WorldWideScience

Sample records for highly excited molecular

  1. Dynamical analysis of highly excited molecular spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, M.E. [Univ. of Oregon, Eugene (United States)

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  2. High excitation rovibrational molecular analysis in warm environments

    Science.gov (United States)

    Zhang, Ziwei; Stancil, Phillip C.; Cumbee, Renata; Ferland, Gary J.

    2017-06-01

    Inspired by advances in infrared observation (e.g., Spitzer, Herschel and ALMA), we investigate rovibrational emission CO and SiO in warm astrophysical environments. With recent innovation in collisional rate coefficients and rescaling methods, we are able to construct more comprehensive collisional data with high rovibrational states (vibration up to v=5 and rotation up to J=40) and multiple colliders (H2, H and He). These comprehensive data sets are used in spectral simulations with the radiative transfer codes RADEX and Cloudy. We obtained line ratio diagnostic plots and line spectra for both near- and far-infrared emission lines over a broad range of density and temperature for the case of a uniform medium. Considering the importance of both molecules in probing conditions and activities of UV-irradiated interstellar gas, we model rovibrational emission in photodissociation region (PDR) and AGB star envelopes (such as VY Canis Majoris, IK Tau and IRC +10216) with Cloudy. Rotational diagrams, energy distribution diagrams, and spectra are produced to examine relative state abundances, line emission intensity, and other properties. With these diverse models, we expect to have a better understanding of PDRs and expand our scope in the chemical architecture and evolution of AGB stars and other UV-irradiated regions. The soon to be launched James Webb Space Telescope (JWST) will provide high resolution observations at near- to mid-infrared wavelengths, which opens a new window to study molecular vibrational emission calling for more detailed chemical modeling and comprehensive laboratory astrophysics data on more molecules. This work was partially supported by NASA grants NNX12AF42G and NNX15AI61G. We thank Benhui Yang, Kyle Walker, Robert Forrey, and N. Balakrishnan for collaborating on the collisional data adopted in the current work.

  3. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    International Nuclear Information System (INIS)

    Chu, P.M.Y.

    1991-10-01

    The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH 3 production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam

  4. Mean excitation energies for molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Phillip W.K.; Sauer, Stephan P.A. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Oddershede, Jens [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States); Sabin, John R., E-mail: sabin@qtp.ufl.edu [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States)

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  5. Design considerations for highly effective fluorescence excitation and detection optical systems for molecular diagnostics

    Science.gov (United States)

    Kasper, Axel; Van Hille, Herbert; Kuk, Sola

    2018-02-01

    Modern instruments for molecular diagnostics are continuously optimized for diagnostic accuracy, versatility and throughput. The latest progress in LED technology together with tailored optics solutions allows developing highly efficient photonics engines perfectly adapted to the sample under test. Super-bright chip-on-board LED light sources are a key component for such instruments providing maximum luminous intensities in a multitude of narrow spectral bands. In particular the combination of white LEDs with other narrow band LEDs allows achieving optimum efficiency outperforming traditional Xenon light sources in terms of energy consumption, heat dissipation in the system, and switching time between spectral channels. Maximum sensitivity of the diagnostic system can only be achieved with an optimized optics system for the illumination and imaging of the sample. The illumination beam path must be designed for optimum homogeneity across the field while precisely limiting the angular distribution of the excitation light. This is a necessity for avoiding spill-over to the detection beam path and guaranteeing the efficiency of the spectral filtering. The imaging optics must combine high spatial resolution, high light collection efficiency and optimized suppression of excitation light for good signal-to-noise ratio. In order to achieve minimum cross-talk between individual wells in the sample, the optics design must also consider the generation of stray light and the formation of ghost images. We discuss what parameters and limitations have to be considered in an integrated system design approach covering the full path from the light source to the detector.

  6. Mean excitation energies for molecular ions

    DEFF Research Database (Denmark)

    Jensen, Phillip W.K.; Sauer, Stephan P.A.; Oddershede, Jens

    2017-01-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase...

  7. Investigations of the valence-shell excitations of molecular ethane by high-energy electron scattering

    Science.gov (United States)

    Xu, Wei-Qing; Xu, Long-Quan; Qi, De-Guang; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan

    2018-04-01

    The differential cross sections and generalized oscillator strengths for the low-lying excitations of the valence-shell 1eg orbital electron in ethane have been measured for the first time at a high incident electron energy of 1500 eV and a scattering angular range of 1.5°-10°. A weak feature, termed X here, with a band center of about 7.5 eV has been observed, which was also announced by the previous experimental and theoretical studies. The dynamic behaviors of the generalized oscillator strengths for the 3s (8.7 eV), 3s+3p (9.31 eV, 9.41 eV), and X (˜7.5 eV) transitions on the momentum transfer squared have been obtained. The integral cross sections of these transitions from their thresholds to 5000 eV have been obtained with the aid of the BE-scaling (B is the binding energy and E is the excitation energy) method. The optical oscillator strengths of the above transitions determined by extrapolating their generalized oscillator strengths to the limit of the squared momentum transfer K2 → 0 are in good agreement with the ones from the photoabsorption spectrum [J. W. Au et al., Chem. Phys. 173, 209 (1993)], which indicates that the present differential cross sections, generalized oscillator strengths, and integral cross sections can serve as benchmark data.

  8. HIGHLY EXCITED H2 IN HERBIG–HARO 7: FORMATION PUMPING IN SHOCKED MOLECULAR GAS?

    International Nuclear Information System (INIS)

    Pike, R. E.; Geballe, T. R.; Burton, M. G.; Chrysostomou, A.

    2016-01-01

    We have obtained K -band spectra at R ∼ 5000 and an angular resolution of 0.″3 of a section of the Herbig–Haro 7 (HH7) bow shock, using the Near-Infrared Integral Field Spectrograph at Gemini North. Present in the portion of the data cube corresponding to the brightest part of the bow shock are emission lines of H 2 with upper state energies ranging from ∼6000 K to the dissociation energy of H 2 , ∼50,000 K. Because of low signal-to-noise ratios, the highest excitation lines cannot be easily seen elsewhere in the observed region. However, excitation temperatures, measured throughout much of the observed region using lines from levels as high as 25,000 K, are a strong function of upper level energy, indicating that the very highest levels are populated throughout. The level populations in the brightest region are well fit by a two-temperature model, with 98.5% of the emitting gas at T = 1800 K and 1.5% at T = 5200 K. The bulk of the H 2 line emission in HH7, from the 1800 K gas, has previously been well-modeled by a continuous shock, but the 5200 K cozmponent is inconsistent with standalone standard continuous shock models. We discuss various possible origins for the hot component and suggest that this component is H 2 newly reformed on dust grains and then ejected from them, presumably following dissociation of some of the H 2 by the shock.

  9. High excitation ISM and gas

    NARCIS (Netherlands)

    Peeters, E; Martinez-Hernandez, NL; Rodriguez-Fernandez, NJ; Tielens, [No Value

    An overview is given of ISO results on regions of high excitation ISM and gas, i.e. H II regions, the Galactic Centre and Supernova Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarised, their diagnostic

  10. High Excitation Gas and ISM

    Science.gov (United States)

    Peeters, E.; Martin-Hernandez, N. L.; Rodriguez-Fernandez, N. J.; Tielens, A. G. G. M.

    2004-01-01

    An overview is given of ISO results on regions of high excitation ISM and gas, i.e. HII regions, the Galactic Centre and Supernovae Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarized, their diagnostic capabilities illustrated and their implications highlighted.

  11. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  12. The dance of molecules: new dynamical perspectives on highly excited molecular vibrations.

    Science.gov (United States)

    Kellman, Michael E; Tyng, Vivian

    2007-04-01

    At low energies, molecular vibrational motion is described by the normal modes model. This model breaks down at higher energy, with strong coupling between normal modes and onset of chaotic dynamics. New anharmonic modes are born in bifurcations, or branchings of the normal modes. Knowledge of these new modes is obtained through the window of frequency-domain spectroscopy, using techniques of nonlinear classical dynamics. It may soon be possible to "watch" molecular rearrangement reactions spectroscopically. Connections are being made with reaction rate theories, condensed phase systems, and motions of electrons in quantum dots.

  13. High-excitation lines of deuterated formaldehyde (HDCO) in the Orion molecular cloud

    International Nuclear Information System (INIS)

    Loren, R.B.; Wootten, A.

    1985-01-01

    Five HDCO lines (up to 35 cm -1 ) have been detected in the narrow OMC-1 kinematic component. The best estimate of the [HDCO]/[H 2 CO] abundance ratio in OMC-1 is 0.01-0.03, at least an order of magnitude greater than the observed [DCO + ]/[HCO + ] abundance ratio. The [DCO + ]/[HCO + ] ratio greatly exceeds the [HDCO]/[H 2 CO] radio in cold clouds where the enhancement of both HDCO and DCO + abundances originates from H 2 D + . H 2 D + is abundant only at temperatures lower than found in OMC-1. The combination of a low [DCO + ]/[HCO + ] and high [HDCO]/[H 2 CO] abundance ratio in OMC-1 requires a different HDCO formation route at high temperature. This alternate HDCO formation path can occur because the exothermicity of the ion exchange reaction of HD and CH 3 + is greater than for the HD+H 3 + reaction. The CH 2 D + thus formed survives to higher temperatures than H 2 D + . Subsequent reactions with H 2 lead to CH 4 D + which by electronic recombination forms CH 2 D. The HDCO (H 2 CO) forms in the neutral-neutral reaction of CH 2 D (CH 3 ) and O. These reactions are not competitive in forming a variety of deuterated molecules at low temperatures since electronic recombination rapidly removes CH 2 D + and CH 4 D + ions while the abundant H 2 D + ion is slow to recombine, as reported by Smith and Adam in 1984

  14. Highly excited atoms

    International Nuclear Information System (INIS)

    Kleppner, D.; Littman, M.G.; Zimmerman, M.L.

    1981-01-01

    Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before

  15. Electron-impact excitation of molecular ions

    International Nuclear Information System (INIS)

    Neufeld, D.A.; Dalgarno, A.

    1989-01-01

    A simple expression is derived that relates the rate coefficient for dipole-allowed electron-impact excitation of a molecular ion in the Coulomb-Born approximation to the Einstein A coefficient for the corresponding radiative decay. Results are given for several molecular ions of astrophysical interest. A general analytic expression is obtained for the equilibrium rotational level populations in the ground vibrational state of any molecular ion excited by collisions with electrons. The expression depends only upon the electron temperature, the electron density, and the rotational constant of the molecular ion. A similar expression is obtained for neutral polar molecules

  16. High energy magnetic excitations

    International Nuclear Information System (INIS)

    Endoh, Yasuo

    1988-01-01

    The report emphasizes that the current development in condensed matter physics opens a research field fit to inelastic neutron scattering experiments in the eV range which is easilly accessed by spallation neutron sources. Several important subjects adopted at thermal reactors are shown. It is desired to extend the implementation of the spectroscopic experiments for investigation of higher energy magnetic excitations. For La 2 CuO 4 , which is the mother crystal of the first high Tc materials found by Bednortz and Muller, it seems to be believed that the magnetism is well characterized by the two-dimensional Heisenberg antiferromagnetic Hamiltonian, and it is widely accepted that the magnetism is a most probable progenitor of high Tc superconductors. The unusual properties of spin correlations in this crystal have been studied extensively by standard neutron scattering techniques with steady neutrons at BNL. FeSi is not ordered magnetically but shows a very unique feature of temperature induced magnetism, which also has been studied extensively by using the thermal neutron scattering technique at BNL. In these experiments, polarized neutrons are indispensable to extract the clean magnetic components out of other components of non-magnetic scattering. (N.K.)

  17. Molecular excited states from the SCAN functional

    Science.gov (United States)

    Tozer, David J.; Peach, Michael J. G.

    2018-06-01

    The performance of the strongly constrained and appropriately normed (SCAN) meta-generalised gradient approximation exchange-correlation functional is investigated for the calculation of time-dependent density-functional theory molecular excitation energies of local, charge-transfer and Rydberg character, together with the excited ? potential energy curve in H2. The SCAN results frequently resemble those obtained using a global hybrid functional, with either a standard or increased fraction of exact orbital exchange. For local excitations, SCAN can exhibit significant triplet instability problems, resulting in imaginary triplet excitation energies for a number of cases. The Tamm-Dancoff approximation offers a simple approach to improve the situation, but the excitation energies are still significantly underestimated. Understanding the origin of these (near)-triplet instabilities may provide useful insight into future functional development.

  18. Excited-state molecular photoionization dynamics

    International Nuclear Information System (INIS)

    Pratt, S.T.

    1995-01-01

    This review presents a survey of work using resonance-enhanced multiphoton ionization and double-resonance techniques to study excited-state photoionization dynamics in molecules. These techniques routinely provide detail and precision that are difficult to achieve in single-photon ionization from the ground state. The review not only emphasizes new aspects of photoionization revealed in the excited-state experiments but also shows how the excited-state techniques can provide textbook illustrations of some fundamental mechanisms in molecular photoionization dynamics. Most of the examples are confined to diatomic molecules. (author)

  19. Extended Lagrangian Excited State Molecular Dynamics.

    Science.gov (United States)

    Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N

    2018-02-13

    An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).

  20. HIGHLY EXCITED H{sub 2} IN HERBIG–HARO 7: FORMATION PUMPING IN SHOCKED MOLECULAR GAS?

    Energy Technology Data Exchange (ETDEWEB)

    Pike, R. E. [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Geballe, T. R. [Gemini Observatory, Hilo, HI (United States); Burton, M. G. [School of Physics, University of New South Wales, Sydney (Australia); Chrysostomou, A. [Centre for Astrophysics Research, University of Hertfordshire (United Kingdom)

    2016-05-10

    We have obtained K -band spectra at R ∼ 5000 and an angular resolution of 0.″3 of a section of the Herbig–Haro 7 (HH7) bow shock, using the Near-Infrared Integral Field Spectrograph at Gemini North. Present in the portion of the data cube corresponding to the brightest part of the bow shock are emission lines of H{sub 2} with upper state energies ranging from ∼6000 K to the dissociation energy of H{sub 2}, ∼50,000 K. Because of low signal-to-noise ratios, the highest excitation lines cannot be easily seen elsewhere in the observed region. However, excitation temperatures, measured throughout much of the observed region using lines from levels as high as 25,000 K, are a strong function of upper level energy, indicating that the very highest levels are populated throughout. The level populations in the brightest region are well fit by a two-temperature model, with 98.5% of the emitting gas at T = 1800 K and 1.5% at T = 5200 K. The bulk of the H{sub 2} line emission in HH7, from the 1800 K gas, has previously been well-modeled by a continuous shock, but the 5200 K cozmponent is inconsistent with standalone standard continuous shock models. We discuss various possible origins for the hot component and suggest that this component is H{sub 2} newly reformed on dust grains and then ejected from them, presumably following dissociation of some of the H{sub 2} by the shock.

  1. Photoionization of excited molecular states using multiphoton excitation techniques

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Pratt, S.T.; Dehmer, J.L.

    1984-01-01

    Photoelectron spectra are reported for three photon resonant, four photon ionization of H 2 via the B 1 Σ/sub u/ + , v = 7 (J = 2,4) and C 1 π/sub u'/, v = 0-4 (J = 1) levels and of N 2 via the o 3 1 π/sub u'/, v = 1,2, b 1 π/sub u'/, v = 3-5, and c 1 π/sub u'/, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization. 23 references, 6 figures, 2 tables

  2. Photoionization of excited molecular states using multiphoton excitation techniques

    International Nuclear Information System (INIS)

    Dehmer, P.M.; Pratt, S.T.; Dehmer, J.L.

    1984-01-01

    Photoelectron spectra are reported for three photon resonant, four photon ionization of H 2 via the B 1 Σ + /sub u/, v = 7 (J = 2,4) and C 1 Pi/sub u/, v = 0-4 (J = 1) levels and of N 2 via the o 3 1 Pi/sub u/, v = 1,2, b 1 Pi/sub u/, v = 3-5, and c 1 Pi/sub u/, v = 0 levels. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon factors are observed, which reflect the more subtle dynamics of excited state photoionization

  3. High power laser exciter accelerators

    International Nuclear Information System (INIS)

    Martin, T.H.

    1975-01-01

    Recent developments in untriggered oil and water switching now permit the construction of compact, high energy density pulsed power sources for laser excitation. These accelerators, developed principally for electron beam fusion studies, appear adaptable to laser excitation and will provide electron beams of 10 13 to 10 14 W in the next several years. The accelerators proposed for e-beam fusion essentially concentrate the available power from the outside edge of a disk into the central region where the electron beam is formed. One of the main problem areas, that of power flow at the vacuum diode insulator, is greatly alleviated by the multiplicity of electron beams that are allowable for laser excitation. A proposal is made whereby the disk-shaped pulsed power sections are stacked vertically to form a series of radially flowing electron beams to excite the laser gas volume. (auth)

  4. Photoionization dynamics of excited molecular states

    International Nuclear Information System (INIS)

    Dehmer, J.L.; O'Halloran, M.A.; Tomkins, F.S.; Dehmer, P.M.; Pratt, S.T.

    1987-01-01

    Resonance Enhanced Multiphoton Ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of opportunities for exploring excited state physics and chemistry at the quantum-state-specific level. Here we will first give a brief overview of the large variety of experimental approaches to excited state phenomena made possible by REMPI. Then we will examine in more detail, recent studies of the three photon resonant, four photon (3 + 1) ionization of H 2 via the C 'PI/sup u/ state. Strong non-Franck-Condon behavior in the photoelectron spectra of this nominally simple Rydberg state has led to the examination of a variety of dynamical mechanisms. Of these, the role of doubly excited autoionizing states now seems decisive. Progress on photoelectron studies of autoionizing states in H 2 , excited in a (2 + 1) REMPI process via the E, F 1 Σ/sub g/ + will also be briefly discussed. 26 refs., 7 figs

  5. Electron collisions and internal excitation in stored molecular ion beams

    International Nuclear Information System (INIS)

    Buhr, H.

    2006-01-01

    In storage ring experiments the role, which the initial internal excitation of a molecular ion can play in electron collisions, and the effect of these collisions on the internal excitation are investigated. Dissociative recombination (DR) and inelastic and super-elastic collisions are studied in the system of He + 2 . The DR rate coefficient at low energies depends strongly on the initial vibrational excitation in this system. Therefore changes in the DR rate coefficient are a very sensitive probe for changes in the vibrational excitation in He + 2 , which is used to investigate the effects of collisions with electrons and residual gas species. The low-energy DR of HD + is rich with resonances from the indirect DR process, when certain initial rotational levels in the molecular ion are coupled to levels in neutral Rydberg states lying below the ion state. Using new procedures for high-resolution electron-ion collision spectroscopy developed here, these resonances in the DR cross section can be measured with high energy sensitivity. This allows a detailed comparison with results of a MQDT calculation in an effort to assign some or all of the resonances to certain intermediate Rydberg levels. (orig.)

  6. Electron collisions and internal excitation in stored molecular ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Buhr, H.

    2006-07-26

    In storage ring experiments the role, which the initial internal excitation of a molecular ion can play in electron collisions, and the effect of these collisions on the internal excitation are investigated. Dissociative recombination (DR) and inelastic and super-elastic collisions are studied in the system of He{sup +}{sub 2}. The DR rate coefficient at low energies depends strongly on the initial vibrational excitation in this system. Therefore changes in the DR rate coefficient are a very sensitive probe for changes in the vibrational excitation in He{sup +}{sub 2}, which is used to investigate the effects of collisions with electrons and residual gas species. The low-energy DR of HD{sup +} is rich with resonances from the indirect DR process, when certain initial rotational levels in the molecular ion are coupled to levels in neutral Rydberg states lying below the ion state. Using new procedures for high-resolution electron-ion collision spectroscopy developed here, these resonances in the DR cross section can be measured with high energy sensitivity. This allows a detailed comparison with results of a MQDT calculation in an effort to assign some or all of the resonances to certain intermediate Rydberg levels. (orig.)

  7. Molecular-alignment dependence in the transfer excitation of H2

    International Nuclear Information System (INIS)

    Wang, Y.D.; McGuire, J.H.; Weaver, O.L.; Corchs, S.E.; Rivarola, R.D.

    1993-01-01

    Molecular-alignment effects in the transfer excitation of H 2 by high-velocity heavy ions are studied using a two-step mechanism with amplitudes evaluated from first-order perturbation theory. Two-electron transfer excitation is treated as a result of two independent collision processes (excitation and electron transfer). Cross sections for each one-electron subprocess as well as the combined two-electron process are calculated as functions of the molecular-alignment angle. Within the independent-electron approximation, the dynamic roles of electron excitation and transfer in conjunction with molecular alignment are explored. While both excitation and transfer cross sections may strongly depend on molecular alignment, it is electron transfer that is largely responsible for the molecular-alignment dependence in the transfer excitation process. Interpretation of some experimental observations based on this model will also be discussed

  8. The Naples High- and Low-Excitability rats: selective breeding, behavioral profile, morphometry, and molecular biology of the mesocortical dopamine system.

    Science.gov (United States)

    Viggiano, Davide; Vallone, Daniela; Welzl, Hans; Sadile, Adolfo G

    2002-09-01

    The Naples High- (NHE) and Low-Excitability (NLE) rat lines have been selected since 1976 on the basis of behavioral arousal to novelty (Làt-maze). Selective breeding has been conducted under continuous genetic pressure, with no brother-sister mating. The behavioral analyses presented here deal with (1) activity in environments of different complexity, i.e., holeboard and Làt maze; (2) maze learning in hexagonal tunnel, Olton, and Morris water mazes and; (3) two-way active avoidance and conditioned taste aversion tests. Morphometric analyses deal with central dopaminergic systems at their origin and target sites, as well as the density of dopamine transporter immunoreactivity. Molecular biology analyses are also presented, dealing with recent experiments on the prefrontal cortex (PFc), cloning and identifying differentially expressed genes using subtractive libraries and RNAase protection. The divergence between NLE and NHE rats varies as a function of the complexity level of the environment, with an impaired working and reference memory in both lines compared to random bred (NRB) controls. Moreover, data from the PFc of NHE rats show a hyperdopaminergic innervation, with overexpression of mRNA species involved in basal metabolism, and down-regulation of dopamine D1 receptors. Altogether, the evidence gathered so far supports a hyperfunctioning mesocorticolimbic system that makes NHE rats a useful tool for the study of hyperactivity and attention deficit, learning and memory disabilities, and drug abuse.

  9. Scattering of highly excited atoms

    International Nuclear Information System (INIS)

    Raith, W.

    1980-01-01

    Experimental methods to excite atomic beams into Rydberg states and the first results of collision experiments with such beams are reported. For further information see hints under relevant topics. (orig.) [de

  10. Excitation dynamics and relaxation in a molecular heterodimer

    International Nuclear Information System (INIS)

    Balevičius, V.; Gelzinis, A.; Abramavicius, D.; Mančal, T.; Valkunas, L.

    2012-01-01

    Highlights: ► Dynamics of excitation within a heterogenous molecular dimer. ► Excited states can be swapped due to different reorganization energies of monomers. ► Conventional excitonic basis becomes renormalized due to interaction with the bath. ► Relaxation is independent of mutual positioning of monomeric excited states. -- Abstract: The exciton dynamics in a molecular heterodimer is studied as a function of differences in excitation and reorganization energies, asymmetry in transition dipole moments and excited state lifetimes. The heterodimer is composed of two molecules modeled as two-level systems coupled by the resonance interaction. The system-bath coupling is taken into account as a modulating factor of the molecular excitation energy gap, while the relaxation to the ground state is treated phenomenologically. Comparison of the description of the excitation dynamics modeled using either the Redfield equations (secular and full forms) or the Hierarchical quantum master equation (HQME) is demonstrated and discussed. Possible role of the dimer as an excitation quenching center in photosynthesis self-regulation is discussed. It is concluded that the system-bath interaction rather than the excitonic effect determines the excitation quenching ability of such a dimer.

  11. HERSCHEL-PACS OBSERVATIONS OF FAR-IR CO LINE EMISSION IN NGC 1068: HIGHLY EXCITED MOLECULAR GAS IN THE CIRCUMNUCLEAR DISK

    Energy Technology Data Exchange (ETDEWEB)

    Hailey-Dunsheath, S.; Sturm, E.; Gracia-Carpio, J.; Davies, R.; Poglitsch, A.; Contursi, A.; Genzel, R.; Lutz, D.; Tacconi, L.; De Jong, J. A. [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1312, D-85741 Garching (Germany); Fischer, J. [Naval Research Laboratory, Remote Sensing Division, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Sternberg, A.; Mark, D. [Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 69978 (Israel); Gonzalez-Alfonso, E. [Departamento de Fisica, Universidad de Alcala de Henares, 28871 Alcala de Henares, Madrid (Spain); Veilleux, S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Verma, A., E-mail: shd@astro.caltech.edu [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom)

    2012-08-10

    We report the detection of far-IR CO rotational emission from the prototypical Seyfert 2 galaxy NGC 1068. Using Herschel-PACS, we have detected 11 transitions in the J{sub upper} = 14-30 (E{sub upper}/k{sub B} = 580-2565 K) range, all of which are consistent with arising from within the central 10'' (700 pc). The detected transitions are modeled as arising from two different components: a moderate-excitation (ME) component close to the galaxy systemic velocity and a high-excitation (HE) component that is blueshifted by {approx}80 km s{sup -1}. We employ a large velocity gradient model and derive n{sub H2} {approx} 10{sup 5.6} cm{sup -3}, T{sub kin} {approx} 170 K, and M{sub H2} {approx} 10{sup 6.7} M{sub Sun} for the ME component and n{sub H2} {approx} 10{sup 6.4} cm{sup -3}, T{sub kin} {approx} 570 K, and M{sub H2} {approx} 10{sup 5.6} M{sub Sun} for the HE component, although for both components the uncertainties in the density and mass are {+-}(0.6-0.9) dex. Both components arise from denser and possibly warmer gas than traced by low-J CO transitions, and the ME component likely makes a significant contribution to the mass budget in the nuclear region. We compare the CO line profiles with those of other molecular tracers observed at higher spatial and spectral resolution and find that the ME transitions are consistent with these lines arising in the {approx}200 pc diameter ring of material traced by H{sub 2} 1-0 S(1) observations. The blueshift of the HE lines may also be consistent with the bluest regions of this H{sub 2} ring, but a better kinematic match is found with a clump of infalling gas {approx}40 pc north of the active galactic nucleus (AGN). We consider potential heating mechanisms and conclude that X-ray- or shock heating of both components is viable, while far-UV heating is unlikely. We discuss the prospects of placing the HE component near the AGN and conclude that while the moderate thermal pressure precludes an association with the

  12. Photo-driven electron transfer from the highly reducing excited state of naphthalene diimide radical anion to a CO 2 reduction catalyst within a molecular triad

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jose F. [Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center; Northwestern University; Evanston; USA; La Porte, Nathan T. [Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center; Northwestern University; Evanston; USA; Mauck, Catherine M. [Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center; Northwestern University; Evanston; USA; Wasielewski, Michael R. [Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center; Northwestern University; Evanston; USA

    2017-01-01

    The naphthalene-1,4:5,8-bis(dicarboximide) radical anion (NDI-˙), which is easily produced by mild chemical or electrochemical reduction (-0.5 Vvs.SCE), can be photoexcited at wavelengths as long as 785 nm, and has an excited state (NDI-˙*) oxidation potential of -2.1 Vvs.SCE, making it a very attractive choice for artificial photosynthetic systems that require powerful photoreductants, such as CO2 reduction catalysts. However, once an electron is transferred from NDI-˙* to an acceptor directly bound to it, a combination of strong electronic coupling and favorable free energy change frequently make the back electron transfer rapid. To mitigate this effect, we have designed a molecular triad system comprising an NDI-˙ chromophoric donor, a 9,10-diphenylanthracene (DPA) intermediate acceptor, and a Re(dmb)(CO)3carbon dioxide reduction catalyst, where dmb is 4,4'-dimethyl-2,2'-bipyridine, as the terminal acceptor. Photoexcitation of NDI-˙ to NDI-˙* is followed by ultrafast reduction of DPA to DPA-˙, which then rapidly reduces the metal complex. The overall time constant for the forward electron transfer to reduce the metal complex is τ = 20.8 ps, while the time constant for back-electron transfer is six orders of magnitude longer, τ = 43.4 μs. Achieving long-lived, highly reduced states of these metal complexes is a necessary condition for their use as catalysts. The extremely long lifetime of the reduced metal complex is attributed to careful tuning of the redox potentials of the chromophore and intermediate acceptor. The NDI-˙–DPA fragment presents many attractive features for incorporation into other photoinduced electron transfer assemblies directed at the long-lived photosensitization of difficult-to-reduce catalytic centers.

  13. Total cross section of highly excited strings

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, I.

    1990-01-01

    The unpolarized total cross section for the joining of two highly excited strings is calculated. The calculation is performed by taking the average overall states in the given excitation levels of the initial strings. We find that the total cross section grows with the energy and momentum of the initial states. (author). 8 refs, 1 fig

  14. Ab Initio molecular dynamics with excited electrons

    NARCIS (Netherlands)

    Alavi, A.; Kohanoff, J.; Parrinello, M.; Frenkel, D.

    1994-01-01

    A method to do ab initio molecular dynamics suitable for metallic and electronically hot systems is described. It is based on a density functional which is costationary with the finite-temperature functional of Mermin, with state being included with possibly fractional occupation numbers.

  15. LAD Dissertation Prize Talk: Molecular Collisional Excitation in Astrophysical Environments

    Science.gov (United States)

    Walker, Kyle M.

    2017-06-01

    While molecular excitation calculations are vital in determining particle velocity distributions, internal state distributions, abundances, and ionization balance in gaseous environments, both theoretical calculations and experimental data for these processes are lacking. Reliable molecular collisional data with the most abundant species - H2, H, He, and electrons - are needed to probe material in astrophysical environments such as nebulae, molecular clouds, comets, and planetary atmospheres. However, excitation calculations with the main collider, H2, are computationally expensive and therefore various approximations are used to obtain unknown rate coefficients. The widely-accepted collider-mass scaling approach is flawed, and alternate scaling techniques based on physical and mathematical principles are presented here. The most up-to-date excitation data are used to model the chemical evolution of primordial species in the Recombination Era and produce accurate non-thermal spectra of the molecules H2+, HD, and H2 in a primordial cloud as it collapses into a first generation star.

  16. Development of the Fragment Molecular Orbital Method for Calculating Nonlocal Excitations in Large Molecular Systems.

    Science.gov (United States)

    Fujita, Takatoshi; Mochizuki, Yuji

    2018-04-19

    We developed the fragment-based method for calculating nonlocal excitations in large molecular systems. This method is based on the multilayer fragment molecular orbital method and the configuration interaction single (CIS) wave function using localized molecular orbitals. The excited-state wave function for the whole system is described as a superposition of configuration state functions (CSFs) for intrafragment excitations and for interfragment charge-transfer excitations. The formulation and calculations of singlet excited-state Hamiltonian matrix elements in the fragment CSFs are presented in detail. The efficient approximation schemes for calculating the matrix elements are also presented. The computational efficiency and the accuracy were evaluated using the molecular dimers and molecular aggregates. We confirmed that absolute errors of 50 meV (relative to the conventional calculations) are achievable for the molecular systems in their equilibrium geometries. The perturbative electron correlation correction to the CIS excitation energies is also demonstrated. The present theory can compute a large number of excited states in large molecular systems; in addition, it allows for the systematic derivation of a model exciton Hamiltonian. These features are useful for studying excited-state dynamics in condensed molecular systems based on the ab initio electronic structure theory.

  17. Harnessing molecular excited states with Lanczos chains

    Science.gov (United States)

    Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O.; Saad, Yousef; Umari, Paolo; Xian, Jiawei

    2010-02-01

    The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.

  18. Harnessing molecular excited states with Lanczos chains

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, Stefano; Baris Malcioglu, O; Xian Jiawei [SISSA-Scuola Internazionale Superiore di Studi Avanzati, I-34151 Trieste (Italy); Gebauer, Ralph; Umari, Paolo [CNR DEMOCRITOS Theory-Elettra Group, c/o Sincrotrone Trieste, Area Science Park, I-34012 Basovizza, Trieste (Italy); Saad, Yousef [Department of Computer Science and Engineering, University of Minnesota, and Minnesota Supercomputing Institute, Minneapolis, MN 55455 (United States)

    2010-02-24

    The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.

  19. Harnessing molecular excited states with Lanczos chains.

    Science.gov (United States)

    Baroni, Stefano; Gebauer, Ralph; Bariş Malcioğlu, O; Saad, Yousef; Umari, Paolo; Xian, Jiawei

    2010-02-24

    The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.

  20. Harnessing molecular excited states with Lanczos chains

    International Nuclear Information System (INIS)

    Baroni, Stefano; Baris Malcioglu, O; Xian Jiawei; Gebauer, Ralph; Umari, Paolo; Saad, Yousef

    2010-01-01

    The recursion method of Haydock, Heine and Kelly is a powerful tool for calculating diagonal matrix elements of the resolvent of quantum-mechanical Hamiltonian operators by elegantly expressing them in terms of continued fractions. In this paper we extend the recursion method to off-diagonal matrix elements of general (possibly non-Hermitian) operators and apply it to the simulation of molecular optical absorption and photoemission spectra within time-dependent density-functional and many-body perturbation theories, respectively. This method is demonstrated with a couple of applications to the optical absorption and photoemission spectra of the caffeine molecule.

  1. Microstructure ion Nuclear Spectra at High Excitation

    International Nuclear Information System (INIS)

    Ericson, T.E.O.

    1969-01-01

    The statistical microstructure of highly excited systems is illustrated by the distribution and fluctuations of levels, widths and cross-sections of nuclei both for the case of sharp resonances and the continuum case. The coexistence of simple modes of excitation with statistical effects in terms of strength functions is illustrated by isobaric analogue states. The analogy is made with similar phenomena for coherent light, is solid-state physics and high-energy physics. (author)

  2. High energy excitations in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Prange, R.E.

    1984-01-01

    Itinerant magnets, those whose electrons move throughout the crystal, are described by band theory. Single particle excitations offer confirmation of band theory, but their description requires important corrections. The energetics of magnetism in iron and nickel is also described in band theory but requires complex bands. Magnetism above the critical temperature and the location of the critical temperature offer discriminants between the two major models of magnetism at high temperature and can be addressed by high energy excitations

  3. Recent experiments involving highly excited atoms

    International Nuclear Information System (INIS)

    Latimer, C.J.

    1979-01-01

    Very large and fragile atoms may be produced by exciting normal atoms with light or by collisions with other atomic particles. Atoms as large as 10 -6 m are now routinely produced in the laboratory and their properties studied. In this review some of the simpler experimental methods available for the production and detection of such atoms are described including tunable dye laser-excitation and field ionization. A few recent experiments which illustrate the collision properties and the effects of electric and and magnetic fields are also described. The relevance of highly excited atoms in other areas of research including radioastronomy and isotope separation are discussed. (author)

  4. Excited state dynamics & optical control of molecular motors

    Science.gov (United States)

    Wiley, Ted; Sension, Roseanne

    2014-03-01

    Chiral overcrowded alkenes are likely candidates for light driven rotary molecular motors. At their core, these molecular motors are based on the chromophore stilbene, undergoing ultrafast cis/trans photoisomerization about their central double bond. Unlike stilbene, the photochemistry of molecular motors proceeds in one direction only. This unidirectional rotation is a result of helicity in the molecule induced by steric hindrance. However, the steric hindrance which ensures unidirectional excited state rotation, has the unfortunate consequence of producing large ground state barriers which dramatically decrease the overall rate of rotation. These molecular scale ultrafast motors have only recently been studied by ultrafast spectroscopy. Our lab has studied the photochemistry and photophysics of a ``first generation'' molecular motor with UV-visible transient absorption spectroscopy. We hope to use optical pulse shaping to enhance the efficiency and turnover rate of these molecular motors.

  5. Proton and electron impact on molecular and atomic oxygen: I. High resolution fluorescence spectra in the visible and VUV spectral range and emission cross-sections for dissociative ionisation and excitation of O2

    International Nuclear Information System (INIS)

    Wilhelmi, O.; Schartner, K.H.

    2000-01-01

    For pt.II see ibid., vol.11, p.45-58, 2000. Molecular oxygen O 2 was dissociated in collisions with protons and electrons in the intermediate velocity range (p + -energies: 17-800 keV, e - -energies: 0.2-2 keV). Fluorescence from excited atomic and singly ionised fragments and from singly ionised molecules was detected in the VUV and in the visible and near UV spectral range. Highly resolved spectra are presented for the VUV (46-131 nm) and the near UV/visible (340-605 nm) spectral range. Absolute emission cross-sections have been determined for dissociative ionisation and excitation leading to fluorescence in the VUV. Results are compared with published data. (orig.)

  6. Nonlinear excitations in two-dimensional molecular structures with impurities

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth

    1995-01-01

    We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... of the impurity. Transforming the equation to the noninertial frame of reference coupled with the center of mass we investigate the soliton behavior in the close vicinity of the impurity. With the help of the lens transformation we show that the soliton width is governed by an Ermakov-Pinney equation. We also...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....

  7. Molecular excitations: a new way to detect Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Va' vra, J.

    2014-09-01

    We believe that the Dark Matter (DM) search should be expanded into the domain of detectors sensitive to molecular excitations, and so that we should create detectors which are more sensitive to collisions with very light WIMPs. In this paper we investigate in detail diatomic molecules, such as fused silica material with large OH-molecule content, and water molecules. Presently, we do not have suitable low-cost IR detectors to observe single photons, however some OH-molecular excitations extend to visible and UV wavelengths and can be measured by bialkali photocathodes. There are many other chemical substances with diatomic molecules, or more complex oil molecules, which could be also investigated. This idea invites searches in experiments having large target volumes of such materials coupled to a large array of single-photon detectors with bialkali or infrared-sensitive photocathodes.

  8. Fluorescence excitation studies of molecular photoionization in external electric fields

    International Nuclear Information System (INIS)

    Poliakoff, E.D.; Dehmer, J.L.; Parr, A.C.; Leroi, G.E.

    1985-01-01

    Using molecular nitrogen as an example, we show that fluorescence excitation spectroscopy can be used to measure partial photoionization cross sections of free molecules in external electric fields. The production of the N 2 + (B 2 Σ/sub u/ + ) state was studied and the threshold for this process was found to shift linearly with the square root of the applied field. This behavior is compared with the hydrogenic case and with previously studied systems

  9. Multipole giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Xia Keding; Cai Yanhuang

    1989-01-01

    The isoscalar giant surface resonance and giant dipole resonance in highly excited nuclei are discussed. Excitation energies of the giant modes in 208 Pb are calculated in a simplified model, using the concept of energy wieghted sum rule (EWSR), and the extended Thomas-Fermi approximation at the finite temperature is employed to describe the finite temperature is employed to describe the finite temperature equilibrium state. It is shown that EWSR and the energy of the resonance depend only weakly on temperature in the system. This weak dependence is analysed

  10. Molecular and excited state properties of isomeric scarlet disperse dyes

    Science.gov (United States)

    Lim, Jihye; Szymczyk, Malgorzata; Mehraban, Nahid; Ding, Yi; Parrillo-Chapman, Lisa; El-Shafei, Ahmed; Freeman, Harold S.

    2018-06-01

    This work was part of an investigation aimed at characterizing the molecular and excited state properties of currently available disperse dyes developed to provide stability to extensive sunlight exposures when adsorbed on poly(ethylene terephthalate) (PET) fibers. Having completed the characterization of yellow, magenta, and cyan disperse dyes for PET-based fabrics used outdoors, our attention turned to the colors designed to enhance the color gamut of a standard 4-member (cyan/yellow/magenta/black) color set. The present study pertained specifically to the characterization of commercially available scarlet dyes. In this regard, HPLC analysis showed that a scarlet product used for PET coloration was mainly a 70/30 mixture of dyes, and the use of HRMS and single crystal X-ray diffraction analyses indicated that these two dyes were azo compounds derived from isomeric pyridine-based couplers which differed in the location of the primary amino (sbnd NH2) and anilino (sbnd NHPh) groups attached to the pyridine ring. One dye structure has the sbnd NHPh group para to the azo group (Sc2), while the other has that group in the ortho position (Sc3). The presence of either ortho substituent provides photostabilization through intramolecular H-bonding with the azo moiety. Further, results from molecular modeling studies showed that the lower excited state oxidation potential of Sc3 relative to that of Sc2 allows Sc3 to function as an energy quencher for the excited state of Sc2 - through thermodynamically favorable electron transfer.

  11. Dynamic coherence in excitonic molecular complexes under various excitation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chenu, Aurélia; Malý, Pavel; Mančal, Tomáš, E-mail: mancal@karlov.mff.cuni.cz

    2014-08-17

    Highlights: • Dynamic coherence does not improve energy transfer efficiency in natural conditions. • Photo-induced quantum jumps are discussed in classical context. • Natural time scale of a light excitation event is identified. • Coherence in FMO complex averages out under excitation by neighboring antenna. • This result is valid even in absence of dissipation. - Abstract: We investigate the relevance of dynamic quantum coherence in the energy transfer efficiency of molecular aggregates. We derive the time evolution of the density matrix for an open quantum system excited by light or by a neighboring antenna. Unlike in the classical case, the quantum description does not allow for a formal decomposition of the dynamics into sudden jumps in an observable quantity – an expectation value. Rather, there is a natural finite time-scale associated with the excitation process. We propose a simple experiment to test the influence of this time scale on the yield of photosynthesis. We demonstrate, using typical parameters of the Fenna–Matthews–Olson (FMO) complex and a typical energy transfer rate from the chlorosome baseplate, that dynamic coherences are averaged out in the complex even when the FMO model is completely free of all dissipation and dephasing.

  12. Rotational distributions of molecular photoions following resonant excitation

    International Nuclear Information System (INIS)

    Poliakoff, E.D.; Chan, J.C.K.; White, M.G.

    1986-01-01

    We demonstrate that the photoelectron energy mediates the rotational energy distribution of N + 2 ions created by photoionization, and conversely, that rotational energy determinations probe resonant excitation in molecular photoionization. Experimentally, this is accomplished by monitoring the dispersed fluorescence from N + 2 (B 2 Σ + /sub u/) photoions to determine their rotational energy distribution. These results demonstrate that while dipole selection rules constrain the total angular momentum of the electron--ion complex, the partitioning of angular momentum between the photoelectron and photoion depends on the photoejection dynamics. Implications for photoionization and electron impact ionizatin studies are discussed

  13. Molecular excitation dynamics and relaxation quantum theory and spectroscopy

    CERN Document Server

    Valkunas, Leonas; Mancal, Tomas

    2013-01-01

    Meeting the need for a work that brings together quantum theory and spectroscopy to convey excitation processes to advanced students and specialists wishing to conduct research and understand the entire field rather than just single aspects.Written by an experienced author and recognized authority in the field, this text covers numerous applications and offers examples taken from different disciplines. As a result, spectroscopists, molecular physicists, physical chemists, and biophysicists will all find this a must-have for their research. Also suitable as supplementary reading in graduate

  14. Vibrational excitations in molecular layers probed by ballistic electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kajen, Rasanayagam Sivasayan; Chandrasekhar, Natarajan [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore); Feng Xinliang; Muellen, Klaus [Max-Planck-Institut fuer Polymerforschung, Postfach 3148, D-55021 Mainz (Germany); Su Haibin, E-mail: n-chandra@imre.a-star.edu.sg, E-mail: muellen@mpip-mainz.mpg.de, E-mail: hbsu@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2011-10-28

    We demonstrate the information on molecular vibrational modes via the second derivative (d{sup 2}I{sub B}/dV{sup 2}) of the ballistic electron emission spectroscopy (BEES) current. The proposed method does not create huge fields as in the case of conventional derivative spectroscopy and maintains a zero bias across the device. BEES studies carried out on three different types of large polycyclic aromatic hydrocarbon (PAH) molecular layers show that the d{sup 2}I{sub B}/dV{sup 2} spectra consist of uniformly spaced peaks corresponding to vibronic excitations. The peak spacing is found to be identical for molecules within the same PAH family though the BEES onset voltage varies for different molecules. In addition, injection into a particular orbital appears to correspond to a specific vibrational mode as the manifestation of the symmetry principle.

  15. High-spin excitations of atomic nuclei

    International Nuclear Information System (INIS)

    Xu Furong; National Laboratory of Heavy Ion Physics, Lanzhou; Chinese Academy of Sciences, Beijing

    2004-01-01

    The authors used the cranking shell model to investigate the high-spin motions and structures of atomic nuclei. The authors focus the collective rotations of the A∼50, 80 and 110 nuclei. The A∼50 calculations show complicated g spectroscopy, which can have significant vibration effects. The A≅80 N≅Z nuclei show rich shape coexistence with prolate and oblate rotational bands. The A≅110 nuclei near the r-process path can have well-deformed oblate shapes that become yrast and more stable with increasing rotational frequency. As another important investigation, the authors used the configuration-constrained adiabatic method to calculate the multi-quasiparticle high-K states in the A∼130, 180 and superheavy regions. The calculations show significant shape polarizations due to quasi-particle excitations for soft nuclei, which should be considered in the investigations of high-K states. The authors predicted some important high-K isomers, e.g., the 8 - isomers in the unstable nuclei of 140 Dy and 188 Pb, which have been confirmed in experiments. In superheavy nuclei, our calculations show systematic existence of high-K states. The high-K excitations can increase the productions of synthesis and the survival probabilities of superheavy nuclei. (authors)

  16. Study of highly excited high spin states via the (HI, α) reaction

    International Nuclear Information System (INIS)

    Kubono, S.

    1982-01-01

    Three subjects are discussed in this paper. 1) The mechanism of (HI, α) reactions is briefly studied. 2) Possible excitation of molecular resonance states of 12 C- 12 C in 24 Mg through the 12 C( 16 O, α) 24 Mg reaction were investigated. A precise measurement of the level widths in 24 Mg did not support the previous report that the molecular states seen in 12 C + 12 C scattering had been excited in the transfer reaction 12 C( 16 O, α) 24 Mg. 3) Highly excited states in 28 Si, which have a large parentage of 12 C- 16 O, were also studied via the 12 C( 20 Ne, α) 28 Si reaction. An angular correlation measurement revealed the lowest 8 + and 10 + states at 14.00 and 15.97 MeV, respectively, which were selectively excited in the 12 C( 20 Ne, α) reaction. These results suggest a possible new band in 28 Si. (author)

  17. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    Science.gov (United States)

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  18. Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Tammie [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Naumov, Artem [Skolkovo Institute of Science and Technology, Moscow 143026 (Russian Federation); Fernandez-Alberti, Sebastian [Universidad Nacional de Quilmes, Roque Saenz Pea 352, B1876BXD Bernal (Argentina); Tretiak, Sergei, E-mail: serg@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-12-20

    The simulation of nonadiabatic dynamics in extended molecular systems involving hundreds of atoms and large densities of states is particularly challenging. Nonadiabatic coupling terms (NACTs) represent a significant numerical bottleneck in surface hopping approaches. Rather than using unreliable NACT cutting schemes, here we develop “on-the-fly” state limiting methods to eliminate states that are no longer essential for the non-radiative relaxation dynamics as a trajectory proceeds. We propose a state number criteria and an energy-based state limit. The latter is more physically relevant by requiring a user-imposed energy threshold. For this purpose, we introduce a local kinetic energy gauge by summing contributions from atoms within the spatial localization of the electronic wavefunction to define the energy available for upward hops. The proposed state limiting schemes are implemented within the nonadiabatic excited-state molecular dynamics framework to simulate photoinduced relaxation in poly-phenylene vinylene (PPV) and branched poly-phenylene ethynylene (PPE) oligomers for benchmark evaluation.

  19. The [NeIV] Lines in High Excitation Gaseous Nebulae.

    Science.gov (United States)

    Aller, L H

    1970-04-01

    The "forbidden" lines of three times ionized neon are among the most precious indicators of electron temperature and excitation. They are also predicted to be among the strongest lines observed in the far ultraviolet spectra of high excitation nebulae.

  20. vuv fluorescence from selective high-order multiphoton excitation of N2

    International Nuclear Information System (INIS)

    Coffee, Ryan N.; Gibson, George N.

    2004-01-01

    Recent fluorescence studies suggest that ultrashort pulse laser excitation may be highly selective. Selective high-intensity laser excitation holds important consequences for the physics of multiphoton processes. To establish the extent of this selectivity, we performed a detailed comparative study of the vacuum ultraviolet fluorescence resulting from the interaction of N 2 and Ar with high-intensity infrared ultrashort laser pulses. Both N 2 and Ar reveal two classes of transitions, inner-valence ns ' l ' . From their pressure dependence, we associate each transition with either plasma or direct laser excitation. Furthermore, we qualitatively confirm such associations with the time dependence of the fluorescence signal. Remarkably, only N 2 presents evidence of direct laser excitation. This direct excitation produces ionic nitrogen fragments with inner-valence (2s) holes, two unidentified transitions, and one molecular transition, the N 2 + :X 2 Σ g + 2 Σ u + . We discuss these results in the light of a recently proposed model for multiphoton excitation

  1. Highly excited strings I: Generating function

    Directory of Open Access Journals (Sweden)

    Dimitri P. Skliros

    2017-03-01

    Full Text Available This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES. In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators in general toroidal compactifications E=RD−1,1×TDcr−D (with generic constant Kähler and complex structure target space moduli, background Kaluza–Klein (KK gauge fields and torsion. We adopt a novel approach that does not rely on a “reverse engineering” method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particular in relation to black holes in string theory, non-locality and breakdown of local effective field theory, as well as in discussions of cosmic superstrings and their phenomenological relevance. We also discuss the manifestation of wave/particle (or rather wave/string duality in string theory.

  2. Excited Atoms and Molecules in High Pressure Gas Discharges

    International Nuclear Information System (INIS)

    Vuskovic, L.; Popovic, S.

    2003-01-01

    Various types of high-pressure non-thermal discharges are increasingly drawing attention in view of many interesting applications. These, partially ionized media in non-equilibrium state, tend to generate complex effects that are difficult to interpret without a detailed knowledge of elementary processes involved. Electronically excited molecules and atoms may play an important role as intermediate states in a wide range of atomic and molecular processes, many of which are important in high-pressure discharges. They can serve also as reservoirs of energy or as sources of high energy electrons either through the energy pooling or through superelastic collisions. By presenting the analysis of current situation on the processes involving excited atoms and molecules of interest for high-pressure gas discharges, we will attempt to draw attention on the insufficiency of available data. In the same time we will show how to circumvent this situation and still be able to develop accurate models and interpretations of the observed phenomena

  3. Energy dependence of the ionization of highly excited atoms by collisions with excited atoms

    International Nuclear Information System (INIS)

    Shirai, T.; Nakai, Y.; Nakamura, H.

    1979-01-01

    Approximate analytical expressions are derived for the ionization cross sections in the high- and low-collision-energy limits using the improved impulse approximation based on the assumption that the electron-atom inelastic-scattering amplitude is a function only of the momentum transfer. Both cases of simultaneous excitation and de-excitation of one of the atoms are discussed. The formulas are applied to the collisions between two excited hydrogen atoms and are found very useful for estimating the cross sections in the wide range of collisions energies

  4. Review of high excitation energy structures in heavy ion collisions: target excitations and three body processes

    International Nuclear Information System (INIS)

    Frascaria, N.

    1987-09-01

    A review of experimental results on high excitation energy structures in heavy ion inelastic scattering is presented. The contribution to the spectra of the pick-up break-up mechanism is discussed in the light of the data obtained with light heavy ion projectiles. Recent results obtained with 40 Ar beams at various energies will show that target excitations contribute strongly to the measured cross section

  5. Properties of Highly Rotationally Excited H2 in Photodissociation Regions

    Science.gov (United States)

    Cummings, Sally Jane; Wan, Yier; Stancil, Phillip C.; Yang, Benhui H.; Zhang, Ziwei

    2018-06-01

    H2 is the dominant molecular species in the vast majority of interstellar environments and it plays a crucial role as a radiative coolant. In photodissociation regions, it is one of the primary emitters in the near to mid-infrared which are due to lines originating from highly excited rotational levels. However, collisional data for rotational levels j>10 are sparse, particularly for H2-H2 collisions. Utilizing new calculations for para-H2 and ortho-H2 collisional rate coefficients with H2 for j as high as 30, we investigate the effects of the new results in standard PDR models with the spectral simulation package Cloudy. We also perform Cloudy models of the Orion Bar and use Radex to explore rotational line ratio diagnostics. The resulting dataset of H2 collisional data should find wide application to other molecular environments. This work was support by Hubble Space Telescope grant HST-AR-13899.001-A and NASA grants NNX15AI61G and NNX16AF09G.

  6. Excited hydrogen bonds in the molecular mechanism of muscle contraction.

    Science.gov (United States)

    Bespalova, S V; Tolpygo, K B

    1991-11-21

    The mechanism of muscle contraction is considered. The hydrolysis of an ATP molecule is assumed to produce the excitation of hydrogen bonds A--H...B between electronegative atoms A and B, which are contained in the myosin head and actin filament. This excitation energy epsilon f depends on the interatomic distance AB = R and generates the tractive force f = -delta epsilon f/delta R, that makes atoms AB approach each other. The swing of the myosin head results in macroscopic mutual displacement of actin and myosin polymers. The motion of the actin filament under the action of this force is studied. The conditions under which a considerable portion of the excitation energy converts into the potential tension energy of the actin filament are analysed, and the probability of higher muscle efficiency existence is discussed.

  7. Theory of Excitation Transfer between Two-Dimensional Semiconductor and Molecular Layers

    Science.gov (United States)

    Specht, Judith F.; Verdenhalven, Eike; Bieniek, Björn; Rinke, Patrick; Knorr, Andreas; Richter, Marten

    2018-04-01

    The geometry-dependent energy transfer rate from an electrically pumped inorganic semiconductor quantum well into an organic molecular layer is studied theoretically. We focus on Förster-type nonradiative excitation transfer between the organic and inorganic layers and include quasimomentum conservation and intermolecular coupling between the molecules in the organic film. (Transition) partial charges calculated from density-functional theory are used to calculate the coupling elements. The partial charges describe the spatial charge distribution and go beyond the common dipole-dipole interaction. We find that the transfer rates are highly sensitive to variations in the geometry of the hybrid inorganic-organic system. For instance, the transfer efficiency is improved by up to 2 orders of magnitude by tuning the spatial arrangement of the molecules on the surface: Parameters of importance are the molecular packing density along the effective molecular dipole axis and the distance between the molecules and the surface. We also observe that the device performance strongly depends on the orientation of the molecular dipole moments relative to the substrate dipole moments determined by the inorganic crystal structure. Moreover, the operating regime is identified where inscattering dominates over unwanted backscattering from the molecular layer into the substrate.

  8. Concepts of highly excited electronic systems

    CERN Document Server

    Berakdar, Jamal

    2006-01-01

    Jamal Berakdar is an outstanding young researcher who has accomplished in less than ten years remarkable contributions to the field. He is well acknowledged by the scientific community. PhD-thesis at University of Freiburg (Prof. Klar, 1994), Humboldt- and Research fellow at Atomic & Molecular Physics Laboratories, Australian National University; since 1998 researcher at Max-Planck Institute for Microstructure Physics in Halle, Germany.

  9. Ionization of highly excited atoms by atomic particle impact

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1976-01-01

    The ionization of a highly excited atom by a collision with an atom or molecule is considered. The theory of these processes is presented and compared with experimental data. Cross sections and ionization potential are discussed. 23 refs

  10. Field-dependent molecular ionization and excitation energies: Implications for electrically insulating liquids

    Directory of Open Access Journals (Sweden)

    N. Davari

    2014-03-01

    Full Text Available The molecular ionization potential has a relatively strong electric-field dependence as compared to the excitation energies which has implications for electrical insulation since the excited states work as an energy sink emitting light in the UV/VIS region. At some threshold field, all the excited states of the molecule have vanished and the molecule is a two-state system with the ground state and the ionized state, which has been hypothesized as a possible origin of different streamer propagation modes. Constrained density-functional theory is used to calculate the field-dependent ionization potential of different types of molecules relevant for electrically insulating liquids. The low singlet-singlet excitation energies of each molecule have also been calculated using time-dependent density functional theory. It is shown that low-energy singlet-singlet excitation of the type n → π* (lone pair to unoccupied π* orbital has the ability to survive at higher fields. This type of excitation can for example be found in esters, diketones and many color dyes. For alkanes (as for example n-tridecane and cyclohexane on the other hand, all the excited states, in particular the σ → σ* excitations vanish in electric fields higher than 10 MV/cm. Further implications for the design of electrically insulating dielectric liquids based on the molecular ionization potential and excitation energies are discussed.

