WorldWideScience

Sample records for highly excited high-spin

  1. High-spin excitations of atomic nuclei

    International Nuclear Information System (INIS)

    Xu Furong; National Laboratory of Heavy Ion Physics, Lanzhou; Chinese Academy of Sciences, Beijing

    2004-01-01

    The authors used the cranking shell model to investigate the high-spin motions and structures of atomic nuclei. The authors focus the collective rotations of the A∼50, 80 and 110 nuclei. The A∼50 calculations show complicated g spectroscopy, which can have significant vibration effects. The A≅80 N≅Z nuclei show rich shape coexistence with prolate and oblate rotational bands. The A≅110 nuclei near the r-process path can have well-deformed oblate shapes that become yrast and more stable with increasing rotational frequency. As another important investigation, the authors used the configuration-constrained adiabatic method to calculate the multi-quasiparticle high-K states in the A∼130, 180 and superheavy regions. The calculations show significant shape polarizations due to quasi-particle excitations for soft nuclei, which should be considered in the investigations of high-K states. The authors predicted some important high-K isomers, e.g., the 8 - isomers in the unstable nuclei of 140 Dy and 188 Pb, which have been confirmed in experiments. In superheavy nuclei, our calculations show systematic existence of high-K states. The high-K excitations can increase the productions of synthesis and the survival probabilities of superheavy nuclei. (authors)

  2. El strength function at high spin and excitation energy

    International Nuclear Information System (INIS)

    Barrette, J.

    1983-04-01

    Recently giant dipole resonance-like concentration of the dipole strength function in nuclei was observed at both high excitation energies and high spins. This observation raises the possibility of obtaining new information on the shape of rapidly rotating heated nuclei. Recent experimental results on this subject are reviewed

  3. Experimental investigation shell model excitations of 89Zr up to high spin and its comparison with 88,90Zr

    International Nuclear Information System (INIS)

    Saha, S.; Palit, R.; Sethi, J.

    2012-01-01

    The excited states of nuclei near N=50 closed shell provide suitable laboratory for testing the interactions of shell model states, possible presence of high spin isomers and help in understanding the shape transition as the higher orbitals are occupied. In particular, the structure of N = 49 isotones (and Z =32 to 46) with one hole in N=50 shell gap have been investigated using different reactions. Interestingly, the high spin states in these isotones have contribution from particle excitations across the respective proton and neutron shell gaps and provide suitable testing ground for the prediction of shell model interactions describing theses excitations across the shell gap. In the literature, extensive study of the high spin states of heavier N = 49 isotones starting with 91 Mo up to 95 Pd are available. Limited information existed on the high spin states of lighter isotones. Therefore, the motivation of the present work is to extend the high spin structure of 89 Zr and to characterize the structure of these levels through comparison with the large scale shell model calculations based on two new residual interactions in f 5/2 pg 9/2 model space

  4. High spin states excited by the (p, t) reaction on lead isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kumabe, I.; Hyakutake, M. [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Yuasa, K.; Yamagata, T.; Kishimoto, S.; Ikegami, H.; Muraoka, M [eds.

    1980-01-01

    In order to find high spin states the sup(204, 206, 208)Pb (p, t) reactions have been investigated with RCNP isochronous cyclotron and a high resolution magnetic spectrograph ''RAIDEN''. The experimental angular distributions were analyzed by DWBA calculations, and the lowest 10/sup +/, 12/sup +/ (i sub(13/2))/sup 2/ and 11/sup -/ (i sub(13/2), h sub(9/2)) states in /sup 202/Pb, /sup 204/Pb and /sup 206/Pb were established.

  5. High-spin levels in 39K excited by the 41Ca(d,α) reaction

    International Nuclear Information System (INIS)

    Sugarbaker, E.; Boyd, R.N.; Cline, D.; Vold, P.B.; Lien, J.R.; Goode, P.R.

    1979-01-01

    The 41 Ca(d,α) 39 K reaction has been used to investigate the low-lying high-spin states in 39 K. Conflicting spin assignments for the 5.719 MeV level in 39 K of 9/2 - of 13/2 - have been suggested in earlier studies. A 1p-2h model reproduces both the 41 Ca(d,α) 39 K and 39 K(α,α') 39 K reaction data leading to the high-spin states if the 5.719 MeV level is assumed to have a J/sup π/ of 13/2 - . An alternate assignment of J/sup π/ = 9/2 - for this level is shown to produce very poor agreement with the model predictions

  6. Study of highly excited high spin states via the (HI, α) reaction

    International Nuclear Information System (INIS)

    Kubono, S.

    1982-01-01

    Three subjects are discussed in this paper. 1) The mechanism of (HI, α) reactions is briefly studied. 2) Possible excitation of molecular resonance states of 12 C- 12 C in 24 Mg through the 12 C( 16 O, α) 24 Mg reaction were investigated. A precise measurement of the level widths in 24 Mg did not support the previous report that the molecular states seen in 12 C + 12 C scattering had been excited in the transfer reaction 12 C( 16 O, α) 24 Mg. 3) Highly excited states in 28 Si, which have a large parentage of 12 C- 16 O, were also studied via the 12 C( 20 Ne, α) 28 Si reaction. An angular correlation measurement revealed the lowest 8 + and 10 + states at 14.00 and 15.97 MeV, respectively, which were selectively excited in the 12 C( 20 Ne, α) reaction. These results suggest a possible new band in 28 Si. (author)

  7. High spin isomer beam line at RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, T.; Ideguchi, E.; Wu, H.Y. [Institute of Physical and Chemical Research, Saitama (Japan)] [and others

    1996-12-31

    Nuclear high spin states have been the subject of extensive experimental and theoretical studies. For the production of high spin states, fusion reactions are usually used. The orbital angular momentum brought in the reaction is changed into the nuclear spin of the compound nucleus. However, the maximum induced angular momentum is limited in this mechanism by the maximum impact parameter of the fusion reaction and by the competition with fission reactions. It is, therefore, difficult to populate very high spin states, and as a result, large {gamma}-detector arrays have been developed in order to detect subtle signals from such very high spin states. The use of high spin isomers in the fusion reactions can break this limitation because the high spin isomers have their intrinsic angular momentum, which can bring the additional angular momentum without increasing the excitation energy. There are two methods to use the high spin isomers for secondary reactions: the use of the high spin isomers as a target and that as a beam. A high spin isomer target has already been developed and used for several experiments. But this method has an inevitable shortcoming that only {open_quotes}long-lived{close_quotes} isomers can be used for a target: {sup 178}Hf{sup m2} (16{sup +}) with a half-life of 31 years in the present case. By developing a high spin isomer beam, the authors can utilize various short-lived isomers with a short half-life around 1 {mu}s. The high spin isomer beam line of RIKEN Accelerator Facility is a unique apparatus in the world which provides a high spin isomer as a secondary beam. The combination of fusion-evaporation reaction and inverse kinematics are used to produce high spin isomer beams; in particular, the adoption of `inverse kinematics` is essential to use short-lived isomers as a beam.

  8. Rotational bands on few-particle excitations of very high spin

    International Nuclear Information System (INIS)

    Andersson, C.G.; Krumlinde, J.; Leander, G.; Szymanski, Z.

    1980-01-01

    An RPA formalism is developed to investigate the existence and properties of slow collective rotation around a non-symmetry axis, when there already exists a large angular momentum K along the symmetry axis built up by aligned single-particle spins. It is found necessary to distinguish between the collectivity and the repeatability of the rotational excitations. First the formalism is applied to bands on hihg-K isomers in the well-deformed nucleus 176 Hf, where the rotational-model picture is reproduced for intermediate K-values in agreement with experiment. At high K there is a suppression of the collectivity corresponding to the diminishing vector-coupling coefficient of the rotational model, but the repeatability actually improves. The moment of inertia is predicted to remain substantially smaller than the rigid-body value so the bands slope up steeply from the yrast line at spins where pairing effects are gone. A second application is to the initially spherical nucleus 212 Rn, which is believed to acquire an oblate deformation that increases steadily with K due to the oblate shape of the aligned orbitals. In this case the repeatable excitations come higher above the yrast line than in 176 Hf, even at comparable deformations. Some collective states may occur very close to yrast, but these are more like dressed singleparticle excitations. The main differences between the two nuclei studied is interpreted as a general consequence of their different shell structure. (author)

  9. Neutron and gamma emission from highly excited states and states with high spin. Annual progress report

    International Nuclear Information System (INIS)

    Sperber, D.

    1976-08-01

    Both classical and quantum models for the collision between heavy ions were studied. Classical models were used to account for the possibility of strong damping. Two models which account for side peaking and considerable energy loss were proposed. According to the first, the ions clutch at the distance of closest approach and the radial energy is dissipated fast in the entrance channel. This is followed by a slow motion in the exit channel up to the snapping point. According to the second model, there is an asymmetry in the conservative potential between the entrance and exit channels. The exit channel potential includes deformations. A dynamical model including transfer was developed. The trajectories are determined dynamically whereas the transfer is considered as a random process. Semi-classical calculations (first order quantum calculation) were performed to test the validity of the classical model or the sharp cut-off approximation. The main conclusion is that for energies high above the Coulomb barrier, the classical approximation is adequate but close to the barrier, it is insufficient, and quantum effects are important. It was shown that a quantum mechanical model using time dependent perturbation accounts very well for the angular distribution in strongly damped collisions. A list of publications is included

  10. Magnetic moments, E3 transitions and the structure of high spin core excited states in 211Rn

    International Nuclear Information System (INIS)

    Poletti, A.R.; Dracoulis, G.D.; Byrne, A.P.; Stuchbery, A.E.; Poletti, S.J.; Gerl, J.; Lewis, P.M.

    1985-03-01

    The results of g-factor measurements of high spin states in 211 Rn are: Esub(x)=8856+Δsup(') keV (Jsup(π)=63/2 - ), g=0.626(7); 6101+Δsup(') keV (49/2 + ), 0.766(8); 5247+Δsup(') keV (43/2 - ), 0.74(2); 3927+Δsup(') keV (35/2 + ), 1/017(12); 1578+Δsup(') keV (17/2 - ), 0.912(9). These results together with measured E3 transition strengths and shell model calculations are used to assign configurations to the core excited states in 211 Rn. Mixed configurations are required to explain the g-factors and enhanced E3 strengths simultaneously

  11. Magnetic moments, E3 transitions and the structure of high-spin core excited states in 211Rn

    International Nuclear Information System (INIS)

    Poletti, A.R.; Dracoulis, G.D.; Byrne, A.P.; Stuchbery, A.E.; Poletti, S.J.; Gerl, J.; Lewis, P.M.

    1985-01-01

    The results of g-factor measurements of high-spin states in 211 Rn are: Esub(x)=8856+Δ' keV (Jsup(π)=63/2 - ), g=0.626(7); 6101+Δ' keV (49/2 + ), 0.766(8); 5347+Δ' keV (43/2 - ), 0.74(2); 3927+Δ keV (35/2 + ), 1.017(12); 1578+Δ keV (17/2 - ), 0.912(9). These results together with measured E3 transition strengths and shell model calculations are used to assign configurations to the core excited states in 211 Rn. Mixed configurations are required to explain the g-factors and enhanced E3 strengths simultaneously. (orig.)

  12. High-spin isomers in 212Rn in the region of triple neutron core-excitations

    Science.gov (United States)

    Dracoulis, G. D.; Lane, G. J.; Byrne, A. P.; Davidson, P. M.; Kibédi, T.; Nieminen, P.; Watanabe, H.; Wilson, A. N.

    2008-04-01

    The level scheme of 212Rn has been extended to spins of ∼ 38 ℏ and excitation energies of about 13 MeV using the 204Hg(13C, 5n)212Rn reaction and γ-ray spectroscopy. Time correlated techniques have been used to obtain sensitivity to weak transitions and channel selectivity. The excitation energy of the 22+ core-excited isomer has been established at 6174 keV. Two isomers with τ = 25 (2) ns and τ = 12 (2) ns are identified at 12211 and 12548 keV, respectively. These are the highest-spin nuclear isomers now known, and are attributed to configurations involving triple neutron core-excitations coupled to the aligned valence protons. Semi-empirical shell-model calculations can account for most states observed, but with significant energy discrepancies for some configurations.

  13. High-spin isomers in 212Rn in the region of triple neutron core-excitations

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Lane, G.J.; Byrne, A.P.; Davidson, P.M.; Kibedi, T.; Nieminen, P.; Watanabe, H.; Wilson, A.N.

    2008-01-01

    The level scheme of 212 Rn has been extended to spins of ∼38h and excitation energies of about 13 MeV using the 204 Hg( 13 C, 5n) 212 Rn reaction and γ-ray spectroscopy. Time correlated techniques have been used to obtain sensitivity to weak transitions and channel selectivity. The excitation energy of the 22 + core-excited isomer has been established at 6174 keV. Two isomers with τ=25(2) ns and τ=12(2) ns are identified at 12211 and 12548 keV, respectively. These are the highest-spin nuclear isomers now known, and are attributed to configurations involving triple neutron core-excitations coupled to the aligned valence protons. Semi-empirical shell-model calculations can account for most states observed, but with significant energy discrepancies for some configurations

  14. Proton emission from high spin states of proton rich excited 94Ag

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2008-01-01

    Recent observation of direct 1P and 2P decay of 21 + isomer in proton rich 94 Ag has led to the present theoretical investigation of proton radioactivity from 94 Ag in ground state and excited state and it's dependence on the structural transitions

  15. High spin spectroscopy near the N=Z line: Channel selection and excitation energy systematics

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, C.E.; Cameron, J.A.; Flibotte, S. [McMaster Univ., Ontario (Canada)] [and others

    1996-12-31

    The total {gamma}-ray and charged-particle energies emitted in fusion-evaporation reactions leading to N=Z compound systems in the A = 50-70 mass region have been measured with the 8{pi} {gamma}-ray spectrometer and the miniball charged-particle detector array. A new method of channel selection has been developed which combines particle identification with these total energy measurements and greatly improves upon the selectivity possible with particle detection alone. In addition, the event by event measurement of total {gamma}-ray energies using the BGO ball of the 8{pi} spectrometer has allowed a determination of excitation energies following particle evaporation for a large number of channels in several different reactions. The new channel selection procedure and excitation energy systematics are illustrated with data from the reaction of {sup 24}Mg on {sup 40}Ca at E{sub lab} = 80MeV.

  16. High-spin nuclear spectroscopy

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given

  17. Electromagnetic properties of nuclei at high spins

    International Nuclear Information System (INIS)

    Leander, G.A.

    1986-01-01

    A photon emitted by an excited state is likely to carry away, at most, 1 or 2 h-bar of angular momentum. Therefore, a profusion of photons is needed to deexcite the rapidly rotating states of nuclei formed by heavy-ion reactions. The study of electromagnetic properties has become the primary source of information on nuclear structure at high spins and, also, at the warm temperatures present in the initial stage of the electromagnetic cascade process. The purpose of this paper is a review of the E1, M1, and E2 properties of such highly excited states. 42 refs., 5 figs

  18. Phenomena at very high spins

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1980-03-01

    The present talk has three parts: first, a discussion of current ideas about the physics of very high spin states; second, some comments about noncollective behavior up to the highest spins where it is known, approx. 40 h; and finally, a presentation of the newest method for studying collective behavior up to spins of 60 to 70 h. The intention is that the overview presented in the first part will be sufficiently broad to indicate the relationship of the noncollective and collective behavior discussed in the other parts, and to provide some understanding of the compromise in behavior that seems to occur at the very highest spins. 13 figures

  19. Development of high-spin isomer beams

    International Nuclear Information System (INIS)

    Zhou Xiaohong

    2000-01-01

    The physical motivations with high-spin isomer beams were introduced. Taking HSIB of RIKEN as an example, the methods to produce, separate, transport and purity high-spin isomer beams were described briefly, and the detection of γ rays emitted from the reactions induced by the high-spin isomer beams was presented. Finally, the progress to develop the high-spin isomers in the N = 83 isotones as second beams was stressed

  20. High spin structures in 194Hg

    International Nuclear Information System (INIS)

    Fotiades, N.; Vlastou, R.; Serris, M.; Sharpey-Schafer, J.F.; Fallon, P.; Riley, M.A.; Clark, R.M.; Hauschild, K.; Wadsworth, R.

    1996-01-01

    High spin states in the isotope 194 Hg were populated using the 150 Nd( 48 Ca,4n) reaction at a beam energy of 213 MeV. The analysis of γ-γ coincidences has revealed two new structures at excitation energies above 6 MeV and at moderate spin. The two structures are a manifestation of the deviation of nucleus from the collective rotation which dominates its lower excitation behaviour. A comparison with similar structures in the neighbouring Hg isotopes is also attempted. (orig.)

  1. High spin spectroscopy of 70Ge

    International Nuclear Information System (INIS)

    Kumar Raju, M.; Sugathan, P.; Seshi Reddy, T.; Thirumala Rao, B.V.; Madhusudhana Rao, P.V.; Muralithar, S.; Singh, R.P.; Bhowmik, R.K.

    2011-01-01

    Structure of nuclei in mass 70 region is of interest due to presence of a variety of complex phenomenon. In these nuclei rapid change of nuclear shape with proton and neutron numbers, spin and excitation energy. Valance nucleons in f-p-g shell configuration will drive the nuclei towards high deformations. Relatively large values of quadrupole deformation are evident in the even-even nuclei in this region. Present study is aimed to explore the high spin structure of the 70 Ge nucleus. A negative parity structure was reported in an earlier study

  2. Physics of high spin nuclear states

    Energy Technology Data Exchange (ETDEWEB)

    Wyss, R [Joint Inst. for Heavy Ion Research, Oak Ridge, TN (United States); [MSI, Frescativ, Stockholm (Sweden)

    1992-08-01

    High spin physics is a vast topic addressing the variety of nuclear excitation modes. In the present paper, some general aspects related to recent highlights of nuclear spectroscopy are discussed. The relation between signature splitting and shape changes in the unique parity orbitals is elucidated. The relevance of the Pseudo SU(3) symmetry in the understanding of rotational band structure is addressed. Specific features of rotational bands of intruder configurations are viewed as a probe of the neutron-proton interaction. (author). 36 refs., 5 figs.

  3. Yrast and high spin states in 22Ne

    International Nuclear Information System (INIS)

    Szanto, E.M.; Toledo, A.S. de

    1982-08-01

    High spin states in 22 Ne have been investigated by the reactions 11 B( 13 C,d) 22 Ne and 13 C( 11 B,d) 22 Ne up to E* approximately=19 MeV. Yrast states were observed at 11.02 MeV (8 + ) and 15.46 MeV (10 + ) excitation energy. A backbending in 22 Ne is observed around spin 8 + . The location of high spin states I [pt

  4. High spin states in 143Sm

    International Nuclear Information System (INIS)

    Raut, R.; Ganguly, S.; Kshetri, R.; Banerjee, P.; Bhattacharya, S.; Dasmahapatra, B.; Mukherjee, A.; Mukherjee, G.; Sarkar, M. Saha; Goswami, A.; Gangopadhyay, G.; Mukhopadhyay, S.; Krishichayan,; Chakraborty, A.; Ghughre, S. S.; Bhattacharjee, T.; Basu, S. K.

    2006-01-01

    The high spin states of 143 Sm have been studied by in-beam γ-spectroscopy following the reaction 130 Te( 20 Ne,7n) 143 Sm at E lab =137 MeV, using a Clover detector array. More than 50 new gamma transitions have been placed above the previously known J π =23/2 - , 30 ms isomer at 2795 keV. The level scheme of 143 Sm has been extended up to 12 MeV and spin-parity assignments have been made to most of the newly proposed level. Theoretical calculation with the relativistic mean field approach using blocked BCS method, has been performed. A sequence of levels connected by M1 transitions have been observed at an excitation energy ∼8.6 MeV. The sequence appears to be a magnetic rotational band from systematics

  5. High spin states of 141Pm

    Science.gov (United States)

    Bhattacharyya, Sarmishtha; Chanda, Somen; Bhattacharjee, Tumpa; Basu, Swapan Kumar; Bhowmik, R. K.; Muralithar, S.; Singh, R. P.; Ghugre, S. S.

    2004-01-01

    The high spin states in the N=80 odd- A141Pm nucleus have been investigated by in-beam γ-spectroscopic techniques following the reaction 133Cs( 12C, 4n) 141Pm at E=65 MeV using a modest γ detector array, consisting of seven Compton-suppressed high purity germanium detectors and a multiplicity ball of 14 bismuth germanate elements. Thirty new γ rays have been assigned to 141Pm on the basis of γ-ray singles and γγ-coincidence data. The level scheme of 141Pm has been extended upto an excitation energy of 5.2 MeV and spin {35}/{2}ℏ and 16 new levels have been proposed. Spin-parity assignments for most of the newly proposed levels have been made on the basis of the deduced directional correlation orientation ratios for strong transitions. The meanlives of a few excited states have been determined from the pulsed beam- γγ coincidence data using the generalised centroid-shift method. The level structure is discussed in the light of known systematics of neighbouring N=80 isotonic nuclei.

  6. High-spin states in sd-shell nuclei

    International Nuclear Information System (INIS)

    Poel, C.J. van der.

    1982-01-01

    A systematic picture of the structure of high-spin states in the mass range A = 29 - 41 is developed on the basis of experimental results for the nuclei 34 Cl, 38 K and 39 K. It is shown that for 34 Cl the difficulties induced by the relatively low cross section can be overcome. Combination of the data obtained from a γ-γ coincidence experiment with the 24 Mg + 12 C reaction, using the LACSS, and from threshold measurements in the 31 P + α reaction, establishes an unambiguous level scheme. By means of accurate angular-distribution measurements unambiguous spin and parity assignments are made to the high-spin levels. From the results a rather simple shell-model picture for the structure of the high-spin states evolves. Several authors have published experimental work on high-spin states in 39 K, with seriously conflicting conclusions, however, for the spin-parity assignments. The powerful coincidence set-up with the LACSS enables a discrimination between the conflicting results from the previous studies. In this way, unambiguous, model-independent, spin-parity assignments to the high-spin levels are established. Highly selective experimental methods are used to identify the high-spin states of 38 K. It is shown that with a pulsed beam in the reaction 24 Mg + 16 O advantage can be taken of the presence of a long-lived high-spin isomeric level in this nucleus. The gamma-decay of the isomer is extensively studied. With the pulsed beam, also some states above the isomer could be located. The subsequent use of two Compton-suppression spectrometers in a γ-γ coincidence experiment reveals a number of high-spin levels at higher excitation energies. (Auth.)

  7. High spin studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1992-01-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and complete spectroscopy (i.e. the overlap of state of the art low-and high-spin studies in the same nucleus)

  8. Abrupt relaxation in high-spin molecules

    International Nuclear Information System (INIS)

    Chang, C.-R.; Cheng, T.C.

    2000-01-01

    Mean-field model suggests that the rate of resonant quantum tunneling in high-spin molecules is not only field-dependent but also time-dependent. The relaxation-assisted resonant tunneling in high-spin molecules produces an abrupt magnetization change during relaxation. When the applied field is very close to the resonant field, a time-dependent interaction field gradually shifts the energies of different collective spin states, and magnetization tunneling is observed as two energies of the spin states coincide

  9. High spin studies with radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J D [Oak Ridge National Lab., TN (United States)

    1992-08-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and, complete spectroscopy (i.e. the overlap of state of the art low- and high-spin studies in the same nucleus). (author). 47 refs., 8 figs.

  10. Experimental status of high-spin states

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1975-09-01

    Changes occurring in high spin nuclear states are discussed. Experimental methods for studying reduction and eventual quenching of pairing interactions, changes in nuclear shapes, and alignment of individual particle angular momenta with increasing spin are reviewed. Emphasis is placed on the study of continuum gamma rays following heavy ion reactions. (12 figures)

  11. The study of very high spin states

    International Nuclear Information System (INIS)

    Nolan, P.J.

    1992-01-01

    Some examples are given of the study of very high spin states that decay by discrete line gamma-ray emission. States up to spin 70(h/2π) have been seen in superdeformed bands. In other bands with normal deformation the limit is near 50(h/2π). (Author)

  12. STUDY OF THE HIGH-SPIN STRUCTURE OF PM-146

    NARCIS (Netherlands)

    RZACAURBAN, T; DURELL, JL; PHILLIPS, WR; VARLEY, BJ; HESS, CP; PEARSON, CJ; VERMEER, WJ; VIEU, C; DIONISIO, JS; PAUTRAT, M; Urban, W

    1995-01-01

    Excited states in Pm-146 have been investigated through the Xe-136(N-15,5n) and the Nd-146(d,xn) compound-nucleus reactions. A level scheme extending up to 6.9 MeV of excitation energy and (I = 25HBAR) is proposed. Most of the high-spin levels are interpreted in terms of multi-particle-hole states

  13. High spin structure in 130Ba

    International Nuclear Information System (INIS)

    Singh, Amandeep; Kaur, Navneet; Kumar, A.; Singh, Varinderjit; Sandal, Rohit; Kaur, Rajbir; Behera, B.R.; Singh, K.P.; Singh, G.; Shukla, Aaradhya; Sharma, H.P.; Kumar, Suresh; Kumar Raja, M.; Madhusudan Rao, P.V.; Muralithar, S.; Singh, R.P.; Kumar, Rakesh; Madhvan, M.; Bhowmik, R.K.

    2009-01-01

    Nuclei with mass A ∼130 has been of great interest to experimental studies on high spin states. This is particularly so for the nuclei in the A∼130 region which exhibit a softness to γ. Evidence for characteristics such as shape coexistence and γ-softness has been gathered during the last two decades for many nuclei from Xe to Nd. Another interesting feature of this mass region is the existence of a regular M1 band which has been considered to be a promising candidate for magnetic rotation. In several nuclei of the A ∼130 mass region M1 bands like those observed in the A < 200 mass region are known. One signature of magnetic rotation is the decrease of the B (M1) values with increasing spin. The aim of the work is to study the high spin states and lifetime measurements using the DSAM technique

  14. Future directions for high-spin studies

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1982-11-01

    Some future directions for experimental high-spin studies are discussed, concentrating mainly on the region above I -- 30h, where the γ-ray spectra are currently unresolvable. The 4π NaI balls offer a means to exploit the temperature effects recently shown to exist in such spectra. Large arrays of Compton-suppressed Ge detectors, on the other and, lead to higher effective resolution as it becomes possible to study triple and quadruple coincident events

  15. High-spin states in 60Cu

    International Nuclear Information System (INIS)

    Tsan, U.C.; Agard, M.; Bruandet, J.F.; Dauchy, A.; Giorni, A.; Glasser, F.; Morand, C.; Chambon, B.; Drain, D.

    1981-04-01

    The 60 Cu nucleus has been studied via the 58 Ni(α, pnγ) reaction using different in-beam γ spectroscopy techniques. As for the other odd-odd Cu, the gsub(9/2) shell plays an important role for the explanation of observed high-spin states. Some of them (in particular 6 - and 9 + states) could be interpreted as two-nucleon states in the framework of a crude shell model

  16. Nuclear moments of inertia at high spin

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1982-10-01

    The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in γ-γ correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum γ-ray spectra of rotational nuclei up to high frequencies. The evolution of γ-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei

  17. High spin spectroscopy of 34Cl

    International Nuclear Information System (INIS)

    Bisoi, Abhijit; Ray, S.; Kshetri, R.; Goswami, A.; Saha Sarkar, M.; Pramanik, D.; Sarkar, S.; Nag, S.; Selva Kumar, K.; Singh, P.; Saha, S.; Sethi, J.; Trivedi, T.; Naidu, B.S.; Donthi, R.; Nanal, V.; Palit, R.

    2011-01-01

    Spectroscopic information for 34 Cl is of interest for understanding the large 33 S abundance observed in nova. This nucleus has been extensively studied using proton, light ions and alpha beams but there are few experiments where heavy ions were used. In the present work, heavy ion beams are used to extract spectroscopic data for high spin states above ∼ 5 MeV, important for astrophysical scenario. Spherical shell model calculations have been done to interpret the experimental data. Several options of truncation adopted have provided useful insight into the sd - fp cross-shell calculations

  18. High spin effects in superdense matter

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.

    1978-04-01

    A model of relativistic interacting superdense matter with vector, scalar and symmetric second rank tensor exchange is developed. The Green's functions of the model are solved in the self consistent Hartree approximation. The contributions of the symmetric second rank tensor are emphasized. It is found that these high spin contributions effect the superdense matter at densities just beyond those predicted to occur in neutron star matter or nuclear collisions. The spin-two effects do produce an unusual asymptotic dependence, p = - 1 / 3 epsilon. This effect is examined in a simple model of the early universe

  19. High spin levels in 151Ho

    International Nuclear Information System (INIS)

    Gizon, J.; Gizon, A.; Andre, S.; Genevey, J.; Jastrzebski, J.; Kossakowski, R.; Moszinski, M.; Preibisz, Z.

    1981-02-01

    We report here on the first study of the level structure of 151 Ho. High spin levels in 151 Ho have been populated in the 141 Pr + 16 O and 144 Sm + 12 C reactions. The level structure has been established up to 6.6 MeV energy and the spins and particles determined up to 49/2 - . Most of the proposed level configurations can be explained by the coupling of hsub(11/2) protons to fsub(7/2) and/or hsub(9/2) neutrons. An isomer with 14 +- 3 ns half-life and a delayed gamma multiplicity equal to 17 +- 2 has been found. Its spin is larger than 57/2 h units

  20. High-spin states in 82Sr

    International Nuclear Information System (INIS)

    Baktash, C.; Halper, M.L.; Garcia Bermudez, G.J.

    1989-01-01

    As recent theoretical calculations that predicted the onset of superdeformation in the A ≅ 80 region, the 52 Cr( 34 S,2p2n) reaction at 130 MeV beam energy was employed to populate the high-spin states in 82 Sr. The detection system consisted of the ORNL Compton-Suppression Spectrometer System (18 Ge detectors), the Spin Spectrometer, and the 4 φ CsI Dwarf Ball of Washington University. Off-line analysis of the proton-gated data resulted in nearly 170 million Ge-Ge pairs, which were mostly due to the 2p2n channel. A decay scheme extending to spin I=27h has been established. No strong evidence for the presence of superdeformed states in 82 Sr was found in a preliminary analysis of the data. (Author) [es

  1. Toroidal high-spin isomers in the nucleus 304120

    Science.gov (United States)

    Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.

    2017-05-01

    Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from

  2. Nuclear structure at high and very high spin theoretical description

    International Nuclear Information System (INIS)

    Szymanski, Z.

    1983-11-01

    When the existence of nuclear shell structure is ignored and nuclear motion is assumed to be classical we may expect that the nuclear rotation resembles that of a liquid drop. Energy of the nucleus can be thus considered as a sum of three terms: surface energy, Coulomb energy and rotational energy. Nuclear moment of inertia is assumed to be that of a rigid-body. The results of a calculation of the energy surfaces in rotating nuclei by Cohen, Plasil and Swiatecki are discussed. Cranking procedure is analysed as a tool to investigate nucleonic orbits in a rotating nuclear potential. Some predictions concerning the possible onset of a superdeformed phase are given. The structure of nuclear rotation is examined in the presence of the short-range pairing forces that generate the superfluid correlations in the nucleus. Examples of the Bengtsson-Frauendorf plots (quasiparticle energies versus angular velocity of rotation) are given and discussed. The backbending phenomenon is analysed in terms of band crossing. The dependence of the crossing frequency on the pairing-force strength is discussed. Possibilities of the role of new components in the two-body force (quadrupole-pairing) are considered. Possibilities of the phase transition from superfluid to normal states in the nucleus are analysed. The role of the second (dynamic) moment of inertia I(2) in this analysis is discussed. In spherical weekly deformed nuclei (mostly oblate) angular momentum is aligned parallel to the nuclear symmetry axis. Rotation is of non collective origin in this case. Examples of the analysis of nuclear spectra in this case (exhibiting also the isomeric states called yrast (traps)) are given. Possible forms of the collective excitations superimposed on top of the high-spin states are discussed. In particular, the giant resonance excitations formed on top of the high-spin states are considered and their properties discussed

  3. Evolution of nuclear shapes at high spins

    International Nuclear Information System (INIS)

    Johnson, N.R.

    1985-01-01

    The dynamic electric quadrupole (E2) moments are a direct reflection of the collective aspects of the nuclear wave functions. For this, Doppler-shift lifetime measurements have been done utilizing primarily the recoil-distance technique. The nuclei with neutron number N approx. 90 possess many interesting properties. These nuclei have very shallow minima in their potential energy surfaces, and thus, are very susceptible to deformation driving influences. It is the evolution of nuclear shapes as a function of spin or rotational frequency for these nuclei that has commanded much interest in the lifetime measurements discussed here. There is growing evidence that many deformed nuclei which have prolate shapes in their ground states conform to triaxial or oblate shapes at higher spins. Since the E2 matrix elements along the yrast line are sensitive indicators of deformation changes, measurements of lifetimes of these states to provide the matrix elements has become the major avenue for tracing the evolving shape of a nucleus at high spin. Of the several nuclei we have studied with N approx. 90, those to be discussed here are /sup 160,161/Yb and 158 Er. In addition, the preliminary, but interesting and surprising results from our recent investigation of the N = 98 nucleus, 172 W are briefly discussed. 14 refs., 5 figs

  4. Nuclear moments of inertia at high spins

    International Nuclear Information System (INIS)

    Deleplanque, M.A.

