers of emitters. These quantum rods are perfectly aligned and the vast majority are spatially separated well enough to enable single-dot spectroscopy. Not only do they exhibit extraordinarily high linear polarization with respect to both absorption and emission, but the silicon rods also appear to luminesce much more brightly than their spherical counterparts. Significantly increased quantum efficiency and almost unity degree of linear polarization render these quantum rods perfect candidates for numerous applications.

  10. Defects in Fast-Neutron Irradiated Nitrogen-Doped Czochralski Silicon after Annealing at High Temperature

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Fast-neutron irradiated nitrogen-doped Czochralski silicon (NCZ-Si) was annealed at 1100 ℃ for different time, then FTIR and optical microscope were used to study the behavior of oxygen. It is found that [Oi] increase at the early stage then decrease along with the increasing of anneal time. High density induced-defects can be found in the cleavage plane. By comparing NCZ-Si with Czochralski silicon (CZ-Si), [Oi] in NCZ-Si decrease more after anneal 24 h.

  11. Preparation of silicon carbide nitride films on Si substrate by pulsed high-energy density plasma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Thin films of silicon carbide nitride (SiCN) were prepared on (111) oriented silicon substrates by pulsed high-energy density plasma (PHEDP). The evolution of the chemical bonding states between silicon, nitrogen and carbon was investigated as a function of discharge voltage using X-ray photoelectron spectroscopy. With an increase in discharge voltage both the C1s and N 1s spectra shift to lower binding energy due to the formation of C-Si and N-Si bonds. The Si-C-N bonds were observed in the deconvolved C1s and N 1s spectra. The X-ray diffractometer (XRD) results show that there were no crystals in the films. The thickness of the films was approximately 1-2 μm with scanning electron microscopy (SEM).

  12. High resolution Laplace DLTS studies of defects in ion-implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Evans-Freeman, J.H. E-mail: j.evans-freeman@umist.ac.uk; Abdelgader, N.; Kan, P.Y.Y.; Peaker, A.R

    2002-01-01

    We have used high resolution Laplace deep level transient spectroscopy (LDLTS) to investigate defects in n-type silicon caused by implantation of Si, Ge or Er with doses of the order of 1x10{sup 9} cm{sup -2}. These are compared with defects created in proton irradiated n-type silicon. Unlike the simple proton irradiated case, LDLTS spectra of ion implanted silicon show that there are many emission rates associated with defects with energies in the region of E{sub c}-400 meV. We have carried out annealing studies and Laplace DLTS depth profiling and show that the complex spectra measured from a region less than half way through the implant simplify as the profile is moved through the implant and towards the tail. Annealing studies show that these defects survive an anneal that should remove the E-centre.

  13. Gas phase considerations for the growth of device quality nanocrystalline silicon at high rate

    NARCIS (Netherlands)

    Rath, J.K.; Verkerk, A.D.; Liu, Y.; Brinza, M.; Goedheer, W.J.; Schropp, R.E.I.

    2008-01-01

    In order to increase industrial viability and to find niche markets, high deposition rate and low temperature depositions compared to standard deposition conditions are two recent trends in research areas concerning thin film silicon. In situ diagnostic tools to monitor gas phase conditions are usef

  14. Gas phase considerations for the growth of device quality nanocrystalline silicon at high rate

    NARCIS (Netherlands)

    J.K. Rath,; Verkerk, A. D.; Liu, Y.; Brinza, M.; W. J. Goedheer,; Schropp, R. E. I.

    2009-01-01

    In order to increase industrial viability and to find niche markets, high deposition rate and low temperature depositions compared to standard deposition conditions are two recent trends in research areas concerning thin film silicon. In situ diagnostic tools to monitor gas phase conditions are usef

  15. Silicon nitride at high growth rate using hot wire chemical vapor deposition

    NARCIS (Netherlands)

    Verlaan, V.

    2008-01-01

    Amorphous silicon nitride (SiNx) is a widely studied alloy with many commercial applications. This thesis describes the application of SiNx deposited at high deposition rate using hot wire chemical vapor deposition (HWCVD) for solar cells and thin film transistors (TFTs). The deposition process of H

  16. Silicon nitride at high growth rate using hot wire chemical vapor deposition

    NARCIS (Netherlands)

    Verlaan, V.

    2008-01-01

    Amorphous silicon nitride (SiNx) is a widely studied alloy with many commercial applications. This thesis describes the application of SiNx deposited at high deposition rate using hot wire chemical vapor deposition (HWCVD) for solar cells and thin film transistors (TFTs). The deposition process of H

  17. Ultra-high efficiency, fast graphene micro-heater on silicon

    DEFF Research Database (Denmark)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn

    2017-01-01

    We demonstrate an ultra-high efficiency and fast graphene microheater on silicon photonic crystal waveguide. By taking advantage of slow-light effect, a tuning efficiency of 1.07 nm/mW and power consumption per free spectral range of 3.99 mW. A fast rise and decay times (10% to 90%) of only 750 ns...

  18. Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng

    2009-09-09

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires showed great performance as anode material. Since carbon has a much smaller capacity compared to silicon, the carbon core experiences less structural stress or damage during lithium cycling and can function as a mechanical support and an efficient electron conducting pathway. These nanowires have a high charge storage capacity of ∼2000 mAh/g and good cycling life. They also have a high Coulmbic efficiency of 90% for the first cycle and 98-99.6% for the following cycles. A full cell composed of LiCoO2 cathode and carbon-silicon core-shell nanowire anode is also demonstrated. Significantly, using these core-shell nanowires we have obtained high mass loading and an area capacity of ∼4 mAh/cm2, which is comparable to commercial battery values. © 2009 American Chemical Society.

  19. Study on high efficient electric discharge milling of silicon carbide ceramic with high resistivity

    Institute of Scientific and Technical Information of China (English)

    JI RenJie; LIU YongHong; YU LiLi; LI XiaoPeng; DONG Xin

    2008-01-01

    A new method which employs a group pulse power supply for electric discharge milling of the silicon high pulse utilization, the material removal rate (MRR) can reach 72.9 mm3/min. The effects of high-frequency pulse duration, high-frequency pulse interval, peak voltage, peak current, polarity, ro-tate speed and group frequency on the process performance have been investigated. Also the EDMed surface microstructure is examined with a scanning electron microscope (SEM), an X-ray diffraction (XRD), an energy dispersive spectrometer (EDS) and a micro hardness tester. The results show that the conditions of smaller high-frequency pulse duration and pulse interval, higher peak voltage and peak current, and positive tool polarity are suitable for machining the SiC ceramic. The optimal rotate speed is 1090 r/rain and the preferable group frequency is 730 Hz. In addition, there is a small quantity of iron on machined surface when machining with steel electrode. The average grain size of the EDMed sur-face is smaller than that of the unprocessed, and the micro hardness of machined surface is superior to that of the unprocessed.

  20. High temperature Hexoloy{trademark} SX silicon carbide. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, G.V.; Lau, S.K.; Storm, R.S. [Carborundum Co., Niagara Falls, NY (United States)

    1994-09-01

    HEXOLOY{reg_sign} SX-SiC, fabricated with Y and Al containing compounds as sintering aids, has been shown to possess significantly improved strength and toughness over HEXOLOY{reg_sign}SA-SiC. This study was undertaken to establish and benchmark the complete mechanical property database of a first generation material, followed by a process optimization task to further improve the properties. Mechanical characterization on the first generation material indicated that silicon-rich pools, presumably formed as a reaction product during sintering, controlled the strength from room temperature to 1,232 C. At 1,370 C in air, the material was failing due to a glass-phase formation at the surface. This glass-phase formation was attributed to the reaction of yttrium aluminates, which exist as a second phase in the material, with the ambient. This process was determined to be a time-dependent one that leads to slow crack growth. Fatigue experiments clearly indicated that the slow crack growth driven by the reaction occurred only at temperatures >1,300 C, above the melting point of the glass phase. Process optimization tasks conducted included the selection of the best SiC powder source, studies on mixing/milling conditions for SiC powder with the sintering aids, and a designed experiment involving a range of sintering and post-treatment conditions. The optimization study conducted on the densification variables indicated that lower sintering temperatures and higher post-treatment pressures reduce the Si-rich pool formation, thereby improving the room-temperature strength. In addition, it was also determined that furnacing configuration and atmosphere were critical in controlling the Si-rich formation.

  1. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  2. In-line high-rate evaporation of aluminum for the metallization of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Christoph Paul

    2012-07-11

    This work focuses on the in-line high-rate evaporation of aluminum for contacting rear sides of silicon solar cells. The substrate temperature during the deposition process, the wafer bow after deposition, and the electrical properties of evaporated contacts are investigated. Furthermore, this work demonstrates for the first time the formation of aluminum-doped silicon regions by the in-line high-rate evaporation of aluminum without any further temperature treatment. The temperature of silicon wafers during in-line high-rate evaporation of aluminum is investigated in this work. The temperatures are found to depend on the wafer thickness W, the aluminum layer thickness d, and on the wafer emissivity {epsilon}. Two-dimensional finite-element simulations reproduce the measured peak temperatures with an accuracy of 97%. This work also investigates the wafer bow after in-line high-rate evaporation and shows that the elastic theory overestimates the wafer bow of planar Si wafers. The lower bow is explained with plastic deformation in the Al layer. Due to the plastic deformation only the first 79 K in temperature decrease result in a bow formation. Furthermore the electrical properties of evaporated point contacts are examined in this work. Parameterizations for the measured saturation currents of contacted p-type Si wafers and of contacted boron-diffused p{sup +}-type layers are presented. The contact resistivity of the deposited Al layers to silicon for various deposition processes and silicon surface concentrations are presented and the activation energy of the contact formation is determined. The measured saturation current densities and contact resistivities of the evaporated contacts are used in one-dimensional numerical Simulations and the impact on energy conversion efficiency of replacing a screen-printed rear side by an evaporated rear side is presented. For the first time the formation of aluminum-doped p{sup +}-type (Al-p{sup +}) silicon regions by the in

  3. Silicon electro-optic modulator with high-permittivity gate dielectric layer

    Institute of Scientific and Technical Information of China (English)

    Mengxia Zhu; Zhiping Zhou; Dingshan Gao

    2009-01-01

    A high-permittivity (high-k) material is applied as the gate dielectric layer in a silicon metal-oxidesemiconductor (MOS) capacitor to form a special electro-optic (EO) modulator.Both induced charge density and modulation efficiency in the proposed modulator are improved due to the special structure design and the application of the high-k material.The device has an ultra-compact dimension of 691 μm in length.

  4. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    OpenAIRE

    Sangchoel Kim; Jehoon Choi; Minsoo Jung; Seongjeen Kim; Sungjae Joo

    2013-01-01

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate ...

  5. High Power Silicon Carbide (SiC) Power Processing Unit Development

    Science.gov (United States)

    Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.

  6. Impact of Electric Fields on Highly Excited Rovibrational States of Polar Dimers

    CERN Document Server

    Gonzalez-Ferez, Rosario

    2008-01-01

    We study the effect of a strong static homogeneous electric field on the highly excited rovibrational levels of the LiCs dimer in its electronic ground state. Our full rovibrational investigation of the system includes the interaction with the field due to the permanent electric dipole moment and the polarizability of the molecule. We explore the evolution of the states next to the dissociation threshold as the field strength is increased. The rotational and vibrational dynamics are influenced by the field; effects such as orientation, angular motion hybridization and squeezing of the vibrational motion are demonstrated and analyzed. The field also induces avoided crossings causing a strong mixing of the electrically dressed rovibrational states. Importantly, we show how some of these highly excited levels can be shifted to the continuum as the field strength is increased, and reversely how two atoms in the continuum can be brought into a bound state by lowering the electric field strength.

  7. Microwave beatwave excitation of electron plasma wave and high energy electron production

    Energy Technology Data Exchange (ETDEWEB)

    Yatsuzuka, M.; Obata, K.; Nobuhara, S. [Himeji Inst. of Tech., Hyogo (Japan)

    1997-12-31

    Two X-band microwave beams with a slightly different frequency and the maximum output power of 50 kW are injected into a target plasma antiparallel to each other through a standard horn. The resonant excitation of an electron plasma wave is observed when the difference in frequency between counterstreaming microwaves is equal to the electron plasma frequency. The excited wave propagates in the same direction as the higher-frequency microwave with a wave length which satisfies the resonance condition of wave number. The wave amplitude grows with an increase in incident microwave power, and reaches the density perturbation {delta}n/n{sub 0} of approximately 3.2 % at the incident microwave power of 40 kW and beat frequency of 600 MHz. A small amount of high-energy electrons with the speed of 27 eV are observed in the high-power region of incident microwave. (author)

  8. Optical excitation and electron relaxation dynamics at semiconductor surfaces: a combined approach of density functional and density matrix theory applied to the silicon (001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Buecking, N.