  11. Atomic excitation and molecular dissociation by low energy electron collisions

    International Nuclear Information System (INIS)

    Weyland, Marvin

    2016-01-01

    In this work, momentum imaging experiments have been conducted for the electron impact excitation of metastable states in noble gases and for dissociative electron attachment (DEA) in polyatomic molecules. For the electron impact excitation study a new experimental technique has been developed which is able to measure the scattering angle distribution of the electrons by detection of the momentum transfer to the atoms. Momentum transfer images have been recorded for helium and neon at fixed electron impact energy close to the excitation threshold and good agreement with current R-matrix theory calculations was found. A new momentum imaging apparatus for negative ions has been built for the purpose of studying DEA in biologically relevant molecules. During this work, DEA was investigated in the molecules ammonia, water, formic acid, furan, pyridine and in two chlorofluorocarbons. Furthermore, the change of DEA resonance energies when molecules form clusters compared to monomers was investigated in ammonia and formic acid. The experimental results of most studied molecules could be compared to recent theoretical calculations and they support further development in the theoretical description of DEA. The new apparatus built in this work also delivered a superior momentum resolution compared to existing setups. This allows the momentum imaging of heavier fragments and fragments with lower kinetic energy.

  12. Atomic excitation and molecular dissociation by low energy electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Weyland, Marvin

    2016-11-16

    In this work, momentum imaging experiments have been conducted for the electron impact excitation of metastable states in noble gases and for dissociative electron attachment (DEA) in polyatomic molecules. For the electron impact excitation study a new experimental technique has been developed which is able to measure the scattering angle distribution of the electrons by detection of the momentum transfer to the atoms. Momentum transfer images have been recorded for helium and neon at fixed electron impact energy close to the excitation threshold and good agreement with current R-matrix theory calculations was found. A new momentum imaging apparatus for negative ions has been built for the purpose of studying DEA in biologically relevant molecules. During this work, DEA was investigated in the molecules ammonia, water, formic acid, furan, pyridine and in two chlorofluorocarbons. Furthermore, the change of DEA resonance energies when molecules form clusters compared to monomers was investigated in ammonia and formic acid. The experimental results of most studied molecules could be compared to recent theoretical calculations and they support further development in the theoretical description of DEA. The new apparatus built in this work also delivered a superior momentum resolution compared to existing setups. This allows the momentum imaging of heavier fragments and fragments with lower kinetic energy.

  13. Atomic and molecular excitation mechanisms in the interstellar medium

    International Nuclear Information System (INIS)

    Sternberg, A.

    1986-01-01

    The detailed infrared response of dense molecular hydrogen gas to intense ultraviolet radiation fields in photodissociation regions is presented. The thermal and chemical structures of photodissociation regions are analyzed, and the relationship between the emission by molecular hydrogen and trace atomic and molecular species is explored. The ultraviolet spectrum of radiation generated by cosmic rays inside dense molecular clouds is presented, and the resulting rates of photodissociation for a variety of interstellar molecules are calculated. Effects of this radiation on the chemistry of dense molecular clouds are discussed, and it is argued that the cosmic ray induced photons will significantly inhibit the production of complex molecular species. It is argued that the annihilation of electrons and positrons at the galactic center may result in observable infrared line emission by atomic hydrogen. A correlation between the intensity variations of the 511 keV line and the hydrogen infrared lines emitted by the annihilation region is predicted. The observed infrared fluxes from compact infrared sources at the galactic center may be used to constrain theories of pair production there

  14. Exploring the vibrational fingerprint of the electronic excitation energy via molecular dynamics

    International Nuclear Information System (INIS)

    Deyne, Andy Van Yperen-De; Pauwels, Ewald; Ghysels, An; Waroquier, Michel; Van Speybroeck, Veronique; Hemelsoet, Karen; De Meyer, Thierry; De Clerck, Karen

    2014-01-01

    A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed

  15. Photodissociation dynamics of core-excited molecular oxygen

    International Nuclear Information System (INIS)

    Coutinho, L.H.; Homem, M.G.P.; Marinho, R.R.T.; Mocellin, A.; Naves de Brito, A.; Burmeister, F.

    2004-01-01

    Full text: The fragmentation of molecules after the excitation of a core orbital is of particular interest due to the localization of these orbitals and the possibility to observe dissociation in the same time scale as the electronic decay. This process, which occurs in a few femtoseconds and is known as ultrafast dissociation, has been observed for O 2 and the results will be presented. We used the PhotoElectron-PhotoIon COincidence (PEPICO) and PhotoElectron-PhotoIon-PhotoIon COincidence (PEPIPICO) spectroscopy technique to analyze the produced fragments in the 529 to 540 eV photon energy range. Usually Electron Spectroscopy (ES) is employed to establish whether this peculiar phenomenon occurs or not. Here we successfully put forward the use of partial ion yield (PIY) spectroscopy to investigate ultrafast dissociation. The experiment was performed at the Brazilian Synchrotron Light Laboratory (LNLS). The SGM beamline was equipped with an end-station composed by a time-of-flight mass spectrometer able to rotate with respect to the polarization of the exciting beam. The measurements were taken with the TOF axis performing an angle of 54.7 deg with respect to the polarization vector of the light. The data were corrected for non-unitary detection efficiency in the detectors

  16. Breakdown of highly excited oxygen in a DC electric field

    International Nuclear Information System (INIS)

    Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsin, D.V.; Yuryshev, N.N.; Deryugin, A.A.; Kochetov, I.V.; Napartovich, A.P.

    2000-01-01

    The breakdown of oxygen in a dc electric field is studied. A high concentration of oxygen molecules in the a 1 Δ g excited state is obtained in a purely chemical reactor. A decrease in the breakdown voltage at degrees of excitation exceeding 50% is observed. The theoretical decrement in the breakdown voltage obtained by solving the Boltzmann equation is in good agreement with the experimental data

  17. Metal ion sequestration: An exciting dimension for molecularly ...

    African Journals Online (AJOL)

    The use of a tight binding macrocyclic ligand to complex a metal ion so that this serves as receptee on the Molecularly Imprinted Polymer (MIP) receptor as described here affords a sequestration route for a targeted metal ion, with potential for environmental remediation and restoration applications. Ethylene glycol ...

  18. Manipulation of molecular vibrational motions via pure rotational excitations

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Henriksen, Niels Engholm

    2015-01-01

    The coupling between different molecular degrees of freedom plays a decisive role in many quantum phenomena, including electron transfer and energy redistribution. Here, we demonstrate a quantum-mechanical time-dependent simulation to explore how a vibrational motion in a molecule can be affected...

  19. Properties of the Excited States of Molecular Ions.

    Science.gov (United States)

    1981-04-13

    FIg. 1). techniques have beest applied to the study of quartet states of Oi. The four potential curves most relevant Guyon et al., using a synchrotron...8217 a’ a a C ’U ~ ~ ~ ~ ~ ~ ~ 2 2,~ C a ’I C~- C ’ 𔃺 𔃺 𔃺 ’ ’ C- ~ C-E-38- ’- u A() A09a 265 SRI INTERNATIONAL 14FNLO PARK CA MOLECULAR PHYSICS LAB F

  20. Selective excitation, relaxation, and energy channeling in molecular systems

    International Nuclear Information System (INIS)

    Rhodes, W.C.

    1993-08-01

    Research involves theoretical studies of response, relaxation, and correlated motion in time-dependent behavior of large molecular systems ranging from polyatomic molecules to protein molecules in their natural environment. Underlying theme is subsystem modulation dynamics. Main idea is that quantum mechanical correlations between components of a system develop with time, playing a major role in determining the balance between coherent and dissipative forces. Central theme is interplay of coherence and dissipation in determining the nature of dynamic structuring and energy flow in molecular transformation mechanisms. Subsystem equations of motion are being developed to show how nonlinear, dissipative dynamics of a particular subsystem arise from correlated interactions with the rest of the system (substituent groups, solvent, lattice modes, etc.); one consequence is resonance structures and networks. Quantum dynamics and thermodynamics are being applied to understand control and energy transfer mechanisms in biological functions of protein molecules; these mechanisms are both global and local. Besides the above theory, the research deals with phenomenological aspects of molecular systems

  1. Benchmarking the stochastic time-dependent variational approach for excitation dynamics in molecular aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Chorošajev, Vladimir [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius (Lithuania); Gelzinis, Andrius; Valkunas, Leonas [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius (Lithuania); Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Sauletekio 3, 10222 Vilnius (Lithuania); Abramavicius, Darius, E-mail: darius.abramavicius@ff.vu.lt [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius (Lithuania)

    2016-12-20

    Highlights: • The Davydov ansatze can be used for finite temperature simulations with an extension. • The accuracy is high if the system is strongly coupled to the environmental phonons. • The approach can simulate time-resolved fluorescence spectra. - Abstract: Time dependent variational approach is a convenient method to characterize the excitation dynamics in molecular aggregates for different strengths of system-bath interaction a, which does not require any additional perturbative schemes. Until recently, however, this method was only applicable in zero temperature case. It has become possible to extend this method for finite temperatures with the introduction of stochastic time dependent variational approach. Here we present a comparison between this approach and the exact hierarchical equations of motion approach for describing excitation dynamics in a broad range of temperatures. We calculate electronic population evolution, absorption and auxiliary time resolved fluorescence spectra in different regimes and find that the stochastic approach shows excellent agreement with the exact approach when the system-bath coupling is sufficiently large and temperatures are high. The differences between the two methods are larger, when temperatures are lower or the system-bath coupling is small.

  2. Selective excitation of atoms or molecules to high-lying states

    International Nuclear Information System (INIS)

    Ducas, T.W.

    1978-01-01

    This specification relates to the selective excitation of atoms or molecules to high lying states and a method of separating different isotopes of the same element by selective excitation of the isotopes. (U.K.)

  3. Dinamical polarizability of highly excited hydrogen-like states

    International Nuclear Information System (INIS)

    Delone, N.B.; Krajnov, V.P.

    1982-01-01

    Analytic expressions are derived for the dynamic polarizability of highly excited hydrogen-like atomic states. It is shown that in the composite matrix element which determines the dynamic polarizability there is a strong compensation of the terms as a result of which the resulting magnitude of the dynamic polarizability is quasiclasically small compared to the individual terms of the composite matrix. It is concluded that the resonance behaviour of the dynamic polarizability of highly excited states differs significantly from the resonance behaviour of the polarizability for the ground and low-lying atomic states. The static limit and high-frequency limit of on electromagnetic field are considered

  4. Studies of isotopic effects in the excited electronic states of molecular systems

    International Nuclear Information System (INIS)

    1982-01-01

    Rare gas halogen (RGH) lasers serve as convenient tools for a range of photophysical processes which exhibit isotope effects. This document summarizes progress in the production of molecular systems in their electronic excited states with the aid of RGH lasers, and the various isotopic effects one can study under these conditions. We conclude that the basic physical mechanisms involved in the isotopically sensitive characteristics of excited molecular electronic states are sufficiently selective to be useful in both the detection and separation of many atomic materials

  5. El strength function at high spin and excitation energy

    International Nuclear Information System (INIS)

    Barrette, J.

    1983-04-01

    Recently giant dipole resonance-like concentration of the dipole strength function in nuclei was observed at both high excitation energies and high spins. This observation raises the possibility of obtaining new information on the shape of rapidly rotating heated nuclei. Recent experimental results on this subject are reviewed

  6. Emission spectroscopic studies on dynamics of molecular excitation and dissociation by controlled electron impact

    International Nuclear Information System (INIS)

    Ogawa, Teiichiro

    1986-01-01

    Emission spectrum by controlled electron impact has been a successful technique for the investigation of molecular dynamics. (1) Molecular excitation. Aromatic molecules give an optical emission similar to fluorescence. However, as is shown by the vibrational structure and the electron energy dependence of benzene emission, its excitation process is not necessarily optical. Some aliphatic molecules also exhibit an emission band at the ultraviolet region. (2) Molecular dissociation. Analysis of the Doppler profile, the threshold energy, the excitation function and the isotope effect of the atomic emission produced in electron-molecule collisions has clarified the dynamics of the molecular dissociation. Especially the Doppler profile has given the translational energy distribution of the fragment atom, which is very useful to disclose the potential energy curve. Its angular dependence has recently found to allow determination of the symmetry of the intermediate excited state and the magnetic sublevel distribution of the fragment atom. These finding has revealed detailed state-to-state dynamics of the molecular dissociation. (author)

  7. Complex fragment emission at low and high excitation energy

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1986-08-01

    Complex fragment emission has been certified as a compound nucleus process at low energies. An extension of the measurements to heavy ion reactions up to 50 MeV/u shows that most complex fragments are emitted by highly excited compound nuclei formed in incomplete fusion reactions. 12 refs., 26 figs

  8. Strange effects of strong high-frequency excitation

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    Three general effects of mechanical high-frequency excitation (HFE) are described: Stiffening - an apparent change in the stiffness associated with an equilibrium; Biasing - a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening...

  9. On the nature of highly vibrationally excited states of thiophosgene

    Indian Academy of Sciences (India)

    Understanding the nature of the highly excited molecu- lar eigenstates is equivalent to deciphering the mecha- nism of intramolecular vibrational energy redistribution. (IVR) occurring in the molecule.1 However, the assign- ment of eigenstates is far from simple. The existence of and interplay of several strong anharmonic ...

  10. Reduction of the Glauber amplitude for electron impact rotational excitation of quadrupolar molecular ions

    International Nuclear Information System (INIS)

    Mathur, K.C.; Gupta, G.P.; Pundir, R.S.

    1981-06-01

    A reduction of the Glauber amplitude for the rotational excitation of pure quadrupolar molecular ions by electron impact is presented in a form suitable for numerical evaluation. The differential cross-section is expressed in terms of one dimensional integrals over impact parameter. (author)

  11. Molecular hydrogen line ratios in four regions of shock-excited gas

    International Nuclear Information System (INIS)

    Burton, M.G.

    1989-01-01

    Five emission lines of molecular hydrogen, with wavelengths in the ranges of 2.10-2.25 and 3.80-3.85 μm, have been observed in four objects of different type in which the line emission is believed to be excited by shocks. (author)

  12. Plasmon assisted control of photo-induced excitation energy transfer in a molecular chain

    Science.gov (United States)

    Wang, Luxia; May, Volkhard

    2017-08-01

    The strong and ultrafast laser pulse excitation of a molecular chain in close vicinity to a spherical metal nano-particle (MNP) is studied theoretically. Due to local-field enhancement around the MNP, pronounced excited-state formation has to be expected for the part of the chain which is in proximity to the MNP. Here, the description of this phenomenon will be based on a uniform quantum theory of the MNP-molecule system. It accounts for local-field effects due to direct consideration of the strong excitation energy transfer coupling between the MNP and the various molecules. The molecule-MNP distances are chosen in such a way as to achieve a correct description of the MNP via dipole-plasmon excitations. Short plasmon life-times are incorporated in the framework of a density matrix approach. By extending earlier work the present description allows for multi-exciton formation and multiple dipole-plasmon excitation. The region of less intense and not-too-short optical excitation is identified as being best suited for excitation energy localization in the chain.

  13. Spin excitations in 3D molecular magnets probed by neutron scattering

    CERN Document Server

    Bordallo, H N; Chapon, L C; Manson, J L; Cook, J C; Lee, S H; Copley, J R D; Yildirim, T; Kern, S

    2002-01-01

    The emerging field of molecular magnetism constitutes a new branch of materials science that deals with the magnetic properties of molecules, or assemblies of molecules, that contain magnetic centers. The growing interest in understanding the origin of the magnetic ordering in these materials is to obtain novel multiproperty molecular magnetic materials with high transition temperatures. Molecules based on the dicyanamide ion [N ident to C-N-C ident to N], abbreviated (dca), such as M(dca) sub 2 [M=Mn, Ni], have shown interesting bulk properties that prompted our inelastic neutron scattering (INS) studies. While the Mn sup 2 sup + ion is isotropic because of its L=0 configuration, the isostructural Ni analog has S=1 and demonstrates marked single-ion anisotropy. Mn(dca) sub 2 is a canted antiferromagnet below 16 K, while Ni(dca) sub 2 is a ferromagnet below 21 K. INS has been used to investigate the magnetic excitations in Mn(dca) sub 2 and Ni(dca) sub 2. For Mn(dca) sub 2 , a Heisenberg model gives good corr...

  14. Excitation of atoms and molecules in collisions with highly charged ions

    International Nuclear Information System (INIS)

    Watson, R.L.

    1992-01-01

    This report discusses research of multicharged nitrogen, oxygen and carbon monoxide molecular ions produced with collision with multicharged argon ions. Properties like ionization, dissociation, and excitation are investigated

  15. Density-dependent phonoriton states in highly excited semiconductors

    International Nuclear Information System (INIS)

    Nguyen Hong Quang; Nguyen Minh Khue; Nguyen Que Huong

    1995-09-01

    The dynamical aspects of the phonoriton state in highly-photoexcited semiconductors is studied theoretically. The effect of the exciton-exciton interaction and nonbosonic character of high-density excitons are taken into account. Using Green's function method and within the Random Phase Approximation it is shown that the phonoriton dispersion and damping are very sensitive to the exciton density, characterizing the excitation degree of semiconductors. (author). 18 refs, 3 figs

  16. Nonlinear phenomena in the highly excited state of C60

    International Nuclear Information System (INIS)

    Byrne, H.J.; Maser, W.K.; Kaiser, M.; Akselrod, L.; Anders, J.; Ruehle, W.W.; Zhou, X.Q.; Mittelbach, A.; Roth, S.

    1993-01-01

    Under high intensity illumination, the optical and electronic properties of fullerenes are seen to undergo dramatic, nonlinear changes. The photoluminescence emission is seen to increase with approximately the third power of the input intensity above an apparent threshold intensity. Associated with this nonlinear increase is the emergence of a long lifetime emission component and a redshifting of the emission spectrum. Above the threshold intensity the photoconductive response increases with approximately the cube of the input power. In the highly excited state, the photoconductive response becomes relatively temperature independent compared to the thermally activated behaviour observed at low intensities. The characteristics of the temperature dependence are associated with a metallic-like phase in the highly excited state and therefore an optically driven insulator to metal transition is proposed as a description of the observed phenomena. (orig.)

  17. Kinetics of highly vibrationally excited O2(X) molecules in inductively-coupled oxygen plasmas

    Science.gov (United States)

    Annušová, Adriana; Marinov, Daniil; Booth, Jean-Paul; Sirse, Nishant; Lino da Silva, Mário; Lopez, Bruno; Guerra, Vasco

    2018-04-01

    The high degree of vibrational excitation of O2 ground state molecules recently observed in inductively coupled plasma discharges is investigated experimentally in more detail and interpreted using a detailed self-consistent 0D global kinetic model for oxygen plasmas. Additional experimental results are presented and used to validate the model. The vibrational kinetics considers vibrational levels up to v = 41 and accounts for electron impact excitation and de-excitation (e-V), vibration-to-translation relaxation (V-T) in collisions with O2 molecules and O atoms, vibration-to-vibration energy exchanges (V-V), excitation of electronically excited states, dissociative electron attachment, and electron impact dissociation. Measurements were performed at pressures of 10–80 mTorr (1.33 and 10.67 Pa) and radio frequency (13.56 MHz) powers up to 500 W. The simulation results are compared with the absolute densities in each O2 vibrational level obtained by high sensitivity absorption spectroscopy measurements of the Schumann–Runge bands for O2(X, v = 4–18), O(3 P) atom density measurements by two-photon absorption laser induced fluorescence (TALIF) calibrated against Xe, and laser photodetachment measurements of the O‑ negative ions. The highly excited O2(X, v) distribution exhibits a shape similar to a Treanor-Gordiets distribution, but its origin lies in electron impact e-V collisions and not in V-V up-pumping, in contrast to what happens in all other molecular gases known to date. The relaxation of vibrational quanta is mainly due to V-T energy-transfer collisions with O atoms and to electron impact dissociation of vibrationally excited molecules, e+O2(X, v)→O(3P)+O(3P).

  18. Range-separated density-functional theory for molecular excitation energies

    International Nuclear Information System (INIS)

    Rebolini, E.

    2014-01-01

    Linear-response time-dependent density-functional theory (TDDFT) is nowadays a method of choice to compute molecular excitation energies. However, within the usual adiabatic semi-local approximations, it is not able to describe properly Rydberg, charge-transfer or multiple excitations. Range separation of the electronic interaction allows one to mix rigorously density-functional methods at short range and wave function or Green's function methods at long range. When applied to the exchange functional, it already corrects most of these deficiencies but multiple excitations remain absent as they need a frequency-dependent kernel. In this thesis, the effects of range separation are first assessed on the excitation energies of a partially-interacting system in an analytic and numerical study in order to provide guidelines for future developments of range-separated methods for excitation energy calculations. It is then applied on the exchange and correlation TDDFT kernels in a single-determinant approximation in which the long-range part of the correlation kernel vanishes. A long-range frequency-dependent second-order correlation kernel is then derived from the Bethe-Salpeter equation and added perturbatively to the range-separated TDDFT kernel in order to take into account the effects of double excitations. (author)

  19. High Tc Superconducting Magnet Excited by a Semiconductor Thermoelectric Element

    Science.gov (United States)

    Kuriyama, T.; Ono, M.; Tabe, S.; Oguchi, A.; Okamura, T.

    2006-04-01

    A high Tc superconducting (HTS) magnet excited by a thermal electromotive force of a thermoelectric element is studied. This HTS magnet has the advantages of compactness, lightweight and continuous excitation in comparison with conventional HTS magnets, because this HTS magnet does not need a large external power source. In this system, a heat input into the cryogenic environment is necessary to excite the thermoelectric element for constant operation. This heat generation, however, causes a rise in temperature of an HTS coil and reduces the system performance. In this paper, a newly designed magnet system which adopted a two-stage GM cryocooler was investigated. It enabled us to control the temperature of a thermoelectric element and that of an HTS coil independently. The temperature of the HTS coil could be kept at 10-20 K at the second stage of the GM cryocooler, while the thermoelectric element could be excited at higher temperature in the range of 50-70 K at the first stage, where the performance of the thermoelectric element was higher. The experimental results on this HTS magnet are shown and the possibility of the thermoelectric element as a main power source of the HTS magnets is discussed.

  20. Excitation of high density surface plasmon polariton vortex array

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2018-06-01

    This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.

  1. The giant quadrupole resonance in highly excited rotating nuclei

    International Nuclear Information System (INIS)

    Civitarese, O.; Furui, S.; Ploszajczak, M.; Faessler, A.

    1983-01-01

    The giant quadrupole resonance in highly excited, fast rotating nuclei is studied as a function of both the nuclear temperature and the nuclear angular momentum. The photo-absorption cross sections for quadrupole radiation in 156 Dy, 160 Er and 164 Er are evaluated within the linear response theory. The strength functions of the γ-ray spectrum obtained from the decay of highly excited nuclear states by deexcitation of the isoscalar quadrupole mode show a fine structure, which depends on the temperature T, the angular momentum I and the deformation of the nucleus β. The splitting of the modes associated with the signature-conserving and signature-changing components of the quadrupole field is discussed. (orig.)

  2. Excitations

    International Nuclear Information System (INIS)

    Dorner, B.

    1996-01-01

    A short introduction to instrumental resolution is followed by a discussion of visibilities of phonon modes due to their eigenvectors. High precision phonon dispersion curves in GaAs are presented together with 'ab initio' calculations. Al 2 O 3 is taken as an example of selected visibility due to group theory. By careful determination of phonon intensities eigenvectors can be determined, such as in Silicon and Diamond. The investigation of magnon modes is shown for the garnet Fe 2 Ca 3 (GeO 4 ) 3 , where also a quantum gap due to zero point spin fluctuations was observed. The study of the splitting of excitons in CsFeCl 3 in an applied magnetic field demonstrates the possibilities of neutron polarisation analysis, which made it possible to observe a mode crossing. An outlook to inelastic X-ray scattering with very high energy resolution of synchrotron radiation is given with the examples of phonons in Beryllium and in water. (author) 19 figs., 36 refs

  3. Molecular dynamics in high electric fields

    International Nuclear Information System (INIS)

    Apostol, M.; Cune, L.C.

    2016-01-01

    Highlights: • New method for rotation molecular spectra in high electric fields. • Parametric resonances – new features in spectra. • New elementary excitations in polar solids from dipolar interaction (“dipolons”). • Discussion about a possible origin of the ferroelectricity from dipolar interactions. - Abstract: Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called “dipolons”); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  4. New properties of giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Morsch, H.P.

    1991-01-01

    Studies on the giant dipole resonance in very hot nuclei investigated in heavy ion-induced particle-γ coincidence experiments are reviewed. A signature is found in the γ-decay of excited nuceli which shows direct decay of the giant dipole resonance. This provides a new dimension in giant resonance studies and the possibility to study the dependence of giant resonance energy, width and sum rule strength on excitation energy and rotation of the system. Further, the fact that the giant resonance splits in deformed nuclei provides a unique way to get information on the shape of hot nuclei. First results are obtained on the following questions: (i)What is the nuclear shape at high temperature (T≥2 MeV)? (ii)Is there a phase transition in the nuclear shape at T∼1.7 MeV? (iii)Does motional narrowing exist in hot nuclei? (author). 19 refs., 11 figs

  5. Calculations on the vibrational level density in highly excited formaldehyde

    International Nuclear Information System (INIS)

    Rashev, Svetoslav; Moule, David C.

    2003-01-01

    The object of the present work is to develop a model that provides realistic estimates of the vibrational level density in polyatomic molecules in a given electronic state, at very high (chemically relevant) vibrational excitation energies. For S 0 formaldehyde (D 2 CO), acetylene, and a number of triatomics, the estimates using conventional spectroscopic formulas have yielded densities at the dissociation threshold, very much lower than the experimentally measured values. In the present work we have derived a general formula for the vibrational energy levels of a polyatomic molecule, which is a generalization of the conventional Dunham spectroscopic expansion. Calculations were performed on the vibrational level density in S 0 D 2 CO, H 2 C 2 , and NO 2 at excitation energies in the vicinity of the dissociation limit, using the newly derived formula. The results from the calculations are in reasonable agreement with the experimentally measured data

  6. High power electron beam accelerators for gas laser excitation

    International Nuclear Information System (INIS)

    Kelly, J.G.; Martin, T.H.; Halbleib, J.A.

    1976-06-01

    A preliminary parameter investigation has been used to determine a possible design of a high-power, relativistic electron beam, transversely excited laser. Based on considerations of present and developing pulsed power technology, broad area diode physics and projected laser requirements, an exciter is proposed consisting of a Marx generator, pulse shaping transmission lines, radially converging ring diodes and a laser chamber. The accelerator should be able to deliver approximately 20 kJ of electron energy at 1 MeV to the 10 4 cm 2 cylindrical surface of a laser chamber 1 m long and 0.3 m in diameter in 24 ns with very small azimuthal asymmetry and uniform radial deposition

  7. Bibliography of atomic and molecular excitation in heavy particle collisions, 1950--1975

    International Nuclear Information System (INIS)

    Hawthorne, S.W.; Thomas, E.W.; Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Kirkpatrick, M.I.; McDaniel, E.W.; Phaneuf, R.A.

    1979-02-01

    This annotated bibliography lists published work on atomic and molecular excitation in heavy particle collisions for the period 1950 to 1975. Sources include scientific journals, abstract compilations, conference proceedings, books, and reports. The bibliography is arranged alphabetically by author. Each entry indicates whether the work was experimental or theoretical, what energy range was covered, and what reactants were investigated. Following the bibliographical listing are indexes of reactions and authors

  8. Equations describing coherent and partially coherent multilevel molecular excitation induced by pulsed Raman transitions: III

    International Nuclear Information System (INIS)

    Shore, B.W.; Sacks, R.; Karr, T.

    1987-01-01

    This memo discusses the equations of motion used to describe multilevel molecular excitation induced by Raman transitions. These equations are based upon the time-dependent Schroedinger equation expressed in a basis of molecular energy states. A partition of these states is made into two sets, those that are far from resonance (and hence unpopulated) and those that are close to resonance, either by one-photon transition or two-photon (Raman) processes. By adiabatic elimination an effective Schroedinger equation is obtained for the resonance states alone. The effective Hamiltonian is expressible in terms of a polarizibility operator

  9. Neutron scattering investigation of magnetic excitations at high energy transfers

    International Nuclear Information System (INIS)

    Loong, C.K.

    1984-01-01

    With the advance of pulsed spallation neutron sources, neutron scattering investigation of elementary excitations in magnetic materials can now be extended to energies up to several hundreds of MeV. We have measured, using chopper spectrometers and time-of-flight techniques, the magnetic response functions of a series of d and f transition metals and compounds over a wide range of energy and momentum transfer. In PrO 2 , UO 2 , BaPrO 3 and CeB 6 we observed crystal-field transitions between the magnetic ground state and the excited levels in the energy range from 40 to 260 MeV. In materials exhibiting spin-fluctuation or mixed-valent character such as Ce 74 Th 26 , on the other hand, no sharp crystal-field lines but a broadened quasielastic magnetic peak was observed. The line width of the quasielastic component is thought to be connected to the spin-fluctuation energy of the 4f electrons. The significance of the neutron scattering results in relation to the ground state level structure of the magnetic ions and the spin-dynamics of the f electrons is discussed. Recently, in a study of the spin-wave excitations in itinerant magnetic systems, we have extended the spin-wave measurements in ferromagnetic iron up to about 160 MeV. Neutron scattering data at high energy transfers are of particular interest because they provide direct comparison with recent theories of itinerant magnetism. 26 references, 7 figures

  10. Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation

    CERN Document Server

    Hung, J; Olaizola, A M

    2003-01-01

    Fluorescence spectral changes of Rhodamine 6G in ethanol and glycerol solutions and deposited as a film on a silica surface have been studied using a wide range of pumping field fluence at 532 nm at room temperature. Blue shift of the fluorescence spectra and fluorescence quenching of the dye molecule in solution are observed at high excitation fluence values. Such effects are not reported for the film sample. The effects are interpreted as the result of population redistribution in the solute-solvent molecular system induced by the high fluence field and the fluence dependence of the radiationless decay mechanism.

  11. Multiphoton excitation and high-harmonics generation in topological insulator.

    Science.gov (United States)

    Avetissian, H K; Avetissian, A K; Avchyan, B R; Mkrtchian, G F

    2018-05-10

    Multiphoton interaction of coherent electromagnetic radiation with 2D metallic carriers confined on the surface of the 3D topological insulator is considered. A microscopic theory describing the nonlinear interaction of a strong wave and metallic carriers with many-body Coulomb interaction is developed. The set of integrodifferential equations for the interband polarization and carrier occupation distribution is solved numerically. Multiphoton excitation of Fermi-Dirac sea of 2D massless carriers is considered for a THz pump wave. It is shown that in the moderately strong pump wave field along with multiphoton interband/intraband transitions the intense radiation of high harmonics takes place.

  12. Excited baryon form factors at high Q2

    International Nuclear Information System (INIS)

    Paul Stoler; Gary Adams; Abdellah Ahmidouch; Chris Armstrong; K. Assamagan; Steven Avery; K. Baker; Peter Bosted; Volker Burkert; Jim Dunne; Tom Eden; Rolf Ent; V. Frolov; David Gaskell; P. Gueye; Wendy Hinton; Cynthia Keppel; Wooyoung Kim; Michael Klusman; Doug Koltenuk; David Mack; Richard Madey; David Meekins; Ralph Minehart; Joseph Mitchell; Hamlet Mkrtchyan; James Napolitano; Gabriel Niculescu; Ioana Niculescu; Mina Nozar; John Price; Paul Stoler; Vardan Tadevosyan; Liguang Tang; Michael Witkowski; Stephen Wood

    1998-01-01

    The role of resonance electroproduction at high Q 2 is discussed in the context of exclusive reactions, as well as the alternative theoretical models which are proposed to treat exclusive reactions in the few GeV 2 /c 2 region of momentum transfer. Jefferson Lab experiment 94-014, which measured the excitation of the Delta (1232) and S 11 (1535) via the reactions p(e,e ' p)pi 0 and p(e,e ' p)eta respectively at Q 2 ∼ 2.8 and 4 GeV 2 /c 2 is described, and the state of analysis reported

  13. Multiphoton excitation and high-harmonics generation in topological insulator

    Science.gov (United States)

    Avetissian, H. K.; Avetissian, A. K.; Avchyan, B. R.; Mkrtchian, G. F.

    2018-05-01

    Multiphoton interaction of coherent electromagnetic radiation with 2D metallic carriers confined on the surface of the 3D topological insulator is considered. A microscopic theory describing the nonlinear interaction of a strong wave and metallic carriers with many-body Coulomb interaction is developed. The set of integrodifferential equations for the interband polarization and carrier occupation distribution is solved numerically. Multiphoton excitation of Fermi–Dirac sea of 2D massless carriers is considered for a THz pump wave. It is shown that in the moderately strong pump wave field along with multiphoton interband/intraband transitions the intense radiation of high harmonics takes place.

  14. Collective and single-particle states at high excitation energy

    International Nuclear Information System (INIS)

    Van den Berg, A.M.; Van der Molen, H.K.T.; Harakeh, M.N.; Akimune, H.; Daito, I.; Fujimura, H.; Fujiwara, M.; Ihara, F.; Inomata, T.

    2000-01-01

    Complete text of publication follows. Damping of high-lying single-particle states was investigated by the study of proton decay from high-lying states in 91 Nb, populated by the 90 Zr(α,t) reaction with E α = 180 MeV. In addition to decay to the ground state of 90 Zr, semi-direct decay was observed to the low-lying (2 + and 3 - ) phonon states, confirming the conclusion from other experiments that these phonon states play an important role in the damping process of the single-particle states. Furthermore, the population and decay of Isobaric Analogue States of 91 Zr, which are located at an excitation energy of about 10 - 12 MeV in 91 Nb, has been studied in the same reaction. (author)

  15. The remarkably high excitation planetary nebula GC 6537.

    Science.gov (United States)

    Aller, L H; Hung, S; Feibelman, W A

    1999-05-11

    NGC 6537 is an unusually high excitation point symmetric planetary nebula with a rich spectrum. Its kinematical structures are of special interest. We are here primarily concerned with the high resolution spectrum as revealed by the Hamilton echelle Spectrograph at Lick Observatory (resolution approximately 0.2 A) and supplemented by UV and near-UV data. These extensive data permit a determination of interstellar extinction, plasma diagnostics, and ionic concentrations. The photoionization models that have been used successfully for many planetary nebulae are not entirely satisfactory here. The plasma electron temperature of a photoionization model cannot much exceed 20,000 K, but plasma diagnostics show that regions emitting radiation of highly ionized atoms such as [NeIV] and [NeV] are much hotter, showing that shock excitation must be important, as suggested by the remarkable kinematics of this object. Hence, instead of employing a strict photoionization model, we are guided by the nebular diagnostics, which reveal how electron temperature varies with ionization potential and accommodates density effects. The predictions of the photoionization model may be useful in estimating ionization correction factor. In effect, we have estimated the chemical composition by using both photoionization and shock considerations.

  16. Decay modes of high-lying excitations in nuclei

    International Nuclear Information System (INIS)

    Gales, S.

    1993-01-01

    Inelastic, charge-exchange and transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of new high-lying modes embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured branching ratios to the various decay channels as compared to statistical model calculations. As illustrative examples the decay modes of high-spin single-particle states and isovector resonances are discussed. (author) 23 refs.; 14 figs

  17. The workings of a molecular thermometer: the vibrational excitation of carbon tetrachloride by a solvent.

    Science.gov (United States)

    Graham, Polly B; Matus, Kira J M; Stratt, Richard M

    2004-09-15

    An intriguing energy-transfer experiment was recently carried out in methanol/carbon tetrachloride solutions. It turned out to be possible to watch vibrational energy accumulating in three of carbon tetrachloride's modes following initial excitation of O-H and C-H stretches in methanol, in effect making those CCl(4) modes "molecular thermometers" reporting on methanol's relaxation. In this paper, we use the example of a CCl(4) molecule dissolved in liquid argon to examine, on a microscopic level, just how this kind of thermal activation occurs in liquid solutions. The fact that even the lowest CCl(4) mode has a relatively high frequency compared to the intermolecular vibrational band of the solvent means that the only solute-solvent dynamics relevant to the vibrational energy transfer will be extraordinarily local, so much so that it is only the force between the instantaneously most prominent Cl and solvent atoms that will significantly contribute to the vibrational friction. We use this observation, within the context of a classical instantaneous-pair Landau-Teller calculation, to show that energy flows into CCl(4) primarily via one component of the nominally degenerate, lowest frequency, E mode and does so fast enough to make CCl(4) an excellent choice for monitoring methanol relaxation. Remarkably, within this theory, the different symmetries and appearances of the different CCl(4) modes have little bearing on how well they take up energy from their surroundings--it is only how high their vibrational frequencies are relative to the solvent intermolecular vibrational band edge that substantially favors one mode over another.

  18. Approximate inclusion of triple excitations in combined coupled cluster/molecular mechanics: Calculations of electronic excitation energies in solution for acrolein, water, formamide, and n-methylacetamide

    DEFF Research Database (Denmark)

    Sneskov, Kristian; Gras, Eduard Matito; Kongsted, Jacob

    2010-01-01

    as being applicable for averaging over many solvent configurations derived from, for example, molecular simulations. We test the proposed model using as a benchmark the two lowest-lying valence singlet excitations (n → π* and π → π*) of acrolein, formamide, and N-methylacetamide in aqueous solution as well...

  19. Highly selective population of two excited states in nonresonant two-photon absorption

    International Nuclear Information System (INIS)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong

    2011-01-01

    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse. In this paper, we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution. Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value. We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption, such as resonance-mediated (2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization. (atomic and molecular physics)

  20. Directing the path of light-induced electron transfer at a molecular fork using vibrational excitation

    Science.gov (United States)

    Delor, Milan; Archer, Stuart A.; Keane, Theo; Meijer, Anthony J. H. M.; Sazanovich, Igor V.; Greetham, Gregory M.; Towrie, Michael; Weinstein, Julia A.

    2017-11-01

    Ultrafast electron transfer in condensed-phase molecular systems is often strongly coupled to intramolecular vibrations that can promote, suppress and direct electronic processes. Recent experiments exploring this phenomenon proved that light-induced electron transfer can be strongly modulated by vibrational excitation, suggesting a new avenue for active control over molecular function. Here, we achieve the first example of such explicit vibrational control through judicious design of a Pt(II)-acetylide charge-transfer donor-bridge-acceptor-bridge-donor 'fork' system: asymmetric 13C isotopic labelling of one of the two -C≡C- bridges makes the two parallel and otherwise identical donor→acceptor electron-transfer pathways structurally distinct, enabling independent vibrational perturbation of either. Applying an ultrafast UVpump(excitation)-IRpump(perturbation)-IRprobe(monitoring) pulse sequence, we show that the pathway that is vibrationally perturbed during UV-induced electron transfer is dramatically slowed down compared to its unperturbed counterpart. One can thus choose the dominant electron transfer pathway. The findings deliver a new opportunity for precise perturbative control of electronic energy propagation in molecular devices.

  1. Radiance limits of ceramic phosphors under high excitation fluxes

    Science.gov (United States)

    Lenef, Alan; Kelso, John; Zheng, Yi; Tchoul, Maxim

    2013-09-01

    Ceramic phosphors, excited by high radiance pump sources, offer considerable potential for high radiance conversion. Interestingly, thermodynamic arguments suggest that the radiance of the luminescent spot can even exceed that of the incoming light source. In practice, however, thermal quenching and (non-thermal) optical saturation limit the maximum attainable radiance of the luminescent source. We present experimental data for Ce:YAG and Ce:GdYAG ceramics in which these limits have been investigated. High excitation fluxes are achieved using laser pumping. Optical pumping intensities exceeding 100W/mm2 have been shown to produce only modest efficiency depreciation at low overall pump powers because of the short Ce3+ lifetime, although additional limitations exist. When pump powers are higher, heat-transfer bottlenecks within the ceramic and heat-sink interfaces limit maximum pump intensities. We find that surface temperatures of these laser-pumped ceramics can reach well over 150°C, causing thermal-quenching losses. We also find that in some cases, the loss of quantum efficiency with increasing temperature can cause a thermal run-away effect, resulting in a rapid loss in converted light, possibly over-heating the sample or surrounding structures. While one can still obtain radiances on the order of many W/mm2/sr, temperature quenching effects ultimately limit converted light radiance. Finally, we use the diffusion-approximation radiation transport models and rate equation models to simulate some of these nonlinear optical pumping and heating effects in high-scattering ceramics.

  2. Simulations of the dissociation of small helium clusters with ab initio molecular dynamics in electronically excited states

    International Nuclear Information System (INIS)

    Closser, Kristina D.; Head-Gordon, Martin; Gessner, Oliver

    2014-01-01

    The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He 7 were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He 2 * , and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed

  3. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    Science.gov (United States)

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng

    2017-08-01

    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  4. Preparation of actinide targets by molecular plating for Coulomb excitation studies at ATLAS

    International Nuclear Information System (INIS)

    Greene, J. P.

    1998-01-01

    Molecular plating is now routinely used to prepare sources and targets of actinide elements. Although the technique is simple and fairly reproducible, because of the radioactive nature of the target it is very useful to record various parameters in the preparation of such targets. At Argonne, ∼200 microg/cm 2 thick targets of Pu and Cm were required for Coulomb Excitation (COULEX) Studies with the Argonne-Notre Dame BGO gamma ray facility and later with the GAMMASPHERE. These targets were plated on 50 mg/cm 2 Au backing and were covered with 150 microg/cm 2 Au foil. Targets of 239 Pu, 240 Pu, 242 Pu, 244 Pu and 248 Cm were prepared by dissolving the material in isopropyl alcohol and electroplating the actinide ions by applying 600 volts. The amount of these materials on the target was determined by alpha particle counting and gamma ray counting. Details of the molecular plating and counting will be discussed

  5. Fluorescent molecular probes based on excited state prototropism in lipid bilayer membrane

    Science.gov (United States)

    Mohapatra, Monalisa; Mishra, Ashok K.

    2012-03-01

    Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.

  6. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation.

    Science.gov (United States)

    Lin, Huiyun; Zhang, Rongxiao; Gunn, Jason R; Esipova, Tatiana V; Vinogradov, Sergei; Gladstone, David J; Jarvis, Lesley A; Pogue, Brian W

    2016-05-21

    Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600-900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5

  7. Realisation and crossed molecular beams study of H2/O chemical reactions at several excited states

    International Nuclear Information System (INIS)

    Marx, Jacqueline

    1986-01-01

    This work is devoted to the study of the reactive collision O + H 2 OH + H in a crossed beam experiment. This process including several channels taken a part in the chemistry of the upper atmosphere as well as in the combustion of hydrogen. According to the electronic or vibrational state of the reactants, the OH radical is produced in its ground electronic state OH (X 2 π) or in its first excited state OH (A 2 Σ + ). When the reactants are in their ground state, the reaction is endothermic in the conditions of the experiment (center of mass kinetic energy ≅ 0.12 eV). The following reactions have been obtained: O( 1 D) +H 2 (v=O) → OH (X 2 π) +H( 2 S) and O( 1 D) +H 2 (v≥5) → OH (A 2 Σ + ) +H( 2 S). The atomic oxygen is produced in its excited state O( 1 D) in a radio-frequency discharge which dissociates the molecular oxygen seeded in a carrier gas (He or Ar) and the hydrogen molecules are excited vibrationally by electron bombardment. The first reaction is studied by time-of-flight measurements. In this way, it has been possible to observe the different vibrational levels on which the OH radical is produced. The analysis of this vibrational distribution shows the competition between the abstraction and insertion-dissociation mechanisms. In the second reaction, the analysis of the spontaneous fluorescence of OH (A 2 Σ + ) reveals a very hot and non-Boltzmann rotational excitation. (author) [fr

  8. Parity dependence of the nuclear level density at high excitation

    International Nuclear Information System (INIS)

    Rao, B.V.; Agrawal, H.M.

    1995-01-01

    The basic underlying assumption ρ(l+1, J)=ρ(l, J) in the level density function ρ(U, J, π) has been checked on the basis of high quality data available on individual resonance parameters (E 0 , Γ n , J π ) for s- and p-wave neutrons in contrast to the earlier analysis where information about p-wave resonance parameters was meagre. The missing level estimator based on the partial integration over a Porter-Thomas distribution of neutron reduced widths and the Dyson-Mehta Δ 3 statistic for the level spacing have been used to ascertain that the s- and p-wave resonance level spacings D(0) and D(1) are not in error because of spurious and missing levels. The present work does not validate the tacit assumption ρ(l+1, J)=ρ(l, J) and confirms that the level density depends upon parity at high excitation. The possible implications of the parity dependence of the level density on the results of statistical model calculations of nuclear reaction cross sections as well as on pre-compound emission have been emphasized. (orig.)

  9. Molecular gas in dusty high-redshift galaxies

    Science.gov (United States)

    Sharon, Chelsea Electra

    2013-12-01

    We present high-resolution observations of carbon monoxide (CO) emission lines for three high-redshift galaxies in order to determine their molecular gas and star formation properties. These galaxies (SMM J14011+0252, SMM J00266+1708, and SDSS J0901+1814) have large infrared luminosities, which imply high dust enshrouded star formation rates and substantial molecular gas masses. We observed these sources using the Robert C. Byrd Green Bank Telescope, the Karl G. Jansky Very Large Array, the Plateau de Bure Interferometer, and the Submillimeter Array in order to obtain measurements of multiple CO spectral lines, allowing us to determine the physical conditions of the molecular gas. Our high resolution and multi-line CO mapping of SMM J00266+1708 reveals that it is a pair of merging galaxies, whose two components have different gas excitation conditions and different gas kinematics. For SMM J14011+0252 (J14011), we find a near-unity CO(3--2)/CO(1--0) intensity ratio, consistent with a single phase (i.e., a single temperature and density) of molecular gas and different from the average population value for dusty galaxies selected at submillimeter wavelengths. Our radiative transfer modeling (using the large velocity gradient approximation) indicates that converting the CO line luminosity to molecular gas mass requires a Galactic (disk-like) scale factor rather than the typical conversion factor assumed for starbursts. Despite this choice of conversion factor, J14011 falls in the same region of star formation rate surface density and gas mass surface density (the Schmidt-Kennicutt relation) as other starburst galaxies. SDSS J0901+1814 (J0901) was initially selected as a star-forming galaxy at ultraviolet wavelengths, but also has a large infrared luminosity. We use the magnification provided by the strong gravitational lensing affecting this system to examine the spatial variation of the CO excitation within J0901. We find that the CO(3--2)/CO(1--0) line ratio is

  10. Excitation and ionization of highly charged ions by electron impact

    International Nuclear Information System (INIS)

    Sampson, D.H.

    1989-01-01

    Two approaches for very rapid calculation of atomic data for high temperature plasma modeling have been developed. The first uses hydrogenic basis states and has been developed and applied in many papers discussed in previous progress reports. Hence, it is only briefly discussed here. The second is a very rapid, yet accurate, fully relativistic approach that has been developed over the past two or three years. It is described in more detail. Recently it has been applied to large scale production of atomic data. Specifically, it has been used to calculate relativistic distorted wave collision strengths and oscillator strengths for the following: all transitions from the ground level to the n=3 and 4 excited levels in the 71 Neon-like ions with nuclear charge number Z in the range 22 ≤ Z ≤ 92; all transitions among the 2s 1/2 , 2p 1/2 and 2p 3/2 levels and from them to all nlj levels with n=3,4 and 5 in the 85 Li-like ions with 8 ≤ Z ≤ 92; all transitions among the 3s 1/2 , 3p 3/2 , 3d 3/2 and 3d 5/2 levels and from them to all nlj levels with n=4 and 5 in the 71 Na-like ions with 22 ≤ Z ≤ 92; and all transitions among 4s 1/2 , 4p 1/2 , 4p 3/2 , 4d 3/2 , 4d 5/2 , 4f 5/2 and 4f 7/2 levels and from them to all nlj levels with n=5 in the 33 Cu-like ions with 60 ≤ Z ≤ 92. Also the program has been extended to give cross-sections for excitation to specific magnetic sublevels of the target ion by an electron beam and very recently it has been extended to give relativistic distorted wave cross sections for ionization of highly charged ions by electron impact

  11. Neutron emission probability at high excitation and isospin

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2005-01-01

    One-neutron and two-neutron emission probability at different excitations and varying isospin have been studied. Several degrees of freedom like deformation, rotations, temperature, isospin fluctuations and shell structure are incorporated via statistical theory of hot rotating nuclei

  12. Collective, stochastic and nonequilibrium behavior of highly excited hadronic matter

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, P [Los Alamos National Lab., NM (USA). Theoretical Div.

    1984-04-23

    We discuss selected problems concerning the dynamics and stochastic behavior of highly excited matter, particularly the QCD plasma. For the latter we consider the equation of state, kinetics, quasiparticles, flow properties and possible chaos and turbulence. The promise of phase space distribution functions for covariant transport and kinetic theory is stressed. The possibility and implications of a stochastic bag are spelled out. A simplified space-time model of hadronic collisions is pursued, with applications to A-A collisions and other matters. The domain wall between hadronic and plasma phase is of potential importance: its thickness and relation to surface tension is noticed. Finally, we review the recently developed stochastic cell model of multiparticle distributions and KNO scaling. This topic leads to the notion that fractional dimensions are involved in a rather general dynamical context. We speculate that various scaling phenomena are independent of the full dynamical structure, depending only on a general stochastic framework having to do with simple maps and strange attractors. 42 refs.

  13. Collective, stochastic and nonequilibrium behavior of highly excited hadronic matter

    International Nuclear Information System (INIS)

    Carruthers, P.

    1983-01-01

    We discuss selected problems concerning the dynamic and stochasticc behavior of highly excited matter, particularly the QCD plasma. For the latter we consider the equation of state, kinetics, quasiparticles, flow properties and possible chaos and turbulence. The promise of phase space distribution functions for covariant transport and kinetic theory is stressed. The possibility and implications of a stochastic bag are spelled out. A simplified space-time model of hadronic collisions is pursued, with applications to A-A collisions and other matters. The domain wall between hadronic and plasma phase is of potential importance: its thickness and relation to surface tension are noticed. Finally we reviewed the recently developed stochastic cell model of multiparticle distributions and KNO scaling. This topic leads to the notion that fractal dimensions are involved in a rather general dynamical context. We speculate that various scaling phenomena are independent of the full dynamical structure, depending only on a general stochastic framework having to do with simple maps and strange attractors. 42 references

  14. Cold excitation and determination of hydrogen sulfide by dielectric barrier discharge molecular emission spectrometry.

    Science.gov (United States)

    Wu, Zhongchen; Jiang, Jie; Li, Na

    2015-11-01

    A low-temperature microplasma generated in a dielectric barrier discharge (DBD) was used as a radiation source for the excitation of hydrogen sulfide and its determination by molecular emission spectrometry (MES). The excitation/emission chamber was enclosed to eliminate spectral interference from ambient air. The spectral emission lines of hydrogen sulfide were clearly discriminated from the background spectrum, and the emission line at 365.06 nm was selected for parameter optimization and quantitative analysis. The S(2-) ions in aqueous samples were reacted with acid to generate hydrogen sulfide and then determined. The experimental parameters affecting the determination of hydrogen sulfide and S(2-) were optimized. The limits of detection were 1.4 mg m(-3) for H2S and 11.2 mg L(-1) for S(2-). The repeatability of the method was satisfactory, as the RSD values were 2.3% for H2S and 1.8% for S(2-). The enclosed DBD-MES system was demonstrated to be a useful tool for the determination of hydrogen sulfide in gas samples and S(2-) in aqueous samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Excitation of Molecular Hydrogen in the Orion Bar Photodissociation Region from a Deep Near-infrared IGRINS Spectrum

    Science.gov (United States)

    Kaplan, Kyle F.; Dinerstein, Harriet L.; Oh, Heeyoung; Mace, Gregory N.; Kim, Hwihyun; Sokal, Kimberly R.; Pavel, Michael D.; Lee, Sungho; Pak, Soojong; Park, Chan; Sok Oh, Jae; Jaffe, Daniel T.

    2017-04-01

    We present a deep near-infrared spectrum of the Orion Bar Photodissociation Region (PDR) taken with the Immersion Grating INfrared Spectrometer (IGRINS) on the 2.7 m telescope at the McDonald Observatory. IGRINS has high spectral resolution (R˜ {{45,000}}) and instantaneous broad wavelength coverage (1.45-2.45 μm), enabling us to detect 87 emission lines from rovibrationally excited molecular hydrogen (H2) that arise from transitions out of 69 upper rovibration levels of the electronic ground state. These levels cover a large range of rotational and vibrational quantum numbers and excitation energies, making them excellent probes of the excitation mechanisms of H2 and physical conditions within the PDR. The Orion Bar PDR is thought to consist of cooler high density clumps or filaments (T=50{--}250 K, {n}H={10}5{--}{10}7 cm-3) embedded in a warmer lower density medium (T=250{--}1000 K, {n}H={10}4{--}{10}5 cm-3). We fit a grid of constant temperature and density Cloudy models, which recreate the observed H2 level populations well, to constrain the temperature to a range of 600-650 K and the density to {n}H=2.5× {10}3{--}{10}4 cm-3. The best-fit model gives T = 625 K and {n}H=5× {10}3 cm-3. This well-constrained warm temperature is consistent with kinetic temperatures found by other studies for the Orion Bar’s lower density medium. However, the range of densities well fit by the model grid is marginally lower than those reported by other studies. We could be observing lower density gas than the surrounding medium, or perhaps a density-sensitive parameter in our models is not properly estimated.

  16. Charge transfer and excitation in high-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Berkner, K.H.; McDonald, R.J.

    1986-11-01

    Coincidence measurements of charge transfer and simultaneous projectile electron excitation provide insight into correlated two-electron processes in energetic ion-atom collisions. Projectile excitation and electron capture can occur simultaneously in a collision of a highly charged ion with a target atom; this process is called resonant transfer and excitation (RTE). The intermediate excited state which is thus formed can subsequently decay by photon emission or by Auger-electron emission. Results are shown for RTE in both the K shell of Ca ions and the L shell of Nb ions, for simultaneous projectile electron loss and excitation, and for the effect of RTE on electron capture

  17. In situ detection of atomic and molecular iodine using Resonance and Off-Resonance Fluorescence by Lamp Excitation: ROFLEX

    Directory of Open Access Journals (Sweden)

    J. C. Gómez Martín

    2011-01-01

    Full Text Available We demonstrate a new instrument for in situ detection of atmospheric iodine atoms and molecules based on atomic and molecular resonance and off-resonance ultraviolet fluorescence excited by lamp emission. The instrument combines the robustness, light weight, low power consumption and efficient excitation of radio-frequency discharge light sources with the high sensitivity of the photon counting technique. Calibration of I2 fluorescence is achieved via quantitative detection of the molecule by Incoherent Broad Band Cavity-enhanced Absorption Spectroscopy. Atomic iodine fluorescence signal is calibrated by controlled broad band photolysis of known I2 concentrations in the visible spectral range at atmospheric pressure. The instrument has been optimised in laboratory experiments to reach detection limits of 1.2 pptv for I atoms and 13 pptv for I2, for S/N = 1 and 10 min of integration time. The ROFLEX system has been deployed in a field campaign in northern Spain, representing the first concurrent observation of ambient mixing ratios of iodine atoms and molecules in the 1–350 pptv range.

  18. Preparation of actinide targets by molecular plating for coulomb excitation studies at ATLAS

    CERN Document Server

    Greene, J P; Ahmad, I

    1999-01-01

    Molecular plating is now routinely used to prepare sources and targets of actinide elements. Although the technique is simple and fairly reproducible, because of the radioactive nature of the targets, it is very useful to record various parameters in the preparation process. At Argonne, approx 200 mu g/cm sup 2 thick targets of Pu and Cm were required for Coulomb Excitation (COULEX) studies with the Argonne-Notre Dame boron germanate (BGO) gamma-ray facility and later with the GAMMASPHERE. These targets were plated on 50 mg/cm sup 2 Au backings and were covered with 150 mu g/cm sup 2 Au foil. Targets of sup 2 sup 3 sup 9 Pu, sup 2 sup 4 sup 0 Pu, sup 2 sup 4 sup 2 Pu, sup 2 sup 4 sup 4 Pu and sup 2 sup 4 sup 8 Cm were prepared by dissolving the material in isopropyl alcohol and electroplating the actinide ions by applying 600 V. The amount of these materials on the target was determined by alpha particle counting and gamma-ray counting. Details of the molecular plating and counting will be discussed.