    1984-01-01

    For nuclei in high spin states a yrast-like part of a continuum γ-ray spectrum shows naturally how angular momentum is generated as a function of frequency. In rotational nuclei, the rotational frequency is omega = dE/dI approx. E/sub γ/2, half the collective E2 transition energy. The height of the spectrum for a rotor is proportional to dN/dE/sub γ/ = dI/4d omega. dI/d omega is a dynamic (second derivative of energy with spin) moment of inertia. It contains both alignments and collective effects and is therefore an effective moment of inertia J/sub eff//sup (2)/. It shows how much angular momentum is generated at each frequency. If the collective moment of inertia J/sub band//sup (2)/(omega) is measured (from γ-γ correlation experiments) for the same system, the collective and aligned (Δi) contributions to the increase of angular momentum ΔI in a frequency interval Δ omega can be separated: Δi/ΔI = 1 - J/sub band//sup (2)//J/sub eff//sup (2)/. This is at present the only way to extract such detailed information at the highest spin states where discrete lines cannot be resolved. An example of the spectra obtained in several Er nuclei is shown. They are plotted in units of the moment of inertia J/sub eff//sup (2)/. The high-energy part of the spectra has been corrected for incomplete feeding at these frequencies

  5. Identification of high-spin states in 235U

    International Nuclear Information System (INIS)

    Lorenz, A.; Makarenko, V.E.; Chukreev, F.E.

    1994-02-01

    The results of a 235 U high spin states study are analysed. A new way to assign newly observed gamma ray transitions is proposed. Such assignments deals with low spin parts of the level scheme without introducing high spin level states. (author)

  6. Collective properties and shapes of nuclei at very high spins

    International Nuclear Information System (INIS)

    Johnson, N.R.

    1991-01-01

    A topic which has been of major interest to us for some years now involves the evolution of nuclear collectivity at high rotational frequencies and the accompanying changes in the shapes of nuclei in these extreme conditions. We carry out these studies by determining the dynamic electromagnetic multipole moments which are a reflection of the collective aspects of the nuclear wave functions. The most direct way to get these multipole moments is by measurements of excited-state lifetimes which provide the transition matrix elements in a fairly straightforward fashion. Although the primary emphasis of this paper is on the collectivity of the high-spin states in 160 Yb and 164 Yb, it is important to review briefly some work we began about ten years ago lifetime studies of moderately high spins in nuclei near N=90 using the recoil-distance (RD) method. These nuclei are just at the onset of permanent deformation and are known to be very soft with respect to deformation changes. This softness is clearly illustrated in contour diagrams of their potential-energy surfaces. For example, the potential energy surface of 160 Yb reveals that the minimum in the potential occurs around var-epsilon ∼ 0.2 and that it is very shallow in the γ degree of freedom. Because of their γ softness, we have studied several nuclei near N=90 to assess to what extent the polarization effects induced by rotation alignment of high-j quasiparticles affect their collectivity

  7. High spin states in 66,68Ge

    International Nuclear Information System (INIS)

    Hermkens, U.; Becker, F.; Eberth, J.; Freund, S.; Mylaeus, T.; Skoda, S.; Teichert, W.; Werth, A. v.d.

    1992-01-01

    High spin states of 66,68 Ge have been investigated at the FN Tandem accelerator of the University of Koeln via the reactions 40 Ca( 32 S,α2p,4p) 66,68 Ge at a beam energy of 100 MeV and 58 Ni( 16 O,α2p) 68 Ge at 65 MeV. The OSIRIS spectrometer with 12 escape suppressed Ge detectors was used to measure γγ coincidences and γ-ray angular distributions. In 66 Ge ( 68 Ge) 33 (22) new levels were found and 63 (62) new γ-transitions were placed in the level scheme. Both nuclei show a rather complicated but similar excitation pattern, ruled by the interplay of quasiparticle and collective degrees of freedom. The results are compared to the recently published EXVAM calculations for 68 Ge. (orig.)

  8. Non-collective oblate states in iodine isotopes at high spin

    Energy Technology Data Exchange (ETDEWEB)

    Paul, E S; Ali, I; Cullen, D M; Fallon, P; Forbes, S A; Hanna, F; Nolan, P J [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Bentley, M A; Bruce, A M; Simpson, J [Daresbury Lab. (United Kingdom); Clark, R M; Regan, P H; Wadsworth, R [York Univ. (United Kingdom). Dept. of Physics; Fossan, D B; Hughes, J R; Lafosse, D R; Vaska, P; Waring, M P [Department of Physics, SUNY at Stony Brook, NY (United States); Liang, Y [Argonne National Lab., IL (United States); Ma, R [Brookhaven National Lab., Upton, NY (United States)

    1992-08-01

    Competition between single-particle and collective modes of excitation has been observed in the odd-A {sup 113-119}I isotopes at high spin. A maximally-aligned non-collective 43/2{sup -} configuration at {gamma}=+ 60 degrees is seen at similar excitation energies in these nuclei. 7 refs., 4 figs.

  9. High spin rotational bands in Zn

    Indian Academy of Sciences (India)

    We present here some preliminary results from our studies in the. ~ ¼ region in which we have observed an yrast band structure in Zn extending to spin (41/2 ). ... gaps implies that nuclei may exhibit different shapes at different excitation energies. .... uration, identifying previously unobserved states up to an excitation energy ...

  10. Excitation of the high-spin isomers 180m Hf, 190m Os and 204m Pb in (γ, γ') reactions

    International Nuclear Information System (INIS)

    Balabanov, N.P.; Belov, A.G.; Gangrskij, Yu.P.; Kondev, F.G.; Tonchev, A.P.

    1993-01-01

    Excitation of isomeric states of 180 Hf (J m π = 8 - ), 190 Os (J m π = 10 - ) and 204 Pb (J m π = 9 - ) is studied for (γ, γ') reactions. The cross sections and isomeric ratios are measured using activation technique in the energy region from 6 up to 15 MeV. Experimental results were compared with statistical theory predictions. A relative contribution of different γ-ray multipolarities into the process of the population of isomeric states excited in the photoabsorption reaction and γ-cascade is investigated. (author). 32 refs.; 4 figs.; 2 tabs

  11. High-spin research with HERA [High Energy-Resolution Array

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1987-06-01

    The topic of this report is high spin research with the High Energy Resolution Array (HERA) at Lawrence Berkeley Laboratory. This is a 21 Ge detector system, the first with bismuth germanate (BGO) Compton suppression. The array is described briefly and some of the results obtained during the past year using this detector facility are discussed. Two types of studies are described: observation of superdeformation in the light Nd isotopes, and rotational damping at high spin and excitation energy in the continuum gamma ray spectrum

  12. High spin states in 33S

    International Nuclear Information System (INIS)

    Bisoi, Abhijit; Ray, S.; Kshetri, R.

    2013-01-01

    Nuclei in the neighbourhood of doubly closed 40 Ca usually exhibit characteristics of single particle excitations. The ground state and low lying excited states of several nuclei in this mass region have been reproduced by using untruncated shell model calculation over the sd space. In the present work, 33 S has been populated through heavy-ion fusion evaporation reaction and the level scheme has been extended

  13. High spin structure of nuclei near N = 50 shell gap and search for high-spin isomers using time stamped data

    International Nuclear Information System (INIS)

    Saha, S.; Palit, R.; Trivedi, T.; Sethi, J.; Joshi, P.K.; Naidu, B.S.; Donthi, R.; Jadhav, S.; Nanal, V.; Pillay, R.G.; Jain, H.C.; Kumar, S.; Biswas, D.C.; Mukherjee, G.; Saha, S.

    2011-01-01

    Information on the high-spin states of nuclei promises to provide stringent test of the interaction of the Hamiltonian used in the calculation due to smaller basis space for high J-values. It is reported in a recent shell model review that no interaction is optimized for the region of interest around N = 50 and Z = 40 shell closure. The detailed spectroscopic information of the medium and high spin states in these nuclei is required to understand the shape transition between spherical and deformed shapes at N =60 as the higher orbitals are filled. Structure of isomers near shell closure carries important information of, for example, the extent of core excitation. In the present work, the spectroscopic study of the high spin states of 89 Zr isotope have been discussed

  14. High spin rotational bands in 65 Zn

    Indian Academy of Sciences (India)

    The nucleus 30 65 Zn was studied using the 52Cr(16O, 2)65Zn reaction at a beam energy of 65 MeV. The level scheme is extended up to an excitation energy of 10.57 MeV for spin-parity (41/2ħ) with several newly observed transitions placed in it.

  15. High spin states in 68Zn

    International Nuclear Information System (INIS)

    Bruandet, J.-F.; Berthet, B.; Morand, C.; Gironi, A.; Longequeue, J.-P.; Tsan Ung Chan.

    1976-01-01

    Yrast levels of 68 Zn have been investigated via measurements of excitation functions and angular distributions of single γ-rays and of γ-γ coincidences. Following the 65 Cu(α,pγ) 68 Zn reaction with α particle energies between 12-21MeV. Spin up to J=8 were assigned to observed states [fr

  16. Wobbling motion in high spin states

    International Nuclear Information System (INIS)

    Onishi, Naoki

    1982-01-01

    By generalizing the cranking model, interwoven motions of collective and non-collective rotation of nuclei are treated as three dimensional non-uniform rotations including precession and wobbling. Classical trajectories are obtained for the + j vector + = 30 h/2π sphere. A method of quantization for wobbling motions is discussed and is applied to estimate excitation energies. (author)

  17. Fully aligned high-spin states in 86Zr

    International Nuclear Information System (INIS)

    Doring, J.; Hohns, G.D.; Sylvan, G.N.

    1995-01-01

    To study multi-quasiparticle excitations and their interplay with collective degrees of freedom at very high spins, a new in-beam investigation of the even-even 86 Zr has been performed via the 58 Ni( 32 S,4p) reaction at 135 MeV using the early implementation of GAMMASPHERE combined with the 47π charged particle detector system MICROBALL. The yrast positive- and negative-parity sequences have been extended up to 30 + and 27 - levels, respectively. Calculations within the configuration-dependent shell-correction method using a cranked Nilsson potential have shown that the highest spins are built from the six g 9 /2 neutrons and at most four protons excited from the p 1/2 , p 3/2 , f 5/2 subshells to the g 9 /2 subshell at a small deformation. The 30 + and 27 - states are the highest possible fully-aligned states based on holes in the N = 3 shell. Higher spins can be built by promotion of one neutron from the g 9 /2 to the g 7 /2 subshell but with a quite high energy cost

  18. Nuclear structure of 94,95Mo at high spins

    International Nuclear Information System (INIS)

    Kharraja, B.; Ghugre, S.S.; Garg, U.; Janssens, R.V.; Carpenter, M.P.; Crowell, B.; Khoo, T.L.; Lauritsen, T.; Nisius, D.; Reviol, W.; Mueller, W.F.; Riedinger, L.L.; Kaczarowski, R.

    1998-01-01

    The high-spin level structures of 94,95 Mo (N=52,53) have been investigated via the 65 Cu( 36 S, αp2n) 94 Mo and 65 Cu( 36 S, αpn) 95 Mo reactions at 142 MeV. The level schemes have been extended up to spin J∼19ℎ and excitation energies E x ∼12 MeV. Spherical shell-model calculations have been performed and compared with the experimental energy levels. The level structure of 94 Mo exhibits a single-particle nature and the higher-angular-momentum states are dominated by the excitation of a g 9/2 neutron across the N=50 shell gap. The level sequences observed in 95 Mo have been interpreted on the basis of the spherical shell model and weak coupling of a d 5/2 or a g 7/2 neutron to the 94 Mo core. copyright 1998 The American Physical Society

  19. Backbending in high spin states of 80Kr

    International Nuclear Information System (INIS)

    Kaushik, M.; Saxena, G.

    2014-01-01

    The study of high-spin states in Kr isotopes near A = 80 region has attracted a considerable interest in recent years. A variety of shapes, shape coexistence as well as backbending phenomenon have been studied in the many of Kr isotopes. In the case of 80 Kr, the high spin structure has been studied by Doring et al. rather extensively and has provided considerable insight into the structure of f-p-g shell nuclei and the competition between single-particle and collective degrees of freedom. Backbending phenomenon is reported in 80 Kr at ω = 0.5 MeV

  20. High-spin isomer in 211Rn, and the shape of the yrast line

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Fahlander, C.; Poletti, A.R.

    1981-08-01

    High spin yrast states in 211 Rn have been identified. A 61/2 - , 380 ns isomer found at 8856 keV is characterised as a core-excited configuration. The average shape of the yrast line shows a smooth behaviour with spin, in contrast to its neighbour 212 Rn. This difference is attributed to the presence of the neutron hole

  1. Very high-spin states in nuclei

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1977-03-01

    The continuum γ-ray spectrum following emission in a (HI,xn) reaction consists of a high-energy tail, the statistical cascade, and a lower-energy bump, the yrast cascade, which contains most of the intensity and consists mostly of stretched E2 transitions. Thus, a good approximation to the average angular momentum carried by the γ-ray is 2Nsub(γ). Under favourable conditions, effective moments of inertia can be deduced for states up to the top of the γ-ray cascade. The maximum angular momentum in the cascades is probably limited by α-emission for nuclei with A 150. (Author)

  2. Very high-spin states in nuclei

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1977-01-01

    The continuum γ-ray spectrum following neutron emission in a (HI,xn) reaction consists of a high-energy tail, the statistical cascade, and a lower-energy bump, the yrast cascade, which contains most of the intensity and consists mostly of stretched E2 transitions. Thus, a good approximation to the average angular momentum carried by the γ-rays is 2N/sub γ/-bar. Under favourable conditions, effective moments of inertia can be deduced for states up to the top of the γ-ray cascade. The maximum angular momentum in the cascades is probably limited by α-emission for nuclei with A 150. 17 figures

  3. Structure of high-spin isomers in trans-lead nuclei

    International Nuclear Information System (INIS)

    Dracoulis, G.D.

    1990-01-01

    The structure of core-excited high-spin isomers in the N ≤ 126 isotopes of At, Rn and Fr is reviewed. New results for high-spin states in 211 Rn and 212 Rn, approaching the limit of the available angular momentum from the valence particles, are presented. The recurring experimental feature is decay by very enhanced E3 transitions. These, and other properties are explained in a natural way by inclusion of particle-octupole vibration coupling, in a semi-empirical shell model. The deformed independent particle model is not successful in explaining these features. 40 refs., 4 tabs., 11 figs

  4. IBFA description of high-spin positive-parity states in Rh isotopes

    International Nuclear Information System (INIS)

    Bucurescu, D.; Cata, G.; Cutoiu, D.; Constantinescu, G.; Ivascu, M.; Zamfir, N.V.

    1985-01-01

    Properties of the odd-mass Rh isotopes are investigated in the framework of the interacting boson-fermion approximation (IBFA) model in which the odd proton moves in the 1gsub(9/2) and 2dsub(5/2) orbitals. Lifetimes of some high-spin positive-parity states in 99 Rh obtained by the recoil-distance method with the 88 Sr( 14 N,3n) reaction are also reported. Calculated excitation energies and electromagnetic properties of the high-spin positive-parity states are compared with experiment and an acceptable agreement is obtained. (orig.)

  5. High-spin structure of neutron-rich Dy isotopes

    Indian Academy of Sciences (India)

    Neutron-rich Dy isotopes; high-spin states; g-factors; cranked HFB theory. ... for 164Dy marking a clear separation in the behaviour as a function of neutron ... cipal x-axis as the cranking axis) in this mass region we have planned to make a sys-.

  6. Experimental evidence for shape changes at high spin

    International Nuclear Information System (INIS)

    Twin, P.J.

    1985-01-01

    Recent experimental evidence obtained with TESSA for shape changes at high spin is presented. Continuum γ-ray spectroscopy data indicates the co-existence of both prolate and oblate shapes in N = 90 nuclei and lifetime data in 152 Dy shows that the super deformed decays are very enhanced. (orig.)

  7. 3 QP plus rotor model and high spin states

    International Nuclear Information System (INIS)

    Mathur, Tripti

    1995-01-01

    Nuclear models are approximate methods to describe certain properties of a large number of nuclei. In this paper details of 3 QP (three quasi particle) plus rotor model and high spin state are discussed. The band head energies for the 3 QP rotational bands for 157 Ho and 159 Tm are also given. 5 refs., 8 figs

  8. Moments of inertia in 162Yb at very high spins

    International Nuclear Information System (INIS)

    Simon, R.S.; Banaschik, M.V.; Colombani, P.; Soroka, D.P.; Stephens, F.S.; Diamond, R.M.

    1976-01-01

    Two methods have been used to obtain values of the effective moment of inertia of very-high-spin (20h-bar--50h-bar) states populated in heavy-ion compound-nucleus reactions. The 162 Yb nucleus studied has effective moments of inertia smaller than, but approaching, the rigid-body estimate

  9. Observation of high spin levels in Cs from Ba decay

    Indian Academy of Sciences (India)

    physics pp. 1157–1162. Observation of high spin levels in. 131. Cs from. 131. Ba decay. M SAINATH, DWARAKA RANI RAO*, K VENKATARAMANIAH and P C SOOD. Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam 515 134, India. £Permanent address: Department of Physics, ...

  10. Island of high-spin isomers near N = 82

    International Nuclear Information System (INIS)

    Pedersen, J.; Back, B.B.; Bernthal, F.M.; Bjornholm, S.; Borggreen, J.; Christensen, O.; Folkmann, F.; Herskind, B.; Khoo, T.L.; Neiman, M.; Puehlhofer, F.; Sletten, G.

    1977-01-01

    Experiments aimed at testing for the existence of yrast traps are reported. A search for delayed γ radiation of lifetimes longer than approx. 10 ns and of high multiplicity has been performed by producing more than 100 compound nuclei between Ba and Pb in bombardments with 40 Ar, 50 Ti, and 65 Cu projectiles. An island of high-spin isomers is found to exist in the region 64 or approx. = 71 and N < or approx. = 82

  11. Lifetimes of high-spin states in {sup 162}Yb

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.P.; Janssens, R.V.F.; Henry, R.G. [and others

    1995-08-01

    A measurement on lifetimes of high-spin states in the yrast and near-yrast rotational bands in {sup 162}Yb was carried out at ATLAS in order to determine the evolution of collectivity as a function of angular momentum using the {sup 126}Te({sup 40}Ar,4n){sup 162}Yb reaction at 170 MeV. Previous lifetime measurements in the {sup 164,166,168}Yb isotopes showed a dramatic decrease in the transition quadrupole moment Q{sub t} with increasing spin. It was suggested that this decrease in Q{sub t} is brought about by the rotationally-induced deoccupation of high-j configurations, mainly i{sub 13/2} neutrons. If this interpretation is correct, the heavier isotopes should have a larger decrease in Q{sub t} than the lighter mass nuclides due to the position of the Fermi surface in the i{sub 13/2} subshell. Indeed, {sup 160}Yb does not show a clear decrease in Q{sub t} at high spin. No high spin lifetime information exists for {sup 162}Yb, thus this experiment fills the gap of measured Q{sub t}`s in the light Yb series. The data is currently being analyzed.

  12. Fluid dynamics of giant resonances on high spin states

    International Nuclear Information System (INIS)

    Di Nardo, M.; Di Toro, M.; Giansiracusa, G.; Lombardo, U.; Russo, G.

    1983-01-01

    We describe giant resonances built on high spin states along the yrast line as scaling solutions of a linearized Vlasov equation in a rotating frame obtained from a TDHF theory in phase space. For oblate cranked solutions we get a shift and a splitting of the isoscalar giant resonances in terms of the angular velocity. Results are shown for 40 Ca and 168 Er. The relative CM strengths are also calculated. (orig.)

  13. Observational signature of high spin at the Event Horizon Telescope

    Science.gov (United States)

    Gralla, Samuel E.; Lupsasca, Alexandru; Strominger, Andrew

    2018-04-01

    We analytically compute the observational appearance of an isotropically emitting point source on a circular, equatorial orbit near the horizon of a rapidly spinning black hole. The primary image moves on a vertical line segment, in contrast to the primarily horizontal motion of the spinless case. Secondary images, also on the vertical line, display a rich caustic structure. If detected, this unique signature could serve as a `smoking gun' for a high spin black hole in nature.

  14. Nuclear data for the high-spin community

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, R B [Lawrence Berkeley Lab., CA (United States); Singh, B [McMaster Univ., Hamilton, ON (Canada). Tandem Accelerator Lab.

    1992-08-01

    The Isotopes Project at Berkeley is developing the Evaluated High-Spin Data File, a subset of the Evaluated Nuclear Structure Data File (ENSDF). The following products were under development at the time of the conference: eighth edition of the Table of Isotopes, electronic table of isotopes, data bases, nuclear charts, nuclear wallet cards, nuclear CD-ROM, FAX data services, on-line data services.

  15. High spin states and backbending in the light tungsten isotopes

    International Nuclear Information System (INIS)

    Walker, P.M.; Dracoulis, G.D.; Johnston, A.; Leigh, J.R.; Slocombe, M.G.; Wright, I.F.

    1976-09-01

    High spin states in 172 W, 174 W, 175 W and 176 W have been studied with ( 16 O,xn) reactions. The ground state bands in 174 W and 176 W backbend in contrast to the more regular gsb in the N = 98 nucleus 172 W. This behaviour and the anomalies in the odd nucleus 175 W are discussed in terms of the influence of neutrons on backbending. (author)

  16. Orientation estimation algorithm applied to high-spin projectiles

    International Nuclear Information System (INIS)

    Long, D F; Lin, J; Zhang, X M; Li, J

    2014-01-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm. (paper)

  17. Orientation estimation algorithm applied to high-spin projectiles

    Science.gov (United States)

    Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.

    2014-06-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.

  18. Proton radioactivity at non-collective prolate shape in high spin state of 94Ag

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2010-01-01

    We predict proton radioactivity and structural transitions in high spin state of an excited exotic nucleus near proton drip line in a theoretical framework and investigate the nature and the consequences of the structural transitions on separation energy as a function of temperature and spin. It reveals that the rotation of the excited exotic nucleus 94 Ag at excitation energies around 6.7 MeV and angular momentum near 21h generates a rarely seen prolate non-collective shape and proton separation energy becomes negative which indicates proton radioactivity in agreement with the experimental results of Mukha et al. for 94 Ag.

  19. Proton radioactivity at non-collective prolate shape in high spin state of {sup 94}Ag

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Mamta, E-mail: mamta.a4@gmail.co [UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai 400 098 (India)

    2010-10-11

    We predict proton radioactivity and structural transitions in high spin state of an excited exotic nucleus near proton drip line in a theoretical framework and investigate the nature and the consequences of the structural transitions on separation energy as a function of temperature and spin. It reveals that the rotation of the excited exotic nucleus {sup 94}Ag at excitation energies around 6.7 MeV and angular momentum near 21h generates a rarely seen prolate non-collective shape and proton separation energy becomes negative which indicates proton radioactivity in agreement with the experimental results of Mukha et al. for {sup 94}Ag.

  20. The MONSTER solves nuclear structure problems at low and high spins

    International Nuclear Information System (INIS)

    Hammaren, E.; Schmid, K.W.; Gruemmer, F.

    1984-01-01

    A microscopic, particle-number and spin conserving nuclear structure model is discussed. Within a unique theory the model can describe excitation energies, moments, transitions and spectroscopic factors at low and high spins of odd-mass and doubly-even nuclei in all mass regions. With a realistic two-body Hamiltonian extracted via a G-matric description from nucleon-nucleon scattering data. The model is here applied to nuclei in the A=130 region

  1. Recent developments in high-spin calculations in atomic nuclei

    International Nuclear Information System (INIS)

    Szymanski, Z.

    1980-01-01

    A brief introduction to the recent achievements in the high-spin domain in nuclear physics is given. Results of the calculations in highly developed rotational bands in deformed nuclei, as well as the calculations in the structure of the yrast isomers are presented. The calculations fail in two aspects: local minima in the yrast line are not confirmed experimentally, the overall slope of the yrast line in 152 Dy is considerably overestimated. The calculations of the yrast line with new Woods-Saxon parameters are now in progress. The parameters are chosen to reproduce the large gap in the levels at proton number Z=64. (M.H.)

  2. High spin states in the f-p shell

    International Nuclear Information System (INIS)

    Delaunay, J.

    1975-01-01

    The high spin states (HSS) in Fe, Co, Ni (Z=26,27,28) isotopes exhibit features characteristics of soft or transition nuclei, 56 Fe being as well deformed prolate nucleus and the Ni isotopes often throught of as spherical. The methodology used to identify these HSS is the so called DCO (directional correlation of oriented nuclei) or ratio method which, by combining the angular distribution data plus one point of a triple γ-γ correlation in an asymmetric geometry, gives result that is found equivalent to a complete angular correlation to assign spin and mixing ratios. Some results collected with this methodology are presented [fr

  3. Gross shell structure at high spin in heavy nuclei

    International Nuclear Information System (INIS)

    Deleplanque, Marie-Agnes; Frauendorf, Stefan; Pashkevich, Vitaly V.; Chu, S.Y.; Unzhakova, Anja

    2003-01-01

    Experimental nuclear moments of inertia at high spins along the yrast line have been determined systematically and found to differ from the rigid-body values. The difference is attributed to shell effect and these have been calculated microscopically. The data and quantal calculations are interpreted by means of the semiclassical Periodic Orbit Theory. From this new perspective, features in the moments of inertia as a function of neutron number and spin, as well as their relation to the shell energies can be understood. Gross shell effects persist up to the highest angular momenta observed

  4. Level Structure of 103Ag at high spins

    OpenAIRE

    Ray, S.; Pattabiraman, N. S.; Krishichayan; Chakraborty, A.; Mukhopadhyay, S.; Ghugre, S. S.; Chintalapudi, S. N.; Sinha, A. K.; Garg, U.; Zhu, S.; Kharraja, B.; Almehed, D.

    2007-01-01

    High spin states in $^{103}$Ag were investigated with the Gammasphere array, using the $^{72}$Ge($^{35}$Cl,$2p2n$)$^{103}$Ag reaction at an incident beam energy of 135 MeV. A $\\Delta J$=1 sequence with predominantly magnetic transitions and two nearly-degenerate $\\Delta J=1$ doublet bands have been observed. The dipole band shows a decreasing trend in the $B(M1)$ strength as function of spin, a well established feature of magnetic bands. The nearly-degenerate band structures satisfy the three...

  5. Nuclear high-spin data for A = 174, 176 and 184

    Energy Technology Data Exchange (ETDEWEB)

    Junde, Huo [Jilin Univ. (China). Dept. of Physics

    1996-06-01

    Nuclear high-spin data are important in the frontier areas of nuclear structure physics. The information on A = 174, 176 and 184 mass chains from various reaction experiments together with their adopted high-spin levels and gamma transition properties are presented and discussed. High-spin data for A = 174, 176 and 184 mass chains were evaluated in 1995.

  6. Spectroscopy of high spin states in sup(211,212,213)Fr

    International Nuclear Information System (INIS)

    Byrne, A.P.; Dracoulis, G.D.; Fahlander, C.; Hubel, H.; Poletti, A.R.; Stuchbery, A.E.; Gerl, J.; Davie, R.F.; Poletti, S.J.

    1985-08-01

    The level structures of 211 Fr, 212 Fr and 213 Fr have been observed to high spins, approx. 28(h/2π) (and excitation energies approx. 8 MeV) using a variety of gamma-ray spectroscopic techniques. The structure of these nuclides is discussed in terms of couplings of single particle states through empirical shell model calculations. Good agreement with experiment is obtained. In 212 Fr and 213 Fr core-excited configurations are required to explain the properties of the highest states. A number of long lived states were observed in each nucleus some of which decay by by enhanced E3 transitions. The E3 transition strengths are discussed

  7. Collectivity of high spin states in {sup 84}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Lister, C.J.; Blumenthal, D.; Crowell, B. [and others

    1995-08-01

    {sup 84}Zr is one of the most extensively studied of the A {approximately} 80 rotors, both from theoretical and experimental approaches. It was predicted to be a good candidate to support superdeformation, and to show interesting spectroscopic properties including saturation of its shell-model space at lower spin. We performed an experiment using Gammasphere in its early implementation phase. The reaction of {sup 29}Si on {sup 58}Ni was used to strongly populate {sup 84}Zr at high spin. Thin and thick targets were used to allow the extraction of transitional matrix elements at very high spin, and to allow a sensitive search for superdeformed states. Data analysis is in progress. The large data set allowed us to extend the previously known bands considerably. Candidates for a staggered M1-band, found previously {sup 86}Zr, were located. To date, no evidence for superdeformed bands was found. Analysis was slowed by the relocation of all the participants in this experiment, but we hope to complete the lifetime analysis this year. This analysis has become especially topical, due to reported measurements of superdeformation in this region.

  8. High spin structure of {sup 35}Cl and the sd-fp shell gap

    Energy Technology Data Exchange (ETDEWEB)

    Kshetri, Ritesh [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Saha Sarkar, M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India)]. E-mail: maitrayee.sahasarkar@saha.ac.in; Ray, Indrani [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Banerjee, P. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Sarkar, S. [Department of Physics, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Raut, Rajarshi [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Goswami, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chatterjee, J.M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chattopadhyay, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Datta Pramanik, U. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Mukherjee, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Dey, C.C. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Bhattacharya, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Dasmahapatra, B. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Bhowal, Samit [Department of Physics, Surendranath Evening College, Kolkata 700009 (India); Gangopadhyay, G. [University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009 (India); Datta, P. [Anandamohan College, 102/1, Raja Rammohan Sarani, Kolkata 700009 (India); Jain, H.C. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bhowmik, R.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Muralithar, S.; Singh, R.P.; Kumar, R. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2007-01-15

    The high spin states of {sup 35}Cl have been studied by in-beam {gamma}-spectroscopy following the fusion-evaporation reaction {sup 12}C({sup 28}Si,{alpha}p){sup 35}Cl at E{sub lab}=70 and 88 MeV, using the Indian National Gamma (Clover) Array (INGA). Lifetimes of six new excited states have been estimated for the first time. To understand the underlying structure of the levels and transition mechanisms, experimental results have been compared with those from the large basis cross-shell shell model calculations. Involvement of orbitals from fp shell and squeezing of the sd-fp shell gap seem to be essential for reliable reproduction of high spin states.

  9. High spin structure of 35Cl and the sd-fp shell gap

    International Nuclear Information System (INIS)

    Kshetri, Ritesh; Saha Sarkar, M.; Ray, Indrani; Banerjee, P.; Sarkar, S.; Raut, Rajarshi; Goswami, A.; Chatterjee, J.M.; Chattopadhyay, S.; Datta Pramanik, U.; Mukherjee, A.; Dey, C.C.; Bhattacharya, S.; Dasmahapatra, B.; Bhowal, Samit; Gangopadhyay, G.; Datta, P.; Jain, H.C.; Bhowmik, R.K.; Muralithar, S.; Singh, R.P.; Kumar, R.

    2007-01-01

    The high spin states of 35 Cl have been studied by in-beam γ-spectroscopy following the fusion-evaporation reaction 12 C( 28 Si,αp) 35 Cl at E lab =70 and 88 MeV, using the Indian National Gamma (Clover) Array (INGA). Lifetimes of six new excited states have been estimated for the first time. To understand the underlying structure of the levels and transition mechanisms, experimental results have been compared with those from the large basis cross-shell shell model calculations. Involvement of orbitals from fp shell and squeezing of the sd-fp shell gap seem to be essential for reliable reproduction of high spin states

  10. High-spin lifetime measurements in the N=Z nucleus Kr72

    Science.gov (United States)

    Andreoiu, C.; Svensson, C. E.; Afanasjev, A. V.; Austin, R. A. E.; Carpenter, M. P.; Dashdorj, D.; Finlay, P.; Freeman, S. J.; Garrett, P. E.; Greene, J.; Grinyer, G. F.; Görgen, A.; Hyland, B.; Jenkins, D.; Johnston-Theasby, F.; Joshi, P.; Machiavelli, A. O.; Moore, F.; Mukherjee, G.; Phillips, A. A.; Reviol, W.; Sarantites, D. G.; Schumaker, M. A.; Seweryniak, D.; Smith, M. B.; Valiente-Dobón, J. J.; Wadsworth, R.

    2007-04-01

    High-spin states in the N=Z nucleus Kr72 have been populated in the Ca40(Ca40, 2α)Kr72 fusion-evaporation reaction at a beam energy of 165 MeV using the Gammasphere array for γ-ray detection coupled to the Microball array for charged particle detection. The previously observed bands in Kr72 were extended to an excitation energy of ˜24 MeV and angular momentum of 30ℏ. Using the Doppler shift attenuation method the lifetimes of high-spin states were measured for the first time. Excellent agreement between the results of calculations within the isovector mean field theory and experiment is observed both for rotational and deformation properties. No enhancement of quadrupole deformation expected in the presence of isoscalar t=0 np pairing is observed. Current data do not show any evidence for the existence of the isoscalar np pairing.