    2007-11-05

    In this work a new theoretical formalism is introduced in order to simulate the phononinduced relaxation of a non-equilibrium distribution to equilibrium at a semiconductor surface numerically. The non-equilibrium distribution is effected by an optical excitation. The approach in this thesis is to link two conventional, but approved methods to a new, more global description: while semiconductor surfaces can be investigated accurately by density-functional theory, the dynamical processes in semiconductor heterostructures are successfully described by density matrix theory. In this work, the parameters for density-matrix theory are determined from the results of density-functional calculations. This work is organized in two parts. In Part I, the general fundamentals of the theory are elaborated, covering the fundamentals of canonical quantizations as well as the theory of density-functional and density-matrix theory in 2{sup nd} order Born approximation. While the formalism of density functional theory for structure investigation has been established for a long time and many different codes exist, the requirements for density matrix formalism concerning the geometry and the number of implemented bands exceed the usual possibilities of the existing code in this field. A special attention is therefore attributed to the development of extensions to existing formulations of this theory, where geometrical and fundamental symmetries of the structure and the equations are used. In Part II, the newly developed formalism is applied to a silicon (001)surface in a 2 x 1 reconstruction. As first step, density-functional calculations using the LDA functional are completed, from which the Kohn-Sham-wave functions and eigenvalues are used to calculate interaction matrix elements for the electron-phonon-coupling an the optical excitation. These matrix elements are determined for the optical transitions from valence to conduction bands and for electron-phonon processes inside the

  9. High-efficiency and low-jitter Silicon single-photon avalanche diodes based on nanophotonic absorption enhancement

    CERN Document Server

    Ma, Jian; Yu, Zongfu; Jiang, Xiao; Huo, Yijie; Zang, Kai; Zhang, Jun; Harris, James S; Jin, Ge; Zhang, Qiang; Pan, Jian-Wei

    2015-01-01

    Silicon single-photon avalanche diode (SPAD) is a core device for single-photon detection in the visible and the near-infrared range, and widely used in many applications. However, due to limits of the structure design and device fabrication for current silicon SPADs, the key parameters of detection befficiency and timing jitter are often forced to compromise. Here, we propose a nanostructured silicon SPAD, which achieves high detection efficiency with excellent timing jitter simultaneously over a broad spectral range. The optical and electric simulations show significant performance enhancement compared with conventional silicon SPAD devices. This nanostructured devices can be easily fabricated and thus well suited for practical applications.

  10. Measurements of excitation spectra and level lifetimes for highly charged neon ions

    Institute of Scientific and Technical Information of China (English)

    王友德; 马新文; 杨治虎; 杜一飞; 刘惠萍; 赵孟春; 郭天瑞; 王春芳

    1997-01-01

    Beam foil experiments were carried out for 47 MeV Ne ions passing through C (39 μg/cm2) and Al (3 4mg/cm2) foils. Highly charged H-, He-, Li-, and Be-like ions were obtained after the foils. The excitation spectra and level lifetimes for these ions were measured, and transition configurations for most measured lines were identified

  11. Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells

    KAUST Repository

    Yang, Xinbo

    2017-05-31

    Dopant-free, carrier-selective contacts (CSCs) on high efficiency silicon solar cells combine ease of deposition with potential optical benefits. Electron-selective titanium dioxide (TiO) contacts, one of the most promising dopant-free CSC technologies, have been successfully implemented into silicon solar cells with an efficiency over 21%. Here, we report further progress of TiO contacts for silicon solar cells and present an assessment of their industrial feasibility. With improved TiO contact quality and cell processing, a remarkable efficiency of 22.1% has been achieved using an n-type silicon solar cell featuring a full-area TiO contact. Next, we demonstrate the compatibility of TiO contacts with an industrial contact-firing process, its low performance sensitivity to the wafer resistivity, its applicability to ultrathin substrates as well as its long-term stability. Our findings underscore the great appeal of TiO contacts for industrial implementation with their combination of high efficiency with robust fabrication at low cost.

  12. Structure and selected properties of high-aluminium Zn alloy with silicon addition

    Directory of Open Access Journals (Sweden)

    A. Zyska

    2011-07-01

    Full Text Available The results of examinations concerning the abrasive wear resistance, hardness, and thermal expansion of high-aluminium zinc alloys are presented. The examinations were carried out for five synthetic ZnAl28 alloys with variable silicon content ranging from 0.5% to 3.5%, and – for the purpose of comparison – for the standardised ZnAl28Cu4 alloy. It was found that silicon efficiently increases the tribological properties and decreases the coefficient of thermal expansion of zinc alloys. The most advantageous set of the examined properties is exhibited by the alloys containing over 2.5% Si. They are characterised by higher parameters as compared with the standardised alloy. Observations of microstructures reveal that silicon precipitates as a separate compact phase, and its morphology depends on t he Si content in the alloy. The performed examinations show that silicon can satisfactorily replace copper in high aluminium Zn alloys, thus eliminating the problem of dimensional instability of castings.

  13. Analysis of Excitation Characteristics of Ultra High Frequency Electromagnetic Waves Induced by PD in GIS

    Institute of Scientific and Technical Information of China (English)

    DING Dengwei; GAO Wensheng; YAO Senjing; LIU Weidong; HE Jiaxi

    2013-01-01

    The understanding of the excitation mechanism of ultra high frequency (UHF) electromagnetic waves (EW) is essential for applying UHF method to partial discharge (PD) detection.Since the EW induced by PD in gas insulated switchgear (GIS) contains not only transverse electromagnetic (TEM) wave,but also high-order transverse electric (TE) and high-order transverse magnetic (TM) waves,we analyzed the proportions between the TEM wave and the high order waves,as well as the influence of the PD position on this proportion,using the finite different time domain (FDTD) method.According to the unique characteristics of the waves,they are separated only approximately.It is found that the high-order mode is the main component,more than 70%,of the electric field around the enclosure of GIS,and that with the increasing distance between PD source and inner conductors,the low frequency (below about 800 MHz) component of EW decreases,but the high frequency component (above 1 GHz) increases,meanwhile the proportion of high-order components in EW could reach 77% from 70%.It concluded that the closer the PD source to the enclosure is,the easier high order EW may be excited.

  14. Performance optimization of high-order Lamb wave sensors based on silicon carbide substrates.

    Science.gov (United States)

    Chen, Zhe; Fan, Li; Zhang, Shu-yi; Zhang, Hui

    2016-02-01

    Silicon carbide (SiC), as a new type of material for substrates in micro-electromechanical system (MEMS), was given high consideration in virtue of the properties of high acoustic velocity, low loss, chemical resistance, and etc. In this work, five performance parameters, which are electromechanical coupling coefficients, mass sensitivities, conductivity sensitivities, insert losses and minimum detectable masses, are theoretically investigated in Lamb wave chemical sensors for gas sensing based on SiC substrates. It is presented that higher performance can be achieved based on high-order modes other than fundamental modes, and the abovementioned five parameters can be simultaneously optimized. Then, according to the optimized operating conditions, operating parameters of the SiC-based high-order Lamb wave sensors are designed, which can be easily realized in MEMS technology. Finally, it is demonstrates that the SiC-based sensor exhibits better performance than that of the sensor with a conventional silicon substrate.

  15. Effect of extrusion temperature on the physical properties of high-silicon aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    YANG Fuliang; GAN Weiping; CHEN Zhaoke

    2007-01-01

    Light-weight high-silicon aluminum alloys are used for electronic packaging in the aviation and space- flight industry. Al-30Si and Al-40Si are fabricated with air- atomization and vacuum-canning hot-extrusion process. The density, thermal conductivity, hermeticity and thermal expan- sion coefficients of the material are measured, and the relationship between extrusion temperature and properties is obtained. Experimental results show that the density of high- silicon aluminum alloys prepared with this method is as high as 99.64% of the theory density, and increases with elevating extrusion temperature. At the same time, thermal conductiv- ity varies between 104-140W/(m.K); with the extrusion temperature, thermal expansion coefficient also increases but within 13 × 10-6 (at 100℃) and hermeticity of the material is high to 10-9 order of magnitude.

  16. Dielectric elastomers, with very high dielectric permittivity, based on silicone and ionic interpenetrating networks

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren;

    2015-01-01

    Dielectric elastomers (DEs), which represent an emerging actuator and generator technology, admittedly have many favourable properties, but their high driving voltages are one of the main obstacles to commercialisation. One way to reduce driving voltage is by increasing the ratio between dielectr...... as well as relatively high breakdown strength. All IPNs have higher dielectric losses than pure silicone elastomers, but when accounting for this factor, IPNs still exhibit satisfactory performance improvements....... is demonstrated herein, and a number of many and important parameters, such as dielectric permittivity/loss, viscoelastic properties and dielectric breakdown strength, are investigated. Ionic and silicone elastomer IPNs are promising prospects for dielectric elastomer actuators, since very high permittivities......Dielectric elastomers (DEs), which represent an emerging actuator and generator technology, admittedly have many favourable properties, but their high driving voltages are one of the main obstacles to commercialisation. One way to reduce driving voltage is by increasing the ratio between dielectric...

  17. Silicon carbide thin films for high temperature microelectromechanical systems

    Science.gov (United States)

    Fleischman, Aaron Judah

    Silicon Carbide (SiC) was studied for use as a material in microelectromechanical systems (MEMS). An APCVD reactor was built to deposit SiC on 100-mm diameter substrates. 3C-SiC films were grown heteroepitaxially atop 100-mm Si wafers. SiC was deposited atop suitable sacrificial layers of polysilicon and thermal oxide. The reactor gas flow was modeled using finite element techniques. The gas flow formed a recirculating pattern, with fresh reactant gases injected at the top of the reactor, traveling down the inside sidewalls and introduced at the bottom of the wafer, forming a plume of heated gases rising to the top of the reactor. This recirculation pattern explains the gradually decreasing growth rate from the wafer's bottom to its top as reactant gases are gradually depleted as they rise. Intentional doping of 3C-SiC films was studied, using diborane and phosphine dopant sources. SIMS indicated that B and P could be incorporated into 3C-SiC films, however B doped films were electrically compensated due to trace amounts of nitrogen in the diborane. Boron concentrations above 3C-SiC's solid solubility caused the SiC to become polycrystalline. Phosphorus incorporation was less predictable and did not vary linearly with phosphine flow rates. A reactive ion etch (REE) process was developed to etch 3C-SiC. Addition of He to the plasma chemistry enhanced the etch rates and etch anisotropy of the 3C-SiC. The etch recipe also produced similar results for polycrystalline SiC on polysilicon and thermal oxide. A maximum SiC etch rate of 1,267 A/min with a selectivity of 1.4 to Si was obtained. Using the above methods, SiC resonant devices were fabricated using polysilicon and thermal oxide as sacrificial layers. Polysilicon resonant devices were fabricated for comparison. The devices were tested by measuring their resonant frequency at room and elevated temperatures to 900°C to determine Young's modulus and its temperature dependence. All devices showed resonant frequency

  18. A sub-atmospheric chemical vapor deposition process for deposition of oxide liner in high aspect ratio through silicon vias.

    Science.gov (United States)

    Lisker, Marco; Marschmeyer, Steffen; Kaynak, Mehmet; Tekin, Ibrahim

    2011-09-01

    The formation of a Through Silicon Via (TSV) includes a deep Si trench etching and the formation of an insulating layer along the high-aspect-ratio trench and the filling of a conductive material into the via hole. The isolation of the filling conductor from the silicon substrate becomes more important for higher frequencies due to the high coupling of the signal to the silicon. The importance of the oxide thickness on the via wall isolation can be verified using electromagnetic field simulators. To satisfy the needs on the Silicon dioxide deposition, a sub-atmospheric chemical vapor deposition (SA-CVD) process has been developed to deposit an isolation oxide to the walls of deep silicon trenches. The technique provides excellent step coverage of the 100 microm depth silicon trenches with the high aspect ratio of 20 and more. The developed technique allows covering the deep silicon trenches by oxide and makes the high isolation of TSVs from silicon substrate feasible which is the key factor for the performance of TSVs for mm-wave 3D packaging.

  19. Silicon Light: a European FP7 project aiming at high efficiency thin film silicon solar cells on foil. Monolithic series interconnection of flexible thin-film PV devices

    Energy Technology Data Exchange (ETDEWEB)

    Soppe, W. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Haug, F.J. [Ecole Polytechnique Federale de Lausanne EPFL, Photovoltaics and Thin Film Electronics Laboratory, Rue A.-L. Breguet 2, 2000 Neuchatel (Switzerland); Couty, P. [VHFTechnologies SA, Rue Edouard-Verdan 2, CH-1400 Yverdon-les-Bains (Switzerland); Duchamp, M. [Technical University of Denmark, Center for Electron Nanoscopy, DK-2800 Kongens Lyngby (Denmark); Schipper, W. [Nanoptics GmbH, Innungstr.5, 21244 Buchholz (Germany); Krc, J. [University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana (Slovenia); Sanchez, G. [Universidad Politecnica de Valencia, I.U.I. Centro de Tecnologia Nanofotonica, 46022 Valencia (Spain); Leitner, K. [Umicore Thin Film Products AG, Balzers (Liechtenstein); Wang, Q. [Shanghai Jiaotong University, Research Institute of Micro/Nanometer Science and Technology, 800 Dongchuan Road, Min Hang, 200240 Shanghai (China)

    2011-09-15

    Silicon-Light is a European FP7 project, which started January 1st, 2010 and aims at development of low cost, high-efficiency thin film silicon solar cells on foil. Three main routes are explored to achieve these goals: (a) advanced light trapping by implementing nanotexturization through UV Nano Imprinting Lithography (UV-NIL); (b) growth of crack-free silicon absorber layers on highly textured substrates; (c) development of new TCOs which should combine the best properties of presently available materials like ITO and AZO. The paper presents the midterm status of the project results, showing model calculations of ideal nanotextures for light trapping in thin film silicon solar cells; the fabrication of masters and the replication and roll-to-roll fabrication of these nanotextures. Further, results on ITO variants with improved work function are presented. Finally, the status of cell fabrication on foils with nanotexture is shown. Microcrystalline and amorphous silicon single junction cells with stable efficiencies with more than 8% have been made, paving the way towards a-Si/{mu}c-Si tandem cells with more than 11% efficiency.