  19. Realistic level densities in fragment emission at high excitation energies

    International Nuclear Information System (INIS)

    Mustafa, M.G.; Blann, M.; Ignatyuk, A.V.

    1993-01-01

    Heavy fragment emission from a 44 100 Ru compound nucleus at 400 and 800 MeV of excitation is analyzed to study the influence of level density models on final yields. An approach is used in which only quasibound shell-model levels are included in calculating level densities. We also test the traditional Fermi gas model for which there is no upper energy limit to the single particle levels. We compare the influence of these two level density models in evaporation calculations of primary fragment excitations, kinetic energies and yields, and on final product yields

  20. Consideration on excitation mechanisms in a high-power two-jet plasma

    International Nuclear Information System (INIS)

    Zaksas, Natalia P.; Gerasimov, Vladimir A.

    2013-01-01

    The study of excitation mechanisms in the region before the jet confluence of a high-power two-jet plasma used for analysis of different powders has been undertaken. Distribution of excited levels of Fe atoms and ions according to the Boltzmann population was found. Measuring Fe atomic and ionic excitation temperatures showed their considerable difference (≈ 2000–2500 K). The effect of argon on line intensities of a wide range of elements was investigated by the experiment with argon covering. A negligible effect of argon covering on line intensities of atoms with ionization energy of 8 eV was revealed. This is likely to be due to Penning ionization by metastable argon followed by ion recombination with an electron and stepwise de-excitations. A more pronounced effect of argon covering was observed for ionic lines of investigated elements with total excitation energy ranging from 11 to 21 eV. Penning ionization followed by electron impact is believed to be a probable mechanism for ion excitation. The contribution of metastable argon to excitation processes results in departure from local thermodynamic equilibrium and different atomic and ionic excitation temperatures. - Highlights: • Excitation mechanisms were investigated in a high-power TJP. • Boltzmann population of excited levels of Fe atoms and ions takes place. • The considerable difference in Fe atomic and ionic excitation temperatures occurs. • Argon covering was used to study the argon effect on line intensities. • Participation of metastable argon in atom ionization was shown

  1. Study of high-j neutron excitations outside 136Xe

    Science.gov (United States)

    Talwar, R.; Kay, B. P.; Mitchell, A. J.; Adachi, S.; Entwisle, J. P.; Fujita, Y.; Gey, G.; Noji, S.; Ong, H. J.; Schiffer, J. P.; Tamii, A.

    2017-09-01

    The character of single-neutron excitations outside of N = 82 has been studied using nucleon transfer reactions in terms of the energy centroid of their strength as well as the fragmentation of this strength among the actual states of the nucleus. However, extending the systematic study of the N = 83 isotones to 137Xe has been challenging due to xenon being a gas at room temperature. Though several attempts have been made, a quantitative determination of the spectroscopic factors for the neutron 9/2- and 13/2+ excitations in 137Xe is still lacking. In the present work, we report on a study of the 136Xe(α,3He)137Xe reaction carried out at 100 MeV to probe the l = 5 , 9/2- and l = 6 , 13/2+ single-neutron excitations. The experimental technique and results will be presented discussing them in context of the evolution of these single-neutron excitations and the influence of the tensor interaction on the neutron single-particle states as the proton orbits are filling. This work has been supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357, the Australian Research Council Discovery Project 120104176, and the UK Science and Technology Facilities.

  2. Luminescence decay in condensed argon under high energy excitation

    International Nuclear Information System (INIS)

    Carvalho, M.J.; Klein, G.

    1978-01-01

    α and β particles were used to study the luminescence of condensed argon. The scintillation decay has always two components independently of the phase and the kind of the exciting particles. Decay time constants are given for solid, liquid and also gaseous argon. Changes in the relative intensity values of the two components are discussed in terms of track effects

  3. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    of sea state parameters — influence of filtering. Ocean Engineering 2007;34:1797–810.], where time series of ship responses were generated from a known wave spectrum for the purpose of the inverse process — the estimation of the underlying wave excitations. Similar response generations and vice versa...

  4. Trajectory study of supercollision relaxation in highly vibrationally excited pyrazine and CO2.

    Science.gov (United States)

    Li, Ziman; Sansom, Rebecca; Bonella, Sara; Coker, David F; Mullin, Amy S

    2005-09-01

    Classical trajectory calculations were performed to simulate state-resolved energy transfer experiments of highly vibrationally excited pyrazine (E(vib) = 37,900 cm(-1)) and CO(2), which were conducted using a high-resolution transient infrared absorption spectrometer. The goal here is to use classical trajectories to simulate the supercollision energy transfer pathway wherein large amounts of energy are transferred in single collisions in order to compare with experimental results. In the trajectory calculations, Newton's laws of motion are used for the molecular motion, isolated molecules are treated as collections of harmonic oscillators, and intermolecular potentials are formed by pairwise Lennard-Jones potentials. The calculations qualitatively reproduce the observed energy partitioning in the scattered CO(2) molecules and show that the relative partitioning between bath rotation and translation is dependent on the moment of inertia of the bath molecule. The simulations show that the low-frequency modes of the vibrationally excited pyrazine contribute most to the strong collisions. The majority of collisions lead to small DeltaE values and primarily involve single encounters between the energy donor and acceptor. The large DeltaE exchanges result from both single impulsive encounters and chattering collisions that involve multiple encounters.

  5. Effect of high-frequency excitation on natural frequencies of spinning discs

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2000-01-01

    The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural frequenc......The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural...

  6. Aspects of data on the breakup of highly excited nuclei

    International Nuclear Information System (INIS)

    Warwick, A.I.; Wieman, H.H.; Gutbrod, H.H.; Ritter, H.G.; Stelzer, H.; Weik, F.; Kaufman, S.B.; Steinberg, E.P.; Wilkins, B.D.

    1983-05-01

    There is an awakening of theoretical interest in the mechanisms by which nuclear fragments (4 less than or equal to A less than or equal to 150) are produced in violent collisions of heavy ions. With this in mind we review some aspects of the available experimental data and point out some challenging features against which to test the models. The concept of evaporation is tremendously powerful when applied to pieces of nuclei of low excitation (1 or 2 MeV/u). Current interest focuses on higher excitations, at the point where the binding energy of the system vanishes. This is the transition from liquid nuclei to a gas of nucleons, and it may be that the critical phenomena that certainly exist in infinite nuclear matter will be manifest in finite nuclei under these conditions

  7. Superconductivity and charge transfer excitations in high Tc superconductors

    International Nuclear Information System (INIS)

    Balseiro, C.A.; Alascio, B.; Gagliano, E.; Rojo, A.

    1988-01-01

    We present some numerical results to show that in a simple model which includes Cu 3d and O 2p orbitals together with inter and intra atomic correlations pairing between holes can occur due to charge transfer excitations. We present also a simple approximation to derive an effective Hamiltonian containing an interaction between particles which is attractive for some values of the different microscopic parameters

  8. Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Yukihira, Nao [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Sugai, Yuko [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Fujiwara, Masazumi [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Kosumi, Daisuke [Institute of Pulsed Power Science; Kumamoto University; Kumamoto; Japan; Iha, Masahiko [South Product Co. Ltd.; Uruma-shi; Japan; Sakaguchi, Kazuhiko [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Katsumura, Shigeo [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Gardiner, Alastair T. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Cogdell, Richard J. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Hashimoto, Hideki [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan

    2017-01-01

    Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (~95%) energy-transfer from fucoxanthin to chlorophyllain the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin into a light-harvesting complex 1 from the purple photosynthetic bacterium,Rhodospirillum rubrumG9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyllawhen they are bound to the light-harvesting 1 apo-proteins.

  9. Transport coefficients in high-temperature ionized air flows with electronic excitation

    Science.gov (United States)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  10. Luminescence of CsPbBr3 films under high-power excitation

    OpenAIRE

    高橋, 一彰; 斎藤, 忠昭; 近藤, 新一; 浅田, 拡志

    2004-01-01

    Highly excited photoluminescence of CsPbBr3 has been measured for thin films prepared by crystallization from the amorphous phase into microcrystalline/ polycrystalline states. With the increase of excitation intensity, there occurs jumping of the dominant emission band from a free-exciton band to a new band originating from exciton-exciton inelastic collision. Stimulated emission is observed for the new band at very low threshold excitation intensities of the order of 10kW/cm2.

  11. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  12. A coherent modified Redfield theory for excitation energy transfer in molecular aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Hwang-Fu, Yu-Hsien; Chen, Wei; Cheng, Yuan-Chung, E-mail: yuanchung@ntu.edu.tw

    2015-02-02

    Highlights: • A CMRT method for coherent energy transfer in molecular aggregates was developed. • Applicability of the method was verified in two-site systems with various parameters. • CMRT accurately describes population dynamics in the FMO-complex. • The method is accurate in a large parameter space and computationally efficient. - Abstract: Excitation energy transfer (EET) is crucial in photosynthetic light harvesting, and quantum coherence has been recently proven to be a ubiquitous phenomenon in photosynthetic EET. In this work, we derive a coherent modified Redfield theory (CMRT) that generalizes the modified Redfield theory to treat coherence dynamics. We apply the CMRT method to simulate the EET in a dimer system and compare the results with those obtained from numerically exact path integral calculations. The comparison shows that CMRT provides excellent computational efficiency and accuracy within a large EET parameter space. Furthermore, we simulate the EET dynamics in the FMO complex at 77 K using CMRT. The results show pronounced non-Markovian effects and long-lasting coherences in the ultrafast EET, in excellent agreement with calculations using the hierarchy equation of motion approach. In summary, we have successfully developed a simple yet powerful framework for coherent EET dynamics in photosynthetic systems and organic materials.

  13. High Strength Structures by Carbon Nanotube Resonant Excitation

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to explore approaches to activate CNTs to draw in molecular species that induce bond formation to bridge the tubes. Besides having...

  14. Statistical and direct decay of high-lying single-particle excitations

    International Nuclear Information System (INIS)

    Gales, S.

    1993-01-01

    Transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of high-lying excitations embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by microscopic nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured particle (n,p) decay branching ratios. The neutron and proton decay studies of high-lying single-particle states in heavy nuclei are presented. (author). 13 refs., 9 figs

  15. High-j neutron excitations outside 136Xe

    Science.gov (United States)

    Talwar, R.; Kay, B. P.; Mitchell, A. J.; Adachi, S.; Entwisle, J. P.; Fujita, Y.; Gey, G.; Noji, S.; Ong, H. J.; Schiffer, J. P.; Tamii, A.

    2017-08-01

    The ν 0 h9 /2 and ν 0 i13 /2 strength at 137Xe, a single neutron outside the N =82 shell closure, has been determined using the 136Xe(α ,3He)137Xe reaction carried out at 100 MeV. We confirm the recent observation of the second 13 /2+ state and reassess previous data on the 9 /2- states, obtaining spectroscopic factors. These new data provide additional constraints on predictions of the same single-neutron excitations at 133Sn.

  16. What Lurks in ULIRGs?—Probing the Chemistry and Excitation of Molecular Gas in the Nuclei of Arp 220 and NGC 6240

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, Swarnima; Scoville, Nick [California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2017-02-01

    We have imaged the dense star-forming regions of Arp 220 and NGC 6240 in the 3 mm band transitions of CO, HCN, HCO{sup +}, HNC, and CS at 0.″5–0.″8 resolution using CARMA. Our data set images all these lines at similar resolutions and high sensitivity, and can be used to derive line ratios of faint high excitation lines. In both the nuclei of Arp 220, the HCN/HNC ratios suggest chemistry of X-ray Dominated Regions (XDRs)—a likely signature of an active galactic nucleus. In NGC 6240, there is no evidence of XDR type chemistry, but there the bulk of the molecular gas is concentrated between the nuclei rather than on them. We calculated molecular H{sub 2} densities from excitation analysis of each of the molecular species. It appears that the abundances of HNC and HCO{sup +} in Ultra Luminous Infrared Galaxies may be significantly different from those in galactic molecular clouds. The derived H{sub 2} volume densities are ∼5 × 10{sup 4} cm{sup −3} in the Arp 220 nuclei and ∼10{sup 4} cm{sup −3} in NGC 6240.

  17. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations.

    Science.gov (United States)

    van Meer, R; Gritsenko, O V; Baerends, E J

    2014-10-14

    In recent years, several benchmark studies on the performance of large sets of functionals in time-dependent density functional theory (TDDFT) calculations of excitation energies have been performed. The tested functionals do not approximate exact Kohn-Sham orbitals and orbital energies closely. We highlight the advantages of (close to) exact Kohn-Sham orbitals and orbital energies for a simple description, very often as just a single orbital-to-orbital transition, of molecular excitations. Benchmark calculations are performed for the statistical average of orbital potentials (SAOP) functional for the potential [J. Chem. Phys. 2000, 112, 1344; 2001, 114, 652], which approximates the true Kohn-Sham potential much better than LDA, GGA, mGGA, and hybrid potentials do. An accurate Kohn-Sham potential does not only perform satisfactorily for calculated vertical excitation energies of both valence and Rydberg transitions but also exhibits appealing properties of the KS orbitals including occupied orbital energies close to ionization energies, virtual-occupied orbital energy gaps very close to excitation energies, realistic shapes of virtual orbitals, leading to straightforward interpretation of most excitations as single orbital transitions. We stress that such advantages are completely lost in time-dependent Hartree-Fock and partly in hybrid approaches. Many excitations and excitation energies calculated with local density, generalized gradient, and hybrid functionals are spurious. There is, with an accurate KS, or even the LDA or GGA potentials, nothing problematic about the "band gap" in molecules: the HOMO-LUMO gap is close to the first excitation energy (the optical gap).

  18. Excitation of atoms and molecules in collisions with highly charged ions

    International Nuclear Information System (INIS)

    Watson, R.L.

    1993-01-01

    A study of the double ionization of He by high-energy N 7+ ions was extended up in energy to 40 MeV/amu. Coincidence time-of-flight studies of multicharged N 2 , O 2 , and CO molecular ions produced in collisions with 97-MeV Ar 14+ ions were completed. Analysis of the total kinetic energy distributions and comparison with the available data for CO 2+ and CO 3+ from synchrotron radiation experiments led to the conclusion that ionization by Ar-ion impact populates states having considerably higher excitation energies than those accessed by photoionization. The dissociation fractions for CO 1+ and CO 2+ molecular ions, and the branching ratios for the most prominent charge division channels of CO 2+ through CO 7+ were determined from time-of-flight singles and coincidence data. An experiment designed to investigate the orientation dependence of dissociative multielectron ionization of molecules by heavy ion impact was completed. Measurements of the cross sections for K-shell ionization of intermediate-Z elements by 30-MeV/amu H, N, Ne, and Ar ions were completed. The cross sections were determined for solid targets of Z = 13, 22, 26, 29, 32, 40, 42, 46, and 50 by recording the spectra of K x rays with a Si(Li) spectrometer

  19. Fission of highly excited nuclei investigated in complete kinematic measurements

    International Nuclear Information System (INIS)

    Rodriguez-Sanchez, J. L.; Benlliure, J.; Taieb, J.; Avarez-Pol, H.; Audouin, L.; Ayyad, Y.; Belier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelic-Heil, A.; Kurz, N.; Laurent, B.; Martin, J. F.; Paradela, C.; Pellereau, E.; Pietras, B.; Prochazka, A.; Ramos, D.; Rodriguez-Tajes, C.; Rossi, D.; Simon, H.; Tassan-Got, L.; Vargas, J.; Voss, B.

    2013-01-01

    Fission is an extremely complex mechanism that requires a dynamical approach to describe the evolution of the process in terms of intrinsic and collective excitations of the nuclear constituents. In order to determine these effects a complex experimental setup was mounted at GSI, which allowed us for the first time the full identification in charge and mass of all fission fragments thanks to a magnetic separation and the use of the inverse kinematic technique. Moreover, we also measured the neutron multiplicities and the light-charged particles emitted in coincidence with fission. These complete kinematic measurements will be used to define sensitive observables to dissipative and transient effects in fission. In this manuscript we present the first results for the total fission cross sections. (authors)

  20. High Molecular Weight Melanoidins from Coffee Brew

    NARCIS (Netherlands)

    Bekedam, E.K.; Schols, H.A.; Boekel, van T.; Smit, G.

    2006-01-01

    The composition of high molecular weight (HMw) coffee melanoidin populations, obtained after ethanol precipitation, was studied. The specific extinction coefficient (Kmix) at 280, 325, 405 nm, sugar composition, phenolic group content, nitrogen content, amino acid composition, and non-protein

  1. Molecular Excitation Energies from Time-Dependent Density Functional Theory Employing Random-Phase Approximation Hessians with Exact Exchange.

    Science.gov (United States)

    Heßelmann, Andreas

    2015-04-14

    Molecular excitation energies have been calculated with time-dependent density-functional theory (TDDFT) using random-phase approximation Hessians augmented with exact exchange contributions in various orders. It has been observed that this approach yields fairly accurate local valence excitations if combined with accurate asymptotically corrected exchange-correlation potentials used in the ground-state Kohn-Sham calculations. The inclusion of long-range particle-particle with hole-hole interactions in the kernel leads to errors of 0.14 eV only for the lowest excitations of a selection of three alkene, three carbonyl, and five azabenzene molecules, thus surpassing the accuracy of a number of common TDDFT and even some wave function correlation methods. In the case of long-range charge-transfer excitations, the method typically underestimates accurate reference excitation energies by 8% on average, which is better than with standard hybrid-GGA functionals but worse compared to range-separated functional approximations.

  2. International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.

    Science.gov (United States)

    Aller, L H; Keyes, C D

    1980-03-01

    Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation.

  3. Structure of high excited nuclear states and elastic scattering

    International Nuclear Information System (INIS)

    Zhivopistsev, F.A.; Rzhevskij, E.S.

    1979-01-01

    An approach to a unified description of nuclear reactions and nuclear structure based on the formalism of the quantum Green functions and on the ideas of the theory of finite Fermi systems has been formulated. New structural vertices are introduced, which are responsible for nucleon collectivization in an atomic nucleus and for the excitation of many-phonon, quasideuteron, quasitriton and other configurations. The vertices define both the processes of particle scattering by atomic nuclei (T matrix and optical potentials) and the nuclear structure (secular equations and wave functions). The vertices are determined from the equations with effective many-particle forces Fsub(nm)sup(c). In their turn the Fsub(nm)sup(c) forces are either determined from a comparison of theory and experiment, or calculated from the equations with more fundamental nucleon-nucleon forces in a nucleus. The effective forces Fsub(nm)sup(c) are more universal than the constants of the theory of finite Fermi-systems, which extends the boundaries of applicability of the particle-hole formalism in the description of nuclear processes. In this approach the traditional methods of description of the nuclear structure, based on particular models of hamiltonian and wave functions, acquire a natural interpretation

  4. The character of resonant charge exchange involving highly excited atoms

    International Nuclear Information System (INIS)

    Kosarim, A. V.; Smirnov, B. M.; Capitelli, M.; Laricchiuta, A.

    2012-01-01

    We study the process of resonant charge exchange involving excited helium atoms with the principal quantum number n = 5 colliding with the helium ion in the ground state in the collision energy range from thermal up to 10 eV. This information may be important for the analysis of planet atmospheres containing helium, in particular, for Jupiter’s atmosphere, but our basic interest is the transition from the quantum to classical description of this process, where, due to large cross sections, evaluations of the cross sections are possible. For the chosen process, quantum theory allows determining the cross section as a result of a tunnel electron transition, while classical theory accounts for over-barrier electron transitions. The classical theory additionally requires effective transitions between states with close energies. The analysis of these transitions for helium with n = 5 shows that electron momenta and their projections are mixed for a part of the states, while for other states, the mixing is absent. A simple criterion to separate such states is given. In addition, the main contribution to the cross section of resonant charge exchange follows from tunnel electron transitions. As a result, the quantum theory is better for calculating the cross sections of resonant charge exchange than the classical one and also allows finding the partial cross sections of resonant charge exchange, while the classical approach gives the cross section of resonant charge exchange in a simple manner with the accuracy of 20%.

  5. Study of the giant dipole resonance built on highly excited states in Sn and Dy nuclei

    International Nuclear Information System (INIS)

    Stolk, A.

    1988-01-01

    A study is presented of the giant dipole resonance built on highly excited states. The aim is to get more detailed information on the properties of the GDR and to use it as a tool for the investigation of nuclear structure at high excitation energy. The high energy γ-rays seen from the decay of excited state GDRs in heavy ion fusion reactions reflect the average properties of the states populated by the γ-emission. The measurements at different initial excitation energies of 114 Sn provide information on the nuclear level density near the particle separation energy at an average angular momentum of 10ℎ. The study of shape changes at very high spin in 152-156 Dy nuclei is presented. A theoretical model developed to describe fusion-evaporation reactions is presented. 149 refs.; 63 figs.; 13 tabs

  6. Proceedings of the 1984 workshop on high-energy excitations in condensed matter. Volume II

    International Nuclear Information System (INIS)

    Silver, R.N.

    1984-12-01

    This volume covers electronic excitations, momentum distributions, high energy photons, and a wrap-up session. Abstracts of individual items from the conference were prepared separately for the data base

  7. Continuum emission of excited sodium dimer

    International Nuclear Information System (INIS)

    Pardo, A.; Poyato, J.M.L.; Alonso, J.I.; Rico, F.R.

    1980-01-01

    A study has been made of the behaviour of excited molecular sodium using high-power Ar + laser radiation. A continuum emission was observed in the red wavelength region. This emission was thought to be caused by the formation of excited triatomic molecules. Energy transfer was observed from excited molecules to atoms. (orig.)

  8. Acoustic properties of perforates under high level multi-tone excitation

    OpenAIRE

    Bodén, Hans

    2013-01-01

    This paper discusses the effect of high level multi-tone acoustic excitation on the acoustic properties of perforates. It is based on a large experimental study of the nonlinear properties of these types of samples without mean grazing or bias flow. Compared to previously published results the present investigation concentrates on the effect of multiple harmonics. It is known from previous studies that high level acoustic excitation at one frequency will change the acoustic impedance of perfo...

  9. Photoionization study of doubly-excited helium at ultra-high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kaindl, G.; Schulz, K.; Domke, M. [Freie Universitaet Berlin (Germany)] [and others

    1997-04-01

    Ever since the pioneering work of Madden & Codling and Cooper, Fano & Prats on doubly-excited helium in the early sixties, this system may be considered as prototypical for the study of electron-electron correlations. More detailed insight into these states could be reached only much later, when improved theoretical calculations of the optically-excited {sup 1}P{sup 0} double-excitation states became available and sufficiently high energy resolution ({delta}E=4.0 meV) was achieved. This allowed a systematic investigation of the double-excitation resonances of He up to excitation energies close to the double-ionization threshold, I{sub infinity}=79.003 eV, which stimulated renewed theoretical interest into these correlated electron states. The authors report here on striking progress in energy resolution in this grazing-incidence photon-energy range of grating monochromators and its application to hitherto unobservable states of doubly-excited He. By monitoring an extremely narrow double-excitation resonance of He, with a theoretical lifetime width of less than or equal to 5 {mu}eV, a resolution of {delta}E=1.0 meV (FWHM) at 64.1 eV could be achieved. This ultra-high spectral resolution, combined with high photon flux, allowed the investigation of new Rydberg resonances below the N=3 ionization threshold, I{sub 3}, as well as a detailed comparison with ab-initio calculations.

  10. Production of autoionizing di-excited states of barium with high angular momentum

    International Nuclear Information System (INIS)

    Roussel, F.; Breger, P.; Gounand, F.; Spiess, G.

    1988-01-01

    Autoionizing di-excited states Ba(6p 1/2 27l) with 7 ≤l≤26, have been experimentally detected. They have been produced by a method combining excitation by two lasers and l-mixing collisions between barium and xenon. Results show that a long delay between the two laser excitation steps is favourable to the production of these states. The method has proved to be very efficient (measured cross-section: σ = 3.1 . 10 -13 cm 2 ) for populating high-angular-momentum autoionizing states of barium

  11. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  12. Electromagnetic radiation of ultrarelativistic particles at scattering in excited medium

    International Nuclear Information System (INIS)

    Malyshevskij, V.S.

    1990-01-01

    The interaction between relativistic particles and a gaseous or condensed medium with a high density of nondegenerate excited quantum states involves the coherent conversion of atomic or molecular excitations into electromagnetic radiation

  13. Dynamical coupling of plasmons and molecular excitations by hybrid quantum/classical calculations: time-domain approach

    International Nuclear Information System (INIS)

    Sakko, Arto; Rossi, Tuomas P; Nieminen, Risto M

    2014-01-01

    The presence of plasmonic material influences the optical properties of nearby molecules in untrivial ways due to the dynamical plasmon-molecule coupling. We combine quantum and classical calculation schemes to study this phenomenon in a hybrid system that consists of a Na 2 molecule located in the gap between two Au/Ag nanoparticles. The molecule is treated quantum-mechanically with time-dependent density-functional theory, and the nanoparticles with quasistatic classical electrodynamics. The nanoparticle dimer has a plasmon resonance in the visible part of the electromagnetic spectrum, and the Na 2 molecule has an electron-hole excitation in the same energy range. Due to the dynamical interaction of the two subsystems the plasmon and the molecular excitations couple, creating a hybridized molecular-plasmon excited state. This state has unique properties that yield e.g. enhanced photoabsorption compared to the freestanding Na 2 molecule. The computational approach used enables decoupling of the mutual plasmon-molecule interaction, and our analysis verifies that it is not legitimate to neglect the backcoupling effect when describing the dynamical interaction between plasmonic material and nearby molecules. Time-resolved analysis shows nearly instantaneous formation of the coupled state, and provides an intuitive picture of the underlying physics. (paper)

  14. Stochastic evolutions and hadronization of highly excited hadronic matter

    International Nuclear Information System (INIS)

    Carruthers, P.

    1984-01-01

    Stochastic ingredients of high energy hadronic collisions are analyzed, with emphasis on multiplicity distributions. The conceptual simplicity of the k-cell negative binomial distribution is related to the evolution of probability distributions via the Fokker-Planck and related equations. The connection to underlying field theory ideas is sketched. 17 references

  15. Density-dependent squeezing of excitons in highly excited semiconductors

    International Nuclear Information System (INIS)

    Nguyen Hong Quang.

    1995-07-01

    The time evolution from coherent states to squeezed states of high density excitons is studied theoretically based on the boson formalism and within the Random Phase Approximation. Both the mutual interaction between excitons and the anharmonic exciton-photon interaction due to phase-space filling of excitons are taken into account. It is shown that the exciton squeezing depends strongly on the exciton density in semiconductors and becomes smaller with increasing the latter. (author). 16 refs, 2 figs

  16. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    2008-01-01

    Some non-trivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based on a slightly...... modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical optimally...

  17. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    Some nontrivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial (depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based...... on a slightly modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical...

  18. Dual fluorescence of excited state intra-molecular proton transfer of HBFO: mechanistic understanding, substituent and solvent effects.

    Science.gov (United States)

    Yang, Wenjing; Chen, Xuebo

    2014-03-07

    A combined approach of the multiconfigurational perturbation theory with the Rice-Ramsperger-Kassel-Marcus methodology has been employed to calculate the minimum potential energy profiles and the rates of excited state intra-molecular proton transfer (ESIPT) for the WOLED material molecule of HBFO and its four meta- or para-substituted compounds in gas phase, acetonitrile and cyclohexane solvents. The kinetic control for these reactions is quantitatively determined and extensively studied on the basis of the accurate potential energy surfaces when the thermodynamic factor associated with the free energy change becomes negligible in the case of the existence of a significant barrier in the ESIPT process. These computational efforts contribute to a deep understanding of the ESIPT mechanism, dual emission characteristics, kinetic controlling factor, substituent and solvent effects for these material molecules. The white light emission is generated by the establishment of dynamic equilibrium between enol and keto forms in the charge transfer excited SCT((1)ππ*) state. The performance of white light emission is quantitatively demonstrated to be mainly sensitive to the molecular tailoring approach of the electronic properties of meta- or para- substituents by the modulation of the forward/backward ESIPT rate ratio. The quality of white light emission is slightly tunable through its surrounding solvent environment. These computational results will provide a useful strategy for the molecular design of OLED and WOLED materials.

  19. Remarkable solvent-dependent excited-state chirality : A molecular modulator of circularly polarized luminescence

    NARCIS (Netherlands)

    van Delden, Richard A.; Huck, N.P.M.; Piet, J.J.; Warman, J.M.; Meskers, S.C.J.; Dekkers, H.P J M; Feringa, B.L.

    2003-01-01

    The photochemical control of ground- and excited-state chirality of (M)-cis-(1) and (P)-trans(2)-2-nitro-7-(dimethylamino)-9-(2',3'-dihydro-1'H-naphtho[2,1-b]-thiopyran-1'-ylidene)-9H-thioxanthene is described. It is shown that while ground state chirality can be controlled photochemically by

  20. Remarkable solvent-dependent excited-state chirality : a molecular modulator of circularly polarized luminescence

    NARCIS (Netherlands)

    Delden, van R.A.; Huck, H.P.M.; Piet, J.J.; Warman, J.M.; Meskers, S.C.J.; Dekkers, H.P.J.M.; Feringa, B.L.

    2003-01-01

    The photochemical control of ground- and excited-state chirality of (M)-cis-(1) and (P)-trans-(2)-2-nitro-7-(dimethylamino)-9-(2',3' -dihydro-1'H-naphtho[2,1-b]-thiopyran-1'-ylidene)-9H-thioxanthene is described. It is shown that while ground state chirality can be controlled photochemically by

  1. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  2. Intramolecular deactivation processes of electronically excited Lanthanide(III) complexes with organic acids of low molecular weight

    Science.gov (United States)

    Burek, Katja; Eidner, Sascha; Kuke, Stefanie; Kumke, Michael U.

    2018-02-01

    The luminescence of Lanthanide(III) complexes with different model ligands was studied under direct as well as sensitized excitation conditions. The research was performed in the context of studies dealing with deep-underground storages for high-level nuclear waste. Here, Lanthanide(III) ions served as natural analogues for Actinide(III) ions and the low-molecular weight organic ligands are present in clay minerals and furthermore, they were employed as proxies for building blocks of humic substances, which are important complexing molecules in the natural environment, e.g., in the far field of a repository site. Time-resolved luminescence spectroscopy was applied for a detailed characterization of Eu(III), Tb(III), Sm(III) and Dy(III) complexes in aqueous solutions. Based on the observed luminescence the ligands were tentatively divided into two groups (A, B). The luminescence of Lanthanide(III) complexes of group A was mainly influenced by an energy transfer to OH-vibrations. Lanthanide(III) complexes of group B showed ligand-related luminescence quenching, which was further investigated. To gain more information on the underlying quenching processes of group A and B ligands, measurements at different temperatures (77 K ≤ T ≤ 353 K) were performed and activation energies were determined based on an Arrhenius analysis. Moreover, the influence of the ionic strength between 0 M ≤ I ≤ 4 M on the Lanthanide(III) luminescence was monitored for different complexes, in order to evaluate the influence of specific conditions encountered in host rocks foreseen as potential repository sites.

  3. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.

    Science.gov (United States)

    Sun, Jin; Li, Guang; Liang, WanZhen

    2015-07-14

    A real-time time-dependent density functional theory coupled with the classical electrodynamics finite difference time domain technique is employed to systematically investigate the optical properties of hybrid systems composed of silver nanoparticles (NPs) and organic adsorbates. The results demonstrate that the molecular absorption spectra throughout the whole energy range can be enhanced by the surface plasmon resonance of Ag NPs; however, the absorption enhancement ratio (AER) for each absorption band differs significantly from the others, leading to the quite different spectral profiles of the hybrid complexes in contrast to those of isolated molecules or sole NPs. Detailed investigations reveal that the AER is sensitive to the energy gap between the molecular excitation and plasmon modes. As anticipated, two separate absorption bands, corresponding to the isolated molecules and sole NPs, have been observed at a large energy gap. When the energy gap approaches zero, the molecular excitation strongly couples with the plasmon mode to form the hybrid exciton band, which possesses the significantly enhanced absorption intensity, a red-shifted peak position, a surprising strongly asymmetric shape of the absorption band, and the nonlinear Fano effect. Furthermore, the dependence of surface localized fields and the scattering response functions (SRFs) on the geometrical parameters of NPs, the NP-molecule separation distance, and the external-field polarizations has also been depicted.

  4. Piezoelectric self sensing actuators for high voltage excitation

    International Nuclear Information System (INIS)

    Grasso, E; Totaro, N; Janocha, H; Naso, D

    2013-01-01

    Self sensing techniques allow the use of a piezoelectric transducer simultaneously as an actuator and as a sensor. Such techniques are based on knowledge of the transducer behaviour and on measurements of electrical quantities, in particular voltage and charge. Past research work has mainly considered the linear behaviour of piezoelectric transducers, consequently restricting the operating driving voltages to low values. In this work a new self sensing technique is proposed which is able to perform self sensing reconstruction both at low and at high driving voltages. This technique, in fact, makes use of a hysteretic model to describe the nonlinear piezoelectric capacitance necessary for self sensing reconstruction. The capacitance can be measured and identified at the antiresonances of a vibrating structure with a good approximation. After providing a mathematical background to deal with the main aspects of self sensing, this technique is compared theoretically and experimentally to a typical linear one by using an aluminum plate with one bonded self sensing transducer and a positive position feedback (PPF) controller to verify the performance in self sensing based vibration control. (paper)

  5. The structure of nuclear states at low, intermediate and high excitation energies

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1976-01-01

    It is shown that within the model based on the quasiparticle-phonon interaction one can obtain the description of few-quasiparticle components of nuclear states at low, intermediate and high excitation energies. For the low-lying states the energy of each level is calculated. The few-quasiparticle components at intermediate and high excitation energies are represented to be averaged in certain energy intervals and their characteri stics are given as the corresponding strength functions. The fragmentation of single-particle states in deformed nuclei is studied. It is shown that in the distribution of the single-particle strength alongside with a large maximum there appear local maxima and the distribution itself has a long tail. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reaction of the type (d,p) and (d,t). The s,- p,- and d-wave neutron strength functions are calculated at the neutron binding energy Bn. A satisfactory agreement with experiment is obtained. The energies and Elambda-strength functions for giant multipole resonances in deformed nuclei are calculated. The energies of giant quadrupole and octupole resonances are calculated. Their widths and fine structure are being studied. It is stated that to study the structure of highly excited states it is necessary to find the values of many-quasiparticle components of the wave functions. The ways of experimental determination of these components based on the study of γ-transitions between highly excited states are discussed

  6. Ultra-high resolution spectroscopy of the He doubly excited states

    International Nuclear Information System (INIS)

    Bozek, J.D.; Schlachter, A.S.; Kaindl, G.; Schulz, K.

    1995-11-01

    Photoionization spectra of the doubly-excited states of He were measured using beamline 9.0.1 at the Advanced Light Source. The beamline utilizes a 4.5 m long 8 cm period undulator as its source together with a spherical grating monochromator to provide an extremely bright source of photons in the range of 20 - 300 eV. A resolving power (E/ΔE) of 64,000 was obtained from the 1 MeV FWEM (2p,3d) doubly excited state resonance of He at 64.12 eV. The high brightness of the source and the very high quality optical elements of the beamline were all essential for achieving such a high resolution. The beamline components and operation are described and spectra of the double excitation resonances of He presented

  7. Systematic observation of tunneling field-ionization in highly excited Rb Rydberg atoms

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Tada, M.; Kominato, K.; Shibata, M.; Yamada, S.; Haseyama, T.; Ogawa, I.; Funahashi, H.; Yamamoto, K.; Matsuki, S.

    2002-01-01

    Pulsed field ionization of high-n (90≤n≤150) manifold states in Rb Rydberg atoms has been investigated in high slew-rate regime. Two peaks in the field ionization spectra were systematically observed for the investigated n region, where the field values at the lower peak do not almost depend on the excitation energy in the manifold, while those at the higher peak increase with increasing excitation energy. The fraction of the higher peak component to the total ionization signals increases with increasing n, exceeding 80% at n=147. Characteristic behavior of the peak component and the comparison with theoretical predictions indicate that the higher peak component is due to the tunneling process. The obtained results show that the tunneling process plays increasingly the dominant role at such highly excited nonhydrogenic Rydberg atoms

  8. High sensitivity optical molecular imaging system

    Science.gov (United States)

    An, Yu; Yuan, Gao; Huang, Chao; Jiang, Shixin; Zhang, Peng; Wang, Kun; Tian, Jie

    2018-02-01

    Optical Molecular Imaging (OMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorescent or bioluminescence probes, OMI can noninvasively obtain the distribution of the probes in vivo, which play the key role in cancer research, pharmacokinetics and other biological studies. In preclinical and clinical application, the image depth, resolution and sensitivity are the key factors for researchers to use OMI. In this paper, we report a high sensitivity optical molecular imaging system developed by our group, which can improve the imaging depth in phantom to nearly 5cm, high resolution at 2cm depth, and high image sensitivity. To validate the performance of the system, special designed phantom experiments and weak light detection experiment were implemented. The results shows that cooperated with high performance electron-multiplying charge coupled device (EMCCD) camera, precision design of light path system and high efficient image techniques, our OMI system can simultaneously collect the light-emitted signals generated by fluorescence molecular imaging, bioluminescence imaging, Cherenkov luminance and other optical imaging modality, and observe the internal distribution of light-emitting agents fast and accurately.

  9. Direct Electron Impact Excitation of Rydberg-Valence States of Molecular Nitrogen

    Science.gov (United States)

    Malone, C. P.; Johnson, P. V.; Liu, X.; Ajdari, B.; Muleady, S.; Kanik, I.; Khakoo, M. A.

    2012-12-01

    Collisions between electrons and neutral N2 molecules result in emissions that provide an important diagnostic probe for understanding the ionospheric energy balance and the effects of space weather in upper atmospheres. Also, transitions to singlet ungerade states cause N2 to be a strong absorber of solar radiation in the EUV spectral range where many ro-vibrational levels of these Rydberg-valence (RV) states are predissociative. Thus, their respective excitation and emission cross sections are important parameters for understanding the [N]/[N2] ratio in the thermosphere of nitrogen dominated atmospheres. The following work provides improved constraints on absolute and relative excitation cross sections of numerous RV states of N2, enabling more physically accurate atmospheric modeling. Here, we present recent integral cross sections (ICSs) for electron impact excitation of RV states of N2 [6], which were based on the differential cross sections (DCSs) derived from electron energy-loss (EEL) spectra of [5]. This work resulted in electronic excitation cross sections over the following measured vibrational levels: b 1Πu (v‧=0-14), c3 1Πu (v‧=0-3), o3 1Πu (v‧=0-3), b‧ 1Σu+ (v‧=0-10), c‧4 1Σu+ (v‧=0-3), G 3Πu (v‧=0-3), and F 3Πu (v‧=0-3). We further adjusted the cross sections of the RV states by extending the vibronic contributions to unmeasured v‧-levels via the relative excitation probabilities (REPs) as discussed in [6]. This resulted in REP-scaled ICSs over the following vibrational levels for the singlet ungerade states: b(0-19), c3(0-4), o3(0-4), b‧(0-16), and c‧4(0-8). Comparison of the ICSs of [6] with available EEL based measurements, theoretical calculations, and emission based work generally shows good agreement within error estimations, except with the recent reevaluation provided by [1]. Further, we have extended these results, using the recent EEL data of [3], to include the unfolding of better resolved features above ~13

  10. A ROTATING MOLECULAR DISK TOWARD IRAS 18162-2048, THE EXCITING SOURCE OF HH 80-81

    International Nuclear Information System (INIS)

    Fernandez-Lopez, M.; Curiel, S.; Girart, J. M.; Gomez, Y.; Ho, P. T. P.; Patel, N.

    2011-01-01

    We present several molecular line emission arcsecond and subarcsecond observations obtained with the Submillimeter Array in the direction of the massive protostar IRAS 18162-2048, the exciting source of HH 80-81. The data clearly indicate the presence of a compact (radius ∼425-850 AU) SO 2 structure, enveloping the more compact (radius ∼ sun . The SO 2 spectral line data also allow us to constrain the structure temperature between 120 and 160 K and the volume density ∼> 2 x 10 9 cm -3 . We also find that such a rotating flattened system could be unstable due to gravitational disturbances. The data from C 17 O line emission show a dense core within this star-forming region. Additionally, the H 2 CO and SO emissions appear clumpy and trace the disk-like structure, a possible interaction between a molecular core and the outflows, and in part, the cavity walls excavated by the thermal radio jet.

  11. Excitation energy transfer in molecular complexes: transport processes, optical properties and effects of nearby placed metal nano-particles

    Science.gov (United States)

    May, Volkhard; Megow, Jörg; Zelinskyi, Iaroslav

    2012-04-01

    Excitation energy transfer (EET) in molecular systems is studied theoretically. Chromophore complexes are considered which are formed by a butanediamine dendrimer with four pheophorbide-a molecules. To achieve a description with an atomic resolution and to account for the effect of an ethanol solvent a mixed quantum classical methodology is utilized. Details of the EET and spectra of transient anisotropy showing signatures of EET are presented. A particular control of intermolecular EET is achieved by surface plasmons of nearby placed metal nanoparticles (MNP). To attain a quantum description of the molecule-MNP system a microscopic theory is introduced. As a particular application surface plasmon affected absorption spectra of molecular complexes placed in the proximity of a spherical MNP are discussed.

  12. Single photon simultaneous K-shell ionization and K-shell excitation. II. Specificities of hollow nitrogen molecular ions

    International Nuclear Information System (INIS)

    Carniato, S.; Selles, P.; Andric, L.; Palaudoux, J.; Penent, F.; Lablanquie, P.; Žitnik, M.; Bučar, K.; Nakano, M.; Hikosaka, Y.; Ito, K.

    2015-01-01

    The formalism developed in the companion Paper I is used here for the interpretation of spectra obtained recently on the nitrogen molecule. Double core-hole ionization K −2 and core ionization-core excitation K −2 V processes have been observed by coincidence electron spectroscopy after ionization by synchrotron radiation at different photon energies. Theoretical and experimental cross sections reported on an absolute scale are in satisfactory agreement. The evolution with photon energy of the relative contribution of shake-up and conjugate shake-up processes is discussed. The first main resonance in the K −2 V spectrum is assigned to a K −2 π ∗ state mainly populated by the 1s→ lowest unoccupied molecular orbital dipolar excitation, as it is in the K −1 V NEXAFS (Near-Edge X-ray Absorption Fine Structure) signals. Closer to the K −2 threshold Rydberg resonances have been also identified, and among them a K −2 σ ∗ resonance characterized by a large amount of 2s/2p hybridization, and double K −2 (2σ ∗ /1π/3σ) −1 1π ∗2 shake-up states. These resonances correspond in NEXAFS spectra to, respectively, the well-known σ ∗ shape resonance and double excitation K −1 (2σ ∗ /1π/3σ) −1 1π ∗2 resonances, all being positioned above the threshold

  13. MOSFET-based high voltage short pulse generator for ultrasonic transducer excitation

    Science.gov (United States)

    Hidayat, Darmawan; Setianto, Syafei, Nendi Suhendi; Wibawa, Bambang Mukti

    2018-02-01

    This paper presents the generation of a high-voltage short pulse for the excitation of high frequency ultrasonic transducers. This is highly required in the purpose of various ultrasonic-based evaluations, particularly when high resolution measurement is necessary. A high voltage (+760 V) DC voltage source was pulsated by an ultrafast switching MOSFET which was driven by a pulse generator circuit consisting of an astable multivibrator, a one-shot multivibrator with Schmitt trigger input and a high current MOSFET driver. The generated pulses excited a 200-kHz and a 1-MHz ultrasonic transducers and tested in the transmission mode propagation to evaluate the performances of the generated pulse. The test results showed the generator were able to produce negative spike pulses up to -760 V voltage with the shortest time-width of 107.1 nanosecond. The transmission-received ultrasonic waves show frequency oscillation at 200 and 961 kHz and their amplitudes varied with the voltage of excitation pulse. These results conclude that the developed pulse generator is applicable to excite transducer for the generation of high frequency ultrasonic waves.

  14. Active Control of High-Speed Free Jets Using High-Frequency Excitation

    Science.gov (United States)

    Upadhyay, Puja

    Control of aerodynamic noise generated by high-performance jet engines continues to remain a serious problem for the aviation community. Intense low frequency noise produced by large-scale coherent structures is known to dominate acoustic radiation in the aft angles. A tremendous amount of research effort has been dedicated towards the investigation of many passive and active flow control strategies to attenuate jet noise, while keeping performance penalties to a minimum. Unsteady excitation, an active control technique, seeks to modify acoustic sources in the jet by leveraging the naturally-occurring flow instabilities in the shear layer. While excitation at a lower range of frequencies that scale with the dynamics of large-scale structures, has been attempted by a number of studies, effects at higher excitation frequencies remain severely unexplored. One of the major limitations stems from the lack of appropriate flow control devices that have sufficient dynamic response and/or control authority to be useful in turbulent flows, especially at higher speeds. To this end, the current study seeks to fulfill two main objectives. First, the design and characterization of two high-frequency fluidic actuators (25 and 60 kHz) are undertaken, where the target frequencies are guided by the dynamics of high-speed free jets. Second, the influence of high-frequency forcing on the aeroacoustics of high-speed jets is explored in some detail by implementing the nominally 25 kHz actuator on a Mach 0.9 (Re D = 5 x 105) free jet flow field. Subsequently, these findings are directly compared to the results of steady microjet injection experiments performed in the same rig and to prior jet noise control studies, where available. Finally, limited acoustic measurements were also performed by implementing the nominally 25 kHz actuators on jets at higher Mach numbers, including shock containing jets, and elevated temperatures. Using lumped element modeling as an initial guide, the current

  15. Ultrafast Excited State Dynamics in Molecular Motors : Coupling of Motor Length to Medium Viscosity

    NARCIS (Netherlands)

    Conyard, Jamie; Stacko, Peter; Chen, Jiawen; McDonagh, Sophie; Hall, Christopher R.; Laptenok, Sergey P.; Browne, Wesley R.; Feringa, Ben L.; Meech, Stephen R.

    2017-01-01

    Photochemically driven molecular motors convert the energy of incident radiation to intramolecular rotational motion. The motor molecules considered here execute four step unidirectional rotational motion. This comprises a pair of successive light induced isomerizations to a metastable state

  16. Raman spectroscopy on simple molecular systems at very high density

    International Nuclear Information System (INIS)

    Schiferl, D.; LeSar, R.S.; Moore, D.S.

    1988-01-01

    We present an overview of how Raman spectroscopy is done on simple molecular substances at high pressures. Raman spectroscopy is one of the most powerful tools for studying these substances. It is often the quickest means to explore changes in crystal and molecular structures, changes in bond strength, and the formation of new chemical species. Raman measurements have been made at pressures up to 200 GPa (2 Mbar). Even more astonishing is the range of temperatures (4-5200/degree/K) achieved in various static and dynamic (shock-wave) pressure experiments. One point we particularly wish to emphasize is the need for a good theoretical understanding to properly interpret and use experimental results. This is particularly true at ultra-high pressures, where strong crystal field effects can be misinterpreted as incipient insulator-metal transitions. We have tried to point out apparatus, techniques, and results that we feel are particularly noteworthy. We have also included some of the /open quotes/oral tradition/close quotes/ of high pressure Raman spectroscopy -- useful little things that rarely or never appear in print. Because this field is rapidly expanding, we discuss a number of exciting new techniques that have been informally communicated to us, especially those that seem to open new possibilities. 58 refs., 18 figs

  17. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.

    2014-01-01

    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 kDa w...

  18. Direct excitation of a high frequency wave by a low frequency wave in a plasma

    International Nuclear Information System (INIS)

    Tanaka, Takayasu

    1993-01-01

    A new mechanism is presented of an excitation of a high frequency wave by a low frequency wave in a plasma. This mechanism works when the low frequency wave varies in time in a manner deviated from a usual periodic motion with a constant amplitude. The conversion rate is usually not large but the conversion is done without time delay after the variation of the low frequency wave. The Manley Rowe relation in the usual sense does not hold in this mechanism. This mechanism can excite also waves with same or lower frequencies. (author)

  19. Neutron emission in fission of highly excited californium nuclei (E*=76 MeV)

    International Nuclear Information System (INIS)

    Blinov, M.V.; Bordyug, V.M.; Kozulin, Eh.M.; Mozhaev, A.N.; Levitovich, M.; Muzychka, Yu.A.; Penionzhkevich, Yu.Eh.; Pustyl'nik, B.I.

    1990-01-01

    The differential cross sections for neutron production in the fission of highly excited californium nuclei formed in the 238 U+ 12 C (105 MeV) reaction have been measured. From the analysis of the experimental data is follows that the number of pre-fission neutrons substantially exceeds the value obtained in the framework of the standard statistical model. The saddle-to-scission time of the excited nucleus is estimated on the basis of the neutron multiplicity. The dependences of the neutron number and neutron average energies upon the fragment mass are determined

  20. Is neutron evaporation from highly excited nuclei a poisson random process

    International Nuclear Information System (INIS)

    Simbel, M.H.

    1982-01-01

    It is suggested that neutron emission from highly excited nuclei follows a Poisson random process. The continuous variable of the process is the excitation energy excess over the binding energy of the emitted neutrons and the discrete variable is the number of emitted neutrons. Cross sections for (HI,xn) reactions are analyzed using a formula containing a Poisson distribution function. The post- and pre-equilibrium components of the cross section are treated separately. The agreement between the predictions of this formula and the experimental results is very good. (orig.)

  1. Mechanism and models for collisional energy transfer in highly excited large polyatomic molecules

    International Nuclear Information System (INIS)

    Gilbert, R. G.

    1995-01-01

    Collisional energy transfer in highly excited molecules (say, 200-500 kJ mol -1 above the zero-point energy of reactant, or of product, for a recombination reaction) is reviewed. An understanding of this energy transfer is important in predicting and interpreting the pressure dependence of gas-phase rate coefficients for unimolecular and recombination reactions. For many years it was thought that this pressure dependence could be calculated from a single energy-transfer quantity, such as the average energy transferred per collision. However, the discovery of 'super collisions' (a small but significant fraction of collisions which transfer abnormally large amounts of energy) means that this simplistic approach needs some revision. The 'ordinary' (non-super) component of the distribution function for collisional energy transfer can be quantified either by empirical models (e.g., an exponential-down functional form) or by models with a physical basis, such as biased random walk (applicable to monatomic or diatomic collision partners) or ergodic (for polyatomic collision partners) treatments. The latter two models enable approximate expressions for the average energy transfer to be estimated from readily available molecular parameters. Rotational energy transfer, important for finding the pressure dependence for recombination reactions, can for these purposes usually be taken as transferring sufficient energy so that the explicit functional form is not required to predict the pressure dependence. The mechanism of 'ordinary' energy transfer seems to be dominated by low-frequency modes of the substrate, whereby there is sufficient time during a vibrational period for significant energy flow between the collision partners. Super collisions may involve sudden energy flow as an outer atom of the substrate is squashed between the substrate and the bath gas, and then is moved away from the interaction by large-amplitude motion such as a ring vibration or a rotation; improved

  2. Surface boiling - an obvious but like no other decay mode of highly excited atomic nuclei

    International Nuclear Information System (INIS)

    Toke, J.

    2012-01-01

    Essentials of a generalized compound nucleus model are introduced based on a concept of an open microcanonical ensemble which considers explicitly the role of the diffuse surface domain and of the thermal expansion of nuclear systems in the quest for maximum entropy. This obvious generalization offers a unique and universal thermodynamic framework for understanding the changes in the gross behavior of excited nuclear systems with increasing excitation energy and, specifically, the competition between different statistical decay modes, including classical evaporation and binary fission, but also the Coulomb fragmentation of excited systems into multiple fragments - the famed multifragmentation. Importantly, the formalism offers a natural explanation, in terms of boiling or spinodal vaporization, for the experimentally observed appearance of limiting excitation energy that can be thermalized by an exited nuclear system and the associated limiting temperature. It is shown that it is the thermal expansion that leads to volume boiling in an infinite matter and surface boiling in finite nuclei. The latter constitutes an important and universal, but hitherto unappreciated decay mode of highly excited nuclei, a mode here named surface spinodal vaporization. It is also shown that in iso-asymmetric systems, thermal expansion leads to what constitutes distillation - a decay mode here named distillative spinodal vaporization

  3. Dispersive excitations in the high-temperature superconductor La2-xSrxCuO4

    DEFF Research Database (Denmark)

    Christensen, N.B.; McMorrow, D.F.; Rønnow, H.M.

    2004-01-01

    High-resolution neutron scattering experiments on optimally doped La(2-x)Sr(x)CuO(4) (x=0.16) reveal that the magnetic excitations are dispersive. The dispersion is the same as in YBa(2)Cu(3)O(6.85), and is quantitatively related to that observed with charge sensitive probes. The associated veloc...

  4. Interqubit coupling mediated by a high-excitation-energy quantum object

    NARCIS (Netherlands)

    Ashhab, S.; Niskanen, A.O.; Harrabi, K.; Nakamura, Y.; Picot, T.; De Groot, P.C.; Harmans, C.J.P.M.; Mooij, J.E.; Nori, F.

    2008-01-01

    We consider a system composed of two qubits and a high excitation energy quantum object used to mediate coupling between the qubits. We treat the entire system quantum mechanically and analyze the properties of the eigenvalues and eigenstates of the total Hamiltonian. After reproducing well known

  5. On the Zeeman Effect in highly excited atoms: 2. Three-dimensional case

    International Nuclear Information System (INIS)

    Baseia, B.; Medeiros e Silva Filho, J.

    1984-01-01

    A previous result, found in two-dimensional hydrogen-atoms, is extended to the three-dimensional case. A mapping of a four-dimensional space R 4 onto R 3 , that establishes an equivalence between Coulomb and harmonic potentials, is used to show that the exact solution of the Zeeman effect in highly excited atoms, cannot be reached. (Author) [pt

  6. The temperature dependence of giant resonances in high-excited nucleus

    International Nuclear Information System (INIS)

    Li Ming; Song Hongqiu

    1991-01-01

    The Hartree-Fock equation and the linear response theory in finite temperature are used to calculate the positions and transition strenghths of the giant resonances of high-excited nucleus Pb 208 . The result shows a downward shift and a broadening of the giant resonance energies as temperatrue increases

  7. Enhanced Electron Attachment to Highly-Excited Molecules and Its Applications in Pulsed Plasmas

    International Nuclear Information System (INIS)

    Ding, W.X.; Ma, C.Y.; McCorkle, D.L.; Pinnaduwage, L.A.

    1999-01-01

    Studies conducted over the past several years have shown that electron attachment to highly-excited states of molecules have extremely large cross sections. We will discuss the implications of this for pulsed discharges used for H - generation, material processing, and plasma remediation

  8. Implications of electron attachment to highly-excited states in pulsed-power discharges

    International Nuclear Information System (INIS)

    Pinnaduwage, L.A.; Univ. of Tennessee, Knoxville, TN

    1997-01-01

    The author points out the possible implications of electron attachment to highly-excited states of molecules in two pulsed power technologies. One involves the pulsed H 2 discharges used for the generation of H ion beams for magnetic fusion energy and particle accelerators. The other is the power modulated plasma discharges used for material processing

  9. Carbon K-shell excitation in small molecules by high-resolution electron impact

    International Nuclear Information System (INIS)

    Tronc, M.; King, G.C.; Read, F.H.

    1979-01-01

    The excitation of 1s carbon electrons has been observed in C0, CH 4 , CF4, C0 2 , COS, C 2 H 2 and C 2 H 4 by means of the electron energy-loss technique with high resolution (70 meV in the 300 eV excitation energy range) and at an incident electron energy of 1.5 keV. The energies, widths and vibrational structures of excited states corresponding to the promotion of 1s carbon electrons to unoccupied valence and Rydberg orbitals have been obtained. The validity of the equivalent-core model, and the role of resonances caused by potential barriers, are discussed. (author)

  10. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    Science.gov (United States)

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  11. A High-Voltage SOI CMOS Exciter Chip for a Programmable Fluidic Processor System.