  11. Equation-of-motion coupled cluster method for high spin double electron attachment calculations

    Energy Technology Data Exchange (ETDEWEB)

    Musiał, Monika, E-mail: musial@ich.us.edu.pl; Lupa, Łukasz; Kucharski, Stanisław A. [Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice (Poland)

    2014-03-21

    The new formulation of the equation-of-motion (EOM) coupled cluster (CC) approach applicable to the calculations of the double electron attachment (DEA) states for the high spin components is proposed. The new EOM equations are derived for the high spin triplet and quintet states. In both cases the new equations are easier to solve but the substantial simplification is observed in the case of quintets. Out of 21 diagrammatic terms contributing to the standard DEA-EOM-CCSDT equations for the R{sub 2} and R{sub 3} amplitudes only four terms survive contributing to the R{sub 3} part. The implemented method has been applied to the calculations of the excited states (singlets, triplets, and quintets) energies of the carbon and silicon atoms and potential energy curves for selected states of the Na{sub 2} (triplets) and B{sub 2} (quintets) molecules.

  12. High spin rotations of nuclei with the harmonic oscillator potential

    International Nuclear Information System (INIS)

    Cerkaski, M.; Szymanski, Z.

    1978-01-01

    Calculations of the nuclear properties at high angular momentum have been performed recently. They are based on the liquid drop model of a nucleus and/or on the assumption of the single particle shell structure of the nucleonic motion. The calculations are usually complicated and involve long computer codes. In this article we shall discuss general trends in fast rotating nuclei in the approximation of the harmonic oscillator potential. We shall see that using the Bohr Mottelson simplified version of the rigorous solution of Valatin one can perform a rather simple analysis of the rotational bands, structure of the yrast line, moments of inertia etc. in the rotating nucleus. While the precision fit to experimental data in actual nuclei is not the purpose of this paper, one can still hope to reach some general understanding within the model of the simple relations resulting in nuclei at high spin. (author)

  13. High spin structure in 130,131Ba

    International Nuclear Information System (INIS)

    Kaur, Navneet; Kumar, A.; Singh, Amandeep; Kumar, S.; Kaur, Rajbir; Singh, Varinderjit; Behera, B.R.; Singh, K.P.; Singh, G.; Mukherjee, G.; Sharma, H.P.; Kumar, Suresh; Kumar Raju, M.; Madhusudhan Rao, P.V.; Muralithar, S.; Singh, R.P.; Kumar, Rakesh; Madhvan, N.; Bhowmik, R.K.

    2014-01-01

    High spin states of 130,131 Ba have been investigated via fusion evaporation reactions 122 Sn( 13 C,4n) 131 Ba and 122 Sn( 13 C, 5n) 130 Ba at E beam =65 MeV. The level schemes of 130,131 Ba have been extended by placing several new γ transitions. A few interband transitions connecting two negative-parity bands, which are the experimental fingerprints of signature partners, have been established in 130 Ba. Spin and parity of a side band have been assigned in 131 Ba and this dipole band is proposed to have a three-quasiparticle configuration, νh 11/2 x πh 11/2 x πg 7/2 . The observed band structures and nuclear shape evolution as a function of the angular momentum have been discussed in the light of Total-Routhian-Surface calculations. (orig.)

  14. Observation of high spin states in 117Xe

    International Nuclear Information System (INIS)

    Liu, Z.; Yuan, G.J.; Li, G.S.; Yang, C.X.; Luo, W.D.; Chen, Y.S.

    1995-01-01

    High spin states of 117 Xe have been investigated by means of in-beam γ-ray spectroscopy using the reaction 92 Mo( 28 Si, 2pn) at beam energies of 100 to 120 MeV. The previously known νh 11/2 bands are confirmed and the νg 7/2 favored-signature band is extended up to 47/2 + , in which two band crossings are observed at hω=0.33 and 0.44 MeV, respectively. Two new positive-parity bands have been established, one of which is most likely the νg 7/2 unfavored-signature band. A new transition cascade with irregular level spacings is also observed. (orig.)

  15. First observation of high spin states and isomeric decay in 210Fr

    International Nuclear Information System (INIS)

    Kanjilal, D.; Saha, S.; Bhattacharya, S.; Goswami, A.; Kshetri, R.; Raut, R.; Muralithar, S.; Singh, R. P.; Mukherjee, G.; Mukherjee, B.

    2011-01-01

    The first observation of the prompt and the delayed γ transitions involving the high spin states in 210 Fr is reported. The decay of the high spin states and the isomeric levels of 210 Fr, identified for the first time from the known sequence of low-lying transitions found earlier in the α decay of 214 Ac, were studied. High spin states of the doubly-odd 210 Fr, which were produced by the fusion evaporation reaction 197 Au ( 16 O, xn) 213-x Fr, were populated and the subsequent emitted γ rays were detected through the high-sensitivity germanium clover detector array INGA. The level scheme up to yrast levels of 5.3 MeV excitation energy and ∼20(ℎ/2π) angular momentum could be established for the first time through γγ, γγΔT coincidence, and DCO ratio measurements. A new low-lying isomeric transition at E γ = 203(2) keV was observed. The half-life was measured to be T 1/2 = 41(2) ns. The measured half-life was compared with the corresponding single-particle estimate, based on the level scheme obtained from the experiment.

  16. New high spin states and isomers in the {sup 208}Pb and {sup 207}Pb nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Broda, R.; Wrzesinski, J.; Pawlat, T. [and others

    1996-12-31

    The two most prominent examples of the heavy doubly closed shell (DCS) nuclei, {sup 208}Pb and {sup 132}Sn, are not accessible by conventional heavy-ion fusion processes populating high-spin states. This experimental difficulty obscured for a long time the investigation of yrast high-spin states in both DCS and neighboring nuclei and consequently restricted the study of the shell model in its most attractive regions. Recent technical development of multidetector gamma arrays opened new ways to exploit more complex nuclear processes which populate the nuclei of interest with suitable yields for gamma spectroscopy and involve population of moderately high spin states. This new possibility extended the range of accessible spin values and is a promising way to reach new yrast states. Some of these states are expected to be of high configurational purity and can be a source of important shell model parameters which possibly can be used later to check the validity of the spherical shell model description at yet higher spin and higher excitation energy. The nuclei in the closest vicinity of {sup 132}Sn are produced in spontaneous fission and states with spin values up to I=14 can be reached in fission gamma spectroscopy studies with the presently achieved sensitivity of gamma arrays. New results on yrast states in the {sup 134}Te and {sup 135}I nuclei populated in fission of the {sup 248}Cm presented at this conference illustrate such application of the resolving power offered by modern gamma techniques.

  17. New high spin states and band termination in 83Y and 84Zr

    International Nuclear Information System (INIS)

    Johnson, T.D.; Aprahamian, A.; Lister, C.J.; Blumenthal, D.J.; Crowell, B.; Chowdhury, P.; Fallon, P.; Machiavelli, A.O.

    1997-01-01

    The gamma decay of high spin yrast states in 83 Y up to I π =59/2 + and 53/2 - have been observed using the reaction 58 Ni( 29 Si,3p) at 110 MeV and the Gammasphere Early Implementation Array. The level scheme has been substantially extended due to the observations of several new transitions in all of the bands. A sequence of transitions feeding into the positive parity yrast band above I π =47/2 + seems to be consistent with a noncollective oblate structure expected at these high spins. A similar cascade is found in the data for 84 Zr. A new forking of the favored negative parity band is found which may be due to neutron alignment polarizing the core to a different shape. This suggests that the open-quotes isomeric close-quote close-quote band in 83 Y, for which one more connecting transition was found, is of a similar nature to other high-K bands found in this region. Lifetime measurements in the unfavored negative parity band are consistent with cranking calculations which predict a nearly oblate shape with a deformation parameter β 2 ∼0.2. A qualitative analysis of line shapes at very high spins suggests the persistence of collectivity in the yrast sequence to the highest excitations seen. copyright 1997 The American Physical Society

  18. New high spin states and band termination in {sup 83}Y and {sup 84}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T.D.; Aprahamian, A. [University of Notre Dame, Notre Dame, Indiana 46556 (United States); Lister, C.J.; Blumenthal, D.J.; Crowell, B. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Chowdhury, P. [University of Massachusetts, Lowell, Massachusetts 01854 (United States); Fallon, P.; Machiavelli, A.O. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    1997-03-01

    The gamma decay of high spin yrast states in {sup 83}Y up to I{sup {pi}}=59/2{sup +} and 53/2{sup {minus}} have been observed using the reaction {sup 58}Ni({sup 29}Si,3p) at 110 MeV and the Gammasphere Early Implementation Array. The level scheme has been substantially extended due to the observations of several new transitions in all of the bands. A sequence of transitions feeding into the positive parity yrast band above I{sup {pi}}=47/2{sup +} seems to be consistent with a noncollective oblate structure expected at these high spins. A similar cascade is found in the data for {sup 84}Zr. A new forking of the favored negative parity band is found which may be due to neutron alignment polarizing the core to a different shape. This suggests that the {open_quotes}isomeric{close_quote}{close_quote} band in {sup 83}Y, for which one more connecting transition was found, is of a similar nature to other high-K bands found in this region. Lifetime measurements in the unfavored negative parity band are consistent with cranking calculations which predict a nearly oblate shape with a deformation parameter {beta}{sub 2}{approx}0.2. A qualitative analysis of line shapes at very high spins suggests the persistence of collectivity in the yrast sequence to the highest excitations seen. {copyright} {ital 1997} {ital The American Physical Society}

  19. High-spin structure of 121Xe: triaxiality, band termination and signature inversion

    International Nuclear Information System (INIS)

    Timar, J.; Paul, E.S.; Beausang, C.W.; Joyce, M.J.; Sharpey-Schafer, J.F.

    1995-01-01

    High-spin states of the odd-neutron 121 Xe nucleus have been studied with Eurogam using the 96 Zr( 30 Si, 5n) 121 Xe fusion-evaporation reaction. The level scheme has been extended up to a tentative spin of 67/2h at an excitation energy of ∼ 14 MeV. Several new rotational bands have been observed and the previously known bands extended. Two of them lose their regular character at high spins, which may be interpreted as transition from collective behaviour to a regime of noncollective oblate states. The deduced high-spin structure is compared to Woods-Saxon TRS cranking and CSM calculations. Configurations of the bands have been suggested. The νh 1 1/2 band is interpreted as having a triaxial shape. Signature inversion and an unexpectedly large staggering of the B(M1)/B(E2) ratios has been found for one of the bands. Enhanced E1 transitions have been observed between the νd 5/2 and the νh 1 1/2 bands. (orig.)

  20. Structure of high-spin states in A {approx} 60 region

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Hitoshi [Chiba Univ. (Japan); Furutaka, K; Hatsukawa, Y [and others

    1998-03-01

    High-spin states in the proton-rich Cu-Zn nuclei are investigated by the experiments at JAERI. New levels and {gamma}-rays are identified by the particle-{gamma}-{gamma} coincidence, and J{sup P} assignments are made via the DCO ratio analysis. Yrast sequences are observed up to J {approx} 18 for {sup 62}Zn, and {sup 64}Zn, J {approx} 27/2 for {sup 61}Cu and J {approx} 23/2 for {sup 63}Cu. Though we cannot settle new J{sup P} values for {sup 61,63}Zn, their yrast sequence is also extended. In {sup 64}Zn, a doublet of {gamma}-rays is discovered at 1315 keV, clarifying the similarity in the level scheme between {sup 62}Zn and {sup 64}Zn. We reproduce the yrast levels by a shell-model calculation, by which structure of the high-spin states is further studied. A parity change in the yrast sequence is established, in which the unique-parity orbit 0g{sub 9/2} plays an essential role; one nucleon excitation to g{sub 9/2} gains high angular momentum with low seniority, at the cost of the single-parity energy. Second parity-change is also suggested by the calculation. Such parity change seems characteristic to spherical or nearly spherical nuclei. In {sup 61}Cu, concentration of the {gamma}-ray intensity is observed. This happens because a stretched 3-quasiparticle configuration including 0g{sub 9/2} is relatively stable, similarly to some isomers. Thus, by studying the structure of the high-spin states of the A {approx} 60 nuclei, we have clarified the role of unique-parity orbit in high-spin states, which may be generic to spherical and nearly spherical nuclei. (J.P.N.)

  1. Isomeric and high-spin states of 94Tc and the search for yrast isomers near Napprox.50

    International Nuclear Information System (INIS)

    Lee, I.Y.; Johnson, N.R.; McGowan, F.K.; Young, G.R.; Guidry, M.W.; Yates, S.W.

    1981-01-01

    A search for isomers in the Napprox.50 region has produced no evidence of high-spin yrast isomerism. A new 4.5-ns low-multiplicity isomer has been identified and assigned to 94 Tc, while the yrast sequence of 94 Tc has been established to more than 5 MeV in excitation energy

  2. High-spin nuclear structure studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Baktash, C.

    1992-01-01

    Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), nuclear physicists are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial-octupole shapes, or to investigate the T=O pairing correlations. In this paper, the author reviews, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, a list of the beam species, intensities and energies that are needed to fulfill these goals is presented. The paper concludes with a description of the experimental techniques and instrumentations that are required for these studies

  3. Nuclear structure at high-spin and large-deformation

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi R.

    2000-01-01

    Atomic nucleus is a finite quantal system and shows various marvelous features. One of the purposes of the nuclear structure study is to understand such features from a microscopic viewpoint of nuclear many-body problem. Recently, it is becoming possible to explore nuclear states under 'extreme conditions', which are far different from the usual ground states of stable nuclei, and new aspects of such unstable nuclei attract our interests. In this lecture, I would like to discuss the nuclear structure in the limit of rapid rotation, or the extreme states with very large angular momenta, which became accessible by recent advent of large arrays of gamma-ray detecting system; these devices are extremely useful to measure coincident multiple γ-rays following heavy-ion fusion reactions. Including such experimental aspects as how to detect the nuclear rotational states, I review physics of high-spin states starting from the elementary subjects of nuclear structure study. In would like also to discuss the extreme states with very large nuclear deformation, which are easily realized in rapidly rotating nuclei. (author)

  4. Gyromagnetic factors for high spin states in the actinides

    International Nuclear Information System (INIS)

    Ring, P.

    1984-01-01

    The cranked Hartree-Fock-Bogoliubov theory was used for a systematic investigation of gyromagnetic factors in the yrast states of even-even actinide nuclei. The theory used was the most simplified version with fixed deformation and gap parameters, that is, so-called rotating shell model. The gyromagnetic factor g and the contribution gsub(p) and gsub(n) were obtained for a large number of nuclei in the actinide region. The aligned angular momenta for protons and for neutrons are shown in the same actinide region. The general behaviour of g-factor was able to be understood in terms of simple rules: (i) For fixed proton number, neutron alignment becomes more difficult with increasing the neutron number, and vice versa. (ii) A sudden neutron alignment was observed for N=140 and N=146, and a sudden proton alignment was also observed for Z=94. The alignment between these critical numbers was smooth. The pattern obtained for the values of the aligned angular momentum was clearly reflected to the g-factor, and it provided an excellent tool to study the structure of level in the high spin region. (Asami, T.)

  5. High spin exotic states and new method for pairing energy

    International Nuclear Information System (INIS)

    Molique, H.

    1996-01-01

    We present a new method called 'PSY-MB', initially developed in the framework of abstract group theory for the solution of the problem of strongly interacting multi-fermionic systems with particular to systems in an external rotating field. The validity of the new method (PSY-MB) is tested on model Hamiltonians. A detailed comparison between the obtained solutions and the exact ones is performed. The new method is used in the study of realistic nuclear Hamiltonians based on the Woods-Saxon potential within the cranking approximation to study the influence of residual monopole pairing interactions in the rare-earth mass region. In parallel with this new technique we present original results obtained with the Woods-Saxon mean-field and the self-consistent Hartree-Fock approximation in order to investigate such exotic effects as octupole deformations and hexadecapole C 4 -polarizing deformations in the framework of high-spin physics. By developing these three approaches in one single work we prepare the ground for the nuclear structure calculations of the new generation - where the residual two-body interactions are taken into account also in the weak pairing limit. (author)

  6. A new high-spin isomer in {sup 195}Bi

    Energy Technology Data Exchange (ETDEWEB)

    Roy, T.; Mukherjee, G.; Rana, T.K.; Bhattacharya, Soumik; Asgar, Md.A.; Bhattacharya, C.; Bhattacharya, S.; Bhattacharyya, S.; Pai, H. [Variable Energy Cyclotron Centre, Kolkata (India); Madhavan, N.; Bala, I.; Gehlot, J.; Gurjar, R.K.; Jhingan, A.; Kumar, R.; Muralithar, S.; Nath, S.; Singh, R.P.; Varughese, T. [Inter University Acclerator Centre, New Delhi (India); Basu, K.; Bhattacharjee, S.S.; Ghugre, S.S.; Raut, R.; Sinha, A.K. [UGC-DAE-CSR Kolkata Centre, Kolkata (India); Palit, R. [Tata Institute of Fundamental Research, Department of Nuclear and Atomic Physics, Mumbai (India)

    2015-11-15

    A new high-spin isomer has been identified in {sup 195}Bi at the focal plane of the HYbrid Recoil mass Analyser (HYRA) used in the gas-filled mode. The fusion evaporation reactions {sup 169}Tm ({sup 30}Si, x n) {sup 193,} {sup 195}Bi were used with the beam energies on targets of 168 and 146MeV for 6n and 4n channels, respectively. The evaporation residues, separated from the fission fragments, and their decays were detected at the focal plane of HYRA using MWPC, Si-Pad and clover HPGe detectors. The half-life of the new isomer in {sup 195}Bi has been measured to be 1.6(1) μs. The configuration of the new isomer has been proposed and compared with the other isomers in this region. The Total Routhian Surface (TRS) calculations for the three-quasiparticle configurations corresponding to the new isomer suggest an oblate deformation for this isomeric state. The same calculations for different configurations in {sup 195}Bi and for the even-even {sup 194}Pb core indicate that the proton i{sub 13/2} orbital has a large shape driving effect towards oblate shape in these nuclei. (orig.)

  7. 91Mo and 89Nb high-spin states

    International Nuclear Information System (INIS)

    Baktybaev, K.; Kojlyk, N.; Ramankulov, K.E.

    2003-01-01

    In the work the shell-model calculation for 91 Mo and 89 Nb nuclei high-spin states with several valente nucleons is worked out. The nucleons have been arranged in the {2p 1/2 1g 9 / 2 } configurations above the 88 Sr twice magic frame. Using of formalism of generalized quasi-spin with H=H 0 +H pp +H nn +H pn Hamiltonian in which H pp , H nn , H pn the residual nucleon interactions have being written through generalized quasi-spin operators. The obtained scheme well reproduces experimental data for examined nuclei up to 31/2 + , 33/2 - levels with seniority ν=3.5. Similarity of the spectroscopic structures of the nucleus levels with different protons and neutrons numbers above inert frame shows independence of nucleon-nucleon interactions from isotope spins of particles. There are analogous comparison of some negative yrast bands parity levels. The theory well transmits intensity values for electromagnet transitions between states. Besides the observed nuclei's properties does not give any indication on presence of valent nucleons collective motion in the both nuclei

  8. Observations of high spin states in {sup 179}Au

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.P.; Ahmad, I.; Blumenthal, D.J. [and others

    1995-08-01

    As part of a current study on the properties of the {pi} i{sub 13/2} intruder state in the A = 175-190 region, we conducted an experiment at ATLAS to observe high spin states in {sup 179}Au utilizing the reaction {sup 144}Sm({sup 40}Ar,p4n) at beam energies of 207 MeV and 215 MeV. To aid in the identification of {sup 179}Au, and to filter out the large amount of events from fission by-products, the Fragment Mass Analyzer was utilized in conjunction with ten Compton-suppression germanium detectors. In total, 11 x 10{sup 6} {gamma}-{gamma} and 4 x 10{sup 5} {gamma}-recoil events were collected. By comparing {gamma}-rays in coincidence with an A = 179 recoil mass gate and {gamma}-rays in coincidence with Au K{alpha} and K{beta} X-rays, ten {gamma}-rays were identified as belonging to {sup 179}Au. Based on {gamma}-ray coincidence relationships and on comparisons with neighboring odd-A Au nuclei, we constructed a tentative level scheme and assigned a rotational-like sequence to the {pi} i{sub 13/2} proton configuration.

  9. High spin {gamma}-ray spectroscopy of {sup 121,122}Xe

    Energy Technology Data Exchange (ETDEWEB)

    Timmers, H [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; [Department of Physics, SUNY at Stony Brook, NY (United States); Riley, M A; Hanna, F; Mullins, S M; Sharpey-Schafer, J F [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Hughes, J R; Fossan, D B; Liang, Y; Ma, R; Xu, N [Department of Physics, SUNY at Stony Brook, NY (United States); Simpson, J; Bentley, M A [Daresbury Lab. (United Kingdom); Bengtsson, T [Lund Univ. (Sweden). Dept. of Mathematical Physics; Wyss, R [Institute for Heavy Ion Research, Oak Ridge, TN (United States)

    1992-08-01

    High-spin states have been populated in {sup 121,122}Xe using the reactions {sup 108}Pd({sup 16}O,3n){sup 121}Xe at 65 MeV and {sup 96}Zr({sup 30}Si,4n/5n){sup 122}Xe/{sup 121}Xe at 135 MeV. Coincident {gamma} rays following the neutron evaporation were detected by six Compton-suppressed Ge detectors and the TESSA3 array respectively. The level structure of {sup 121}Xe and {sup 122}Xe has been extended up to 47/2 {Dirac_h} and 32 {Dirac_h} respectively. In {sup 121}Xe a coupled band was found feeding the 19/2{sup -} level. In {sup 122}Xe several decays are suggested to be a sequence of stretched E2 quadrupole transitions connecting states of positive parity. While in {sup 121}Xe this phenomenon was not observed, at high spin a phase transition from prolate collective rotation to oblate single particle excitation was detected in {sup 122}Xe. For the new, probably positive parity side band in{sup 122}Xe a four quasi-neutron or a two quasi-proton configuration of h{sub 11/2} quasi-nucleons might be considered. The positive parity high spin structure in {sup 122}Xe contains three I{sup {pi}} = 22{sup +} states of different character. This is predicted by TRS (total Routhian surface) calculations, which identify these states as two shapes with predominantly prolate collective characteristic and the third as an oblate single particle configuration. 12 refs., 3 figs.

  10. Properties of neutron-rich hafnium high-spin isomers

    CERN Multimedia

    Tungate, G; Walker, P M; Neyens, G; Billowes, J; Flanagan, K; Koester, U H; Litvinov, Y

    It is proposed to study highly-excited multi-quasiparticle isomers in neutron-rich hafnium (Z=72) isotopes. Long half-lives have already been measured for such isomers in the storage ring at GSI, ensuring their accessibility with ISOL production. The present proposal focuses on:\\\\ (i) an on-line experiment to measure isomer properties in $^{183}$Hf and $^{184}$Hf, and\\\\ (ii) an off-line molecular breakup test using REXTRAP, to provide Hf$^{+}$ beams for future laser spectroscopy and greater sensitivity for the future study of more neutron-rich isotopes.

  11. Studies on the decay of high-spin isomers in the W and Os isotopes

    International Nuclear Information System (INIS)

    Kraemer-Flecken, A.

    1988-01-01

    From the two experiments performed on the nucleus 180 Os the properties of the new high-spin isomer could be found. The excitation energy amounts to 5208 keV and the spin of the isomer amounts probably to I=19ℎ. The new measured half-life amounts to T 1/2 =41±10 ns. It is populated with an intensity of 1.6±0.4% relative to the (4 + → 2 +) transition in the Yrast band in an experiment with out use of the recoil-shadow technique. A preliminary decay scheme could be established from the sum spectra and exhibits similarities with the decay of the high-spin isomer in 182 Os. From the analysis of the experiment on the nucleus 178 W a new isomer with an excitation energy of 5271 keV and a half-life of T 1/2 =39±10 ns could be identified. The spin of the level has been determined to I=20±1. The half-life of the 3527 keV isomer has been determined to T 1/2 =28±4 ns. The spin of the isomer could be determined from the analysis of DCO ratios to I π =14 - . The configuration of the isomer could be fixed to ν6 + 5/2 - 5 512 7 x 7/2 5 514 7 +π8 - 7/2 + 5 404 7 x 9/2 5 514 7 because of the comparison with the 14 - isomer in 176 Hf and the comparison of the excitation energy for certain configurations with I π =14 - . (orig./HSI)

  12. Highly spin-polarized materials and devices for spintronics∗.

    Science.gov (United States)

    Inomata, Koichiro; Ikeda, Naomichi; Tezuka, Nobuki; Goto, Ryogo; Sugimoto, Satoshi; Wojcik, Marek; Jedryka, Eva

    2008-01-01

    The performance of spintronics depends on the spin polarization of the current. In this study half-metallic Co-based full-Heusler alloys and a spin filtering device (SFD) using a ferromagnetic barrier have been investigated as highly spin-polarized current sources. The multilayers were prepared by magnetron sputtering in an ultrahigh vacuum and microfabricated using photolithography and Ar ion etching. We investigated two systems of Co-based full-Heusler alloys, Co 2 Cr 1 - x Fe x Al (CCFA( x )) and Co 2 FeSi 1 - x Al x (CFSA( x )) and revealed the structure and magnetic and transport properties. We demonstrated giant tunnel magnetoresistance (TMR) of up to 220% at room temperature and 390% at 5 K for the magnetic tunnel junctions (MTJs) using Co 2 FeSi 0.5 Al 0.5 (CFSA(0.5)) Heusler alloy electrodes. The 390% TMR corresponds to 0.81 spin polarization for CFSA(0.5) at 5 K. We also investigated the crystalline structure and local structure around Co atoms by x-ray diffraction (XRD) and nuclear magnetic resonance (NMR) analyses, respectively, for CFSA films sputtered on a Cr-buffered MgO (001) substrate followed by post-annealing at various temperatures in an ultrahigh vacuum. The disordered structures in CFSA films were clarified by NMR measurements and the relationship between TMR and the disordered structure was discussed. We clarified that the TMR of the MTJs with CFSA(0.5) electrodes depends on the structure, and is significantly higher for L2 1 than B2 in the crystalline structure. The second part of this paper is devoted to a SFD using a ferromagnetic barrier. The Co ferrite is investigated as a ferromagnetic barrier because of its high Curie temperature and high resistivity. We demonstrate the strong spin filtering effect through an ultrathin insulating ferrimagnetic Co-ferrite barrier at a low temperature. The barrier was prepared by the surface plasma oxidization of a CoFe 2 film deposited on a MgO (001) single crystal substrate, wherein the spinel

  13. High-spin states of 39K and 42Ca, ch. 4

    International Nuclear Information System (INIS)

    Eggenhuisen, H.H.; Elstrom, L.P.; Engelbertink, G.A.P.; Aarts, H.J.M.

    1978-01-01

    High-spin states of 39 K and 42 Ca have been investigated with the 28 Si( 16 O, αpγ) 39 K and 28 Si( 16 O, 2pγ) 42 Ca reactions at a beam energy of 45 MeV. Gamma-gamma coincidence, γ-ray angular distribution and linear polarization measurements were performed with a Ge(Li)-NaI(Tl) Compton suppression spectrometer and a three-crystal Ge(Li) Compton polarimeter. High-spin states of 39 K at Esub(x)=7.14, 7.78 and 8.03 and of 42 Ca at Esub(x)=7.75 MeV are established. Unambiguous spin-parity assignments of Jsup(π)=11/2 - , 13/2 - , 15/2 + , 15/2 - , 17/2 + and 19/2 - to the 39 K levels at Esub(x)=5.35, 5.72, 6.48, 7.14, 7.78 and 8.03 MeV and of 6 - , 7 - , 8 - , 9 - and (8,10) to the 42 Ca levels at Esub(x)=5.49, 6.15, 6.41, 6.55 and 7.37 MeV, respectively, have been obtained. Further spin-parity restrictions, lifetime limits, excitation energies, branching ratios and multipole mixing ratios are reported. Discrepancies with previous Jsup(π) assignments are discussed in detail. (Auth.)

  14. High spin states in 181Ir and backbending phenomena in the Os-Pt region

    Science.gov (United States)

    Kaczarowski, R.; Garg, U.; Funk, E. G.; Mihelich, J. W.

    1992-01-01

    The 169Tm(16O,4n)181Ir reaction has been employed to investigate the high spin states of 181Ir using in-beam γ spectroscopy. A well-developed system of levels built on the h9/2 subshell was identified up to a maximum spin of (41/2-). Two rotational bands built on the isomeric states with τ1/2=0.33 μs (Ex=289.2 keV) and 0.13 μs (Ex=366.2 keV), respectively, were observed. The deduced gK values of 1.19+/-0.11 and 1.50+/-0.12 indicate Nilsson assignments of 9/2-[514] and 5/2+[402], respectively, for the bandheads of these bands. A high spin (I>=19/2) isomer with τ1/2=22 ns was found at an excitation energy above 1.96 MeV. The experimental results are discussed in terms of rotational models including Coriolis coupling and providing for a stable triaxial shape of the 181Ir nucleus.

  15. Symmetry-breaking and high-spin states

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, F C [Alberta Univ., Edmonton, AB (Canada). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada)

    1992-08-01

    Spontaneous symmetry breaking in nuclear matter would require Nambu-Goldstone bosons in the system. A model calculation gives the nature of these excitations. In finite nuclei the excitations will be a mixture of rotational, surface vibrations and pseudo-Goldstone bosons. A search for such excitations would be fruitful. (author). 5 refs.

  16. High spin states and isomeric decays in doubly-odd 208Fr

    International Nuclear Information System (INIS)

    Kanjilal, D.; Bhattacharya, S.; Goswami, A.; Kshetri, R.; Raut, R.; Saha, S.; Bhowmik, R.K.; Gehlot, J.; Muralithar, S.; Singh, R.P.; Jnaneswari, G.; Mukherjee, G.; Mukherjee, B.

    2010-01-01

    Neutron deficient isotopes of francium (Z=87, N∼121-123) as excited nuclei were produced in the fusion-evaporation reaction: 197 Au( 16 O, xn) 213-x Fr at 100 MeV. The γ rays from the residues were observed through the high sensitivity Germanium Clover detector array INGA. The decay of the high spin states and the isomeric states of the doubly-odd 208 Fr nuclei, identified from the known sequence of ground state transitions, were observed. The half-lives of the E γ =194(2) keV isomeric transition, known from earlier observations, was measured to be T 1/2 =233(18) ns. A second isomeric transition at E γ =383(2) keV and T 1/2 =33(7) ns was also found. The measured half-lives were compared with the corresponding single particle estimates, based on the level scheme obtained from the experiment.

  17. Magnetic moments of high spin rotational states in 158Dy and 164Dy+

    International Nuclear Information System (INIS)

    Seiler-Clark, G.

    1983-09-01

    For the study of their magnetic moments yrast states in 158 Dy and 164 Dy were excited via the multiple-Coulomb excitation by a 4.7 MeV/u 208 Pb beam. Hereby especially the question was of interest, how the one-particle effects in the nuclear structure in the region of the backbending anomaly in 158 Dy take effects on the g-factors of the high spin states in this region. The particle-γ angular correlations perturbed in the transient magnetic field during the passing of the excited Dy ions through a thin magnetized iron foil were measured. By the selective position-sensitive detection of Dy recoil ions and Pb projectiles under forward angles it was possible to determine additionally to the g-factors in the backbending region also g-factors in the spin region I 158 Dy and 164 Dy by detection of the particle-γ correlations precessing in the static hyperfine field after implantation in iron. The static hyperfine field was at the 4 + state in 164 Dy determined to B (Dy,Fe) = 245+-25 T. The g-factors were determined by comparison of the experimental results with calculations of the perturbed angular correlations by time-differential regarding of the population and de-excitation of the yrast states as well as by precession and hyperfine-relaxation effects during the flight of the Dy ions in the vacuum. (orig./HSI) [de

  18. Elimination of Power Divergences in Consistent Model for Spinless and High-Spin Particle Interactions

    International Nuclear Information System (INIS)

    Kulish, Yu.V.; Rybachuk, E.V.

    2007-01-01

    The currents for the interaction of the massive high-spin boson (J≥1) with two spinless particles are derived. These currents obey the theorem on currents and fields as well as the theorem on current asymptotics. In one-loop approximation the contributions of high-spin boson to the self-energy operator for a spinless particle are calculated. It is shown that in one loop approximation the high-spin boson contributions for any spin J and mass lead to finite self-energy operators of spinless-particle

  19. Intrinsic properties of high-spin band structures in triaxial nuclei

    Science.gov (United States)

    Jehangir, S.; Bhat, G. H.; Sheikh, J. A.; Palit, R.; Ganai, P. A.