  20. A DC excited waveguide multibeam CO2 laser using high frequency pre-ionization technique

    Indian Academy of Sciences (India)

    S V Deshmukh; C Rajagopalan

    2003-12-01

    High power industrial multibeam CO2 lasers consist of a large number of closely packed parallel glass discharge tubes sharing a common plane parallel resonator. Every discharge tube forms an independent resonator. When discharge tubes of smaller diameter are used and the Fresnel number $ \\ll 1$ for all resonators, they operate in waveguide mode. Waveguide modes have excellent discrimination of higher order modes. A DC excited waveguide multibeam CO2 laser is reported having six glass discharge tubes. Simultaneous excitation of DC discharge in all sections is achieved by producing pre-ionization using an auxiliary high frequency pulsed discharge along with its other advantages. Maximum 170 W output power is obtained with all beams operating in EH11 waveguide mode. The specific power of 28 W/m is much higher as compared to similar AC excited waveguide multibeam CO2 lasers. Theoretical analysis shows that all resonators of this laser will support only EH11 mode. This laser is successfully used for woodcutting.

  1. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics.

    Science.gov (United States)

    Hyun, Woo Jin; Secor, Ethan B; Hersam, Mark C; Frisbie, C Daniel; Francis, Lorraine F

    2015-01-07

    High-resolution screen printing of pristine graphene is introduced for the rapid fabrication of conductive lines on flexible substrates. Well-defined silicon stencils and viscosity-controlled inks facilitate the preparation of high-quality graphene patterns as narrow as 40 μm. This strategy provides an efficient method to produce highly flexible graphene electrodes for printed electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High mass-resolution electron-ion-ion coincidence measurements on core-excited organic molecules

    CERN Document Server

    Tokushima, T; Senba, Y; Yoshida, H; Hiraya, A

    2001-01-01

    Total electron-ion-ion coincidence measurements on core excited organic molecules have been carried out with high mass resolution by using multimode (reflectron/linear) time-of-flight mass analyzer. From the ion correlation spectra of core excited CH sub 3 OH and CD sub 3 OH, the reaction pathway to form H sub 3 sup + (D sub 3 sup +) is identified as the elimination of three H (D) atoms from the methyl group, not as the inter-group (-CH sub 3 and -OH) interactions. In a PEPIPICO spectrum of acetylacetone (CH sub 3 COCH sub 2 COCH sub 3) measured by using a reflectron TOF, correlations between ions up to mass number 70 with one-mass resolution was recorded.

  3. The Giant Dipole Resonance built on highly excited states — results of the MEDEA experiment

    Science.gov (United States)

    Suomijärvi, T.; Le Faou, J. H.; Blumenfeld, Y.; Piattelli, P.; Agodi, C.; Alamanos, N.; Alba, R.; Auger, F.; Bellia, G.; Chomaz, Ph.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Gaardhøje, J. J.; Garron, J. P.; Gillibert, A.; Lamehi-Rachti, M.; Liguori-Neto, R.; Maiolino, C.; Migneco, E.; Russo, G.; Roynette, J. C.; Santonocito, D.; Sapienza, P.; Scarpaci, J. A.; Smerzi, A.

    1994-03-01

    Gamma-rays, light charged particles and evaporation residues emitted from hot nuclei formed in the 36Ar + 90Zr reaction at 27 MeV/u have been measured with a nearly 4π barium fluoride multidetector. It is shown that hot Sn-like nuclei with a range of excitation energies between 300 and 600 MeV are produced. The γ-ray yield from the decay of the Giant Dipole Resonance in these nuclei is shown to remain constant over this excitation energy range. The measured γ-ray spectra are compared with statistical calculations encompassing several recent theoretical models for the quenching of gamma-ray emission from the dipole resonance at very high temperatures.

  4. High Resolution Mode-Selective Excitation by Adaptive Femtosecond Pulse Shaping

    Institute of Scientific and Technical Information of China (English)

    LI Xia; ZHANG Hui; ZHANG Xiang-Yun; ZHANG Shi-An; CHEN Guo-Liang; WANG Zu-Geng; SUN Zhen-Rong

    2008-01-01

    High resolution mode-selective excitation in the mixture of C6H6(992cm-1)and C6D6(945cm-1)is experimentally achieved by adaptive femtosecond pulse shaping based on the genetic algorithm(GA),and second harmonic generation frequency-resolved optical gating(SHG-FROG)is adopted to characterize the original and optimal laser pulses,and its mechanism is experimentally validated by tailoring the frequency components of the pump pulses at the Fourier plane.It is indicated that two-pulse coherent mode-selective excitation of the Raman scattering mainly depends on the effective frequency components of the pump pulse related to specific molecular vibrational mode.The experimental results have attractive potential appfications in the complicated molecular system.

  5. Highly selective population of two excited states in nonresonant two-photon absorption

    Institute of Scientific and Technical Information of China (English)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong

    2011-01-01

    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse.In this paper,we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution.Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value.We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption,such as resonance-mediated(2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization.

  6. Equation-of-motion coupled cluster method for the description of the high spin excited states

    Science.gov (United States)

    Musiał, Monika; Lupa, Łukasz; Kucharski, Stanisław A.

    2016-04-01

    The equation-of-motion (EOM) coupled cluster (CC) approach in the version applicable for the excitation energy (EE) calculations has been formulated for high spin components. The EE-EOM-CC scheme based on the restricted Hartree-Fock reference and standard amplitude equations as used in the Davidson diagonalization procedure yields the singlet states. The triplet and higher spin components require separate amplitude equations. In the case of quintets, the relevant equations are much simpler and easier to solve. Out of 26 diagrammatic terms contributing to the R1 and R2 singlet equations in the case of quintets, only R2 operator survives with 5 diagrammatic terms present. In addition all terms engaging three body elements of the similarity transformed Hamiltonian disappear. This indicates a substantial simplification of the theory. The implemented method has been applied to the pilot study of the excited states of the C2 molecule and quintet states of C and Si atoms.

  7. Influences of basic flow on unstable excitation of intraseasonal oscillation in mid-high latitudes

    Institute of Scientific and Technical Information of China (English)

    李崇银; 曹文忠; 李桂龙

    1995-01-01

    The influences of basic flow fields on the unstable excitation of the intraseasonal atmosphericoscillation in the mid-high latitudes are studied by using a simple nonlinear dynamical model.The results showthat the westerly profile has an important effect on unstable modes in the atmosphere;the growth rates andspectrum distributions of the excited unstable modes are different for the different profiles.For the usualwesterly profile patterns in the real atmosphere,the most unstable mode is in the intraseasonal(30—60 d)frequency band.The local intensity and meridional gradient of the westerlies also clearly affect unstablemodes.The consistency of the results in observational data analyses with that in dynamical theory proved thecorrectness and rationalization of the above-mentioned results.

  8. New Nanostructured Li 2 S/Silicon Rechargeable Battery with High Specific Energy

    KAUST Repository

    Yang, Yuan

    2010-04-14

    Rechargeable lithium ion batteries are important energy storage devices; however, the specific energy of existing lithium ion batteries is still insufficient for many applications due to the limited specific charge capacity of the electrode materials. The recent development of sulfur/mesoporous carbon nanocomposite cathodes represents a particularly exciting advance, but in full battery cells, sulfur-based cathodes have to be paired with metallic lithium anodes as the lithium source, which can result in serious safety issues. Here we report a novel lithium metal-free battery consisting of a Li 2S/mesoporous carbon composite cathode and a silicon nanowire anode. This new battery yields a theoretical specific energy of 1550 Wh kg ?1, which is four times that of the theoretical specific energy of existing lithium-ion batteries based on LiCoO2 cathodes and graphite anodes (∼410 Wh kg?1). The nanostructured design of both electrodes assists in overcoming the issues associated with using sulfur compounds and silicon in lithium-ion batteries, including poor electrical conductivity, significant structural changes, and volume expansion. We have experimentally realized an initial discharge specific energy of 630 Wh kg ?1 based on the mass of the active electrode materials. © 2010 American Chemical Society.

  9. Research on stable, high-efficiency, amorphous silicon multijunction modules

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, A.; Bennett, M.; Chen, L.; D' Aiello, R.; Fieselmann, B.; Li, Y.; Newton, J.; Podlesny, R.; Yang, L. (Solarex Corp., Newtown, PA (United States). Thin Film Div.)

    1992-08-01

    This report describes work to demonstrate a multijunction module with a stabilized'' efficiency (600 h, 50{degrees}C, AM1.5) of 10.5%. Triple-junction devices and modules using a-Si:H alloys with carbon and germanium were developed to meet program goals. ZnO was used to provide a high optical transmission front contact. Proof of concept was obtained for several important advances deemed to be important for obtaining high (12.5%) stabilized efficiency. They were (1) stable, high-quality a-SiC:H devices and (2) high-transmission, textured ZnO. Although these developments were not scaled up and included in modules, triple-junction module efficiencies as high as 10.85% were demonstrated. NREL measured 9.62% and 9.00% indoors and outdoors, respectively. The modules are expected to lose no more than 20% of their initial performance. 28 refs.

  10. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits

    Science.gov (United States)

    Ding, Yunhong; Bacco, Davide; Dalgaard, Kjeld; Cai, Xinlun; Zhou, Xiaoqi; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2017-06-01

    Quantum key distribution provides an efficient means to exchange information in an unconditionally secure way. Historically, quantum key distribution protocols have been based on binary signal formats, such as two polarization states, and the transmitted information efficiency of the quantum key is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional quantum key distribution protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually unbiased bases in a four-dimensional Hilbert space, and achieved low and stable quantum bit error rate well below both the coherent attack and individual attack limits. Compared to previous demonstrations, the use of a multicore fiber in our protocol provides a much more efficient way to create high-dimensional quantum states, and enables breaking the information efficiency limit of traditional quantum key distribution protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling manipulating high-dimensional quantum states in a compact and stable manner. Our demonstration paves the way to utilize state-of-the-art multicore fibers for noise tolerance high-dimensional quantum key distribution, and boost silicon photonics for high information efficiency quantum communications.

  11. A prototype of very high-resolution small animal PET scanner using silicon pad detectors

    CERN Document Server

    Park, S J; Huh, S; Kagan, H; Honscheid, K; Burdette, D; Chesi, Enrico Guido; Lacasta, C; Llosa, G; Mikuz, M; Studen, A; Weilhammer, P; Clinthorne, N H

    2007-01-01

    Abstract A very high-resolution small animal positron emission tomograph (PET), which can achieve sub-millimeter spatial resolution, is being developed using silicon pad detectors. The prototype PET for a single slice instrument consists of two 1 mm thick silicon pad detectors, each containing a 32×16 array of 1.4×1.4 mm pads readout with four VATAGP3 chips which have 128 channels low-noise self-triggering ASIC in each chip, coincidence units, a source turntable and tungsten slice collimator. The silicon detectors were located edgewise on opposite sides of a 4 cm field-of-view to maximize efficiency. Energy resolution is dominated by electronic noise, which is 0.98% (1.38 keV) FWHM at 140.5 keV. Coincidence timing resolution is 82.1 ns FWHM and coincidence efficiency was measured to be 1.04×10−3% from two silicon detectors with annihilation photons of 18F source. Image data were acquired and reconstructed using conventional 2-D filtered-back projection (FBP) and a maximum likelihood expectation maximizat...

  12. Discordance of the unified scheme with observed properties of quasars and high-excitation galaxies in the 3CRR sample

    Energy Technology Data Exchange (ETDEWEB)

    Singal, Ashok K., E-mail: asingal@prl.res.in [Astronomy and Astrophysics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009 (India)

    2014-07-01

    We examine the consistency of the unified scheme of Fanaroff-Riley type II radio galaxies and quasars with their observed number and size distributions in the 3CRR sample. We separate the low-excitation galaxies from the high-excitation ones, as the former might not harbor a quasar within and thus may not be partaking in the unified scheme models. In the updated 3CRR sample, at low redshifts (z < 0.5), the relative number and luminosity distributions of high-excitation galaxies and quasars roughly match the expectations from the orientation-based unified scheme model. However, a foreshortening in the observed sizes of quasars, which is a must in the orientation-based model, is not seen with respect to radio galaxies even when the low-excitation galaxies are excluded. This dashes the hope that the unified scheme might still work if one includes only the high-excitation galaxies.

  13. Transient saturation absorption spectroscopy excited near the band gap at high excitation carrier density in GaAs

    Institute of Scientific and Technical Information of China (English)

    Wu Song-Jiang; Wang Dan-Ling; Jiang Hong-Bing; Yang Hong; Gong Qi-Huang; Ji Ya-Lin; Lu Wei

    2004-01-01

    @@ Transient saturation absorption spectroscopy in GaAs thin films was investigated using femtosecond pump and supercontinuum probe technique at excitation densities higher than 1× 1019 cm-3. The Coulomb enhancement factor of the electron-hole plasma results in a spectrum hole at the pump wavelength. Two distinct transmission peaks at two sides of the pump wavelength are observed, arising from the bleaching of transitions from the heavy- and light-hole bands to the conduction band. The dynamic process of the transient saturation absorption is fitted using a bi-exponential function. The fast decay process is dominated by the carrier-phonon scattering and the slow process may be attributed to the electron-hole recombination.