    Science.gov (United States)

    Current, K W; Yuk, K; McConaghy, C; Gascoyne, P R C; Schwartz, J A; Vykoukal, J V; Andrews, C

    2007-06-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport fluidic droplet samples on programmable paths across the array of driving electrodes on its hydrophobically coated surface. This exciter chip is the engine for dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip systems, creating field excitations that inject and move fluidic droplets onto and about the manipulation surface. The architecture of this chip is expandable to arrays of N X N identical HV electrode driver circuits and electrodes. The exciter chip is programmable in several senses. The routes of multiple droplets may be set arbitrarily within the bounds of the electrode array. The electrode excitation waveform voltage amplitude, phase, and frequency may be adjusted based on the system configuration and the signal required to manipulate a particular fluid droplet composition. The voltage amplitude of the electrode excitation waveform can be set from the minimum logic level up to the maximum limit of the breakdown voltage of the fabrication technology. The frequency of the electrode excitation waveform can also be set independently of its voltage, up to a maximum depending upon the type of droplets that must be driven. The exciter chip can be coated and its oxide surface used as the droplet manipulation surface or it can be used with a top-mounted, enclosed fluidic chamber consisting of a variety of materials. The HV capability of the exciter chip allows the generated DEP forces to penetrate into the enclosed chamber region and an adjustable voltage amplitude can accommodate a variety of chamber floor thicknesses. This demonstration exciter chip has a 32 x 32 array of nominally 100 V electrode drivers that are individually programmable at each time point in the procedure to either of two phases: 0deg and 180deg with respect to the reference clock. For this demonstration chip, while operating the electrodes with a 100-V peak-to-peak periodic waveform, the maximum HV electrode

  12. High efficiency diffusion molecular retention tumor targeting.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Here we introduce diffusion molecular retention (DMR tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding and RAD (control probes were synthesized bearing DOTA (for (111 In(3+, a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or i.v. methods was assessed by surface fluorescence, biodistribution of [(111In] RGD and [(111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [(111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by i.v.. The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide, which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters for radiotherapy, or the delivery of photosensitizers to tumors accessible to light.

  13. Application of Excitation from Multiple Locations on a Simplified High-Lift System

    Science.gov (United States)

    Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2004-01-01

    A series of active flow control experiments were recently conducted on a simplified high-lift system. The purpose of the experiments was to explore the prospects of eliminating all but simply hinged leading and trailing edge flaps, while controlling separation on the supercritical airfoil using multiple periodic excitation slots. Excitation was provided by three. independently controlled, self-contained, piezoelectric actuators. Low frequency excitation was generated through amplitude modulation of the high frequency carrier wave, the actuators' resonant frequencies. It was demonstrated, for the first time, that pulsed modulated signal from two neighboring slots interact favorably to increase lift. Phase sensitivity at the low frequency was measured, even though the excitation was synthesized from the high-frequency carrier wave. The measurements were performed at low Reynolds numbers and included mean and unsteady surface pressures, surface hot-films, wake pressures and particle image velocimetry. A modest (6%) increase in maximum lift (compared to the optimal baseline) was obtained due t o the activation of two of the three actuators.

  14. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  15. Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki

    2002-12-01

    We investigate a mechanism of nonlinear phenomena in laser-plasma interaction, a laser wakefield excited by intense laser pulses, and the possibility of generating an intense bright electron source by an intense laser pulse. We need to understand and further employ some of these phenomena for our purposes. We measure self-focusing, filamentation, and the anomalous blueshift of the laser pulse. The ionization of gas with the self-focusing causes a broad continuous spectrum with blueshift. The normal blueshift depends on the laser intensity and the plasma density. We, however, have found different phenomenon. The laser spectrum shifts to fixed wavelength independent of the laser power and gas pressure above some critical power. We call the phenomenon 'anomalous blueshift'. The results are explained by the formation of filaments. An intense laser pulse can excite a laser wakefield in plasma. The coherent wakefield excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 10 18 cm -3 is measured with a time-resolved frequency domain interferometer (FDI). The density distribution of the helium gas is measured with a time-resolved Mach-Zehnder interferometer to search for the optimum laser focus position and timing in the gas-jet. The results show an accelerating wakefield excitation of 20 GeV/m with good coherency, which is useful for ultrahigh gradient particle acceleration in a compact system. This is the first time-resolved measurement of laser wakefield excitation in a gas-jet plasma. The experimental results are compared with a Particle-in-Cell (PIC) simulation. The pump-probe interferometer system of FDI and the anomalous blueshift will be modified to the optical injection system as a relativistic electron beam injector. In 1D PIC simulation we obtain the results of high quality intense electron beam acceleration. These results illuminate the possibility of a high energy and a high quality electron beam acceleration. (author)

  16. Ab initio R-matrix/Multi-channel Quantum Defect Theory applied to Molecular Core Excitation and Ionization

    International Nuclear Information System (INIS)

    Hiyama, M.; Kosugi, N.

    2004-01-01

    Full text: Ab initio R-matrix/MQDT approach, which is a combination of ab initio R-matrix techniques and the multi channel quantum defect theory (MQDT), has recently been developed by one of the present authors (MH) and Child, to successfully obtain the potential energy curves of Rydberg states converging to not only the lowest but also the higher ionized states. This approach is also applied to estimate the valence state interaction with Rydberg and continuum (ionization) channels. Very recently we have made an original ab initio polyatomic R-matrix/MQDT program package, GSCF4R based on Gaussian type basis functions for the bound and continuum states, to extensively study molecular excitation and ionization in the X-ray region as well as in the VUV region. We are going to report the results for core excitation and ionization of diatomic molecules such as NO and O 2 to show that the R-matrix/MQDT method is indispensable to describe the core-to-Rydberg states with the higher quantum number and the continuum states. These results lead us to the conclusion that the close-coupling approximation augmented with the correlation term within the R-matrix/MQDT formalism is powerful to calculate the Rydberg-valence mixing and the interchannel coupling between several core-ionized states

  17. Formation of excited states in high-Z helium-like systems

    International Nuclear Information System (INIS)

    Fritzsche, S.; Fricke, B.; Brinzanescu, O.

    1999-12-01

    High-Z helium-like ions represent the simplest multi-electron systems for studying the interplay between electron-electron correlations, relativistic as well as quantum electrodynamical effects in strong fields. In contrast to the adjacent lithium-like ions, however, almost no experimental information is available about the excited states in the high-Z domain of the helium sequence. Here, we present a theoretical analysis of the X-ray production and decay dynamics of the excited states in helium-like uranium. Emphasize has been paid particularly to the formation of the 3 P 0 and 3 P 2 levels by using electron capture into hydrogen-like U 91+ . Both states are of interest for precise measurements on high-Z helium-like ions in the future. (orig.)

  18. The millimeter-wave spectrum of highly vibrationally excited SiO

    International Nuclear Information System (INIS)

    Mollaaghababa, R.; Gottlieb, C.A.; Vrtilek, J.M.; Thaddeus, P.

    1991-01-01

    The millimeter-wave rotational spectra of SiO in high vibrational states (v = 0-40) in its electronic ground state were measured between 228 and 347 GHz in a laboratory discharge through SiH4 and CO. On ascending the vibrational ladder, populations decline precipitously for the first few levels, with a vibrational temperature of about 1000 K; at v of roughly 3, however, they markedly flatten out, and from there to v of roughly 40 the temperature is of the order of 10,000 K. With the Dunham coefficients determined here, the rotational spectrum of highly vibrationally excited SiO can now be calculated into the far-infrared to accuracies required for radioastronomy. Possible astronomical sources of highly vibrationally excited SiO are certain stellar atmospheres, ultracompact H II regions, very young supernova ejecta, and dense interstellar shocks. 16 refs

  19. Excitation and deexcitation of N2 molecular levels. Induced fluorescence by electrons and laser

    International Nuclear Information System (INIS)

    Perez Fernandez-Mayoralas, A.

    1989-01-01

    The electron impact excitation followed by fluorescence induced by N 2 -laser absorption was used to study the lifetime of the lowest vibrational level of the B 3 π g electronic state of N 2 . The experimental result of this work is 13 + 1 μs. To measure the lifetime of B 3 π g (v=2,3,5,6,7,8) levels the delayed coincidence method by electron impact was use. The lifetime values were compared with recent experimental and theoretical results. The relative intensi-ties of 3 π g --- A 3 Σ Ω + system bands, in the range (6540-10500 A o ) was measured using a hollow cathode lamp as spectral source. The relative transition moments and its dependence versus the r-centroid was obtained. Total cross sections for electron scattering by N molecules in the range 600 - 5000 eV have been obtained from measurements of the attenuation of a linear electron beam. The results have been compared with available experimental cross sections and with theoretical calculations based on the first Born approximation. (Author)

  20. Molecular Basis of Ion Channels and Receptors Involved in Nerve Excitation, Synaptic Transmission and Muscle Contraction

    Science.gov (United States)

    1993-12-20

    R\\I) (CHARLES A SANDE[RS. Past Chairman {I IElNE 1. KAPLAN . General ,unsel (c-\\ itimol RODNEY W NI(HOI.S. Chief Fiveut,,, Officer [k.x fliui...MUSCARINIC ACETYLCHOLINE RECEPTOR 221 𔃼 -7 acca cr Y. x a ý . a; > -, -~ 2x 1 Ft. 4• ,1; S4" វ - ɜ:4+ 222 ANNALS NEW YORK ACADEMY OF SCIENCES with other...Physiol. 263: C267-C286. 22. KAPLAN , J, H. 1993. Molecular biology of carrier proteins. Cell 72: 13-18. 23. SOEJIMA, M. & A. NOMA. 1984. Mode of

  1. Nasal Delivery of High Molecular Weight Drugs

    Directory of Open Access Journals (Sweden)

    Erdal Cevher

    2009-09-01

    Full Text Available Nasal drug delivery may be used for either local or systemic effects. Low molecular weight drugs with are rapidly absorbed through nasal mucosa. The main reasons for this are the high permeability, fairly wide absorption area, porous and thin endothelial basement membrane of the nasal epithelium. Despite the many advantages of the nasal route, limitations such as the high molecular weight (HMW of drugs may impede drug absorption through the nasal mucosa. Recent studies have focused particularly on the nasal application of HMW therapeutic agents such as peptide-protein drugs and vaccines intended for systemic effects. Due to their hydrophilic structure, the nasal bioavailability of peptide and protein drugs is normally less than 1%. Besides their weak mucosal membrane permeability and enzymatic degradation in nasal mucosa, these drugs are rapidly cleared from the nasal cavity after administration because of mucociliary clearance. There are many approaches for increasing the residence time of drug formulations in the nasal cavity resulting in enhanced drug absorption. In this review article, nasal route and transport mechanisms across the nasal mucosa will be briefly presented. In the second part, current studies regarding the nasal application of macromolecular drugs and vaccines with nanoand micro-particulate carrier systems will be summarised.

  2. Signatures of fission dynamics in highly excited nuclei produced in 197AU(800 A MeV) on proton collisions

    International Nuclear Information System (INIS)

    Benlliure, J.; Armbruster, P.; Bernas, M.

    2001-09-01

    197 Au(800 A MeV)-on-proton collisions are used to investigate the fission dynamics at high excitation energy. The kinematic properties together with the isotopic identification of the fission fragments allow to determine the mass, charge and excitation energy of the fissioning nucleus at saddle. The comparison of these observables and the measured total fission cross section with model calculations evidences a clear hindrance of fission at high excitation energy that can be explained in terms of nuclear dissipation. Assuming a statistical evaporation for other de-excitation channels than fission, an estimated value of the transient time of fission of (3 ± 1) . 10 -21 s is obtained. (orig.)

  3. Stand-alone front-end system for high- frequency, high-frame-rate coded excitation ultrasonic imaging.

    Science.gov (United States)

    Park, Jinhyoung; Hu, Changhong; Shung, K Kirk

    2011-12-01

    A stand-alone front-end system for high-frequency coded excitation imaging was implemented to achieve a wider dynamic range. The system included an arbitrary waveform amplifier, an arbitrary waveform generator, an analog receiver, a motor position interpreter, a motor controller and power supplies. The digitized arbitrary waveforms at a sampling rate of 150 MHz could be programmed and converted to an analog signal. The pulse was subsequently amplified to excite an ultrasound transducer, and the maximum output voltage level achieved was 120 V(pp). The bandwidth of the arbitrary waveform amplifier was from 1 to 70 MHz. The noise figure of the preamplifier was less than 7.7 dB and the bandwidth was 95 MHz. Phantoms and biological tissues were imaged at a frame rate as high as 68 frames per second (fps) to evaluate the performance of the system. During the measurement, 40-MHz lithium niobate (LiNbO(3)) single-element lightweight (<;0.28 g) transducers were utilized. The wire target measure- ment showed that the -6-dB axial resolution of a chirp-coded excitation was 50 μm and lateral resolution was 120 μm. The echo signal-to-noise ratios were found to be 54 and 65 dB for the short burst and coded excitation, respectively. The contrast resolution in a sphere phantom study was estimated to be 24 dB for the chirp-coded excitation and 15 dB for the short burst modes. In an in vivo study, zebrafish and mouse hearts were imaged. Boundaries of the zebrafish heart in the image could be differentiated because of the low-noise operation of the implemented system. In mouse heart images, valves and chambers could be readily visualized with the coded excitation.

  4. Electron energy distributions and excitation rates in high-frequency argon discharges

    International Nuclear Information System (INIS)

    Ferreira, C.M.; Loureiro, J.

    1983-06-01

    The electron energy distribution functions and rate coefficients for excitation and ionisation in argon under the action of an uniform high-frequency electric field were calculated by numerically solving the homogeneous Boltzmann equation. Analytic calculations in the limiting cases ω>>νsub(c) and ω<<νsub(c), where ω is the wave angular frequency and νsub(c) is the electron-neutral collision frequency for momentum transfer, are also presented and shown to be in very good agreement with the numerical computations. The results reported here are relevant for the modelling of high-frequency discharges in argon and, in particular, for improving recent theoretical descriptions of a plasma column sustained by surface microwaves. The properties of surface wave produced plasmas make them interesting as possible substitutes for other more conventional plasma sources for such important applications as plasma chemistry laser excitation, plasma etching spectroscopic sources etc...

  5. The population transfer of high excited states of Rydberg lithium atoms in a microwave field

    International Nuclear Information System (INIS)

    Jiang Lijuan; Zhang Xianzhou; Ma Huanqiang; Jia Guangrui; Zhang Yonghui; Xia Lihua

    2012-01-01

    Using the time-dependent multilevel approach (TDMA), the properties of high excited Rydberg lithium atom have been obtained in the microwave field. The population transfer of lithium atom are studied on numerical calculation, quantum states are controlled and manipulated by microwave field. It shows that the population can be completely transferred to the target state by changing the chirped rate and field amplitude. (authors)

  6. Simulation of statistical γ-spectra of highly excited rare earth nuclei

    International Nuclear Information System (INIS)

    Schiller, A.; Munos, G.; Guttormsen, M.; Bergholt, L.; Melby, E.; Rekstad, J.; Siem, S.; Tveter, T.S.

    1997-05-01

    The statistical γ-spectra of highly excited even-even rare earth nuclei are simulated applying appropriate level density and strength function to a given nucleus. Hindrance effects due to K-conservation are taken into account. Simulations are compared to experimental data from the 163 Dy( 3 He,α) 162 Dy and 173 Yb( 3 He,α) 172 Yb reactions. The influence of the K quantum number at higher energies is discussed. 21 refs., 7 figs., 2 tabs

  7. Powerful highly efficient KrF lamps excited by surface and barrier discharges

    International Nuclear Information System (INIS)

    Borisov, V M; Vodchits, V A; El'tsov, A V; Khristoforov, O B

    1998-01-01

    An investigation was made of the characteristics of KrF lamps with different types of excitation by surface and barrier discharges in which the dielectric material was sapphire. The conditions were determined for the attainment of an extremely high yield of the KrF* fluorescence with the internal efficiency η in ∼30 % and 22% for pulsed surface and barrier discharges, respectively. A homogeneous surface discharge was maintained without gas circulation when the pulse repetition rate was 5 x 10 4 Hz. Quasicontinuous excitation of a surface discharge at near-atmospheric pressure made it possible to reach a KrF* fluorescence power density of about 80 W cm -3 , which was close to the limit set by the kinetics of the gaseous medium. Under prolonged excitation conditions the intensity of the UV output radiation was limited by the permissible heating of the gas to a temperature above which the operating life of the gaseous mixture containing fluorine fell steeply. This was the reason for the advantage of surface over barrier discharges: the former were characterised by a high thermal conductivity of a thin (∼0.2 mm) plasma layer on the surface of the cooled dielectric, which made it possible to construct powerful highly efficient KrF and ArF lamps emitting UV radiation of up to 1 W cm -2 intensity. (laser system components)

  8. Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise

    Science.gov (United States)

    Gundersen, Kristian

    2011-01-01

    Muscle fibres have different properties with respect to force, contraction speed, endurance, oxidative/glycolytic capacity etc. Although adult muscle fibres are normally post-mitotic with little turnover of cells, the physiological properties of the pre-existing fibres can be changed in the adult animal upon changes in usage such as after exercise. The signal to change is mainly conveyed by alterations in the patterns of nerve-evoked electrical activity, and is to a large extent due to switches in the expression of genes. Thus, an excitation-transcription coupling must exist. It is suggested that changes in nerve-evoked muscle activity lead to a variety of activity correlates such as increases in free intracellular Ca2+ levels caused by influx across the cell membrane and/or release from the sarcoplasmatic reticulum, concentrations of metabolites such as lipids and ADP, hypoxia and mechanical stress. Such correlates are detected by sensors such as protein kinase C (PKC), calmodulin, AMP-activated kinase (AMPK), peroxisome proliferator-activated receptor δ (PPARδ), and oxygen dependent prolyl hydroxylases that trigger intracellular signaling cascades. These complex cascades involve several transcription factors such as nuclear factor of activated T-cells (NFAT), myocyte enhancer factor 2 (MEF2), myogenic differentiation factor (myoD), myogenin, PPARδ, and sine oculis homeobox 1/eyes absent 1 (Six1/Eya1). These factors might act indirectly by inducing gene products that act back on the cascade, or as ultimate transcription factors binding to and transactivating/repressing genes for the fast and slow isoforms of various contractile proteins and of metabolic enzymes. The determination of size and force is even more complex as this involves not only intracellular signaling within the muscle fibres, but also muscle stem cells called satellite cells. Intercellular signaling substances such as myostatin and insulin-like growth factor 1 (IGF-1) seem to act in a paracrine

  9. Excitation of high numbers harmonics by flows of oscillators in a periodic potential

    International Nuclear Information System (INIS)

    Buts, V.A.; Marekha, V.I.; Tolstoluzhsky, A.P.

    2005-01-01

    It is shown that the maximum of radiation spectrum of nonrelativistic oscillators, which move into a periodically inhomogeneous potential, can be in the region of high numbers harmonics. Spectrum of such oscillators radiation becomes similar to the radiation spectrum of relativistic oscillators. The equations, describing the non-linear self-consistent theory of excitations, of high numbers harmonics by ensemble of oscillators are formulated and its numerical analysis is conducted. The numerical analysis has confirmed the capability of radiation of high numbers of harmonics. Such peculiarity of radiation allows t expect of creation of nonrelativistic FEL

  10. Wobbling excitations in odd-A nuclei with high-j aligned particles

    International Nuclear Information System (INIS)

    Hamamoto, Ikuko

    2002-01-01

    Using the particle-rotor model in which one high-j quasiparticle is coupled to the core of triaxial shape, wobbling excitations are studied. The family of wobbling phonon excitations can be characterized by: (a) very similar intrinsic structure while collective rotation shows the wobbling feature; (b) strong B(E2;I→I-1) values for Δn w =1 transitions where n w expresses the number of wobbling phonons. For the Fermi level lying below the high-j shell with the most favorable triaxiality γ≅+20 deg., the wobbling phonon excitations may be more easily identified close to the yrast line, compared with the Fermi level lying around the middle of the shell with γ≅-30 deg. The spectroscopic study of the yrast states for the triaxial shape with -60 deg. <γ<0 are illustrated by taking a representative example with γ=-30 deg., in which a quantum number related with the special symmetry is introduced to help the physics understanding

  11. High mass-resolution electron-ion-ion coincidence measurements on core-excited organic molecules

    CERN Document Server

    Tokushima, T; Senba, Y; Yoshida, H; Hiraya, A

    2001-01-01

    Total electron-ion-ion coincidence measurements on core excited organic molecules have been carried out with high mass resolution by using multimode (reflectron/linear) time-of-flight mass analyzer. From the ion correlation spectra of core excited CH sub 3 OH and CD sub 3 OH, the reaction pathway to form H sub 3 sup + (D sub 3 sup +) is identified as the elimination of three H (D) atoms from the methyl group, not as the inter-group (-CH sub 3 and -OH) interactions. In a PEPIPICO spectrum of acetylacetone (CH sub 3 COCH sub 2 COCH sub 3) measured by using a reflectron TOF, correlations between ions up to mass number 70 with one-mass resolution was recorded.

  12. Resonance Excitation of Longitudinal High Order Modes in Project X Linac

    Energy Technology Data Exchange (ETDEWEB)

    Khabiboulline, T.N.; Sukhanov, A.AUTHOR = Awida, M.; Gonin, I.; Lunin, A.AUTHOR = Solyak, N.; Yakovlev, V.; /Fermilab

    2012-05-01

    Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

  13. Dynamic modification of the fragmentation of COq+ excited states generated with high-order harmonics

    International Nuclear Information System (INIS)

    Cao, W.; De, S.; Singh, K. P.; Chen, S.; Laurent, G.; Ray, D.; Ben-Itzhak, I.; Cocke, C. L.; Schoeffler, M. S.; Belkacem, A.; Osipov, T.; Rescigno, T.; Alnaser, A. S.; Bocharova, I. A.; Zherebtsov, S.; Kling, M. F.; Litvinyuk, I. V.

    2010-01-01

    The dynamic process of fragmentation of CO q+ excited states is investigated using a pump-probe approach. EUV radiation (32-48 eV) generated by high-order harmonics was used to ionize and excite CO molecules and a time-delayed infrared (IR) pulse (800 nm) was used to influence the evolution of the dissociating multichannel wave packet. Two groups of states, separable experimentally by their kinetic-energy release (KER), are populated by the EUV and lead to C + -O + fragmentation: direct double ionization of the neutral molecule and fragmentation of the cation leading to C + -O*, followed by autoionization of O*. The IR pulse was found to modify the KER of the latter group in a delay-dependent way which is explained with a model calculation.

  14. Resonance Excitation of Longitudinal High Order Modes in Project X Linac

    International Nuclear Information System (INIS)

    Gonin, I.V.; Khabiboulline, T.N.; Lunin, A.; Solyak, N.; Sukhanov, A.I.; Yakovlev, V.P.; Awida, M.H.

    2012-01-01

    Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

  15. Molecular-dynamics study of the dynamical excitations in commensurate monolayer films of nitrogen molecules on graphite: A test of the corrugation in the nitrogen-graphite potential

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    1995-01-01

    The dynamical excitations in a commensurate monolayer solid of N2 molecules adsorbed on graphite have been studied using molecular-dynamics simulations. Velocity and rotational correlation functions as well as coherent intermediate scattering functions and dynamical structure factors have been ca...

  16. Modernization of the Control Systems of High-Frequency, Brush-Free, and Collector Exciters of Turbogenerators

    Energy Technology Data Exchange (ETDEWEB)

    Popov, E. N., E-mail: enpo@ruselmash.ru; Komkov, A. L.; Ivanov, S. L.; Timoshchenko, K. P. [JSC “Scientific and Industrial Enterprise “Rusélprom-Élektromash” (Russian Federation)

    2016-11-15

    Methods of modernizing the regulation systems of electric machinery exciters with high-frequency, brush-free, and collector exciters by means of microprocessor technology are examined. The main problems of modernization are to increase the response speed of a system and to use a system stabilizer to increase the stability of the power system.

  17. Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System

    Directory of Open Access Journals (Sweden)

    Jia Ying-xin

    2013-03-01

    Full Text Available According to an ultra-high resolution airborne SAR system with better than 0.1 m resolution, a wideband Linear Frequency Modulated (LFM pulse compression exciter with 14.8 GHz carrier and 3.2 GHz bandwidth is designed and implemented. The selection of signal generation scheme and some key technique points for wideband LFM waveform is presented in detail. Then, an acute test and analysis of the LFM signal is performed. The final airborne experiments demonstrate the validity of the LFM source which is one of the subsystems in an ultra-high resolution airborne SAR system.

  18. Rotational bands on few-particle excitations of very high spin

    International Nuclear Information System (INIS)

    Andersson, C.G.; Krumlinde, J.; Leander, G.; Szymanski, Z.

    1980-01-01

    An RPA formalism is developed to investigate the existence and properties of slow collective rotation around a non-symmetry axis, when there already exists a large angular momentum K along the symmetry axis built up by aligned single-particle spins. It is found necessary to distinguish between the collectivity and the repeatability of the rotational excitations. First the formalism is applied to bands on hihg-K isomers in the well-deformed nucleus 176 Hf, where the rotational-model picture is reproduced for intermediate K-values in agreement with experiment. At high K there is a suppression of the collectivity corresponding to the diminishing vector-coupling coefficient of the rotational model, but the repeatability actually improves. The moment of inertia is predicted to remain substantially smaller than the rigid-body value so the bands slope up steeply from the yrast line at spins where pairing effects are gone. A second application is to the initially spherical nucleus 212 Rn, which is believed to acquire an oblate deformation that increases steadily with K due to the oblate shape of the aligned orbitals. In this case the repeatable excitations come higher above the yrast line than in 176 Hf, even at comparable deformations. Some collective states may occur very close to yrast, but these are more like dressed singleparticle excitations. The main differences between the two nuclei studied is interpreted as a general consequence of their different shell structure. (author)

  19. Concluding remarks of international symposium on highly excited states in nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, A. M.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    This is the concluding remarks in the international symposium on highly excited states in nuclear reactions. The remarks concentrate on the giant quadrupole states. In the framework of the distorted wave Born approximation (DWB), the differential cross section can be deduced. The relevant transition matrix elements are defined, and the quantities which are measured in inelastic hadron (h, h') reactions are shown. These are used to obtain both neutron and proton transition multipole matrix elements. This is equivalent to make the isospin decomposition of the electromagnetic transition matrix elements. The ratios of the transition matrix elements of neutrons and protons of the lowest 2/sup +/ states in even-even single closed shell nuclei are evaluated and compared with experimental results. For each nucleus, the consistency between various measurements is generally good. The effect of the virtual excitation of giant 2/sup +/ states into the ground and first excited states of even-even nuclei is discussed. The accuracy of (h, h') results can be tested.

  20. The excitation of plasma convection in the high-latitude ionosphere

    International Nuclear Information System (INIS)

    Lockwood, M.; Cowley, S.W.H.; Freeman, M.P.

    1990-01-01

    Recent observations of ionospheric flows by ground-based radars, in particular by the European Incoherent Scatter (EISCAT) facility using the Polar experiment, together with previous analyses of the response of geomagnetic disturbance to variations of the interplanetary magnetic field (IMF), suggest that convection in the high-latitude ionosphere should be considered to be the sum of two intrinsically time-dependent patterns, one driven by solar wind-magnetosphere coupling at the dayside magnetopause, the other by the release of energy in the geomagnetic tail (mainly by dayside and nightside reconnection, respectively). The flows driven by dayside coupling are largest on the dayside, where they usually dominate, are associated with an expanding polar cap area, and are excited and decay on ∼ 10-min time scales following southward and northward turnings of the IMF, respectively. The latter finding indicates that the production of new open flux at the dayside magnetopause excites magnetospheric and ionospheric flow only for a short interval, ∼ 10 min, such that the flow driven by this source subsequently decays on this time scale unless maintained by the production of more open flux tubes. Correspondingly, the flows excited by the release of energy in the tail, mainly during substorms, are largest on the nightside, are associated with a contracting polar cap boundary, and are excited on ∼ 1-hour time scales following a southward turn of the IMF. In general, the total ionospheric flow will be the sum of the flows produced by these two sources, such that due to their different response times to changes in the IMF, considerable variations in the flow pattern can occur for a given direction and strength ofthe IMF. Consequently, the ionospheric electric field cannot generally be regarded as arising from a simple mapping of the solar wind electric field along open flux tubes

  1. Effects of a Single Session of High Intensity Interval Treadmill Training on Corticomotor Excitability following Stroke: Implications for Therapy

    Directory of Open Access Journals (Sweden)

    Sangeetha Madhavan

    2016-01-01

    Full Text Available Objective. High intensity interval treadmill training (HIITT has been gaining popularity for gait rehabilitation after stroke. In this study, we examined the changes in excitability of the lower limb motor cortical representation (M1 in chronic stroke survivors following a single session of HIITT. We also determined whether exercise-induced changes in excitability could be modulated by transcranial direct current stimulation (tDCS enhanced with a paretic ankle skill acquisition task. Methods. Eleven individuals with chronic stroke participated in two 40-minute treadmill-training sessions: HIITT alone and HITT preceded by anodal tDCS enhanced with a skill acquisition task (e-tDCS+HIITT. Transcranial magnetic stimulation (TMS was used to assess corticomotor excitability of paretic and nonparetic tibialis anterior (TA muscles. Results. HIIT alone reduced paretic TA M1 excitability in 7 of 11 participants by ≥ 10%. e-tDCS+HIITT increased paretic TA M1 excitability and decreased nonparetic TA M1 excitability. Conclusions. HIITT suppresses corticomotor excitability in some people with chronic stroke. When HIITT is preceded by tDCS in combination with a skill acquisition task, the asymmetry of between-hemisphere corticomotor excitability is reduced. Significance. This study provides preliminary data indicating that the cardiovascular benefits of HIITT may be achieved without suppressing motor excitability in some stroke survivors.

  2. Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN

    Science.gov (United States)

    Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G. A.; García-Burillo, S.; van der Werf, P.; Neri, R.; Spaans, M.; Combes, F.; Viti, S.; Mühle, S.; Armus, L.; Evans, A.; Sturm, E.; Cernicharo, J.; Henkel, C.; Greve, T. R.

    2015-12-01

    We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback. Based on observations carried out with the IRAM Plateau de Bure and ALMA Interferometers. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA

  3. Graphene-mediated microfluidic transport and nebulization via high frequency Rayleigh wave substrate excitation.

    Science.gov (United States)

    Ang, Kar M; Yeo, Leslie Y; Hung, Yew M; Tan, Ming K

    2016-09-21

    The deposition of a thin graphene film atop a chip scale piezoelectric substrate on which surface acoustic waves are excited is observed to enhance its performance for fluid transport and manipulation considerably, which can be exploited to achieve further efficiency gains in these devices. Such gains can then enable complete integration and miniaturization for true portability for a variety of microfluidic applications across drug delivery, biosensing and point-of-care diagnostics, among others, where field-use, point-of-collection or point-of-care functionality is desired. In addition to a first demonstration of vibration-induced molecular transport in graphene films, we show that the coupling of the surface acoustic wave gives rise to antisymmetric Lamb waves in the film which enhance molecular diffusion and hence the flow through the interstitial layers that make up the film. Above a critical input power, the strong substrate vibration displacement can also force the molecules out of the graphene film to form a thin fluid layer, which subsequently destabilizes and breaks up to form a mist of micron dimension aerosol droplets. We provide physical insight into this coupling through a simple numerical model, verified through experiments, and show several-fold improvement in the rate of fluid transport through the film, and up to 55% enhancement in the rate of fluid atomization from the film using this simple method.

  4. Encapsulation of 3-hydroxyflavone and fisetin in β-cyclodextrins: Excited state proton transfer fluorescence and molecular mechanics studies

    Science.gov (United States)

    Banerjee, Anwesha; Sengupta, Pradeep K.

    2006-06-01

    Excited-state intramolecular proton-transfer (ESIPT) and dual emission properties (emission profile, anisotropy and decay kinetics) of 3-hydroxyflavone (a synthetic, model flavonol) and fisetin (3,7,3',4'-OH-flavone, a therapeutically active plant flavonol) have been exploited to study their encapsulation in nano-cavities comprising of natural and chemically modified β-cyclodextrins. In the presence of β-CDs, both the flavonols show significantly enhanced relative yields (along with changes in other emission parameters) of the tautomer emission. In addition, for fisetin, large blue shifts are observed for the normal emission (which has significant charge transfer character). From these we infer that the flavonols are encaged in predominantly hydrophobic micro-environments, where external hydrogen bonding perturbations (interfering with the intrinsic ESIPT), and dipolar relaxation effects, are minimized. This is further explained from results of molecular mechanics calculations which indicate selectivity in orientation of the encapsulated flavonols. Moreover, chemical modification of the β-CDs is found to profoundly influence the binding affinities of the guest flavonols.

  5. Very high rotational excitation of CO in a cooled electric discharge through carbon monoxide

    Science.gov (United States)

    Cossart-Magos, Claudina; Cossart, Daniel

    2000-02-01

    Infrared emission from 12CO and 13CO, excited in the cathode region of a discharge tube immersed in liquid nitrogen, was recorded by Fourier-transform spectrometry at a resolution of 0.005 cm-1. The Δv=1 sequence bands recorded in the 2500-1800 cm-1 spectral interval, indicate the existence of three different rotational populations; (i) molecules in the zero-ground level with Trot≈100 K (responsible for reabsorption of part of the 1-0 emission band); (ii) molecules with Trot≈275 K (maximum intensity for Jmax'≈6 in each band, Tvib≈3000 K for v'=2-4, Tvib≈8600 K for v'=5-13); (iii) molecules with v' limited to 6, for which R-rotational lines are observed for J' values between 50 and 120 (Jmax'≈90, non-Boltzmannian population distribution). The full-width at half-maximum (FWHM) of all the observed lines is less than 0.007 cm-1. A Doppler width of 0.005 cm-1 and translational temperature Ttr≈280 K can be deduced. Such high-J levels of the CO molecule had never been observed in the laboratory. In the absorption spectrum of the Sun photosphere, the same lines present FWHM values 5-8 times larger. The best available Dunham coefficients are checked to reproduce the high-J lines wave numbers to at least 0.001 cm-1. Dissociative recombination of the dimer (CO)2+ cation, which is likely to be formed in our experimental conditions, is discussed as a possible mechanism to produce CO fragments with very high rotational excitation, while keeping vibrational excitation limited to v'=6.

  6. From Coherently Excited Highly Correlated States to Incoherent Relaxation Processes in Semiconductors

    International Nuclear Information System (INIS)

    Scha''fer, W.; Lo''venich, R.; Fromer, N. A.; Chemla, D. S.

    2001-01-01

    Recent theories of highly excited semiconductors are based on two formalisms, referring to complementary experimental conditions, the real-time nonequilibrium Green's function techniques and the coherently controlled truncation of the many-particle problem. We present a novel many-particle theory containing both of these methods as limiting cases. As a first example of its application, we investigate four-particle correlations in a strong magnetic field including dephasing resulting from the growth of incoherent one-particle distribution functions. Our results are the first rigorous solution concerning formation and decay of four-particle correlations in semiconductors. They are in excellent agreement with experimental data

  7. Many-body effects in the gain spectra of highly excited quantum-dot lasers

    International Nuclear Information System (INIS)

    Schneider, H. C.; Chow, W. W.; Koch, S. W.

    2001-01-01

    Optical gain spectra are computed for quantum dots under high excitation conditions, where there is a non-negligible two-dimensional carrier density surrounding the dots. Using a screened Hartree-Fock theory to describe the influence of the Coulomb interaction, we find different self-energy shifts for the dot and quantum-well transitions. Furthermore, in contrast to the result for quantum-well and bulk systems, the peak gain at the quantum-dot transition computed including Coulomb effects is reduced from its free carrier value

  8. Calculations of the excitation energies of all-trans and 11,12s-dicis retinals using localized molecular orbitals obtained by the elongation method

    Science.gov (United States)

    Kurihara, Youji; Aoki, Yuriko; Imamura, Akira

    1997-09-01

    In the present article, the excitation energies of the all-trans and the 11,12s-dicis retinals were calculated by using the elongation method. The geometries of these molecules were optimized with the 4-31G basis set by using the GAUSSIAN 92 program. The wave functions for the calculation of the excitation energies were obtained with CNDO/S approximation by the elongation method, which enables us to analyze electronic structures of aperiodic polymers in terms of the exciton-type local excitation and the charge transfer-type excitation. The excitation energies were calculated by using the single excitation configuration interaction (SECI) on the basis of localized molecular orbitals (LMOs). The LMOs were obtained in the process of the elongation method. The configuration interaction (CI) matrices were diagonalized by Davidson's method. The calculated results were in good agreement with the experimental data for absorption spectra. In order to consider the isomerization path from 11,12s-dicis to all-trans retinals, the barriers to the rotations about C11-C12 double and C12-C13 single bonds were evaluated.

  9. Production of a Beam of Highly Vibrationally Excited CO Using Perturbations

    Science.gov (United States)

    Bartels, N.; Schäfer, T.; Hühnert, J.; Wodtke, A. M.; Field, R. W.

    2012-06-01

    For many experimentalists (especially those, who are not spectroscopists), molecular pertubations are a curse, as they make assignments and analysis of spectral data more difficult. Nevertheless, they can also be a boon! In this talk we will show how a molecular beam of CO in high vibrational states (v=17,18) can be prepared by an optical pumping scheme that we call PUMP-PUMP-PERTURB and DUMP (P^3D). P^3D exploits the loaning, via spin-orbit perturbations, of the large oscillator strength of the 4th positive system, A ^1 π ← X ^1 Σ ^+, to the triplet manifold. This allows some nominally spin-forbidden transitions to be exploited in multistep optical pumping schemes. The ability to {state-selectively} prepare CO in high vibrational states opens up new opportunities for molecular beam scattering experiments.

  10. Investigating the fission process at high excitation energies through proton induced reactions on 181Ta

    International Nuclear Information System (INIS)

    Ayyad, Y.; Benlliure, J.; Casajeros, E.; Alvarez Pol, H.; Paradela, C.; Perez-Loureido, D.; Tarrio, D.; Bacquias, A.; Boudard, A.; Kezzar, K.; Leray, S.; Enqvist, T.; Foehr, V.; Kelic, A.; Pleskac, R.

    2010-01-01

    In this work we have investigated the total fission cross section of 181 Ta + 1 H at FRS (Fragment Separator - GSI) at 1, 0.8, 0.5 and 0.3 GeV with a specific setup, providing high accuracy measurements of the cross section values. the comparison of our data with previous results reveals a good agreement at high energies. However the situation remains unclear at lower energies. In general, our results covering a wide range of energy, are smoother. We have also compared the results obtained in this experiment, with several calculations performed with the intra-nuclear cascade model (INCL v4.1) coupled to de-excitation code (ABLAv3p), according to two different models describing fission process at high-excitation energies: statistical model of Bohr and Wheeler and the dynamical description of the fission process. We have showed that a simple statistical description largely over-predict the measured cross-section. Only a dynamical description of the fission, involving the role of the viscosity of the nuclear matter, provides a realistic result.

  11. Wavelet based comparison of high frequency oscillations in the geodetic and fluid excitation functions of polar motion

    Science.gov (United States)

    Kosek, W.; Popinski, W.; Niedzielski, T.

    2011-10-01

    It has been already shown that short period oscillations in polar motion, with periods less than 100 days, are very chaotic and are responsible for increase in short-term prediction errors of pole coordinates data. The wavelet technique enables to compare the geodetic and fluid excitation functions in the high frequency band in many different ways, e.g. by looking at the semblance function. The waveletbased semblance filtering enables determination the common signal in both geodetic and fluid excitation time series. In this paper the considered fluid excitation functions consist of the atmospheric, oceanic and land hydrology excitation functions from ECMWF atmospheric data produced by IERS Associated Product Centre Deutsches GeoForschungsZentrum, Potsdam. The geodetic excitation functions have been computed from the combined IERS pole coordinates data.

  12. Effect of collective response on electron capture and excitation in collisions of highly charged ions with fullerenes.

    Science.gov (United States)

    Kadhane, U; Misra, D; Singh, Y P; Tribedi, Lokesh C

    2003-03-07

    Projectile deexcitation Lyman x-ray emission following electron capture and K excitation has been studied in collisions of bare and Li-like sulphur ions (of energy 110 MeV) with fullerenes (C(60)/C(70)) and different gaseous targets. The intensity ratios of different Lyman x-ray lines in collisions with fullerenes are found to be substantially lower than those for the gas targets, both for capture and excitation. This has been explained in terms of a model based on "solidlike" effect, namely, wakefield induced stark mixing of the excited states populated via electron capture or K excitation: a collective phenomenon of plasmon excitation in the fullerenes under the influence of heavy, highly charged ions.

  13. Evolution of spin excitations in a gapped antiferromagnet from the quantum to the high-temperature limit

    DEFF Research Database (Denmark)

    Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.

    2002-01-01

    We have mapped from the quantum to the classical limit the spin excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain system CsNiCl3 in its paramagnetic phase from T=5 to 200 K. Neutron scattering shows that the excitations are resonant and dispersive up to at least T=70 Ksimilar...... is in agreement with quantum Monte Carlo calculations for the spin-1 chain. xi is also consistent with the single mode approximation, suggesting that the excitations are short-lived single particle excitations. Below T=12 K where three-dimensional spin correlations are important, xi is shorter than predicted...... and the experiment is not consistent with the random phase approximation for coupled quantum chains. At T=200 K, the structure factor and second energy moment of the excitation spectrum are in excellent agreement with the high-temperature series expansion....

  14. Three exciting areas of experimental physical sciences : high temperature superconductors, metal clusters and super molecules of carbon

    International Nuclear Information System (INIS)

    Rao, C.N.

    1992-01-01

    The author has narrated his experience in carrying out research in three exciting areas of physical sciences. These areas are : high temperature superconductors, metal clusters and super molecules of carbon. (M.G.B.)

  15. The effect of high level multi-tone excitation on the acoustic properties of perforates and liner samples

    OpenAIRE

    Bodén, Hans

    2012-01-01

    This paper discusses the effect of high level multi-tone acoustic excitation on the acoustic properties of perforates and liner samples. It is based on a large experimental study of the nonlinear properties of these types of samples without mean grazing or bias flow. It is known from previous studies that high level acoustic excitation at one frequency will change the acoustic impedance of perforates at other frequencies, thereby changing the boundary condition seen by the acoustic waves. Thi...

  16. Radiative-lifetime measurements and calculations of odd-parity highly excited levels in Ba i

    International Nuclear Information System (INIS)

    Zhang Wei; Du Shan; Palmeri, Patrick; Quinet, Pascal; Biemont, Emile; Dai Zhenwen

    2010-01-01

    Natural radiative lifetime measurements have been performed for 70 odd-parity highly excited levels of neutral barium in the energy range from 308 15.512 to 417 59.93 cm -1 by a time-resolved laser-induced fluorescence technique in a laser-produced plasma. The lifetime values measured in this paper are in the range from 11.3 to 901 ns. They are compared with the published lifetimes of four levels. Two of them are in good agreement, whereas for the other two our measurements are slightly longer than the published data. The reasons for the discrepancies are discussed. Comparisons with theoretical results of the Hartree-Fock method with relativistic corrections illustrate the difficulties associated with the use of Cowan's codes for obtaining accurate branching fractions for transitions depopulating highly excited levels along the Rydberg series of heavy neutral elements. This work will be useful to extend the set of oscillator strengths available in Ba i.

  17. Electron Impact Excitation and Dielectronic Recombination of Highly Charged Tungsten Ions

    Directory of Open Access Journals (Sweden)

    Zhongwen Wu

    2015-11-01

    Full Text Available Electron impact excitation (EIE and dielectronic recombination (DR of tungsten ions are basic atomic processes in nuclear fusion plasmas of the International Thermonuclear Experimental Reactor (ITER tokamak. Detailed investigation of such processes is essential for modeling and diagnosing future fusion experiments performed on the ITER. In the present work, we studied total and partial electron-impact excitation (EIE and DR cross-sections of highly charged tungsten ions by using the multiconfiguration Dirac–Fock method. The degrees of linear polarization of the subsequent X-ray emissions from unequally-populated magnetic sub-levels of these ions were estimated. It is found that the degrees of linear polarization of the same transition lines, but populated respectively by the EIE and DR processes, are very different, which makes diagnosis of the formation mechanism of X-ray emissions possible. In addition, with the help of the flexible atomic code on the basis of the relativistic configuration interaction method, DR rate coefficients of highly charged W37+ to W46+ ions are also studied, because of the importance in the ionization equilibrium of tungsten plasmas under running conditions of the ITER.

  18. Applications of high order harmonic radiation to UVX-solids interaction: high excitation density in electronic relaxation dynamics and surface damaging

    International Nuclear Information System (INIS)

    De Grazia, M.

    2007-12-01

    The new sources of radiation in the extreme-UV (X-UV: 10-100 nm), which deliver spatially coherent, ultra-short and intense pulses, allow studying high flux processes and ultra-fast dynamics in various domains. The thesis work presents two applications of the high-order laser harmonics (HH) to solid state physics. In Part I, we describe the optimization of the harmonic for studies of X-UV/solids interaction. In Part II, we investigate effects of high excitation density in the dynamics of electron relaxation in dielectric scintillator crystals - tungstates and fluorides, using time-resolved luminescence spectroscopy. Quenching of luminescence at short time gives evidence of the competition between radiative and non-radiative recombination of self-trapped excitons (STE). The non-radiative channel is identified to mutual interaction of STE at high excitation density. In Part III, we study the X-UV induced damage mechanism in various materials, either conductor (amorphous carbon) or insulators (organic polymers, e.g., PMMA). In PMMA-Plexiglas, in the desorption regime (0.2 mJ/cm 2 , i.e., below damage threshold), the surface modifications reflect X-UV induced photochemical processes that are tentatively identified, as a function of dose: at low dose, polymer chain scission followed by the blow-up of the volatile, low-molecular fragments leads to crater formation; at high dose, cross-linking in the near-surface layer of remaining material leads to surface hardening. These promising results have great perspectives considering the performances already attained and planned in the next future in the development of the harmonic sources. (author)

  19. Mixed quantum-classical molecular dynamics study of the hydroxyl stretch in methanol/carbon-tetrachloride mixtures II: excited state hydrogen bonding structure and dynamics, infrared emission spectrum, and excited state lifetime.

    Science.gov (United States)

    Kwac, Kijeong; Geva, Eitan

    2012-03-08

    We present a mixed quantum-classical molecular dynamics study of the hydrogen-bonding structure and dynamics of a vibrationally excited hydroxyl stretch in methanol/carbon-tetrachloride mixtures. The adiabatic Hamiltonian of the quantum-mechanical hydroxyl is diagonalized on-the-fly to obtain the ground and first-excited adiabatic energy levels and wave functions which depend parametrically on the instantaneous configuration of the classical degrees of freedom. The dynamics of the classical degrees of freedom are determined by Hellmann-Feynman forces obtained by taking the expectation value of the force with respect to the ground or excited vibrational wave functions. Polarizable force fields are used which were previously shown to reproduce the experimental infrared absorption spectrum rather well, for different isotopomers and over a wide composition range [Kwac, K.; Geva, E. J. Phys. Chem. B 2011, 115, 9184]. We show that the agreement of the absorption spectra with experiment can be further improved by accounting for the dependence of the dipole moment derivatives on the configuration of the classical degrees of freedom. We find that the propensity of a methanol molecule to form hydrogen bonds increases upon photoexcitation of its hydroxyl stretch, thereby leading to a sizable red-shift of the corresponding emission spectrum relative to the absorption spectrum. Treating the relaxation from the first excited to the ground state as a nonadiabatic process, and calculating its rate within the framework of Fermi's golden rule and the harmonic-Schofield quantum correction factor, we were able to predict a lifetime which is of the same order of magnitude as the experimental value. The experimental dependence of the lifetime on the transition frequency is also reproduced. Nonlinear mapping relations between the hydroxyl transition frequency and bond length in the excited state and the electric field along the hydroxyl bond axis are established. These mapping relations

  20. Novel spin excitation in the high field phase of an S=1 antiferromagnetic chain

    International Nuclear Information System (INIS)

    Hagiwara, M.; Kashiwagi, T.; Kimura, S.; Honda, Z.; Kindo, K.

    2007-01-01

    We report the results of high-field multi-frequency ESR experiment on the S=1 Heisenberg antiferromagnetic chain Ni(C 5 H 14 N 2 ) 2 N 3 (PF 6 ) for the fields up to about 55T and the frequencies up to about 2THz. We have found that excitation branches above the critical field (H c ) where the energy gap closes change into one branch around 15T which becomes close to the paramagnetic line at high fields. The branch above 15T fits well the conventional antiferromagnetic resonance mode with easy planar anisotropy. We compare the results with those in a weakly coupled antiferromagnetic dimer compound KCuCl 3 and discuss the origin of the branches observed above H c

  1. Microscopic unitary description of tidal excitations in high-energy string-brane collisions

    CERN Document Server

    D'Appollonio, Giuseppe; Russo, Rodolfo; Veneziano, Gabriele

    2013-01-01

    The eikonal operator was originally introduced to describe the effect of tidal excitations on higher-genus elastic string amplitudes at high energy. In this paper we provide a precise interpretation for this operator through the explicit tree-level calculation of generic inelastic transitions between closed strings as they scatter off a stack of parallel Dp-branes. We perform this analysis both in the light-cone gauge, using the Green-Schwarz vertex, and in the covariant formalism, using the Reggeon vertex operator. We also present a detailed discussion of the high energy behaviour of the covariant string amplitudes, showing how to take into account the energy factors that enhance the contribution of the longitudinally polarized massive states in a simple way.

  2. Shell structure effects at high excitations and many-quasiparticle configurations

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1980-01-01

    Experimental and theoretical data available on few- and many-quasiparticle components of the wave functions of complex nuclei at low, intermediate and high energies are shortly analyzed. The components are treated in the nuclear quasiparticle-phonon model. Specific features of the lowest and high-spin states, giant resonances, neutron resonances and the effects of the energy-level structure in the few-and many-particle transfer reactions are discussed. It is concluded that the most reliable nuclear properties are determined by the components, their behaviour reflecting the shell structure effects. Wich increasing excitation energy the density of levels increases exponentially and the contribution of few-quasiparticle components to the normalization of the wave functions decreases exponentially

  3. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.

    2010-08-11

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (EÌ?TE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients. © 2010 American Chemical Society.

  4. Excited baryon form-factors at high momentum transfer at CEBAF at higher energies

    Energy Technology Data Exchange (ETDEWEB)

    Stoler, P. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-04-01

    The possibilities of measuring the properties of excited nucleons at high Q{sup 2} by means of exclusive single meson production at CEBAF with an electron energy of 8 GeV is considered. The motivation is to access short range phenomena in baryon structure, and to investigate the transition from the low Q{sup 2} non-perturbative QCD regime, where constituent quark models are valid, to higher Q{sup 2} where it is believed perturbative QCD plays an increasingly important role. It is found that high quality baryon decay angular distributions can be obtained for the most prominent states up to Q{sup 2} {approximately} 12 GeV{sup 2}/c{sup 2} using a set of moderate resolution, large solid angle magnetic spectrometers.

  5. V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions

    Science.gov (United States)

    Mewe, R.

    1999-07-01

    This book contains a comprehensive description of the basic principles of the theoretical spectroscopy and experimental spectroscopic diagnostics of Rydberg atoms and ions, i.e., atoms in highly excited states with a very large principal quantum number (n≫1). Rydberg atoms are characterized by a number of peculiar physical properties as compared to atoms in the ground or a low excited state. They have a very small ionization potential (∝1/n2), the highly excited electron has a small orbital velocity (∝1/n), the radius (∝n2) is very large, the excited electron has a long orbital period (∝n3), and the radiation lifetime is very long (∝n3-5). At the same time the R. atom is very sensitive to perturbations from external fields in collisions with charged and neutral targets. In recent years, R. atoms have been observed in laboratory and cosmic conditions for n up to ˜1000, which means that the size amounts to about 0.1 mm, ˜106 times that of an atom in the ground state. The scope of this monograph is to familiarize the reader with today's approaches and methods for describing isolated R. atoms and ions, radiative transitions between highly excited states, and photoionization and photorecombination processes. The authors present a number of efficient methods for describing the structure and properties of R. atoms and calculating processes of collisions with neutral and charged particles as well as spectral-line broadening and shift of Rydberg atomic series in gases, cool and hot plasmas in laboratories and in astrophysical sources. Particular attention is paid to a comparison of theoretical results with available experimental data. The book contains 9 chapters. Chapter 1 gives an introduction to the basic properties of R. atoms (ions), Chapter 2 is devoted to an account of general methods describing an isolated Rydberg atom. Chapter 3 is focussed on the recent achievements in calculations of form factors and dipole matrix elements of different types of

  6. Excitation of high energy levels under laser exposure of suspensions of nanoparticles in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute, 38, Vavilov Street, 119991 Moscow (Russian Federation)], E-mail: shafeev@kapella.gpi.ru; Simakin, A.V. [Wave Research Center of A.M. Prokhorov General Physics Institute, 38, Vavilov Street, 119991 Moscow (Russian Federation); Bozon-Verduraz, F. [ITODYS, UMR CNRS 7086, Universite Paris 7-Denis Diderot, 2, place Jussieu, 75251 Paris cedex 05 (France); Robert, M. [Laboratoire d' Electrochimie Moleculaire, UMR CNRS 7591, Universite Paris 7 Denis Diderot, 2, place Jussieu, 75251 Paris cedex 05 (France)

    2007-12-15

    Laser exposure of suspensions of nanoparticles in liquids leads to excitation of high energy levels in both liquid and nanoparticle material. The emission spectrum of the colloidal solution under exposure of a suspension metallic nanoparticles in water to radiation of a Nd:YAG laser of a picosecond range of pulse duration is discussed. Excitation of nuclear energy levels and neutron release is experimentally studied on the model system of transmutation of Hg into Au that occurs under exposure of Hg nanodrops suspended in D{sub 2}O. The proposed mechanism involves: (i) emission of X-ray photons by Hg nanoparticles upon laser exposure, leading to neutron release from D{sub 2}O, (ii) initiation of Hg {yields} Au transmutation by the capture of neutrons. The effect of transmutation is more pronounced using {sup 196}Hg isotope instead of Hg of natural isotope composition. The influence of laser pulse duration on the degree of transmutation (from fs through ns range) is discussed.

  7. Effects of classical resonances on the chaotic microwave ionization of highly excited hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R V

    1987-05-01

    Experimental measurements of the microwave ionization of highly excited hydrogen atoms with principal quantum numbers ranging from n = 32 to 90 are well described by a classical treatment of the nonlinear electron dynamics. In particular, the measurements of the threshold field for the onset of significant ionization exhibits a curious dependence on the microwave frequency with distinct peaks at rational values of the scaled frequency, n/sup 3/..cap omega.. = 1, 2/3, 1/2, 2/5, 1/3, 1/4, 1/5, which is in excellent agreement with the predictions for the onset of classical chaos in a one-dimensional model of the experiment. In the classical theory this frequency dependence of the threshold fields is due to the stabilizing effect of nonlinear resonances (''islands'') in the classical phase space which is greatly enhanced when the microwave perturbation is turned on slowly (adiabatically) as in the experiments. Quantum calculations for this one-dimensional model also exhibit this stabilizing effect due to the preferential excitation of localized quasi-energy states.

  8. Fluorescence fluctuation of Rhodamine 6G dye for high repetition rate laser excitation

    International Nuclear Information System (INIS)

    Singh, Nageshwar; Patel, Hemant K.; Dixit, S.K.; Vora, H.S.

    2013-01-01

    In this paper, fluorescence from Rhodamine 6G dye for stationary and flowing liquid medium, excited by copper vapor laser, operating at 6 kHz pulse repetition frequency, was investigated. Large fluctuations in spectral width (about 5 nm) and spectral intensity in the fluorescence from stationary dye solution were observed, while fluctuations in the spectral width diminish in a flowing dye medium. However, this increases spectral intensity and slightly red shifts the fluorescence peak emission wavelength. Theoretical analysis was carried out to explain the observed results by incorporating the temperature induced refractive index, beam deflection and spectral variation in stationary dye solution. Numerical analysis of thermal load and contour of temperature in the optical pumped region inside the dye cell in stationary, 0.2 and 1.5 m/s flow velocity was also investigated to support our analysis. - Highlights: ► High repetition rate excitation generates inhomogeneity in the gain medium. ► Fluorescence of Rhodamine 6G in stationary and flowing medium was carried out. ► Fluorescence fluctuations lessen in flowing medium in contrast to stationary medium. ► Our theoretical and numerical analysis enlightens the experimented outcome trend.