    2017-12-01

    The band structures of 68,70Ge, 128,130,132,134Ce and 132,134,136,138Nd are investigated using the triaxial projected shell model (TPSM) approach. These nuclei depict forking of the ground-state band into several s-bands and in some cases, both the lowest two observed s-bands depict neutron or proton character. It was discussed in our earlier work that this anomalous behaviour can be explained by considering γ-bands based on two-quasiparticle configurations. As the parent band and the γ-band built on it have the same intrinsic structure, g-factors of the two bands are expected to be similar. In the present work, we have undertaken a detailed investigation of g-factors for the excited band structures of the studied nuclei and the available data for a few high-spin states are shown to be in fair agreement with the predicted values.

  20. In-medium scaling law and electron scattering from high-spin states in 208Pb

    International Nuclear Information System (INIS)

    Arias de Saavedra, F.; Lallena, A.M.

    1994-01-01

    The effects of the environment modifications in the structure of the low-lying high-spin states of 208 Pb are studied by analyzing how the in-medium scaling law works on the excitation energies, wave functions, and electron scattering form factors corresponding to these states. It is shown that the consideration of f π * in addition to the effective ρ-meson mass does not affect too much most of the states analyzed. However, some of them appear to be extremely sensitive to its inclusion in the residual nucleon-nucleon interaction. As a result, a value of m ρ * /m ρ ∼f π * /f π ∼0.91 gives a good description of the (e,e') form factors of these particular states without any quenching factor. This value is in agreement with the one found for 48 Ca in a similar analysis performed in a previous work

  1. High spin spectroscopy of near spherical nuclei: Role of intruder orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S.; Bhattacharjee, T.; Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064 (India); Chanda, S. [Fakir Chand College, Diamond Herbour, West Bengal (India); Banerjee, D.; Das, S. K.; Guin, R. [Radiochemistry Division, Variable Energy Cyclotron Centre, BARC, Kolkata - 700064 (India); Gupta, S. Das [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064, India and Saha Institute of Nuclear Physics, Kolkata-700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064, India and Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states of nuclei in the vicinity of neutron shell closure N = 82 and proton shell closure Z = 82 have been studied using the Clovere Ge detectors of Indian National Gamma Array. The shape driving effects of proton and neutron unique parity intruder orbitals for the structure of nuclei around the above shell closures have been investigated using light and heavy ion beams. Lifetime measurements of excited states in {sup 139}Pr have been done using pulsed-beam-γ coincidence technique. The prompt spectroscopy of {sup 207}Rn has been extended beyond the 181μs 13/2{sup +} isomer. Neutron-rich nuclei around {sup 132}Sn have been produced from proton induced fission of {sup 235}U and lifetime measurement of low-lying states of odd-odd {sup 132}I have been performed from offline decay.

  2. High spin study and lifetime measurements of neutron rich Co isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Regan, P H; Arrison, J W; Huttmeier, U J; Balamuth, D P [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Physics

    1992-08-01

    The neutron rich nuclei {sup 61,63}Co have been studied using the reactions {sup 16}O({sup 48}Ca,p2n){sup 61}Co at 110 MeV and {sup 18}O({sup 48}Ca,p2n){sup 63}Co at 110 MeV respectively. Discrete lines from the channels of interest were investigated using pre-scaled {gamma} singles, charged-particle-{gamma}, neutron-charged-particle-{gamma} and charged particle-{gamma}-{gamma} data. Decay schemes, with level spins deduced from angular distribution data are presented together with preliminary information on the lifetimes of some higher excitation states. These data represent the first study on the medium to high spin states in these nuclei. (author). 9 refs., 1 tab., 4 figs.

  3. High-frequency EPR on high-spin transition-metal sites

    NARCIS (Netherlands)

    Mathies, Guinevere

    2012-01-01

    The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In

  4. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Mamta [Nuclear Science Centre, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India)

    2006-07-15

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line.

  5. Two-proton radioactivity in proton-rich fp shell nuclei at high spin

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2006-01-01

    Two-proton radioactivity in extremely proton-rich fp shell nuclei at high spins is investigated in a theoretical framework. Separation energy and entropy fluctuate with spin and hence affect the location of the proton drip line

  6. Evolution of nuclear collectivity at high spins and temperatures

    International Nuclear Information System (INIS)

    Baktash, C.

    1989-01-01

    In the past few years, we have utilized the Spin Spectrometer and a variety of complementary probes (continuum γrays, proton-γ coincidence spectroscopy and γ decay of GDR) to study the nuclear response to the DIFFERENTIAL effects of increasing spin and temperature for constant values of excitation energy or spin, respectively. In this paper we shall describe two of the experiments that trace the properties of rapidly-rotating nuclei at small to moderate excitation energies. 22 refs., 7 figs

  7. High spin states and Yrast isomers in 211Rn

    International Nuclear Information System (INIS)

    Poletti, A.R.; Dracoulis, G.D.; Fahlander, C.; Morrison, I.

    1981-01-01

    Excited states in 211 Rn with spins up to 53/2 have been identified using (HI,xn) reactions and γ-ray techniques. A shell model calculation can reproduce the ordering of the yrast sequence up to spin 41/2 - . Several yrast isomers have been identified. Enhanced E3 transitions are observed and their systematic occurrence in this region discussed. The influence of the neutron hole, and possible core excitations on the effective moment of inertia are also pointed out

  8. High spin states and yrast isomers in 211Rn

    International Nuclear Information System (INIS)

    Poletti, A.R.; Dracoulis, G.D.; Fahlander, C.; Morrison, I.

    1980-12-01

    Excited states in 211 Rn with spins up to 53/2 have been identified using (HI,xn) reactions and γ-ray techniques. A shell model calculation can reproduce the ordering of the yrast sequence up to spin 41/2. Several yrast isomers have been identified. Enhanced E3 transitions are observed and their systematic occurrence in this region discussed. The influence of the neutron hole, and possible core excitations on the effective moment of inertia are also pointed out

  9. Discrete spectroscopy in {sup 180}Os at high spins

    Energy Technology Data Exchange (ETDEWEB)

    Marti, G; Venkova, Ts; Morek, T; Schnare, H; Gast, W; Georgiev, A; Spohr, K M; Lieder, R M [Institut fuer Kernphysik, KFA-Juelich (Germany); Maier, K H [Hahn-Meitner-Institut Berlin GmbH (Germany); Zell, K O [Institut fuer Kernphysik, Universitaet Koeln (Germany)

    1992-08-01

    New information on rotational bands in {sup 180}Os was obtained from a discrete spectroscopy experiment in which the final nucleus was populated through the {sup 150}Nd({sup 36}S,6n) reaction at 177 MeV. A new strongly-coupled rotational band starting at a relatively high excitation energy was found. The observation and placement of the 185.6 keV in the level scheme gives strong support to a hypothetical 2-quasineutron configuration assigned to the 7{sup -} isomeric bands in {sup 180}Os and the isotone {sup 178}W. Band mixing between the (-,1){sub 1} and (-,1){sub 3} bands of same parity and signature was observed, and the interaction strength was estimated from experimental branching ratios. The authors` results confirm a previous assignment for the yrast and yrare sequences in this nucleus. With the identification of new transitions above the states with I {approx_equal} 24, previously assigned bands had to be revised, with the result that the second band crossing vanishes. 23 refs., 3 figs.

  10. In-beam studies of high-spin states of actinide nuclei

    International Nuclear Information System (INIS)

    Stoyer, M.A.; California Univ., Berkeley, CA

    1990-01-01

    High-spin states in the actinides have been studied using Coulomb- excitation, inelastic excitation reactions, and one-neutron transfer reactions. Experimental data are presented for states in 232 U, 233 U, 234 U, 235 U, 238 Pu and 239 Pu from a variety of reactions. Energy levels, moments-of-inertia, aligned angular momentum, Routhians, gamma-ray intensities, and cross-sections are presented for most cases. Additional spectroscopic information (magnetic moments, M 1 /E 2 mixing ratios, and g-factors) is presented for 233 U. One- and two-neutron transfer reaction mechanisms and the possibility of band crossings (backbending) are discussed. A discussion of odd-A band fitting and Cranking calculations is presented to aid in the interpretation of rotational energy levels and alignment. In addition, several theoretical calculations of rotational populations for inelastic excitation and neutron transfer are compared to the data. Intratheory comparisons between the Sudden Approximation, Semi-Classical, and Alder-Winther-DeBoer methods are made. In connection with the theory development, the possible signature for the nuclear SQUID effect is discussed. 98 refs., 61 figs., 21 tabs

  11. High spin states in 63Cu. 17/2+ isomeric yrast state

    International Nuclear Information System (INIS)

    Tsan Ung Chan; Bruandet, J.F.; Dauchy, A.; Giorni, A.; Glasser, F.; Morand, C.; Chambon, B.; Drain, D.

    1979-01-01

    The 63 Cu nucleus has been studied via the reaction 61 Ni(α, pnγ), using different in beam γ spectroscopy techniques. An isomeric high-spin Yrast state 17/2 + (tau = 6.1 +- 0.6ns) is located at 4498 keV. The gsub(9/2) shell must be involved to explain positive high-spin states established in this work [fr

  12. Hot nuclei with high spin states in collisions between heavy nuclei

    International Nuclear Information System (INIS)

    Galin, J.

    1991-01-01

    In the first part of this contribution we have shown that pretty hot nuclei could be obtained in peripheral collisions of Kr+Au. The collisions considered in the chosen example give rise to a nucleus of Z=28 with a kinetic energy of 1600 MeV (i.e. a velocity close to 27 MeV/u to be compared with the 32 MeV/u of the beam). The excitation energy deposited in the non-detected target like-nucleus, deduced from the neutron multiplicity measurements, amounts to 700 MeV (T= 6 MeV). In the second part of the contribution one used the well known properties of fission, and particularly its sensitivity to spin, to show in a qualitative way that pretty high spin values are into play. A more quantitative analysis together with additional measurements are still needed in order to infer precise figures of spin. It can be noted that for the 29 MeV/u Pb+Au reaction 1 max amounts to 1700 ℎ. If we assume that the sticking or rolling conditions can be fulfilled for initial angular momenta of about 2/3 1 max , then a projectile-like (and its target partner) could acquire an intrinsic spin of about 160 ℎ. The behavior of a Pb-like nucleus brought in such an exotic state (T=6 MeV and J=160ℎ)) is certainly worth to be studied in detail. It is also worth recalling that, when obtained in peripheral collisions, the hot nuclei thus formed do not suffer much initial compression at variance with what happens in more central collisions. There is thus an interesting field to be explored of hot, high spin but uncompressed nuclei

  13. Heavy-ion transfer to high-spin states

    International Nuclear Information System (INIS)

    Lauterbach, C.

    1985-01-01

    Transfer reactions between very heavy ions, in particular about systems in which one or both collision partners are well deformed, are studied. These systems are expected to give rise to new phenomena which are related to the fact that the deformed nucleus has been Coulomb excited to a rotational or vibrational state at the time when the collision partners come into contact. In this paper the authors present results of experiments in which nuclei from the rare earth and the actinide region have been bombarded by various projectiles ranging from 34 S to 208 Pb at incident energies close to the Coulomb barrier. (Auth.)

  14. Shell model study of high spin states in the N=50 nucleus 93Tc

    International Nuclear Information System (INIS)

    Ghugre, S.S.; Patel, S.B.; Bhowmik, R.K.

    1994-01-01

    High spin states in the N=50 nucleus 93 Tc were reinvestigated by using the reaction 64 Zn ( 35 Cl, 4p 2n) at a beam energy of 140 MeV. This was done particularly with a view to observe any γ rays upto 2.7 MeV which may have been missed in our earlier study where the experimental conditions were set to observe γ rays upto 2 MeV. We found four new γ rays of energy: 2484, 2164, 2130 and 69 keV. We have placed these γ rays in the level scheme and it now gets extended to 49/2 - . Though there is no substantial change in the level scheme, placing the γ rays in the level scheme has resulted into two important conclusions: (1) We have performed shell model calculations for 93 Tc nucleus within a model space which encompasses an enlarged proton configuration and allows for the excitation of the neutron across the N=50 core. The excitation of a single neutron across the N=50 core satisfactorily explains the new level scheme. (2) The energy of the 17/2 - isomeric state is now unambiguously placed at 2185 keV. (orig.)

  15. Spectroscopy of high-spin states of 206Po

    International Nuclear Information System (INIS)

    Baxter, A.M.; Byrne, A.P.; Dracoulis, G.D.; Bark, R.A.; Riess, F.; Stuchbery, A.E.; Kruse, M.C.; Poletti, A.R.

    1990-05-01

    The yrast and near-yrast energy levels of 206 Po have been investigated to over 9 MeV excitation and up to spins with J=24. The measure-ments consisted of γ-γ coincidence data, internal-conversion-electron spectra, time spectra of γ-rays relative to a pulsed beam, excitation functions and γ-ray angular distributions. Two new isomers, with lifetime in the one-nonasecond range,were found. The observed structure is compared with the predictions of empirical shell-model calculations in which 206 Po is regarded as a 208 Pb core with two valence protons and four valence neutron holes. The agreement is generaly satisfactory for the observed odd-parity levels and for even parity levels with J > 12; those with J = 6 to 12 are better accounted for by weak coupling of two valence protons to a 204 Pb core in its 0 + 1, 2 + 1 and 4 + 1 states. 33 refs., 7 tabs., 12 figs

  16. High spin states in odd-odd {sup 132}Cs

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Takehito [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Lu, J; Furuno, K [and others

    1998-03-01

    Excited states with spin larger than 5 {Dirac_h} were newly established in the {sup 132}Cs nucleus via the {sup 124}Sn({sup 11}B,3n) reaction. Rotational bands built on the {nu}h{sub 11/2} x {pi}d{sub 5/2}, {nu}h{sub 11/2} x {pi}g{sub 7/2} and {nu}h{sub 11/2} x {pi}h{sub 11/2} configurations were observed up to spin I {approx} 16 {Dirac_h}. The {nu}h{sub 11/2} x {pi}h{sub 11/2} band shows inverted signature splitting below I < 14 {Dirac_h}. A dipole band was firstly observed in doubly odd Cs nuclei. (author)

  17. Paramagnetic properties of the low- and high-spin states of yeast cytochrome c peroxidase

    International Nuclear Information System (INIS)

    Vanwetswinkel, Sophie; Nuland, Nico A. J. van; Volkov, Alexander N.

    2013-01-01

    Here we describe paramagnetic NMR analysis of the low- and high-spin forms of yeast cytochrome c peroxidase (CcP), a 34 kDa heme enzyme involved in hydroperoxide reduction in mitochondria. Starting from the assigned NMR spectra of a low-spin CN-bound CcP and using a strategy based on paramagnetic pseudocontact shifts, we have obtained backbone resonance assignments for the diamagnetic, iron-free protein and the high-spin, resting-state enzyme. The derived chemical shifts were further used to determine low- and high-spin magnetic susceptibility tensors and the zero-field splitting constant (D) for the high-spin CcP. The D value indicates that the latter contains a hexacoordinate heme species with a weak field ligand, such as water, in the axial position. Being one of the very few high-spin heme proteins analyzed in this fashion, the resting state CcP expands our knowledge of the heme coordination chemistry in biological systems

  18. Paramagnetic properties of the low- and high-spin states of yeast cytochrome c peroxidase

    Energy Technology Data Exchange (ETDEWEB)

    Vanwetswinkel, Sophie; Nuland, Nico A. J. van; Volkov, Alexander N., E-mail: ovolkov@vub.ac.be [Vrije Universiteit Brussel, Jean Jeener NMR Centre, Structural Biology Brussels (Belgium)

    2013-09-15

    Here we describe paramagnetic NMR analysis of the low- and high-spin forms of yeast cytochrome c peroxidase (CcP), a 34 kDa heme enzyme involved in hydroperoxide reduction in mitochondria. Starting from the assigned NMR spectra of a low-spin CN-bound CcP and using a strategy based on paramagnetic pseudocontact shifts, we have obtained backbone resonance assignments for the diamagnetic, iron-free protein and the high-spin, resting-state enzyme. The derived chemical shifts were further used to determine low- and high-spin magnetic susceptibility tensors and the zero-field splitting constant (D) for the high-spin CcP. The D value indicates that the latter contains a hexacoordinate heme species with a weak field ligand, such as water, in the axial position. Being one of the very few high-spin heme proteins analyzed in this fashion, the resting state CcP expands our knowledge of the heme coordination chemistry in biological systems.

  19. Study of high-spin analog resonances near the N=50 neutron shell

    International Nuclear Information System (INIS)

    Gales, S.; El Hage, Y.; Schapira, J.P.; Fortier, S.; Laurent, H.; Maison, J.M.

    1979-01-01

    The 96 Zr( 3 He,d) 97 Nb and the 92 Mo( 3 He,d) 93 Tc reactions, investigated at, respectively 39.0 and 28.5 MeV incident energies, were used to selectively populate high-spin analog resonances in the 97 Nb and 93 Tc nuclei. Angular distributions were measured for the dsub(3/2), gsub(7/2) and hsub(11/2) analog states of the low-lying levels in 97 Zr. A DWBA analysis of the data for these unbound levels (using Gamov functions as form factors) was carried out and spectroscopic strengths extracted. The 96 Zr( 3 He,dp) and 92 Mo( 3 He,dp) reactions were performed, respectively, at 37.5 and 30 MeV incident energies. The angular distributions of the emitted protons were measured in coincidence using method II of Litherland and Ferguson with 0 0 detection of deuteron groups. Spins, population parameters and proton branching ratios to the ground state and excited states of the targets were determined from the analysis of the angular correlation data. The position of the neutron threshold as compared with the excitation energies of the analog states in 97 Nb and 93 Tc is found to be an important parameter in the extraction of the structure informations on core-excited components in the parent levels wave functions. Neutron particle-hole multiplets are observed for the first time in 96 Zr through the decay of the gsub(7 /2) and hsub(11/2) analog resonances. The limitation of the present method due to the neutron threshold or to the energy resolution in the proton channel is discussed and compared with the results of inelastic resonant scattering through isobaric analog resonances

  20. High spin levels in 62Zn, 64Zn, 66Zn, and 68Zn

    International Nuclear Information System (INIS)

    Bruandet, J.-F.

    1976-01-01

    Investigation by in-beam gamma spectroscopy of high-spin states in the even zinc isotopes has been made using the Ni(α,2nγ)Zn reactions at Esub(α) approximately equal to 30MeV for 62 Zn, 64 Zn and 66 Zn, and the 65 Cu(α,pγ) reaction at Esub(α) approximately equal to 18MeV for 68 Zn. The high-spin states feeding by varying the incident particles: p, 3 He,α, 12 C is discussed. It is pointed out that the gsub(9/2) orbital plays an important role in the structure of the high-spin states. The variation of the inertia momentum throughout the yrast line shows a backbending behavior and a shape transition associated to the occurence, for J>6, of rotational states is speculated [fr

  1. Excitation of high spin levels in 129Ba

    International Nuclear Information System (INIS)

    Gizon, J.; Gizon, A.

    1976-01-01

    The level structure of 129 Ba has been studied by the 120 Sn( 12 C,3nγ) reaction. A set of negative-parity levels based upon a 9/2 - state is interpreted in terms of the rotation-alignment coupling of hsub(11/2) neutron holes to the triaxial core. A new band structure built upon a 7/2 + state is also observed. It could be due to the coupling of a gsub(7/2) neutron hole to the triaxial core [fr

  2. Superdeformed and high-spin nuclear structure data on the INTERNET

    International Nuclear Information System (INIS)

    Singh, B.; Firestone, R.B.; Chu, S.Y.F.

    1997-01-01

    With the advent of the large detector arrays GAMMASPHERE, EUROGAM, and GASP, a wealth of new information about the properties of nuclei at high spin has become available. Superdeformed and high-spin nuclear structure data and associated bibliographic information made available on INTERNET by the Isotopes Project at LBNL are described. The Table of Superdeformed Bands and Fission Isomers on the INTERNET will be updated continuously, and new recent reference lists will be provided approximately every three months. This information will also be published annually in the Table of Isotopes CD-ROM updates. (author)

  3. Properties of high-spin boson interaction currents and elimination of power divergences

    International Nuclear Information System (INIS)

    Kulish, Yu.V.; Rybachuk, E.V.

    2001-01-01

    The problem of the elimination of the power divergences for the interactions of the high-spin bosons (J ≥ 1) is investigated. It is proved that in the consistent theory the high-spin boson interaction currents and the field tensors must obey similar requirements. Therefore the momentum dependencies of the propagators for all the bosons are the same. The partial differential equations derived for some components include the derivatives of order 2J for the currents. Therefore the current components for the spin-J boson must decrease with the momentum Kombi scalar p v Kombi scalar → ∞ at least as Kombi scalar p v Kombi scalar -2J

  4. Concerning moderate seniority mixing and the high spin states of some N=50 isotones

    International Nuclear Information System (INIS)

    Amusa, A.

    1987-11-01

    The high spin states of some N=50 isotones are studied in a shell model scheme involving the restriction of the valence nucleons to 2p 1/2 and 1g 9/2 orbits as well as the use of an interaction that has slight seniority non-conservation. Our results indicate that the high spin states of these nuclei, in direct contrast to their low spin states, have extra-(2p 1/2 ,1g 9/2 ) n space contributions that support violation of seniority conservation. (author). 17 refs, 2 figs, 1 tab

  5. High spin states and isomeric decays in doubly-odd {sup 208}Fr

    Energy Technology Data Exchange (ETDEWEB)

    Kanjilal, D.; Bhattacharya, S.; Goswami, A.; Kshetri, R.; Raut, R. [Nuclear and Atomic Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Saha, S., E-mail: satyajit.saha@saha.ac.i [Nuclear and Atomic Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Bhowmik, R.K.; Gehlot, J.; Muralithar, S.; Singh, R.P. [Inter University Accelerator Centre, New Delhi 110067 (India); Jnaneswari, G. [Department of Physics, Andhra University, Vishakhapatnam 530003 (India); Mukherjee, G. [Variable Energy Cyclotron Centre, Kolkata 700064 (India); Mukherjee, B. [Department of Physics, Visva Bharati, Santiniketan 731235 (India)

    2010-10-15

    Neutron deficient isotopes of francium (Z=87, N{approx}121-123) as excited nuclei were produced in the fusion-evaporation reaction: {sup 197}Au({sup 16}O, xn) {sup 213-x}Fr at 100 MeV. The {gamma} rays from the residues were observed through the high sensitivity Germanium Clover detector array INGA. The decay of the high spin states and the isomeric states of the doubly-odd {sup 208}Fr nuclei, identified from the known sequence of ground state transitions, were observed. The half-lives of the E{sub {gamma}=}194(2) keV isomeric transition, known from earlier observations, was measured to be T{sub 1/2}=233(18) ns. A second isomeric transition at E{sub {gamma}=}383(2) keV and T{sub 1/2}=33(7) ns was also found. The measured half-lives were compared with the corresponding single particle estimates, based on the level scheme obtained from the experiment.

  6. Detailed high-spin spectroscopy and the search for the wobbling mode in 171Ta

    International Nuclear Information System (INIS)

    Hartley, D J.; Mohr, W.H.; Vanhoy, J.R.

    2005-01-01

    High-spin states in 171 Ta were populated in the 124 Sn( 51 V,4n) reaction at 228 MeV to search for evidence of stable triaxial deformation. Identification of a wobbling sequence based on the previously known πi 13/2 structure would provide a unique signature for this rarely observed shape. No such sequence was identified in these data, which suggests that the island of triaxial strongly deformed bands may be smaller than once thought. However, over 200 new transitions and two new bands were placed in the level scheme and the sequence based on the πi 13/2 orbital could be observed up to spin and parity I π =(101/2 + ). The relative excitations of all the sequences were determined and the ground state of 171 Ta was found to have 5/2 + quantum numbers, contrary to previous reports. All of the previously known structures were extended to much higher spin and their high-frequency band crossings are interpreted within the framework of the cranked shell model

  7. Entanglement and magnetism in high-spin graphene nanodisks

    Science.gov (United States)

    Hagymási, I.; Legeza, Ö.

    2018-01-01

    We investigate the ground-state properties of triangular graphene nanoflakes with zigzag edge configurations. The description of zero-dimensional nanostructures requires accurate many-body techniques since the widely used density-functional theory with local density approximation or Hartree-Fock methods cannot handle the strong quantum fluctuations. Applying the unbiased density-matrix renormalization group algorithm we calculate the magnetization and entanglement patterns with high accuracy for different interaction strengths and compare them to the mean-field results. With the help of quantum information analysis and subsystem density matrices we reveal that the edges are strongly entangled with each other. We also address the effect of electron and hole doping and demonstrate that the magnetic properties of triangular nanoflakes can be controlled by an electric field, which reveals features of flat-band ferromagnetism. This may open up new avenues in graphene based spintronics.

  8. High spin K isomeric target of 177mLu

    International Nuclear Information System (INIS)

    Roig, O.; Belier, G.; Daugas, J.-M.; Delbourgo, P.; Maunoury, L.; Meot, V.; Morichon, E.; Sauvestre, J.-E.; Aupiais, J.; Boulin, Y.; Fioni, G.; Letourneau, A.; Marie, F.; Ridikas, D.

    2004-01-01

    The techniques used to produce a 177m Lu (J π =23/2 - ,T 1/2 =160.4 days) target are described in this paper. Firstly, an isotopic separation of an enriched lutetium sample was used to reach a purity of 176 Lu close to 99.993%. Afterwards, the high neutron flux of the Grenoble Institut Laue-Langevin reactor was used to produce the 177m Lu isomer by the 176 Lu(n,γ) reaction. Finally, a chemical separation was performed to extract 10 13 nuclei of 177m Lu. Thanks to this experiment, we have been able to estimate the destruction cross-section of the 177m Lu

  9. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    The experimental efforts over the past 5 years have been aimed at carrying out ICF shots with spin-polarized D fuel. The authors successfully prepared polarized D in HD, and solved the problems of loading target shells with their carefully prepared isotopic mixtures, polarizing them so that the D polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted into the OMEGA fusion chamber. A principal concern during this past year was overcoming difficulties encountered in maintaining the integrity of the fragile cold target during the multitude of cold-transfers required for the experiment. These difficulties arose from insufficient rigidity of the cold transfer systems, which were constrained to be of small diameter by the narrow central access bore of the dilution refrigerator, and were exacerbated by the multitude of required target shell manipulations between different environments, each with different coupling geometry, including target shell permeation, polarization, storage, transport, retrieval and insertion into OMEGA. The authors did solve all of these problems, and were able to position a cold, high density but unpolarized target with required precision in OMEGA. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was due to mal-timing or insufficient retraction rate of OMEGA's fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spite of this, all elements of the complex experiment the authors originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods they developed are being utilized on the ICF upgrades at Rochester and at Livermore

  10. Observation of high-spin states in the N=84 nucleus 152Er and comparison with shell-model calculations

    International Nuclear Information System (INIS)

    Kuhnert, A.; Alber, D.; Grawe, H.; Kluge, H.; Maier, K.H.; Reviol, W.; Sun, X.; Beck, E.M.; Byrne, A.P.; Huebel, H.; Bacelar, J.C.; Deleplanque, M.A.; Diamond, R.M.; Stephens, F.S.

    1992-01-01

    High-spin states in 152 Er have been populated through the 116 Sn( 40 Ar,4n) 152 Er reaction. Prompt and delayed γ-γ-γ-t and γ-e-t coincidences have been measured. Levels and transitions are assigned up to an excitation energy of 15 MeV and spin and parities up to 28 + at 9.7 MeV. A new isomer [t 1/2 =11(1) ns] has been observed at 13.4 MeV. The results are discussed in comparison with neighboring nuclei and with shell-model calculations

  11. High spin spectroscopy for A ∼ 160 nuclei

    International Nuclear Information System (INIS)

    Yu, C.-H.

    1989-01-01

    Experimental routhians, alignments, band crossing frequencies, and the B(M1)/B(E2) ratios of the N = 90 isotopes and several light Lu (N = 90--96) isotopes are summarized and discussed in terms of shape changes. These systematic analyses show a neutron and proton number dependent deformations (both quadruple and γ deformations) for these light rare earth nuclei. The stability of the nuclear deformation with respect to β and γ is also found to be particle number dependent. Such particle number dependent shapes can be attributed to the different locations of the proton and neutron Fermi levels in the Nilsson diagrams. Configurations dependent shapes are discussed specially concerned the deformation difference between the proton h 9/2 1/2 - [541] and the high-K h 11/2 configurations. The observed large neutron band crossing frequencies in the h 9/2 1/2 - [541] configuration support the predicted large deformation of this configuration but can be reproduced by the cranked shell model calculation according to the predicted deformations. Lifetime measurement for 157 Ho, one of the nuclei that show a large ℎω c in the 1/2 - [541] band, indicates that deformation difference can only account for 20% of such shift in ℎω c . 55 refs., 12 figs

  12. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    Our experimental efforts over the past 5 years have been aimed at cazrying out ICF shots with spin-polarized 0 fuel. We successfully prepared polarized 0 in HD, and solved the problems of loading target shells with our carefully prepared isotopic -rnixt.l.l?-es, polarizing them so that the 0 polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted fusion chamber. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was dus to mal-timing or insufficient retraction rate of OMEGA'S fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spits of this, all alements of the complex experiment we originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods we developed are being utilized on the ICF upgrades at Rochester and at Livermore. In addition to the solution of the interface problems, we obtained novel results on polymer shell characteristics at low temperatures, and continuation of these experiments is c = ently supported by KLUP. Extensive additional mappings were ca=ied out of nuclear spin relaxation rates of H and D in solid HD in the temperature-magnetic field rangs of 0.01 to 4.2K and 0 - 13 Tesla. New phenomena were discovered, such as association of impurity clustering with very low temperature motion, and inequality of the growth-rate and decay-rate of the magnetization

  13. Recent trends in high spin sensitivity magnetic resonance

    Science.gov (United States)

    Blank, Aharon; Twig, Ygal; Ishay, Yakir

    2017-07-01

    new ideas, show how these limiting factors can be mitigated to significantly improve the sensitivity of induction detection. Finally, we outline some directions for the possible applications of high-sensitivity induction detection in the field of electron spin resonance.

  14. In-Beam Studies of High Spin States in Mercury -182 and MERCURY-184

    Science.gov (United States)

    Bindra, Kanwarjit Singh

    The high spin states in ^{182 }Hg were studied by using the reaction ^{154}Gd(^{32}S, 4n) at the Holifield Heavy Ion Research Facility. In addition, the in-beam gamma-rays in ^{183}Hg were identified for the first time using the reaction ^{155}Gd(^{32}S, 4n) at the Argonne BGO-FMA facility. Five new bands were observed for the first time in ^{182}Hg by studying the gamma-gamma coincidence relationships. The spins and parities of the nuclear levels were assigned on the basis of the measured ratios of directional correlations for oriented nuclei (DCO ratios). Shape co-existence similar to that observed in ^{184{-}186}Hg was established. The well deformed prolate band was extended to a state with tentative spin (20^+). The 2^+ state of the prolate band was identified at an energy of 548.6 keV which is higher in energy than in ^{184}Hg. A two parameter band mixing calculation yielded an interaction strength of 87 keV between the prolate 2^+ and the oblate 2^+ states. Four of the five new bands were found to be similar in behavior to ones seen in ^{184}Hg. An attempt was made to study the behavior of some of these bands at high spins by analyzing their kinematic and dynamic moments of inertia. The gamma-ray transitions in ^{183}Hg were identified from fragment-gamma and gamma-gamma coincidence measurements. A total of five bands of levels were identified and the spins and parities of the levels were assigned by comparing the level scheme of ^{138 }Hg obtained with that of ^ {185}Hg established previously. The interpretation of these bands in terms of associated quasi-particle configurations also relies on noted similarities with the structure of ^{185}Hg. Shape co-existence was established in ^{183}Hg as a result of this study. Two of the bands associated with the (624) 9/2^+ orbital were found to exhibit signature splitting, as expected for i _{13/2} excitations built on the prolate shape with moderate deformation. Two other bands which do not show signature splitting

  15. Investigation of high spin structure of N ∼ 28 nuclei with PHF model

    International Nuclear Information System (INIS)

    Naik, Z.

    2016-01-01

    Nucleus in 50 mass shows verity of high spin phenomena. Some of them are K-Isomer, Band termination, States Beyond Band termination, Superdeformed Structure, Shape co-existence and many more. Some of these phenomena with Projected Hartree-Fock (PHF) model are addressed and the microscopic structure associate with them is discussed

  16. Formation of the high-spin Hf-179m2 isomer in reactor irradiations

    Czech Academy of Sciences Publication Activity Database

    Karamian, S. A.; Carroll, J. J.; Adam, Jindřich; Kulagin, EN.; Shabalin, EP.