  14. Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation

    CERN Document Server

    Hung, J; Olaizola, A M

    2003-01-01

    Fluorescence spectral changes of Rhodamine 6G in ethanol and glycerol solutions and deposited as a film on a silica surface have been studied using a wide range of pumping field fluence at 532 nm at room temperature. Blue shift of the fluorescence spectra and fluorescence quenching of the dye molecule in solution are observed at high excitation fluence values. Such effects are not reported for the film sample. The effects are interpreted as the result of population redistribution in the solute-solvent molecular system induced by the high fluence field and the fluence dependence of the radiationless decay mechanism.

  15. Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System

    Directory of Open Access Journals (Sweden)

    Jia Ying-xin

    2013-03-01

    Full Text Available According to an ultra-high resolution airborne SAR system with better than 0.1 m resolution, a wideband Linear Frequency Modulated (LFM pulse compression exciter with 14.8 GHz carrier and 3.2 GHz bandwidth is designed and implemented. The selection of signal generation scheme and some key technique points for wideband LFM waveform is presented in detail. Then, an acute test and analysis of the LFM signal is performed. The final airborne experiments demonstrate the validity of the LFM source which is one of the subsystems in an ultra-high resolution airborne SAR system.

  16. Study of highly-excited string states at the Large Hadron Collider

    CERN Document Server

    Gingrich, Douglas M

    2008-01-01

    In TeV-scale gravity scenarios with large extra dimensions, black holes may be produced at future colliders. Good arguments have been made for why general relativistic black holes may be just out of reach of the Large Hadron Collider (LHC). However, in weakly-coupled string theory, highly excited string states - string balls - could be produced at the LHC with high rates and decay thermally, not unlike general relativistic black holes. In this paper, we simulate and study string ball production and decay at the LHC. We specifically emphasize the experimentally-detectable similarities and differences between string balls and general relativistic black holes at a TeV scale.

  17. Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Zhu, Xiaolong; Xiao, Sanshui

    2015-01-01

    comprehensively study the interaction between graphene and a microring resonator, and its influence on the optical modulation depth. We demonstrate graphene-silicon microring devices showing a high modulation depth of 12.5 dB with a relatively low bias voltage of 8.8 V. On-off electro-optical switching......Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultra-large absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through tuning of the Fermi level enables electro-optical...... modulation, optical-optical switching, and other optoelectronics applications. However, achieving a high modulation depth remains a challenge because of the modest graphene-light interaction in the graphene-silicon devices, typically, utilizing only a monolayer or few layers of graphene. Here, we...

  18. Fabrication of superhydrophobic and highly oleophobic silicon-based surfaces via electroless etching method

    Science.gov (United States)

    Nguyen, Thi Phuong Nhung; Dufour, Renaud; Thomy, Vincent; Senez, Vincent; Boukherroub, Rabah; Coffinier, Yannick

    2014-03-01

    This study reports on a simple method for the preparation of superhydrophobic and highly oleophobic nanostructured silicon surfaces. The technique relies on metal-assisted electroless etching of silicon in sodium tetrafluoroborate (NaBF4) aqueous solution. Then, silver particles were deposited on the obtained surfaces, changing their overall physical morphology. Finally, the surfaces were coated by either C4F8, a fluoropolymer deposited by plasma, or by SiOx overlayers chemically modified with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFTS) through silanization reaction. All these surfaces exhibit a superhydrophobic character (large apparent contact angle and low hysteresis with respect to water). In addition, they present high oleophobic properties, i.e. a high repellency to low surface energy liquids with various contact angle hysteresis, both depending on the morphology and type of coating.

  19. SiMPl - High efficient silicon photomultipliers with integrated bulk resistor

    Energy Technology Data Exchange (ETDEWEB)

    Jendrysik, Christian; Andricek, Ladislav; Liemann, Gerhard; Moser, Hans-Guenther; Ninkovic, Jelena; Richter, Rainer [Max-Planck-Institute for Physics, Semiconductor Laboratory, Munich (Germany); Lutz, Gerhard [PN Sensor GmbH, Munich (Germany)

    2010-07-01

    Silicon photomultipliers (SiPM) are avalanche photodetectors which tend to replace conventional photomultiplier tubes in many application areas where detectors with high photon detection efficiency (PDE) are in the focus of interest. For Geiger mode operation high ohmic polysilicon is needed as quench resistor. On the one hand this forms a barrier for incident light, thus decreasing the PDE, which is a crucial point at low light levels. On the other hand it's also the most cost driving technological issue in fabrication. We present a novel design for a high efficient SiPM with the quench resistors integrated into the silicon bulk. Therefore obstacles for light like metal lines or contacts within the active area can be omitted and the fill factor of the device is only limited by the gaps necessary for optical crosstalk suppression. First results of this novel light detector are presented.

  20. Characterization of highly hydrophobic coatings deposited onto pre-oxidized silicon from water dispersible organosilanes

    Energy Technology Data Exchange (ETDEWEB)

    Almanza-Workman, A. Marcia; Raghavan, Srini; Petrovic, Slobodan; Gogoi, Bishnu; Deymier, Pierre; Monk, David J.; Roop, Ray

    2003-01-01

    The formation and quality of highly hydrophobic coatings deposited from water dispersible organosilanes onto pre-oxidized single crystal silicon were studied using atomic force microscopy, ellipsometry, dynamic contact angle measurements and electrochemical impedance spectroscopy (EIS). Highly hydrophobic films of a commercially available water dispersible silane and two different cationic alkoxysilanes were prepared by dip coating. It was found using atomic force microscopy that, in general, the structure of these highly hydrophobic films is a continuous film with some particulates attributed to bulk polymerization of the precursor molecule in water. Film defects were quantified using EIS by the value of charge transfer resistance at the hydrofluoric acid/silicon interface. Potential applications of this type of coatings include reduction/elimination of stiction in micro-electromechanical systems, contact printing in materials microfabrication, inhibition of corrosion and oxidation, prevention of water wetting, lubrication and protein adsorption.

  1. Formation of hypereutectic silicon particles in hypoeutectic Al-Si alloys under the influence of high-intensity ultrasonic vibration

    Directory of Open Access Journals (Sweden)

    Xiaogang Jian

    2013-03-01

    Full Text Available The modification of eutectic silicon is of general interest since fine eutectic silicon along with fine primary aluminum grains improves mechanical properties and ductilities. In this study, high intensity ultrasonic vibration was used to modify the complex microstructure of aluminum hypoeutectic alloys. The ultrasonic vibrator was placed at the bottom of a copper mold with molten aluminum. Hypoeutectic Al-Si alloy specimens with a unique in-depth profile of microstructure distribution were obtained. Polyhedral silicon particles, which should form in a hypereutectic alloy, were obtained in a hypoeutectic Al-Si alloy near the ultrasonic radiator where the silicon concentration was higher than the eutectic composition. The formation of hypereutectic silicon near the radiator surface indicates that high-intensity ultrasonic vibration can be used to influence the phase transformation process of metals and alloys. The size and morphology of both the silicon phase and the aluminum phase varies with increasing distance from the ultrasonic probe/radiator. Silicon morphology develops into three zones. Polyhedral primary silicon particles present in zone I, within 15 mm from the ultrasonic probe/radiator. Transition from hypereutectic silicon to eutectic silicon occurs in zone II about 15 to 20 祄 from the ultrasonic probe/radiator. The bulk of the ingot is in zone III and is hypoeutectic Al-Si alloy containing fine lamellar and fibrous eutectic silicon. The grain size is about 15 to 25 祄 in zone I, 25 to 35 祄 in zone II, and 25 to 55 祄 in zone III. The morphology of the primary ?Al phase is also changed from dendritic (in untreated samples to globular. Phase evolution during the solidification process of the alloy subjected to ultrasonic vibration is described.

  2. Lithographically patterned silicon nanostructures on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Megouda, Nacera [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Universite Lille1, Parc de la Haute Borne, 50 Avenue de Halley-BP 70478, 59658 Villeneuve d' Ascq and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, CNRS-8520), Cite Scientifique, Avenue Poincare-B.P. 60069, 59652 Villeneuve d' Ascq (France); Faculte des Sciences, Universite Mouloud Mammeri, Tizi-Ouzou (Algeria); Unite de Developpement de la Technologie du Silicium (UDTS), 2 Bd. Frantz Fanon, B.P. 140 Alger-7 merveilles, Alger (Algeria); Piret, Gaeelle; Galopin, Elisabeth; Coffinier, Yannick [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Universite Lille1, Parc de la Haute Borne, 50 Avenue de Halley-BP 70478, 59658 Villeneuve d' Ascq and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, CNRS-8520), Cite Scientifique, Avenue Poincare-B.P. 60069, 59652 Villeneuve d' Ascq (France); Hadjersi, Toufik, E-mail: hadjersi@yahoo.com [Unite de Developpement de la Technologie du Silicium (UDTS), 2 Bd. Frantz Fanon, B.P. 140 Alger-7 merveilles, Alger (Algeria); Elkechai, Omar [Faculte des Sciences, Universite Mouloud Mammeri, Tizi-Ouzou (Algeria); and others

    2012-06-01

    The paper reports on controlled formation of silicon nanostructures patterns by the combination of optical lithography and metal-assisted chemical dissolution of crystalline silicon. First, a 20 nm-thick gold film was deposited onto hydrogen-terminated silicon substrate by thermal evaporation. Gold patterns (50 {mu}m Multiplication-Sign 50 {mu}m spaced by 20 {mu}m) were transferred onto the silicon wafer by means of photolithography. The etching process of crystalline silicon in HF/AgNO{sub 3} aqueous solution was studied as a function of the silicon resistivity, etching time and temperature. Controlled formation of silicon nanowire arrays in the unprotected areas was demonstrated for highly resistive silicon substrate, while silicon etching was observed on both gold protected and unprotected areas for moderately doped silicon. The resulting layers were characterized using scanning electron microscopy (SEM).

  3. Highly stressed carbon film coatings on silicon potential applications

    CERN Multimedia

    Sharda, T

    2002-01-01

    The fabrication of highly stressed and strongly adhered nanocrystalline diamond films on Si substrates is presented. A microwave plasma CVD method with controlled and continuous bias current density was used to grow the films. The stress/curvature of the films can be varied and controlled by altering the BCD. Potential applications for these films include particle physics and x-ray optics.

  4. Functional silicone copolymers and elastomers with high dielectric permittivity

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    . This was done trough the synthesis of new functionalizable siloxane copolymers [2] that allow for the attachment of high dielectric permittivity molecules through copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) reactions. The synthesised siloxane copolymers were prepared via the tris...

  5. High Temperature Silicon Carbide (SiC) Traction Motor Drive

    Science.gov (United States)

    2011-08-09

    power  Threshold volume is 8.4 liters, or 513 cu in  Threshold weight is 14 kg = 30.8 lb PERSPECTIVE To provide some perspective on the...coldplate is a high efficiency, aluminum brazed assembly that makes use of technology developed for the commercial electric bus powertrains. The

  6. Visible-light-excited and europium-emissive nanoparticles for highly-luminescent bioimaging in vivo.

    Science.gov (United States)

    Wu, Yongquan; Shi, Mei; Zhao, Lingzhi; Feng, Wei; Li, Fuyou; Huang, Chunhui

    2014-07-01

    Europium(III)-based material showing special milliseconds photoluminescence lifetime has been considered as an ideal time-gated luminescence probe for bioimaging, but is still limited in application in luminescent small-animal bioimaging in vivo. Here, a water-soluble, stable, highly-luminescent nanosystem, Ir-Eu-MSN (MSN = mesoporous silica nanoparticles, Ir-Eu = [Ir(dfppy)2(pic-OH)]3Eu·2H2O, dfppy = 2-(2,4-difluorophenyl)pyridine, pic-OH = 3-hydroxy-2-carboxypyridine), was developed by an in situ coordination reaction to form an insoluble dinuclear iridium(III) complex-sensitized-europium(III) emissive complex within mesoporous silica nanoparticles (MSNs) which had high loading efficiency. Compared with the usual approach of physical adsorption, this in-situ reaction strategy provided 20-fold the loading efficiency (43.2%) of the insoluble Ir-Eu complex in MSNs. These nanoparticles in solid state showed bright red luminescence with high quantum yield of 55.2%, and the excitation window extended up to 470 nm. These Ir-Eu-MSN nanoparticles were used for luminescence imaging in living cells under excitation at 458 nm with confocal microscopy, which was confirmed by flow cytometry. Furthermore, the Ir-Eu-MSN nanoparticles were successfully applied into high-contrast luminescent lymphatic imaging in vivo under low power density excitation of 5 mW cm(-2). This synthetic method provides a universal strategy of combining hydrophobic complexes with hydrophilic MSNs for in vivo bioimaging.