  9. Electron-impact excitation and recombination of molecular cations in edge fusion plasma: application to H2+and BeD+

    Science.gov (United States)

    Pop, Nicolina; Iacob, Felix; Mezei, Zsolt; Motapon, Ousmanou; Niyonzima, Sebastien; Schneider, Ioan

    2017-10-01

    Dissociative recombination, ro-vibrational excitation and dissociative excitation of molecular cations with electrons are major elementary process in the kinetics and in the energy balance of astrophysically-relevant ionized media (supernovae, interstellar molecular clouds, planetary ionospheres, early Universe), in edge fusion and in many other cold media of technological interest. For the fusion plasma edge, extensive cross sections and rate coefficients have been produced for reactions induced on HD+, H2+ and BeD+ using the Multichannel Quantum Defect Theory (MQDT). Our calculations resulted in good agreement with the CRYRING (Stockholm) and TSR (Heidelberg) magnetic storage ring results, and our approach is permanently improved in order to face the new generation of electrostatic storage rings, as CSR (Heidelberg) and DESIREE (Stockholm). Member of APS Reciprocal Society: European Physics Society.

  10. A “Swingable” straight-chain affinity molecule immobilized on a semi-conductor electrode for photo-excited current-based molecular sensing

    International Nuclear Information System (INIS)

    Takatsuji, Yoshiyuki; Wakabayashi, Ryo; Sakakura, Tatsuya; Haruyama, Tetsuya

    2015-01-01

    The molecular affinities of biomolecules have found applications in the areas of clinical diagnostics, drug discovery, as well as allied fields of study. An affinity sensor is a unique in situ assay tool, which is valuable and convenient in practical situations. In this study, we designed a photo-excitable molecular interface with an affinity domain and fabricated with a “swingable” straight-chain affinity molecule immobilized on a semi-conductor electrode (SCE). The straight-chain affinity molecule possessed a photo-excitable dye at one end and was bound to the SCE surface at the other by the EC tag method, which was developed previously. A straight-chain molecule is too long to transfer electrons from the photo-excited dye to the conduction band of the SCE. However, the straight-chain molecule was designed with a “swing” structure, which made the transfer of electrons possible. The central region of the chain molecule has an affinity to the activated estrogen receptor (ER). When the activated ER bound to the affinity region, the molecular lost its swingable function, the electron transfer from the photo-excited dye to the SCE was consequently suppressed. Based on the unique swingable molecular interface, the affinity sensor can be used to determine the in situ concentration of endocrine disrupter ESTROGEN (17β-estradiol) at concentrations ranging from 2 to 10 nM with very good reproducibility. The superior assay reproducibility is responsible for the success of the EC tag method, which is a quantitative method for immobilizing molecules on SCE.

  11. Surface-enhanced Raman scattering (SERS) of riboflavin on nanostructured Ag surfaces: The role of excitation wavelength, plasmon resonance and molecular resonance

    Science.gov (United States)

    Šubr, Martin; Kuzminova, Anna; Kylián, Ondřej; Procházka, Marek

    2018-05-01

    Optimization of surface-enhanced Raman scattering (SERS)-based sensors for (bio)analytical applications has received much attention in recent years. For optimum sensitivity, both the nanostructure fabrication process and the choice of the excitation wavelength used with respect to the specific analyte studied are of crucial importance. In this contribution, detailed SERS intensity profiles were measured using gradient nanostructures with the localized surface-plasmon resonance (LSPR) condition varying across the sample length and using riboflavin as the model biomolecule. Three different excitation wavelengths (633 nm, 515 nm and 488 nm) corresponding to non-resonance, pre-resonance and resonance excitation with respect to the studied molecule, respectively, were tested. Results were interpreted in terms of a superposition of the enhancement provided by the electromagnetic mechanism and intrinsic properties of the SERS probe molecule. The first effect was dictated mainly by the degree of spectral overlap between the LSPR band, the excitation wavelength along with the scattering cross-section of the nanostructures, while the latter was influenced by the position of the molecular resonance with respect to the excitation wavelength. Our experimental findings contribute to a better understanding of the SERS enhancement mechanism.

  12. The CHESS survey of the L1157-B1 bow-shock: high and low excitation water vapor

    Science.gov (United States)

    Busquet, G.; Lefloch, B.; Benedettini, M.; Ceccarelli, C.; Codella, C.; Cabrit, S.; Nisini, B.; Viti, S.; Gómez-Ruiz, A. I.; Gusdorf, A.; di Giorgio, A. M.; Wiesenfeld, L.

    2014-01-01

    Context. Molecular outflows powered by young protostars strongly affect the kinematics and chemistry of the natal molecular cloud through strong shocks. This results in substantial modifications of the abundance of several species. In particular, water is a powerful tracer of shocked material because of its sensitivity to both physical conditions and chemical processes. Aims: As part of the Chemical HErschel Surveys of Star-forming regions (CHESS) guaranteed time key program, we aim at investigating the physical and chemical conditions of H2O in the brightest shock region B1 of the L1157 molecular outflow. Methods: We observed several ortho- and para-H2O transitions using the HIFI and PACS instruments on board Herschel toward L1157-B1, providing a detailed picture of the kinematics and spatial distribution of the gas. We performed a large velocity gradient (LVG) analysis to derive the physical conditions of H2O shocked material, and ultimately obtain its abundance. Results: We detected 13 H2O lines with both instruments probing a wide range of excitation conditions. This is the largest data set of water lines observed in a protostellar shock and it provides both the kinematics and the spatial information of the emitting gas. The PACS maps reveal that H2O traces weak and extended emission associated with the outflow identified also with HIFI in the o-H2O line at 556.9 GHz, and a compact (~10'') bright, higher excitation region. The LVG analysis of H2O lines in the bow-shock show the presence of two gas components with different excitation conditions: a warm (Tkin ≃ 200-300 K) and dense (n(H2) ≃ (1-3) × 106 cm-3) component with an assumed extent of 10'', and a compact (~2''-5'') and hot, tenuous (Tkin ≃ 900-1400 K, n(H2) ≃ 103-4 cm-3) gas component that is needed to account for the line fluxes of high Eu transitions. The fractional abundance of the warm and hot H2O gas components is estimated to be (0.7-2) × 10-6 and (1-3) × 10-4, respectively. Finally, we

  13. Theoretical and experimental study of the relaxation of excited states of the DCM laser dye. Intra-molecular electron transfer and photo-isomerization. Solvent effects

    International Nuclear Information System (INIS)

    Marguet, Sylvie

    1992-01-01

    This research thesis reports the study of a styrenic laser dye, the 4-(dicyanomethylene)-2-methyl-6-[p-(dimethylamino) styryl]-4H-pyrane or DCM for the characterization of the first electronic states and of the influence of the solvent on efficiencies of different relaxation processes of the first excited state S1 of the DCM. Due to the presence of a combination of a donor group and acceptor group, this compound has interesting properties of intra-molecular charge transfer and of photo-isomerization which highly depend on solvent polarity. Two approaches have been adopted to study these complementary processes: an experimental approach (determination of rate constants of the different deactivation ways of the S1 state by measuring fluorescence quantum efficiencies, photo-isomerization quantum efficiencies, and fluorescence lifetimes of DCM in about twenty solvent of increasing polarity), and a computational approach (a CS-INDO-MRI type quantum chemistry calculation to obtain potential energy curves, charge distributions, and dipolar moments of DCM first electronic states) [fr

  14. Piezoelectric Shunt Vibration Damping of F-15 Panel under High Acoustic Excitation

    Science.gov (United States)

    Wu, Shu-Yau; Turner, Travis L.; Rizzi, Stephen A.

    2000-01-01

    At last year's SPIE symposium, we reported results of an experiment on structural vibration damping of an F-15 underbelly panel using piezoelectric shunting with five bonded PZT transducers. The panel vibration was induced with an acoustic speaker at an overall sound pressure level (OASPL) of about 90 dB. Amplitude reductions of 13.45 and 10.72 dB were achieved for the first and second modes, respectively, using single- and multiple-mode shunting. It is the purpose of this investigation to extend the passive piezoelectric shunt-damping technique to control structural vibration induced at higher acoustic excitation levels, and to examine the controllability and survivability of the bonded PZT transducers at these high levels. The shunting experiment was performed with the Thermal Acoustic Fatigue Apparatus (TAFA) at the NASA Langley Research Center using the same F-15 underbelly panel. The TAFA is a progressive wave tube facility. The panel was mounted in one wall of the TAFA test section using a specially designed mounting fixture such that the panel was subjected to grazing-incidence acoustic excitation. Five PZT transducers were used with two shunt circuits designed to control the first and second modes of the structure between 200 and 400 Hz. We first determined the values of the shunt inductance and resistance at an OASPL of 130 dB. These values were maintained while we gradually increased the OASPL from 130 to 154 dB in 6-dB steps. During each increment, the frequency response function between accelerometers on the panel and the acoustic excitation measured by microphones, before and after shunting, were recorded. Good response reduction was observed up to the 148dB level. The experiment was stopped at 154 dB due to wire breakage from vibration at a transducer wire joint. The PZT transducers, however, were still bonded well on the panel and survived at this high dB level. We also observed shifting of the frequency peaks toward lower frequency when the OASPL

  15. Theories and experiments on the stiffening effect of high-frequency excitation for continuous elastic systems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    theories, each providing valuable insight. One of these is capable of predicting the vertical string lift due to stiffening in terms of simple expressions, with results that agree very well with experimental measurements for a wide range of conditions. It appears that resonance effects cannot be ignored...... for demonstrating and measuring the stiffening effect in a simple setting, in the form of a horizontal piano string subjected to longitudinal high-frequency excitation at the clamped base and free at the other end. A simplest possible theoretical model is set up and analyzed using a hierarchy of three approximating......, as was done in a few related studies¿¿unless the system has very low modal density or heavy damping; thus first-order consideration to resonance effects is included. Using the specific example with experimental support to put confidence on the proposed theory, expressions for predicting the stiffening effect...

  16. The origin of small and large molecule behavior in the vibrational relaxation of highly excited molecules

    International Nuclear Information System (INIS)

    Gordon, R.J.

    1990-01-01

    An explanation is proposed for the qualitatively different types of behavior that have been reported for the vibrational relaxation of highly excited diatomic and polyatomic molecules. It is argued that all of the diatomic molecules that have been studied in bulk relax adiabatically at room temperature. In contrast, large polyatomic molecules have low frequency modes which act at ''doorway'' modes for the rest of the molecules, producing an impulsive relaxation mechanism. The theoretical work of Nesbitt and Hynes showed that impulsive collisions result in an exponential decay of the average vibrational energy of a Morse oscillator, whereas adiabatic collisions produce nonexponential power law behavior. We propose that this result explains a large body of data for the vibrational relaxation of small and large molecules

  17. Highly sensitive time resolved singlet oxygen luminescence detection using LEDs as the excitation source

    International Nuclear Information System (INIS)

    Hackbarth, S; Schlothauer, J; Preuss, A; Röder, B

    2013-01-01

    For the first time singlet oxygen luminescence kinetics in living cells were detected at high precision using LED light for excitation. As LED technology evolves, the light intensity emitted by standard LEDs allows photosensitized singlet oxygen luminescence detection in solution and cell suspensions. We present measurements superior to those of most actual laser powered setups regarding precision of singlet oxygen kinetics in solutions and cell suspensions. Data presented here show that LED based setups allow the determination of the photosensitizer triplet and singlet oxygen decay times in vitro with an accuracy of 0.1 μs. This enables monitoring of the photosensitizer efficiency and interaction with the cellular components using illumination doses small enough not to cause cell death. (letter)

  18. Decay properties of rare earth nuclei at high excitation and low spin

    International Nuclear Information System (INIS)

    Atac, A.

    1989-01-01

    The purpose of this study was to examine the decay pattern of highly excited rare earth nuclei for which the decay process is expected to be governed by statistical laws. The aim was to investigate how good the statistical model describes the nuclear system and to search for possible deviation from it. It is shown that the gamma decay spectra following both the ( 3 He,α) pick-up reactions and the inelastic ( 3 He, 3 He') reactions reveal similar type of bumps. This leads to the conclusion that the bump structures are not a result of a particular reaction mechanism, but that they have a more general origin. The study is mainly devoted to an examination of the nature of the bumps. 22 refs

  19. Comparison of excitation mechanisms in the analytical regions of a high-power two-jet plasma

    International Nuclear Information System (INIS)

    Zaksas, Natalia P.

    2015-01-01

    Excitation mechanisms in the analytical regions of a high-power two-jet plasma were investigated. A new plasmatron recently developed was applied in this work. The Boltzmann population of excited levels of Fe atoms and ions was observed in both analytical regions, before and after the jet confluence, as well as in the jet confluence, which proves excitation of atoms and ions by electron impact. The disturbance of local thermodynamic equilibrium in all regions of the plasma flow was deduced on the basis of considerable difference in Fe atomic and ionic excitation temperatures. Such a difference is most likely to be caused by contribution of metastable argon to atom ionization. The region before the jet confluence has the greatest difference in Fe atomic and ionic excitation temperatures and is more non-equilibrium than the region after the confluence due to comparatively low electron and high metastable argon concentrations. Low electron concentration in this region provides lower background emission than in the region after the jet confluence, which leads to better detection limits for the majority of elements. - Highlights: • Excitation mechanisms were investigated in the analytical regions of a high-power TJP. • Boltzmann population of excited levels of Fe atoms and ions takes place in all regions of the plasma flow. • The considerable difference in Fe atomic and ionic excitation temperatures occurs. • Penning ionization by metastable argon results in disturbance of LTE in the plasma. • The region before the jet confluence is more non-equilibrium than after that

  20. Semiclassical study of the collision of a highly excited Rydberg atom with the molecules HF and HCl

    International Nuclear Information System (INIS)

    Kimura, M.; Lane, N.F.

    1990-01-01

    The semiclassical impact-parameter method is applied to the processes of state changing and energy transfer in the collision of a highly excited Rydberg atom (n≥20) with the polar molecules HF and HCl. The relative motion of the molecule and atomic nucleus is taken to be rectilinear; the electron-molecule and ion core-molecule interactions are represented by cutoff dipole forms. Cross sections for transitions involving quantum numbers n and l of the atom and rotational quantum number j of the molecule are obtained for a range of collision energies and initial atomic and molecular states. Comparisons are made with the results of earlier classical studies and with the quantum-mechanical impulse approximation. Collision rates are calculated and compared with experimental values for l mixing and n and j changing. The agreement between experiment and theory is shown to be satisfactory, within the uncertainties of both the measurements and the theory. Cases of agreement and disagreement between various theories are examined. One finding of the present work is that the quantum-mechanical impulse approximation appears to significantly overestimate the values of various state-changing cross sections when the internal energy defect is small. The validity of the impulse approximation for collisions of Rydberg atoms with polar molecules is discussed

  1. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons

    Science.gov (United States)

    Qiu, Jian; Nestor, Casey C; Zhang, Chunguang; Padilla, Stephanie L; Palmiter, Richard D

    2016-01-01

    Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1ARH) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characterized the cellular basis for synchronized Kiss1ARH neuronal activity using optogenetics, whole-cell electrophysiology, molecular pharmacology and single cell RT-PCR in mice. High-frequency photostimulation of Kiss1ARH neurons evoked local release of excitatory (NKB) and inhibitory (dynorphin) neuropeptides, which were found to synchronize the Kiss1ARH neuronal firing. The light-evoked synchronous activity caused robust excitation of GnRH neurons by a synaptic mechanism that also involved glutamatergic input to preoptic Kiss1 neurons from Kiss1ARH neurons. We propose that Kiss1ARH neurons play a dual role of driving episodic secretion of GnRH through the differential release of peptide and amino acid neurotransmitters to coordinate reproductive function. DOI: http://dx.doi.org/10.7554/eLife.16246.001 PMID:27549338

  2. Application of an antenna excited high pressure microwave discharge to compact discharge lamps

    International Nuclear Information System (INIS)

    Kando, M; Fukaya, T; Ohishi, Y; Mizojiri, T; Morimoto, Y; Shido, M; Serita, T

    2008-01-01

    A novel type of high pressure microwave discharge has been investigated to feed the microwave power at the centre of the compact high pressure discharge lamps using the antenna effect. This method of microwave discharge is named as the antenna excited microwave discharge (AEMD). The 2.45 GHz microwave of around 50 W from the solid state microwave generator can sustain a stable plasma column in the small gap between a couple of antennas fitted on the compact lamp filled with discharge gases at a pressure higher than atmosphere. The AEMD has been applied to a compact metal halide lamp and an extremely high pressure mercury discharge lamp. As a result, the metal halide lamp showed high luminous efficacy of around 130 lm W -1 . The excellent lamp properties obtained here can be explained by the low heating loss at the antennas and the lamp wall. The profiles of the microwave electric field in the lamp and the microwave launcher have been numerically calculated to consider the microwave power supply into the lamp

  3. Predissociation of high-lying Rydberg states of molecular iodine via ion-pair states

    Energy Technology Data Exchange (ETDEWEB)

    Bogomolov, Alexandr S. [Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090 (Russian Federation); Grüner, Barbara; Mudrich, Marcel [Physikalisches Institut, Universität Freiburg, D-79104 Freiburg (Germany); Kochubei, Sergei A. [Institute of Semiconductor Physics, ac. Lavrent' yev ave., 13, Novosibirsk 630090 (Russian Federation); Baklanov, Alexey V. [Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090 (Russian Federation)

    2014-03-28

    Velocity map imaging of the photofragments arising from two-photon photoexcitation of molecular iodine in the energy range 73 500–74 500 cm{sup −1} covering the bands of high-lying gerade Rydberg states [{sup 2}Π{sub 1/2}]{sub c}6d;0{sub g}{sup +} and [{sup 2}Π{sub 1/2}]{sub c}6d;2{sub g} has been applied. The ion signal was dominated by the atomic fragment ion I{sup +}. Up to 5 dissociation channels yielding I{sup +} ions with different kinetic energies were observed when the I{sub 2} molecule was excited within discrete peaks of Rydberg states and their satellites in this region. One of these channels gives rise to images of I{sup +} and I{sup −} ions with equal kinetic energy indicating predissociation of I{sub 2} via ion-pair states. The contribution of this channel was up to about 50% of the total I{sup +} signal. The four other channels correspond to predissociation via lower lying Rydberg states giving rise to excited iodine atoms providing I{sup +} ions by subsequent one-photon ionization by the same laser pulse. The ratio of these channels varied from peak to peak in the spectrum but their total ionic signal was always much higher than the signal of (2 + 1) resonance enhanced multi-photon ionization of I{sub 2}, which was previously considered to be the origin of ionic signal in this spectral range. The first-tier E0{sub g}{sup +} and D{sup ′}2{sub g} ion-pair states are concluded to be responsible for predissociation of Rydberg states [{sup 2}Π{sub 1/2}]{sub c}6d;0{sub g}{sup +} and [{sup 2}Π{sub 1/2}]{sub c}6d;2{sub g}, respectively. Further predissociation of these ion-pair states via lower lying Rydberg states gives rise to excited I(5s{sup 2}5p{sup 4}6s{sup 1}) atoms responsible for major part of ion signal. The isotropic angular distribution of the photofragment recoil directions observed for all channels indicates that the studied Rydberg states are long-lived compared with the rotational period of the I{sub 2} molecule.

  4. Investigations of the isospin in the highly excited compound nuclei 52Cr and 58Co

    International Nuclear Information System (INIS)

    Roth, K.

    1978-01-01

    The influence of T states excited by p bombardment on the quantities in the correlation function is investigated by means of a fluctuation analysis of the excitation function in the p and α decay channels of the compound nuclei 52 Cr and 58 Co. (AH) [de

  5. Excitation of short wavelength Alfven oscillations by high energy ions in tokamak

    International Nuclear Information System (INIS)

    Beasley, C.O. Jr.; Lominadze, J.G.; Mikhailovskii, A.B.

    1975-08-01

    The excitation of Alfven waves by fast untrapped ions in axisymmetric tokamaks is described by the dispersion relation epsilon 11 - c 2 k/sub parallel bars/ 2 /ω 2 = 0. Using this relation a new class of instability connected with the excitation of Alfven oscillations is described. (U.S.)

  6. Generation and decay dynamics of triplet excitons in Alq3 thin films under high-density excitation conditions.

    Science.gov (United States)

    Watanabe, Sadayuki; Furube, Akihiro; Katoh, Ryuzi

    2006-08-31

    We studied the generation and decay dynamics of triplet excitons in tris-(8-hydroxyquinoline) aluminum (Alq3) thin films by using transient absorption spectroscopy. Absorption spectra of both singlet and triplet excitons in the film were identified by comparison with transient absorption spectra of the ligand molecule (8-hydroxyquinoline) itself and the excited triplet state in solution previously reported. By measuring the excitation light intensity dependence of the absorption, we found that exciton annihilation dominated under high-density excitation conditions. Annihilation rate constants were estimated to be gammaSS = (6 +/- 3) x 10(-11) cm3 s(-1) for single excitons and gammaTT = (4 +/- 2) x 10(-13) cm3 s(-1) for triplet excitons. From detailed analysis of the light intensity dependence of the quantum yield of triplet excitons under high-density conditions, triplet excitons were mainly generated through fission from highly excited singlet states populated by singlet-singlet exciton annihilation. We estimated that 30% of the highly excited states underwent fission.

  7. Electronic excitation effects on secondary ion emission in highly charged ion-solid interaction

    International Nuclear Information System (INIS)

    Sekioka, T.; Terasawa, M.; Mitamura, T.; Stoeckli, M.P.; Lehnert, U.; Fehrenbach, C.

    2001-01-01

    In order to investigate the secondary ion emission from the surface of conductive materials bombarded by highly charged heavy ions, we have done two types of experiments. First, we have measured the yield of the sputtered ions from the surface of solid targets of conductive materials (Al, Si, Ni, Cu) bombarded by Xe q+ (q=15-44) at 300 keV (v p =0.30 a.u) and at 1.0 MeV (v p =0.54 a.u). In view of the secondary ion yields as a function of the potential energy of the projectile, the increase rates below q=35, where the potential energy amounts to 25.5 keV, were rather moderate and showed a prominent increase above q=35. These phenomena were rather strong in the case of the metal targets. Second, we have measured the energy dependence of the yield of the sputtered ions from the surface of solid targets of conductive materials (C, Al) bombarded by Xe q+ (q=30,36,44) between 76 keV (v p =0.15 a.u) and 6.0 MeV (v p =1.3 a.u). A broad enhancement of the secondary ion yield has been found for Al target bombarded by Xe 44+ . From these experimental results, the electronic excitation effects in conductive materials for impact of slow highly charged heavy ions bearing high potential energy is discussed

  8. Routes to formation of highly excited neutral atoms in the break-up of strongly driven hydrogen molecule

    Science.gov (United States)

    Emmanouilidou, Agapi

    2012-06-01

    We present a theoretical quasiclassical treatment of the formation, during Coulomb explosion, of highly excited neutral H atoms for strongly-driven hydrogen molecule. This process, where after the laser field is turned off, one electron escapes to the continuum while the other occupies a Rydberg state, was recently reported in an experimental study in Phys. Rev. Lett 102, 113002 (2009). We find that two-electron effects are important in order to correctly account for all pathways leading to highly excited neutral hydrogen formation [1]. We identify two pathways where the electron that escapes to the continuum does so either very quickly or after remaining bound for a few periods of the laser field. These two pathways of highly excited neutral H formation have distinct traces in the probability distribution of the escaping electron momentum components. [4pt] [1] A. Emmanouilidou, C. Lazarou, A. Staudte and U. Eichmann, Phys. Rev. A (Rapid) 85 011402 (2012).

  9. Research of the Electron Cyclotron Emission with Vortex Property excited by high power high frequency Gyrotron

    Science.gov (United States)

    Goto, Yuki; Kubo, Shin; Tsujimura, Tohru; Takubo, Hidenori

    2017-10-01

    Recently, it has been shown that the radiation from a single electron in cyclotron motion has vortex property. Although the cyclotron emission exists universally in nature, the vortex property has not been featured because this property is normally cancelled out due to the randomness in gyro-phase of electrons and the development of detection of the vortex property has not been well motivated. In this research, we are developing a method to generate the vortex radiation from electrons in cyclotron motion with controlled gyro-phase. Electron that rotates around the uniform static magnetic field is accelerated by right-hand circular polarized (RHCP) radiation resonantly when the cyclotron frequency coincides with the applied RHCP radiation frequency. A large number of electrons can be coherently accelerated in gyro-phase by a RHCP high power radiation so that these electrons can radiate coherent emission with vortex feature. We will show that vortex radiation created by purely rotating electrons for the first time.

  10. In which metals are high electronic excitations able to create damage?

    International Nuclear Information System (INIS)

    Legrand, P.; Dunlop, A.; Lesueur, D.; Lorenzelli, N.; Morillo, J.; Bouffard, S.

    1992-01-01

    Since a few years a certain number of results have shown that high energy deposition through electronic excitation can lead to damage creation in metallic targets. In order to test which is the right parameter favouring damage creation (high d-electrons density favouring electron-phonon coupling, various electrical conductivities, existence of different displacive phase transformations . . .) chosen metallic targets (Zr, Co, Ti, Ag, Pd, Pt, W, Ni) were irradiated on the french accelerator GANIL in Caen, at cryogenic temperatures with GeV-ions (Pb, O). In situ electrical resistance variation measurements at low temperature were achieved, followed by isochronal annealing of defects and post-X-ray observations at room temperature. This study shows that a very strong enhancement of the damage production occurs only in Zr, Ti and Co which present different allotropic phases and in particular a displacive transformation associated with soft modes in the phonon spectrum. The structure of stage I recovery of all the samples depends on the electronic stopping power

  11. Optical emission from a high-refractive-index waveguide excited by a traveling electron beam

    International Nuclear Information System (INIS)

    Kuwamura, Yuji; Yamada, Minoru; Okamoto, Ryuichi; Kanai, Takeshi; Fares, Hesham

    2008-01-01

    An optical emission scheme was demonstrated, in which a high-refractive-index waveguide is excited by a traveling electron beam in a vacuum environment. The waveguide was made of Si-SiO 2 layers. The velocity of light propagating in the waveguide was slowed down to 1/3 of that in free space due to the high refractive index of Si. The light penetrated partly into the vacuum in the form of a surface wave. The electron beam was emitted from an electron gun and propagated along the surface of the waveguide. When the velocity of the electron coincided with that of the light, optical emission was observed. This emission is a type of Cherenkov radiation and is not conventional cathode luminescence from the waveguide materials because Si and SiO 2 are transparent to light at the emitted wavelength. This type of emission was observed in an optical wavelength range from 1.2 to 1.6 μm with an electron acceleration voltage of 32-42 kV. The characteristics of the emitted light, such as the polarization direction and the relation between the acceleration voltage of the electron beam and the optical wavelength, coincided well with the theoretical results. The coherent length of an electron wave in the vacuum was confirmed to be equal to the electron spacing, as found by measuring the spectral profile of the emitted light

  12. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay

    DEFF Research Database (Denmark)

    Rodenko, Olga; Eriksson, Susann; Tidemand-Lichtenberg, Peter

    2017-01-01

    of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by factor of 5 for standard troponin I and by factor of 3 for a research high-sensitivity troponin I assay, compared...... to the flash lamp excitation. The obtained limit of detection was 0.22 ng/L measured on plasma with the research highsensitivity troponin I assay and 1.9 ng/L measured on tris-saline-azide buffer containing bovine serum albumin with the standard troponin I assay. We discuss the optimization of time...

  13. Neutron and gamma emission from highly excited states and states with high spin. Annual progress report

    International Nuclear Information System (INIS)

    Sperber, D.

    1976-08-01

    Both classical and quantum models for the collision between heavy ions were studied. Classical models were used to account for the possibility of strong damping. Two models which account for side peaking and considerable energy loss were proposed. According to the first, the ions clutch at the distance of closest approach and the radial energy is dissipated fast in the entrance channel. This is followed by a slow motion in the exit channel up to the snapping point. According to the second model, there is an asymmetry in the conservative potential between the entrance and exit channels. The exit channel potential includes deformations. A dynamical model including transfer was developed. The trajectories are determined dynamically whereas the transfer is considered as a random process. Semi-classical calculations (first order quantum calculation) were performed to test the validity of the classical model or the sharp cut-off approximation. The main conclusion is that for energies high above the Coulomb barrier, the classical approximation is adequate but close to the barrier, it is insufficient, and quantum effects are important. It was shown that a quantum mechanical model using time dependent perturbation accounts very well for the angular distribution in strongly damped collisions. A list of publications is included

  14. High Molecular Weight Polymers in the New Chemicals Program

    Science.gov (United States)

    There are three categories or types of High Molecular Weight (HMW, 10,000 daltons) polymers typically reviewed by the New Chemicals Program: Soluble, insoluble, and water absorbing. Each of the three types are treated differently.

  15. High-spin isomers in 212Rn in the region of triple neutron core-excitations

    Science.gov (United States)

    Dracoulis, G. D.; Lane, G. J.; Byrne, A. P.; Davidson, P. M.; Kibédi, T.; Nieminen, P.; Watanabe, H.; Wilson, A. N.

    2008-04-01

    The level scheme of 212Rn has been extended to spins of ∼ 38 ℏ and excitation energies of about 13 MeV using the 204Hg(13C, 5n)212Rn reaction and γ-ray spectroscopy. Time correlated techniques have been used to obtain sensitivity to weak transitions and channel selectivity. The excitation energy of the 22+ core-excited isomer has been established at 6174 keV. Two isomers with τ = 25 (2) ns and τ = 12 (2) ns are identified at 12211 and 12548 keV, respectively. These are the highest-spin nuclear isomers now known, and are attributed to configurations involving triple neutron core-excitations coupled to the aligned valence protons. Semi-empirical shell-model calculations can account for most states observed, but with significant energy discrepancies for some configurations.

  16. High-spin isomers in 212Rn in the region of triple neutron core-excitations

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Lane, G.J.; Byrne, A.P.; Davidson, P.M.; Kibedi, T.; Nieminen, P.; Watanabe, H.; Wilson, A.N.

    2008-01-01

    The level scheme of 212 Rn has been extended to spins of ∼38h and excitation energies of about 13 MeV using the 204 Hg( 13 C, 5n) 212 Rn reaction and γ-ray spectroscopy. Time correlated techniques have been used to obtain sensitivity to weak transitions and channel selectivity. The excitation energy of the 22 + core-excited isomer has been established at 6174 keV. Two isomers with τ=25(2) ns and τ=12(2) ns are identified at 12211 and 12548 keV, respectively. These are the highest-spin nuclear isomers now known, and are attributed to configurations involving triple neutron core-excitations coupled to the aligned valence protons. Semi-empirical shell-model calculations can account for most states observed, but with significant energy discrepancies for some configurations

  17. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations

    NARCIS (Netherlands)

    van Meer, R.; Gritsenko, O.V.; Baerends, E.J.

    2014-01-01

    In recent years, several benchmark studies on the performance of large sets of functionals in time-dependent density functional theory (TDDFT) calculations of excitation energies have been performed. The tested functionals do not approximate exact Kohn-Sham orbitals and orbital energies closely. We

  18. Radio-frequency wave excitation and damping on a high β plasma column

    International Nuclear Information System (INIS)

    Meuth, H.

    1984-01-01

    Azimuthally symmetric (m = 0) radio-frequency (RF) waves for zero and for finite axial wave number k/sub z/ are investigated on the High BETA Q Machine, a two-meter, 20 cm-diameter, low-compression linear theta pinch (T greater than or equal to 200 eV, n approx. = 10 15 cm -3 ) fast rising (0.4 μs) compression field. The (k/sub z/ = 0) modes occur spontaneously following the implosion phase of the discharge. A novel 100-MW 1 to 1.3 MHz, short wavelength current drive excites the plasma column in the vicinity of the lowest fast magnetoacoustic mode at various filling pressures. This current drive is designed as an integral part of the compression coil, which is segmented with a 20-cm axial wavelength (k/sub z/ = 0.314 cm -1 ). The electron density oscillations along major and minor chords at various positions are measured by interferometry perpendicular to the pinch axis. The oscillatory radial magnetic field component between pinch wall and hot plasma edge is measured by probes. Phases, amplitudes and radial mode structure are studied for the free (k = 0) modes and the externally driven (k does not equal 0) modes for various filling pressures of deuterium. The energy deposition from the externally driven RF wave leads to a radial expansion of the plasma column, as observed by axial interferometry and by excluded flux measurements

  19. Statistical properties of highly excited quantum eigenstates of a strongly chaotic system

    International Nuclear Information System (INIS)

    Aurich, R.; Steiner, F.

    1992-06-01

    Statistical properties of highly excited quantal eigenstates are studied for the free motion (geodesic flow) on a compact surface of constant negative curvature (hyperbolic octagon) which represents a strongly chaotic system (K-system). The eigenstates are expanded in a circular-wave basis, and it turns out that the expansion coefficients behave as Gaussian pseudo-random numbers. It is shown that this property leads to a Gaussian amplitude distribution P(ψ) in the semiclassical limit, i.e. the wavefunctions behave as Gaussian random functions. This behaviour, which should hold for chaotic systems in general, is nicely confirmed for eigenstates lying 10000 states above the ground state thus probing the semiclassical limit. In addition, the autocorrelation function and the path-correlation function are calculated and compared with a crude semiclassical Bessel-function approximation. Agreement with the semiclassical prediction is only found, if a local averaging is performed over roughly 1000 de Broglie wavelengths. On smaller scales, the eigenstates show much more structure than predicted by the first semiclassical approximation. (orig.)

  20. Improved heating efficiency with High-Intensity Focused Ultrasound using a new ultrasound source excitation.

    Science.gov (United States)

    Bigelow, Timothy A

    2009-01-01

    High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.

  1. High sensitivity detection of selenium by laser excited atomic fluorescence spectrometry using electrothermal atomization

    International Nuclear Information System (INIS)

    Heitmann, U.; Hese, A.; Schoknecht, G.; Gries, W.

    1995-01-01

    The high sensitivity detection of the trace element selenium is reported. The analytical method applied is Laser Excited Atomic Fluorescence Spectrometry using Electrothermal Atomization within a graphite furnace atomizer. For the production of tunable laser radiation in the VUV spectral region a laser system was developed which consists of two dye lasers pumped by a Nd:YAG laser. The laser radiations are subsequently frequency doubled and sum frequency mixed by nonlinear optical KDP or BBO crystals, respectively. The system works with a repetition rate of 20 Hz and provides output energies of up to 100 μJ in the VUV at a pulse duration of 5 ns. The analytical investigations were focused on the detection of selenium in aqueous solutions and samples of human whole blood. From measurements on aqueous standards detection limits of 1.5 ng/l for selenium were obtained, with corresponding absolute detected masses of only 15 fg. The linear dynamic range spanned six orders of magnitude and good precision was achieved. In case of human whole blood samples the recovery was found to be within the range of 96% to 104%. The determination of the selenium content yielded medians of [119.5 ± 17.3] μg/l for 200 frozen blood samples taken in 1988 and [109.1 ± 15.6] μg/l for 103 fresh blood samples. (author)

  2. High-sensitivity measurements of the excitation function for Bhabha scattering at MeV energies

    International Nuclear Information System (INIS)

    Tsertos, H.; Kozhuharov, C.; Armbruster, P.; Kienle, P.; Krusche, B.; Schreckenbach, K.

    1989-02-01

    Using a monochromatic e + beam scattered on a Be foil and a high-resolution detector device, the excitation function for elastic e + e - scattering was measured with a statistical accuracy of 0.25% in 1.4 keV steps in the c.m.-energy range between 770 keV and 840 keV (1.79 - 1.86 MeV/c 2 ) at c.m. scattering angles between 80 0 and 100 0 (FWHM). Within the experimental sensitivity of 0.5 b.eV/sr (c.m.) for the energy-integrated differential cross section no resonances were observed (97% CL). From this limit we infer that a hypothetical spinless resonant state should have a width of less than 1.9 meV corresponding to a lifetime limit of 3.5x10 -13 s. This limit establishes the most stringent bound for new particles in this mass range derived from Bhabha scattering and is independent of assumptions about the internal structure of the hypothetical particles. Less sensitivite limits were, in addition, derived around 520 keV c.m. energy (≅ 1.54 MeV/c 2 ) from an investigation with a thorium and a mylar foil as scatterers. (orig.)

  3. Portable vibration exciter

    Science.gov (United States)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  4. Testing the excitation/inhibition imbalance hypothesis in a mouse model of the autism spectrum disorder: in vivo neurospectroscopy and molecular evidence for regional phenotypes.

    Science.gov (United States)

    Gonçalves, Joana; Violante, Inês R; Sereno, José; Leitão, Ricardo A; Cai, Ying; Abrunhosa, Antero; Silva, Ana Paula; Silva, Alcino J; Castelo-Branco, Miguel

    2017-01-01

    Excitation/inhibition (E/I) imbalance remains a widely discussed hypothesis in autism spectrum disorders (ASD). The presence of such an imbalance may potentially define a therapeutic target for the treatment of cognitive disabilities related to this pathology. Consequently, the study of monogenic disorders related to autism, such as neurofibromatosis type 1 (NF1), represents a promising approach to isolate mechanisms underlying ASD-related cognitive disabilities. However, the NF1 mouse model showed increased γ-aminobutyric acid (GABA) neurotransmission, whereas the human disease showed reduced cortical GABA levels. It is therefore important to clarify whether the E/I imbalance hypothesis holds true. We hypothesize that E/I may depend on distinct pre- and postsynaptic push-pull mechanisms that might be are region-dependent. In current study, we assessed two critical components of E/I regulation: the concentration of neurotransmitters and levels of GABA(A) receptors. Measurements were performed across the hippocampi, striatum, and prefrontal cortices by combined in vivo magnetic resonance spectroscopy (MRS) and molecular approaches in this ASD-related animal model, the Nf1 +/- mouse. Cortical and striatal GABA/glutamate ratios were increased. At the postsynaptic level, very high receptor GABA(A) receptor expression was found in hippocampus, disproportionately to the small reduction in GABA levels. Gabaergic tone (either by receptor levels change or GABA/glutamate ratios) seemed therefore to be enhanced in all regions, although by a different mechanism. Our data provides support for the hypothesis of E/I imbalance in NF1 while showing that pre- and postsynaptic changes are region-specific. All these findings are consistent with our previous physiological evidence of increased inhibitory tone. Such heterogeneity suggests that therapeutic approaches to address neurochemical imbalance in ASD may need to focus on targets where convergent physiological mechanisms can be

  5. Advances in the MQDT approach of electron/molecular cation reactive collisions: High precision extensive calculations for applications

    Directory of Open Access Journals (Sweden)

    Motapon O.

    2015-01-01

    Full Text Available Recent advances in the stepwise multichannel quantum defect theory approach of electron/molecular cation reactive collisions have been applied to perform computations of cross sections and rate coefficients for dissociative recombination and electron-impact ro-vibrational transitions of H2+, BeH+ and their deuterated isotopomers. At very low energy, rovibronic interactions play a significant role in the dynamics, whereas at high energy, the dissociative excitation strongly competes with all other reactive processes.

  6. Development of a model for the description of highly excited states in odd-A deformed nuclei

    International Nuclear Information System (INIS)

    Malov, L.A.; Soloviev, V.G.

    1975-01-01

    An approximate method is suggested for solution of the set of equations, obtained earlier for describing the structure of intermediate-and high-excitation states within the framework of the model taking into account quasiparticle-phonon interaction. The analysis is conducted for the case of an odd deformed nucleus, when several one-quasiparticle components are simultaneously taken into account

  7. ANISOTROPY EFFECTS IN SINGLE-ELECTRON TRANSFER BETWEEN LASER-EXCITED ATOMS AND HIGHLY-CHARGED IONS

    NARCIS (Netherlands)

    Recent collision experiments are reviewed in which one-electron transfer between laser excited target atoms and (highly charged) keV-ions has been studied. Especially results showing a dependence of the charge exchange on the initial target orbital alignment are discussed. The question to what

  8. A Preliminary Transcranial Magnetic Stimulation Study of Cortical Inhibition and Excitability in High-Functioning Autism and Asperger Disorder

    Science.gov (United States)

    Enticott, Peter G.; Rinehart, Nicole J.; Tonge, Bruce J.; Bradshaw, John L.; Fitzgerald, Paul B.

    2010-01-01

    Aim: Controversy surrounds the distinction between high-functioning autism (HFA) and Asperger disorder, but motor abnormalities are associated features of both conditions. This study examined motor cortical inhibition and excitability in HFA and Asperger disorder using transcranial magnetic stimulation (TMS). Method: Participants were diagnosed by…

  9. Lifetime measurements of odd-parity high-excitation levels of Sn I by time-resolved laser spectroscopy

    International Nuclear Information System (INIS)

    Zhang, Wei; Feng, Yanyan; Xu, Jiaxin; Dai, Zhenwen; Palmeri, Patrick; Quinet, Pascal; Biemont, Emile

    2010-01-01

    Natural radiative lifetimes of 38 odd-parity highly excited levels in neutral tin in the energy range from 43 682.737 to 56 838.68 cm -1 have been measured by a time-resolved laser-induced fluorescence technique in an atomic beam produced by laser ablation on a solid tin sample. All the levels were excited from the metastable 3 P 1, 2 and 1 D 2 levels in the ground configuration. The second and third harmonics of a dye laser were adopted as the tunable exciting source (207-250 nm). The lifetime results obtained in this paper are in the range from 4.6 to 292 ns and will be useful in extending the set of oscillator strengths available in Sn I.

  10. Lifetime measurements of odd-parity high-excitation levels of Sn I by time-resolved laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Feng, Yanyan; Xu, Jiaxin; Dai, Zhenwen [College of Physics, Jilin University and Key Lab of Coherent Light, Atomic and Molecular Spectroscopy, Ministry of Education, Changchun 130021 (China); Palmeri, Patrick; Quinet, Pascal; Biemont, Emile, E-mail: dai@jlu.edu.c [Astrophysique et Spectroscopie, Universite de Mons-UMONS, B-7000 Mons (Belgium)

    2010-10-28

    Natural radiative lifetimes of 38 odd-parity highly excited levels in neutral tin in the energy range from 43 682.737 to 56 838.68 cm{sup -1} have been measured by a time-resolved laser-induced fluorescence technique in an atomic beam produced by laser ablation on a solid tin sample. All the levels were excited from the metastable {sup 3}P{sub 1,} {sub 2} and {sup 1}D{sub 2} levels in the ground configuration. The second and third harmonics of a dye laser were adopted as the tunable exciting source (207-250 nm). The lifetime results obtained in this paper are in the range from 4.6 to 292 ns and will be useful in extending the set of oscillator strengths available in Sn I.

  11. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    Science.gov (United States)

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Excitable dynamics in high-Lewis number premixed gas combustion at normal and microgravity

    Science.gov (United States)

    Pearlman, Howard

    1995-01-01

    Freely-propagating, premixed gas flames in high-Lewis (Le) number, quiescent mixtures are studied experimentally in tubes of various diameter at normal (lg) and microgravity (mu g). A premixture of lean butane and oxygen diluted with helium, argon, neon, nitrogen or a mixture of multiple diluents is examined such that the thermal diffusivity of the mixture (and to a lesser extent, the mass diffusivity of the rate-limiting component) is systematically varied. In effect, different diluents allow variation of the Le without changing the chemistry. The flames are recorded with high speed cinematography and their stability is visually assessed. Different modes of propagation were observed depending on the diameter of the tubes (different conductive heat loss), the composition of the mixture and the g-level. At 1g, four modes of propagation were observed in small and intermediate diameter tubes (large conductive heat loss): (1) steadily propagating flames, (2) radial and longitudinal pulsating flames, (3) 'wavering' flames, and (4) rotating spiral flames. As the diameter of the tube increases, the radial modes become more pronounced while the longitudinal modes systematically disappear. Also, multiple, simultaneous, spatially-separated 'pacemaker' sites are observed in intermediate and large diameter tubes. Each site starts as a small region of high luminosity and develops into a flamelet which assumes the form of one of the fore mentioned modes. These flamelets eventually interact, annihilate each other in their regions of intersection and merge at their newly created free-ends. For very large tubes, radially-propagating wave-trains (believed to be 'trigger waves') are observed. These are analogous to the radial pulsations observed in the smaller diameter tubes. At mu g, three modes of propagation have been observed: (1) steadily propagating flames, (2) radial and longitudinal pulsating flames, and (3) multi-armed, rotating flames. Since the pulsating mode exists at mu

  13. The Cascaded Arc: High Flows of Rovibrationally Excited H2 and its Impact on H- Ion Formation

    International Nuclear Information System (INIS)

    Gabriel, O.; Harskamp, W. E. N. van; Schram, D. C.; Sanden, M. C. M. van de; Engeln, R.

    2009-01-01

    The cascaded arc is a plasma source providing high fluxes of excited and reactive species such as ions, radicals and rovibrationally excited molecules. The plasma is produced under pressures of some kPa in a direct current arc with electrical powers up to 10 kW. The plasma leaves the arc channel through a nozzle and expands with supersonic velocity into a vacuum-chamber kept by pumps at low pressures. We investigated the case of a pure hydrogen plasma jet with and without an applied axial magnetic field that confines ions and electrons in the jet. Highly excited molecules and atoms were detected by means of laser-induced fluorescence and optical emission spectroscopy. In case of an applied magnetic field the atomic state distribution of hydrogen atoms shows an overpopulation between the electronic states p = 5, 4 and 3. The influence of the highly excited hydrogen molecules on H - ion formation and a possible mechanism involving this negative ion and producing atomic hydrogen in state p = 3 will be discussed.

  14. Molecular reorganization of selected quinoline derivatives in the ground and excited states—Investigations via static DFT

    Science.gov (United States)

    Błaziak, Kacper; Panek, Jarosław J.; Jezierska, Aneta

    2015-07-01

    Quinoline derivatives are interesting objects to study internal reorganizations due to the observed excited-state-induced intramolecular proton transfer (ESIPT). Here, we report on computations for selected 12 quinoline derivatives possessing three kinds of intramolecular hydrogen bonds. Density functional theory was employed for the current investigations. The metric and electronic structure simulations were performed for the ground state and first excited singlet and triplet states. The computed potential energy profiles do not show a spontaneous proton transfer in the ground state, whereas excited states exhibit this phenomenon. Atoms in Molecules (AIM) theory was applied to study the nature of hydrogen bonding, whereas Harmonic Oscillator Model of aromaticity index (HOMA) provided data of aromaticity evolution as a derivative of the bridge proton position. The AIM-based topological analysis confirmed the presence of the intramolecular hydrogen bonding. In addition, using the theory, we were able to provide a quantitative illustration of bonding transformation: from covalent to the hydrogen. On the basis of HOMA analysis, we showed that the aromaticity of both rings is dependent on the location of the bridge proton. Further, the computed results were compared with experimental data available. Finally, ESIPT occurrence was compared for the three investigated kinds of hydrogen bridges, and competition between two bridges in one molecule was studied.

  15. Molecular reorganization of selected quinoline derivatives in the ground and excited states—Investigations via static DFT

    International Nuclear Information System (INIS)

    Błaziak, Kacper; Panek, Jarosław J.; Jezierska, Aneta

    2015-01-01

    Quinoline derivatives are interesting objects to study internal reorganizations due to the observed excited-state-induced intramolecular proton transfer (ESIPT). Here, we report on computations for selected 12 quinoline derivatives possessing three kinds of intramolecular hydrogen bonds. Density functional theory was employed for the current investigations. The metric and electronic structure simulations were performed for the ground state and first excited singlet and triplet states. The computed potential energy profiles do not show a spontaneous proton transfer in the ground state, whereas excited states exhibit this phenomenon. Atoms in Molecules (AIM) theory was applied to study the nature of hydrogen bonding, whereas Harmonic Oscillator Model of aromaticity index (HOMA) provided data of aromaticity evolution as a derivative of the bridge proton position. The AIM-based topological analysis confirmed the presence of the intramolecular hydrogen bonding. In addition, using the theory, we were able to provide a quantitative illustration of bonding transformation: from covalent to the hydrogen. On the basis of HOMA analysis, we showed that the aromaticity of both rings is dependent on the location of the bridge proton. Further, the computed results were compared with experimental data available. Finally, ESIPT occurrence was compared for the three investigated kinds of hydrogen bridges, and competition between two bridges in one molecule was studied

  16. Satellite bands of the RbCs molecule in the range of highly excited states

    Energy Technology Data Exchange (ETDEWEB)

    Rakić, Mario; Beuc, Robert; Skenderović, Hrvoje, E-mail: hrvoje@ifs.hr [Institute of Physics, Bijenička cesta 46, Zagreb 10000 (Croatia); Bouloufa-Maafa, Nadia; Dulieu, Olivier; Vexiau, Romain [Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, Bât. 505, Campus d’Orsay, Orsay Cedex 91405 (France); Pichler, Goran [Physics Department, Kuwait University, PO Box 5969, Safat—13060 (Kuwait)

    2016-05-28

    We report on the observation of three RbCs satellite bands in the blue and green ranges of the visible spectrum. Absorption measurements are performed using all-sapphire cell filled with a mixture of Rb and Cs. We compare high resolution absorption spectrum of Rb-Cs vapor mixture with pure Rb and Cs vapor spectra from the literature. After detailed analysis, the new satellite bands of RbCs molecule at 418.3 nm, 468.3, and 527.5 nm are identified. The origin of these bands is discussed by direct comparison with difference potentials derived from quantum chemistry calculations of RbCs potential energy curves. These bands originate from the lower Rydberg states of the RbCs molecule. This study thus provides further insight into photoassociation of lower Rydberg molecular states, approximately between Cs(7s) + Rb(5s) and Cs(6s) + Rb(6p) asymptotes, in ultracold gases.

  17. Raman active high energy excitations in URu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Buhot, Jonathan [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France); High Field Magnet Laboratory (HFML - EMFL), Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen (Netherlands); Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France); Piekarz, Przemysław [Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakòw (Poland); Lapertot, Gérard [Université Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble (France); CEA, INAC-SPSMS, F-38000 Grenoble (France); Aoki, Dai [Université Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble (France); CEA, INAC-SPSMS, F-38000 Grenoble (France); Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Méasson, Marie-Aude, E-mail: marie-aude.measson@univ-paris-diderot.fr [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France)

    2017-02-01

    We have performed Raman scattering measurements on URu{sub 2}Si{sub 2} single crystals on a large energy range up to ∼1300 cm{sup −1} and in all the Raman active symmetries as a function of temperature down to 15 K. A large excitation, active only in the E{sub g} symmetry, is reported. It has been assigned to a crystal electric field excitation on the Uranium site. We discuss how this constrains the crystal electric field scheme of the Uranium ions. Furthermore, three excitations in the A{sub 1g} symmetry are observed. They have been associated to double Raman phonon processes consistently with ab initio calculations of the phonons dispersion.

  18. Gravitational Waves from F-modes Excited by the Inspiral of Highly Eccentric Neutron Star Binaries

    International Nuclear Information System (INIS)

    Chirenti, Cecilia; Gold, Roman; Miller, M. Coleman

    2017-01-01

    As gravitational wave instrumentation becomes more sensitive, it is interesting to speculate about subtle effects that could be analyzed using upcoming generations of detectors. One such effect that has great potential for revealing the properties of very dense matter is fluid oscillations of neutron stars. These have been found in numerical simulations of the hypermassive remnants of double neutron star mergers and of highly eccentric neutron star orbits. Here we focus on the latter and sketch out some ideas for the production, gravitational-wave detection, and analysis of neutron star oscillations. These events will be rare (perhaps up to several tens per year could be detected using third-generation detectors such as the Einstein Telescope or the Cosmic Explorer), but they would have unique diagnostic power for the analysis of cold, catalyzed, dense matter. Furthermore, these systems are unusual in that analysis of the tidally excited f-modes of the stars could yield simultaneous measurements of their masses, moments of inertia, and tidal Love numbers, using the frequency, damping time, and amplitude of the modes. They would thus present a nearly unique opportunity to test the I-Love-Q relation observationally. The analysis of such events will require significant further work in nuclear physics and general relativistic nonlinear mode coupling, and thus we discuss further directions that will need to be pursued. For example, we note that for nearly grazing encounters, numerical simulations show that the energy delivered to the f-modes may be up to two orders of magnitude greater than predicted in the linear theory.

  19. Excitation contraction uncoupling by high intracellular [Ca2+] in frog skeletal muscle: a voltage clamp study.

    Science.gov (United States)

    Olivera, J Fernando; Pizarro, Gonzalo

    2016-10-01

    Raising the intracellular [Ca 2+ ] ([Ca 2+ ] i ) was previously found to produce uncoupling between the electrical depolarization of the transverse tubules and contraction in skinned muscle fibers. Here we study the effect of elevated [Ca 2+ ] i in voltage clamped cut fibers of frog skeletal muscle to establish how the charge movement, a measure of the activation of the dihydropyridine receptors (DHPR)-voltage sensors, and Ca 2+ release, a consequence of the opening of the ryanodine receptor (RyR)-release channels, were affected. [Ca 2+ ] i was raised by various procedures (pharmacological release from the sarcoplasmic reticulum, application of high [Ca 2+ ] i intracellular solution, permeabilization of the plasma membrane by a Ca 2+ ionophore) all of which produced impairment of excitation-contraction coupling. The charge movement was reduced from 20.2 ± 1.24 to 9.9 ± 0.94 nC/μF meanwhile the Ca 2+ release flux was reduced from 13.5 + 0.7 to 2.2 ± 0.3 μM/ms (n = 33). This suggests that a significant fraction of the DHPRs that remained functional, could not activate RyRs, and were therefore presumably disconnected. These results are broadly consistent with the original reports in skinned fibers. Uncoupling was prevented by the addition to the intracellular solution of the protease inhibitor leupeptin. In approximately 40 % of the uncoupled cells we observed that the [Ca 2+ ] i transient continued to rise after the voltage clamp pulse was turned off. This loss of control by membrane voltage suggests that the uncoupled release channels might have another mechanism of activation, likely by Ca 2+ .

  20. Gravitational Waves from F-modes Excited by the Inspiral of Highly Eccentric Neutron Star Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Chirenti, Cecilia [Centro de Matemática, Computação e Cognição, UFABC, 09210-170 Santo André-SP (Brazil); Gold, Roman [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Miller, M. Coleman [Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742-2421 (United States)

    2017-03-01

    As gravitational wave instrumentation becomes more sensitive, it is interesting to speculate about subtle effects that could be analyzed using upcoming generations of detectors. One such effect that has great potential for revealing the properties of very dense matter is fluid oscillations of neutron stars. These have been found in numerical simulations of the hypermassive remnants of double neutron star mergers and of highly eccentric neutron star orbits. Here we focus on the latter and sketch out some ideas for the production, gravitational-wave detection, and analysis of neutron star oscillations. These events will be rare (perhaps up to several tens per year could be detected using third-generation detectors such as the Einstein Telescope or the Cosmic Explorer), but they would have unique diagnostic power for the analysis of cold, catalyzed, dense matter. Furthermore, these systems are unusual in that analysis of the tidally excited f-modes of the stars could yield simultaneous measurements of their masses, moments of inertia, and tidal Love numbers, using the frequency, damping time, and amplitude of the modes. They would thus present a nearly unique opportunity to test the I-Love-Q relation observationally. The analysis of such events will require significant further work in nuclear physics and general relativistic nonlinear mode coupling, and thus we discuss further directions that will need to be pursued. For example, we note that for nearly grazing encounters, numerical simulations show that the energy delivered to the f-modes may be up to two orders of magnitude greater than predicted in the linear theory.

  1. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  2. Alpha particle emission as a probe of the level density in highly excited A∼200 nuclei

    International Nuclear Information System (INIS)

    Fabris, D.; Fioretto, E.; Viesti, G.; Cinausero, M.; Gelli, N.; Hagel, K.; Lucarelli, F.; Natowitz, J.B.; Nebbia, G.; Prete, G.; Wada, R.

    1994-01-01

    The alpha particle emission from 90 to 140 MeV 19 F+ 181 Ta fusion-evaporation reactions has been studied. The comparisons of the experimental spectral shapes and multiplicities with statistical model predictions indicate a need to use an excitation energy dependent level-density parameter a=A/K in which K increases with excitation energy. This increase is more rapid than that in lower mass nuclei. The effect of this change in level density on the prescission multiplicities in fission is significant

  3. Neutron emission in fission of highly excited californium nuclei (E* = 76 MeV)

    International Nuclear Information System (INIS)

    Blinov, M.V.; Bordyug, V.M.; Kozulin, E.M.; Levitovich, M.; Mozhaev, A.N.; Muzychka, Yu.A.; Penionzhkevich, Yu.E.; Pustyl'nik, B.I.