    2004-01-01

    Roč. 14, č. 4 (2004), s. 438-441 ISSN 1054-660X R&D Projects: GA MŠk(CZ) ME 134 Keywords : reactor irradiation * high-spin Hf-179m2 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.836, year: 2004

  17. Nuclear shape transitions and some properties of aligned-particle configurations at high spin

    International Nuclear Information System (INIS)

    Koo, T.L.; Chowdhury, P.; Emling, H.

    1982-01-01

    Two topics are addressed in this paper. First, we discuss the variation of shapes with spin and neutron number for nuclei in the N approx. = 88 transitional region. Second, we present comments on the feeding times of very high spin single-particle yrast states

  18. Shell structure at high spin and the influence on nuclear shapes

    International Nuclear Information System (INIS)

    Khoo, T.L.; Chowdhury, P.; Ahmad, I.

    1982-01-01

    Nuclear structure at high spin is influenced by a combination of liquid-drop and shell-structure effects. For N 90. The competition between oblate and prolate driving effects leads to a prolate-to-oblate shape transition in 154 Dy 88 . The role of rotation-aligned configurations in the shape change is discussed

  19. Study of the odd-${A}$, high-spin isomers in neutron-deficient trans-lead nuclei with ISOLTRAP

    CERN Multimedia

    Herfurth, F; Blaum, K; Beck, D; Kowalska, M; Schwarz, S; Stanja, J; Huyse, M L; Wienholtz, F

    We propose to measure the excitation energy of the $\\frac{13^{+}}{2}$ isomers in the neutron-deficient isotopes $^{193,195,197}$Po with the ISOLTRAP mass spectrometer. The assignment of the low- and high-spin isomers will be made by measuring the energy of the $\\alpha$- particles emitted in the decay of purified beams implanted in a windmill system. Using $\\alpha$-decay information, it is then also possible to determine the excitation energy of the similar isomers in the $\\alpha$-daughter nuclei $^{189,191,193}$Pb, $\\alpha$-parent nuclei $^{197,199,201}$Rn, and $\\alpha$-grand-parent nuclei $^{201,203,205}$Ra. The polonium beams are produced with a UC$_{\\textrm{x}}$ target and using the RILIS.

  20. Shapes and alignments at high spin in some rare-earth nuclei

    International Nuclear Information System (INIS)

    Deleplanque, M.A.; Diamond, R.M.; Stephens, F.S.; Macchiavelli, A.O.; Doessing, T.; Draper, J.E.; Dines, E.L.

    1985-01-01

    The structure of nuclei at high spins is dominated by an interplay between deformation and alignment effects. Cranking models predict various shapes but at the highest spins, there is a tendency towards large triaxial deformations and sometimes towards very large prolate deformations (superdeformations). Directly involved in the shape changes are aligned orbitals which come down to the Fermi level as the nucleus rotates more rapidly. At a certain frequency, they become populated and cause large alignments. The mechanism of these changes has been explored by looking at a series of rare earth quasirotational nuclei from Dy to W in the transition region around N = 90 neutrons. The continuum spectra, corrected for incomplete population (feeding) of the high spins, are directly proportional to dynamic effective moments of inertia which describe how much spin is generated at each rotational frequency

  1. High-spin states in the A=39 mirror nuclei 39Ca and 39K

    International Nuclear Information System (INIS)

    Andersson, T.; Rudolph, D.; Fahlander, C.; Eberth, J.; Thomas, H.G.; Haslip, D.; Svensson, C.E.; Waddington, J.C.; LaFosse, D.R.; Sarantites, D.G.; Weintraub, W.; Wilson, J.N.; Brown, B.A.

    1999-01-01

    High-spin states of the mass A=39 mirror pair 39 K and 39 Ca were investigated via the fusion-evaporation reaction 28 Si+ 16 O at 125 MeV beam energy. The gammasphere array in conjunction with the 4π charged-particle detector array microball and neutron detectors was used to detect γ rays in coincidence with evaporated light particles. The results of the first high-spin study of the T z =-1/2 nucleus 39 Ca are discussed in terms of mirror symmetry and compared to spherical shell-model calculations in the 1d 3/2 -1f 7/2 configuration space. (orig.)

  2. A high-spin and durable polyradical: poly(4-diphenylaminium-1,2-phenylenevinylene).

    Science.gov (United States)

    Murata, Hidenori; Takahashi, Masahiro; Namba, Kazuaki; Takahashi, Naoki; Nishide, Hiroyuki

    2004-02-06

    A purely organic, high-spin, and durable polyradical molecule was synthesized: It is based on the non-Kekulé- and non-disjoint design of a pi-conjugated poly(1,2-phenylenevinylene) backbone pendantly 4-substituted with multiple robust arylaminium radicals. 4-N,N-Bis(4-methoxy- and -tert-butylphenyl)amino-2-bromostyrene 5 were synthesized and polymerized with a palladium-phosphine catalyst to afford the head-to-tail-linked polyradical precursors (1). Oxidation of 1 with the nitrosonium ion solubilized with a crown ether gave the aminium polyradicals (1(+)()) which were durable (half-life > 1 month) at room temperature in air. A high-spin ground state with an average S = (4.5)/2 for 1a(+) was proved even at room temperature by magnetic susceptibility, magnetization, ESR, and NMR measurements.

  3. Spin Dynamics in Highly Spin Polarized Co1-xFexS2

    Science.gov (United States)

    Hoch, Michael J. R.; Kuhns, Philip L.; Moulton, William G.; Reyes, Arneil P.; Lu, Jun; Wang, Lan; Leighton, Chris

    2006-09-01

    Highly spin polarized or half-metallic systems are of considerable current interest because of their potential for spin injection in spintronics applications. The ferromagnet (FM) CoS2 is close to being a half-metal. Recent theoretical and experimental work has shown that the alloys Co1-xFexS2 (0.07 < x < 0.9) are highly spin polarized at low temperatures. The Fe concentration may be used to tune the spin polarization. Using 59Co FM- NMR we have investigated the spin dynamics in this family of alloys and have obtained information on the evolution of the d-band density of states at the Fermi level with x in the range 0 to 0.3. The results are compared with available theoretical predictions.

  4. Quadrupole moments of high spin states in the trans lead region

    International Nuclear Information System (INIS)

    Neyens, G.; Hardeman, F.; Nouwen, R.; S'heeren, G.; Van Den Bergh, M.; Cousement, R.

    1990-01-01

    The last few years, a lot of attention has been paid to the trans lead region. A reason for this has to be found in the fact that 208 Pb is a double magic core: both its proton and neutron shell are closed. This means that all nuclei in the lead region can be described well by the shell model, using a spherical 208 Pb core (spherical symmetric potential) and some valence particles or holes around it. The question is whether this model is also correct for high spin states. In this region, isomers with high angular momenta can only be created by alignment of all the spins of the valence particles and holes. And in some cases, alignment is not enough: core excitations are necessary to build up the large spin value of the isomeric state (e.g. the 63/2-isomer in 211 Rn. This means that a neutron pair from the closed N = 126 shell is broken up and one or both neutrons are excited to a level with higher energy and spin. The alignment of the valence-particle-spins causes an increase of the interactions between the valence particles (holes) on one hand, and between the valence particles (holes) and the hard core on the other hand. The latter interaction can cause a deformation of the core. The two interactions are taken into account in two different models: The SERI model (Spherical shell model with Empirical Residual Interactions) and the DIPM (Deformed Independent Particle Model). This paper reports that the effect of alignment of the spins of the valence particles in an isomeric state has been taken into account in the shell model by using residual interactions between the valence particles. These interactions are introduced in the theory in an empirical way or are calculated. Another model, the DIPM, takes into account the effect of alignment in a natural way: it starts from a deformed core (e.g. an axial symmetric potential) in which the valence particles are moving independently from each other)

  5. High-spin states in 136La and possible structure change in the N =79 region

    Science.gov (United States)

    Nishibata, H.; Leguillon, R.; Odahara, A.; Shimoda, T.; Petrache, C. M.; Ito, Y.; Takatsu, J.; Tajiri, K.; Hamatani, N.; Yokoyama, R.; Ideguchi, E.; Watanabe, H.; Wakabayashi, Y.; Yoshinaga, K.; Suzuki, T.; Nishimura, S.; Beaumel, D.; Lehaut, G.; Guinet, D.; Desesquelles, P.; Curien, D.; Higashiyama, K.; Yoshinaga, N.

    2015-05-01

    High-spin states in the odd-odd nucleus 136La, which is located close to the β -stability line, have been investigated in the radioactive-beam-induced fusion-evaporation reaction 124Sn(17N,5 n ). The use of the radioactive beam enabled a highly sensitive and successful search for a new isomer [14+,T1 /2=187 (27 ) ns] in 136La. In the A =130 -140 mass region, no such long-lived isomer has been observed at high spin in odd-odd nuclei. The 136La level scheme was revised, incorporating the 14+ isomer and six new levels. The results were compared with pair-truncated shell model (PTSM) calculations which successfully explain the level structure of the π h11 /2⊗ν h11/2 -1 bands in 132La and 134La. The isomerism of the 14+ state was investigated also by a collective model, the cranked Nilsson-Strutinsky (CNS) model, which explains various high-spin structures in the medium-heavy mass region. It is suggested that a new type of collective structure is induced in the PTSM model by the increase of the number of π g7 /2 pairs, and/or in the CNS model by the configuration change associated with the shape change in 136La.

  6. High-Spin States in Odd-Odd N=Z {sup 46}V

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, C.D.; Bentley, M.A.; Appelbe, D.E.; Bark, R.A.; Cullen, D.M.; Erturk, S.; Maj. A.; Sheikh, J.A.; Warner, D.D.

    1999-12-31

    High-spin states up to the F{sub 7/2}-shell band termination at J{pi}=15+ have been observed for the first time in the odd-odd N=Z=23 nucleous {sup 46}V. The new level scheme has two separate structures corresponding to spherical and prolate shapes. A rotational band has very similar energies to the yrast sequence in {sup 46}Ti and is therefore assumed to be a T=1 configuration.

  7. Observation of a new high-spin isomer in 94Pd

    International Nuclear Information System (INIS)

    Brock, T. S.; Nara Singh, B. S.; Wadsworth, R.; Boutachkov, P.; Gorska, M.; Grawe, H.; Pietri, S.; Domingo-Pardo, C.; Caceres, L.; Engert, T.; Farinon, F.; Gerl, J.; Goel, N.; Kojuharov, I.; Kurz, N.; Nociforo, C.; Prochazka, A.; Schaffner, H.; Weick, H.; Braun, N.

    2010-01-01

    A second γ-decaying high-spin isomeric state, with a half-life of 197(22)ns, has been identified in the N=Z+2 nuclide 94 Pd as part of a stopped-beam Rare Isotope Spectroscopic INvestigation at GSI (RISING) experiment. Weisskopf estimates were used to establish a tentative spin/parity of 19 - , corresponding to the maximum possible spin of a negative parity state in the restricted (p 1/2 , g 9/2 ) model space of empirical shell model calculations. The reproduction of the E3 decay properties of the isomer required an extension of the model space to include the f 5/2 and p 3/2 orbitals using the CD-Bonn potential. This is the first time that such an extension has been required for a high-spin isomer in the vicinity of 100 Sn and reveals the importance of such orbits for understanding the decay properties of high-spin isomers in this region. However, despite the need for the extended model space for the E3 decay, the dominant configuration for the 19 - state remains (πp 1/2 -1 g 9/2 -3 ) 11 x (νg 9/2 -2 ) 8 . The half-life of the known, 14 + , isomer was remeasured and yielded a value of 499(13) ns.

  8. Synthesis, spectroscopy, and hydrogen/deuterium exchange in high-spin iron(II) hydride complexes.

    Science.gov (United States)

    Dugan, Thomas R; Bill, Eckhard; MacLeod, K Cory; Brennessel, William W; Holland, Patrick L

    2014-03-03

    Very few hydride complexes are known in which the metals have a high-spin electronic configuration. We describe the characterization of several high-spin iron(II) hydride/deuteride isotopologues and their exchange reactions with one another and with H2/D2. Though the hydride/deuteride signal is not observable in NMR spectra, the choice of isotope has an influence on the chemical shifts of distant protons in the dimers through the paramagnetic isotope effect on chemical shift. This provides the first way to monitor the exchange of H and D in the bridging positions of these hydride complexes. The rate of exchange depends on the size of the supporting ligand, and this is consistent with the idea that H2/D2 exchange into the hydrides occurs through the dimeric complexes rather than through a transient monomer. The understanding of H/D exchange mechanisms in these high-spin iron hydride complexes may be relevant to postulated nitrogenase mechanisms.

  9. High-spin {gamma}-ray spectroscopy of {sup 124}Ba, {sup 124}Xe and {sup 125}Xe

    Energy Technology Data Exchange (ETDEWEB)

    Al-Khatib, Ali

    2008-08-18

    Rotational spectra had been observed for the first time in excited atomic nuclei in 1938. This observation was attributed to the deviation from spherical shape. In quantum mechanics, when a perfectly spherical system rotates, it appears identical when it is viewed from any direction and no point of reference exists to which the change in position can be identified. Therefore, rotation cannot be defined for spherical nuclei. If the shape deviates from spherical symmetry, the nucleus can rotate and rotational spectra are observed. Many nucleons contribute to the rotation which is referred to as collective excitation. Depending on the mass region, nuclei have different deformations and, therefore, different shapes. Many nuclei show larger deformation with increasing excitation energy. Transitional nuclei between spherical and strongly deformed regions of the nuclear chart are usually soft with respect to deformation changes. In the mass region around A{proportional_to}125, which is the subject of this thesis, nuclei are predicted to be soft with respect to deformation. Rotational motion leads to Coriolis-induced alignments of high-j nucleons, which are in this mass region predominantly protons and neutrons from the h{sub 11/2} unique-parity intruder subshells. The proton Fermi level lies in the lower part of the h{sub 11/2} subshell which favours prolate shape whereas the neutron Fermi level lies in the upper part of the h{sub 11/2} subshell which favours oblate shape. According to the opposite shape-driving forces of protons and neutrons, shape co-existence is expected and the interplay between the h{sub 11/2} proton and neutron orbitals is of great interest for spectroscopic investigations. In addition, superdeformation has been established in this mass region. An interesting observation in this mass region is that nuclei undergo a shape-change from collective prolate to non-collective oblate states at high spins. In this spin range the transitions within the

  10. Similarity transformed equation of motion coupled-cluster theory based on an unrestricted Hartree-Fock reference for applications to high-spin open-shell systems.

    Science.gov (United States)

    Huntington, Lee M J; Krupička, Martin; Neese, Frank; Izsák, Róbert

    2017-11-07

    The similarity transformed equation of motion coupled-cluster approach is extended for applications to high-spin open-shell systems, within the unrestricted Hartree-Fock (UHF) formalism. An automatic active space selection scheme has also been implemented such that calculations can be performed in a black-box fashion. It is observed that both the canonical and automatic active space selecting similarity transformed equation of motion (STEOM) approaches perform about as well as the more expensive equation of motion coupled-cluster singles doubles (EOM-CCSD) method for the calculation of the excitation energies of doublet radicals. The automatic active space selecting UHF STEOM approach can therefore be employed as a viable, lower scaling alternative to UHF EOM-CCSD for the calculation of excited states in high-spin open-shell systems.

  11. Similarity transformed equation of motion coupled-cluster theory based on an unrestricted Hartree-Fock reference for applications to high-spin open-shell systems

    Science.gov (United States)

    Huntington, Lee M. J.; Krupička, Martin; Neese, Frank; Izsák, Róbert

    2017-11-01

    The similarity transformed equation of motion coupled-cluster approach is extended for applications to high-spin open-shell systems, within the unrestricted Hartree-Fock (UHF) formalism. An automatic active space selection scheme has also been implemented such that calculations can be performed in a black-box fashion. It is observed that both the canonical and automatic active space selecting similarity transformed equation of motion (STEOM) approaches perform about as well as the more expensive equation of motion coupled-cluster singles doubles (EOM-CCSD) method for the calculation of the excitation energies of doublet radicals. The automatic active space selecting UHF STEOM approach can therefore be employed as a viable, lower scaling alternative to UHF EOM-CCSD for the calculation of excited states in high-spin open-shell systems.

  12. Stability of trans-fermium elements at high spin: Measuring the fission barrier of 254No

    International Nuclear Information System (INIS)

    Henning, Greg

    2012-01-01

    Super heavy nuclei provide opportunities to study nuclear structure near three simultaneous limits: in charge Z, spin I and excitation energy E*. These nuclei exist only because of a fission barrier, created by shell effects. It is therefore important to determine the fission barrier and its spin dependence B f (I), which gives information on the shell energy E(shell)(I). Theoretical calculations predict different fission barrier heights from B f (I = 0) = 6.8 MeV for a macro-microscopic model to 8.7 MeV for Density Functional Theory calculations using the Gogny or Skyrme interactions. Hence, a measurement of B f provides a test for theories.To investigate the fission barrier, an established method is to measure the rise of fission with excitation energy, characterized by the ratio of decay widths Γ(fission)/Γ(total), using transfer reactions. However, for heavy elements such as 254 No, there is no suitable target for a transfer reaction. We therefore rely on the complementary decay widths ratio Γ γ /Γ(fission) and its spin dependence, deduced from the entry distribution (I, E*).Measurements of the gamma-ray multiplicity and total energy for 254 No have been performed with beam energies of 219 and 223 MeV in the reaction 208 Pb( 48 Ca,2n) at ATLAS (Argonne Tandem Linac Accelerator System). The 254 No gamma rays were detected using the Gammasphere array as a calorimeter - as well as the usual high resolution γ-ray detector. Coincidences with evaporation residues at the Fragment Mass Analyzer focal plane separated 254 No gamma rays from those from fission fragments, which are ≥ 10 6 more intense. From this measurement, the entry distribution - i.e. the initial distribution of I and E* - is constructed. Each point (I,E*) of the entry distribution is a point where gamma decay wins over fission and, therefore, gives information on the fission barrier. The measured entry distributions show an increase in the maximum spin and excitation energy from 219 to 223 Me

  13. Isomeric and high-spin states of 94Tc and the search for yrast isomers near N~50

    Science.gov (United States)

    Lee, I. Y.; Johnson, N. R.; McGowan, F. K.; Young, G. R.; Guidry, M. W.; Yates, S. W.

    1981-07-01

    A search for isomers in the N~50 region has produced no evidence of high-spin yrast isomerism. A new 4.5-ns low-multiplicity isomer has been identified and assigned to 94Tc, while the yrast sequence of 94Tc has been established to more than 5 MeV in excitation energy. [NUCLEAR REACTIONS 76Ge, 78Se(20Ne,xnypγ), E=80.9 MeV, 89Y, 93Nb(10B,xnypγ), E=52.0,58.4,62.8 MeV; measured Eγ, Iγ, γ-γ prompt and delayed coin, γ-X coin; deduced levels, t12 of 94Tc isomer, yrast states.

  14. The high-spin structure of 158Er - a theoretical study

    International Nuclear Information System (INIS)

    Bengtsson, Tord.

    1990-01-01

    To demonstrate the use of diabatic orbitals in high-spin calculations, the yrast structure of 158 Er is calculated and compared to experiment. A very satisfactory reproduction of the observed spectra is obtained form lowest spins through the collective bands up to band terminations. From results like this, a detailed understanding of the observed features emerge. In this case for example, the different alignment properties in negative parity bands can be understood as due to deformation differences and the existence of additional bands are predicted. Furthermore, the limitations of the cranked mean field approach can be investigated due to the high level of detail in this approach. (author)

  15. Experimental study of high spin states in low-medium mass nuclei by use of charge particle induced reactions

    International Nuclear Information System (INIS)

    Alenius, N.G.

    1975-01-01

    For the test of nuclear models the study of the properties of nuclear states of high angular momentum is especially important, because such states can often be given very simple theoretical descriptions. High spin states are easily populated by use of reactions initiated by alpha particles or heavy ions. In this thesis a number of low-medium mass nuclei have been studied, with emphasis on high spin states. (Auth.)

  16. Demonstrating multibit magnetic memory in the Fe8 high-spin molecule by muon spin rotation

    Science.gov (United States)

    Shafir, Oren; Keren, Amit; Maegawa, Satoru; Ueda, Miki; Amato, Alex; Baines, Chris

    2005-09-01

    We develop a method to detect the quantum nature of high-spin molecules using muon spin rotation and a three-step field cycle ending always with the same field. We use this method to demonstrate that the Fe8 molecule can remember six (possibly eight) different histories (bits). A wide range of fields can be used to write a particular bit, and the information is stored in discrete states. Therefore, Fe8 can be used as a model compound for multibit magnetic memory. Our experiment also paves the way for magnetic quantum tunneling detection in films.

  17. Beyond RPA in nuclear rotation and wobbling motion at high spin

    International Nuclear Information System (INIS)

    Kaneko, Kazunari

    1991-01-01

    A quantum mechanical method of the nuclear rotation and the wobbling motion at high spin beyond the small-oscillation approximation is represented within the framework of time-dependent mean-field theory with some constraints. The constraints which determine the choice of the rotating reference frame are considered in the spin-orientation frame and the principal-axis frame. The quantization under such constraints is performed by making use of the Dirac bracket. Then the commutation relations of the angular momentum are derived. (orig.)

  18. Towards 100Sn with GASP + Si-ball + Recoil Mass Spectrometer: High-spin states of 105Sn and 103In

    International Nuclear Information System (INIS)

    De Angelis, G.; Farnea, E.; Gadea, A.; Sferrazza, M.; Ackermann, D.; Bazzacco, D.; Bednarczyk, P.; Bizzeti, P.G.; Bizzeti Sona, A.M.; Brandolini, F.; Burch, R.; Buscemi, A.; De Acuna, D.; De Poli, M.; Fahlander, C.; Li, Y.; Lipoglavsek, M.; Lunardi, S.; Makishima, A.; Menegazzo, R.; Mueller, L.; Napoli, D.; Ogawa, M.; Pavan, P.; Rossi-Alvarez, C.; Scarlassara, F.; Segato, G.F.; Seweryniak, D.; Soramel, F.; Spolaore, P.; Zanon, R.

    1995-01-01

    Very proton rich nuclei in the A∼100 region have been investigated using the GASP array coupled with the Recoil Mass Spectrometer (RMS) and the GASP Si-ball. High-spin states of 105 Sn and 103 In nuclei formed with the reaction 58 Ni+ 50 Cr at 210MeV have been investigated up to similar 10 and 7MeV of excitation energy respectively. We have confirmed the known excited states for both nuclei and extended to higher spin the level scheme. The experimental level schemes are compared with shell model calculations. ((orig.))

  19. Endohedral Metallofullerene as Molecular High Spin Qubit: Diverse Rabi Cycles in Gd2@C79N.

    Science.gov (United States)

    Hu, Ziqi; Dong, Bo-Wei; Liu, Zheng; Liu, Jun-Jie; Su, Jie; Yu, Changcheng; Xiong, Jin; Shi, Di-Er; Wang, Yuanyuan; Wang, Bing-Wu; Ardavan, Arzhang; Shi, Zujin; Jiang, Shang-Da; Gao, Song

    2018-01-24

    An anisotropic high-spin qubit with long coherence time could scale the quantum system up. It has been proposed that Grover's algorithm can be implemented in such systems. Dimetallic aza[80]fullerenes M 2 @C 79 N (M = Y or Gd) possess an unpaired electron located between two metal ions, offering an opportunity to manipulate spin(s) protected in the cage for quantum information processing. Herein, we report the crystallographic determination of Gd 2 @C 79 N for the first time. This molecular magnet with a collective high-spin ground state (S = 15/2) generated by strong magnetic coupling (J Gd-Rad = 350 ± 20 cm -1 ) has been unambiguously validated by magnetic susceptibility experiments. Gd 2 @C 79 N has quantum coherence and diverse Rabi cycles, allowing arbitrary superposition state manipulation between each adjacent level. The phase memory time reaches 5 μs at 5 K by dynamic decoupling. This molecule fulfills the requirements of Grover's searching algorithm proposed by Leuenberger and Loss.

  20. High-spin yrast states in the 206Po, 208Po, 209At and 210At nuclei

    International Nuclear Information System (INIS)

    Rahkonen, Vesa.

    1980-08-01

    High-spin yrast states in the 206 , 208 Po and 209 , 210 At nuclei have been studied with methods of in-beam γ-ray and conversion-electron spectroscopy and with the (α,3n), (α,4n), (p,2n) and ( 3 He,3n) reactions. Several new high-spin states have been identified up to angular momenta of 18-19 h/2π in these nuclei except in 206 Po where the highest spin was (13 - ). In the course of this work two new isomers with half-lives of 15+-3 ns and 4+-2 μs have been observed at 1689 and 4028 keV in 210 At, which have been interpreted as (10 - ) and 19 + states. The previously-known half-lives of 29+-2 and 680+-75 ns have been established for the three-proton states of Jsup(π)=21/2 - and 29/2 + at 1428 and 2429 keV in 209 At, respectively. A half-life of 1.0+-0.2 μs was measured for the 9 - isomer in 206 Po. Shell-model calculations based on the use of the empirical single- and two-particle interaction energies or of the experimental excitation energies belonging to the relevant one-, two- and three-particle states, have been carried out for these 4-6 particle nuclei. Most of the medium-spin yrast states in 206 Po, 208 Po and 209 At have been successfully described assuming the core for these nuclei being 204 Pb or 206 Pb rather than 208 Pb, and including an extra core polarization interaction described by the P 2 force. (author)

  1. Femtosecond time-resolved optical and Raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching.

    Science.gov (United States)

    Smeigh, Amanda L; Creelman, Mark; Mathies, Richard A; McCusker, James K

    2008-10-29

    A combination of femtosecond electronic absorption and stimulated Raman spectroscopies has been employed to determine the kinetics associated with low-spin to high-spin conversion following charge-transfer excitation of a FeII spin-crossover system in solution. A time constant of tau = 190 +/- 50 fs for the formation of the 5T2 ligand-field state was assigned based on the establishment of two isosbestic points in the ultraviolet in conjunction with changes in ligand stretching frequencies and Raman scattering amplitudes; additional dynamics observed in both the electronic and vibrational spectra further indicate that vibrational relaxation in the high-spin state occurs with a time constant of ca. 10 ps. The results set an important precedent for extremely rapid, formally forbidden (DeltaS = 2) nonradiative relaxation as well as defining the time scale for intramolecular optical switching between two electronic states possessing vastly different spectroscopic, geometric, and magnetic properties.

  2. High spin-filter efficiency and Seebeck effect through spin-crossover iron–benzene complex

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qiang; Zhou, Liping, E-mail: zhoulp@suda.edu.cn; Cheng, Jue-Fei; Wen, Zhongqian; Han, Qin; Wang, Xue-Feng [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)

    2016-04-21

    Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz){sub 2} using density functional theory combined with non-equilibrium Green’s function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant roles in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.

  3. Investigation of nuclei near N = 82 and Z = 64 VIA radioactive decay of high-spin isomers

    International Nuclear Information System (INIS)

    Toth, K.S.

    1979-01-01

    An island of very high spin isomers was found recently in neutron-deficient Gd-Lu nuclei near the N = 82 closed shell in (H.I.,xn) measurements. This exciting discovery has led to a large number of experiments trying to identify the structures of these isomers and the nuclei in which they occur. These attempts have been helped in many instances by available spectroscopic information at low excitation energies. A systematic investigation of the low-lying structure of nuclei near N = 82 and Z greater than or equal to 64 was carried out. Heavy-ion beams were used to produce proton-rich isotopes which were then transported, with the use of gas-jet systems, to shielded areas where singles and coincidence γ-ray measurements could be made. Earlier investigations dealt with the decay of terbium ( 146-149 Tb) and dysprosium ( 147-152 Dy) nuclei. During the past two years the research program was extended to holmium nuclides (A less than or equal to 152) produced in 10 B bombardments of samarium. Two new isotopes, 149 Ho and 148 Ho, were identified. The decay data of 21-s 149 Ho supplement in-beam results and locate the hg/ 2 neutron state in 149 Dy to be at 1091 keV. The most intense γ-ray associated with 9-s 148 Ho has an energy of 1688 keV. It is possibly the first-excited to ground-state transition in 148 Dy. Recent in-beam measurements have shown that the first-excited state in 146 Gd is, unespectedly, 3 - in contrast to doubly evenN = 82 nuclei below gadolinium where it is 2 + . It would be interesting to determine whether the 1688-keV level in 148 Dy, the next nucleus in this isotonic series, is 2reverse arrow or 3 - in character. 12 references

  4. High-spin states in 214Rn, 216Ra and a study of even-even N = 128 systematics

    International Nuclear Information System (INIS)

    Loennroth, T.; Horn, D.; Baktash, C.; Lister, C.J.; Young, G.R.

    1983-01-01

    High-spin states in 214 Rn and 216 Ra have been studied by means of the reaction 208 Pb( 13 C, α 3n #betta#) 214 Rn and 208 Pb( 13 C, 5n #betta#) 216 Ra at beam energies in the range 75--95 MeV. In-beam spectroscopy techniques, including #betta#-decay excitation functions, α-#betta# coincidences, #betta#-#betta# coincidences, #betta#-ray angular distributions, and pulsed-beam-#betta# timing, were utilized to establish level energies, #betta#-ray multipolarities, J/sup π/ assignments, and isomeric lifetimes. Excited states with spins up to 23h in 214 Rn and roughly-equal30h in 216 Ra were observed. Isomers were found in 214 Rn at 1625 keV (T/sub 1/2/ = 9 ns, J/sup π/ = 8 + ), 1787 keV (22 ns, 10 + ), 3485 keV (95 ns, 16), 4509 keV (230 ns, 20), and 4738 keV (8 ns, 22), and in 216 Ra at 1708 keV (8 ns, 8 + ) and 5868 keV (10 ns, approx.24). B(EL) values were deduced and compared to previously known lead-region electric transition rates. Shell-model calculations were performed and used to make configurational assignments. The absence of major α-decay branching in the isomers is explained and the systematic behavior of N = 128 even-even nuclei is discussed

  5. High-spin states in 214Rn, 216Ra and a study of even-even N = 128 systematics

    International Nuclear Information System (INIS)

    Loennroth, T.; Horn, D.; Baktash, C.; Lister, C.J.; Young, G.R.

    1981-09-01

    High-spin states in 214 Rn and 216 Ra have been studied by means of the reaction 208 Pb( 13 C,α3nγ) 214 Rn and 208 Pb( 13 C,5nγ) 216 Ra at beam energies in the range 75-95 MeV. In-beam spectroscopy techniques, including γ-decay excitation functions, α-γ coincidences, γ-γ coincidences, γ-ray angular distributions and pulsed-beam-γ timing, were utilized to establish level energies, γ-ray multipolarities, JHπ assignments and isomeric lifetimes. Excited states with spins up to 23 h/2π in 214 Rn and 30 h/2π in 216 Ra were established. Isomers are found in 214 Rn at 1625 keV (9 ns, 8 + ), 1787 keV (22 ns, 10 + ), 3485 keV (95 ns, 16 + ), 4509 keV (230 ns, 20 + ) and 4735 keV (8.0 ns, 22 + ) and in 216 Ra at 1710 keV (8 ns, 8 + ) and 5868 keV (10 ns, 24 - ). B(EL) values are derived and compared to previously known lead-region electric transition rates. Shell-model calculations are performed on the basis of which configuration assignment is made. The absence of α-decay branching in the isomers is explained. The systematical behaviour of N = 128 even-even nuclei is discussed. Effective moments of inertia are derived. (author)

  6. High-Spin Structure in Odd-Odd 160Lu Nucleus

    International Nuclear Information System (INIS)

    Wang Lie-Lin; Lu Jing-Bin; Yang Dong; Ma Ke-Yan; Yin Li-Chang; Zhou Yin-Hang; Wu Xiao-Guang; Wen Shu-Xian; Li Guang-Sheng; Yang Chun-Xiang

    2012-01-01

    The high-spin states of 160 Lu are populated by the fusion-evaporation reaction 144 Sm( 19 F,3n) 160 Lu at beam energies of 90 and 106 MeV. A new level scheme of 160 Lu is established. A possible isomeric state based on the πh 11/2 νh 9/2 configuration is observed. The new decoupled band with the configuration of πd 3/2 [411]1/2 + νi 13/2 [660]1/2 + is established, and the configurations of these similar decoupled bands in the neighboring odd-odd 162−166 Lu nuclei are suggested. A positive parity coupled band is assigned as the πd 5/2 [402]5/2 + νi 13/2 [660]1/2 + configuration. (nuclear physics)

  7. High-spin states in the transitional odd-odd nuclei 150Eu and 152Tb

    International Nuclear Information System (INIS)

    Barneoud, D.; Foin, C.; Pinston, J.A.; Monnand, E.