  7. Effects of a Single Session of High Intensity Interval Treadmill Training on Corticomotor Excitability following Stroke: Implications for Therapy

    Science.gov (United States)

    Stinear, James W.; Kanekar, Neeta

    2016-01-01

    Objective. High intensity interval treadmill training (HIITT) has been gaining popularity for gait rehabilitation after stroke. In this study, we examined the changes in excitability of the lower limb motor cortical representation (M1) in chronic stroke survivors following a single session of HIITT. We also determined whether exercise-induced changes in excitability could be modulated by transcranial direct current stimulation (tDCS) enhanced with a paretic ankle skill acquisition task. Methods. Eleven individuals with chronic stroke participated in two 40-minute treadmill-training sessions: HIITT alone and HITT preceded by anodal tDCS enhanced with a skill acquisition task (e-tDCS+HIITT). Transcranial magnetic stimulation (TMS) was used to assess corticomotor excitability of paretic and nonparetic tibialis anterior (TA) muscles. Results. HIIT alone reduced paretic TA M1 excitability in 7 of 11 participants by ≥ 10%. e-tDCS+HIITT increased paretic TA M1 excitability and decreased nonparetic TA M1 excitability. Conclusions. HIITT suppresses corticomotor excitability in some people with chronic stroke. When HIITT is preceded by tDCS in combination with a skill acquisition task, the asymmetry of between-hemisphere corticomotor excitability is reduced. Significance. This study provides preliminary data indicating that the cardiovascular benefits of HIITT may be achieved without suppressing motor excitability in some stroke survivors. PMID:27738524

  8. Effects of a Single Session of High Intensity Interval Treadmill Training on Corticomotor Excitability following Stroke: Implications for Therapy

    Directory of Open Access Journals (Sweden)

    Sangeetha Madhavan

    2016-01-01

    Full Text Available Objective. High intensity interval treadmill training (HIITT has been gaining popularity for gait rehabilitation after stroke. In this study, we examined the changes in excitability of the lower limb motor cortical representation (M1 in chronic stroke survivors following a single session of HIITT. We also determined whether exercise-induced changes in excitability could be modulated by transcranial direct current stimulation (tDCS enhanced with a paretic ankle skill acquisition task. Methods. Eleven individuals with chronic stroke participated in two 40-minute treadmill-training sessions: HIITT alone and HITT preceded by anodal tDCS enhanced with a skill acquisition task (e-tDCS+HIITT. Transcranial magnetic stimulation (TMS was used to assess corticomotor excitability of paretic and nonparetic tibialis anterior (TA muscles. Results. HIIT alone reduced paretic TA M1 excitability in 7 of 11 participants by ≥ 10%. e-tDCS+HIITT increased paretic TA M1 excitability and decreased nonparetic TA M1 excitability. Conclusions. HIITT suppresses corticomotor excitability in some people with chronic stroke. When HIITT is preceded by tDCS in combination with a skill acquisition task, the asymmetry of between-hemisphere corticomotor excitability is reduced. Significance. This study provides preliminary data indicating that the cardiovascular benefits of HIITT may be achieved without suppressing motor excitability in some stroke survivors.

  9. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Franta, Benjamin, E-mail: bafranta@gmail.com; Pastor, David; Gandhi, Hemi H.; Aziz, Michael J.; Mazur, Eric [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Rekemeyer, Paul H.; Gradečak, Silvija [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-12-14

    Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintaining high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon.

  10. Silicon epitaxy using tetrasilane at low temperatures in ultra-high vacuum chemical vapor deposition

    Science.gov (United States)

    Hazbun, Ramsey; Hart, John; Hickey, Ryan; Ghosh, Ayana; Fernando, Nalin; Zollner, Stefan; Adam, Thomas N.; Kolodzey, James

    2016-06-01

    The deposition of silicon using tetrasilane as a vapor precursor is described for an ultra-high vacuum chemical vapor deposition tool. The growth rates and morphology of the Si epitaxial layers over a range of temperatures and pressures are presented. The layers were characterized using transmission electron microscopy, x-ray diffraction, spectroscopic ellipsometry, Atomic Force Microscopy, and secondary ion mass spectrometry. Based on this characterization, high quality single crystal silicon epitaxy was observed. Tetrasilane was found to produce higher growth rates relative to lower order silanes, with the ability to deposit crystalline Si at low temperatures (T=400 °C), with significant amorphous growth and reactivity measured as low as 325 °C, indicating the suitability of tetrasilane for low temperature chemical vapor deposition such as for SiGeSn alloys.

  11. Cryogenic Etching of High Aspect Ratio 400 nm Pitch Silicon Gratings.

    Science.gov (United States)

    Miao, Houxun; Chen, Lei; Mirzaeimoghri, Mona; Kasica, Richard; Wen, Han

    2016-10-01

    The cryogenic process and Bosch process are two widely used processes for reactive ion etching of high aspect ratio silicon structures. This paper focuses on the cryogenic deep etching of 400 nm pitch silicon gratings with various etching mask materials including polymer, Cr, SiO2 and Cr-on-polymer. The undercut is found to be the key factor limiting the achievable aspect ratio for the direct hard masks of Cr and SiO2, while the etch selectivity responds to the limitation of the polymer mask. The Cr-on-polymer mask provides the same high selectivity as Cr and reduces the excessive undercut introduced by direct hard masks. By optimizing the etching parameters, we etched a 400 nm pitch grating to ≈ 10.6 μm depth, corresponding to an aspect ratio of ≈ 53.

  12. Amorphous Silicon-Germanium Films with Embedded Nanocrystals for Thermal Detectors with Very High Sensitivity

    Directory of Open Access Journals (Sweden)

    Cesar Calleja

    2016-01-01

    Full Text Available We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nanocrystals in a plasma enhanced chemical vapor deposition (PECVD reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR, which is a signature of the sensitivity in thermal detectors (microbolometers. Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9% K−1. Our results show that amorphous silicon-germanium films with embedded nanocrystals can be used as thermosensitive films in high performance infrared focal plane arrays (IRFPAs used in commercial thermal cameras.

  13. High visibility time-energy entangled photons from a silicon nanophotonic chip

    CERN Document Server

    Rogers, Steven; Lu, Xiyuan; Jiang, Wei C; Lin, Qiang

    2016-01-01

    Advances in quantum photonics have shown that chip-scale quantum devices are translating from the realm of basic research to applied technologies. Recent developments in integrated photonic circuits and single photon detectors indicate that the bottleneck for fidelity in quantum photonic processes will ultimately lie with the photon sources. We present and demonstrate a silicon nanophotonic chip capable of emitting telecommunication band photon pairs that exhibit the highest raw degree of time-energy entanglement from a micro/nanoscale source, to date. Biphotons are generated through cavity-enhanced spontaneous four-wave mixing (SFWM) in a high-Q silicon microdisk resonator, wherein the nature of the triply-resonant generation process leads to a dramatic Purcell enhancement, resulting in highly efficient pair creation rates as well as extreme suppression of the photon noise background. The combination of the excellent photon source and a new phase locking technique, allow for the observation of a nearly perfe...

  14. A scalable silicon photonic chip-scale optical switch for high performance computing systems.

    Science.gov (United States)

    Yu, Runxiang; Cheung, Stanley; Li, Yuliang; Okamoto, Katsunari; Proietti, Roberto; Yin, Yawei; Yoo, S J B

    2013-12-30

    This paper discusses the architecture and provides performance studies of a silicon photonic chip-scale optical switch for scalable interconnect network in high performance computing systems. The proposed switch exploits optical wavelength parallelism and wavelength routing characteristics of an Arrayed Waveguide Grating Router (AWGR) to allow contention resolution in the wavelength domain. Simulation results from a cycle-accurate network simulator indicate that, even with only two transmitter/receiver pairs per node, the switch exhibits lower end-to-end latency and higher throughput at high (>90%) input loads compared with electronic switches. On the device integration level, we propose to integrate all the components (ring modulators, photodetectors and AWGR) on a CMOS-compatible silicon photonic platform to ensure a compact, energy efficient and cost-effective device. We successfully demonstrate proof-of-concept routing functions on an 8 × 8 prototype fabricated using foundry services provided by OpSIS-IME.

  15. Development of Silicon Sensor Characterization System for Future High Energy Physics Experiments

    Directory of Open Access Journals (Sweden)

    Preeti kumari

    2015-08-01

    Full Text Available The Compact Muon Solenoid (CMS is one of the general purpose experiments at the Large Hadron Collider (LHC, CERN and has its Tracker built of all silicon strip and pixel sensors. Si sensors are expected to play extremely important role in the upgrades of the existing Tracker for future high luminosity environment and will also be used in future lepton colliders. However, properties of the silicon sensors have to be carefully understood before they can be put in the extremely high luminosity condition. At Delhi University (DU, we have been working on the development of Si sensor characterization system, as part of the collaboration with the CMS Experiment and RD50 collaboration. This works reports the installation of current-voltage (I-V and capacitance-voltage (C-V systems at DU.

  16. Signal generation in highly irradiated silicon microstrip detectors for the ATLAS experiment

    CERN Document Server

    Ruggiero, G

    2003-01-01

    Silicon detectors are the most diffused tracking devices in High Energy Physics (HEP). The reason of such success can be found in the characteristics of the material together with the existing advanced technology for the fabrication of these devices. Nevertheless in many modem HEP experiments the observation of vary rare events require data taking at high luminosity with a consequent extremely intense hadron radiation field that damages the silicon and degrades the performance of these devices. In this thesis work a detailed study of the signal generation in microstrip detectors has been produced with a special care for the ATLAS semiconductor tracker geometry. This has required a development of an appropriate setup to perform measurements with Transient Current/ Charge Technique. This has allowed studying the evolution of the signal in several microstrips detector samples irradiated at fluences covering the range expected in the ATLAS Semiconductor Tracker. For a better understanding of these measurements a ...

  17. Superperiodic Feature on Silicon-Sputtered Highly Oriented Pyrolytic Graphite

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Superperiodic feature was observed by scanning tunneling microscopy (STM) on the surface of highly oriented pyrolyticlattice constant is 7.03 nm. For the superlattice, the observed boundaries between the superlattice and the normal graphiteareas were zigzag, which was in good agreement with the result predicted theoretically. In addition, the observed latticeconstants varied slightly in the superperiodic feature area. This implies the role of intralayer strain in the formation of theobserved superlattice on the graphite surface.

  18. High-resolution photoinduced transient spectroscopy of neutron irradiated bulk silicon

    CERN Document Server

    Kozlowski, R; Nossarzhevska, E

    2002-01-01

    High-resolution photoinduced transient spectroscopy has been employed in a study on the formation of defects in bulk silicon due to 1 MeV neutron irradiation. Apart from divacancies in various charge states, complexes involving interstitial carbon and oxygen were revealed. The defect structure of float zone and Czochralski-grown material exposed to fluences of 2x10 sup 1 sup 4 and 6.75x10 sup 1 sup 4 cm sup - sup 2 is compared.

  19. High-contrast gratings for long-wavelength laser integration on silicon

    Science.gov (United States)

    Sciancalepore, Corrado; Descos, Antoine; Bordel, Damien; Duprez, Hélène; Letartre, Xavier; Menezo, Sylvie; Ben Bakir, Badhise

    2014-02-01

    Silicon photonics is increasingly considered as the most promising way-out to the relentless growth of data traffic in today's telecommunications infrastructures, driving an increase in transmission rates and computing capabilities. This is in fact challenging the intrinsic limit of copper-based, short-reach interconnects and microelectronic circuits in data centers and server architectures to offer enough modulation bandwidth at reasonable power dissipation. In the context of the heterogeneous integration of III-V direct-bandgap materials on silicon, optics with high-contrast metastructures enables the efficient implementation of optical functions such as laser feedback, input/output (I/O) to active/passive components, and optical filtering, while heterogeneous integration of III-V layers provides sufficient optical gain, resulting in silicon-integrated laser sources. The latest ensure reduced packaging costs and reduced footprint for the optical transceivers, a key point for the short reach communications. The invited talk will introduce the audience to the latest breakthroughs concerning the use of high-contrast gratings (HCGs) for the integration of III-V-on-Si verticalcavity surface-emitting lasers (VCSELs) as well as Fabry-Perot edge-emitters (EELs) in the main telecom band around 1.55 μm. The strong near-field mode overlap within HCG mirrors can be exploited to implement unique optical functions such as dense wavelength division multiplexing (DWDM): a 16-λ100-GHz-spaced channels VCSEL array is demonstrated. On the other hand, high fabrication yields obtained via molecular wafer bonding of III-V alloys on silicon-on-insulator (SOI) conjugate excellent device performances with cost-effective high-throughput production, supporting industrial needs for a rapid research-to-market transfer.

  20. An improved PIN photodetector with integrated JFET on high-resistivity silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, Gian-Franco [Dipartimento di Informatica e Telecomunicazioni, Universita di Trento, Via Sommarive 14, I-38050 Povo (Trento) (Italy); Piemonte, Claudio [ITC-irst, Divisione Microsistemi, Via Sommarive 18, I-38050 Povo (Trento) (Italy); Boscardin, Maurizio [ITC-irst, Divisione Microsistemi, Via Sommarive 18, I-38050 Povo (Trento) (Italy); Gregori, Paolo [ITC-irst, Divisione Microsistemi, Via Sommarive 18, I-38050 Povo (Trento) (Italy); Zorzi, Nicola [ITC-irst, Divisione Microsistemi, Via Sommarive 18, I-38050 Povo (Trento) (Italy); Fazzi, Alberto [Dipartimento di Ingegneria Nucleare, Politecnico di Milano, 20133 Milan (Italy); Pignatel, Giorgio U. [Dipartimento di Ingegneria Elettronica e Informazione, Universita di Perugia, 06125 Perugia (Italy)]. E-mail: giorgio.pignatel@diei.unipg.it

    2006-11-01

    We report on a PIN photodetector integrated with a Junction Field Effect Transistor (JFET) on a high-resistivity silicon substrate. Owing to a modified fabrication technology, the electrical and noise characteristics of the JFET transistor have been enhanced with respect to the previous versions of the device, allowing the performance to be significantly improved. In this paper, the main design and technological aspects relevant to the proposed structure are addressed and experimental results from the electrical characterization are discussed.

  1. Silicon oxide based high capacity anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  2. Dispersion engineered high-Q silicon Nitride Ring-Resonators via Atomic Layer Deposition

    CERN Document Server

    Riemensberger, Johann; Herr, Tobias; Brasch, Victor; Holzwarth, Ronald; Kippenberg, Tobias J

    2012-01-01

    We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition (ALD). Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. All results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.