    1990-01-01

    Differential cross sections for neutron production have been measured in fission of excited californium nuclei produced in the reaction 238 U + 12 C (105 MeV). It follows from analysis of the experimental results that the number of neutrons emitted before fission considerably exceeds the number obtained in the framework of the standard statistical model. On the basis of the multiplicity of neutrons they authors have estimated the time of fission of the excited nucleus. The dependence of the number of neutrons and their average energies on the mass of the fragments is determined

  4. Electron beam excitation assisted optical microscope with ultra-high resolution.

    Science.gov (United States)

    Inami, Wataru; Nakajima, Kentaro; Miyakawa, Atsuo; Kawata, Yoshimasa

    2010-06-07

    We propose electron beam excitation assisted optical microscope, and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nanometric light source is faster than that in conventional near-field scanning optical microscopes. The microscope enables to observe optical constants such as absorption, refractive index, polarization, and their dynamic behavior on a nanometric scale. The microscope opens new microscopy applications in nano-technology and nano-science.

  5. A full-spectrum analysis of high-speed train interior noise under multi-physical-field coupling excitations

    Science.gov (United States)

    Zheng, Xu; Hao, Zhiyong; Wang, Xu; Mao, Jie

    2016-06-01

    High-speed-railway-train interior noise at low, medium, and high frequencies could be simulated by finite element analysis (FEA) or boundary element analysis (BEA), hybrid finite element analysis-statistical energy analysis (FEA-SEA) and statistical energy analysis (SEA), respectively. First, a new method named statistical acoustic energy flow (SAEF) is proposed, which can be applied to the full-spectrum HST interior noise simulation (including low, medium, and high frequencies) with only one model. In an SAEF model, the corresponding multi-physical-field coupling excitations are firstly fully considered and coupled to excite the interior noise. The interior noise attenuated by sound insulation panels of carriage is simulated through modeling the inflow acoustic energy from the exterior excitations into the interior acoustic cavities. Rigid multi-body dynamics, fast multi-pole BEA, and large-eddy simulation with indirect boundary element analysis are first employed to extract the multi-physical-field excitations, which include the wheel-rail interaction forces/secondary suspension forces, the wheel-rail rolling noise, and aerodynamic noise, respectively. All the peak values and their frequency bands of the simulated acoustic excitations are validated with those from the noise source identification test. Besides, the measured equipment noise inside equipment compartment is used as one of the excitation sources which contribute to the interior noise. Second, a full-trimmed FE carriage model is firstly constructed, and the simulated modal shapes and frequencies agree well with the measured ones, which has validated the global FE carriage model as well as the local FE models of the aluminum alloy-trim composite panel. Thus, the sound transmission loss model of any composite panel has indirectly been validated. Finally, the SAEF model of the carriage is constructed based on the accurate FE model and stimulated by the multi-physical-field excitations. The results show

  6. Clinical and molecular features of high-grade osteosarcoma

    NARCIS (Netherlands)

    Anninga, Jakob Klaas

    2013-01-01

    It can be concluded from this thesis that high-grade osteosarcoma is at clinical, pathological and molecular level a heterogeneous disease. To treat high-grade osteosarcoma, neo-adjuvant chemotherapy should be combined with radical surgery, irrespective the localization. There are only 4 effective

  7. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay

    OpenAIRE

    Rodenko, Olga; Eriksson, Susann; Tidemand-Lichtenberg, Peter; Troldborg, Carl Peder; Fodgaard, Henrik; van Os, Sylvana; Pedersen, Christian

    2017-01-01

    High-sensitivity cardiac troponin assay development enables determination of biological variation in healthy populations, more accurate interpretation of clinical results and points towards earlier diagnosis and rule-out of acute myocardial infarction. In this paper, we report on preliminary tests of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by fac...

  8. Proton emission from high spin states of proton rich excited 94Ag

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2008-01-01

    Recent observation of direct 1P and 2P decay of 21 + isomer in proton rich 94 Ag has led to the present theoretical investigation of proton radioactivity from 94 Ag in ground state and excited state and it's dependence on the structural transitions

  9. Inner shell excitation in atoms and molecules by high resolution electron impact

    International Nuclear Information System (INIS)

    King, G.C.

    1986-01-01

    In this work an inner-shell spin-forbidden transition in N 2 and a parity-forbidden transition in Ar were studied. These transitions were observed by using incident electron energies as low as 1.15 times the excitation energy of the inner-shell states. (Auth.)

  10. Single photon excimer laser photodissociation of highly vibrationally excited polyatomic molecules

    International Nuclear Information System (INIS)

    Tiee, J.J.; Wampler, F.B.; Rice, W.W.

    1980-01-01

    The ir + uv photodissociation of SF 6 has been performed using CO 2 and ArF lasers. The two-color photolysis significantly enhances the photodissociation process over ArF irradiation alone and is found to preserve the initial isotopic specificity of the ir excitation process

  11. Atomic substitution in selected high-temperature superconductors: Elucidating the nature of Raman spectra excitations

    Science.gov (United States)

    Hewitt, Kevin Cecil

    2000-10-01

    In this thesis, the effects of atomic substitution on the vibrational and electronic excitations found in the Raman spectra of selected high-temperature superconductors (HTS) are studied. In particular, atomic and isotopic substitution methods have been used to determine the character of features observed in the Raman spectra of Bi2Sr2Ca n-1CunO2 n+4+delta (n = 1 - Bi2201, n = 2 - Bi2212) and YBa2Cu3O7-delta (Y123). In Bi2201, Pb substitution for Bi (and Sr) has led to the reduction and eventual removal of the structural modulation, characteristic of all members of the Bi-family of HTS. The high quality single crystals and our sensitive triple spectrometer enabled identification of a pair of low frequency modes. The modes are determined to arise from shear and compressional rigid-layer vibrations. The normal state of underdoped cuprates is characterized by a pseudogap of unknown origin. In crystals of underdoped Bi2212 a spectral peak found at 590 cm-1, previously attributed to the pairing of quasiparticles (above Tc) and hence to the formation of a normal state pseudogap, has been found to soften by 3.8% with oxygen isotope exchange. In addition, the feature is absent in fully oxygenated and yttrium underdoped crystals. In this study, the first of its kind on underdoped and isotope substituted Bi2212, the feature has been assigned to stretching vibrations of oxygen in the a-b plane. Bi2212 crystals with varying hole concentrations (0.07 Raman scattering experiments that sample the diagonal (B 2g) and principal axes (B1 g) of the BZ have led us to conclude that the superconducting gap possesses dx2-y2 symmetry, in the underdoped and overdoped regimes. It is found that the magnitude of the superconducting gap (Delta(k)) is sensitive to changes in p. Studies of the pair-breaking peak found in the B1g spectra allow us to conclude that the magnitude of the maximum gap (Deltamax) decreases monotonically with increasing hole doping, for p > 0.13. The pair

  12. Excitation of contained modes by high energy nuclei and correlated cyclotron emission

    International Nuclear Information System (INIS)

    Coppi, B.; Penn, G.; Riconda, C.

    1997-01-01

    In experiments with fusing plasmas, enhanced radiation emission at the harmonics of the cyclotron frequency of fusion reaction products has been observed. A theory is presented that explains key features of these observations and indicates the possibility of extracting significant information about the fusion product population distribution, both in velocity space and over the plasma cross section. The considered model is consistent in particular with the fact that, in DT plasmas, the radiation peaks occur at frequencies corresponding to harmonics of the α particles cyclotron frequency Ω a evaluated at the outer edge of the plasma column, and that a transition to a open-quotes continuumclose quotes spectrum at high frequencies (ω approx-gt 7Ω α ) can be identified. In this model, the radiation is the result of the excitation of radially open-quotes containedclose quotes modes which are driven unstable by the fusion products. The modes considered to be responsible for the discrete part of the spectrum are spatially localized near the plasma edge. The radial containment, which is associated mainly with the inhomogeneity of the plasma density, is in fact a fundamental characteristic since only contained modes can grow out of a relatively weak mode-particle interaction and justify the detected emission power levels. The contained mode is a solution to a set of macroscopic equations, in which the electron motion is tied to that of the magnetic field (Hall effect). The growth rate has been evaluated considering the particle orbits in a toroidal confinement configuration and modelling the distribution function of the interacting particles with the energy at birth before slowing down occurs. The growth rate depends linearly on the α-particle density and can be larger than, or of the order of, the bounce frequency of the magnetically trapped α-particles, which can have a resonant interaction with the mode. According to the theoretical model presented, the discrete

  13. Development of radiation-resisting high molecular-weight materials

    International Nuclear Information System (INIS)

    Nakagawa, Tsutomu

    1976-01-01

    The excellent radiation-resisting polyvinyl chloride developed at the opportunity of the research on the relationships between the protection of living body and the polymer-technological protection from radiation is reviewed. The report is divided into four main parts, namely 1) the change in the molecular arrangement of market-available, high molecular-weight materials by gamma-ray irradiation, 2) the protection of high molecular-weight materials from radiation, 3) the relationships between the biological radiation-protective substances and the change to radiation-resisting property of synthesized high molecular-weight substances, and 4) the development of the radiation-resisting high molecular-weight materials as metal-collecting agents. Attention is paid to the polyvinyl chloride having N-methyl-dithio-carbamate radical (PMD), synthesized by the author et. al., that has excellent radiation-resisting property. PMD has some possibility to form thiol- and amino-radicals necessary to protect living things from radiation. It is believed that the protection effects of N-methyl-dithio-carbamate radical are caused by the relatively stable S radical produced by the energy transfer. PMD film is suitable for the irradiation of foods, because it hardly changes the permeability of oxygen and carbon dioxide. PMD produces mercaptide or chelate. A new metal-collecting agent (PSDC) having reactivity with the metallic ions with radiation-resisting property was developed, which is derived from polyvinyl chloride and sodium N-methyl-N-carboxy-methyl-dithio-carbamate. (Iwakiri, K.)

  14. Femtosecond stimulated Raman spectroscopy as a tool to detect molecular vibrations in ground and excited electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Gelin, Maxim F.; Domcke, Wolfgang [Department of Chemistry, Technische Universität München, D-85747 Garching (Germany); Rao, B. Jayachander [Departamento de Química and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra (Portugal)

    2016-05-14

    We give a detailed theoretical analysis of the simplest variant of femtosecond stimulated Raman spectroscopy, where a picosecond Raman pump pulse and a femtosecond Raman probe pulse are applied resonantly to a chromophore in thermal equilibrium in the ground electronic state. We demonstrate that this technique is capable of the detection of dephasing-free Raman-like lines revealing vibrational modes not only in the electronic ground state but also in the excited electronic state of the chromophore. The analytical results obtained with simplifying assumptions for the shape of the laser pulses are substantiated by numerical simulations with realistic laser pulses, employing the equation-of-motion phase-matching approach.

  15. Experimental investigation shell model excitations of 89Zr up to high spin and its comparison with 88,90Zr

    International Nuclear Information System (INIS)

    Saha, S.; Palit, R.; Sethi, J.

    2012-01-01

    The excited states of nuclei near N=50 closed shell provide suitable laboratory for testing the interactions of shell model states, possible presence of high spin isomers and help in understanding the shape transition as the higher orbitals are occupied. In particular, the structure of N = 49 isotones (and Z =32 to 46) with one hole in N=50 shell gap have been investigated using different reactions. Interestingly, the high spin states in these isotones have contribution from particle excitations across the respective proton and neutron shell gaps and provide suitable testing ground for the prediction of shell model interactions describing theses excitations across the shell gap. In the literature, extensive study of the high spin states of heavier N = 49 isotones starting with 91 Mo up to 95 Pd are available. Limited information existed on the high spin states of lighter isotones. Therefore, the motivation of the present work is to extend the high spin structure of 89 Zr and to characterize the structure of these levels through comparison with the large scale shell model calculations based on two new residual interactions in f 5/2 pg 9/2 model space

  16. Elementary excitations in nuclei

    International Nuclear Information System (INIS)

    Lemmer, R.H.

    1987-01-01

    The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited

  17. A highly efficient surface plasmon polaritons excitation achieved with a metal-coupled metal-insulator-metal waveguide

    Directory of Open Access Journals (Sweden)

    Hongyan Yang

    2014-12-01

    Full Text Available We propose a novel metal-coupled metal-insulator-metal (MC-MIM waveguide which can achieve a highly efficient surface plasmon polaritons (SPPs excitation. The MC-MIM waveguide is formed by inserting a thin metal film in the insulator of an MIM. The introduction of the metal film, functioning as an SPPs coupler, provides a space for the interaction between SPPs and a confined electromagnetic field of the intermediate metal surface, which makes energy change and phase transfer in the metal-dielectric interface, due to the joint action of incomplete electrostatic shielding effect and SPPs coupling. Impacts of the metal film with different materials and various thickness on SPPs excitation are investigated. It is shown that the highest efficient SPPs excitation is obtained when the gold film thickness is 60 nm. The effect of refractive index of upper and lower symmetric dielectric layer on SPPs excitation is also discussed. The result shows that the decay value of refractive index is 0.3. Our results indicate that this proposed MC-MIM waveguide may offer great potential in designing a new SPPs source.

  18. A Simultaneous and Continuous Excitation Method for High-Speed Electrical Impedance Tomography with Reduced Transients and Noise Sensitivity

    Directory of Open Access Journals (Sweden)

    Antoine Dupré

    2018-03-01

    Full Text Available This paper presents a concept for soft field tomographic scan of all the projections of electromagnetic waves emanating from an array of electrodes. Instead of the sequential excitation of all pairs of electrodes in the list of all projections, the new method present here consists of a single and continuous excitation. This excitation signal is the linear combination of the excitation signals in the projection set at different AC frequencies. The response to a given projection is discriminated by selecting the corresponding AC frequency component in the signal spectra of the digitally demodulated signals. The main advantage of this method is the suppression of transients after each projection, which is particularly problematic in electrical impedance tomography due to contact impedance phenomena and skin effect. The second benefit over the sequential scan method is the increased number of samples for each measurement for reduced noise sensitivity with digital demodulation. The third benefit is the increased temporal resolution in high-speed applications. The main drawback is the increased number of signal sources required (one per electrode. This paper focuses on electrical impedance tomography, based on earlier work by the authors. An experimental proof-of-concept using a simple 4-electrodes electrical impedance tomographic system is presented using simulations and laboratory data. The method presented here may be extended to other modalities (ultrasonic, microwave, optical, etc..

  19. Excitation and charge transfer in He/sup +/ + H collisions. A molecular approach including two-electron translation factors

    Energy Technology Data Exchange (ETDEWEB)

    Errea, L.F.; Mendez, L.; Riera, A.

    1983-06-01

    In a previous paper we have pointed out that the common-translation-factor (CTF) method is the only one which, at present, and within the framework of the molecular model of atomic collisions, can be shown to be both convergent and computationally fast, even for many-electron systems. In this Communication we check that this second statement is correct, presenting, for the first time, a molecular calculation involving two-electron translation factors, for He/sup +/ + H collisions. A careful study of the sensitivity of the calculated cross sections to the choice of the CTF is performed, and conclusions on that sensitivity are drawn, for several types of processes.

  20. Excitation and charge transfer in He+ + H collisions. A molecular approach including two-electron translation factors

    International Nuclear Information System (INIS)

    Errea, L.F.; Mendez, L.; Riera, A.

    1983-01-01

    In a previous paper we have pointed out that the common-translation-factor (CTF) method is the only one which, at present, and within the framework of the molecular model of atomic collisions, can be shown to be both convergent and computationally fast, even for many-electron systems. In this Communication we check that this second statement is correct, presenting, for the first time, a molecular calculation involving two-electron translation factors, for He + + H collisions. A careful study of the sensitivity of the calculated cross sections to the choice of the CTF is performed, and conclusions on that sensitivity are drawn, for several types of processes

  1. Luminescence of the SrCl2:Pr crystals under high-energy excitation

    International Nuclear Information System (INIS)

    Antonyak, O.T.; Voloshinovskii, A.S.; Vistovskyy, V.V.; Stryganyuk, G.B.; Kregel, O.P.

    2014-01-01

    The present research was carried out in order to elucidate the mechanisms of energy transfer from the crystal lattice to Pr 3+ ions in SrCl 2 . The luminescence excitation and emission spectra as well as luminescence kinetics of the SrCl 2 :Pr single crystals containing 0.2 mol% Pr were investigated at 300 and 10 K using the vacuum ultraviolet (VUV) synchrotron radiation. The X-ray excited luminescence spectra of the SrCl 2 :Pr (C Pr =0.2 and 0.5 mol%) and SrCl 2 :Pr, K (C Pr =1.5 mol%; C K =1.5 mol%) crystals were studied at 294 and 80 K. Under optical excitation of the samples in the Pr 3+ absorption bands, there were observed five fast ultraviolet emissions assigned to the 4f 1 5d→4f 2 transitions, and two long-wave bands corresponding to the f–f transitions. Furthermore, the intrinsic emission bands of SrCl 2 were observed at 10 K. The X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal containing 0.2 mol% Pr, besides intrinsic emission band near 400 nm, has got a long-wave band at about 490 nm of the Pr 3+ centers. There were not observed any emission bands of the Pr 3+ centers corresponding to the 4f 1 5d–4f 2 transitions in the X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal. The possible mechanisms of energy transfer from the SrCl 2 matrix to the Pr 3+ centers are discussed. -- Highlights: • Spectral-luminescent properties of SrCl 2 :Pr have been investigated. • The identification of emission 4f–4f and 5d–4f bands of Pr 3+ ions was performed. • Adding of potassium prevents clustering of the Pr 3+ centers in the SrCl 2 :Pr, K crystals. • Under X-ray excitation at 80–300 K only Pr 3+ 4f–4f and intrinsic emission is observed

  2. Multiple-electron excitation, ionization, and transfer in high-velocity atomic and molecular collisions

    International Nuclear Information System (INIS)

    McGuire, J.H.

    1992-01-01

    This paper reports that the many-body and many-electron problem is common in various areas of physics as well as in chemistry and biology. Basic understanding of phenomena ranging from the nature of matter at the creation of time to the properties of useful materials in the human environment is limited by the boundaries of our knowledge of the many-body problem. There is an advantage in studying the many-body problem in atomic physics since the two-body and parts of the three-body problem are understood. Furthermore, both the mystery of the meanings of quantum mechanics and the mystery of the transition from microscopic time-reversible atomic processes to the dynamics of macroscopic time-irreversible aggregates of atomic particles is inherent in the many-body problems of atomic interactions. Thus, by studying the many-body problem in atomic physics we are able to develop effective tools to discover insights that provide both meaning and utility in our lives

  3. The observation of nonlinear ion cyclotron wave excitation during high-harmonic fast wave heating in the large helical device

    International Nuclear Information System (INIS)

    Kasahara, H.; Seki, T.; Kumazawa, R.; Saito, K.; Mutoh, T.; Kubo, S.; Shimozuma, T.; Igami, H.; Yoshimura, Y.; Takahashi, H.; Yamada, I.; Tokuzawa, T.; Ohdachi, S.; Morita, S.; Nomura, G.; Shimpo, F.; Komori, A.; Motojima, O.; Oosako, T.; Takase, Y.

    2008-01-01

    A wave detector, a newly designed magnetic probe, is installed in the large helical device (LHD). This wave detector is a 100-turn loop coil with electrostatic shield. Comparing a one-loop coil to this detector, this detector has roughly constant power coupling in the lower frequency range of 40 MHz, and it can easily detect magnetic wave in the frequency of a few megahertz. During high-harmonic fast wave heating, lower frequency waves (<10 MHz) were observed in the LHD for the first time, and for the power density threshold of lower frequency wave excitation (7.5 MHz) the power density of excited pumped wave (38.47 MHz) was approximately -46 dBm/Hz. These lower frequencies are kept constant for electron density and high energy particle distribution, and these lower frequency waves seem to be ion cyclotron waves caused by nonlinear wave-particle interaction, for example, parametric decay instability.

  4. Resonance Analysis of High-Frequency Electrohydraulic Exciter Controlled by 2D Valve

    Directory of Open Access Journals (Sweden)

    Guojun Pan

    2015-01-01

    Full Text Available The resonant characteristic of hydraulic system has not been described yet because it is necessarily restricted by linear assumptions in classical fluid theory. A way of the resonance analysis is presented for an electrohydraulic exciter controlled by 2D valve. The block diagram of this excitation system is established by extracting nonlinear parts from the traditional linearization analysis; as a result the resonant frequency is obtained. According to input energy from oil source which is equal to the reverse energy to oil source, load pressure and load flow are solved analytically as the working frequency reaches the natural frequency. The analytical expression of resonant peak is also derived without damping. Finally, the experimental system is built to verify the theoretical analysis. The initial research on resonant characteristic will lay theoretical foundation and make useful complement for resonance phenomena of classical fluid theory in hydraulic system.

  5. High spin spectroscopy near the N=Z line: Channel selection and excitation energy systematics

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, C.E.; Cameron, J.A.; Flibotte, S. [McMaster Univ., Ontario (Canada)] [and others

    1996-12-31

    The total {gamma}-ray and charged-particle energies emitted in fusion-evaporation reactions leading to N=Z compound systems in the A = 50-70 mass region have been measured with the 8{pi} {gamma}-ray spectrometer and the miniball charged-particle detector array. A new method of channel selection has been developed which combines particle identification with these total energy measurements and greatly improves upon the selectivity possible with particle detection alone. In addition, the event by event measurement of total {gamma}-ray energies using the BGO ball of the 8{pi} spectrometer has allowed a determination of excitation energies following particle evaporation for a large number of channels in several different reactions. The new channel selection procedure and excitation energy systematics are illustrated with data from the reaction of {sup 24}Mg on {sup 40}Ca at E{sub lab} = 80MeV.

  6. Portable X-ray fluorescence analyzer of high sensitivity using X-ray tube excitation

    International Nuclear Information System (INIS)

    Vatai, E.; Ando, L.

    1982-01-01

    A review of the three main methods of X-ray fluorescence analysis and their problems is given. The attainable accuracy and effectiveness of each method are discussed. The main properties of portable X-ray analyzers required by the industry are described. The results and experiences of R and D activities in ATOMKI (Debrecen, Hungary) for developing portable X-ray analyzers are presented. The only way for increasing the accuracy and decreasing the measuring time is the application of X-ray tube excitation instead of radioactive sources. The new ATOMKI equipment presently under construction and patenting uses X-ray tube excitation; it will increase the accuracy of concentration determination by one order of magnitude. (D.Gy.)

  7. Wave Packet Simulation of Nonadiabatic Dynamics in Highly Excited 1,3-Dibromopropane

    DEFF Research Database (Denmark)

    Brogaard, Rasmus Y.; Møller, Klaus Braagaard; Sølling, Theis Ivan

    2008-01-01

    ]. In the experiment. DBP is excited to a Rydberg state 8 eV above the ground state. The interpretation of the results is that a torsional motion of the bromomethylene groups with a vibrational period of 680 is is activated upon excitation. The Rydberg state decays to a valence state, causing a dissociation of one...... of the carbon bromine bonds oil a time scale of 2.5 ps. Building the theoretical framework for the wave packet propagation around this model of the reaction dynamics, the Simulations reproduce, to a good extent, the time scales observed in the experiment. Furthermore. the Simulations provide insight into how...... the torsion motion influences the bond breakage, and C we can conclude that the mechanism that delays the dissociation is solely the electronic transition from the Rydberg state to the valence state and does not involve, for example, intramolecular vibrational energy redistribution (IVR)....

  8. Highly sensitive magneto-motive photoacoustic and ultrasound (PAUS) imaging with cyclic excitations

    International Nuclear Information System (INIS)

    Arnal, B; Wei, C-W; Li, J; Gao, X; O’Donnell, M

    2016-01-01

    Highly specific molecular imaging with photoacoustics (PA) must suppress background endogenous signals while maintaining signals from target nanoagents. Magneto-motive PA was introduced to perform motion-based background suppression using a low frequency magnetic field. Previous studies show suppression based on displacement magnitude can suffer if significant physiological motion is present. This limitation can be overcome using cyclic magneto-motive PA (cmmPA), where multiple cycles of an ac magnetic field are used and the coherence of detected displacements is the retrieved information. In this paper, we show a method to enhance the magnetic response of an electromagnet specifically for cmmPA. Several magnetic frequencies were tested and a simple model is proposed to describe displacement frequency dependence. By choosing optimal parameters based on this model, we show that the technique can detect a low number of tagged cells using either US-based or PA-based displacement estimation. In addition, robustness to physiological motion is demonstrated in a moving phantom. (paper)

  9. Intramolecular Dynamics: A Study of Molecules at High Levels of Vibrational Excitation.

    Science.gov (United States)

    1988-05-27

    aareemlent stith the photoa.couxueC rexults.,I4 % obintied t r iii pfii ioaCOI it tic tveaxu retntsx." Si ne thle xhoxs xthat Iii the I ott fi nence...t 0 200 400 ns 6000 between pump and probe pulse for CH3 CHF2 at 660 Pa. Infrared excitation: 10.6 pim P(20) line, 0.5 ns pulse with average fluence

  10. Ionization steps and phase-space metamorphoses in the pulsed microwave ionization of highly excited hydrogen atoms

    International Nuclear Information System (INIS)

    Bayfield, J.E.; Luie, S.Y.; Perotti, L.C.; Skrzypkowski, M.P.

    1996-01-01

    As the peak electric field of the microwave pulse is increased, steps in the classical microwave ionization probability of the highly excited hydrogen atom are produced by phase-space metamorphosis. They arise from new layers of Kolmogorov-Arnold-Moser (KAM) islands being exposed as KAM surfaces are destroyed. Both quantum numerical calculations and laboratory experiments exhibit the ionization steps, showing that such metamorphoses influence pulsed semiclassical systems. copyright 1996 The American Physical Society

  11. Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing

    Science.gov (United States)

    Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.

    1996-01-01

    An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.

  12. High- and low-molecular-mass microbial surfactants.

    Science.gov (United States)

    Rosenberg, E; Ron, E Z

    1999-08-01

    Microorganisms synthesize a wide variety of high- and low-molecular-mass bioemulsifiers. The low-molecular-mass bioemulsifiers are generally glycolipids, such as trehalose lipids, sophorolipids and rhamnolipids, or lipopeptides, such as surfactin, gramicidin S and polymyxin. The high-molecular-mass bioemulsifiers are amphipathic polysaccharides, proteins, lipopolysaccharides, lipoproteins or complex mixtures of these biopolymers. The low-molecular-mass bioemulsifiers lower surface and interfacial tensions, whereas the higher-molecular-mass bioemulsifiers are more effective at stabilizing oil-in-water emulsions. Three natural roles for bioemulsifiers have been proposed: (i) increasing the surface area of hydrophobic water-insoluble growth substrates; (ii) increasing the bioavailability of hydrophobic substrates by increasing their apparent solubility or desorbing them from surfaces; (iii) regulating the attachment and detachment of microorganisms to and from surfaces. Bioemulsifiers have several important advantages over chemical surfactants, which should allow them to become prominent in industrial and environmental applications. The potential commercial applications of bioemulsifiers include bioremediation of oil-polluted soil and water, enhanced oil recovery, replacement of chlorinated solvents used in cleaning-up oil-contaminated pipes, vessels and machinery, use in the detergent industry, formulations of herbicides and pesticides and formation of stable oil-in-water emulsions for the food and cosmetic industries.

  13. The form of electron-atom excitation amplitudes at high momentum transfers in the Faddeev-Watson approximation

    International Nuclear Information System (INIS)

    Catalan, G.; Roberts, M.J.

    1979-01-01

    A form of the off-shell Coulomb T matrix, which has a well defined on-shell limit, is used in the Faddeev-Watson multiple-scattering expansion for a direct three-body collision process. Using the excitation of atomic hydrogen by electron impact as an example, approximations to the second-order terms, which are valid for high momentum transfers of the incident electron, are derived. It is shown how the resulting asymptotic behaviour of the second-order Faddeev-Watson approximation is related to the high momentum transfer limit of the second Born approximation. The results are generalised to the excitation of more complex atoms. The asymptotic forms of the Faddeev-Watson and Born approximations are compared with other theories and with measurements of differential cross sections and angular correlation parameters for the excitation of H(2p) and He(2 1 P). The results indicate that the Faddeev-Watson approximation converges more rapidly at high momentum transfers than does the Born approximation. (author)

  14. The dynamics of highly excited hydrogen atoms in microwave fields: Application of the Floquet picture of quantum mechanics

    International Nuclear Information System (INIS)

    Holthaus, M.

    1990-04-01

    The study of short-time phenomena in strongly interacting quantum systems requires on the theoretical side the development of methods, which are both non-perturbative and 'dynamical', which thus regard the change of outer parameters in the slope of time. For systems with a periodic, fast and a further slow, parametric time dependence both requirements are fulfilled by the Floquet picture of quantum mechanics. This picture, which starts from the adiabatic evolution on effective quasi-energy surfaces, is presented in the first chapter of the present thesis, whereby especially the term of the adiabaticity for periodically time dependent systems is explained. In the second chapter the Floquet theory is applied to the description of microwave experiments with highly excited hydrogen atoms. Here it is shown that the Floquet picture permits to understand a manifold of experimental observations under a unified point of view. Really these microwave experiments offer an ideal possibility for the test of the Floquet picture: On the one hand there is the strength of the outer field of the same order of magnitude as that of the nuclear field, by which the highly excited electron is bound, on the other hand in the experiment an extremely precise control of amplitude, frequency, and pulse shape is possible, so that the conditions for a detailed comparison of theory and experiment are given. The insights, which model calculations yield in the dynamics of highly excited hydrogen atoms in strong alternating fields, allow a prediction of further effects, for which it is to be looked for in new experiments. In the following third chapter some further aspects of these model calculations are discussed, whereby also common properties of the dynamics of excited atoms in microwave fields and that of atoms under the influence of strong laser pulses are discussed. (orig./HSI) [de

  15. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  16. High Molecular Weight Forms of Mammalian Respiratory Chain Complex II

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Nikola; Mráček, Tomáš; Nůsková, Hana; Holzerová, Eliška; Vrbacký, Marek; Pecina, Petr; Hejzlarová, Kateřina; Klučková, Katarína; Rohlena, Jakub; Neužil, Jiří; Houštěk, Josef

    2013-01-01

    Roč. 8, č. 8 (2013), e71869 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GPP303/10/P227; GA MŠk(CZ) LL1204; GA MZd(CZ) NT12370; GA ČR(CZ) GAP301/10/1937 Institutional research plan: CEZ:AV0Z50520701 Institutional support: RVO:67985823 Keywords : supercomplexes * high molecular weihgt forms of complex II * native electrophoretic systems Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013

  17. High resolution spectroscopy in the second excited torsional state of $CH_{3}/OD$ and the atlas of the Fourier transform spectrum in the range 20-205 cm$^{-1}/$...

    CERN Document Server

    Mukhopadhyay, I

    1999-01-01

    In this work, the reduced eighth order Hamiltonian that has been used for the determination of the molecular parameters-using the high resolution Fourier transform far-infrared (FIR) assigned transitions in the ground and first $9 excited torsional states of CH/sub 3/OD-has been applied to assign and refine the model for the second excited torsional state. The data set consisted of 1220 FIR transitions with the rotational angular momentum J<21 and K<7 in the $9 second excited torsional state. It should be noted that the second excited torsional states of methanol are almost at the top of the torsional barrier. Thus it was interesting to see how the large amplitude motion is taken care of by $9 the eighth order Hamiltonian. We are in the process of a global fit including all the assigned transitions up to the second excited state. Additionally, in this paper we present the detailed Fourier transform spectral map of CH/sub $9 3/OD in the range 20-205 cm/sup -1/, as was done for the parent species. This sp...

  18. High-temperature annealing of graphite: A molecular dynamics study

    Science.gov (United States)

    Petersen, Andrew; Gillette, Victor

    2018-05-01

    A modified AIREBO potential was developed to simulate the effects of thermal annealing on the structure and physical properties of damaged graphite. AIREBO parameter modifications were made to reproduce Density Functional Theory interstitial results. These changes to the potential resulted in high-temperature annealing of the model, as measured by stored-energy reduction. These results show some resemblance to experimental high-temperature annealing results, and show promise that annealing effects in graphite are accessible with molecular dynamics and reactive potentials.

  19. [Excitation transfer between high-lying states in K2 in collisions with ground state K and H2 molecules].

    Science.gov (United States)

    Shen, Xiao-Yan; Liu, Jing; Dai, Kang; Shen, Yi-Fan

    2010-02-01

    Pure potassium vapor or K-H2 mixture was irradiated in a glass fluorescence cell with pulses of 710 nm radiation from an OPO laser, populating K2 (1lambda(g)) state by two-photon absorption. Cross sections for 1lambda(g)-3lambda(g) transfer in K2 were determined using methods of molecular fluorescence. During the experiments with pure K vapor, the cell temperature was varied between 553 and 603 K. The K number density was determined spectroscopically by the white-light absorption measurement in the blue wing of the self-broadened resonance D2 line. The resulting fluorescence included a direct component emitted in the decay of the optically excitation and a sensitized component arising from the collisionally populated state. The decay signal of time-resolved fluorescence from1lambda(g) -->1 1sigma(u)+ transition was monitored. It was seen that just after the laser pulse the fluorescence of the photoexcited level decreased exponentially. The effective lifetimes of the 1lambda(g) state can be resolved. The plot of reciprocal of effective lifetimes of the 1lambda(g) state against K densities yielded the slope that indicated the total cross section for deactivation and the intercept that provided the radiative lifetime of the state. The radiative lifetime (20 +/- 2) ns was obtained. The cross section for deactivation of the K2(1lambda(g)) molecules by collisions with K is (2.5 +/- 0.3) x 10(-14) cm2. The time-resolved intensities of the K23lambda(g) --> 1 3sigma(u)+ (484 nm) line were measured. The radiative lifetime (16.0 +/- 3.2) ns and the total cross section (2.5 +/- 0.6) x 10(-14) cm2 for deactivation of the K2 (3lambda(g)) state can also be determined through the analogous procedure. The time-integrated intensities of 1lambda(g) --> 1 1sigma(u)+ and 3lambda(g) --> 1 3sigma(u)+ transitions were measured. The cross section (1.1 +/- 0.3) x10(-14) cm2 was obtained for K2 (1lambda(g))+ K --> K2 (3lambda(g)) + K collisions. During the experiments with K-H2 mixture, the

  20. Inner-Shell Excitations of 2p Electrons of Argon Investigated by Fast Electron Impact with High Resolution

    International Nuclear Information System (INIS)

    Ren Lin-Mao; Wang You-Yan; Li Dong-Dong; Yuan Zhen-Sheng; Zhu Lin-Fan

    2011-01-01

    Electron energy loss spectra of inner-shell excitations of 2p electrons of argon are measured at an incident electron energy of 2500 eV and scattering angles of 0° and 4°. The dipole-forbidden transitions of 2p −1 3/2 4p and 2p −1 3/2 5p are observed in the measured spectra and assigned based on the calculations of the Cowan code. The positions and line widths for the excitations of 2p −1 3/2 nl and 2p −1 1/2 nl (n ≤ 5) of argon are determined. The present results show that the line widths of the electric quadrupole transitions of 2p −1 3/2 4p[5/2 + 3/2] 2 and the electric monopole one of 2p −1 3/2 4p[1/2] 0 are less than those of the dipole-allowed transitions. (atomic and molecular physics)

  1. A Strategy for Magnifying Vibration in High-Energy Orbits of a Bistable Oscillator at Low Excitation Levels

    International Nuclear Information System (INIS)

    Wang Guang-Qing; Liao Wei-Hsin

    2015-01-01

    This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is used to magnify the base vibration displacement to significantly enhance the output characteristics of the bistable oscillator. The dimensionless electromechanical equations of the bistable oscillator with an EM are derived, and the effects of the mass and stiffness ratios between the EM and the bistable oscillator on the output displacement are studied. It is shown that the jump phenomenon occurs at a lower excitation level with increasing the mass and stiffness ratios. With the comparison of the displacement trajectories and the phase portraits obtained from experiments, it is validated that the bistable oscillator with an EM can effectively oscillate in a high-energy orbit and can generate a superior output vibration at a low excitation level as compared with the bistable oscillator without an EM. (paper)

  2. Highly excited bound-state resonances of short-range inverse power-law potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-11-15

    We study analytically the radial Schroedinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r) = -β{sub n}r{sup -n} with n > 2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E{sub l}{sup max} = E{sub l}{sup max}(n, β{sub n}, R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system. (orig.)

  3. Radiative capture studies of the electromagnetic decays of highly excited states

    Energy Technology Data Exchange (ETDEWEB)

    Snover, K. A. [Washington Univ., Seattle (USA). Dept. of Physics; Ikegami, H.; Muraoka, M. [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    Selected examples of interesting E1, M1 and E2 resonance studies in (p, ..gamma..) and (..cap alpha.., ..gamma..) reactions are discussed. These include a unique determination of E1 amplitudes in the /sup 12/C(p,..gamma..sub(o))/sup 13/N reaction, E2 strength in light nuclei, M1 decays to the ground states and to the excited O/sup +/ states of the doubly magic /sup 16/O and /sup 40/Ca nuclei, ''second harmonic'' E1 resonances in (p, ..gamma..), and M1 ..gamma..-decay of stretched particle-hole states in /sup 16/O and /sup 28/Si.

  4. Experimental results of high power dual frequency resonant magnet excitation at TRIUMF

    International Nuclear Information System (INIS)

    Reiniger, K.W.; Heritier, G.

    1988-06-01

    We present some results of duel frequency resonant magnet excitation at full power using the old NINA synchrotron dipoles. These tests will simulate a typical resonant cell as proposed for the accelerating rings of the TRIUMF KAON Factory. These test have two main purposes: to verify circuit parameters and component ratings for the dual frequency resonant power supply system; and to measure directly electrical losses in a transverse magnet field, such as eddy current losses in magnet conductors, vacuum tubes and core losses in laminations. These data will be required for the detailed design of the accelerator system components. (Author) (Ref., 9 figs., tab.)

  5. Monte Carlo calculation of collisions of directionally-incident electrons on highly excited hydrogen atoms

    International Nuclear Information System (INIS)

    Kawakami, Kazuki; Fujimoto, Takasi

    2001-01-01

    We treat classically the n-, l- and m r -changing transitions and ionization. Excitation cross sections against the final state energy continue smoothly to the 'ionization cross sections'. The steady state populations determined by elastic collisions among the degenerate states in the same n level show higher populations in the m 1 =0 states, suggesting positive polarizations of Lyman lines emitted from plasmas having directional electrons. For ionization, the two outgoing electrons have large relative angles, suggesting reduced three body recombination rates for these plasmas. (author)

  6. Molecular events leading to HPV-induced high grade neoplasia

    Directory of Open Access Journals (Sweden)

    Saskia M. Wilting

    2016-12-01

    Full Text Available Cervical cancer is initiated by high-risk types of the human papillomavirus (hrHPV and develops via precursor stages, called cervical intraepithelial neoplasia (CIN. High-grade CIN lesions are considered true precancerous lesions when the viral oncogenes E6 and E7 are aberrantly expressed in the dividing cells. This results in abolishment of normal cell cycle control via p53 and pRb degradation. However, it has become clear that these viral oncogenes possess additional oncogenic properties, including interference with the DNA methylation machinery and mitotic checkpoints. Identification of the resulting molecular events leading to high-grade neoplasia will 1 increase our understanding of cervical carcinogenesis, 2 yield biomarkers for early diagnosis, and 3 identify therapeutic targets for HPV-induced (pre cancerous lesions.This review will briefly summarise current advances in our understanding of the molecular alterations in the host cell genome that occur during HPV-induced carcinogenesis.

  7. Probing Conditions at Ionized/Molecular Gas Interfaces With High Resolution Near-Infrared Spectroscopy

    Science.gov (United States)

    Kaplan, Kyle Franklin

    2017-08-01

    Regions of star formation and star death in our Galaxy trace the cycle of gas and dust in the interstellar medium (ISM). Gas in dense molecular clouds collapses to form stars, and stars at the end of their lives return the gas that made up their outer layers back out into the Galaxy. Hot stars generate copious amounts of ultraviolet photons which interact with the surrounding medium and dominate the energetics, ionization state, and chemistry of the gas. The interface where molecular gas is being dissociated into neutral atomic gas by far-UV photons from a nearby hot source is called a photodissociation or photon-dominated region (PDR). PDRs are found primarily in star forming regions where O and B stars serve as the source of UV photons, and in planetary nebulae where the hot core of the dying star acts as the UV source. The main target of this dissertation is molecular hydrogen (H2), the most abundant molecule in the Universe, made from hydrogen formed during the Big Bang. H2 makes up the overwhelming majority of molecules found in the ISM and in PDRs. Far-UV radiation absorbed by H2 will excite an electron in the molecule. The molecule then either dissociates ( 10% of the time; Field et al. 1966) or decays into excited rotational and vibrational ("rovibrational") levels of the electronic ground state. These excited rovibrational levels then decay via a radiative cascade to the ground rovibrational state (v = 0, J = 0), giving rise to a large number of transitions observable in emission from the mid-IR to the optical (Black & van Dishoeck, 1987). These transitions provide an excellent probe of the excitation and conditions within the gas. These transitions are also observed in warm H2, such as in shocks, where collisions excite H2 to higher rovibrational levels. High resolution near-infrared spectroscopy, with its ability to see through dust, and avoid telluric absorption and emission, serves as an effective tool to detect emission from ions, atoms, and molecules

  8. On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies

    Science.gov (United States)

    Ilssar, Dotan; Bucher, Izhak

    2015-10-01

    This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.

  9. Statistical fission parameters for nuclei at high excitation and angular momenta

    International Nuclear Information System (INIS)

    Blann, M.; Komoto, T.A.

    1982-01-01

    Experimental fusion/fission excitation functions are analyzed by the statistical model with modified rotating liquid drop model barriers and with single particle level densities modeled for deformation for ground state (a/sub ν/) and saddle point nuclei (a/sub f/). Values are estimated for the errors in rotating liquid drop model barriers for the different systems analyzed. These results are found to correlate well with the trends predicted by the finite range model of Krappe, Nix, and Sierk, although the discrepancies seem to be approximately 1 MeV greater than the finite range model predictions over the limited range tested. The a priori values calculated for a/sub f/ and a/sub ν/ are within +- 2% of optimum free parameter values. Analyses for barrier decrements explore the importance of collective enhancement on level densities and of nuclear deformation in calculating transmission coefficients. A calculation is performed for the 97 Rh nucleus for which a first order angular momentum scaling is used for the J = 0 finite range corrections. An excellent fit is found for the fission excitation function in this approach. Results are compared in which rotating liquid drop model barriers are decremented by a constant energy, or alternatively multiplied by a constant factor. Either parametrization is shown to be capable of satisfactorily reproducing the data although their J = 0 extrapolated values differ markedly from one another. This underscores the dangers inherent in arbitrary barrier extrapolations

  10. MXene molecular sieving membranes for highly efficient gas separation.

    Science.gov (United States)

    Ding, Li; Wei, Yanying; Li, Libo; Zhang, Tao; Wang, Haihui; Xue, Jian; Ding, Liang-Xin; Wang, Suqing; Caro, Jürgen; Gogotsi, Yury

    2018-01-11

    Molecular sieving membranes with sufficient and uniform nanochannels that break the permeability-selectivity trade-off are desirable for energy-efficient gas separation, and the arising two-dimensional (2D) materials provide new routes for membrane development. However, for 2D lamellar membranes, disordered interlayer nanochannels for mass transport are usually formed between randomly stacked neighboring nanosheets, which is obstructive for highly efficient separation. Therefore, manufacturing lamellar membranes with highly ordered nanochannel structures for fast and precise molecular sieving is still challenging. Here, we report on lamellar stacked MXene membranes with aligned and regular subnanometer channels, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H 2 permeability >2200 Barrer and H 2 /CO 2 selectivity >160, superior to the state-of-the-art membranes. The results of molecular dynamics simulations quantitatively support the experiments, confirming the subnanometer interlayer spacing between the neighboring MXene nanosheets as molecular sieving channels for gas separation.

  11. VizieR Online Data Catalog: Collisional excitation of sulfur dioxide, SO2, in cold molecular c

    Science.gov (United States)

    Cernicharo, J.; Spielfiedel, A.; Balanca, C.; Dayou, F.; Senent, M.-L.; Feautrier, N.; Faure, A.; Cressiot-Vincent, L.; Wiesenfeld, L.; Pardo, J. R.

    We present collisional rate coefficients for SO2 with ortho an molecular hydrogen for the physical conditions prevailing in dark molecular clouds. Rate coefficients for the first 31 rotational levels of this species (energies up to 55K) and for temperatures between 5 and 30K are provided. We have found that these rate coefficients are about ten times more than those previously computed for SO2 with helium. We calculated the expected emission of the centimeter wavelength lines of SO2. We find that the transition connecting the metastable 202 level with the 111 one is in absorption against the cosmic background for a wide range of densities. The 404-313 line is found to be inverted for densities below a few 104cm-3. We observed the 111-202 transition with the 100m Green Bank Telescope towards some dark clouds. The line is observed, as expected, in absorption and provides an abundance of SO2 in these objects of a few 10-10^. The potential use of millimeter lines of SO2 as tracers of the physical conditions of dark clouds is discussed. (3 data files).

  12. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Prima, Eka Cahya [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); International Program on Science Education, Universitas Pendidikan Indonesia (Indonesia); Yuliarto, Brian; Suyatman, E-mail: yatman@tf.itb.ac.id [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Dipojono, Hermawan Kresno [Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia)

    2015-09-30

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.

  13. Decay out of the yrast and excited highly-deformed bands in the even-even nucleus {sup 134}Nd

    Energy Technology Data Exchange (ETDEWEB)

    Petrache, C.M.; Bazzacco, D.; Lunardi, S. [Sezione di Padova (Italy)] [and others

    1996-12-31

    The resolving power achieved by the new generation of {gamma}-ray detector arrays allows now to observe transitions with intensities of the order of {approximately}10{sup {minus}3} of the population of the final residual nucleus, making therefore feasible the study of the very weakly populated excited bands built on the superdeformed (SD) minimum or of the decay out of the SD bands. As a matter of fact, numerous excited SD bands have been observed in the different regions of superdeformation, which led to a deeper understanding of the single-particle excitation in the second minimum. The first experimental breakthrough in the study of the decay out process has been achieved in the odd-even {sup 133,135}Nd nuclei of the A=130 mass region. There, the observation of the discrete linking transitions has been favored by the relatively higher intensity of the highly-deformed (HD) bands ({approximately}10%), as well as by the small excitation energy with respect to the yrast line in the decay-out region ({approximately}1 MeV). No discrete linking transitions have been so far observed in the A=80, 150 mass regions. The present results suggest that the decay out of the HD bands in {sup 134}Nd is triggered by the crossing with the N=4 [402]5/2{sup +} Nilsson orbital, that has a smaller deformation than the corresponding N=6 intruder configuration. The crossing favours the mixing with the ND rotational bands strongly enhancing the decay-out process and weakening the in-band transition strength. The HD band becomes fragmented and looses part of its character. The intensity of the decay-out transitions increases when the spin of the HD state decreases, indicating enhanced ND amplitude in the wavefunction when going down the band. Lifetime measurements of the HD bands are crucial to further elucidate the decay-out process.

  14. Coulomb excitation

    International Nuclear Information System (INIS)

    McGowan, F.K.; Stelson, P.H.

    1974-01-01

    The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)

  15. High molecular somatostatin, an interfering factor in radioimmunoassay

    International Nuclear Information System (INIS)

    Diel, F.; Schneider, E.; Baumann, H.

    1977-01-01

    Cyclic Tyr 1 -somatostatin (Tyr 1 -SRIF) is radioiodinated by the lactoperoxidase method. Purification is achieved by Sephadex G-25 adsorption chromatography. Specific anti-SRIF serum (FA1) has been raised in rabbits. A dose response curve is obtained in the range of 5 - 5,000 pg per tube using an antiserum dilution of 1:2,000. There is little cross-reaction with linear somatostatin and none with ocytocin, (lys-, arg-) vasopressin, valinomycin, polymyxin, insulin, glucagon, human growth hormone (hGH), and thyrotropin-releasing hormone (TRH). For recovery tests, extraction procedures are necessary. Thin-layer chromatography (TLC) and polyacrylamide-disc-electrophoresis (Disc-PAGE) are performed to identify the presumed high molecular 125 I-Tyr 1 -SRIF associate. This high molecular associate may represent an interfering factor in the radioimmunoassay for cyclic SRIF. (orig./AJ) [de

  16. Exposure to a high fat diet during the perinatal period alters vagal motoneurone excitability, even in the absence of obesity.

    Science.gov (United States)

    Bhagat, Ruchi; Fortna, Samuel R; Browning, Kirsteen N

    2015-01-01

    Obesity is recognized as being multifactorial in origin, involving both genetic and environmental factors. The perinatal period is known to be critically important in the development of neural circuits responsible for energy homeostasis and the integration of autonomic reflexes. Diet-induced obesity alters the biophysical, pharmacological and morphological properties of vagal neurocircuits regulating upper gastrointestinal tract functions, including satiety. Less information is available, however, regarding the effects of a high fat diet (HFD) itself on the properties of vagal neurocircuits. The present study was designed to test the hypothesis that exposure to a HFD during the perinatal period alters the electrophysiological, pharmacological and morphological properties of vagal efferent motoneurones innervating the stomach. Our data indicate that perinatal HFD decreases the excitability of gastric-projecting dorsal motor nucleus neurones and dysregulates neurotransmitter release from synaptic inputs and that these alterations occur prior to the development of obesity. These findings represent the first direct evidence that exposure to a HFD modulates the processing of central vagal neurocircuits even in the absence of obesity. The perinatal period is critically important to the development of autonomic neural circuits responsible for energy homeostasis. Vagal neurocircuits are vital to the regulation of upper gastrointestinal functions, including satiety. Diet-induced obesity modulates the excitability and responsiveness of both peripheral vagal afferents and central vagal efferents but less information is available regarding the effects of diet per se on vagal neurocircuit functions. The aims of this study were to investigate whether perinatal exposure to a high fat diet (HFD) dysregulated dorsal motor nucleus of the vagus (DMV) neurones, prior to the development of obesity. Whole cell patch clamp recordings were made from gastric-projecting DMV neurones in thin

  17. Lifetime measurements of highly excited Rydberg states of strontium. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, S.; Hohmann, R.; Kluge, H.J.; Lantzsch, J.; Monz, L.; Stenner, J.; Stratmann, K.; Wendt, K.; Zimmer, K. (Mainz Univ. (Germany). Inst. fuer Physik)

    1993-06-01

    Lifetimes of Rydberg states of triplet-series 5s ns[sup 3]S[sub 1] with n=19-23, 35 and 5s nd[sup 3]D[sub 3] with n=18-20, 23-28 in the spectrum of neutral strontium have been determined. Observation of the exponential decay after excitation by a pulsed laser in a fast atomic beam and subsequent state-selective field ionization was employed. The lifetimes of the states of the [sup 3]S[sub 1]-series show the expected n*[sup 3] dependence on the effective principal quantum number, while the [sup 3]D[sub 3]-series is disturbed by configuration mixing. Furthermore, state re-populations induced by black-body radiation have been observed. (orig.).

  18. Lifetime measurements of highly excited Rydberg states of strontium. Pt. 1

    International Nuclear Information System (INIS)

    Kunze, S.; Hohmann, R.; Kluge, H.J.; Lantzsch, J.; Monz, L.; Stenner, J.; Stratmann, K.; Wendt, K.; Zimmer, K.

    1993-01-01

    Lifetimes of Rydberg states of triplet-series 5s ns 3 S 1 with n=19-23, 35 and 5s nd 3 D 3 with n=18-20, 23-28 in the spectrum of neutral strontium have been determined. Observation of the exponential decay after excitation by a pulsed laser in a fast atomic beam and subsequent state-selective field ionization was employed. The lifetimes of the states of the 3 S 1 -series show the expected n* 3 dependence on the effective principal quantum number, while the 3 D 3 -series is disturbed by configuration mixing. Furthermore, state re-populations induced by black-body radiation have been observed. (orig.)

  19. 60-GHz integrated-circuit high data rate quadriphase shift keying exciter and modulator

    Science.gov (United States)

    Grote, A.; Chang, K.

    1984-01-01

    An integrated-circuit quadriphase shift keying (QPSK) exciter and modulator have demonstrated excellent performance directly modulating a carrier frequency of 60 GHz with an output phase error of less than 3 degrees and maximum amplitude error of 0.5 dB. The circuit consists of a 60-GHz Gunn VCO phase-locked to a low-frequency reference source, a 4th subharmonic mixer, and a QPSK modlator packaged into a small volume of 1.8 x 2.5 x 0.35 in. The use of microstrip has the advantages of small size, light-weight, and low-cost fabrication. The unit has the potential for multigigabit data rate applications.

  20. Resonant states in 13C and 16,17O at high excitation energy

    International Nuclear Information System (INIS)

    Rodrigues, M R D; Borello-Lewin, T; Miyake, H; Duarte, J L M; Rodrigues, C L; Horodynski-Matsushigue, L B; Ukita, G M; Cappuzzello, F; Foti, A; Cavallaro, M; Agodi, C; Cunsolo, A; Carbone, D; Bondi, M; Napoli, M De; Roeder, B T; Linares, R; Lombardo, I

    2014-01-01

    The 9 Be( 6 Li,d) 13 C and 12,13 C( 6 Li,d) 16,17 O reactions were measured at the São Paulo Pelletron-Enge-Spectrograph facility at 25.5 MeV incident energy. The nuclear emulsion detection technique was applied. Several narrow resonances were populated up to approximately 17 MeV of excitation energy. An excellent energy resolution was obtained: 40 keV for 13 C and 15-30 keV for 16 O. The upper limit for the resonance widths were determined. Recently, d-a angular correlations were measured at θ d = 0° with incident energy of 25 MeV using the LNS Tandem-MAGNEX Spectrometer facility

  1. High-frequency domain wall excitations in magnetic garnet films with in-plane magnetization

    International Nuclear Information System (INIS)

    Synogach, V.T.; Doetsch, H.

    1996-01-01

    Magnetic garnet films of compositions (YBi) 3 Fe 5 O 12 and (LuBi) 3 Fe 5 O 12 are grown by liquid-phase epitaxy on [110]- and [100]-oriented substrates of gadolinium gallium garnet, respectively. All films have in-plane magnetization. 180 degree and 90 degree domain walls in these films are studied by microwave technique. In addition to the known low-frequency mode of wall translation new multiple resonant modes of both 90 degree and 180 degree domain walls with very small linewidth (4.2 MHz) are observed at frequencies near 1 GHz. Resonances are effectively excited by an rf magnetic field which is parallel or perpendicular to the wall plane. Resonance frequencies are shown to have nonlinear dispersion dependence on the mode number: they decrease with increasing in-plane magnetic field normal to the wall plane. copyright 1996 The American Physical Society

  2. Resonant states in 13C and 16,17O at high excitation energy

    Science.gov (United States)

    Rodrigues, M. R. D.; Borello-Lewin, T.; Miyake, H.; Duarte, J. L. M.; Rodrigues, C. L.; Horodynski-Matsushigue, L. B.; Ukita, G. M.; Cappuzzello, F.; Cavallaro, M.; Foti, A.; Agodi, C.; Cunsolo, A.; Carbone, D.; Bondi, M.; De Napoli, M.; Roeder, B. T.; Linares, R.; Lombardo, I.

    2014-12-01

    The 9Be(6Li,d)13C and 12,13C(6Li,d)16,17O reactions were measured at the São Paulo Pelletron-Enge-Spectrograph facility at 25.5 MeV incident energy. The nuclear emulsion detection technique was applied. Several narrow resonances were populated up to approximately 17 MeV of excitation energy. An excellent energy resolution was obtained: 40 keV for 13C and 15-30 keV for 16O. The upper limit for the resonance widths were determined. Recently, d-a angular correlations were measured at θd = 0° with incident energy of 25 MeV using the LNS Tandem-MAGNEX Spectrometer facility.

  3. Solvent extraction of cerium (III) with high molecular weight amines

    International Nuclear Information System (INIS)

    Chatterjee, A.; Basu, S.

    1992-01-01

    The use of high molecular weight amines in the extraction of cerium (III) as EDTA complex from neutral aqueous medium is reported. The extraction condition was optimised from the study of effects of several variables like concentration of amine and EDTA pH nature of diluents etc. The method has been applied for the determination of cerium in few mineral samples. (author). 7 refs., 5 tabs

  4. High molecular weight polysaccharide that binds and inhibits virus

    Science.gov (United States)

    Konowalchuk, Thomas W

    2014-01-14

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  5. High molecular weight polysaccharide that binds and inhibits virus

    Energy Technology Data Exchange (ETDEWEB)

    Konowalchuk, Thomas W.; Konowalchuk, Jack

    2017-07-18

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods of inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further includes methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  6. High-Flux Carbon Molecular Sieve Membranes for Gas Separation.