    1983-06-01

    The ( 7 Li, 5n) and ( 11 B, 5n) reactions have been used to study the high-spin states in the two odd-odd nuclei 150 Eu and 152 Tb. Three decoupled bands have been evidenced in each nucleus belonging to the same configurations [f 7/2]sub(n) [h 11/2]sub(p), [h 9/2]sub(n) [h 11/2 ]sub(p) and [i 13/2]sub(n) [h 11/2]sub(p). The latter one is well developped and improves our knowledge of this system between the spherical and deformed region. The analysis of the collective moment of inertia and transition ratios strongly suggests an increase of the deformation when the rotational frequency increases in these two transitional nuclei 150 Eu and 152 Tb

  8. High-spin nuclear target of 178m2Hf: creation and nuclear reaction studies

    International Nuclear Information System (INIS)

    Oganessyan, Yu.Ts.; Karamyan, S.A.; Gangrskij, Yu.P.

    1993-01-01

    A long-lived (31 years) four-quasiparticle isomer 178m 2 Hf(I,K π =16,16 + ) was produced in microweight quantities using the nuclear reaction 176 Yb( 4 He, 2n). Methods of precision chemistry and mass-separation for the purification of the produced Hf material have been developed. Thin targets of isomeric hafnium-178 on carbon backings were prepared and used in experiments on a neutron, proton and deuteron beams. First results on nuclear reactions on a high-spin exotic target were obtained. Experiments on electromagnetic interactions of the isomeric hafnium using methods of the collinear laser spectroscopy as well as of the nuclear orientation of hafnium implanted into a crystalline media were started. 11 refs.; 11 figs.; 2 tabs

  9. Investigations of low- and high-spin states of sup 1 sup 3 sup 2 La

    CERN Document Server

    Kumar, V; Singh, R P; Muralithar, S; Bhowmik, R K

    2003-01-01

    The fusion evaporation reaction sup 1 sup 2 sup 2 Sn( sup 1 sup 4 N,4n) sup 1 sup 3 sup 2 La was used to populate the high-spin states of sup 1 sup 3 sup 2 La at the beam energy of 60 MeV. A new band consisting of mostly E2 transitions has been discovered. This band has the interesting links to the ground state 2 sup - and the isomeric state 6 sup -. A new transition of energy 351 keV connecting the low-spin states of the positive-parity band based on the pi h sub 1 sub 1 sub / sub 2 x nu h sub 1 sub 1 sub / sub 2 particle configuration, has been found. This has played a very important role in resolving the existing ambiguities and inconsistencies in the spin assignment of the band head. (orig.)

  10. Large-amplitude superexchange of high-spin fermions in optical lattices

    International Nuclear Information System (INIS)

    Jürgensen, Ole; Heinze, Jannes; Lühmann, Dirk-Sören

    2013-01-01

    We show that fermionic high-spin systems with spin-changing collisions allow one to monitor superexchange processes in optical superlattices with large amplitudes and strong spin fluctuations. By investigating the non-equilibrium dynamics, we find a superexchange dominated regime at weak interactions. The underlying mechanism is driven by an emerging tunneling-energy gap in shallow few-well potentials. As a consequence, the interaction-energy gap that is expected to occur only for strong interactions in deep lattices is re-established. By tuning the optical lattice depth, a crossover between two regimes with negligible particle number fluctuations is found: firstly, the common regime with vanishing spin-fluctuations in deep lattices and, secondly, a novel regime with strong spin fluctuations in shallow lattices. We discuss the possible experimental realization with ultracold 40 K atoms and observable quantities in double wells and two-dimensional plaquettes. (paper)

  11. Spin crossover and high spin filtering behavior in Co-Pyridine and Co-Pyrimidine molecules

    Science.gov (United States)

    Wen, Zhongqian; Zhou, Liping; Cheng, Jue-Fei; Li, Shu-Jin; You, Wen-Long; Wang, Xuefeng

    2018-03-01

    We present a theoretical study on a series of cobalt complexes, which are constructed with cobalt atoms and pyridine/pyrimidine rings, using density functional theory. We investigate the structural and electric transport properties of spin crossover (SCO) Co complex with two spin states, namely low-spin configuration [LS] and high-spin configuration [HS]. Energy analyses of the two spin states imply that the SCO Co-Pyridine2 and Co-Pyrimidine2 complexes may display a spin transition process accompanied by a geometric modification driven by external stimuli. A nearly perfect spin filtering effect is observed in the Co-Pyrimidine2 complex with [HS] state. In addition, we also discover the contact-dependent transmission properties of Co-Pyridine2. These findings indicate that SCO Co complexes are promising materials for molecular spintronic devices.

  12. High spin levels populated in multinucleon transfer reaction with 480 MeV 12C

    International Nuclear Information System (INIS)

    Kraus, L.; Boucenna, A.; Linck, I.

    1988-01-01

    Two- and three-nucleon stripping reactions induced by 480 MeV 12 C have been studied on 12 C, 16 O, 28 Si, 40 Ca and 54 Fe target nuclei. Discrete levels are fed with cross sections up to 1 mb/sr for d-transfer reactions and one order and two orders of magnitude less for 2p- and 3 He-transfer reactions, respectively. These reactions preferentially populate high spin states with stretched configurations. Several spin assignments were known from transfer reactions induced by lighter projectiles at incident energies well above the Coulomb barrier. In the case of two-nucleon transfer reactions, the energy of these states is well reproduced by crude shell model calculations. Such estimates are of use in proposing spins of newly observed states especially as the shapes of the measured angular distributions are independent of the final spin of the residual nucleus

  13. A reconsideration of fission fragment angular distributions from nuclei of high spin

    International Nuclear Information System (INIS)

    Vaz, L.C.; Alexander, J.M.

    1983-01-01

    It has often been stated that fission fragment angular anisotropy, as predicted by equilibrium statistical theory, should disappear with increasing spin of the composite nucleus. However, several recent experimental studies reveal strong anisotropies for fission fragments from high-spin nuclear systems. We discuss this apparent discrepancy and its relationship to the rigid-rotor approximation used in the standard theory. A systematic comparison is given for fission fragment anisotropies from many experiments via the empirical parameters K 0 2 and Ssub(eff). These systematics indicate a strong regularity, provided one allows for the perturbing effects of fission after transfer reactions. Many of the observed anisotropies exceed the predictions of the standard theory, but, as these predictions are based on a rigid rotor model, this does not seem particularly noteworthy. (orig.)

  14. High-spin states and coexisting states in the Pt-Au transition region

    International Nuclear Information System (INIS)

    Riedinger, L.L.; Carpenter, M.P.; Courtney, L.H.; Janzen, V.P.; Schmitz, W.

    1986-01-01

    High-spin states in the N = 104 to 108 region have been studied by in-beam spectroscopy techniques in a number of Ir, Pt, and Au nuclei. These measurements have been performed at tandem Van de Graaff facilities at the Oak Ridge National Laboratory and at McMaster University. Through comparison of band crossings in a variety of odd-A and even-A nuclei, we are able to assign the first neutron and first proton alignment processes, which are nearly degenerate for 184 Pt. These measurements yield the trend of these crossing frequencies with N and Z in this region. Knowledge of this trend is important, since these crossing frequencies can give an estimate of how the shape parameters vary across this transitional region. 22 refs., 7 figs., 1 tab

  15. Bose-Fermi U(6/2j+1) supersymmetries and high-spin anomalies

    International Nuclear Information System (INIS)

    Morrison, I.; Jarvis, P.D.

    1985-01-01

    A supersymmetric extension of the interacting boson model (IBM) is constructed to describe high-spin anomalies in both even- and odd-mass spectra of the Hg, Pt region (190<=A<=200). Supergroup chains such as U(6/2j+1)containsOsp(6/2j+1)containsO(6)xSp(2j+1)... or U(6/2j+1)containsU(5/2j+1)xU(1)containsOsp(5/2j+1)... incorporate a single j-shell fermion in addition to the usual 's' and 'd' bosons (L=0 and L=2). The orthosympletic supergroup reflects the strong pairing force in the subspace of the fermion intruder level. The model agrees favourably with experiment and microscopic calculation. (orig.)

  16. Decay of the high-spin isomer in 160Re: Changing single-particle structure beyond the proton drip line

    International Nuclear Information System (INIS)

    Darby, I.G.; Page, R.D.; Joss, D.T.; Simpson, J.; Bianco, L.; Cooper, R.J.; Eeckhaudt, S.; Ertuerk, S.; Gall, B.; Grahn, T.; Greenlees, P.T.; Hadinia, B.; Jones, P.M.; Judson, D.S.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppaenen, A.-P.; Nyman, M.

    2011-01-01

    A new high-spin isomeric state (t 1/2 =2.8±0.1 μs) in 160 Re has been identified. This high-spin isomer is unique in that it only decays by γ-decay and not by proton or α-particle emission as is the case in every other proton emitter between Z=64 and 80. Shell model calculations indicate how the convergence of the h 9/2 and f 7/2 neutron levels in this region could open up a γ-decay path from the high-spin isomer to the low-spin ground state of 160 Re, providing a natural explanation for this anomalous absence of charged-particle emission. The consequences of these observations for future searches for proton emission from even more exotic nuclei and in-beam spectroscopic studies are considered.

  17. Reduction of collectivity at very high spins in 134Nd: Expanding the projected-shell-model basis up to 10-quasiparticle states

    Science.gov (United States)

    Wang, Long-Jun; Sun, Yang; Mizusaki, Takahiro; Oi, Makito; Ghorui, Surja K.

    2016-03-01

    Background: The recently started physics campaign with the new generation of γ -ray spectrometers, "GRETINA" and "AGATA," will possibly produce many high-quality γ rays from very fast-rotating nuclei. Microscopic models are needed to understand these states. Purpose: It is a theoretical challenge to describe high-spin states in a shell-model framework by the concept of configuration mixing. To meet the current needs, one should overcome the present limitations and vigorously extend the quasiparticle (qp) basis of the projected shell model (PSM). Method: With the help of the recently proposed Pfaffian formulas, we apply the new algorithm and develop a new PSM code that extends the configuration space to include up to 10-qp states. The much-enlarged multi-qp space enables us to investigate the evolutional properties at very high spins in fast-rotating nuclei. Results: We take 134Nd as an example to demonstrate that the known experimental yrast and the several negative-parity side bands in this nucleus could be well described by the calculation. The variations in moment of inertia with spin are reproduced and explained in terms of successive band crossings among the 2-qp, 4-qp, 6-qp, 8-qp, and 10-qp states. Moreover, the electric quadrupole transitions in these bands are studied. Conclusions: A pronounced decrease in the high-spin B (E 2 ) of 134Nd is predicted, which suggests reduction of collectivity at very high spins because of increased level density and complex band mixing. The possibility for a potential application of the present development in the study of highly excited states in warm nuclei is mentioned.

  18. High-spin spectroscopy of {sup 168}Yb and the reduction of pairing correlations

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J R.B. [Sao Paulo Univ., SP (Brazil); Stephens, F S; Deleplanque, M A; Diamond, R M [Lawrence Berkeley Lab., CA (United States); Draper, J E; Rubel, E; Duyar, C [California Univ., Davis, CA (United States); Beacker, J A; Henry, E A; Roy, N [Lawrence Livermore National Lab., CA (United States); Beausang, C W [Liverpool Univ. (United Kingdom); Frauendorf, S [Institut fur Kern und Hadronen Physik, F2-Rossendorf, Dresden (Germany)

    1992-08-01

    The high spin states of {sup 168}Yb were investigated by means of in-beam gamma spectroscopy with the High Energy Resolution Array at the 88 in. cyclotron of the Lawrence Berkeley Laboratory. The {sup 168}Yb nucleus was produced in the reaction {sup 48}Ca({sup 124}Sn,4n) at 210 MeV. Five bands previously reported were confirmed; additionally, four other bands, two extending to spins as high as 36 {Dirac_h} were observed. Cranked shell models suggest that one of the new bands can be interpreted as the continuation of the ground state band (above the AB crossing frequency) crossing into the four-quasiparticle band ABCD at about 0.38 MeV. Both relative alignment and Routhians are in good agreement with the experimental values. However, these calculations were done at constant pairing strength, which is not expected to be good at high rotational frequencies where one or more crossings have occurred in each band. Particle-hole calculations (with no pairing) were done for {sup 168}Yb as well as for other N {approx_equal} 98 nuclei for which good experimental data are available. In most cases, it is possible to associate a particle-hole configuration for each band observed at very high rotational frequencies, and the overall description is good. At frequencies below the first crossing, a full pairing calculation is necessary to describe the bands properly. At intermediate frequencies, the pairing strength is believed to be intermediate. 3 figs.

  19. Application of the high-spin isomer beams to the secondary fusion reaction and the measurement of g-factor

    International Nuclear Information System (INIS)

    Watanabe, H.; Asahi, K.; Kishida, T.; Ueno, H.; Sato, W.; Yoshimi, A.; Kobayashi, Y.; Kameda, D.; Miyoshi, H.; Fukuchi, T.; Wakabayashi, Y.; Sasaki, T.; Kibe, M.; Hokoiwa, N.; Odahara, A.; Cederwall, B.; Lagergren, K.; Podolyak, Zs.; Ishihara, M.; Gono, Y.

    2004-01-01

    A technique for providing high-spin isomers as probes of the fusion reaction and the measurement of g-factor has been worked out at RIKEN. In the study of the fusion reaction 12 C( 145m Sm,xn) 157-x Er, the γ rays emitted from the fusion-evaporation residue 154 Er have been successfully observed. The nuclear g-factor of the T 1/2 = 28 ns high-spin isomer in 149 Dy has been measured with the γ-ray TDPAD method

  20. Self-consistent field description of high spin states in rare earth nuclei. [Hartree-Fock-Bogolyubov Theory

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, A L [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1976-07-12

    The Hartree-Fock-Bogolyubov cranking equations are solved for /sup 168/ /sup 170/Yb and /sup 174/Hf. Deformation and pairing properties are both obtained with a G-matrix derived from the Reid soft-core potential. The high spin anomalies are attributed to the disappearance of the neutron pair gap in /sup 168/Yb, the realignment of an isub(13/2) neutron pair in /sup 170/Yb, and a combination of these two mechanisms in /sup 174/Hf. Two bands intersecting at high spin are found for /sup 174/Hf.

  1. In-Beam Studies of High-Spin States in Mercury -183 and MERCURY-181

    Science.gov (United States)

    Shi, Detang

    The high-spin states of ^{183 }Hg were studied by using the reaction ^{155}Gd(^{32}S, 4n)^{183}Hg at a beam energy of 160 MeV with the tandem-linac accelerator system and the multi-element gamma-ray detection array at Florida State University. Two new bands, consisting of stretched E2 transitions and connected by M1 inter-band transitions, were identified in ^{183}Hg. Several new levels were added to the previously known bands at higher spin. The spins and parities to the levels in ^{183}Hg were determined from the analysis of their DCO ratios and B(M1)/B(E2) ratios. While the two pairs of previously known bands in ^ {183}Hg were proposed to 7/2^ -[514] and 9/2^+ [624], the two new bands are assigned as the 1/2^-[521] ground state configuration based upon the systematics of Nilsson orbitals in this mass region. The 354-keV transition previously was considered to be an E2 transition and assigned as the only transition from a band which is built on an oblate deformed i_{13/2} isomeric state. However, our DCO ratio analysis indicates that the 354-keV gamma-ray is an M1 transition. This changes the decay pattern of the 9/2^+[624 ] prolate structure in ^ {183}Hg, so it is seen to feed only into the i_{13/2} isomer band head. Our knowledge of the mercury nuclei far from stability was then extended through an in-beam study of the reaction ^{144}Sm(^{40 }Ar, 3n)^{181}Hg by using the Fragment Mass Analyzer (FMA) and the ten-Compton-suppressed -germanium-detector system at Argonne National Laboratory. Band structures to high-spin states are established for the first time in ^{181}Hg in the present experiment. The observed level structure of ^{181}Hg is midway between those in ^{185}Hg and in ^{183}Hg. The experimental results are analyzed in the framework of the cranking shell model (CSM). Alternative theoretical explanations are also presented and discussed. Systematics of neighboring mercury isotopes and N = 103 isotones is analyzed.

  2. High spin state driven magnetism and thermoelectricity in Mn doped topological insulator Bi2Se3

    Science.gov (United States)

    Maurya, V. K.; Dong, C. L.; Chen, C. L.; Asokan, K.; Patnaik, S.

    2018-06-01

    We report on the synthesis, and structural - magnetic characterizations of Mn doped Bi2Se3 towards achieving a magnetically doped topological insulator. High quality single crystals of MnxBi2-xSe3 (x = 0, 0.03, 0.05, 0.1) are grown and analysed by X-ray diffraction (XRD), Low Energy Electron Diffraction (LEED), Scanning electron microscopy (SEM), and X-ray absorption near-edge structure spectroscopy (XANES). Magnetic properties of these samples under ZFC-FC protocol and isothermal magnetization confirm ferromagnetic correlation above x = 0.03 value. XANES measurements confirm that the dopant Mn is in Mn2+ state. This is further reconfirmed to be in high spin state by fitting magnetic data with Brillouin function for J = 5/2. Both Hall and Seebeck measurements indicate a sign change of charge carriers above x = 0.03 value of Mn doping. We propose Mn doped Bi2Se3 to be a potential candidate for electromagnetic and thermoelectric device applications involving topological surface states.

  3. Andreev spectrum with high spin-orbit interactions: Revealing spin splitting and topologically protected crossings

    Science.gov (United States)

    Murani, A.; Chepelianskii, A.; Guéron, S.; Bouchiat, H.

    2017-10-01

    In order to point out experimentally accessible signatures of spin-orbit interaction, we investigate numerically the Andreev spectrum of a multichannel mesoscopic quantum wire (N) with high spin-orbit interaction coupled to superconducting electrodes (S), contrasting topological and nontopological behaviors. In the nontopological case (square lattice with Rashba interactions), we find that the Kramers degeneracy of Andreev levels is lifted by a phase difference between the S reservoirs except at multiples of π , when the normal quantum wires can host several conduction channels. The level crossings at these points invariant by time-reversal symmetry are not lifted by disorder. Whereas the dc Josephson current is insensitive to these level crossings, the high-frequency admittance (susceptibility) at finite temperature reveals these level crossings and the lifting of their degeneracy at π by a small Zeeman field. We have also investigated the hexagonal lattice with intrinsic spin-orbit interaction in the range of parameters where it is a two-dimensional topological insulator with one-dimensional helical edges protected against disorder. Nontopological superconducting contacts can induce topological superconductivity in this system characterized by zero-energy level crossing of Andreev levels. Both Josephson current and finite-frequency admittance carry then very specific signatures at low temperature of this disorder-protected Andreev level crossing at π and zero energy.

  4. Observation of high-spin mixed oxidation state of cobalt in ceramic Co3TeO6

    Science.gov (United States)

    Singh, Harishchandra; Ghosh, Haranath; Chandrasekhar Rao, T. V.; Sinha, A. K.; Rajput, Parasmani

    2014-12-01

    We report coexistence of high spin Co3+ and Co2+ in ceramic Co3TeO6 using X-ray Absorption Near Edge Structure (XANES), DC magnetization, and first principles ab-initio calculations. The main absorption line of cobalt Co K-edge XANES spectra, along with a linear combination fit, led us to estimate relative concentration of Co2+ and Co3+as 60:40. The pre edge feature of XANES spectrum shows crystal field splitting of ˜1.26 eV between eg and t2g states, suggesting a mixture of high spin states of both Co2+ and Co3+. Temperature dependent high field DC magnetization measurements reveal dominant antiferromagnetic order with two Neel temperatures (TN1 ˜ 29 K and TN2 ˜ 18 K), consistent with single crystal study. A larger effective magnetic moment is observed in comparison to that reported for single crystal (which contains only Co2+), supports our inference that Co3+ exists in high spin state. Furthermore, we show that both Co2+ and Co3+ being in high spin states constitute a favorable ground state through first principles ab-initio calculations, where Rietveld refined synchrotron X-ray diffraction data are used as input.

  5. Antiferromagnetic coupling in a six-coordinate high spin cobalt(II)-semiquinonato complex.

    Science.gov (United States)

    Caneschi, Andrea; Dei, Andrea; Gatteschi, Dante; Tangoulis, Vassilis

    2002-07-01

    The 3,5-di-tert-butyl-catecholato and 9,10-phenanthrenecatecholato adducts of the cobalt-tetraazamacrocycle complex Co(Me(4)cyclam)(2+) (Me(4)cyclam = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) were synthesized and oxidized. The oxidation reaction products were isolated in the solid state as hexafluorophosphate derivatives. Both these complexes can be formulated as 1:1 cobalt(II)-semiquinonato complexes, that is, Co(Me(4)cyclam)(DBSQ)PF(6) (1) and Co(Me(4)cyclam)(PhSQ)PF(6) (2), in the temperature range 4-300 K, in striking contrast with the charge distribution found in similar adducts formed by related tetraazamacrocycles. The synthesis strategy and the structural, spectroscopic, and magnetic properties are reported and discussed. The crystallographic data for 2 are as follows: monoclinic, space group P2(1)/a, nomicron. 14, a = 14.087(4) A, b = 15.873(4) A, c = 14.263 (7) A, alpha = 89.91(3) degrees, beta = 107.34(2) degrees, gamma = 90.08(2) degrees, Z = 4. Both these complexes are characterized by triplet electronic ground states arising from the antiferromagnetic coupling between the high-spin d(7) metal ion and the radical ligand.

  6. Study of high-spin states in 181,182Os

    International Nuclear Information System (INIS)

    Kutsarova, T.; Fallon, P.; Howe, D.; Mokhtar, A.R.; Sharpey-Schafer, J.F.; Walker, P.; Chowdhury, P.; Fabricius, B.; Sletten, G.; Frauendorf, S.

    1995-01-01

    High-spin states in the nuclei 181,182 Os have been populated in the 150 Nd( 36 S,xn) reactions and studied with the ESSA30 array. The nucleus 181 Os has also been studied at the NBI tandem accelerator using the 167 Er( 18 O,4n) reaction. The previously known bands in both nuclei have been extended to higher spins and two new side bands have been found in 181 Os. In the latter nucleus the ground state has been established to have I π =(1)/(2) - . The extraction of the ratios of reduced transition probabilities B(M1)/B(E2) from branching and E2/M1 mixing ratios permitted configuration assignments for most of the bands in both nuclei. The analysis has been carried out within the semiclassical vector model for M1 radiation. The positive-parity yrare sequences in 182 Os and the band based on the I π = K π =(23)/(2) - state in 181 Os have been interpreted as t-bands arising from a rotation about a tilted axis. The alignment behaviour and the crossing frequencies are for most of the bands consistent with predictions of the cranked shell model. ((orig.))

  7. Dipole bands in high spin states of {sub 57}{sup 135}La{sub 78}

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Ritika; Kumar, S.; Saxena, Mansi; Goyal, Savi; Siwal, Davinder; Verma, S.; Mandal, S. [Department of Physics and Astrophysics, University of Delhi, Delhi - 110007 (India); Palit, R.; Saha, Sudipta; Sethi, J.; Sharma, Sushil K.; Trivedi, T.; Jadav, S. K.; Donthi, R.; Naidu, B. S. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai - 400005 (India)

    2014-08-14

    High spin states of {sup 135}La have been investigated using the reaction {sup 128}Te({sup 11}B,4n){sup 135}La at a beam energy of 50.5 MeV. Two negative parity dipole bands (ΔI = 1) have been established. Crossover E2 transitions have been observed for the first time in one of the dipole bands. For the Tilted Axis Cranking (TAC) calculations, a three-quasiparticle (3qp) configuration π(h{sub 11/2}){sup 1}⊗ν(h{sub 11/2}){sup −2} and a five-quasiparticle (5qp) configuration π(h{sub 11/2}){sup 1}(g{sub 7/2}/d{sub 5/2}){sup 2}⊗ν(h{sub 11/2}){sup −2} have been taken for the two negative parity dipole bands. The comparison of experimental observables with TAC calculations supports the configuration assignments for both the dipole bands.

  8. High-spin states in 214Rn, 216Ra and a study of even-even N=128 systematics

    Science.gov (United States)

    Lönnroth, T.; Horn, D.; Baktash, C.; Lister, C. J.; Young, G. R.

    1983-01-01

    High-spin states in 214Rn and 216Ra have been studied by means of the reaction 208Pb(13C, α 3n γ)214Rn and 208Pb(13C, 5n γ)216Ra at beam energies in the range 75-95 MeV. In-beam spectroscopy techniques, including γ-decay excitation functions, α-γ coincidences, γ-γ coincidences, γ-ray angular distributions, and pulsed-beam-γ timing, were utilized to establish level energies, γ-ray multipolarities, Jπ assignments, and isomeric lifetimes. Excited states with spins up to 23ℏ in 214Rn and ~30ℏ in 216Ra were observed. Isomers were found in 214Rn at 1625 keV (T12=9 ns, Jπ=8+), 1787 keV (22 ns, 10+), 3485 keV (95 ns, 16), 4509 keV (230 ns, 20), and 4738 keV (8 ns, 22), and in 216Ra at 1708 keV (8 ns, 8+) and 5868 keV (10 ns, ~24). B(EL) values were deduced and compared to previously known lead-region electric transition rates. Shell-model calculations were performed and used to make configurational assignments. The absence of major α-decay branching in the isomers is explained and the systematic behavior of N=128 even-even nuclei is discussed. NUCLEAR STRUCTURE 208Pb(13C, α 3n γ)214Rn, 208Pb(13C, 5n γ) 216Ra, Elab=75-95 MeV. Measured α-γ coin, γ-γ(t) coin, I(θ), pulsed-beam-γ timing. Deduced level schemes, Jπ, T12, B(EL), multipolarities. Shell model calculations, Ge(Li) and Si detectors, enriched target.

  9. Study of high-spin structure of the nuclei around A∼120 near proton-drip line

    International Nuclear Information System (INIS)

    Ray, I; Datta Pramanik, U.; Banerjee, P.; Bhattacharya, S.; Goswami, A.; Kshetri, R.; Mukherjee, A.; Mukherjee, B.; Saha Sarkar, M.; Basu, S.K.; Bhowmik, R.K.; Rakesh Kumar; Muralithar, S.; Singh, R.P.; Mandal, S.; Ranjet

    2005-01-01

    It would be interesting to explore the shell structure for nuclei near proton-drip line. The nuclei around A∼ 110-130 region show a wide range of interesting features in high spin states which reflect different types of symmetry breaking mechanisms as well as maintaining symmetries

  10. Design of a Compton-suppression spectrometer and its application to the study of high-spin yrast states

    International Nuclear Information System (INIS)

    Aarts, H.J.M.

    1981-01-01

    Detailed γ-ray spectroscopy of high-spin states is hampered by transitions with low intensity on a high γ-ray background. An approach to enhance weak peaks in a spectrum in the reduction of the Compton background by means of a Compton-suppression spectrometer (CSS). Optimization of a CSS by means of Monte Carlo calculations is described. The investigation of high-spin states in the sd-shell nucleus 38 Ar with a Compton-suppression spectrometer is reported. With previously described techniques, in combination with p-γ coincidence measurements to establish an unambiguous level scheme, states up to Jsup(π) = 11 - could be identified and investigated. A gamma-gamma coincidence experiment on the nuclei 167 168 Hf is described with two Compton-suppression spectrometers. Yrast bands are followed, beyond the region of the first backbending, up to spin J = 37/2 and J = 28 for 167 Hf and 168 Hf, respectively. (Auth.)

  11. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  12. EDITORIAL: New materials with high spin polarization: half-metallic Heusler compounds

    Science.gov (United States)

    Felser, Claudia; Hillebrands, Burkard

    2007-03-01

    The development of magnetic Heusler compounds, specifically designed as materials for spintronic applications, has made tremendous progress in the very recent past [1-21]. Heusler compounds can be made as half-metals, showing a high spin polarization of the conduction electrons of up to 100% [1]. These materials are exceptionally well suited for applications in magnetic tunnel junctions acting, for example, as sensors for magnetic fields. The tunnelling magneto-resistance (TMR) effect is the relative change in the electrical resistance upon application of a small magnetic field. Tunnel junctions with a TMR effect of 580% at 4 K were reported by the group of Miyazaki and Ando [1], consisting of two Co2MnSi Heusler electrodes. High Curie temperatures were found in Co2 Heusler compounds with values up to 1120 K in Co2FeSi [2]. The latest results are for a TMR device made from the Co2FeAl0.5Si0.5 Heusler compound and working at room temperature with a TMR effect of 174% [3]. The first significant magneto-resistance effect was discovered in Co2Cr0.6Fe0.4Al (CCFA) in Mainz [4]. With the classical Heusler compound CCFA as one electrode, the record TMR effect at 4 K is 240% [5]. Positive and negative TMR values at room temperature utilizing magnetic tunnel junctions with one Heusler compound electrode render magnetic logic possible [6]. Research efforts exist, in particular, in Japan and in Germany. The status of research as of winter 2005 was compiled in a recent special volume of Journal of Physics D: Applied Physics [7-20]. Since then specific progress has been made on the issues of (i) new advanced Heusler materials, (ii) advanced characterization, and (iii) advanced devices using the new materials. In Germany, the Mainz and Kaiserslautern based Research Unit 559 `New Materials with High Spin Polarization', funded since 2004 by the Deutsche Forschungsgemeinschaft, is a basic science approach to Heusler compounds, and it addresses the first two topics in particular

  13. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers.

    Science.gov (United States)

    Rodriguez, Carl L; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A

    2018-04-13

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  14. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers

    Science.gov (United States)

    Rodriguez, Carl L.; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A.

    2018-04-01

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  15. Electric quadruple moments of high-spin isomers in 209Po

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Nicolescu, G.; Plostinaru, D.

    1998-01-01

    The electric quadrupole interaction of the 209 Po (17/2) - and (13/2) - isomers in a Bi single-crystal was measured. The results for the quadrupole moments are connected with studies of isomers in Po isotopes. A two level analysis procedure was employed for the combined data of (17/2) - and (13/2) - isomers. The quadrupole moments of the Po isotopes are of special interest for testing nuclear models because of supposed simple nuclear structure with two protons outside a closed magic number shell. While the g-factors are significant for the predominant few-particle structures often present at high spins, the quadrupole moments are sensitive to additional contributions arising from core deformation effects. A systematic study of quadrupole moments of 12 + isomers in Pb isotopes has indeed demonstrated that the valence neutron effective charge increases as more particle pairs are removed from the 208 Pb core. In the present work, quadrupole coupling constants were measured for the isomers by the time-differential perturbed angular distribution (TDPAD) technique, in the presence of quadrupole interactions from the internal electric field gradient (EFG) in Bi crystal. The experiments were performed using a pulsed deuteron-beam of 13 MeV. The (17/2) - isomer state (T 1/2 = 88 ns) and the (13/2) - isomer state (T 1/2 = 24 ns) were populated and aligned by the 209 Bi(d,2n) reaction. The repetition time of the pulse was 10 μs and the width was around 5 ns (FWHM). The rather low bombardment energy was chosen to reduce population of higher spin isomers and to optimize the population of 209 Po((17/2) - ) and 209 Po((13/2) - ). The 209 Po single crystal target was held at a temperature of 470 K in order to reduce possible radiation damage effects. The experiments have been performed with the c axis of the single crystal at 45 angle and 90 angle to the beam direction. We chose to use a calibration based on isomers with well-understood nuclear structure allowing a reliable

  16. X-ray laser implementation by means of a strong source of high-spin metastable atoms

    International Nuclear Information System (INIS)

    Helman, J.S.; Rau, C.; Bunge, C.F.

    1983-01-01

    High-spin metastable atomic beams of high density and extremely small divergence can be produced by electron capture during grazing-angle scattering of ion beams at ferromagnetic surfaces. This can be used to generate a long-lived reservoir of Li 1s2s2p 4 P/sub 5/2//sup ts0/ with enough density of metastables so that after laser-induced transfer to Li 1s2p/sup ts2/P strong lasing at 207 A should occur. This novel technique can also be used to produce a variety of other metastables known as potential candidates for lasing at shorter wavelengths

  17. Demonstrating Multi-bit Magnetic Memory in the Fe8 High Spin Molecule by Muon Spin Rotation

    OpenAIRE

    Shafir, Oren; Keren, Amit; Maegawa, Satoru; Ueda, Miki; Amato, Alex; Baines, Chris

    2005-01-01

    We developed a method to detect the quantum nature of high spin molecules using muon spin rotation, and a three-step field cycle ending always with the same field. We use this method to demonstrate that the Fe8 molecule can remember 6 (possibly 8) different histories (bits). A wide range of fields can be used to write a particular bit, and the information is stored in discrete states. Therefore, Fe8 can be used as a model compound for Multi-bit Magnetic Memory. Our experiment also paves the w...

  18. Microscopic structure of high-spin vibrational states in superdeformed A=190 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsukasa, Takashi [Chalk River Labs., Ontario (Canada); Matsuyanagi, Kenichi [Kyoto Univ. (Japan); Mizutori, Shoujirou [Oak Ridge National Lab., TN (United States)] [and others

    1996-12-31

    Microscopic RPA calculations based on the cranked shell model are performed to investigate the quadrupole and octupole correlations for excited superdeformed (SD) bands in even-even A=190 nuclei. The K = 2 octupole vibrations are predicted to be the lowest excitation modes at zero rotational frequency. The Coriolis coupling at finite frequency produces different effects depending on the neutron and proton number of nucleus. The calculations also indicate that some collective excitations may produce moments of inertia almost identical to those of the yrast SD band. An interpretation of the observed excited bands invoking the octupole vibrations is proposed, which suggests those octupole vibrations may be prevalent in even-even SD A=190 nuclei.