  3. High temperature study of flexible silicon-on-insulator fin field-effect transistors

    KAUST Repository

    Diab, Amer El Hajj

    2014-09-29

    We report high temperature electrical transport characteristics of a flexible version of the semiconductor industry\\'s most advanced architecture: fin field-effect transistor on silicon-on-insulator with sub-20 nm fins and high-κ/metal gate stacks. Characterization from room to high temperature (150 °C) was completed to determine temperature dependence of drain current (Ids), gate leakage current (Igs), transconductance (gm), and extracted low-field mobility (μ0). Mobility degradation with temperature is mainly caused by phonon scattering. The other device characteristics show insignificant difference at high temperature which proves the suitability of inorganic flexible electronics with advanced device architecture.

  4. MICROSTRUCTURING OF SILICON SINGLE CRYSTALS BY FIBER LASER IN HIGH-SPEED SCANNING MODE

    Directory of Open Access Journals (Sweden)

    T. A. Trifonova

    2015-11-01

    Full Text Available Subject of Study. The surface structure of the silicon wafers (substrate with a thermally grown silicon dioxide on the surface (of SiO2/Si is studied after irradiation by pulse fiber laser of ILI-1-20 type. The main requirements for exposure modes of the system are: the preservation of the integrity of the film of silicon dioxide in the process of microstructuring and the absence of interference of surrounding irradiated areas of the substrate. Method. Studies were carried out on silicon wafers KEF-4,5 oriented in the crystallographic plane (111 with the source (natural silicon dioxide (SiO2 with thickness of about 4 nm, and SiO2 with 40 nm and 150 nm thickness, grown by thermal oxidation in moist oxygen. Also, wafers KHB-10 oriented in the plane (100 with 500 nm thickness of thermal oxide were investigated. Irradiation of SiO2/Si system was produced by laser complex based on ytterbium fiber pulse laser ILI-1-20. Nominal output power of the laser was 20 W, and the laser wavelength was λ = 1062 nm. Irradiation was carried out by a focused beam spot with a diameter of 25 microns and a pulse repetition rate of 99 kHz. The samples with 150 nm and 40 nm thickness of SiO2 were irradiated at a power density equal to 1,2·102 W/cm2, and the samples of SiO2 with 500 nm thickness were irradiated at a power density equal to 2,0·102 W/cm2. Scanning was performed using a two-axis Coordinate Scanning Device based on VM2500+ drives with control via a PC with the software package "SinMarkTM." Only one scan line was used at the maximum speed of the beam equal to 8750 mm/s. Morphology control of the irradiated samples was conducted by an optical microscope ZeissA1M with high-resolution CCD array. A scanning probe microscope Nanoedicator of the NT-MDT company was used for structural measurements. Main Results. It has been shown that at a single exposure of high-frequency pulsed laser radiation on SiO2/Si system, with maintaining the integrity of the SiO2 film

  5. High current density stability of ohmic contacts to silicon carbide

    Science.gov (United States)

    Downey, Brian P.

    The materials properties of SiC, such as wide bandgap, high breakdown electric field, and good thermal conductivity, make it an appealing option for high temperature and high power applications. The replacement of Si devices with SiC components could lead to a reduction in device size, weight, complexity, and cooling requirements along with an increase in device efficiency. One area of concern under high temperature or high current operation is the stability of the ohmic contacts. Ohmic contact degradation can cause an increase in parasitic resistance, which can diminish device performance. While contact studies have primarily focused on the high temperature stability of ohmic contacts to SiC, different failure mechanisms may arise under high current density stressing due to the influence of electromigration. In addition, preferential degradation may occur at the anode or cathode due to the directionality of current flow, known as a polarity effect. The failure mechanisms of ohmic contacts to p-type SiC under high current density stressing are explored. Complementary materials characterization techniques were used to analyze contact degradation, particularly the use of cross-sections prepared by focused ion beam for imaging using field emission scanning electron microscopy and elemental analysis using Auger electron spectroscopy. Initially the degradation of commonly studied Ni and Al-based contacts was investigated under continuous DC current. The contact metallization included a bond pad consisting of a TiW diffusion barrier and thick Au overlayer. The Ni contacts were found to degrade due to the growth of voids within the ohmic contact layer, which were initially produced during the high temperature Ni/SiC ohmic contact anneal. The Al-based contacts degraded due to the movement of Al from the ohmic contact layer to the surface of the Au bond pad, and the movement of Au into the ohmic contact layer from the bond pad. The inequality of Al and Au fluxes generated

  6. High-performance silicon photonics technology for telecommunications applications.

    Science.gov (United States)

    Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi

    2014-04-01

    By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge-based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.

  7. Theory of High Frequency Rectification by Silicon Crystals

    Science.gov (United States)

    Bethe, H. A.

    1942-10-29

    The excellent performance of British "red dot" crystals is explained as due to the knife edge contact against a polished surface. High frequency rectification depends critically on the capacity of the rectifying boundary layer of the crystal, C. For high conversion efficiency, the product of this capacity and of the "forward" (bulk) resistance R {sub b} of the crystal must be small. For a knife edge, this product depends primarily on the breadth of the knife edge and very little upon its length. The contact can therefore have a rather large area which prevents burn-out. For a wavelength of 10 cm. the computations show that the breadth of the knife edge should be less than about 10 {sup -3} cm. For a point contact the radius must be less than 1.5 x 10 {sup -3} cm. and the resulting small area is conducive to burn-out. The effect of "tapping" is probably to reduce the area of contact. (auth)

  8. Dynamical potential approach to dissociation of H-C bond in HCO highly excited vibration

    Institute of Scientific and Technical Information of China (English)

    Fang Chao; Wu Guo-Zhen

    2009-01-01

    The highly excited vibrational levels of HCO in the electronic ground state, X1A', are employed to determine the coefficients of an algebraic Hamiltonian, by which the dynamical potential is derived and shown to be very useful for interpreting thc intramolecular vibrational relaxation (IVR) which operates via the HCO bending motion. The IVR inhibits the dissociation of H atom and enhances the stochastic degree of dynamical character. This approach is from a global viewpoint on a series of levels classified by the polyad number which is a constant of motion in a certain dynamical domain. In this way, the seemingly complicated level structure shows very regular picture, dynamically.

  9. Computation for High Excited Stark Levels of hydrogen Atoms in Uniform Electric Fields

    Institute of Scientific and Technical Information of China (English)

    田人和

    2003-01-01

    We present a new method for the numerical calculation of exact complex eigenvalues of Schrodinger equations for a hydrogen atom in a uniform electric field. This method allows a direct calculation for complex eigenvalues without using any auxiliary treatment, such as the Breit-Wigner parametrization and the complex scale transformation,etc. The characteristics of high excited atoms in electric field have attracted extensive interest in experimental aspect, however, the existing theoretical calculation is only up to n = 40. Here we present the computation results ranging from n = 1 to 100. The data for n(<,_ ) 40 are in agreement with the results of other researchers.

  10. Excitation Forces on Point Absorbers Exposed to High Order Non-linear Waves

    DEFF Research Database (Denmark)

    Viuff, Thomas Hansen; Andersen, Morten Thøtt; Kramer, Morten

    2013-01-01

    of proper methods to calculate design pressure distributions has led to structural failures such as buckling in the shells in wave energy prototypes. As a step towards understanding the complex loading from high order non-linear waves, this paper presents a practical approach to estimate wave excitation...... forces accounting for both non-linearity and diffraction effects. The method is validated by laboratory experiments using a hemispherical point absorber with a 6-axis force transducer, but the technique is believed to be applicable for most types of submerged or semi-submerged floating devices...

  11. High frequency collective excitations in molten Fe/Ni alloys studied by inelastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Ruiz, M. [Institut Laue Langevin, 6 Rue Jules Horowitz, BP. 156, F-38042 Grenoble Cedex 9 (France)], E-mail: jimenez@ill.fr; Ruiz-Martin, M.D.; Cuello, G.J. [Institut Laue Langevin, 6 Rue Jules Horowitz, BP. 156, F-38042 Grenoble Cedex 9 (France); Fernandez-Perea, R. [Instituto de Estructura de la Materia, Consejo Superior de Investigacioens Cient' fcas, Serrano 123, E-28006 Madrid (Spain); Bermejo, F.J. [C.S.I.C., Department of Electricity and Electronics, UPV/EHU, Box 644, 4880 Bilbao (Spain)

    2008-03-06

    The spectra of liquid 85%Fe5%Ni10%S (T{sub m}=1650 K) and liquid 85%Fe15%Ni have been studied by means of inelastic neutron scattering. Our aim was to explore at high frequencies some observed anomalies as reported from ultrasound studies. Contrary to the behavior of the pure liquid-metals, the phase velocity of the observed excitation for the sulfur-containing sample increases with temperature while their damping decreases. On the other hand, data of the binary Fe/Ni alloy do not show such an anomalous behavior.

  12. Excitation Spectrum of Spin-1 Bosonic Atoms in an Optical Lattice with High Filling Factors

    Institute of Scientific and Technical Information of China (English)

    HOU Jing-Min

    2007-01-01

    The Green's function and the higher-order correlation functions of spin-1 cold atoms in an optical lattice are defined.Because we consider the problem of spin-1 Bose condensed atoms in an optical lattice with high filling factors,I.e.,the number density of Bose condensed atoms no is large,the fluctuation of them can be neglected and we take mean-field approximation for the higher-order terms.The excitation spectra for both the polar case and the ferromagnetic case are obtained and analyzed.

  13. Dynamical Lie algebra method for highly excited vibrational state of asymmetric linear tetratomic molecules

    Institute of Scientific and Technical Information of China (English)

    冯东太; 丁世良; 王美山

    2003-01-01

    The highly excited vibrational states of asymmetric linear tetratomic molecules are studied in the framework of Lie algebra. By using symmetric group U1(4) U2(4) U3(4), we construct the Hamiltonian that includes not only Casimir operators but also Majorana operators M12,M13 and M23, which are useful for getting potential energy surface and force constants in Lie algebra method. By Lie algebra treatment, we obtain the eigenvalues of the Hamiltonian, and make the concrete calculation for molecule C2HF.

  14. Significance of the Formal Quantum Number in the Highly Excited Vibration of the DCN Molecule

    Institute of Scientific and Technical Information of China (English)

    郑敦胜; 吴国祯

    2002-01-01

    For the eigenstates of the highly excited vibration of the simple molecule DCN with two stretching modes, a classical approach in a multi-dimensional coset phase space is employed to show that the formal quantum numbers are related to regular or 1east "irregular" trajectories, with zero or least Lyapunov exponents, and are always located in the inner regions of the phase space. This property reflects that they are the approximate constants of motion. It is also demonstrated that formal quantum numbers correspond to the significant phase space density.

  15. High efficiency back-contact back-junction thin-film monocrystalline silicon solar cells from the porous silicon process

    Science.gov (United States)

    Haase, F.; Kajari-Schröder, S.; Brendel, R.

    2013-11-01

    This work demonstrates the fabrication of a 45 μm thick back-contact back-junction thin-film monocrystalline silicon solar cell from the porous silicon process with an energy conversion efficiency of 18.9%. We demonstrate an efficiency improvement of 5.4% absolute compared to our prior record of 13.5% for back-contact back-junction thin-film monocrystalline silicon solar cells. This increase in efficiency is achieved by reducing the recombination at the base contact using a back surface field and by increasing the generation with a front texture. We investigate the loss mechanisms in the cell using finite element simulations. A free energy loss analysis based on experiments and simulations determines the dominating loss mechanisms. The efficiency loss by base recombination is 0.8% absolute and the loss by base contact recombination is 0.5% absolute in the 18.9% efficiency cell.

  16. Thin tantalum-silicon-oxygen/tantalum-silicon-nitrogen films as high-efficiency humidity diffusion barriers for solar cell encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Heuer, H. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany)]. E-mail: Henning.Heuer@izfp-d.fraunhofer.de; Wenzel, C. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany); Herrmann, D. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany); Zentrum fuer Sonnenenergie-und Wasserstoff-Forschung (ZSW) Industriestrasse 6, 70565 Stuttgart (Germany); Huebner, R. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany); Leibniz Institut fuer Festkoerper-und Werkstoffforschung Dresden (IFW) Helmholtzstrasse 20, 01069, Dresden (Germany); Zhang, Z.L. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany); Max-Planck-Gesellschaft fuer Metallforschung (MPI) Heisenbergstrasse 3, 70569 Stuttgart (Germany); Bartha, J.W. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany)

    2006-12-05

    Flexible thin-film solar cells require flexible encapsulation to protect the copper-indium-2 selenide (CIS) absorber layer from humidity and aggressive environmental influences. Tantalum-silicon-based diffusion barriers are currently a favorite material to prevent future semiconductor devices from copper diffusion. In this work tantalum-silicon-nitrogen (Ta-Si-N) and tantalum-silicon-oxygen (Ta-Si-O) films were investigated and optimized for thin-film solar cell encapsulation of next-generation flexible solar modules. CIS solar modules were coated with tantalum-based barrier layers. The performance of the thin-film barrier encapsulation was determined by measuring the remaining module efficiency after a 1000 h accelerated aging test. A significantly enhanced stability against humidity diffusion in comparison to non-encapsulated modules was reached with a reactively sputtered thin-film system consisting of 250 nm Ta-Si-O and 15 nm Ta-Si-N.