    Science.gov (United States)

    Richter, Hannes; Voss, Hartwig; Kaltenborn, Nadine; Kämnitz, Susanne; Wollbrink, Alexander; Feldhoff, Armin; Caro, Jürgen; Roitsch, Stefan; Voigt, Ingolf

    2017-06-26

    Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp 2 hybridized carbon sheets as well as sp 3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m 3 (STP)/(m 2 hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay.

    Science.gov (United States)

    Rodenko, Olga; Eriksson, Susann; Tidemand-Lichtenberg, Peter; Troldborg, Carl Peder; Fodgaard, Henrik; van Os, Sylvana; Pedersen, Christian

    2017-08-01

    High-sensitivity cardiac troponin assay development enables determination of biological variation in healthy populations, more accurate interpretation of clinical results and points towards earlier diagnosis and rule-out of acute myocardial infarction. In this paper, we report on preliminary tests of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by factor of 5 for standard troponin I and by factor of 3 for a research high-sensitivity troponin I assay, compared to the flash lamp excitation. The obtained limit of detection was 0.22 ng/L measured on plasma with the research high-sensitivity troponin I assay and 1.9 ng/L measured on tris-saline-azide buffer containing bovine serum albumin with the standard troponin I assay. We discuss the optimization of time-resolved detection of lanthanide fluorescence based on the time constants of the system and analyze the background and noise sources in a heterogeneous fluoroimmunoassay. We determine the limiting factors and their impact on the measurement performance. The suggested model can be generally applied to fluoroimmunoassays employing the dry-cup concept.

  8. Melting curves of molecular hydrogen and molecular deuterium under high pressures between 20 and 373 K

    International Nuclear Information System (INIS)

    Diatschenko, V.; Chu, C.W.; Liebenberg, D.H.; Young, D.A.; Ross, M.; Mills, R.L.

    1985-01-01

    We determined the melting curve of molecular hydrogen and molecular deuterium at closely spaced intervals from 20 to 373 K by two different techniques using high-pressure diamond cells. The cells were loaded with liquid at low temperature or with compressed gas at room temperature. Empirical functions for the melting curves were evaluated from least-squares fits of the data. Values of the compressibility and Debye temperature were computed at melting, and the results are compared with those calculated from various theoretical models. The good agreement shows that the models are generally valid, although small systematic deviations may point the way toward refinements in modeling. Our study also demonstrates the need to determine a one-piece intermolecular potential valid over a wide pressure range by refitting all experimental data, including the shock data recently made available

  9. A new phosphine oxide host based on ortho-disubstituted dibenzofuran for efficient electrophosphorescence: towards high triplet state excited levels and excellent thermal, morphological and efficiency stability.

    Science.gov (United States)

    Han, Chunmiao; Xie, Guohua; Li, Jing; Zhang, Zhensong; Xu, Hui; Deng, Zhaopeng; Zhao, Yi; Yan, Pengfei; Liu, Shiyong

    2011-08-01

    An efficient host for blue and green electrophosphorescence, 4,6-bis(diphenylphosphoryl)dibenzofuran (o-DBFDPO), with the structure of a short-axis-substituted dibenzofuran was designed and synthesised. It appears that the greater density of the diphenylphosphine oxide (DPPO) moieties in the short-axis substitution configuration effectively restrains the intermolecular interactions, because only very weak π-π stacking interactions could be observed, with a centroid-to-centroid distance of 3.960 Å. The improved thermal stability of o-DBFDPO was corroborated by its very high glass transition temperature (T(g)) of 191 °C, which is the result of the symmetric disubstitution structure. Photophysical investigation showed o-DBFDPO to be superior to the monosubstituted derivative, with a longer lifetime (1.95 ns) and a higher photoluminescent quantum efficiency (61 %). The lower first singlet state excited level (3.63 eV) of o-DBFDPO demonstrates the stronger polarisation effect attributable to the greater number of DPPO moieties. Simultaneously, an extremely high first triplet state excited level (T(1)) of 3.16 eV is observed, demonstrating the tiny influence of short-axis substitution on T(1). The improved carrier injection ability, which contributed to low driving voltages of blue- and green-emitting phosphorescent organic light-emitting diodes (PHOLEDs), was further confirmed by Gaussian calculation. Furthermore, the better thermal and morphological properties of o-DBFDPO and the matched frontier molecular orbital (FMO) levels in the devices significantly reduced efficiency roll-offs. Efficient blue and green electrophosphorescence based on the o-DBFDPO host was demonstrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  11. Fission fragment excited laser system

    Science.gov (United States)

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  12. Free radicals. High-resolution spectroscopy and molecular structure

    International Nuclear Information System (INIS)

    Hirota, E.

    1983-01-01

    High-resolution, high-sensitivity spectroscopy using CW laser and microwave sources has been applied to free radicals and transient molecules to establish their existence and to explore their properties in detail. The radicals studied were mainly generated by discharge-induced reactions. A few molecules are used as typical examples to illustrate the results so far obtained. The molecular and electronic structures of free radicals, intramolecular motions of large amplitudes in some labile molecules, and metastable electronic states of carbenes are given special emphasis. The significance of the present spectroscopic results in other related fields such as astronomy and atmospheric chemistry is stressed. 4 figures, 3 tables

  13. Crystal and molecular simulation of high-performance polymers.

    Science.gov (United States)

    Colquhoun, H M; Williams, D J

    2000-03-01

    Single-crystal X-ray analyses of oligomeric models for high-performance aromatic polymers, interfaced to computer-based molecular modeling and diffraction simulation, have enabled the determination of a range of previously unknown polymer crystal structures from X-ray powder data. Materials which have been successfully analyzed using this approach include aromatic polyesters, polyetherketones, polythioetherketones, polyphenylenes, and polycarboranes. Pure macrocyclic homologues of noncrystalline polyethersulfones afford high-quality single crystals-even at very large ring sizes-and have provided the first examples of a "protein crystallographic" approach to the structures of conventionally amorphous synthetic polymers.

  14. Steroidogenic activity of high molecular weight forms of ACTH

    International Nuclear Information System (INIS)

    Gasson, J.C.

    1979-01-01

    The relative steroidogenic potencies of high molecular weight forms of adrenocorticotropic hormone (ACTH) were investigated using in vitro bioassays. In order to prepare pools of separated pro-ACTH/endorphin, ACTH biosynthetic intermediate and glycosylated ACTH (1-39), the protein present in serum-free tissue culture medium obtained from cultured AtT-20/D-16v mouse pituitary tumor cells was concentrated and fractionated by gel filtration. Based on sodium dodecyl sulfate polyacrylamide gel electrophoresis, over 97% of the immunoactive ACTH in each pool had the appropriate molecular weight. Suspensions of isolated rat and guinea pig adrenal cortical cells were prepared by enzymatic dissociation and mechanical dispersion. Cells were incubated in complete tissue culture medium overnight then used in a 2 hour steroid production assay. Synthetic hACTH(1-39) was used as a bioassay and immunoassay standard. The amounts of pro-ACTH/endorphin, ACTH biosynthetic intermediate and glycosylated ACTH(1-39) bioassayed were estimated by ACTH(17-24) radioimmunoassay. All three high molecular weight forms of ACTH were capable of stimulating the same maximal level of steroidogenesis, by both isolated rat and guinea pig adrenal cells, as hACTH(1-39). Glycosylated ACTH(1-39) was equipotent with hACTH(1-39); pro-ACTH/endorphin and ACTH biosynthetic intermediate were two orders of magnitude less potent than hACTH(1-39) in both bioassay systems

  15. High-latitude molecular clouds and infrared cirrus

    International Nuclear Information System (INIS)

    Vries, H.W. de.

    1988-01-01

    The high-latitude infrared cirrus detected by IRAS is identified with atomic and molecular clouds. These clouds are small (usually less than 1 sq. deg.) and show weak CO emission. On the basis of a distance of 100 pc they are characterized by a mass of a few solar masses and a radius of about 1 pc. Thermal radiation by dust as a results of heating by the diffuse interstellar radiation field is the most-plausible origin of the cirrus emission at far-infrared wavelengths. On the basis of plausible assumptions regarding the uniformity of both the gas-to-dust ratio and the heating and cooling of the dust, the flux density at 100 μm from regions with low visual extinction should be a good tracer of the gas column density. Indeed, the data show an approximately linear proportionality between N(HI), obtained from 21-cm observations, and I 100 (HI), the flux density from dust associated with HI. If the ratio of column density to flux density in high-latitude molecular clouds is equal to the corresponding relation in atomic ones, a value for the ratio of H 2 column density to CO velocity-integrated radiation temperature may be obtained. Although low-mass clouds may be large in number, the fraction of the Galactic molecular mass in the form of these clouds is probably no more than 1%

  16. Nuclear excited power generation system

    International Nuclear Information System (INIS)

    Parker, R.Z.; Cox, J.D.

    1989-01-01

    A power generation system is described, comprising: a gaseous core nuclear reactor; means for passing helium through the reactor, the helium being excited and forming alpha particles by high frequency radiation from the core of the gaseous core nuclear reactor; a reaction chamber; means for coupling chlorine and hydrogen to the reaction chamber, the helium and alpha particles energizing the chlorine and hydrogen to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for coupling the helium back to the gaseous core nuclear reactor; and means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, to be coupled back to the reaction chamber in a closed loop. The patent also describes a power generation system comprising: a gaseous core nuclear reactor; means for passing hydrogen through the reactor, the hydrogen being excited by high frequency radiation from the core; means for coupling chlorine to a reaction chamber, the hydrogen energizing the chlorine in the chamber to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, and means for coupling the hydrogen back to the gaseous core nuclear reactor in a closed loop

  17. Abnormal photothermal effect of laser radiation on highly defect oxide bronze nanoparticles under the sub-threshold excitation of absorption

    Science.gov (United States)

    Gulyaev, P.; Kotvanova, M.; Omelchenko, A.

    2017-05-01

    The mechanism of abnormal photo-thermal effect of laser radiation on nanoparticles of oxide bronzes has been proposed in this paper. The basic features of the observed effect are: a) sub-threshold absorption of laser radiation by the excitation of donor-like levels formed in the energy gap due to superficial defects of the oxide bronze nano-crystals; b) an interband radiationless transition of energy of excitation on deep triplet levels and c) consequent recombination occurring at the plasmon absorption. K or Na atoms thermally intercalated to the octahedral crystal structure of TiO2 in the wave SHS combustion generate acceptor levels in the gap. The prepared oxide bronzes of the non-stoichiometric composition NaxTiO2 and KxTiO2 were examined by high resolution TEM, and then grinded in a planetary mill with powerful dispersion energy density up to 4000 J/g. This made it possible to obtain nanoparticles about 50 nm with high surface defect density (1017-1019 cm-2 at a depth of 10 nm). High photo-thermal effect of laser radiation on the defect nanocrystals observed after its impregnation into cartilaginous tissue exceeds 7 times in comparison with the intact ones.

  18. Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers

    Directory of Open Access Journals (Sweden)

    Rogier Christophe

    2009-04-01

    Full Text Available Abstract Background Several strategies are currently deployed in many countries in the tropics to strengthen malaria control toward malaria elimination. To measure the impact of any intervention, there is a need to detect malaria properly. Mostly, decisions still rely on microscopy diagnosis. But sensitive diagnosis tools enabling to deal with a large number of samples are needed. The molecular detection approach offers a much higher sensitivity, and the flexibility to be automated and upgraded. Methods Two new molecular methods were developed: dot18S, a Plasmodium-specific nested PCR based on the 18S rRNA gene followed by dot-blot detection of species by using species-specific probes and CYTB, a Plasmodium-specific nested PCR based on cytochrome b gene followed by species detection using SNP analysis. The results were compared to those obtained with microscopic examination and the "standard" 18S rRNA gene based nested PCR using species specific primers. 337 samples were diagnosed. Results Compared to the microscopy the three molecular methods were more sensitive, greatly increasing the estimated prevalence of Plasmodium infection, including P. malariae and P. ovale. A high rate of mixed infections was uncovered with about one third of the villagers infected with more than one malaria parasite species. Dot18S and CYTB sensitivity outranged the "standard" nested PCR method, CYTB being the most sensitive. As a consequence, compared to the "standard" nested PCR method for the detection of Plasmodium spp., the sensitivity of dot18S and CYTB was respectively 95.3% and 97.3%. Consistent detection of Plasmodium spp. by the three molecular methods was obtained for 83% of tested isolates. Contradictory results were mostly related to detection of Plasmodium malariae and Plasmodium ovale in mixed infections, due to an "all-or-none" detection effect at low-level parasitaemia. Conclusion A large reservoir of asymptomatic infections was uncovered using the

  19. Two-particle excitations in the Hubbard model for high-temperature superconductors. A quantum cluster study

    International Nuclear Information System (INIS)

    Brehm, Sascha

    2009-01-01

    Two-particle excitations, such as spin and charge excitations, play a key role in high-T c cuprate superconductors (HTSC). Due to the antiferromagnetism of the parent compound the magnetic excitations are supposed to be directly related to the mechanism of superconductivity. In particular, the so-called resonance mode is a promising candidate for the pairing glue, a bosonic excitation mediating the electronic pairing. In addition, its interactions with itinerant electrons may be responsible for some of the observed properties of HTSC. Hence, getting to the bottom of the resonance mode is crucial for a deeper understanding of the cuprate materials. To analyze the corresponding two-particle correlation functions we develop in the present thesis a new, non-perturbative and parameter-free technique for T=0 which is based on the Variational Cluster Approach (VCA, an embedded cluster method for one-particle Green's functions). Guided by the spirit of the VCA we extract an effective electron-hole vertex from an isolated cluster and use a fully renormalized bubble susceptibility χ 0 including the VCA one-particle propagators. Within our new approach, the magnetic excitations of HTSC are shown to be reproduced for the Hubbard model within the relevant strong-coupling regime. Exceptionally, the famous resonance mode occurring in the underdoped regime within the superconductivity-induced gap of spin-flip electron-hole excitations is obtained. Its intensity and hourglass dispersion are in good overall agreement with experiments. Furthermore, characteristic features such as the position in energy of the resonance mode and the difference of the imaginary part of the susceptibility in the superconducting and the normal states are in accord with Inelastic Neutron Scattering (INS) experiments. For the first time, a strongly-correlated parameter-free calculation revealed these salient magnetic properties supporting the S=1 magnetic exciton scenario for the resonance mode. Besides

  20. Some remarks on the disintegration of highly excited Ag and Br nuclei observed in photographic emulsion in view of the quark model

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, T.; Breivik, F.O.; Soerensen, S.O. (Oslo Univ. (Norway). Inst. for Teoretisk Fysikk)

    1980-01-01

    The angular distribution of the tracks of the particles emitted from highly excited Ag and Br nuclei after the cascade are consistent with isotropy, in disfavour of the hypothesis of fission preceding some subsequent disintegration by isotropic single particle emission. If it is assumed that the highly excited nucleus behaves as a gas of quarks which are confined within the Ag(Br) nucleus, the confinement may possibly cause delays between the subsequent emissions of particles in favour of thermodynamical equilibrium. Some comments are given on the mass of a quark in the nucleus and on the energy distribution of the particles emitted from these excited nuclei.

  1. Some remarks on the disintegration of highly excited Ag and Br nuclei observed in photographic emulsion in view of the quark model

    International Nuclear Information System (INIS)

    Jacobsen, T.; Breivik, F.O.; Soerensen, S.O.

    1980-01-01

    The angular distribution of the tracs of the particles emitted from highly excited Ag and Br nuclei after the cascade are consistent with isotropy, in disfavour of the hypothesis of fission preceding some subsequent disintegration by isotropic single particle emission. If it is assumed that the highly excited nucleus behaves as a gas of quarks which are confined within the Ag(Br) nucleus, the confinement may possibly cause delays between the subsequent emissions of particles in favour of thermodynamical equilibrium. Some comments are given on the mass of a quark in the nucleus and on the energy distribution of the particles emitted from these excited nuclei. (author)

  2. High-Resolution Spectroscopy of Jet-Cooled 1,1 '-Diphenylethylene: Electronically Excited and Ionic States of a Prototypical Cross-Conjugated System

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Rijs, A.; van Walree, C. A.; Zgierski, M. Z.; Buma, W. J.

    2011-01-01

    The photophysics of a prototypical cross-conjugated pi-system, 1,1'-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio

  3. Schematic large-dimension coupled-channel study of strong inelastic excitations to high-lying states in colliding nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kamimura, M. [Rijksuniversiteit Groningen (Netherlands). Kernfysisch Versneller Inst.; Nakano, M.; Yahiro, M.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    A mechanism of the strong inelastic excitation of colliding nuclei (e.g. deep inelastic heavy-ion collision) was studied in a schematic way based on a coupled channel (CC) framework. The purpose of this work is to see the gross behavior of the inelastic excitation strength versus epsilon (i.e. energy spectrum) for the assumed specific types of CC potentials between a large number of inelastic channels. Schematic large dimension CC calculation was considered rather than small-dimension CC calculation. The coupled N + 1 equations can be reduced to uncoupled N + 1 equations through the wellknown unitary transformation. An interesting case is that there exists strong channel independent coupling between any pair of the channels, all of which are almost degenerate in internal energy as compared with incoming c.m. energy. It was found that inelastic scattering hardly occurred while the collision was almost confined to the elastic component. The numerical calculation of S-matrix was carried out. Other cases, such as zero CC potential, the coupling between inelastic channel and entrance channel, and the case that the thickness of the coupling was changed, were investigated. As the results of the present study, it can be said that this CC coupling model may be useful for discussing continuum-continuum interactions in a breakup reaction by simulating the continuum states with many channels made discrete.

  4. Excited states v.6

    CERN Document Server

    Lim, Edward C

    1982-01-01

    Excited States, Volume 6 is a collection of papers that discusses the excited states of molecules. The first paper discusses the linear polyene electronic structure and potential surfaces, considering both the theoretical and experimental approaches in such electronic states. This paper also reviews the theory of electronic structure and cites some experimental techniques on polyene excitations, polyene spectroscopic phenomenology, and those involving higher states of polyenes and their triplet states. Examples of these experimental studies of excited states involve the high-resolution one-pho

  5. High excitation of the species in nitrogen–aluminum plasma generated by electron cyclotron resonance microwave discharge of N2 gas and pulsed laser ablation of Al target

    International Nuclear Information System (INIS)

    Liang, Peipei; Li, Yanli; Cai, Hua; You, Qinghu; Yang, Xu; Huang, Feiling; Sun, Jian; Xu, Ning; Wu, Jiada

    2014-01-01

    A reactive nitrogen–aluminum plasma generated by electron cyclotron resonance (ECR) microwave discharge of N 2 gas and pulsed laser ablation of an Al target is characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy (OES). The vibrational and rotational temperatures of N 2 species are determined by spectral simulation. The generated plasma strongly emits radiation from a variety of excited species including ambient nitrogen and ablated aluminum and exhibits unique features in optical emission and temperature evolution compared with the plasmas generated by a pure ECR discharge or by the expansion of the ablation plume. The working N 2 gas is first excited by ECR discharge and the excitation of nitrogen is further enhanced due to the fast expansion of the aluminum plume induced by target ablation, while the excitation of the ablated aluminum is prolonged during the plume expansion in the ECR nitrogen plasma, resulting in the formation of strongly reactive nitrogen–aluminum plasma which contains highly excited species with high vibrational and rotational temperatures. The enhanced intensities and the prolonged duration of the optical emissions of the combined plasma would provide an improved analytical capability for spectrochemical analysis. - Highlights: • ECR discharge and pulsed laser ablation generate highly excited ECR–PLA plasma. • The expansion of PLA plasma results in excitation enhancement of ECR plasma species. • The ECR plasma leads to excitation prolongation of PLA plasma species. • The ECR–PLA plasma emits strong emissions from a variety of excited species. • The ECR–PLA plasma maintains high vibrational–rotational temperatures for a long time

  6. Excitation of twin-vortex flow in the nightside high-latitude ionosphere during an isolated substorm

    Directory of Open Access Journals (Sweden)

    A. Grocott

    Full Text Available We present SuperDARN radar observations of the ionospheric flow during a well-observed high-latitude substorm which occurred during steady northward IMF conditions on 2 December 1999. These data clearly demonstrate the excitation of large-scale flow associated with the substorm expansion phase, with enhanced equatorward flows being observed in the pre-midnight local time sector of the expansion phase auroral bulge and westward electrojet, and enhanced return sunward flows being present at local times on either side, extending into the dayside sector. The flow pattern excited was thus of twin-vortex form, with foci located at either end of the substorm auroral bulge, as imaged by the Polar VIS UV imager. Estimated total transpolar voltages were ~40 kV prior to expansion phase onset, grew to ~80 kV over a ~15 min interval during the expansion phase, and then decayed to ~35 kV over ~10 min during recovery. The excitation of the large-scale flow pattern resulted in the development of magnetic disturbances which extended well outside of the region directly disturbed by the substorm, depending upon the change in the flow and the local ionospheric conductivity. It is estimated that the nightside reconnection rate averaged over the 24-min interval of the substorm was ~65– 75 kV, compared with continuing dayside reconnection rates of ~30–45 kV. The net closure of open flux during the sub-storm was thus ~0.4–0.6 × 108 Wb, representing ~15–20% of the open flux present at onset, and corresponding to an overall contraction of the open-closed field line boundary by ~1° latitude.

    Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; plasma convection

  7. Molecular structures and excited states of CpM(CO)(2) (Cp = eta(5)-C(5)H(5); M = Rh, Ir) and [Cl(2)Rh(CO)(2)](-). Theoretical evidence for a competitive charge transfer mechanism.

    Science.gov (United States)

    Hu, Zhenming; Boyd, Russell J; Nakatsuji, Hiroshi

    2002-03-20

    Molecular structures and excited states of CpM(CO)(2) (Cp = eta(5)-C(5)H(5); M = Rh, Ir) and [Cl(2)Rh(CO)(2)](-) complexes have been investigated using the B3LYP and the symmetry-adapted cluster (SAC)/SAC-configuration interaction (SAC-CI) theoretical methods. All the dicarbonyl complexes have singlet ground electronic states with large singlet-triplet separations. Thermal dissociations of CO from the parent dicarbonyls are energetically unfavorable. CO thermal dissociation is an activation process for [Cl(2)Rh(CO)(2)](-) while it is a repulsive potential for CpM(CO)(2). The natures of the main excited states of CpM(CO)(2) and [Cl(2)Rh(CO)(2)](-) are found to be quite different. For [Cl(2)Rh(CO)(2)](-), all the strong transitions are identified to be metal to ligand CO charge transfer (MLCT) excitations. A significant feature of the excited states of CpM(CO)(2) is that both MLCT excitation and a ligand Cp to metal and CO charge transfer excitation are strongly mixed in the higher energy states with the latter having the largest oscillator strength. A competitive charge transfer excited state has therefore been identified theoretically for CpRh(CO)(2) and CpIr(CO)(2). The wavelength dependence of the quantum efficiencies for the photoreactions of CpM(CO)(2) reported by Lees et al. can be explained by the existence of two different types of excited states. The origin of the low quantum efficiencies for the C-H/S-H bond activations of CpM(CO)(2) can be attributed to the smaller proportion of the MLCT excitation in the higher energy states.

  8. Adaptive sampling strategies with high-throughput molecular dynamics

    Science.gov (United States)

    Clementi, Cecilia

    Despite recent significant hardware and software developments, the complete thermodynamic and kinetic characterization of large macromolecular complexes by molecular simulations still presents significant challenges. The high dimensionality of these systems and the complexity of the associated potential energy surfaces (creating multiple metastable regions connected by high free energy barriers) does not usually allow to adequately sample the relevant regions of their configurational space by means of a single, long Molecular Dynamics (MD) trajectory. Several different approaches have been proposed to tackle this sampling problem. We focus on the development of ensemble simulation strategies, where data from a large number of weakly coupled simulations are integrated to explore the configurational landscape of a complex system more efficiently. Ensemble methods are of increasing interest as the hardware roadmap is now mostly based on increasing core counts, rather than clock speeds. The main challenge in the development of an ensemble approach for efficient sampling is in the design of strategies to adaptively distribute the trajectories over the relevant regions of the systems' configurational space, without using any a priori information on the system global properties. We will discuss the definition of smart adaptive sampling approaches that can redirect computational resources towards unexplored yet relevant regions. Our approaches are based on new developments in dimensionality reduction for high dimensional dynamical systems, and optimal redistribution of resources. NSF CHE-1152344, NSF CHE-1265929, Welch Foundation C-1570.

  9. High Temperature Elastic Properties of Reduced Activation Ferritic-Martensitic (RAFM) Steel Using Impulse Excitation Technique

    Science.gov (United States)

    Tripathy, Haraprasanna; Raju, Subramanian; Hajra, Raj Narayan; Saibaba, Saroja

    2018-03-01

    The polycrystalline elastic constants of an indigenous variant of 9Cr-1W-based reduced activation ferritic-martensitic (RAFM) steel have been determined as a function of temperature from 298 K to 1323 K (25 °C to 1000 °C), using impulse excitation technique (IET). The three elastic constants namely, Young's modulus E, shear modulus G, and bulk modulus B, exhibited significant softening with increasing temperature, in a pronounced non-linear fashion. In addition, clearly marked discontinuities in their temperature variations are noticed in the region, where ferrite + carbides → austenite phase transformation occurred upon heating. Further, the incidence of austenite → martensite transformation upon cooling has also been marked by a step-like jump in both elastic E and shear moduli G. The martensite start M s and M f finish temperatures estimated from this study are, M s = 652 K (379 °C) and M f =580 K (307 °C). Similarly, the measured ferrite + carbide → austenite transformation onset ( Ac 1) and completion ( Ac 3) temperatures are found to be 1126 K and 1143 K (853 °C and 870 °C), respectively. The Poisson ratio μ exhibited distinct discontinuities at phase transformation temperatures; but however, is found to vary in the range 0.27 to 0.29. The room temperature estimates of E, G, and μ for normalized and tempered microstructure are found to be 219 GPa, 86.65 GPa, and 0.27, respectively. For the metastable austenite phase, the corresponding values are: 197 GPa, 76.5 GPa, and 0.29, respectively. The measured elastic properties as well as their temperature dependencies are found to be in good accord with reported estimates for other 9Cr-based ferritic-martensitic steel grades. Estimates of θ D el , the elastic Debye temperature and γ G, the thermal Grüneisen parameter obtained from measured bulk elastic properties are found to be θ D el = 465 K (192 °C) and γ G = 1.57.

  10. Three-dimensional cell organization leads to almost immediate HRE activity as demonstrated by molecular imaging of MG-63 spheroids using two-photon excitation microscopy.

    Science.gov (United States)

    Indovina, Paola; Collini, Maddalena; Chirico, Giuseppe; Santini, Maria Teresa

    2007-02-20

    Hypoxia through HRE (hypoxia-responsive element) activity in MG-63 human osteosarcoma cells grown in monolayer and as very small, three-dimensional tumor spheroids was investigated using molecular imaging techniques. MG-63 cells were stably transfected with a vector constructed with multiple copies of the HRE sequence of the human vascular endothelial growth factor (VEGF) gene and with the enhanced green fluorescent protein (EGFP) coding sequence. During hypoxia when HIF-1alpha (hypoxia-inducible factor-1alpha) is stabilized, the binding of HIF-1 to the HRE sequences of the vector allows the transcription of EGFP and the appearance of fluorescence. Transfected monolayer cells were characterized by flow cytometric analysis in response to various hypoxic conditions and HIF-1alpha expression in these cells was assessed by Western blotting. Two-photon excitation (TPE) microscopy was then used to examine both MG-63-transfected monolayer cells and spheroids at 2 and 5 days of growth in normoxic conditions. Monolayer cells reveal almost no fluorescence, whereas even very small spheroids (HRE activation. This activation of the HRE sequences, which control a wide variety of genes, suggests that monolayer cells and spheroids of the MG-63 cell line have different genes activated and thus diverse functional activities.

  11. Exciting story of the high-end television projection systems and the novel compact EIDOPHOR AE-12

    Science.gov (United States)

    Schulz-Hennig, Joerg F.

    1998-04-01

    With the new light valve technologies and availability of international broad-band communication channels high-end large screen TV projection is a highly growing contribution to the multi-media world of today. The exciting story already started 58 years ago with the invention of the EIDOPHOR diffractive oil light modulator. The long way to turn electronic cinema into a reality triggered novel applications, e.g. teleconferencing and real time surgery transmissions at universities. Several technical approaches of spatial light modulation were tried, and finally several different solutions are feasible to provide video projectors, meeting the requirements of the different display applications of today and tomorrow. The technical history is reviewed and the limitations and feasibilities of new technologies are presented in respect to existing and new applications.

  12. Wall effect in deactivation of excited molecular oxygen {sup 1}{delta}g; Reiki sanso bunshi {sup 1}{delta}g no shikkatsu ni oyobosu hyomen hanno no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S.; Hasegawa, Y.; Yamashita, I. [Mechanical Engineering Laboratory, Tsukuba (Japan)

    1993-10-25

    This paper discusses effects of surface reaction on deactivation of excited molecular oxygen in {sup 1}{Delta}g condition. Gaseous oxygen containing excited oxygen generated by microwave discharge at a concentration of less than 1% is flown into several kinds of tubes to be measured such as quartz tubes (with an inner diameter of about 10 mm), and the light emitting intensity of the excited oxygen was measured upstream and downstream of the tubes to be measured (with in-tube pressure of 1 Torr or 2 Torr) to derive its concentration change. The surface reaction on the tube wall was regarded as a primary reaction, and the concentration change of the excited oxygen in flows in the round tube (attributable to the surface reaction) was analyzed. With respect to effects of tube wall materials on deactivation of the excited molecular oxygen, the surface deactivation probability in the case of using low-activity materials has decreased in the order of Pyrex, PVC, quartz, PFA and PTFE. The surface deactivation probability in the case of using a metallic material, SUS316L, was about 1000 times larger than that in the quartz. 14 refs., 7 figs., 1 tab.

  13. Pyrene Molecular Orbital Shuffle-Controlling Excited State and Redox Properties by Changing the Nature of the Frontier Orbitals.

    Science.gov (United States)

    Merz, Julia; Fink, Julian; Friedrich, Alexandra; Krummenacher, Ivo; Al Mamari, Hamad H; Lorenzen, Sabine; Haehnel, Martin; Eichhorn, Antonius; Moos, Michael; Holzapfel, Marco; Braunschweig, Holger; Lambert, Christoph; Steffen, Andreas; Ji, Lei; Marder, Todd B

    2017-09-21

    We show that by judicious choice of substituents at the 2- and 7-positions of pyrene, the frontier orbital order of pyrene can be modified, giving enhanced control over the nature and properties of the photoexcited states and the redox potentials. Specifically, we introduced a julolidine-like moiety and Bmes 2 (mes=2,4,6-Me 3 C 6 H 2 ) as very strong donor (D) and acceptor (A), respectively, giving 2,7-D-π-D- and unsymmetric 2,7-D-π-A-pyrene derivatives, in which the donor destabilizes the HOMO-1 and the acceptor stabilizes the LUMO+1 of the pyrene core. Consequently, for 2,7-substituted pyrene derivatives, unusual properties are obtained. For example, very large bathochromic shifts were observed for all of our compounds, and unprecedented green light emission occurs for the D/D system. In addition, very high radiative rate constants in solution and in the solid state were recorded for the D-π-D- and D-π-A-substituted compounds. All compounds show reversible one-electron oxidations, and Jul 2 Pyr exhibits a second oxidation, with the largest potential splitting (ΔE=440 mV) thus far reported for 2,7-substituted pyrenes. Spectroelectrochemical measurements confirm an unexpectedly strong coupling between the 2,7-substituents in our pyrene derivatives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power

    DEFF Research Database (Denmark)

    Liu, Haichun; Xu, Can T.; Dumlupinar, Gökhan

    2013-01-01

    We have accomplished deep tissue optical imaging of upconverting nanoparticles at 800 nm, using millisecond single pulse excitation with high peak power. This is achieved by carefully choosing the pulse parameters, derived from time-resolved rate-equation analysis, which result in higher intrinsic...... quantum yield that is utilized by upconverting nanoparticles for generating this near infrared upconversion emission. The pulsed excitation approach thus promises previously unreachable imaging depths and shorter data acquisition times compared with continuous wave excitation, while simultaneously keeping...... therapy and remote activation of biomolecules in deep tissues....

  15. Spectroscopic and electric dipole properties of Sr+Ar and SrAr systems including high excited states

    Science.gov (United States)

    Hamdi, Rafika; Abdessalem, Kawther; Dardouri, Riadh; Al-Ghamdi, Attieh A.; Oujia, Brahim; Gadéa, Florent Xavier

    2018-01-01

    The spectroscopic properties of the fundamental and several excited states of Sr+Ar and SrAr, Van der Waals systems are investigated by employing an ab initio method in a pseudo-potential approach. The potential energy curves and the spectroscopic parameters are displayed for the 1-10 2Σ+, 1-6 2Π and 1-3 2Δ electronic states of the Sr+Ar molecule and for the 1-6 1Σ+, 1-4 3Σ+, 1-3 1,3Π and 1-3 1,3Δ states of the neutral molecule SrAr. In addition, from these curves, the vibrational levels and their energy spacing are deduced for Σ+, Π and Δ symmetries. The spectra of the permanent and transition dipole moments are studied for the 1,3Σ+ states of SrAr, which are considered to be two-electron systems and 2Σ+ states of the single electron Sr+Ar ion. The spectroscopic parameters obtained for each molecular system are compared with previous theoretical and experimental works. A significant correlation revealed the accuracy of our results.

  16. Observation of preformed electron-hole Cooper pairs in highly excited ZnO

    NARCIS (Netherlands)

    Versteegh, M.A.M.; van Lange, A.J.; Stoof, H.T.C.; Dijkhuis, J.I.

    2012-01-01

    Electrons and holes in a semiconductor form hydrogen-atom-like bound states, called excitons. At high electron-hole densities the attractive Coulomb force becomes screened and excitons can no longer exist. Bardeen-Cooper-Schrieffer theory predicts that at such high densities co-operative many-body

  17. A DC excited waveguide multibeam CO2 laser using high frequency ...

    Indian Academy of Sciences (India)

    High power industrial multibeam CO2 lasers consist of a large number of closely packed ... by producing pre-ionization using an auxiliary high frequency pulsed ... of few kilowatts output power, multibeam technique is used [2]. .... gas mixture of CO2, N2 and He enters in each discharge tube individually from .... Commercial.

  18. Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers.

    Science.gov (United States)

    Altintas, Zeynep; Gittens, Micah; Guerreiro, Antonio; Thompson, Katy-Anne; Walker, Jimmy; Piletsky, Sergey; Tothill, Ibtisam E

    2015-07-07

    Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination. For the first time, a molecularly imprinted polymer (MIP) targeting the bacteriophage MS2 as the template was investigated using a novel solid-phase synthesis method to obtain the artificial affinity ligand for the detection and removal of waterborne viruses through optical-based sensors. A high affinity between the artificial ligand and the target was found, and a regenerative MIP-based virus detection assay was successfully developed using a new surface plasmon resonance (SPR)-biosensor which provides an alternative technology for the specific detection and removal of waterborne viruses that lead to high disease and death rates all over the world.

  19. Probing two-centre interference in molecular high harmonic generation

    International Nuclear Information System (INIS)

    Vozzi, C; Calegari, F; Benedetti, E; Berlasso, R; Sansone, G; Stagira, S; Nisoli, M; Altucci, C; Velotta, R; Torres, R; Heesel, E; Kajumba, N; Marangos, J P

    2006-01-01

    Two-centre interference in the recombination step of molecular high harmonic generation (HHG) has been probed in CO 2 and O 2 . We report the order dependence of characteristic enhancements or suppressions of high harmonic production in aligned samples of both molecules. In CO 2 , a robust destructive interference was seen consistent with the known separation of the oxygen atoms that are active in HHG. In O 2 , a harmonic enhancement was found indicating constructive interference. A good agreement was found with a simple two-centre interference model that includes the angular distribution function of the sample. The effective momentum of the electron wave was determined from the spectral position of these interferences. Ellipticity-dependent studies in CO 2 clearly show how the destructive interference can be 'switched off' by increasing the degree of ellipticity and thus shifting the effective resonance condition

  20. High pressure luminescence studies of localized excitations in ZnS doped with Pb2+ and Mn2+

    International Nuclear Information System (INIS)

    House, G.L.; Drickamer, H.G.

    1977-01-01

    High pressure luminescence measurements have been made on ZnS doped with Pb +2 and Mn +2 . The data include changes in peak energy and shape, integrated intensities, and lifetimes. These localized emissions are treated in terms of a single configuration coordinate model. For Pb +2 the emission peak shifted to lower energy by a moderate amount and narrowed. For excitation in the Pb +2 absorption the intensity was independent of pressure, which is consistent with the fact that the energy barrier for radiationless return to the ground state was high at all pressures. For excitation in the ZnS absorption edge the intensity decreased significantly with pressure above about 80 kbar. Data on shifts of the conduction band with pressure would indicate that one is approaching a transition from a direct to indirect transition at high pressure so that decrease in emission intensity may be associated with decreased absorption efficiency. The Mn+ 2 emission peak shifted strongly to lower energy with increasing pressure. The direction and magnitude of the shift were consistent with the predictions of ligand field theory. The intensity doubled in 100 kbar, while the lifetime decreased by roughly a factor of 2. These results could be described in terms of a model for a phonon assisted transition. In addition, peak location, intensity, and lifetime measurements were made on ZnS:Pb:Mn. There is clear evidence of energy transfer by exchange, but in addition there is a nonradiative process in the doubly doped crystal which affects both intensities and lifetimes

  1. High spin states excited by the (p, t) reaction on lead isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kumabe, I.; Hyakutake, M. [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Yuasa, K.; Yamagata, T.; Kishimoto, S.; Ikegami, H.; Muraoka, M [eds.

    1980-01-01

    In order to find high spin states the sup(204, 206, 208)Pb (p, t) reactions have been investigated with RCNP isochronous cyclotron and a high resolution magnetic spectrograph ''RAIDEN''. The experimental angular distributions were analyzed by DWBA calculations, and the lowest 10/sup +/, 12/sup +/ (i sub(13/2))/sup 2/ and 11/sup -/ (i sub(13/2), h sub(9/2)) states in /sup 202/Pb, /sup 204/Pb and /sup 206/Pb were established.

  2. High efficiency detection technique on quantum action due to radiation excitation

    International Nuclear Information System (INIS)

    Yamazaki, Tetsuo; Kobayashi, Naoto; Sakamoto, Isao; Hayashi, Nobuyuki; Okubo, Masataka

    1999-01-01

    For a key point to obtain high energy resolution, three items such as long life of quasi particle, short tunneling time, and low leakage current can be shown. Then, in order to establish high energy resolution by filling these three items, a research on Nb/Al/AlO x /Al/Nb superconducting tunnel junction was proceeded. In 1997 fiscal year, elucidation on phonon relaxation phenomenon in Nb crystal grain boundary was conducted. On energy resolution, by realizing increase of quasi particle life and upgrading if junction quality, 70 to 90 eV which is higher than that of semiconductor detector could be established. After then, to remove the phonon relaxation at crystal grain boundary, it was necessary to practise high qualification of absorber such as improvement of Nb film micro structure and single crystallization, and enforcement of quasi particle trapping due to superconductor except Nb/Al. (G.K.)

  3. Excitation of atoms and molecules in collisions with highly charged ions

    International Nuclear Information System (INIS)

    Watson, R.L.

    1991-01-01

    Much of the work this year has been directed toward studies of charge exchange and ionization in single collisions of heavy ions with gaseous atoms and molecules. A study of the double ionization of He by high energy N 7+ ions, which began last year, was extended up in energy to 40 MeV/amu. These measurements verified the deviations from the predictions of theory observed in our previous work and indicated that the energy required to reach the limiting value of the ratio of double-to-single ionization cross sections may be as high as 70 MeV/amu

  4. High-efficient, bicolor-emitting GdVO_4:Dy"3"+ phosphor under near ultraviolet excitation

    International Nuclear Information System (INIS)

    Lu, Jinjin; Zhou, Jia; Jia, Huayu; Tian, Yue

    2015-01-01

    Bicolor emitting GdVO_4:Dy"3"+ phosphor with short columniation-shape was prepared via a simple co-precipitation process. The optimal doping concentration for obtaining maximal luminescent intensity was confirmed to be 0.3 mol% and the electric dipole–dipole interaction is responsible for concentration quenching of Dy"3"+ emission in GdVO_4 phosphor. In order to evaluate the luminescent performance of as-prepared phosphor, the luminescent efficiency and color coordinates were studied. The results show that luminescent efficiency of this phosphor is very high under near UV excitation and twice times higher than commercial Y_2O_2S:Eu"3"+ phosphor. In addition, the color coordinates for optimal Dy"3"+ concentration are (0.339, 0.379), which are close to equal energy point. Therefore, the GdVO_4:Dy"3"+ phosphor may have potential application for solid state lighting.

  5. Inhibition of collective spontaneous decay and superradiance in an ensemble of sufficiently high quantity of excited identical atoms

    International Nuclear Information System (INIS)

    Basharov, A.M.

    2011-01-01

    New effects of suppression of the collective spontaneous emission and superradiance have been predicted. At a certain number N of ensemble atoms, the Stark interaction with a vacuum field was shown as being high enough for the excited N-atom ensemble to be stabilized with respect to the collective decay. The result was derived analytically as a consequence of applying the quantum stochastic differential equations to the description of the atomic dynamics in vacuum, where the Stark interaction operator is expressed in terms of the quantum Poisson process. -- Highlights: → Enhancement of the Stark interaction of N atoms ensemble with vacuum, with N rising. → Representation of the Stark interaction as the quantum Poisson process. → Collective spontaneous decay and superradiance under the strong Stark interaction. → Inhibition of superradiance at a certain number of ensemble atoms. → Analysis of superradiance experiments in terms of inhibition of collective decay.

  6. Magnetic moments, E3 transitions and the structure of high spin core excited states in 211Rn

    International Nuclear Information System (INIS)

    Poletti, A.R.; Dracoulis, G.D.; Byrne, A.P.; Stuchbery, A.E.; Poletti, S.J.; Gerl, J.; Lewis, P.M.

    1985-03-01

    The results of g-factor measurements of high spin states in 211 Rn are: Esub(x)=8856+Δsup(') keV (Jsup(π)=63/2 - ), g=0.626(7); 6101+Δsup(') keV (49/2 + ), 0.766(8); 5247+Δsup(') keV (43/2 - ), 0.74(2); 3927+Δsup(') keV (35/2 + ), 1/017(12); 1578+Δsup(') keV (17/2 - ), 0.912(9). These results together with measured E3 transition strengths and shell model calculations are used to assign configurations to the core excited states in 211 Rn. Mixed configurations are required to explain the g-factors and enhanced E3 strengths simultaneously

  7. Magnetic moments, E3 transitions and the structure of high-spin core excited states in 211Rn

    International Nuclear Information System (INIS)

    Poletti, A.R.; Dracoulis, G.D.; Byrne, A.P.; Stuchbery, A.E.; Poletti, S.J.; Gerl, J.; Lewis, P.M.

    1985-01-01

    The results of g-factor measurements of high-spin states in 211 Rn are: Esub(x)=8856+Δ' keV (Jsup(π)=63/2 - ), g=0.626(7); 6101+Δ' keV (49/2 + ), 0.766(8); 5347+Δ' keV (43/2 - ), 0.74(2); 3927+Δ keV (35/2 + ), 1.017(12); 1578+Δ keV (17/2 - ), 0.912(9). These results together with measured E3 transition strengths and shell model calculations are used to assign configurations to the core excited states in 211 Rn. Mixed configurations are required to explain the g-factors and enhanced E3 strengths simultaneously. (orig.)

  8. Inelastic scattering of high transfer moment electrons to the first excited state (Jsup(π)=3-) of 208Pb

    International Nuclear Information System (INIS)

    Goutte, Dominique.

    1979-10-01

    A determination was made of an angular distribution of the inelastic scattering cross-sections of electrons by the first excited state (Jsup(π)=3 - , E*=2.615 MeV) of 208 Pb. The statistical accuracy of previous data was improved between 2 and 2.7 fm -1 and the area of transfer of moment was extended up to qsub(max)=3.4 fm -1 . Cross-sections up to 10 -37 cm 2 /sr were determined whereas the limit reached before was 7x10 -35 cm 2 /sr. In order to determine the transition charge density, it was put into parametric form by a Fourier-Bessel development using 12 coefficients and an 11 fm cut-off radius. The model error inherent in this method is reduced to an insignificant contribution by the sufficiently high transfer of moment. The experimental transition charge density was compared with the theoretical predictions [fr

  9. High resolution detection and excitation of resonant magnetic perturbations in a wall-stabilized tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, David A. [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Shiraki, Daisuke; Levesque, Jeffrey P.; Bialek, James; Angelini, Sarah; Byrne, Patrick; DeBono, Bryan; Hughes, Paul; Mauel, Michael E.; Navratil, Gerald A.; Peng Qian; Rhodes, Dov; Rath, Nickolaus; Stoafer, Christopher [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2012-05-15

    We report high-resolution detection of the 3D plasma magnetic response of wall-stabilized tokamak discharges in the High Beta Tokamak-Extended Pulse [T. H. Ivers et al., Phys. Plasmas 3, 1926 (1996)] device. A new adjustable conducting wall has been installed on HBT-EP made up of 20 independent, movable, wall segments instrumented with three distinct sets of 40 modular coils that can be independently driven to generate a wide variety of magnetic perturbations. High-resolution detection of the plasma response is made with 216 poloidal and radial magnetic sensors that have been located and calibrated with high-accuracy. Static and dynamic plasma responses to resonant and non-resonant magnetic perturbations are observed through measurement of the step-response following a rapid change in the toroidal phase of the applied perturbations. Biorthogonal decomposition of the full set of magnetic sensors clearly defines the structures of naturally occurring external kinks as being composed of independent m/n = 3/1 and 6/2 modes. Resonant magnetic perturbations were applied to discharges with pre-existing, saturated m/n = 3/1 external kink mode activity. This m/n = 3/1 kink mode was observed to lock to the applied perturbation field. During this kink mode locked period, the plasma resonant response is characterized by a linear, a saturated, and a disruptive plasma regime dependent on the magnitude of the applied field and value of the edge safety factor and plasma rotation.

  10. High spatial resolution and high contrast visualization of brain arteries and veins. Impact of blood pool contrast agent and water-selective excitation imaging at 3T

    International Nuclear Information System (INIS)

    Spuentrup, E.; Jacobs, J.E.; Kleimann, J.F.

    2010-01-01

    Purpose: To investigate a blood pool contrast agent and water-selective excitation imaging at 3 T for high spatial and high contrast imaging of brain vessels including the veins. Methods and Results: 48 clinical patients (47 ± 18 years old) were included. Based on clinical findings, twenty-four patients received a single dose of standard extracellular Gadoterate-meglumine (Dotarem registered ) and 24 received the blood pool contrast agent Gadofosveset (Vasovist registered ). After finishing routine MR protocols, all patients were investigated with two high spatial resolution (0.15 mm 3 voxel size) gradient echo sequences in random order in the equilibrium phase (steady-state) as approved by the review board: A standard RF-spoiled gradient-echo sequence (HR-SS, TR/TE 5.1 / 2.3 msec, FA 30 ) and a fat-suppressed gradient-echo sequence with water-selective excitation (HR-FS, 1331 binominal-pulse, TR/TE 8.8 / 3.8 msec, FA 30 ). The images were subjectively assessed (image quality with vessel contrast, artifacts, depiction of lesions) by two investigators and contrast-to-noise ratios (CNR) were compared using the Student's t-test. The image quality and CNR in the HR-FS were significantly superior compared to the HR-SS for both contrast agents (p < 0.05). The CNR was also improved when using the blood pool agent but only to a minor extent while the subjective image quality was similar for both contrast agents. Conclusion: The utilized sequence with water-selective excitation improved image quality and CNR properties in high spatial resolution imaging of brain arteries and veins. The used blood pool contrast agent improved the CNR only to a minor extent over the extracellular contrast agent. (orig.)

  11. High rate of destruction of molecular clouds by hot stars

    International Nuclear Information System (INIS)

    Heydari-Malayeri, M.; Lortet, M.C.; Deharveng, L.

    1980-01-01

    Tenorio-Tagle (1979) first proposed the idea of a third dynamical phase, the champagne phase, following the formation and expansion phases of an HII region. The champagne phase begins when the high pressure gas of an HII region formed inside a molecular cloud reaches the edge of the cloud and bursts into the lower pressure, low density, intercloud medium. One important implication of the model is the prediction of an enormous enhancement of the rate of erosion of the molecular cloud by the ionising radiation of hot stars, which begins as soon as the process of the decrease of the gas density between the star and the cloud is started. The proportion of hydrogen molecules eroded by ionising photons may reach about 10 -2 . The mass eroded may exceed the mass of the ionised gas in the case where the ionisation front reaching the edge of the cloud is of D-type. Additional mechanisms (for instance stellar winds), if at work, may even increase the efficiency of the mechanism. (Auth.)

  12. Voiced Excitations

    National Research Council Canada - National Science Library

    Holzricher, John

    2004-01-01

    To more easily obtain a voiced excitation function for speech characterization, measurements of skin motion, tracheal tube, and vocal fold, motions were made and compared to EM sensor-glottal derived...

  13. Exciting Pools

    Science.gov (United States)

    Wright, Bradford L.

    1975-01-01

    Advocates the creation of swimming pool oscillations as part of a general investigation of mechanical oscillations. Presents the equations, procedure for deriving the slosh modes, and methods of period estimation for exciting swimming pool oscillations. (GS)

  14. Can Measured Synergy Excitations Accurately Construct Unmeasured Muscle Excitations?

    Science.gov (United States)

    Bianco, Nicholas A; Patten, Carolynn; Fregly, Benjamin J

    2018-01-01

    Accurate prediction of muscle and joint contact forces during human movement could improve treatment planning for disorders such as osteoarthritis, stroke, Parkinson's disease, and cerebral palsy. Recent studies suggest that muscle synergies, a low-dimensional representation of a large set of muscle electromyographic (EMG) signals (henceforth called "muscle excitations"), may reduce the redundancy of muscle excitation solutions predicted by optimization methods. This study explores the feasibility of using muscle synergy information extracted from eight muscle EMG signals (henceforth called "included" muscle excitations) to accurately construct muscle excitations from up to 16 additional EMG signals (henceforth called "excluded" muscle excitations). Using treadmill walking data collected at multiple speeds from two subjects (one healthy, one poststroke), we performed muscle synergy analysis on all possible subsets of eight included muscle excitations and evaluated how well the calculated time-varying synergy excitations could construct the remaining excluded muscle excitations (henceforth called "synergy extrapolation"). We found that some, but not all, eight-muscle subsets yielded synergy excitations that achieved >90% extrapolation variance accounted for (VAF). Using the top 10% of subsets, we developed muscle selection heuristics to identify included muscle combinations whose synergy excitations achieved high extrapolation accuracy. For 3, 4, and 5 synergies, these heuristics yielded extrapolation VAF values approximately 5% lower than corresponding reconstruction VAF values for each associated eight-muscle subset. These results suggest that synergy excitations obtained from experimentally measured muscle excitations can accurately construct unmeasured muscle excitations, which could help limit muscle excitations predicted by muscle force optimizations.

  15. A novel PM motor with hybrid PM excitation and asymmetric rotor structure for high torque performance

    Directory of Open Access Journals (Sweden)

    Gaohong Xu

    2017-05-01

    Full Text Available This paper proposes a novel permanent magnet (PM motor for high torque performance, in which hybrid PM material and asymmetric rotor design are applied. The hybrid PM material is adopted to reduce the consumption of rare-earth PM because ferrite PM is assisted to enhance the torque production. Meanwhile, the rotor structure is designed to be asymmetric by shifting the surface-insert PM (SPM, which is used to improve the torque performance, including average torque and torque ripple. Moreover, the reasons for improvement of the torque performance are explained by evaluation and analysis of the performances of the proposed motor. Compared with SPM motor and V-type motor, the merit of high utilization ratio of rare-earth PM is also confirmed, showing that the proposed motor can offer higher torque density and lower torque ripple simultaneously with less consumption of rare-earth PM.

  16. High-spin levels in 39K excited by the 41Ca(d,α) reaction

    International Nuclear Information System (INIS)

    Sugarbaker, E.; Boyd, R.N.; Cline, D.; Vold, P.B.; Lien, J.R.; Goode, P.R.

    1979-01-01

    The 41 Ca(d,α) 39 K reaction has been used to investigate the low-lying high-spin states in 39 K. Conflicting spin assignments for the 5.719 MeV level in 39 K of 9/2 - of 13/2 - have been suggested in earlier studies. A 1p-2h model reproduces both the 41 Ca(d,α) 39 K and 39 K(α,α') 39 K reaction data leading to the high-spin states if the 5.719 MeV level is assumed to have a J/sup π/ of 13/2 - . An alternate assignment of J/sup π/ = 9/2 - for this level is shown to produce very poor agreement with the model predictions

  17. Exciting middle and high school students about immunology: an easy, inquiry-based lesson.

    Science.gov (United States)

    Lukin, Kara

    2013-03-01

    High school students in the United States are apathetic about science, technology, engineering and mathematics (STEM), and the workforce pipeline in these areas is collapsing. The lack of understanding of basic principles of biology means that students are unable to make educated decisions concerning their personal health. To address these issues, we have developed a simple, inquiry-based outreach lesson centered on a mouse dissection. Students learn key concepts in immunology and enhance their understanding of human organ systems. The experiment highlights aspects of the scientific method and authentic data collection and analysis. This hands-on activity stimulates interest in biology, personal health and careers in STEM fields. Here, we present all the information necessary to execute the lesson effectively with middle and high school students.

  18. Excitation and ionization of highly charged ions by electron impact. Progress report, January 1, 1978-July 31, 1979

    International Nuclear Information System (INIS)

    Sampson, D.H.

    1979-07-01

    Reduced ionization cross sections Q/sub R//sup H/(nl,u) were obtained for the nl = 3p and 3d sublevels, as well as for more energy points for the lower sublevels considered in our earlier work. Thus, results are now available for the eight impact electron energies in threshold units u = 1.125, 1.25, 1.5, 2.25, 3.0, 4.0, 5.0, and 6.0 for each of the sublevels 1s, 2s, 2p, 3s, 3p, and 3d. From these results for Q/sub R//sup H/(nl,u) one can readily obtain the cross section for ionization from any of these sublevels in any highly charged complex ion using the simple procedures given in our earlier work. The theory and computer programs developed in our previous work on excitation were used to calculate intermediate coupling collision strengths for all fine structure transitions from the 2P levels to the nP and nD levels with 3 less than or equal to n less than or equal to 5 in He-like ions. Similar calculations have also been made for inner shell excitation of Li-like ions with nuclear charge number Z in the range 10 less than or equal to Z less than or equal to 74. The theory and programs were also extended to treat Δn = 0 transitions and were used to obtain intermediate coupling collision strengths for all Δn = 0 fine structure transitions with n = 2 in 10 He-like ions with Z in the range 6 less than or equal to Z less than or equal to 74 and 10 Be-like ions with Z in the range 14 less than or equal to Z less than or equal to 74. For excitation the results appear to be accurate to within approx. 30% for 3N less than or equal to Z less than or equal to 74, where N is the number of bound electrons per ion, and more accurate for most of this range. For ionization the results appear to be accurate down to Z/N approx. = 2. 21 references

  19. Removal of high-molecular weight polycyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    Ulrich Vasconcelos

    2011-01-01

    Full Text Available Alternatives for the removal of high-molecular weight polycyclic aromatic hydrocarbons (HWM-PAH from soil were tested by adding fertilizer or glycerol, as well as the combination of both. Experiments were carried out for 60 days in reactors containing a HWM-PAH-contaminated soil (8030 μg kg-1, accompanied by pH monitoring, humidity control and quantification of total heterotrophic bacteria and total fungus. Fertilizer addition removed 41.6% of HWM-PAH. Fertilizer and glycerol in combination removed 46.2%. When glycerol was added individually, degradation reached 50.4%. Glycerol also promoted the increase of degradation rate during the first 30 days suggesting the HMW-PAH removal occurred through cometabolic pathways.

  20. High-resolution K-shell spectra from laser excited molybdenum plasmas

    Directory of Open Access Journals (Sweden)

    Szabo C.I.