  19. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis.

    Science.gov (United States)

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-06-16

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment.

  20. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    Science.gov (United States)

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-06-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.

  1. Neutron and gamma emission from highly excited states and states with high spin. Annual progress report

    International Nuclear Information System (INIS)

    Sperber, D.

    1975-08-01

    During the last year attention was focused on the theoretical study of heavy ion induced reactions at low and intermediate energy with particular attention on very heavy projectiles. Most of the studies described have been finished, others are under current investigation. In most of the calculations, a classical dynamical approach was adopted, others concern themselves with assessing the validity of this classical approximation. In all calculations, one addressed oneself to the evaluation of quantities which are measured experimentally. Examples of such quantities are the critical angular momentum for complete fusion, the angular distribution for deep inelastic processes, and mass and energy transfer. The following topics have been investigated during the recent phase of this program: (1) The development of a classical dynamical model for the study of heavy ion reactions. (2) The calculation of the critical angular momentum using the proximity potential. (3) The role of potential and friction in heavy ion reactions. (4) Angular distribution for Kr induced reactions. (5) The validity of the sharp cut-off approximation. (6) The difference between Argon and Krypton induced reactions leading to the same compound nucleus. (7) Statistical studies of mass transfer. (8) The inclusion of the necking degree of freedom. (9) Semiclassical calculation. The results of the studies of the first seven topics are already available in the open literature. The last two topics are under current investigation

  2. A high-spin isomer at high excitation energy in the neutron deficient nucleus $^{152}$Dy

    CERN Document Server

    Jansen, J F W; Chmielewska, D; De Meijer, R J

    1976-01-01

    A T/sub 1/2/=60+or-5 ns isomer at E/sub x/ approximately=5 MeV is found in the /sup 154/Gd( alpha ,6n)/sup 152/Dy reaction. The possible spin values are 15

  3. Feeding times of high spin states in sup(152,154)Dy: Probes of nuclear structure above the yrast line

    International Nuclear Information System (INIS)

    Azgui, F.; Emling, H.; Grosse, E.; Michel, C.; Simon, R.S.; Spreng, W.; Wollersheim, H.J.; Khoo, T.L.; Chowdhury, P.; Frekers, D.; Janssens, R.V.F.; Pakkanen, A.; Daly, P.J.; Kortelahti, M.; Schwalm, D.; Seiler-Clark, G.

    1985-01-01

    Measurements of feeding times of high spin yrast states up to spin 30 (h/2π) in 154 Dy and 36 (h/2π) in 152 Dy were utilized to obtain information about possible spin dependent shape changes. The reactions 25 Mg ( 134 Xe, 5n), 124 Sn ( 34 S, 4n) and 25 Mg ( 132 Xe, 5n), 122 Sn ( 34 S, 4n) were used to populate the high spin states in 154 Dy and 152 Dy, respectively. Feeding times as well as lifetimes were determined with the recoil distance technique. In 152 Dy only long feeding times (>=10 ps) could be identified, indicating that the aligned-particle yrast states are fed through configurations of similar character, with little direct population from collective cascades in the continuum region. In 154 Dy discrete states with I<=30 (h/2π) have lifetimes which are characteristically collective, whereas the preyrast cascades exhibit both fast (< or approx.1 ps) and slow (proportional10 ps) feeding components. The latter imply a change with increasing spin from collective to aligned-particle character, probably associated with a prolate to oblate shape transition. (orig.)

  4. High-spin level scheme of odd-odd 142Pm

    International Nuclear Information System (INIS)

    Liu Minliang; Zhang Yuhu; Zhou Xiaohong; He Jianjun; Guo Yingxiang; Lei Xiangguo; Huang Wenxue; Liu Zhong; Luo Yixiao; Feng Xichen; Zhang Shuangquan; Xu Xiao; Zheng Yong; Luo Wanju

    2002-01-01

    The level structure of doubly odd nucleus 142 Pm has been studied via the 128 Te( 19 F, 5nγ) 142 Pm reaction in the energy region from 75 to 95 MeV. In-beam γ rays were measured including the excited function, γ-ray singles and γ-γ coincidences in experiment. The level scheme of 142 Pm has been extended up to excitation energy of 7030.0 keV including 25 new γ rays and 13 new levels. Based on the measured γ-ray anisotropies, the level spins in 142 Pm have been suggested

  5. Highly excited atoms

    International Nuclear Information System (INIS)

    Kleppner, D.; Littman, M.G.; Zimmerman, M.L.

    1981-01-01

    Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before

  6. Return of K selection at high spin: Decay of bandheads in {sup 178}W

    Energy Technology Data Exchange (ETDEWEB)

    Walker, P.M.; Purry, C.S.; Gelletly, W. [Univ. of Surrey, Guildford (United Kingdom)] [and others

    1996-12-31

    In contrast to the de-excitation of the low-seniority states in {sup 178}W, the decay of the K{sup {pi}} = 25{sup +}, 8-quasiparticle isomer is strongly hindered. This is seen to be related to its yrast status.

  7. High spin level structure of {sub 63}{sup 143}Eu{sub 80}

    Energy Technology Data Exchange (ETDEWEB)

    Piiparen, M [Jyvaeskylae Univ. (Finland). Dept. of Physics; Atac, A; Gjorup, N; Hageman, G; Herskind, B; Jensen, H; Kusakari, H; Lieder, R; Nyberg, J; Santonocito, A; Sletten, G; Sugawara, M; Virtanen, A [Niels Bohr Institute, Tandem Accelerator laboratory, Roskilde, (Denmark); Angelis, G de [Laboratori Nazionali di Legnaro, Legnaro (Italy); Forbes, S; Mullins, S; Wadsworth, R [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Ingebretsen, F; Tjom, P O [Oslo Univ. (Norway); Jerrestam, D [Studsvik Science Research Lab., Nykoeping (Sweden); Marti, G M; Schnare, H; Strahle, K [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik

    1992-08-01

    The level scheme of {sup 143}Eu has been extended to I=75/2 in an experiment with the NORDBALL Compton-suppressed Ge detector array and the {sup 110}Pd({sup 37}Cl,4n) reaction. Most of the scheme shows irregular structure of multiparticle excitations. A strongly populated straight cascade of more than 10 stretched E2 transitions suggests the onset of collectivity. (author). 6 refs., 1 fig.

  8. High-spin states beyond the proton drip-line: Quasiparticle alignments in {sup 113}Cs

    Energy Technology Data Exchange (ETDEWEB)

    Wady, P.T. [School of Engineering, University of the West of Scotland, Paisley, PA1 2BE (United Kingdom); Scottish Universities Physics Alliance (United Kingdom); Smith, J.F., E-mail: John.F.Smith@uws.ac.uk [School of Engineering, University of the West of Scotland, Paisley, PA1 2BE (United Kingdom); Scottish Universities Physics Alliance (United Kingdom); Hadinia, B. [School of Engineering, University of the West of Scotland, Paisley, PA1 2BE (United Kingdom); Scottish Universities Physics Alliance (United Kingdom); Cullen, D.M.; Freeman, S.J. [School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Darby, I.G. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE (United Kingdom); Eeckhaudt, S.; Grahn, T.; Greenlees, P.T.; Jones, P.M.; Julin, R.; Juutinen, S.; Kettunen, H.; Leino, M.; Leppänen, A.-P. [Department of Physics, University of Jyväskylä, FIN-40014, Jyväskylä (Finland); McGuirk, B.M. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE (United Kingdom); Nieminen, P.; Nyman, M. [Department of Physics, University of Jyväskylä, FIN-40014, Jyväskylä (Finland); Page, R.D. [Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE (United Kingdom); Pakarinen, J. [Department of Physics, University of Jyväskylä, FIN-40014, Jyväskylä (Finland); and others

    2015-01-05

    Excited states have been studied in the deformed proton emitter {sup 113}Cs. Gamma-ray transitions have been unambiguously assigned to {sup 113}Cs by correlation with its characteristic proton decay, using the method of recoil-decay tagging. Two previously identified rotational bands have been observed and extended to tentative spins of 45/2 and 51/2ħ, with excitation energies over 8 MeV above the lowest state. These are the highest angular momenta and excitation energies observed to date in any nucleus beyond the proton drip-line. Transitions in the bands have been rearranged compared to previous work. A study of aligned angular momenta, in comparison to the predictions of Woods–Saxon cranking calculations, is consistent with the most intense band being based on the πg{sub 7/2}[422]3/2{sup +} configuration, which would contradict the earlier πh{sub 11/2} assignment, and with the second band being based on the πd{sub 5/2}[420]1/2{sup +} configuration. The data suggest that the band based upon the πh{sub 11/2} configuration is not observed.

  9. Study of transitional Erbium nuclei (N=86) at very high spin. Highlight of dipolar transitions and medium livetimes in the continuum

    International Nuclear Information System (INIS)

    Bogaert, G.

    1984-01-01

    Average lifetimes and multipolarities of unresolved transitions deexciting very high spin states of the light Rare Earth nuclei (N approximately 86) have been determined by a measure of Doppler shift attenuation and their anisotropy. The spin selection is provided by the total energy spectrometer technique; great care was taken of the existence of many long lived isomeric states in the studied nuclei. The N approximately 86 nuclei have been formed in the 84 Kr(340 MeV) + 74 Ge → 158 Er* reactions using the 84 Kr beam of the Orsay ALICE facilities and targets of 74 Ge built at the PARIS Isotope separator of the CSNSM. NaI γ spectra have been thoroughly cleared of the discrete lines contribution through a carefull subtraction procedure synthetising NaI spectra from the Ge ones. At very high spin the continuum γ rays feed two well separated bumps with Esub(γ) approximately .65 MeV and Esub(γ) approximately 1.3 MeV. The 1.3 MeV transitions appear at I > 30 h and their energy does not vary with the increasing spin like expected in the rotational case of the well deformed nuclei; they are strongly collectively enhanced with B(E2) > 130 W.u. Below 1 MeV the anisotropy of transitions is R approximately 0.7, indicating their stretched dipole nature. Recent calculations of nuclear shape deformation (following Strutinsky shell correction method) reproduce the two bumps shape of the experimental spectra and the origin of the excitation is explained in terms of nuclear vibration (γ-vibration, wobbling motion) [fr

  10. Fragmentation of high-spin particle-hole states in 26Mg

    International Nuclear Information System (INIS)

    Segel, R.E.; Amusa, A.; Geesaman, D.F.

    1989-01-01

    The inelastic scattering of 134 MeV protons to seven 6 - states in 26 Mg has been studied. By combining the results with those of a companion electron scattering study, and utilizing DWIA calculations, it has been possible to extract isoscalar and isovector excitation amplitudes. Shell model calculations using (1d 5/2 ) 10-n-p (2s 1/2 ) n (1f 7/2 ) p , with p = 0 and 1, model spaces can reproduce the general features of the fragmentation, but not the structure of the yrast 6 - state. 28 refs., 10 figs., 2 tabs

  11. High-spin yrast isomers in 211Rn and 212Rn with enhanced E3 decays

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Byrne, A.P.; Fabricius, B.

    1990-01-01

    New isomeric states with J π =69/2 + ,τ m = 13 (1) ns in 211 Rn and J π =33 - ,τ m = 7(1) ns in 212 Rn have been identified. They decay by enchanced E3 transitions with strengths of 33(3) and 43(6) single particle units to the known 63/2 - and 30 + isomers 211 Rn and 212 Rn, respectively. The excitation energies and transition strengths agree well with predictions of the multi-particle, octupole-vibration coupled model. 13 refs., 2 tabs., 3 figs

  12. An unusual high-spin ground state of Co3+ in octahedral coordination in brownmillerite-type cobalt oxide.

    Science.gov (United States)

    Istomin, S Ya; Tyablikov, O A; Kazakov, S M; Antipov, E V; Kurbakov, A I; Tsirlin, A A; Hollmann, N; Chin, Y Y; Lin, H-J; Chen, C T; Tanaka, A; Tjeng, L H; Hu, Z

    2015-06-21

    The crystal and magnetic structures of brownmillerite-like Sr(2)Co(1.2)Ga(0.8)O(5) with a stable Co(3+) oxidation state at both octahedral and tetrahedral sites are refined using neutron powder diffraction data collected at 2 K (S.G. Icmm, a = 5.6148(6) Å, b = 15.702(2) Å, c = 5.4543(6) Å; R(wp) = 0.0339, R(p) = 0.0443, χ(2) = 0.775). The very large tetragonal distortion of CoO(6) octahedra (1.9591(4) Å for Co-O(eq) and 2.257(6) Å for Co-O(ax)) could be beneficial for the stabilization of the long-sought intermediate-spin state of Co(3+) in perovskite-type oxides. However, the large magnetic moment of octahedral Co(3+) (3.82(7)μ(B)) indicates the conventional high-spin state of Co(3+) ions, which is further supported by the results of a combined theoretical and experimental soft X-ray absorption spectroscopy study at the Co-L(2,3) edges on Sr(2)Co(1.2)Ga(0.8)O(5). A high-spin ground state of Co(3+) in Sr(2)Co(1.2)Ga(0.8)O(5) resulted in much lower in comparison with a LaCoO(3) linear thermal expansion coefficient of 13.1 ppm K(-1) (298-1073 K) determined from high-temperature X-ray powder diffraction data collected in air.

  13. New level schemes with high-spin states of 105,107,109Tc

    International Nuclear Information System (INIS)

    Luo, Y.X.; Rasmussen, J.O.; Lee, I.Y.; Fallon, P.; Hamilton, J.H.; Ramayya, A.V.; Hwang, J.K.; Gore, P.M.; Zhu, S.J.; Wu, S.C.; Ginter, T.N.; Ter-Akopian, G.M.; Daniel, A.V.; Stoyer, M.A.; Donangelo, R.; Gelberg, A.

    2004-01-01

    New level schemes of odd-Z 105,107,109 Tc are proposed based on the 252 Cf spontaneous-fission-gamma data taken with Gammasphere in 2000. Bands of levels are considerably extended and expanded to show rich spectroscopic information. Spin/parity and configuration assignments are made based on determinations of multipolarities of low-lying transitions and the level analogies to the previously reported levels, and to those of the neighboring Rh isotopes. A non-yrast negative-parity band built on the 3/2 - [301] orbital is observed for the first time in 105 Tc. A positive-parity band built on the 1/2 + [431] intruder orbital originating from the π(g 7/2 /d 5/2 ) subshells and having a strong deformation-driving effect is observed for the first time in 105 Tc, and assigned in 107 Tc. A positive-parity band built on the excited 11/2 + level, which has rather low excitation energy and predominantly decays into the 9/2 + level of the ground state band, provides evidence of triaxiality in 107,109 Tc, and probably also in 105 Tc. Rotational constants are calculated and discussed for the K=1/2 intruder bands using the Bohr-Mottelson formula. Level systematics are discussed in terms of the locations of proton Fermi levels and deformations. The band crossings of yrast positive-parity bands are observed, most likely related to h 11/2 neutron alignment. Triaxial-rotor-plus-particle model calculations performed with ε=0.32 and γ=-22.5 deg. on the prolate side of maximum triaxiality yielded the best reproduction of the excitation energies, signature splittings, and branching ratios of the positive-parity bands (except for the intruder bands) of these Tc isotopes. The significant discrepancies between the triaxial-rotor-plus-particle model calculations and experiment for the K=1/2 intruder bands in 105,107 Tc need further theoretical studies

  14. Remnant magnetization of Fe8 high-spin molecules: X-ray magnetic circular dichroism at 300 mK

    Science.gov (United States)

    Letard, Isabelle; Sainctavit, Philippe; dit Moulin, Christophe Cartier; Kappler, Jean-Paul; Ghigna, Paolo; Gatteschi, Dante; Doddi, Bruno

    2007-06-01

    Fe8 high-spin molecules exhibit quantum spin tunneling at very low temperatures. Eight Fe3+ ions are sixfold coordinated and magnetically coupled through oxygen bridges. The net magnetization (MS=20 μB per molecule) results from competing antiferromagnetic interactions between the various Fe3+ ions (S =5/2). Because of the structural anisotropy of these molecules, the magnetization curve presents a hysteresis loop with staircases below 2 K. The staircases of the hysteresis loop are due to the quantum spin tunneling, which is temperature dependent for 400 mKmolecule. It has been possible to register an XMCD remnant signal, without magnetic field applied, at the iron L2,3 edges. XMCD coupled with ligand field multiplet calculations has allowed to determine the spin and orbit contributions to the magnetization of the Fe3+ ions.

  15. High spin states and the competition of spherical and strongly deformed shapes in the A = 70 to 80 region

    International Nuclear Information System (INIS)

    Hamilton, J.H.; Ramayya, A.V.; Piercey, R.B.

    1982-01-01

    A wide variety of collective band structures are seen in Ge to Sr nuclei to make this an important new testing ground for nuclear models. These include bands built on coexisting and competing near-spherical and deformed shapes, γ vibrational bands and multiple positive and negative parity bands. Ground state bands in Ge and Kr but not 78 80 Sr are crossed at the 8 + to 12 + levels. Gaps in the Nilsson levels for both N and Z = 38 at large deformation lead to large ground state deformation in Kr and Sr around N = 38. The crossing of rotation aligned bands based on (g/sub 9/2/) 2 configuration are correlated with the ground state deformations. A second high spin crossing is seen in 74 Kr. Measured g factors in 68 Ge yield a two-quasineutron structure for the 8 2 + state. 30 references

  16. Low to High Spin-State Transition Induced by Charge Ordering in Antiferromagnetic YBaCo2O5

    International Nuclear Information System (INIS)

    Vogt, T.; Woodward, P. M.; Karen, P.; Hunter, B. A.; Henning, P.; Moodenbaugh, A. R.

    2000-01-01

    The oxygen-deficient double perovskite YBaCo 2 O 5 , containing corner-linked CoO 5 square pyramids as principal building units, undergoes a paramagnetic to antiferromagnetic spin ordering at 330 K. This is accompanied by a tetragonal to orthorhombic distortion. Below 220 K orbital ordering and long-range Co 2+ /Co 3+ charge ordering occur as well as a change in the Co 2+ spin state from low to high spin. This transition is shown to be very sensitive to the oxygen content of the sample. To our knowledge this is the first observation of a spin-state transition induced by long-range orbital and charge ordering. (c) 2000 The American Physical Society

  17. Level structure of 68149Er81 and high-spin isomerism in proton-rich N=81, 82, 83 nuclei

    International Nuclear Information System (INIS)

    Broda, R.; Daly, P.J.; McNeill, J.; Janssens, R.V.F.; Radford, D.C.

    1987-01-01

    The level structure of the N=81 nucleus 149 Er has been studied by γ-ray spectroscopy following the reaction 92 Mo+255 MeV 60 Ni. Yrast levels in 149 Er are established up to ≅ 3.3 MeV, including 0.61 and 4.8 μs isometric states. Most of the observed levels are interpreted as seniority-three states arising from the coupling of s 1/2 , d 3/2 and h 11/2 neutron holes with πh n 11/2 . Isomers identified in the reaction 96 Ru+255 MeV 58 Ni are tentatively assigned to 151 Yb. The B(E2) values of high-spin isomers in Z=66-70, N=81-83 nuclei are surveyed. (orig.)

  18. Microscopic approach of the spectral property of 1+ and high-spin states in 124Te nucleus

    International Nuclear Information System (INIS)

    Shi Zhuyi; Ni Shaoyong; Tong Hong; Zhao Xingzhi

    2004-01-01

    Using a microscopic sdIBM-2+2q·p· approach, the spectra of the low-spin and partial high-spin states in 124 Te nucleus are relatively successfully calculated. In particular, the 1 1 + , 1 2 + , 3 1 + , 3 2 + and 5 1 + states are successfully reproduced, the energy relationship resulting from this approach identifies that the 6 1 + , 8 1 + and 10 1 + states belong to the aligned states of the two protons. This can explain the recent experimental results that the collective structures may coexist with the single-particle states. So this approach becomes a powerful tool for successfully describing the spectra of general nuclei without clear symmetry and of isotopes located at transitional regions. Finally, the aligned-state structure and the broken-pair energy of the two-quasi-particle are discussed

  19. High-spin states in the 192Pb and 193Pb isotopes

    International Nuclear Information System (INIS)

    Lagrange, J.M.; Pautrat, M.

    1991-01-01

    The 193 Pb and 192 Pb isotopes are produced through the 182 W( 16 O, 5n, 6n) reactions. The de-excitation γ-ray and conversion electron spectra lead to the conversion coefficients for most transitions. With the results of the γ-γ and e - -γ coincidences, the half-lives measured for several states, the angular distribution coefficients for the odd isotope and the transition multipolarities, the data on the 192 Pb level scheme has been much enhanced and the 193 Pb one studied for the first time. The experimental schemes are compared to those given by microscopic calculations, in a two or three quasi-particle approximation using a surface delta interaction with a reduced pairing component. The discrepancies between theory and experiment are attributed to the increasing influence of proton configurations

  20. Fabrication of 121Sb isotopic targets for the study of nuclear high spin features

    Science.gov (United States)

    Devi, K. Rojeeta; Kumar, Suresh; Kumar, Neeraj; Abhilash, S. R.; Kabiraj, D.

    2018-06-01

    Isotopic 121Sb targets with 197Au backing have been prepared by Physical Vapor Deposition (PVD) method using the diffusion pump based coating unit at target laboratory, Inter University Accelerator Centre (IUAC), New Delhi, India. The target thickness was measured by stylus profilo-meter and the purity of the targets was investigated by Energy Dispersive X-ray Analysis (EDXA). One of these targets has been used in an experiment which was performed at IUAC for nuclear structure study through fusion evaporation reaction. The excitation function of the 121Sb(12C, yxnγ) reaction has been performed for energies 58 to 70 MeV in steps of 4 MeV. The experimental results were compared with the calculations of statistical models : PACE4 and CASCADE. The methods adopted to achieve best quality foils and good deposition efficiency are reported in this paper.

  1. High energy magnetic excitations

    International Nuclear Information System (INIS)

    Endoh, Yasuo

    1988-01-01

    The report emphasizes that the current development in condensed matter physics opens a research field fit to inelastic neutron scattering experiments in the eV range which is easilly accessed by spallation neutron sources. Several important subjects adopted at thermal reactors are shown. It is desired to extend the implementation of the spectroscopic experiments for investigation of higher energy magnetic excitations. For La 2 CuO 4 , which is the mother crystal of the first high Tc materials found by Bednortz and Muller, it seems to be believed that the magnetism is well characterized by the two-dimensional Heisenberg antiferromagnetic Hamiltonian, and it is widely accepted that the magnetism is a most probable progenitor of high Tc superconductors. The unusual properties of spin correlations in this crystal have been studied extensively by standard neutron scattering techniques with steady neutrons at BNL. FeSi is not ordered magnetically but shows a very unique feature of temperature induced magnetism, which also has been studied extensively by using the thermal neutron scattering technique at BNL. In these experiments, polarized neutrons are indispensable to extract the clean magnetic components out of other components of non-magnetic scattering. (N.K.)

  2. Decay studies of a long lived high spin isomer of 210Bi

    International Nuclear Information System (INIS)

    Tuggle, D.G.

    1976-08-01

    A source of approximately 30 μg of pure (> 90%) /sup 210m/Bi (Jπ = 9-) was prepared by irradiating 209 Bi in a nuclear reactor. After chemical separations to remove 210 Po from the irradiated bismuth sample were completed, the 210 Bi was electromagnetically separated from the 209 Bi by a series of two isotope separations to create the source mentioned above. This source was then used to conduct alpha, conversion electron, gamma, gamma-gamma coincidence, and alpha-gamma coincidence spectroscopic studies of the decay of /sup 210m/Bi. The partial half life for the alpha decay of /sup 210m/Bi was measured as 3.0 x 10 6 yr. A lower limit of 10 13 years was set for the partial half life for the decay of /sup 210m/Bi to 210 Po. Alpha decay of /sup 210m/Bi to 8 excited states of 206 Tl was observed. A lower limit of 10 -4 % was set for the branching ratio of the parity forbidden alpha decay of 210 Bi to the 206 Ti ground state. Theoretical decay rates for the alpha decays of /sup 210m/Bi, 210 Bi, 211 Po, and /sup 211m/Po were calculated using the method developed by Hans Mang. A comparison of the calculated and experimentally measured alpha decay rates of /sup 210m/Bi showed good agreement for the relative alpha decay rates

  3. High-spin configuration of Mn in Bi{sub 2}Se{sub 3} three-dimensional topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Wolos, Agnieszka, E-mail: agnieszka.wolos@fuw.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Drabinska, Aneta [Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Borysiuk, Jolanta [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Sobczak, Kamil [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Kaminska, Maria [Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw (Poland); Hruban, Andrzej [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw (Poland); Strzelecka, Stanislawa G.; Materna, Andrzej; Piersa, Miroslaw; Romaniec, Magdalena; Diduszko, Ryszard [Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw (Poland)

    2016-12-01

    Electron paramagnetic resonance was used to investigate Mn impurity in Bi{sub 2}Se{sub 3} topological insulator grown by the vertical Bridgman method. Mn in high-spin S=5/2, Mn{sup 2+}, configuration was detected regardless of the conductivity type of the host material. This means that Mn{sup 2+}(d{sup 5}) energy level is located within the valence band, and Mn{sup 1+}(d{sup 6}) energy level is outside the energy gap of Bi{sub 2}Se{sub 3}. The electron paramagnetic resonance spectrum of Mn{sup 2+} in Bi{sub 2}Se{sub 3} is characterized by the isotropic g-factor |g|=1.91 and large axial parameter D=−4.20 GHz h. This corresponds to the zero-field splitting of the Kramers doublets equal to 8.4 GHz h and 16.8 GHz h, respectively, which is comparable to the Zeeman splitting for the X-band. Mn in Bi{sub 2}Se{sub 3} acts as an acceptor, effectively reducing native-high electron concentration, compensating selenium vacancies, and resulting in p-type conductivity. However, Mn-doping simultaneously favors formation of native donor defects, most probably selenium vacancies. For high Mn-doping it may lead to the resultant n-type conductivity related with strong non-stoichiometry and degradation of the crystal structure - switching from Bi{sub 2}Se{sub 3} to BiSe phase. - Highlights: • We studied electron paramagnetic resonance in Bi{sub 2}Se{sub 3}:Mn. • We found Mn in high-spin Mn{sup 2+} configuration in both n-type and p-type samples. • The g-factor for Mn{sup 2+} equals to 1.91 and axial parameter D=−4.20 GHz h. • Mn acts as an acceptor. • Mn substitution affects formation of native donors.

  4. Workshop on nuclear structure at moderate and high spin: Slide report

    International Nuclear Information System (INIS)

    1986-10-01

    The workshop was scheduled to coincide with the beginning of operation of a number of large arrays of Compton-suppressed germanium detectors. The workshop was divided into 14 sessions containing 3 presentations each. The topics of these sessions were superdeformation, heavy rare earths, single-particle configurations, band termination, continuum properties, light rare-earths, new techniques, high temperatures, transfer reactions, transition region, shapes, lifetimes, and moments. This publication consists of the slides used in all of the presentations at the workshop

  5. B(E2)s of high-spin isomers in generalized seniority scheme

    International Nuclear Information System (INIS)

    Maheshwari, Bhoomika; Jain, Ashok Kumar

    2015-01-01

    In this paper, we focus on the isomers that arise due to the seniority selection rules and the role played by generalized seniority when multi-j configurations are involved. In particular, we concentrate on explaining the B(E2) values in the semi-magic isomeric chains by using a simple approach. In this paper, we study the B(E2) variation of these isomers by using the generalized seniority scheme, applicable to many-j degenerate orbits. We show that the isomers known to arise mainly from the high-j intruder orbitals, do require the configuration mixing as an essential requirement

  6. An algebraic description of identical bands and of high-spin quadrupole collectivity

    International Nuclear Information System (INIS)

    Guidry, M.W.

    1993-01-01

    The Fermion Dynamical Symmetry Model (FDSM) has been used to describe electric quadrupole transition rates and static moments at high angular momentum in deformed nuclei. A quantitative description of these phenomena appears possible by these means. The formalism accounts naturally for those cases where significant reductions in B(E2) values are accompanied by relatively constant moments of inertia. A discussion of identical bands as being due to a dynamical symmetry will be given. The empirical properties of these bands and general principles of group theory will be used to place constraints on an acceptable symmetry. A model that represents a minimal implementation of these criteria will be presented

  7. Trans and surface membrane bound zervamicin IIB: 13C-MAOSS-NMR at high spinning speed

    International Nuclear Information System (INIS)

    Raap, J.; Hollander, J.; Ovchinnikova, T. V.; Swischeva, N. V.; Skladnev, D.; Kiihne, S.

    2006-01-01

    Interactions between 15 N-labelled peptides or proteins and lipids can be investigated using membranes aligned on a thin polymer film, which is rolled into a cylinder and inserted into the MAS-NMR rotor. This can be spun at high speed, which is often useful at high field strengths. Unfortunately, substrate films like commercially available polycarbonate or PEEK produce severe overlap with peptide and protein signals in 13 C-MAOSS NMR spectra. We show that a simple house hold foil support allows clear observation of the carbonyl, aromatic and C α signals of peptides and proteins as well as the ester carbonyl and choline signals of phosphocholine lipids. The utility of the new substrate is validated in applications to the membrane active peptide zervamicin IIB. The stability and macroscopic ordering of thin PC10 bilayers was compared with that of thicker POPC bilayers, both supported on the household foil. Sidebands in the 31 P-spectra showed a high degree of alignment of both the supported POPC and PC10 lipid molecules. Compared with POPC, the PC10 lipids are slightly more disordered, most likely due to the increased mobilities of the shorter lipid molecules. This mobility prevents PC10 from forming stable vesicles for MAS studies. The 13 C-peptide peaks were selectively detected in a 13 C-detected 1 H-spin diffusion experiment. Qualitative analysis of build-up curves obtained for different mixing times allowed the transmembrane peptide in PC10 to be distinguished from the surface bound topology in POPC. The 13 C-MAOSS results thus independently confirms previous findings from 15 N spectroscopy [Bechinger, B., Skladnev, D.A., Ogrel, A., Li, X., Rogozhkina, E.V., Ovchinnikova, T.V., O'Neil, J.D.J. and Raap, J. (2001) Biochemistry, 40, 9428-9437]. In summary, application of house hold foil opens the possibility of measuring high resolution 13 C-NMR spectra of peptides and proteins in well ordered membranes, which are required to determine the secondary and

  8. High spin-polarization in ultrathin Co2MnSi/CoPd multilayers

    Science.gov (United States)

    Galanakis, I.

    2015-03-01

    Half-metallic Co2MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co2MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co2MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices.

  9. High spin K isomeric target of {sup 177m}Lu

    Energy Technology Data Exchange (ETDEWEB)

    Roig, O. E-mail: olivier.roig@cea.fr; Belier, G.; Daugas, J.-M.; Delbourgo, P.; Maunoury, L.; Meot, V.; Morichon, E.; Sauvestre, J.-E.; Aupiais, J.; Boulin, Y.; Fioni, G.; Letourneau, A.; Marie, F.; Ridikas, D

    2004-03-21

    The techniques used to produce a {sup 177m}Lu (J{sup {pi}}=23/2{sup -},T{sub 1/2}=160.4 days) target are described in this paper. Firstly, an isotopic separation of an enriched lutetium sample was used to reach a purity of {sup 176}Lu close to 99.993%. Afterwards, the high neutron flux of the Grenoble Institut Laue-Langevin reactor was used to produce the {sup 177m}Lu isomer by the {sup 176}Lu(n,{gamma}) reaction. Finally, a chemical separation was performed to extract 10{sup 13} nuclei of {sup 177m}Lu. Thanks to this experiment, we have been able to estimate the destruction cross-section of the {sup 177m}Lu.

  10. High spin-polarization in ultrathin Co{sub 2}MnSi/CoPd multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Galanakis, I., E-mail: galanakis@upatras.gr

    2015-03-01

    Half-metallic Co{sub 2}MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co{sub 2}MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co{sub 2}MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices. - Highlights: • Ab-initio study of ultrathin Co{sub 2}MnSi/CoPd multilayers. • Large values of spin-polarization at the Fermi are retained. • Route for novel spintronic/magnetoelectronic devices.

  11. High spin-polarization in ultrathin Co2MnSi/CoPd multilayers

    International Nuclear Information System (INIS)

    Galanakis, I.