  17. Unusually High and Anisotropic Thermal Conductivity in Amorphous Silicon Nanostructures.

    Science.gov (United States)

    Kwon, Soonshin; Zheng, Jianlin; Wingert, Matthew C; Cui, Shuang; Chen, Renkun

    2017-03-28

    Amorphous Si (a-Si) nanostructures are ubiquitous in numerous electronic and optoelectronic devices. Amorphous materials are considered to possess the lower limit to the thermal conductivity (κ), which is ∼1 W·m(-1) K(-1) for a-Si. However, recent work suggested that κ of micrometer-thick a-Si films can be greater than 3 W·m(-1) K(-1), which is contributed to by propagating vibrational modes, referred to as "propagons". However, precise determination of κ in a-Si has been elusive. Here, we used structures of a-Si nanotubes and suspended a-Si films that enabled precise in-plane thermal conductivity (κ∥) measurement within a wide thickness range of 5 nm to 1.7 μm. We showed unexpectedly high κ∥ in a-Si nanostructures, reaching ∼3.0 and 5.3 W·m(-1) K(-1) at ∼100 nm and 1.7 μm, respectively. Furthermore, the measured κ∥ is significantly higher than the cross-plane κ on the same films. This unusually high and anisotropic thermal conductivity in the amorphous Si nanostructure manifests the surprisingly broad propagon mean free path distribution, which is found to range from 10 nm to 10 μm, in the disordered and atomically isotropic structure. This result provides an unambiguous answer to the century-old problem regarding mean free path distribution of propagons and also sheds light on the design and performance of numerous a-Si based electronic and optoelectronic devices.

  18. Effects of electric fields and collisions on highly excited rubidium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, N.I.; Compton, R.N. [Tennessee Univ., Dept. of Chemistry and Physics, Knoxville, TN (United States)

    2003-10-01

    The effects of static and pulsed electric fields on the multiphoton ionization (MPI) of rubidium atoms at both low (atomic beam) and high (heat pipe) densities are studied using tunable OPO lasers. Two-photon excitation of np states is induced by the external electric field at both low and high densities. In addition, np signal is also seen at very low electric fields in the heat pipe, providing evidence for collision mixing as well as field mixing. At low Rb densities strong resonance features are observed in the energy region between the zero field limit (IP) and the field ionization limit. In addition, collisional detachment and charge transfer between excited ns and nd Rb Rydberg states and nozzle-jet cooled polar molecules (acetonitrile and acetone) are studied under crossed-beam conditions. The formation of dipole bound anions for acetone is only seen under nozzle jet expansion conditions and the maximum in the Rydberg electron transfer (RET) rate versus n depends upon the expansion gas (n{sub max} increases in the order H{sub 2}, He, Ne, Ar, Xe). For acetone (low dipole moment and large n{sub max}), collisional detachment dominates the charge transfer, whereas for acetonitrile (high dipole moment and low n{sub max}), charge transfer is seen to dominate the creation of Rb{sup +}. (authors)

  19. Effects of electric fields and collisions on highly excited rubidium atoms

    Science.gov (United States)

    Hammer, N. I.; Compton, R. N.

    2003-10-01

    The effects of static and pulsed electric fields on the multiphoton ionization (MPI) of rubidium atoms at both low (atomic beam) and high (heat pipe) densities are studied using tunable OPO lasers. Two-photon excitation of np states is induced by the external electric field at both low and high densities. In addition, np signal is also seen at very low electric fields in the heat pipe, providing evidence for collision mixing as well as field mixing. At low Rb densities strong resonance features are observed in the energy region between the zero field limit (IP) and the field ionization limit. In addition, collisional detachment and charge transfer between excited ns and nd Rb Rydberg states and nozzle-jet cooled polar molecules (acetonitrile and acetone) are studied under crossed-beam conditions. The formation of dipole bound anions for acetone is only seen under nozzle jet expansion conditions and the maximum in the Rydberg electron transfer (RET) rate versus n depends upon the expansion gas (n_max increases in the order H{2}, He, Ne, Ar, Xe). For acetone (low dipole moment and large n_max), collisional detachment dominates the charge transfer, whereas for acetonitrile (high dipole moment and low n_max), charge transfer is seen to dominate the creation of Rb+.

  20. Highly Excited Mesons, Linear Regge Trajectories and the Pattern of the Chiral Symmetry Realization

    CERN Document Server

    Shifman, M

    2007-01-01

    The chiral symmetry of QCD shows up in the linear Weyl--Wigner mode at short Euclidean distances or at high temperatures. On the other hand, low-lying hadronic states exhibit the nonlinear Nambu--Goldstone mode. An interesting question was raised as to whether the linear realization of the chiral symmetry is asymptotically restored for highly excited states. We address it in a number of ways. On the phenomenological side we argue that to the extent the meson Regge trajectories are observed to be linear and equidistant, the Weyl--Wigner mode is not realized. This picture is supported by quasiclassical arguments implying that the quark spin interactions in high excitations are weak, the trajectories are linear, and there is no chiral symmetry restoration. Then we use the string/gauge duality. In the top-down Sakai--Sugimoto construction the nonlinear realization of the chiral symmetry is built in. In the bottom-up AdS/QCD construction by Erlich et al., and Karch et al. the situation is more ambiguous. However, ...

  1. Performance evaluation of a very high resolution small animal PET imager using silicon scatter detectors

    Science.gov (United States)

    Park, Sang-June; Rogers, W. Leslie; Huh, Sam; Kagan, Harris; Honscheid, Klaus; Burdette, Don; Chesi, Enrico; Lacasta, Carlos; Llosa, Gabriela; Mikuz, Marko; Studen, Andrej; Weilhammer, Peter; Clinthorne, Neal H.

    2007-05-01

    A very high resolution positron emission tomography (PET) scanner for small animal imaging based on the idea of inserting a ring of high-granularity solid-state detectors into a conventional PET scanner is under investigation. A particularly interesting configuration of this concept, which takes the form of a degenerate Compton camera, is shown capable of providing sub-millimeter resolution with good sensitivity. We present a Compton PET system and estimate its performance using a proof-of-concept prototype. A prototype single-slice imaging instrument was constructed with two silicon detectors 1 mm thick, each having 512 1.4 mm × 1.4 mm pads arranged in a 32 × 16 array. The silicon detectors were located edgewise on opposite sides and flanked by two non-position sensitive BGO detectors. The scanner performance was measured for its sensitivity, energy, timing, spatial resolution and resolution uniformity. Using the experimental scanner, energy resolution for the silicon detectors is 1%. However, system energy resolution is dominated by the 23% FWHM BGO resolution. Timing resolution for silicon is 82.1 ns FWHM due to time-walk in trigger devices. Using the scattered photons, time resolution between the BGO detectors is 19.4 ns FWHM. Image resolution of 980 µm FWHM at the center of the field-of-view (FOV) is obtained from a 1D profile of a 0.254 mm diameter 18F line source image reconstructed using the conventional 2D filtered back-projection (FBP). The 0.4 mm gap between two line sources is resolved in the image reconstructed with both FBP and the maximum likelihood expectation maximization (ML-EM) algorithm. The experimental instrument demonstrates sub-millimeter resolution. A prototype having sensitivity high enough for initial small animal images can be used for in vivo studies of small animal models of metabolism, molecular mechanism and the development of new radiotracers.

  2. Highly robust silicon nanowire/graphene core-shell electrodes without polymeric binders

    Science.gov (United States)

    Lee, Sang Eon; Kim, Han-Jung; Kim, Hwanjin; Park, Jong Hyeok; Choi, Dae-Geun

    2013-09-01

    A large theoretical charge storage capacity along with a low discharge working potential renders silicon a promising anode material for high energy density lithium ion batteries. However, up to 400% volume expansion during charge-discharge cycling coupled with a low intrinsic electronic conductivity causes pulverization and fracture, thus inhibiting silicon's widespread use in practical applications. We report herein on a low cost approach to fabricate hybrid silicon nanowire (SiNW)/graphene nanostructures that exhibit enhanced cycle performance with the capability of retaining more than 90% of their initial capacity after 50 cycles. We also demonstrate the use of hot-pressing in the absence of any common polymer binder such as PVDF to bind the hybrid structure to the current collector. The applied heat and pressure ensure strong adhesion between the SiNW/graphene nano-composite and current collector. This facile yet strong binding method is expected to find use in the further development of polymer-binder free anodes for lithium ion batteries.A large theoretical charge storage capacity along with a low discharge working potential renders silicon a promising anode material for high energy density lithium ion batteries. However, up to 400% volume expansion during charge-discharge cycling coupled with a low intrinsic electronic conductivity causes pulverization and fracture, thus inhibiting silicon's widespread use in practical applications. We report herein on a low cost approach to fabricate hybrid silicon nanowire (SiNW)/graphene nanostructures that exhibit enhanced cycle performance with the capability of retaining more than 90% of their initial capacity after 50 cycles. We also demonstrate the use of hot-pressing in the absence of any common polymer binder such as PVDF to bind the hybrid structure to the current collector. The applied heat and pressure ensure strong adhesion between the SiNW/graphene nano-composite and current collector. This facile yet strong

  3. 193nm immersion lithography for high-performance silicon photonic circuits

    Science.gov (United States)

    Selvaraja, Shankar K.; Winroth, Gustaf; Locorotondo, Sabrina; Murdoch, Gayle; Milenin, Alexey; Delvaux, Christie; Ong, Patrick; Pathak, Shibnath; Xie, Weiqiang; Sterckx, Gunther; Lepage, Guy; Van Thourhout, Dries; Bogaerts, Wim; Van Campenhout, Joris; Absil, Philippe

    2014-04-01

    Large-scale photonics integration has been proposed for many years to support the ever increasing requirements for long and short distance communications as well as package-to-package interconnects. Amongst the various technology options, silicon photonics has imposed itself as a promising candidate, relying on CMOS fabrication processes. While silicon photonics can share the technology platform developed for advanced CMOS devices it has specific dimension control requirements. Though the device dimensions are in the order of the wavelength of light used, the tolerance allowed can be less than 1% for certain devices. Achieving this is a challenging task which requires advanced patterning techniques along with process control. Another challenge is identifying an overlapping process window for diverse pattern densities and orientations on a single layer. In this paper, we present key technology challenges faced when using optical lithography for silicon photonics and advantages of using the 193nm immersion lithography system. We report successful demonstration of a modified 28nm- STI-like patterning platform for silicon photonics in 300mm Silicon-On-Insulator wafer technology. By careful process design, within-wafer CD variation (1sigma) of 20 % from the best propagation loss reported for this cross-section fabricated using e-beam lithography. By using a single-mode low-confinement waveguide geometry the loss is further reduced to ~0.12 dB/cm. Secondly, we present improvement in within-device phase error in wavelength selective devices, a critical parameter which is a direct measure of line-width uniformity improvement due to the 193nm immersion system. In addition to these superior device performances, the platform opens scenarios for designing new device concepts using sub-wavelength features. By taking advantage of this, we demonstrate a cost-effective robust single-etch sub-wavelength structure based fiber-chip coupler with a coupling efficiency of 40 % and high

  4. Analysis of high efficiency back point contact silicon solar cells

    Science.gov (United States)

    Luque, Antonio

    1988-01-01

    A model has been developed for the analysis of Back Point-Contact (BPC) cells under variable injection level. The analysis has been applied to an experimental cell from Stanford University to allow the extraction of the recombination parameters of this cell. While the bulk SRH recombination and the recombination in the surface and in the emitters are those expected, the Auger constant takes a higher value (2.1 × 10 -30 cm 6/s), than the one usually accepted, and in agreement with the measurements by the Stanford group, for the carrier density involved here. The analysis indicates that best efficiency results are obtained with cells with finely designed emitter dots and well passivated surfaces, made on high resistivity substrates, leading to an upper limit of efficiency obtained at 20 W/cm 2 of about 30.4%. If our technology prevents us from a fine dot delineation (below 5-10 μm) then the highest efficiency is to be expected from the more conventional Interdigitated Back Contact cells with a limit (with our fitted Auger constant) of about 30%. Finally, if the commonly accepted value of the Auger constant (3.8 × 10 -31 cm 6/s) is used this limit is obtained at 50 W/cm 2 and is of 33.1% with a strongly idealized cell. All the efficiencies are at 25°C.

  5. High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics.

    Science.gov (United States)

    Allen, Thomas J; Beard, Paul C

    2016-04-01

    The use of visible light emitting diodes (LEDs) as an alternative to Q-switched lasers conventionally used as photoacoustic excitation sources has been explored. In common with laser diodes, LEDs offer the advantages of compact size, low cost and high efficiency. However, laser diodes suitable for pulsed photoacoustic generation are typically available only at wavelengths greater than 750nm. By contrast, LEDs are readily available at visible wavelengths below 650nm where haemoglobin absorption is significantly higher, offering the prospect of increased SNR for superficial vascular imaging applications. To demonstrate feasibility, a range of low cost commercially available LEDs operating in the 420-620nm spectral range were used to generate photoacoustic signals in physiologically realistic vascular phantoms. Overdriving with 200ns pulses and operating at a low duty cycle enabled pulse energies up to 10µJ to be obtained with a 620nm LED. By operating at a high pulse repetition frequency (PRF) in order to rapidly signal average over many acquisitions, this pulse energy was sufficient to generate detectable signals in a blood filled tube immersed in an Intralipid suspension (µs' = 1mm(-1)) at a depth of 15mm using widefield illumination. In addition, a compact four-wavelength LED (460nm, 530nm, 590nm, 620nm) in conjunction with a coded excitation scheme was used to illustrate rapid multiwavelength signal acquisition for spectroscopic applications. This study demonstrates that LEDs could find application as inexpensive and compact multiwavelength photoacoustic excitation sources for imaging superficial vascular anatomy. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

  6. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively.