    2013-11-01

    Full Text Available X-ray spectra from Molybdenum plasmas were recorded by a Cauchois-type cylindrically bent Transmission Crystal Spectrometer (TCS. The absolutely calibrated spectrometer provides an unprecedented resolution of inner shell transitions (K x-ray radiation. This tool allows us to resolve individual lines from different charge states existing inside the laser-produced plasma. The inner shell transitions from highly charged Molybdenum shown in this report have never been resolved before in such detail in a laser-produced plasma.

  1. Development of the model describing highly excited states of odd deformed nuclei

    International Nuclear Information System (INIS)

    Malov, L.A.; Solov'ev, V.G.

    1975-01-01

    An approximate method is given for solving the system of equations obtained earlier for describing the structure of states with intermediate and high energies in the framework of the model taking into account the interaction of quasiparticles with phonons. The new method possesses a number of advantages over the approximate methods of solving the system of equations mentioned. The study is performed for the example of an odd deformed nucleus when several one-quasiparticle components are taken into account at the same time

  2. Suppression and nonlinear excitation of parasitic modes in second harmonic gyrotrons operating in a very high order mode

    International Nuclear Information System (INIS)

    Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.

    2015-01-01

    In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE 31,8 -mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate in available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE 31,8 -mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE 31,8 mode is possible with only modest sacrifice of efficiency and power

  3. Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior

    Directory of Open Access Journals (Sweden)

    Alex M. Dopico

    2014-12-01

    Full Text Available In most tissues, the function of calcium- and voltage-gated potassium (BK channels is modified in response to ethanol concentrations reached in human blood during alcohol intoxication. In general, modification of BK current from ethanol-naïve preparations in response to brief ethanol exposure results from changes in channel open probability without modification of unitary conductance or change in BK protein levels in the membrane. Protracted and/or repeated ethanol exposure, however, may evoke changes in BK expression. The final ethanol effect on BK open probability leading to either BK current potentiation or BK current reduction is determined by an orchestration of molecular factors, including levels of activating ligand (cytosolic calcium, BK subunit composition and posttranslational modifications, and the channel’s lipid microenvironment. These factors seem to allosterically regulate a direct interaction between ethanol and a recognition pocket of discrete dimensions recently mapped to the channel-forming (slo1 subunit. Type of ethanol exposure also plays a role in the final BK response to the drug: in several central nervous system regions (e.g., striatum, primary sensory neurons, and supraoptic nucleus, acute exposure to ethanol reduces neuronal excitability by enhancing BK activity. In contrast, protracted or repetitive ethanol administration may alter BK subunit composition and membrane expression, rendering the BK complex insensitive to further ethanol exposure. In neurohypophysial axon terminals, ethanol potentiation of BK channel activity leads to a reduction in neuropeptide release. In vascular smooth muscle, however, ethanol inhibition of BK current leads to cell contraction and vascular constriction.

  4. Molecular Dynamics Simulation of High Density DNA Arrays

    Directory of Open Access Journals (Sweden)

    Rudolf Podgornik

    2018-01-01

    Full Text Available Densely packed DNA arrays exhibit hexagonal and orthorhombic local packings, as well as a weakly first order transition between them. While we have some understanding of the interactions between DNA molecules in aqueous ionic solutions, the structural details of its ordered phases and the mechanism governing the respective phase transitions between them remains less well understood. Since at high DNA densities, i.e., small interaxial spacings, one can neither neglect the atomic details of the interacting macromolecular surfaces nor the atomic details of the intervening ionic solution, the atomistic resolution is a sine qua non to properly describe and analyze the interactions between DNA molecules. In fact, in order to properly understand the details of the observed osmotic equation of state, one needs to implement multiple levels of organization, spanning the range from the molecular order of DNA itself, the possible ordering of counterions, and then all the way to the induced molecular ordering of the aqueous solvent, all coupled together by electrostatic, steric, thermal and direct hydrogen-bonding interactions. Multiscale simulations therefore appear as singularly suited to connect the microscopic details of this system with its macroscopic thermodynamic behavior. We review the details of the simulation of dense atomistically resolved DNA arrays with different packing symmetries and the ensuing osmotic equation of state obtained by enclosing a DNA array in a monovalent salt and multivalent (spermidine counterions within a solvent permeable membrane, mimicking the behavior of DNA arrays subjected to external osmotic stress. By varying the DNA density, the local packing symmetry, and the counterion type, we are able to analyze the osmotic equation of state together with the full structural characterization of the DNA subphase, the counterion distribution and the solvent structural order in terms of its different order parameters and

  5. MgB_{2} nonlinear properties investigated under localized high rf magnetic field excitation

    Directory of Open Access Journals (Sweden)

    Tamin Tai

    2012-12-01

    Full Text Available The high transition temperature and low surface resistance of MgB_{2} attracts interest in its potential application in superconducting radio frequency accelerating cavities. However, compared to traditional Nb cavities, the viability of MgB_{2} at high rf fields is still open to question. Our approach is to study the nonlinear electrodynamics of the material under localized rf magnetic fields. Because of the presence of the small superconducting gap in the π band, the nonlinear response of MgB_{2} at low temperature is potentially complicated compared to a single-gap s-wave superconductor such as Nb. Understanding the mechanisms of nonlinearity coming from the two-band structure of MgB_{2}, as well as extrinsic sources of nonlinearity, is an urgent requirement. A localized and strong rf magnetic field, created by a magnetic write head, is integrated into our nonlinear-Meissner-effect scanning microwave microscope [T. Tai et al., IEEE Trans. Appl. Supercond. 21, 2615 (2011ITASE91051-822310.1109/TASC.2010.2096531]. MgB_{2} films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor deposition technique on dielectric substrates, are measured at a fixed location and show a strongly temperature-dependent third harmonic response. We propose that several possible mechanisms are responsible for this nonlinear response.

  6. Obtaining highly excited eigenstates of the localized XX chain via DMRG-X

    Science.gov (United States)

    Devakul, Trithep; Khemani, Vedika; Pollmann, Frank; Huse, David A.; Sondhi, S. L.

    2017-10-01

    We benchmark a variant of the recently introduced density matrix renormalization group (DMRG)-X algorithm against exact results for the localized random field XX chain. We find that the eigenstates obtained via DMRG-X exhibit a highly accurate l-bit description for system sizes much bigger than the direct, many-body, exact diagonalization in the spin variables is able to access. We take advantage of the underlying free fermion description of the XX model to accurately test the strengths and limitations of this algorithm for large system sizes. We discuss the theoretical constraints on the performance of the algorithm from the entanglement properties of the eigenstates, and its actual performance at different values of disorder. A small but significant improvement to the algorithm is also presented, which helps significantly with convergence. We find that, at high entanglement, DMRG-X shows a bias towards eigenstates with low entanglement, but can be improved with increased bond dimension. This result suggests that one must be careful when applying the algorithm for interacting many-body localized spin models near a transition. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

  7. High Frequency Near-Field Ground Motion Excited by Strike-Slip Step Overs

    Science.gov (United States)

    Hu, Feng; Wen, Jian; Chen, Xiaofei

    2018-03-01

    We performed dynamic rupture simulations on step overs with 1-2 km step widths and present their corresponding horizontal peak ground velocity distributions in the near field within different frequency ranges. The rupture speeds on fault segments are determinant in controlling the near-field ground motion. A Mach wave impact area at the free surface, which can be inferred from the distribution of the ratio of the maximum fault-strike particle velocity to the maximum fault-normal particle velocity, is generated in the near field with sustained supershear ruptures on fault segments, and the Mach wave impact area cannot be detected with unsustained supershear ruptures alone. Sub-Rayleigh ruptures produce stronger ground motions beyond the end of fault segments. The existence of a low-velocity layer close to the free surface generates large amounts of high-frequency seismic radiation at step over discontinuities. For near-vertical step overs, normal stress perturbations on the primary fault caused by dipping structures affect the rupture speed transition, which further determines the distribution of the near-field ground motion. The presence of an extensional linking fault enhances the near-field ground motion in the extensional regime. This work helps us understand the characteristics of high-frequency seismic radiation in the vicinities of step overs and provides useful insights for interpreting the rupture speed distributions derived from the characteristics of near-field ground motion.

  8. Dealing with chemical reaction pathways and electronic excitations in molecular systems via renormalized and active-space coupled-cluster methods

    Energy Technology Data Exchange (ETDEWEB)

    Piecuch, Piotr; Li, Wei; Lutz, Jesse J. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Włoch, Marta [Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931 (United States); Gour, Jeffrey R. [Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA and Department of Chemistry, Stanford University, Stanford, California 94305 (United States)

    2015-01-22

    Coupled-cluster (CC) theory has become the de facto standard for high-accuracy molecular calculations, but the widely used CC and equation-of-motion (EOM) CC approaches, such as CCSD(T) and EOMCCSD, have difficulties with capturing stronger electron correlations that characterize multi-reference molecular problems. This presentation demonstrates that many of these difficulties can be addressed by exploiting the completely renormalized (CR) CC and EOMCC approaches, such as CR-CC(2,3), CR-EOMCCSD(T), and CR-EOMCC(2,3), and their local correlation counterparts applicable to systems with hundreds of atoms, and the active-space CC/EOMCC approaches, such as CCSDt and EOMCCSDt, and their extensions to valence systems via the electron-attached and ionized formalisms.

  9. Atomic and molecular physics, physicochemical properties of biologically important structure, and high-voltage research

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Allen, J.D.; Anderson, V.E.

    1976-01-01

    Research in atomic and molecular physics is reported. Studies included: experimental evidence for the existence of a Ramsauer-Townsend minimum in liquid methane and liquid argon; discovery of a Ramsauer-Townsend minimum in gaseous ethane and propane; motion of thermal electrons in n-alkane vapors; electron mobilities in high pressure gases; electron capture and drift in liquid media; electron attachment to molecules in dense gases; attachment of slow electrons to hexafluorobenzene; fragmentation of atmospheric halocarbons under electron impact; negative ion resonances and threshold electron excitation spectra of organic molecules; theoretical studies of negative-ion resonance states of organic molecules; kinetics of electron capture by sulfur hexafluoride in solution; interactions of slow electrons with benzene and benzene derivatives; Stokes and anti-Stokes fluorescence of 1 : 12-benzoperylene in solution; photoionization of molecules in liquid media; construction of high-voltage breakdown apparatus for gaseous insulation studies; measurements of the breakdown strengths of gaseous insulators and their relation to basic electron-collision processes; accuracy of the breakdown voltage measurements; and assembling basic data on electronegative gases of significance to breakdown

  10. Trace species detection: Spectroscopy and molecular energy transfer at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Monitoring the concentration of trace species such as atomic and molecular free radicals is essential in forming predictive models of combustion processes. LIF-based techniques have the necessary sensitivity for concentration and temperature measurements but have limited accuracy due to collisional quenching in combustion applications. The goal of this program is to use spectroscopic and kinetic measurements to quantify nonradiative and collisional effects on LIF signals and to develop new background-free alternatives to LIF. The authors have measured the natural linewidth of several OH A-X (3,0) rotational transitions to determine predissociation lifetimes in the upper state, which were presumed to be short compared to quenching lifetimes, and as a result, quantitative predictions about the applicability of predissociation fluorescence methods at high pressures are made. The authors are investigating collisional energy transfer in the A-state of NO. Quenching rates which enable direct corrections to NO LIF quantum yields at high temperature were calculations. These quenching rates are now being used in studies of turbulence/chemistry interactions. The authors have measured the electric dipole moment {mu} of excited-state NO using Stark quantum-beat spectroscopy. {mu} is an essential input to a harpoon model which predicts quenching efficiencies for NO (A) by a variety of combustion-related species. The authors are developing new coherent multiphoton techniques for measurements of atomic hydrogen concentration in laboratory flames to avoid the quenching problems associated with previous multiphoton LIF schemes.

  11. Synthesis of nanoscale copper nitride thin film and modification of the surface under high electronic excitation.

    Science.gov (United States)

    Ghosh, S; Tripathi, A; Ganesan, V; Avasthi, D K

    2008-05-01

    Nanoscale (approximately 90 nm) Copper nitride (Cu3N) films are deposited on borosilicate glass and Si substrates by RF sputtering technique in the reactive environment of nitrogen gas. These films are irradiated with 200 MeV Au15+ ions from Pelletron accelerator in order to modify the surface by high electronic energy deposition of heavy ions. Due to irradiation (i) at incident ion fluence of 1 x 10(12) ions/cm2 enhancement of grains, (ii) at 5 x 10912) ions/cm2 mass transport on the films surface, (iii) at 2 x 10(13) ions/cm2 line-like features on Cu3N/glass and nanometallic structures on Cu3N/Si surface are observed. The surface morphology is examined by atomic force microscope (AFM). All results are explained on the basis of a thermal spike model of ion-solid interaction.

  12. Libraries as a venue for exciting education technology, both high tech and low

    Science.gov (United States)

    Harold, J. B.; Dusenbery, P.; Holland, A.

    2016-12-01

    Public libraries provide a broad range of possibilities for reaching diverse audiences with NASA and STEM related content and activities, from hands-on activities, to interactive kiosks incorporating science based games, simulations, and real-time data. NCIL/SSI has been developing STEM-based exhibits and program activities for public libraries since 2007, and is currently managing 7 national tours in partnership with the American Library Association and other organizations. Past and current exhibitions will reach over 100 libraries and an estimated 1.5 million patrons. In this paper we will discuss a range of findings from almost a decade of deploying both high and low tech STEM learning strategies into libraries, including usage and engagement by library patrons, and challenges (and solutions) for deploying technologically sophisticated components into libraries which may or may not have dedicated technical staff.

  13. Dynamics of Nonlinear Excitation of the High-Order Mode in a Single-Mode Step-Index Optical Fiber

    Science.gov (United States)

    Burdin, V.; Bourdine, A.

    2018-04-01

    This work is concerned with approximate model of higher-order mode nonlinear excitation in a singlemode silica optical fiber. We present some results of simulation for step-index optical fiber under femtosecond optical pulse launching, which confirm ability of relatively stable higher-order mode excitation in such singlemode optical fiber over sufficiently narrow range of launched optical power variation.

  14. Method for exciting inductive-resistive loads with high and controllable direct current

    International Nuclear Information System (INIS)

    Hill, H.M. Jr.

    1976-01-01

    The apparatus and method for transmitting dc power to a load circuit by applying a dc voltage from a standard waveform synthesizer to duration modulate a bipolar rectangular wave generator are described. As the amplitude of the dc voltage increases, the widths of the rectangular wave generator output pulses increase, and as the amplitude of the dc voltage decreases, the widths of the rectangular wave generator output pulses decrease. Thus, the waveform synthesizer selectively changes the durations of the rectangular wave generator bipolar output pulses so as to produce a rectangular wave ac carrier that is duration modulated in accordance with and in direct proportion to the voltage amplitude from the synthesizer. Thereupon, by transferring the carrier to the load circuit through an amplifier and a rectifier, the load current also corresponds directly to the voltage amplitude from the synthesizer. To this end, the rectified wave at less than 100 percent duty factor amounts to a doubled frequency direct voltage pulse train for applying a direct current to the load, while the current ripple is minimized by a high L/R in the load circuit. In one embodiment, a power transmitting power amplifier means having a dc power supply is matched to the load circuit through a transformer for current magnification without sacrificing load current duration capability, while negative voltage and current feedback are provided in order to insure good output fidelity. 4 Claims, 18 Drawing Figures

  15. Collective excitations and superconductivity in reduced dimensional systems - Possible mechanism for high Tc

    International Nuclear Information System (INIS)

    Santoyo, B.M.

    1989-01-01

    The author studies in full detail a possible mechanism of superconductivity in slender electronic systems of finite cross section. This mechanism is based on the pairing interaction mediated by the multiple modes of acoustic plasmons in these structures. First, he shows that multiple non-Landau-damped acoustic plasmon modes exist for electrons in a quasi-one dimensional wire at finite temperatures. These plasmons are of two basic types. The first one is made up by the collective longitudinal oscillations of the electrons essentially of a given transverse energy level oscillating against the electrons in the neighboring transverse energy level. The modes are called Slender Acoustic Plasmons or SAP's. The other mode is the quasi-one dimensional acoustic plasmon mode in which all the electrons oscillate together in phase among themselves but out of phase against the positive ion background. He shows numerically and argues physically that even for a temperature comparable to the mode separation Δω the SAP's and the quasi-one dimensional plasmon persist. Then, based on a clear physical picture, he develops in terms of the dielectric function a theory of superconductivity capable of treating the simultaneous participation of multiple bosonic modes that mediate the pairing interaction. The effect of mode damping is then incorporated in a simple manner that is free of the encumbrance of the strong-coupling, Green's function formalism usually required for the retardation effect. Explicit formulae including such damping are derived for the critical temperature T c and the energy gap Δ 0 . With those modes and armed with such a formalism, he proceeds to investigate a possible superconducting mechanism for high T c in quasi-one dimensional single-wire and multi-wire systems

  16. High efficiency high rate microcrystalline silicon thin-film solar cells deposited at plasma excitation frequencies larger than 100 MHz

    Czech Academy of Sciences Publication Activity Database

    Strobel, C.; Leszczynska, B.; Merkel, U.; Kuske, J.; Fischer, D.D.; Albert, M.; Holovský, Jakub; Michard, S.

    2015-01-01

    Roč. 143, Dec (2015), 347-353 ISSN 0927-0248 R&D Projects: GA MŠk 7E12029 EU Projects: European Commission(XE) 283501 - Fast Track Institutional support: RVO:68378271 Keywords : VHF * PECVD * microcrystalline silicon * solar cell * high rate * high efficiency Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.732, year: 2015

  17. The HIFI spectral survey of AFGL 2591 (CHESS). I. Highly excited linear rotor molecules in the high-mass protostellar envelope

    Science.gov (United States)

    van der Wiel, M. H. D.; Pagani, L.; van der Tak, F. F. S.; Kaźmierczak, M.; Ceccarelli, C.

    2013-05-01

    Context. Linear rotor molecules such as CO, HCO+ and HCN are important probes of star-forming gas. For these species, temperatures of ≲ 50 K are sufficient to produce emission lines that are observable from the ground at (sub)millimeter wavelengths. Molecular gas in the environment of massive protostellar objects, however, is known to reach temperatures of several hundred K. To probe this, space-based far-infrared observations are required. Aims: We aim to reveal the gas energetics in the circumstellar environment of the prototypical high-mass protostellar object AFGL 2591. Methods: Rotational spectral line signatures of CO species, HCO+, CS, HCN and HNC from a 490-1240 GHz survey with Herschel/HIFI, complemented by ground-based JCMT and IRAM 30 m spectra, cover transitions in the energy range (Eup/k) between 5 K and ~ 300 K. Selected frequency settings in the highest frequency HIFI bands (up to 1850 GHz) extend this range to 750 K for 12C16O. The resolved spectral line profiles are used to separate and study various kinematic components. Observed line intensities are compared with a numerical model that calculates excitation balance and radiative transfer based on spherical geometry. Results: The line profiles show two emission components, the widest and bluest of which is attributed to an approaching outflow and the other to the envelope. We find evidence for progressively more redshifted and wider line profiles from the envelope gas with increasing energy level. This trend is qualitatively explained by residual outflow contribution picked up in the systematically decreasing beam size. Integrated line intensities for each species decrease as Eup/k increases from ≲ 50 to ~700 K. The H2 density and temperature of the outflow gas are constrained to ~105-106 cm-3 and 60-200 K. In addition, we derive a temperature between 9 and 17 K and N(H2) ~ 3 × 1021 cm-2 for a known foreground cloud seen in absorption, and N(H2) ≲ 1019 cm-2 for a second foreground component

  18. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients

    Directory of Open Access Journals (Sweden)

    Adler Charles

    2009-07-01

    Full Text Available Abstract Correction to Nural H, He P, Beach T, Sue L, Xia W, Shen Y. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients Molecular Neurodegeneration 2009, 4:23.

  19. High-precision laser and rf spectroscopy of atomic, molecular, and slow ion beams

    International Nuclear Information System (INIS)

    Childs, W.J.; Steimle, T.C.; Sen, A.; Azuma, Y.

    1988-01-01

    We have obtained extensive new structural information on the light diatomic radical ScO since the last report in this series. The new studies complete our systematic investigation of the fine and hyperfine structure (hfs) of the group IIIa monoxides LaO, YO, and ScO. The studies of the molecular X 2 Σ + electronic ground state were carried out using the molecular-beam laser-rf double-resonance method, and the excited electronic state information was obtained by complementing this data with Doppler-free laser fluorescence studies

  20. Monte Carlo wave-packet approach to trace nuclear dynamics in molecular excited states by XUV-pump-IR-probe spectroscopy

    Science.gov (United States)

    Jing, Qingli; Bello, Roger Y.; Martín, Fernando; Palacios, Alicia; Madsen, Lars Bojer

    2018-04-01

    Recent research interests have been raised in uncovering and controlling ultrafast dynamics in excited neutral molecules. In this work we generalize the Monte Carlo wave packet (MCWP) approach to XUV-pump-IR-probe schemes to simulate the process of dissociative double ionization of H2 where singly excited states in H2 are involved. The XUV pulse is chosen to resonantly excite the initial ground state of H2 to the lowest excited electronic state of 1Σu + symmetry in H2 within the Franck-Condon region. The delayed intense IR pulse couples the excited states of 1Σu + symmetry with the nearby excited states of 1Σg + symmetry. It also induces the first ionization from H2 to H2 + and the second ionization from H2 + to H++H+. To reduce the computational costs in the MCWP approach, a sampling method is proposed to determine in time the dominant ionization events from H2 to H2+. By conducting a trajectory analysis, which is a unique possibility within the MCWP approach, the origins of the characteristic features in the nuclear kinetic energy release spectra are identified for delays ranging from 0 to 140 fs and the nuclear dynamics in the singly excited states in H2 is mapped out.

  1. Excited states rotational effects on the behavior of excited molecules

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 7 is a collection of papers that discusses the excited states of molecules. The first paper reviews the rotational involvement in intra-molecular in vibrational redistribution. This paper analyzes the vibrational Hamiltonian as to its efficacy in detecting the manifestations of intra-molecular state-mixing in time-resolved and time-averaged spectroscopic measurements. The next paper examines the temporal behavior of intra-molecular vibration-rotation energy transfer (IVRET) and the effects of IVRET on collision, reaction, and the decomposition processes. This paper also

  2. Excited fermions

    International Nuclear Information System (INIS)

    Boudjema, F.; Djouadi, A.; Kneur, J.L.

    1992-01-01

    The production of excited fermions with mass above 100 GeV is considered. f→Vf (1) decay widths are calculated where V=γ, Z or W. Excited fermion pair production in e + e - annihilation and in γγ collisions, and single production in e + e - annihilation, eγ and γγ collisions is also discussed. Cross sections are calculated for all these cases. The discovery potential of the NLC at 500 GeV is compared with that of other colliders. (K.A.) 15 refs., 5 figs., 2 tabs

  3. Using a Computer Animation to Teach High School Molecular Biology

    Science.gov (United States)

    Rotbain, Yosi; Marbach-Ad, Gili; Stavy, Ruth

    2008-01-01

    We present an active way to use a computer animation in secondary molecular genetics class. For this purpose we developed an activity booklet that helps students to work interactively with a computer animation which deals with abstract concepts and processes in molecular biology. The achievements of the experimental group were compared with those…

  4. State-selective charge transfer and excitation in ion-ion interactions at intermediate and high energies

    International Nuclear Information System (INIS)

    Samanta, R; Purkait, M

    2012-01-01

    Boundary Corrected Continuum Intermediate State (BCCIS) approximation and Classical Trajectory Monte Carlo (CTMC) methods are applied to calculate the charge transfer and excitation cross sections for ion-ion collisions.

  5. Classical/quantum correspondence in state selective charge transfer and excitation reactions involving highly charged ions and hydrogen

    International Nuclear Information System (INIS)

    Purkait, M

    2009-01-01

    State selective charge transfer and excitation cross sections for collisions of Ne q+ (q = 1-10) with atomic hydrogen are calculated within the framework of Classical Trajectory Monte Carlo (CTMC) method and Boundary Corrected Continuum Intermediate State (BCCIS) approximation.

  6. Premotor spinal network with balanced excitation and inhibition during motor patterns has high resilience to structural division

    DEFF Research Database (Denmark)

    Petersen, Peter C; Vestergaard, Mikkel; Reveles Jensen, Kristian

    2014-01-01

    Direct measurements of synaptic inhibition (I) and excitation (E) to spinal motoneurons can provide an important insight into the organization of premotor networks. Such measurements of flexor motoneurons participating in motor patterns in turtles have recently demonstrated strong concurrent E...

  7. Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source

    Science.gov (United States)

    Lunin, A.; Khabiboulline, T.; Solyak, N.; Sukhanov, A.; Yakovlev, V.

    2018-02-01

    Construction of the Linac Coherent Light Source II (LCLS-II) is underway for the world's first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw) mode. The linac is segmented into four sections named as L 0 , L 1 , L 2 , and L 3 . Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL), will be used in section L 1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs) excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.

  8. Search for aligned structure of 12C-α-12C type at high excitation energy in 28Si

    International Nuclear Information System (INIS)

    Burnereau, Nicole.

    1975-01-01

    The 16 O+ 12 C→ 12 C+α+ 12 C reaction is studied mainly at 46MeV (at this energy a state of 28 Si is presumably formed with a spin value of 14 + ; resonance of 19.7MeV c.m.). The motivation is to detect an α particle with a negligible energy in the c.m. system. This is the signature of the preformation of three aligned clusters in which the average location of the α particle is in between the two 12 C's at the center of symmetry of the system. Such a detection is performed by detecting two 12 C's in coincidence at specific angles. The data are understood by three-body calculations with a coupling of relative angular momenta governed by an unique J value. Experimentally, an α energy of 200keV is measured with good statistics, supporting the idea of aligned clusters as 28 Si intrinsic shape, related to some highly excited states [fr

  9. Glomerular sieving of high molecular weight proteins in proteinuric rats

    International Nuclear Information System (INIS)

    Bertolatus, J.A.; Abuyousef, M.; Hunsicker, L.G.

    1987-01-01

    To characterize the permeability of the glomerular capillary wall to high molecular weight proteins in normal and proteinuric rats, we determined the glomerular sieving coefficients (GSC) of radioiodinated marker proteins of known size and charge by means of a paired label, tissue accumulation method previously validated in this laboratory. In one group of rats (Series A) the GSCs of 125 I-anionic IgG (aIgG-molecular weight [mol wt] 150,000, pI 4.9) and 131 I-neutral IgG (nIgG-pI 7.4 to 7.6) were measured simultaneously. In Series B, the GSC of a second anionic marker, 131 I-human ceruloplasmin (Crp-mol wt 137,000, pI 4.9) was compared to that of 125 I-nIgG. As in the previous report, the labeled proteins were not degraded or deiodinated during the 20 minute clearance period for GSC determination. Within Series A and B, three subgroups of rats were studied: control saline-infused rats, rats made acutely proteinuric by infusion of the polycation hexadimethrine (HDM), and rats with chronic doxorubicin (Adriamycin-Adria) nephrosis. In the control rats, GSCs for the anionic markers aIgG (Series A) or Crp (Series B) were significantly greater than that of nIgG (both series). These large proteins crossed the filtration barrier by a different pathway from that available to smaller neutral molecules the size of albumin, which in our previous study had a much higher GSC than a native, anionic albumin marker. In a third group of control rats only (Series C), the GSCs of native anionic bovine albumin (BSA) and nIgG were compared directly. The GSC of BSA (0.0029) was only slightly larger than the GSC of nIgG (0.0025), indicating that most of the native albumin crosses the glomerular capillary wall via a nonselective pathway similar to that available to nIgG. The results in the control groups are compatible with recently-described heteroporous models of glomerular size selectivity

  10. High frequency time modulation of neutrons by LiNbO3 crystals with surface acoustic waves excited under the diffraction condition

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Granzer, E.; Kikuta, Seishi; Tomimitsu, Hiroshi; Doi, Kenji.

    1985-01-01

    High frequency time modulation of neutrons was investigated by using Y-cut LiNbO 3 crystals with surface acoustic waves excited. A double crystal arrangement of (+, -) parallel setting was used for 030 symmetric Bragg-case reflections. Synchronized standing waves with a resonance frequency of 14.26 MHz were excited on the both crystals. Variation of the diffracted intensity with phase difference between two standing waves was studied. The result showed an intensity change of diffracted neutrons with twice the resonance frequency. (author)

  11. Whole body traveling wave magnetic resonance imaging at high field strength: homogeneity, efficiency, and energy deposition as compared with traditional excitation mechanisms.

    Science.gov (United States)

    Zhang, Bei; Sodickson, Daniel K; Lattanzi, Riccardo; Duan, Qi; Stoeckel, Bernd; Wiggins, Graham C

    2012-04-01

    In 7 T traveling wave imaging, waveguide modes supported by the scanner radiofrequency shield are used to excite an MR signal in samples or tissue which may be several meters away from the antenna used to drive radiofrequency power into the system. To explore the potential merits of traveling wave excitation for whole-body imaging at 7 T, we compare numerical simulations of traveling wave and TEM systems, and juxtapose full-wave electrodynamic simulations using a human body model with in vivo human traveling wave imaging at multiple stations covering the entire body. The simulated and in vivo traveling wave results correspond well, with strong signal at the periphery of the body and weak signal deep in the torso. These numerical results also illustrate the complicated wave behavior that emerges when a body is present. The TEM resonator simulation allowed comparison of traveling wave excitation with standard quadrature excitation, showing that while the traveling wave B +1 per unit drive voltage is much less than that of the TEM system, the square of the average B +1 compared to peak specific absorption rate (SAR) values can be comparable in certain imaging planes. Both systems produce highly inhomogeneous excitation of MR signal in the torso, suggesting that B(1) shimming or other parallel transmission methods are necessary for 7 T whole body imaging. Copyright © 2011 Wiley-Liss, Inc.

  12. High-frequency conductivity of optically excited charge carriers in hydrogenated nanocrystalline silicon investigated by spectroscopic femtosecond pump–probe reflectivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Yurkevich, Igor V. [Aston University, Nonlinearity and Complexity Research Group, Birmingham B4 7ET (United Kingdom); Zakar, Ammar [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Kaplan, Andrey, E-mail: a.kaplan.1@bham.ac.uk [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom)

    2015-10-01

    We report an investigation into the high-frequency conductivity of optically excited charge carriers far from equilibrium with the lattice. The investigated samples consist of hydrogenated nanocrystalline silicon films grown on a thin film of silicon oxide on top of a silicon substrate. For the investigation, we used an optical femtosecond pump–probe setup to measure the reflectance change of a probe beam. The pump beam ranged between 580 and 820 nm, whereas the probe wavelength spanned 770 to 810 nm. The pump fluence was fixed at 0.6 mJ/cm{sup 2}. We show that at a fixed delay time of 300 fs, the conductivity of the excited electron–hole plasma is described well by a classical conductivity model of a hot charge carrier gas found at Maxwell–Boltzmann distribution, while Fermi–Dirac statics is not suitable. This is corroborated by values retrieved from pump–probe reflectance measurements of the conductivity and its dependence on the excitation wavelength and carrier temperature. The conductivity decreases monotonically as a function of the excitation wavelength, as expected for a nondegenerate charge carrier gas. - Highlights: • We study high‐frequency conductivity of excited hydrogenated nanocrystalline silicon. • Reflectance change was measured as a function of pump and probe wavelength. • Maxwell–Boltzmann transport theory was used to retrieve the conductivity. • The conductivity decreases monotonically as a function of the pump wavelength.

  13. High-resolution spectroscopy of jet-cooled 1,1 '-diphenylethylene: electronically excited and ionic states of a prototypical cross-conjugated system

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Rijs, A.; van Walree, C.A.; Zgierski, M.Z.; Buma, W.J.

    2011-01-01

    The photophysics of a prototypical cross-conjugated π-system, 1,1′-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio calculations. We

  14. [Atomic/ionic fluorescence in microwave plasma torch discharge with excitation of high current and microsecond pulsed hollow cathode lamp: Ca atomic/ionic fluorescence spectrometry].

    Science.gov (United States)

    Gong, Zhen-bin; Liang, Feng; Yang, Peng-yuan; Jin, Qin-han; Huang, Ben-li

    2002-02-01

    A system of atomic and ionic fluorescence spectrometry in microwave plasma torch (MPT) discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL) has been developed. The operation conditions for Ca atomic and ionic fluorescence spectrometry have been optimized. Compared with atomic fluorescence spectrometry (AFS) in argon microwave induced plasma (MIP) and MPT with the excitation of direct current and conventional pulsed HCL, the system with HCMP HCL excitation can improve AFS and ionic fluorescence spectrometry (IFS) detection limits in MPT atomizer and ionizer. Detection limits (3 sigma) with HCMP HCL-MPT-AFS/IFS are 10.1 ng.mL-1 for Ca I 422.7 nm, 14.6 ng.mL-1 for Ca II 393.4 nm, and 37.4 ng.mL-1 for Ca II 396.8 nm, respectively.

  15. Quadri-Pulse Theta Burst Stimulation using Ultra-High Frequency Bursts - A New Protocol to Induce Changes in Cortico-Spinal Excitability in Human Motor Cortex

    DEFF Research Database (Denmark)

    Jung, Nikolai H; Gleich, Bernhard; Gattinger, Norbert

    2016-01-01

    Patterned transcranial magnetic stimulation (TMS) such as theta burst stimulation (TBS) or quadri-pulse stimulation (QPS) can induce changes in cortico-spinal excitability, commonly referred to as long-term potentiation (LTP)-like and long-term depression (LTD)-like effects in human motor cortex (M...... of sinusoidal TMS pulses elicited either a posterior-anterior (PA) or anterior-posterior (AP) directed current in M1. Motor evoked potentials (MEPs) were recorded before and after qTBS to probe changes in cortico-spinal excitability. PA-qTBS at 666 Hz caused a decrease in PA-MEP amplitudes, whereas AP...... in cortico-spinal excitability. Induced current direction in the brain appears to be relevant when qTBS targets I-wave periodicity, corroborating that high-fidelity spike timing mechanisms are critical for inducing bi-directional plasticity in human M1....

  16. UV excitation of single DNA and RNA strands produces high yields of exciplex states between two stacked bases.

    Science.gov (United States)

    Takaya, Tomohisa; Su, Charlene; de La Harpe, Kimberly; Crespo-Hernández, Carlos E; Kohler, Bern

    2008-07-29

    Excited electronic states created by UV excitation of the diribonucleoside monophosphates ApA, ApG, ApC, ApU, and CpG were studied by the femtosecond transient-absorption technique. Bleach recovery signals recorded at 252 nm show that long-lived excited states are formed in all five dinucleosides. The lifetimes of these states exceed those measured in equimolar mixtures of the constituent mononucleotides by one to two orders of magnitude, indicating that electronic coupling between proximal nucleobases dramatically slows the relaxation of excess electronic energy. The decay rates of the long-lived states decrease with increasing energy of the charge-transfer state produced by transferring an electron from one base to another. The charge-transfer character of the long-lived states revealed by this analysis supports their assignment to excimer or exciplex states. Identical bleach recovery signals were seen for ApA, (A)(4), and poly(A) at delay times >10 ps after photoexcitation. This indicates that excited states localized on a stack of just two bases are the common trap states independent of the number of stacked nucleotides. The fraction of initial excitations that decay to long-lived exciplex states is approximately equal to the fraction of stacked bases determined by NMR measurements. This supports a model in which excitations associated with two stacked bases decay to exciplex states, whereas excitations in unstacked bases decay via ultrafast internal conversion. These results establish the importance of charge transfer-quenching pathways for UV-irradiated RNA and DNA in room-temperature solution.

  17. Properties of crosslinked ultra-high-molecular-weight polyethylene.

    Science.gov (United States)

    Lewis, G

    2001-02-01

    Substantially reducing the rate of generation of wear particles at the surfaces of ultra-high-molecular-weight polyethylene (UHMWPE) orthopedic implant bearing components, in vivo, is widely regarded as one of the most formidable challenges in modern arthroplasty. In the light of this, much research attention has been paid to the myriad of endogenous and exogenous factors that have been postulated to affect this wear rate, one such factor being the polymer itself. In recent years, there has been a resurgence of interest in crosslinking the polymer as a way of improving its properties that are considered relevant to its use for fabricating bearing components. Such properties include wear resistance, fatigue life, and fatigue crack propagation rate. Although a large volume of literature exists on the topic on the impact of crosslinking on the properties of UHMWPE, no critical appraisal of this literature has been published. This is one of the goals of the present article, which emphasizes three aspects. The first is the trade-off between improvement in wear resistance and depreciation in other mechanical and physical properties. The second aspect is the presentation of a method of estimating the optimal value of a crosslinking process variable (such as dose in radiation-induced crosslinking) that takes into account this trade-off. The third aspect is the description of a collection of under- and unexplored research areas in the field of crosslinked UHMWPE, such as the role of starting resin on the properties of the crosslinked polymer, and the in vitro evaluation of the wear rate of crosslinked tibial inserts and other bearing components that, in vivo, are subjected to nearly unidirectional motion.

  18. Excited baryons

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested

  19. Excited baryons

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  20. Deviation from normal Boltzmann distribution of high-lying energy levels of iron atom excited by Okamoto-cavity microwave-induced plasmas using pure nitrogen and nitrogen–oxygen gases

    International Nuclear Information System (INIS)

    Wagatsuma, Kazuaki

    2015-01-01

    This paper describes several interesting excitation phenomena occurring in a microwave-induced plasma (MIP) excited with Okamoto-cavity, especially when a small amount of oxygen was mixed with nitrogen matrix in the composition of the plasma gas. An ion-to-atom ratio of iron, which was estimated from the intensity ratio of ion to atomic lines having almost the same excitation energy, was reduced by adding oxygen gas to the nitrogen MIP, eventually contributing to an enhancement in the emission intensities of the atomic lines. Furthermore, Boltzmann plots for iron atomic lines were observed in a wide range of the excitation energy from 3.4 to 6.9 eV, indicating that plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from the linear relationship. This overpopulation would result from any other excitation process in addition to the thermal excitation that principally determines the Boltzmann distribution. A Penning-type collision with excited species of nitrogen molecules probably explains this additional excitation mechanism, in which the resulting iron ions recombine with captured electrons, followed by cascade de-excitations between closely-spaced excited levels just below the ionization limit. As a result, these high-lying levels might be more populated than the low-lying levels of iron atom. The ionization of iron would be caused less actively in the nitrogen–oxygen plasma than in a pure nitrogen plasma, because excited species of nitrogen molecule, which can provide the ionization energy in a collision with iron atom, are consumed through collisions with oxygen molecules to cause their dissociation. It was also observed that the overpopulation occurred to a lesser extent when oxygen gas was added to the nitrogen plasma. The reason for this was also attributed to decreased number density of the excited nitrogen species due to collisions with oxygen

  1. Method and apparatus for transport, introduction, atomization and excitation of emission spectrum for quantitative analysis of high temperature gas sample streams containing vapor and particulates without degradation of sample stream temperature

    Science.gov (United States)

    Eckels, David E.; Hass, William J.

    1989-05-30

    A sample transport, sample introduction, and flame excitation system for spectrometric analysis of high temperature gas streams which eliminates degradation of the sample stream by condensation losses.

  2. Ab initio molecular-orbital study on electron correlation effects in CuO6 clusters relating to high-Tc superconductivity

    International Nuclear Information System (INIS)

    Yamamoto, S.; Yamaguchi, K.; Nasu, K.

    1990-01-01

    Ab initio molecular-orbital calculations for CuO 6 clusters have been performed to elucidate the electronic structures of undoped and doped copper oxides, which are of current interest in relation to high-T c superconductivity. The electron correlation effects for these species are thoroughly investigated by the full-valence configuration-interaction method and the complete-active-space self-consistent-field method. The electron correlation effect is relatively simple for the A g state (σ hole), whereas pair excitations and spin-flip excitations give sizable contributions to the configuration-interaction wave function for the B state (in-plane π hole). Implications of these results are discussed in relation to the mechanisms of the high-T c superconductivity

  3. Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies.

    Science.gov (United States)

    Falgarone, E; Zwaan, M A; Godard, B; Bergin, E; Ivison, R J; Andreani, P M; Bournaud, F; Bussmann, R S; Elbaz, D; Omont, A; Oteo, I; Walter, F

    2017-08-24

    Starburst galaxies at the peak of cosmic star formation are among the most extreme star-forming engines in the Universe, producing stars over about 100 million years (ref. 2). The star-formation rates of these galaxies, which exceed 100 solar masses per year, require large reservoirs of cold molecular gas to be delivered to their cores, despite strong feedback from stars or active galactic nuclei. Consequently, starburst galaxies are ideal for studying the interplay between this feedback and the growth of a galaxy. The methylidyne cation, CH + , is a most useful molecule for such studies because it cannot form in cold gas without suprathermal energy input, so its presence indicates dissipation of mechanical energy or strong ultraviolet irradiation. Here we report the detection of CH + (J = 1-0) emission and absorption lines in the spectra of six lensed starburst galaxies at redshifts near 2.5. This line has such a high critical density for excitation that it is emitted only in very dense gas, and is absorbed in low-density gas. We find that the CH + emission lines, which are broader than 1,000 kilometres per second, originate in dense shock waves powered by hot galactic winds. The CH + absorption lines reveal highly turbulent reservoirs of cool (about 100 kelvin), low-density gas, extending far (more than 10 kiloparsecs) outside the starburst galaxies (which have radii of less than 1 kiloparsec). We show that the galactic winds sustain turbulence in the 10-kiloparsec-scale environments of the galaxies, processing these environments into multiphase, gravitationally bound reservoirs. However, the mass outflow rates are found to be insufficient to balance the star-formation rates. Another mass input is therefore required for these reservoirs, which could be provided by ongoing mergers or cold-stream accretion. Our results suggest that galactic feedback, coupled jointly to turbulence and gravity, extends the starburst phase of a galaxy instead of quenching it.

  4. A separately excited synchronous motor as high efficient drive in electric vehicles; Die stromerregte Synchronmaschine als hocheffizienter Traktionsmotor in Elektrofahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Illiano, Enzo [ETH Zuerich, Zurich (Switzerland). Inst. fuer Werkzeugmaschinen und Fertigung; Brusa Elektronik AG, Sennfeld (Switzerland)

    2013-08-15

    The separately excited synchronous motor has several advantages which make this topology a very promising traction drive for electric vehicles. The comparison of the separately excited motor with other common topologies also shows the proper regulation of the current in the rotor will rise the complexity of the entire system. In addition the presence of a rotor current has a negative effect on the continuous power of the motor, as the investigations of ETH Zuerich and Brusa show. An optimised motor regulation and an accurate rotor shape design are indispensible to reduce the power deficit. (orig.)

  5. Geometric and electronic structures of molecular ions from high energy collisions

    International Nuclear Information System (INIS)

    Groeneveld, K.O.

    1983-01-01

    This chapter examines the characteristics of heavy ion collision and of beam foil spectroscopy. It discusses the kinematic consequences of the high energies and presents results from ''Coulomb explosion'' and structure determination of molecular ions. It demonstrates that studies of molecular ions with accelerators can provide electronic and geometric structure information of molecules or molecular ions and points out that the understanding of the microscopic processes at such high energies is incomplete and needs further experimental and theoretical efforts

  6. CALCULATION OF THE PROTON-TRANSFER RATE USING DENSITY-MATRIX EVOLUTION AND MOLECULAR-DYNAMICS SIMULATIONS - INCLUSION OF THE PROTON EXCITED-STATES

    NARCIS (Netherlands)

    MAVRI, J; BERENDSEN, HJC

    1995-01-01

    The methodology for treatment of proton transfer processes by density matrix evolution (DME) with inclusion of many excited states is presented. The DME method (Berendsen, H. J. C.; Mavri, J. J. Phys. Chem. 1993, 97, 13464) that simulates the dynamics of quantum systems embedded in a classical

  7. Role of Solvent, pH, and Molecular Size in Excited-State Deactivation of Key Eumelanin Building Blocks: Implications for Melanin Pigment Photostability

    DEFF Research Database (Denmark)

    Gauden, M.; Pezzella, A.; Panzella, L.

    2008-01-01

      Ultrafast time-resolved fluorescence spectroscopy has been used to investigate the excited state dynamics of the basic eumelanin building block 5,6-dihydroxyindole-2-carboxylic acid  (DHICA) its acetylated, methylated and carboxylic ester derivatives as well as two oligomers, a dimer and a trim...

  8. Molecular filter-based diagnostics in high speed flows

    Science.gov (United States)

    Elliott, Gregory S.; Samimy, MO; Arnette, Stephen A.

    1993-01-01

    The use of iodine molecular filters in nonintrusive planar velocimetry methods is examined. Detailed absorption profiles are obtained to highlight the effects that determine the profile shape. It is shown that pressure broadening induced by the presence of a nonabsorbing vapor can be utilized to significantly change the slopes bounding the absorbing region while remaining in the optically-thick regime.

  9. Convergent modulation of singlet and triplet excited states of phosphine-oxide hosts through the management of molecular structure and functional-group linkages for low-voltage-driven electrophosphorescence.

    Science.gov (United States)

    Han, Chunmiao; Zhang, Zhensong; Xu, Hui; Xie, Guohua; Li, Jing; Zhao, Yi; Deng, Zhaopeng; Liu, Shiyong; Yan, Pengfei

    2013-01-02

    The controllable tuning of the excited states in a series of phosphine-oxide hosts (DPExPOCzn) was realized through introducing carbazolyl and diphenylphosphine-oxide (DPPO) moieties to adjust the frontier molecular orbitals, molecular rigidity, and the location of the triplet excited states by suppressing the intramolecular interplay of the combined multi-insulating and meso linkage. On increasing the number of substituents, simultaneous lowering of the first singlet energy levels (S(1)) and raising of the first triplet energy levels (T(1), about 3.0 eV) were achieved. The former change was mainly due to the contribution of the carbazolyl group to the HOMOs and the extended conjugation. The latter change was due to an enhanced molecular rigidity and the shift of the T(1) states from the diphenylether group to the carbazolyl moieties. This kind of convergent modulation of excited states not only facilitates the exothermic energy transfer to the dopants in phosphorescent organic light-emitting diodes (PHOLEDs), but also realizes the fine-tuning of electrical properties to achieve the balanced carrier injection and transportation in the emitting layers. As the result, the favorable performance of blue-light-emitting PHOLEDs was demonstrated, including much-lower driving voltages of 2.6 V for onset and 3.0 V at 100 cd m(-2), as well as a remarkably improved E.Q.E. of 12.6%. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    Science.gov (United States)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  11. Impact of ischemic and valvular heart disease on atrial excitation : A high-resolution epicardial mapping study

    NARCIS (Netherlands)

    E.M.J.P. Mouws (Elisabeth); E. Lanters (Eva); C. Teuwen (Christophe); L. van der Does (Lisette); C. Kik (Charles); S.P. Knops (Simon); A. Yaksh (Ameeta); J.A. Bekkers (Jos); A.J.J.C. Bogers (Ad); N.M.S. de Groot (Natasja)

    2018-01-01

    markdownabstractBackground--The influence of underlying heart disease or presence of atrial fibrillation (AF) on atrial excitation during sinus rhythm (SR) is unknown. We investigated atrial activation patterns and total activation times of the entire atrial epicardial surface during SR in patients

  12. Crystal field and low energy excitations measured by high resolution RIXS at the L edge of Cu, Ni and Mn

    DEFF Research Database (Denmark)

    Ghiringhelli, G.; Piazzalunga, A.; Wang, X.

    2009-01-01

    of the 3d transition metals with unprecedented energy resolution, of the order of 100 meV for Mn, Ni and Cu. We present here some preliminary spectra on CuO, malachite, NiO, , MnO and . The dd excitations are very well resolved allowing accurate experimental evaluation of 3d state energy splitting. The low...

  13. Spectroscopic and TDDFT investigation on highly selective fluorogenic chemosensor and construction of molecular logic gates

    Energy Technology Data Exchange (ETDEWEB)

    Basheer, Sabeel M [Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015 (India); Kumar, Saravana Loganathan Ashok [Department of Chemistry, GRT Institute of Engineering Technology, Tiruttani (India); Kumar, Moorthy Saravana [Research and PG Department of Chemistry, Saraswathi Narayanan College, Madurai 625022 (India); Sreekanth, Anandaram, E-mail: sreekanth@nitt.edu [Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015 (India)

    2017-03-01

    1,5-Bis(2-fluorene)thiocarbohydrazone (FBTC) was designed and synthesized for selective sensing of fluoride and copper ions. The binding constants of FBTC towards fluoride and copper ions have been calculated using the Benesi-Hildebrand equation, and FBTC has more binding affinity towards copper ion than fluoride ion. The {sup 1}H NMR and {sup 13}C NMR titration studies strongly support the deprotonation was taken from the N–H protons followed by the formation of hydrogen bond via N–H{sup …}F. To understand the fluoride ion sensing mechanism, theoretical investigation had been carried out using the density functional theory and time-dependent density functional theory. The theoretical data well reproduced the experimental results. The deprotonation process has a moderate transition barrier (481.55 kcal/mol). The calculated ΔE and ΔG values (− 253.92 and − 192.41 kcal/mol respectively) suggest the feasibility of sensing process. The potential energy curves give the optimized structures of FBTC-F complex in the ground state and excited state, which states the proton transition occurs at the excited state. The excited state proton transition mechanism was further confirmed with natural bond orbital analysis. The reversibility of the sensor was monitored by the alternate addition of F{sup −} and Cu{sup 2+} ions, which was explained with “Read-Erase-Write-Read” behaviour. The multi-ion detection of sensor used to construct the molecular logic gate, such as AND, OR, NOR and INHIBITION logic gates. - Highlight: • Synthesis and characterised the thiosemicarbohydrazone derivative • Experimental evolution of selective fluoride and copper sensing via both colorimetric and spectroscopic studies • The proposed sensing mechanism of fluoride and copper ion were further confirmed with DFT and TD-DFT investigation • Receptor was turned as molecular switches and molecular logic gates.

  14. Excitation of high frequency pressure driven modes in non-axisymmetric equilibrium at high βpol in PBX-M

    Science.gov (United States)

    Sesnic, S.; Holland, A.; Kaita, R.; Kaye, S. M.; Okabayashi, M.; Takahashi, H.; Asakura, N.; Bell, R. E.; Bernabei, S.; Chance, M. S.; Duperrex, P.-A.; Fonck, R. J.; Gammel, G. M.; Greene, G. J.; Hatcher, R. E.; Jardin, S. C.; Jiang, T.; Kessel, C. E.; Kugel, H. W.; Leblanc, B.; Levinton, F. M.; Manickam, J.; Ono, M.; Paul, S. F.; Powell, E. T.; Qin, Y.; Roberts, D. W.; Sauthoff, N. R.

    1993-12-01

    High frequency pressure driven modes have been observed in high poloidal beta discharges in the Princeton Beta Experiment Modification (PBX-M). These modes are excited in a non-axisymmetric equilibrium characterized by a large, low frequency mt = 1/nt = 1 island, and they are capable of expelling fast ions. The modes reside on or very close to the q = 1 surface and have mode numbers with either mh = nh or (less probably) mh/nh = mh/(mh-1), with mh varying between 3 and 10. Occasionally these modes are simultaneously localized in the vicinity of the ml = 2/nl = 1 island. The high frequency modes near the q = 1 surface also exhibit a ballooning character, being significantly stronger on the large major radius side of the plasma. When a large mt = 1/nt = 1 island is present, the mode is poloidally localized in the immediate vicinity of the X point of the island. The modes occur exclusively in high beta beam heated discharges and are likely to be driven by the beam ions. They can thus be a manifestation of either a toroidicity induced shear Alfven eigenmode (TAE) at q = (2mh+1)/2nh, a kinetic ballooning mode, or some other type of pressure driven (high β) mode. Most of the data are consistent with the theoretical predictions for the TAE gap mode. Since the high frequency modes in PBX-M, however, are found exclusively on or in the immediate neighbourhood of magnetic surfaces with low rational numbers (q = 1, 2,...), other possibilities are not excluded

  15. Comparative molecular-orbital and atomic-orbital study of electron transfer and excitation in He++Na(3s) collisions at energies of 0.05 to 20 keV/amu

    International Nuclear Information System (INIS)

    Fritsch, W.; Kimura, M.; Lane, N.F.

    1990-01-01

    Electron transfer and excitation in 0.05- to 20-keV/amu He + +Na(3s) collisions is studied theoretically within the close-coupling method with two-electron molecular- and atomic-orbital expansion basis sets. Results agree with the trend of other information on this system. Remaining discrepancies that are larger than those in similar contemporary studies of one-electron systems are discussed with reference to the convergence of this two-electron study. Results for the integral alignment parameter A 20 are also presented as a guideline for future experimental study

  16. Just Working with the Cellular Machine: A High School Game for Teaching Molecular Biology

    Science.gov (United States)

    Cardoso, Fernanda Serpa; Dumpel, Renata; Gomes da Silva, Luisa B.; Rodrigues, Carlos R.; Santos, Dilvani O.; Cabral, Lucio Mendes; Castro, Helena C.

    2008-01-01

    Molecular biology is a difficult comprehension subject due to its high complexity, thus requiring new teaching approaches. Herein, we developed an interdisciplinary board game involving the human immune system response against a bacterial infection for teaching molecular biology at high school. Initially, we created a database with several…

  17. Laser-induced blurring of molecular structure information in high harmonic spectroscopy

    DEFF Research Database (Denmark)

    Risoud, Francois; Leveque, Camille; Labeye, Marie

    2017-01-01

    High harmonic spectroscopy gives access to molecular structure with Angstrom resolution. Such information is encoded in the destructive interferences occurring between the harmonic emissions from the different parts of the molecule. By solving the time-dependent Schrodinger equation, either....... These findings have important consequences for molecular imaging and orbital tomography using high harmonic spectroscopy....

  18. A high excitation magnetic quadrupole lens quadruplet incorporating a single octupole lens for a low spherical aberration probe forming lens system

    Science.gov (United States)

    Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi

    2018-03-01

    This paper describes the design of a new probe forming lens system consisting of a high excitation magnetic quadrupole lens quadruplet that incorporates a single magnetic octupole lens. This system achieves both a high demagnification and a low spherical aberration compared to conventional high excitation systems and is intended for deployment for the Harbin 300 MeV proton microprobe for applications in space science and ion beam therapy. This relative simplicity of the ion optical design to include a single octupole lens minimizes the risks associated with the constructional and operational precision usually needed for the probe forming lens system and this system could also be deployed in microprobe systems that operate with less magnetically rigid ions. The design of the new system is validated with reference to two independent ion optical computer codes.

  19. Photocatalytic water splitting: Materials design and high-throughput screening of molecular compositions

    Science.gov (United States)

    Khnayzer, Rony S.

    , photons of low energy are converted into higher energy light using a process termed photon upconversion. Using this technique, low energy photons supplied by the sun can be converted into light of appropriate energy to trigger electronic transitions in high energy absorbing photoactive materials without any chemical modification of the latter. We have shown, that this technology is capable of upconverting visible sunlight to sensitize wide-bandgap semiconductors such as WO3, subsequently extending the photoaction of these materials to cover a larger portion of the solar spectrum. Besides the engineering of different compositions that serve as either sensitizers or catalysts in these solar energy conversion schemes, we have designed an apparatus for parallel high-throughput screening of these photocatalytic compositions. This combinatorial approach to solar fuels photocatalysis has already led to unprecedented fundamental understanding of the generation of hydrogen gas from pure water. The activity of a series of new Ru(II) sensitizers along with Co(II) molecular WRCs were optimized under visible light excitation utilizing different experimental conditions. The multi-step mechanism of activity of selected compositions was further elucidated by pump-probe transient absorption spectroscopy.

  20. Molecular Design of Soluble Biopolyimide with High Rigidity

    Directory of Open Access Journals (Sweden)

    Sumant Dwivedi

    2018-03-01

    Full Text Available New soluble biopolyimides were prepared from a diamine derived from an exotic amino acid (4-aminocinnamic acid with several kinds of tetracarboxylic dianhydride. The biopolyimide molecular structural flexibility was tailored by modifying the tetracarboxylic dianhydride moiety. The obtained polyimides were soluble in various solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, dimethyl sulfoxide, and even tetrahydrofuran. It was observed that the biopolyimide solubility was greatly dependent upon the structural flexibility (torsion energy. Flexible structure facilitated greater solubility. The synthesized biopolyimides were largely amorphous and had number-average molecular weight (Mn in the range (5–8 × 105. The glass transition temperatures (Tg of the polymers ranged from 259–294 °C. These polymers exhibited good thermal stability without significant weight loss up to 410 °C. The temperatures at 10% weight loss (Td10 for synthesized biopolyimide ranged from 375–397 °C.