  7. Trapping induced N{sub eff} and electrical field transformation at different temperatures in neutron irradiated high resistivity silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Eremin, V.; Li, Z.; Iljashenko, I.

    1994-02-01

    The trapping of both non-equilibrium electrons and holes by neutron induced deep levels in high resistivity silicon planar detectors have been observed. In the experiments Transient Current and Charge Techniques, with short laser light pulse excitation have been applied at temperature ranges of 77--300 k. Light pulse illumination of the front (p{sup +}) and back (n{sup +}) contacts of the detectors showed effective trapping and detrapping, especially for electrons. At temperatures lower than 150 k, the detrapping becomes non-efficient, and the additional negative charge of trapped electrons in the space charge region (SCR) of the detectors leads to dramatic transformations of the electric field due to the distortion of the effective space charge concentration N{sub eff}. The current and charge pulses transformation data can be explained in terms of extraction of electric field to the central part of the detector from the regions near both contacts. The initial field distribution may be recovered immediately by dropping reverse bias, which injects both electrons and holes into the space charge region. In the paper, the degree of the N{sub eff} distortions among various detectors irradiated by different neutron fluences are compared.

  8. High Temperature All Silicon-Carbide (SiC) DC Motor Drives for Venus Exploration Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project seeks to prove the feasibility of creating high-temperature silicon-carbide (SiC) based motor drives for...

  9. Effect of collective response on electron capture and excitation in collisions of highly charged ions with fullerenes.

    Science.gov (United States)

    Kadhane, U; Misra, D; Singh, Y P; Tribedi, Lokesh C

    2003-03-07

    Projectile deexcitation Lyman x-ray emission following electron capture and K excitation has been studied in collisions of bare and Li-like sulphur ions (of energy 110 MeV) with fullerenes (C(60)/C(70)) and different gaseous targets. The intensity ratios of different Lyman x-ray lines in collisions with fullerenes are found to be substantially lower than those for the gas targets, both for capture and excitation. This has been explained in terms of a model based on "solidlike" effect, namely, wakefield induced stark mixing of the excited states populated via electron capture or K excitation: a collective phenomenon of plasmon excitation in the fullerenes under the influence of heavy, highly charged ions.

  10. On-chip high-power porous silicon lithium ion batteries with stable capacity over 10000 cycles (Presentation Recording)

    Science.gov (United States)

    Westover, Andrew S.; Freudiger, Daniel; Gani, Zarif; Share, Keith; Oakes, Landon; Carter, Rachel E.; Pint, Cary L.

    2015-09-01

    We demonstrate the operation of a graphene-passivated on-chip porous silicon material as a high rate lithium ion battery anode with over 50x power density and 100x energy density improvement compared to identically prepared on-chip porous silicon supercapacitors. We demonstrate this Faradaic storage behavior to occur at fast charging rates (1-10 mA/cm2) where lithium locally intercalates into the nanoporous silicon, but not underlying bulk silicon material. This prevents the degradation and poor cycling performance that is commonly observed from deep storage in bulk silicon materials. As a result, this device exhibits cycling performance that exceeds 10,000 cycles with capacity above 0.1 mAh/cm2, without notable capacity fade. This work demonstrates a practical route toward high power, high energy, and long lifetime all-silicon on-chip storage systems relevant toward integration of energy storage into electronics, photovoltaics, and other silicon-based technology.

  11. High-stability transparent amorphous oxide TFT with a silicon-doped back-channel layer

    Science.gov (United States)

    Lee, Hyoung-Rae; Park, Jea-Gun

    2014-10-01

    We significantly reduced various electrical instabilities of amorphous indium gallium zinc oxide thin-film transistors (TFTs) by using the co-deposition of silicon on an a-IGZO back channel. This process showed improved stability of the threshold voltage ( V th ) under high temperature and humidity and negative gate-bias illumination stress (NBIS) without any reduction of IDS. The enhanced stability was achieved with silicon, which has higher metal-oxide bonding strengths than gallium does. Additionally, SiO X distributed on the a-IGZO surface reduced the adsorption and the desorption of H2O and O2. This process is applicable to the TFT manufacturing process with a variable sputtering target.

  12. Effect of high-power nanosecond and femtosecond laser pulses on silicon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kachurin, G. A., E-mail: kachurin@isp.nsc.ru; Cherkova, S. G.; Volodin, V. A.; Marin, D. V. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Deutschmann, M. [Laser Zentrum Hannover (Germany)

    2008-02-15

    The effect of high-power nanosecond (20 ns) and femtosecond (120 fs) laser pulses on silicon nanostructures produced by ion-beam-assisted synthesis in SiO{sub 2} layers or by deposition onto glassy substrates is studied. Nanosecond annealing brings about a photoluminescence band at about 500 mn, with the intensity increasing with the energy and number of laser pulses. The source of the emission is thought to be the clusters of Si atoms segregated from the oxide. In addition, the nanosecond pulses allow crystallization of amorphous silicon nanoprecipitates in SiO{sub 2}. Heavy doping promotes crystallization. The duration of femtosecond pulses is too short for excess Si to be segregated from SiO{sub 2}. At the same time, such short pulses induce crystallization of Thin a-Si films on glassy substrates. The energy region in which crystallization is observed for both types of pulses allows short-term melting of the surface layer.

  13. A new ethylene glycol-silane monolayer for highly-specific DNA detection on Silicon Chips

    Science.gov (United States)

    Carrara, Sandro; Cavallini, Andrea; Maruyama, Yuki; Charbon, Edoardo; De Micheli, Giovanni

    2010-11-01

    Monolayer thin films with ethylene-glycol function onto gold surfaces by using thiols have been extensively investigated. They have been proposed as precursors for applications to bio-detection, where their hydrophilic character improves both specificity and sensitivity. The aim of this letter is to characterize ethylene-glycol monolayer precursors formed onto silicon chips by using silanes. The importance of the ethylene-glycol function is demonstrated by comparing with the well known 3-Aminopropyltriethoxysilane. The different nano-scale structures of the two precursor monolayers are investigated by using atomic force microscopy (AFM). Longer, wider, and deeper grooves were measured in the images acquired on 3-Aminopropyltriethoxysilane. Fluorescence investigation demonstrates that the presence of ethylene-glycol function improves target hybridization onto silicon chips, assuring highly-specific detection of DNA.

  14. Dielectric breakdown of MXB-71 phenolic and Sylgard 184/GMB silicone at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.T. Jr.; Beeson, P.M.

    1983-07-01

    High temperature electrical breakdown characteristics have been determined for MXB-71 phenolic and Sylgard 184/GMB silicone in air and nitrogen environments. The phenolic material is used for electronic case housings whereas the silicone is an encapsulant. The experiments were performed with constant electric fields (values ranging from 3 x 10/sup 3/ to 2.5 x 10/sup 4/ V/cm) applied to the samples while the temperature was increased at a rate of 10/sup 0/C/minute. The sample current until breakdown was determined. Results showed that breakdown occurred between 470 to 725/sup 0/C, and was principally dependent upon the material conductivity at time breakdown and the electric field. The breakdown temperature decreased with increasing electric field and decreased in an oxygen-containing environment. Materials postcured at 580 to 600/sup 0/C prior to electrical testing exhibited considerably lower breakdown temperatures at higher electric fields. Results suggest that breakdown occurred via thermal runaway.

  15. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wensheng, E-mail: yws118@gmail.com; Gu, Min, E-mail: mgu@swin.edu.au [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Tao, Zhikuo [College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Ong, Thiam Min Brian [Plasma Sources and Application Center, NIE, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)

    2015-03-02

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high light trapping within amorphous silicon layer.

  16. The effect of highly ionising particles on the CMS silicon strip tracker

    CERN Document Server

    Adam, W; Bergauer, T; Bouhali, O; Clerbaux, B; De Langhe, E; De Lentdecker, G; De Wolf, E; Friedl, M; Frühwirth, R; Hrubec, Josef; Krammer, Manfred; Pernicka, Manfred; Tasevsky, M; Waltenberger, W

    2005-01-01

    Inelastic nuclear collisions of hadrons incident on silicon sensors can generate secondary highly ionising particles (HIPs) and deposit as much energy within the sensor bulk as several hundred minimum ionising particles. The large signals generated by these 'HIP events' can momentarily saturate the APV25 front-end readout chip for the silicon strip tracker (SST) sub-detector of the compact muon solenoid (CMS) experiment, resulting in deadtime in the detector readout system. This paper presents studies of this phenomenon through simulation, laboratory measurements and dedicated beam tests. A proposed change to a front-end component to reduce the APV25 sensitivity to HIP events is also examined. The results are used to infer the expected effect on the performance of the CMS SST at the future large hadron collider. The induced inefficiencies are at the percent level and will have a negligible effect on the physics performance of the SST.

  17. High-yield synthesis of silicon carbide nanowires by solar and lamp ablation

    Science.gov (United States)

    Lu, Hai-bo; Chan, Benjamin C. Y.; Wang, Xiaolin; Tong Chua, Hui; Raston, Colin L.; Albu-Yaron, Ana; Levy, Moshe; Popowitz-Biro, Ronit; Tenne, Reshef; Feuermann, Daniel; Gordon, Jeffrey M.

    2013-08-01

    We report a reasonably high yield (∼50%) synthesis of silicon carbide (SiC) nanowires from silicon oxides and carbon in vacuum, by novel solar and lamp photothermal ablation methods that obviate the need for catalysis, and allow relatively short reaction times (∼10 min) in a nominally one-step process that does not involve toxic reagents. The one-dimensional core/shell β-SiC/SiOx nanostructures—characterized by SEM, TEM, HRTEM, SAED, XRD and EDS—are typically several microns long, with core and outer diameters of about 10 and 30 nm, respectively. HRTEM revealed additional distinctive nanoscale structures that also shed light on the formation pathways.

  18. Experimental setup for investigating silicon solid phase crystallization at high temperatures.

    Science.gov (United States)

    Schmidt, Thomas; Gawlik, Annett; Schneidewind, Henrik; Ihring, Andreas; Andrä, Gudrun; Falk, Fritz

    2013-07-15

    An experimental setup is presented to measure and interpret the solid phase crystallization of amorphous silicon thin films on glass at very high temperatures of about 800 °C. Molybdenum-SiO(2)-silicon film stacks were irradiated by a diode laser with a well-shaped top hat profile. From the relevant thermal and optical parameters of the system the temperature evolution can be calculated accurately. A time evolution of the laser power was applied which leads to a temperature constant in time in the center of the sample. Such a process will allow the observation and interpretation of solid phase crystallization in terms of nucleation and growth in further work.

  19. High-voltage electron-microscopical observation of crack-tip dislocations in silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masaki [Department of Materials Science and Engineering, Kyushu University, 6-10-1 Higashi-ku Fukuoka 812-8581 (Japan)]. E-mail: masaki@dera.zaiko.kyushu-u.ac.jp; Higashida, Kenji [Department of Materials Science and Engineering, Kyushu University, 6-10-1 Higashi-ku Fukuoka 812-8581 (Japan)

    2005-07-25

    Crack-tip dislocations in silicon single crystals were observed by high-voltage electron microscopy. Cracks were introduced into silicon wafers at room temperature by a Vickers indenter. The indented specimens were annealed at 823 K in order to activate dislocation emission from the crack tip under the residual stress due to the indentation. In the specimen without annealing, no dislocations were observed around the crack. On the other hand, in the specimen after the annealing, the aspect of the early stage of dislocation emission was observed, where dislocations were emitted not as a perfect dislocation but as a partial dislocation in the hinge-type plastic zone. Prominent dislocation arrays that were emitted from a crack tip were also observed, and they were found to be of shielding type, which increases the fracture toughness of those crystals.

  20. Silicon Photonics for All-Optical Processing and High-Bandwidth-Density Interconnects

    Science.gov (United States)

    Ophir, Noam

    The first chapter of the thesis provides motivation for the integration of silicon photonic modules into compute systems and surveys some of the recent developments in the field. The second chapter then proceeds to detail a technical case study of silicon photonic microring-based WDM links' scalability and power efficiency for these chip I/O applications which could be developed in the intermediate future. The analysis, initiated originally for a workshop on optical and electrical board and rack level interconnects, looks into a detailed model of the optical power budget for such a link capturing both single-channel aspects as well as WDM-operation-related considerations which are unique for a microring physical characteristics. The third chapter, while continuing on the theme silicon photonic high bandwidth density links, proceeds to detail the first experimental demonstration and characterization of an on-chip spatial division multiplexing (SDM) scheme based on microrings for the multiplexing and demultiplexing functionalities. In the context of more forward looking optical network-on-chip environments, SDM-enabled WDM photonic interconnects can potentially achieve superior bandwidth densities per waveguide compared to WDM-only photonic interconnects. The microring-based implementation allows dynamic tuning of the multiplexing and demultiplexing characteristic of the system which allows operation on WDM grid as well device tuning to combat intra-channel crosstalk. The characterization focuses on the first reported power penalty measurements for on-chip silicon photonic SDM link showing minimal penalties achievable with 3 spatial modes concurrently operating on a single waveguide with 10-Gb/s data carried by each mode. The fourth, fifth, and sixth chapters shift in topic from the application of silicon photonics to communication links to the evolving use of silicon waveguides for nonlinear all-optical processing. Chapter four primarily introduces and motivates