    2015-01-01

    Half-metallic Co 2 MnSi finds a broad spectrum of applications in spintronic devices either in the form of thin films or as spacer in multilayers. Using state-of-the-art ab-initio electronic structure calculations we exploit the electronic and magnetic properties of ultrathin Co 2 MnSi/CoPd multilayers. We show that these heterostructures combine high values of spin-polarization at the Co 2 MnSi spacer with the perpendicular magnetic anisotropy of binary compounds such as CoPd. Thus they could find application in spintronic/magnetoelectronic devices. - Highlights: • Ab-initio study of ultrathin Co 2 MnSi/CoPd multilayers. • Large values of spin-polarization at the Fermi are retained. • Route for novel spintronic/magnetoelectronic devices

  12. Effect of g-boson on spectra of high-spin states in 100Pd nucleus

    International Nuclear Information System (INIS)

    Zhao Xingzhi; Ni Shaoyong; Tong Hong; Shi Zhuyi; Second Northwest Inst. for Minority, Yinchuan; Shi Zhuya

    2007-01-01

    By using a microscopic sdgIBM-2 approach which is the accomplishment of the phenomenological sdgIBM theory and the experimental single-particle energies, the levels of the more complex ground-state band and the high-angular momentum states of y-band on 100 Pd nucleus are successfully reproduced. The ground-state band and γ-band are described well up to J π =16 + and E x =7.00 MeV, and that is larger than that J π 6 + -8 + , E x =2.00 MeV can be successfully reproduced in IBM theory. It has been proved that its yrast states up to the 16 + state are ground states, there may not exist any broken pair quasi-particle state by boson in yrast states. Theoretical analysis and numerical calculation show that to describe successfully spectra on 100 Pd nucleus under the boson approach in IBM theory, it is impossible that the g-boson has been not considered in one. According to the microscopic sdgIBM-2 approach, the 14 1 + state is understood as a result that a neutron g-boson transites into a neutron d-boson and a pair of photos is radiated at same time, and the 14 2 + state is the decoupling state of the 16 1 + state, while the 14 3 + state is the actual ground state. (authors)

  13. High spin gamma-ray coincidence spectroscopy with large detector arrays

    International Nuclear Information System (INIS)

    Bergstroem, M.H.

    1992-12-01

    In-beam γ-ray spectroscopy has been used to study rapidly rotating nuclei in the rare-earth region. The experiments were performed using the high-resolution multi detector arrays ESSA30 and TESSA3 at the Nuclear Structure Facility, Daresbury Laboratories in Great Britain and the NORDBALL at the Niels Bohr Tandem Accelerator at Risoe in Denmark. The studied nuclei were produced using heavy-ion induced fusion-evaporation reactions. New techniques for the analysis of γ-γ correlation spectra were developed. These involves viewing the two-dimensional γ-γ spectrum as well as projection in both energy axes, determination of centroids and volumes of peaks and full two-dimensional Gauss fits of an arbitrarily shaped area. The data acquisition system of the NORDBALL multi detector array is presented. In two of the studied nuclei ( 167 Lu and 163 Tm) the strongly shape driving πh 9/2 [541]1/2 - is studied. The shift to larger frequency of the neutron AB crossing in these decay sequences is not fully understood. The study of 171 Re revealed a second backbend of the [402]5/2 + band. The observed bandcrossings are interpreted using the CSM and three-band mixing calculations. The study of 171,172 W revealed five new bands and although these nuclei are expected to be stably deformed the small differences in the formation showed to be crucial in order to reproduce data well. (au)

  14. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    International Nuclear Information System (INIS)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam; Singh, Chandan K.; Kabir, Mukul; Thakur, Gohil S.; Haque, Zeba; Gupta, L. C.; Ganguli, Ashok K.

    2016-01-01

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  15. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    Energy Technology Data Exchange (ETDEWEB)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam, E-mail: goutam@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli PO 140306 (India); Singh, Chandan K.; Kabir, Mukul [Department of Physics, Indian Institute of Science Education and Research, Pune 411008 (India); Thakur, Gohil S.; Haque, Zeba; Gupta, L. C. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Ganguli, Ashok K. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Institute of Nano Science & Technology, Mohali 160064 (India)

    2016-06-13

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  16. High spin cycles: topping the spin record for a single molecule verging on quantum criticality

    Science.gov (United States)

    Baniodeh, Amer; Magnani, Nicola; Lan, Yanhua; Buth, Gernot; Anson, Christopher E.; Richter, Johannes; Affronte, Marco; Schnack, Jürgen; Powell, Annie K.

    2018-03-01

    The cyclisation of a short chain into a ring provides fascinating scenarios in terms of transforming a finite array of spins into a quasi-infinite structure. If frustration is present, theory predicts interesting quantum critical points, where the ground state and thus low-temperature properties of a material change drastically upon even a small variation of appropriate external parameters. This can be visualised as achieving a very high and pointed summit where the way down has an infinity of possibilities, which by any parameter change will be rapidly chosen, in order to reach the final ground state. Here we report a mixed 3d/4f cyclic coordination cluster that turns out to be very near or even at such a quantum critical point. It has a ground state spin of S = 60, the largest ever observed for a molecule (120 times that of a single electron). [Fe10Gd10(Me-tea)10(Me-teaH)10(NO3)10].20MeCN forms a nano-torus with alternating gadolinium and iron ions with a nearest neighbour Fe-Gd coupling and a frustrating next-nearest neighbour Fe-Fe coupling. Such a spin arrangement corresponds to a cyclic delta or saw-tooth chain, which can exhibit unusual frustration effects. In the present case, the quantum critical point bears a `flatland' of tens of thousands of energetically degenerate states between which transitions are possible at no energy costs with profound caloric consequences. Entropy-wise the energy flatland translates into the pointed summit overlooking the entropy landscape. Going downhill several target states can be reached depending on the applied physical procedure which offers new prospects for addressability.

  17. Orientation and thickness dependence of magnetization at the interfacesof highly spin-polarized manganite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chopdekar, Rajesh V.; Arenholz, Elke; Suzuki, Y.

    2008-08-18

    We have probed the nature of magnetism at the surface of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films. The spin polarization of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films is not intrinsically suppressed at all surfaces and interfaces but is highly sensitive to both the epitaxial strain state as well as the substrate orientation. Through the use of soft x-ray spectroscopy, the magnetic properties of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces have been investigated and compared to bulk magnetometry and resistivity measurements. The magnetization of (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces are more bulk-like as a function of thickness whereas the magnetization at the (001)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interface is suppressed significantly below a layer thickness of 20 nm. Such findings are correlated with the biaxial strain state of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films; for a given film thickness it is the tetragonal distortion of (001) La{sub 0.7}Sr{sub 0.3}MnO{sub 3} that severely impacts the magnetization, whereas the trigonal distortion for (111)-oriented films and monoclinic distortion for (110)-oriented films have less of an impact. These observations provide evidence that surface magnetization and thus spin polarization depends strongly on the crystal surface orientation as well as epitaxial strain.

  18. Study of the mechanism of the reaction 58Ni+40Ca and high spin states of the evaporation residual nuclei by application of γ-spectroscopy

    International Nuclear Information System (INIS)

    Komninos, P.

    1983-01-01

    γ-spectroscopic methods were applied to determine absolute cross sections for different evaporation channels of the reaction 40 Ca-> 58 Ni. In the incident-energy range Esub(lab)=135 to 158 MeV excitation functions were measured for the channels 2p+np, 3p+n2p, 4p, 5p, n4p, α, 2pα, and 3pα. Besides the cross section for the n2p and the n3p channel at Esub(lab)=135 MeV was determined. In the course of this thesis by means of 40 Ca-induced compound-nucleus reactions on Ni and Fe targets high spin states of neutron-deficient nuclei in the N 93 Ru a (17/2 - ) state and a (21/2) + isomeric state was identified the half-life of which was determined to (2.6+-0.2)μs. The earlier unknown level scheme of 91 Tc was established. Thereby states with spins up to 37/2 + (6398.0 keV) and 42/2 - (7715.1 keV) were observed. Both level schemes were compared with shell model calculations, and a good agreement resulted. Finally a partial β + /EC decay scheme for the identified new isotope 91 Ru(9+-1 s) was established. (orig./HSI) [de

  19. High spin structure functions

    International Nuclear Information System (INIS)

    Khan, H.

    1990-01-01

    This thesis explores deep inelastic scattering of a lepton beam from a polarized nuclear target with spin J=1. After reviewing the formation for spin-1/2, the structure functions for a spin-1 target are defined in terms of the helicity amplitudes for forward compton scattering. A version of the convolution model, which incorporates relativistic and binding energy corrections is used to calculate the structure functions of a neutron target. A simple parameterization of these structure functions is given in terms of a few neutron wave function parameters and the free nucleon structure functions. This allows for an easy comparison of structure functions calculated using different neutron models. (author)

  20. Low Temperature Electrical Spin Injection from Highly Spin Polarized Co₂CrAl Heusler Alloy into p-Si.

    Science.gov (United States)

    Kar, Uddipta; Panda, J; Nath, T K

    2018-06-01

    The low temperature spin accumulation in p-Si using Co2CrAl/SiO2 tunnel junction has been investigated in detail. The heterojunction has been fabricated using electron beam evaporation (EBE) technique. The 3-terminal contacts in Hanle geometry has been made for spin transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The current-voltage characteristics of the junction shows excellent rectifying magnetic diode like behaviour in lower temperature range (below 200 K). At higher temperature, the junction shows nonlinear behaviour without rectifying characteristics. We have observed spin accumulation signal in p-Si semiconductor using SiO2/Co2CrAl tunnel junction in the low temperature regime (30-100 K). Hence the highly spin polarized Full Heusler alloys compounds, like Co2CrAl etc., are very attractive and can act as efficient tunnel device for spin injection in the area of spintronics devices in near future. The estimated spin life time is τ = 54 pS and spin diffusion length inside p-Si is LSD = 289 nm at 30 K for this heterostructure.

  1. Study on the high-spin states and signature inversion of odd-odd nucleus 170Ta

    International Nuclear Information System (INIS)

    Deng Fuguo; Zhou Hongyu; Sun Huibin; Lu Jingbin; Zhao Guangyi; Yin Lichang; Liu Yunzuo

    2002-01-01

    The high-spin states of odd-odd nucleus 170 Ta were populated via the 155 Gd( 19 F, 4n) 170 Ta reaction with beam energy of 97 MeV provided by the HI-13 tandem accelerator of China Institute of Atomic Energy. Three rotational bands have been pushed to higher spin states and the signature inversion point of the semidecoupled band based on the πh 9/2 1/2 - [541] direct x νi 13/2 configuration has been observed to be 19.5 ℎ. The systematic features of the signature inversion in semidecoupled bands in odd-odd rare earth nuclei were summarized. The systematic differences of signature inversion, especially the difference in the energy splitting between the yrast hands and the semidecoupled hands in odd-odd rare earth nuclei are pointed out and discussed for the first time. It seems that p-n interaction between the odd proton and odd neutron in the odd-odd nuclei plays an important role

  2. Factors affecting the line-shape of the EPR signal of high-spin Fe(III) in soybean lipoxygenase-1

    NARCIS (Netherlands)

    Slappendel, S.; Aasa, R.; Malmström, B.G.; Verhagen, J.; Veldink, G.A.; Vliegenthart, J.F.G.

    1982-01-01

    The yellow form of soybean lipoxygenase-1 (linoleate:oxygen oxidoreductase, EC 1.13.11.12), obtained upon addition of one molar equivalent of acid (13--HPOD) to the native enzyme, shows a complex EPR signal around g 6 which results from contributions of different high-spin Fe(III) species with

  3. Measurement of lifetimes of high spin states in the N = 106 nuclei {sup 183}Ir and {sup 182}Os

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Blumenthal, D.; Carpenter, M.P. [and others

    1995-08-01

    Lifetimes of high spin states in the isotones {sup 183}Ir and {sup 182}Os were measured using the Notre Dame plunger device in conjunction with the Argonne Notre Dame {gamma}-ray facility. The aim of these measurements was to determine the deformation-driving properties of the h{sub 9/2} proton intruder orbital by comparing the values of the intrinsic quadrupole moments in the ground state bands in the odd-mass Ir nucleus and the even-even Os core. Levels in these nuclei were populated by the {sup 150}Nd ({sup 37}Cl,4n) and {sup 150}Nd ({sup 36}S,4n) reactions using a {sup 37}Cl beam of 169 MeV and 164-Mev {sup 36}S beam. The {sup 150}Nd target was 0.9-g/cm{sup 2} thick and was prepared by evaporating enriched {sup 150}Nd onto a stretched 1.5-mg/cm{sup 2} gold foil. The target was covered with a layer of a 60-{mu}g/cm{sup 2} Au to prevent its oxidation. Gamma-ray spectra were accumulated for approximately 4 hours for each target-stopper distance. Data were collected for 20 target-stopper distances ranging from 16 {mu}m to 10.4 mm. Preliminary analysis indicates that it will be possible to extract the lifetimes of the levels in the yrast bands up to and including part of the backbending region with sufficient accuracy. Detailed analysis of the data is in progress.

  4. The Crystal Structure of a High-Spin Oxoiron(IV) Complex and Characterization of Its Self-Decay Pathway

    Energy Technology Data Exchange (ETDEWEB)

    England, J.; Guo, Y; Farquhar, E; Young, Jr., V; Münck, E; Que, Jr., L

    2010-01-01

    [Fe{sup IV}(O)(TMG{sub 3}tren)]{sup 2+} (1; TMG{sub 3}tren = 1,1,1-tris{l_brace}2-[N{sup 2}-(1,1,3,3-tetramethylguanidino)]ethyl{r_brace}amine) is a unique example of an isolable synthetic S = 2 oxoiron(IV) complex, which serves as a model for the high-valent oxoiron(IV) intermediates observed in nonheme iron enzymes. Congruent with DFT calculations predicting a more reactive S = 2 oxoiron(IV) center, 1 has a lifetime significantly shorter than those of related S = 1 oxoiron(IV) complexes. The self-decay of 1 exhibits strictly first-order kinetic behavior and is unaffected by solvent deuteration, suggesting an intramolecular process. This hypothesis was supported by ESI-MS analysis of the iron products and a significant retardation of self-decay upon use of a perdeuteromethyl TMG{sub 3}tren isotopomer, d{sub 36}-1 (KIE = 24 at 25 C). The greatly enhanced thermal stability of d{sub 36}-1 allowed growth of diffraction quality crystals for which a high-resolution crystal structure was obtained. This structure showed an Fe=O unit (r = 1.661(2) {angstrom}) in the intended trigonal bipyramidal geometry enforced by the sterically bulky tetramethylguanidinyl donors of the tetradentate tripodal TMG{sub 3}tren ligand. The close proximity of the methyl substituents to the oxoiron unit yielded three symmetrically oriented short C-D {hor_ellipsis} O nonbonded contacts (2.38-2.49 {angstrom}), an arrangement that facilitated self-decay by rate-determining intramolecular hydrogen atom abstraction and subsequent formation of a ligand-hydroxylated iron(III) product. EPR and Moessbauer quantification of the various iron products, referenced against those obtained from reaction of 1 with 1,4-cyclohexadiene, allowed formulation of a detailed mechanism for the self-decay process. The solution of this first crystal structure of a high-spin (S = 2) oxoiron(IV) center represents a fundamental step on the path toward a full understanding of these pivotal biological intermediates.

  5. High power laser exciter accelerators

    International Nuclear Information System (INIS)

    Martin, T.H.

    1975-01-01

    Recent developments in untriggered oil and water switching now permit the construction of compact, high energy density pulsed power sources for laser excitation. These accelerators, developed principally for electron beam fusion studies, appear adaptable to laser excitation and will provide electron beams of 10 13 to 10 14 W in the next several years. The accelerators proposed for e-beam fusion essentially concentrate the available power from the outside edge of a disk into the central region where the electron beam is formed. One of the main problem areas, that of power flow at the vacuum diode insulator, is greatly alleviated by the multiplicity of electron beams that are allowable for laser excitation. A proposal is made whereby the disk-shaped pulsed power sections are stacked vertically to form a series of radially flowing electron beams to excite the laser gas volume. (auth)

  6. Search for Correlations between Prolate-Shape Collective and Oblate-Shape Non-Collective Nuclear Rotation: High Spin States in 159,160 Yb

    International Nuclear Information System (INIS)

    Byrski, T.; Beck, F.A.; Sharpey-Schafer, J.F.

    1987-01-01

    High-spin states of 159,160 Yb have been studied using the escape-suppressed array TESSA 2. Extensions of yrast and lateral bands have been found up to I ∼40. Experimental data suggest strong correlations between maximum alignment configurations of the valence nucleons and related collective states. Theoretical analysis fully supports the idea of prolate-collective vs. oblate-non-collective correlations. Band termination interpretation is discussed

  7. High excitation ISM and gas

    NARCIS (Netherlands)

    Peeters, E; Martinez-Hernandez, NL; Rodriguez-Fernandez, NJ; Tielens, [No Value

    An overview is given of ISO results on regions of high excitation ISM and gas, i.e. H II regions, the Galactic Centre and Supernova Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarised, their diagnostic

  8. High Excitation Gas and ISM

    Science.gov (United States)

    Peeters, E.; Martin-Hernandez, N. L.; Rodriguez-Fernandez, N. J.; Tielens, A. G. G. M.

    2004-01-01

    An overview is given of ISO results on regions of high excitation ISM and gas, i.e. HII regions, the Galactic Centre and Supernovae Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarized, their diagnostic capabilities illustrated and their implications highlighted.

  9. High-spin studies and nuclear structure in three semi-magic regions of the chart: High-seniority states in Sn isotopes

    International Nuclear Information System (INIS)

    Astier, A.

    2013-01-01

    Two fusion-fission experiments have been performed and studied with the Euroball Ge array: 12 C+ 238 U at 90 MeV bombarding energy, and 18 O + 208 Pb at 85 MeV. Among the lot of new information extracted during the last decade, the latest results discussed here are the discovery of the high-spin states of 119-126 Sn. The maximum value of angular momentum available in the Vh 11/2 shell, i.e. for mid-occupation and the breaking of the three neutron pairs (seniority v = 6), has been identified in several tin isotopes. It is the first time that such high-seniority states are established in spherical nuclei. (authors)

  10. Physics in the intrinsic coordinate frames with the universal mean field potential: spontaneous parity breaking and exotic shapes in high-spin states

    International Nuclear Information System (INIS)

    Dudek, J.

    1989-01-01

    The concept of a ''universal'' average field as a basis of intrinsic-frame nuclear physics is stressed. The symmetries of such an average field are discussed. As an important application, an overwiew is given of the recent progress in understanding the octupole-type (intrinsic-parity breaking) degrees of freedom in nuclei. Their importance and the new consequences resulting from the related symmetries and spontaneous symmetry breaking phenomena are emphasized: the presence of static and/or dynamic isovector deformations and their implications, the possible low-energy E1 cooling in moderately hot nuclei at high spins, possible new forms of rotational dumping effects in rotating nuclei etc

  11. High-spin structure of the neutron-rich sup 1 sup 0 sup 9 sup , sup 1 sup 1 sup 1 sup , sup 1 sup 1 sup 3 sup sub 4 sup sub 5 Rh isotopes

    CERN Document Server

    Venkova, T; Bauchet, A; Deloncle, I; Astier, A; Buforn, N; Meyer, M; Prevost, A; Redon, N; Stezowski, O; Lalkovski, S; Donadille, L; Dorvaux, O; Gall, B J P; Schulz, N; Lucas, R; Minkova, A

    2002-01-01

    The sup 1 sup 0 sup 9 sup , sup 1 sup 1 sup 1 sup , sup 1 sup 1 sup 3 Rh nuclei have been produced as fission fragments in the fusion reaction sup 1 sup 8 O + sup 2 sup 0 sup 8 Pb at 85 MeV. Their level schemes have been built from gamma-rays detected using the Euroball IV array. High-spin states of the neutron-rich sup 1 sup 1 sup 1 sup , sup 1 sup 1 sup 3 Rh nuclei have been identified for the first time. Several rotational bands with the odd proton occupying the pi g sub 9 sub / sub 2 , pi p sub 1 sub / sub 2 and pi(g sub 7 sub / sub 2 /d sub 5 sub / sub 2) sub-shells have been observed. A band of low-energy transitions has been identified at excitation energy around 2 MeV in sup 1 sup 0 sup 9 sup , sup 1 sup 1 sup 1 Rh, which can be interpreted in terms of three-quasiparticle excitation, pi g sub 9 sub / sub 2 nu h sub 1 sub 1 sub / sub 2 nu g sub 7 sub / sub 2 /d sub 5 sub / sub 2. In addition another structure built on states located at low excitation energy (608 keV in sup 1 sup 1 sup 1 Rh, 570 keV in ...

  12. Compound nuclei at high angular momentum. High-spin γ-ray spectroscopy: past successes, future hopes

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-01-01

    The addition of angular momentum to a nucleus presents a whole new dimension, a new coordinate axis, along which to study changes in nuclear behavior and structure. Nuclei can carry angular momentum in two principal ways: by the collective rotation of a deformed nucleus as a whole and by the alignment along the rotation axis of individual high-j nucleons. For spherical (or near-spherical) nuclei, the latter mode is the only one possible. The levels of 212 Rn illustrate a scheme of particle alignment; it is quite irregular with transitions of a variety of electromagnetic types and with little pattern to the level spacing. On the left, the yrast band of 238 U is shown, a predominantly rotational scheme with only strongly enhanced electric quadrupole transitions and a level spacing that approximates that of a rigid rotor, E = I(I + 1)h 2 /2 J and E/sub γ/ = (4I - 2)h 2 /2 J, where J is the moment of inertia. Most nuclei, however, combine both types of motion, and it is this interplay between collective and single-particle motion that makes the behavior of nuclei along the angular momentum coordinate so fascinating and so rich in variety. Data are shown for Yb isotopes, and Er isotopes are discussed

  13. Discovery of highly spin-polarized conducting surface states in the strong spin-orbit coupling semiconductor Sb2Se3

    Science.gov (United States)

    Das, Shekhar; Sirohi, Anshu; Kumar Gupta, Gaurav; Kamboj, Suman; Vasdev, Aastha; Gayen, Sirshendu; Guptasarma, Prasenjit; Das, Tanmoy; Sheet, Goutam

    2018-06-01

    Majority of the A2B3 -type chalcogenide systems with strong spin-orbit coupling (SOC), such as Bi2Se3,Bi2Te3 , and Sb2Te3 , etc., are topological insulators. One important exception is Sb2Se3 where a topological nontrivial phase was argued to be possible under ambient conditions, but such a phase could be detected to exist only under pressure. In this paper, we show that Sb2Se3 like Bi2Se3 displays a generation of highly spin-polarized current under mesoscopic superconducting point contacts as measured by point-contact Andreev reflection spectroscopy. In addition, we observe a large negative and anisotropic magnetoresistance of the mesoscopic metallic point contacts formed on Sb2Se3 . Our band-structure calculations confirm the trivial nature of Sb2Se3 crystals and reveal two trivial surface states one of which shows large spin splitting due to Rashba-type SOC. The observed high spin polarization and related phenomena in Sb2Se3 can be attributed to this spin splitting.

  14. Study of the giant dipole resonance built on highly excited states in Sn and Dy nuclei

    International Nuclear Information System (INIS)

    Stolk, A.

    1988-01-01

    A study is presented of the giant dipole resonance built on highly excited states. The aim is to get more detailed information on the properties of the GDR and to use it as a tool for the investigation of nuclear structure at high excitation energy. The high energy γ-rays seen from the decay of excited state GDRs in heavy ion fusion reactions reflect the average properties of the states populated by the γ-emission. The measurements at different initial excitation energies of 114 Sn provide information on the nuclear level density near the particle separation energy at an average angular momentum of 10ℎ. The study of shape changes at very high spin in 152-156 Dy nuclei is presented. A theoretical model developed to describe fusion-evaporation reactions is presented. 149 refs.; 63 figs.; 13 tabs

  15. Direct observation of high-spin states in manganese dimer and trimer cations by x-ray magnetic circular dichroism spectroscopy in an ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Zamudio-Bayer, V. [Physikalisches Institut, Universität Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg (Germany); Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Hirsch, K.; Langenberg, A.; Kossick, M. [Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Ławicki, A.; Lau, J. T., E-mail: tobias.lau@helmholtz-berlin.de [Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Terasaki, A. [Cluster Research Laboratory, Toyota Technological Institute, 717-86 Futamata, Ichikawa, Chiba 272-0001 (Japan); Department of Chemistry, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Issendorff, B. von [Physikalisches Institut, Universität Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg (Germany)

    2015-06-21

    The electronic structure and magnetic moments of free Mn{sub 2}{sup +} and Mn{sub 3}{sup +} are characterized by 2p x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap that is coupled to a synchrotron radiation beamline. Our results directly show that localized magnetic moments of 5 μ{sub B} are created by 3d{sup 5}({sup 6}S) states at each ionic core, which are coupled ferromagnetically to form molecular high-spin states via indirect exchange that is mediated in both cases by a delocalized valence electron in a singly occupied 4s derived antibonding molecular orbital with an unpaired spin. This leads to total magnetic moments of 11 μ{sub B} for Mn{sub 2}{sup +} and 16 μ{sub B} for Mn{sub 3}{sup +}, with no contribution of orbital angular momentum.

  16. Scattering of highly excited atoms

    International Nuclear Information System (INIS)

    Raith, W.

    1980-01-01

    Experimental methods to excite atomic beams into Rydberg states and the first results of collision experiments with such beams are reported. For further information see hints under relevant topics. (orig.) [de

  17. Measurement and analysis of quadruple (αγγ) angular correlations for high spin states of 24Mg

    International Nuclear Information System (INIS)

    Wiedenhoever, I.; Wuosmaa, A. H.; Lister, C. J.; Carpenter, M. P.; Janssens, R. V. F.; Amro, H.; Caggiano, J.; Heinz, A.; Kondev, F. G.; Lauritsen, T.; Siem, S.; Sonzogni, A.; Bhattacharyya, P.; Devlin, M.; Sarantites, D. G.; Sobotka, L. G.

    2000-01-01

    The high-lying, α-decaying states in 24 Mg have been studied by measuring the complete decay path of α and γ emissions using five segmented Silicon detectors in conjunction with GAMMASPHERE. The authors analyzed the (αγ) triple angular correlations and, for the first time, (αγγ) quadruple correlations. The data analysis is based on a new Fourier transformation technique. The power of the technique is demonstrated

  18. THE MOST MASSIVE ACTIVE BLACK HOLES AT z ∼ 1.5-3.5 HAVE HIGH SPINS AND RADIATIVE EFFICIENCIES

    International Nuclear Information System (INIS)

    Trakhtenbrot, Benny

    2014-01-01

    The radiative efficiencies (η) of 72 luminous unobscured active galactic nuclei at z ∼ 1.5-3.5, powered by some of the most massive black holes (BHs), are constrained. The analysis is based on accretion disk (AD) models, which link the continuum luminosity at rest-frame optical wavelengths and the BH mass (M BH ) to the accretion rate through the AD, M-dot AD . The data are gathered from several literature samples with detailed measurements of the Hβ emission line complex, observed at near-infrared bands. When coupled with standard estimates of bolometric luminosities (L bol ), the analysis suggests high radiative efficiencies, with most of the sources showing η > 0.2, that is, higher than the commonly assumed value of 0.1, and the expected value for non-spinning BHs (η = 0.057). Even under more conservative assumptions regarding L bol (i.e., L bol = 3 × L 5100 ), most of the extremely massive BHs in the sample (i.e., M BH ≳ 3 × 10 9 M ☉ ) show radiative efficiencies which correspond to very high BH spins (a * ), with typical values well above a * ≅ 0.7. These results stand in contrast to the predictions of a ''spin-down'' scenario, in which a series of randomly oriented accretion episodes leads to a * ∼ 0. Instead, the analysis presented here strongly supports a ''spin-up'' scenario, which is driven by either prolonged accretion or a series of anisotropically oriented accretion episodes. Considering the fact that these extreme BHs require long-duration or continuous accretion to account for their high masses, it is argued that the most probable scenario for the super-massive black holes under study is that of an almost continuous sequence of randomly yet not isotropically oriented accretion episodes

  19. Evolution with Composition of the d-Band Density of States at the Fermi Level in Highly Spin Polarized Co1-xFexS2

    Science.gov (United States)

    Kuhns, P. L.; Hoch, M. J. R.; Reyes, A. P.; Moulton, W. G.; Wang, L.; Leighton, C.

    2006-04-01

    Highly spin polarized (SP) and half-metallic ferromagnetic systems are of considerable current interest and of potential importance for spintronic applications. Recent work has demonstrated that Co1-xFexS2 is a highly polarized ferromagnet (FM) where the spin polarization can be tuned by alloy composition. Using Co59 FM-NMR as a probe, we have measured the low-temperature spin relaxation in this system in magnetic fields from 0 to 1.0 T for 0≤x≤0.3. The Co59 spin-lattice relaxation rates follow a linear T dependence. Analysis of the data, using expressions for a FM system, permits information to be obtained on the d-band density of states at the Fermi level. The results are compared with independent density of states values inferred from electronic specific heat measurements and band structure calculations. It is shown that FM-NMR can be an important method for investigating highly SP systems.

  20. High spin states in Cu

    Indian Academy of Sciences (India)

    [18] A Kramer-Flecken, T Morek, R M Lieder, W Gart, G Hebbinghaus, H M Jager and W Urban,. Nucl. Instrum. Methods A275, 333 (1989). [19] B A Brown, A Etchegoyen, W D M Rae and N S Godwin (unpublished). [20] J E Koops and P W M Glaudemans, Z. Phys. A280, 181 (1977). L478. Pramana – J. Phys., Vol. 55, No.

  1. Nuclear superdeformation at high spins

    International Nuclear Information System (INIS)

    Dudek, J.

    1991-01-01

    The newly discovered forms of nuclear behavior at exotic shape configurations are discussed from the theoretical point of view. The main emphasis is set on superdeformed nuclei and the strange mechanisms influencing their properties. In particular the feeding properties, alignment, pairing properties and the problem of anomalous degeneracies are discussed

  2. Total cross section of highly excited strings

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, I.

    1990-01-01

    The unpolarized total cross section for the joining of two highly excited strings is calculated. The calculation is performed by taking the average overall states in the given excitation levels of the initial strings. We find that the total cross section grows with the energy and momentum of the initial states. (author). 8 refs, 1 fig

  3. The 12C + 12C: 1. Decay into high spin states of 23Mg, and 23Na. 2. Hauser-Feshbach analysis of the reaction mechanism

    International Nuclear Information System (INIS)

    Denhoefer, G.

    1980-01-01

    In this thesis different aspects of the reaction 12 C + 12 C were studied. The first part deals with high spin states in the mirror nucki 23 Na and 23 Mg experially with the states resonantly populated at Esub(cm) = 19.3 MeV. For the state at 9.80 MeV in 23 Na with (p,γ) angular correlation measurements a spin of 17/2 + and by Doppler form analysis a lifetime of (21 +- 9)fs was found. The probably analogous state at 9.61 MeV in 23 Mg decays both under p-emission to 22 Na and under γ-emission. Because of the p-decay probabilities to 3 + and 4 + of 22 Na, which were observed in (p,n) coincidence measurements, it has also the spin 17/2 + . In the second part of this thesis it was studied whether the reaction 12 C + 12 C at incident energies between 26 MeV and 42 MeV can be described using the statistical model. (orig./HSI) [de

  4. High spin exotic states and new method for pairing energy; Etats exotiques a hauts spins et nouvelle methode pour l`energie d`appariement nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Molique, H.

    1996-01-19

    We present a new method called `PSY-MB`, initially developed in the framework of abstract group theory for the solution of the problem of strongly interacting multi-fermionic systems with particular to systems in an external rotating field. The validity of the new method (PSY-MB) is tested on model Hamiltonians. A detailed comparison between the obtained solutions and the exact ones is performed. The new method is used in the study of realistic nuclear Hamiltonians based on the Woods-Saxon potential within the cranking approximation to study the influence of residual monopole pairing interactions in the rare-earth mass region. In parallel with this new technique we present original results obtained with the Woods-Saxon mean-field and the self-consistent Hartree-Fock approximation in order to investigate such exotic effects as octupole deformations and hexadecapole C{sub 4}-polarizing deformations in the framework of high-spin physics. By developing these three approaches in one single work we prepare the ground for the nuclear structure calculations of the new generation - where the residual two-body interactions are taken into account also in the weak pairing limit. (author). 2370refs.

  5. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    International Nuclear Information System (INIS)

    Deaton, M. Brett; Duez, Matthew D.; Foucart, Francois; O'Connor, Evan; Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela; Kidder, Lawrence E.; Muhlberger, Curran D.

    2013-01-01

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M ☉ neutron star, 5.6 M ☉ black hole), high-spin (black hole J/M 2 = 0.9) system with the K 0 = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M ☉ of nuclear matter is ejected from the system, while another 0.3 M ☉ forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y e of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ∼ 6 MeV) and luminous in neutrinos (L ν ∼ 10 54 erg s –1 ), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution

  6. On the origin of high spin states (J > Jsub(max) of IBA=10) and their enhanced E1 decay mode in 218Ra

    International Nuclear Information System (INIS)

    Gai, M.

    1984-01-01

    The high spin states of 218 Ra exhibit a band of alternating parity states with enhanced E1 decay mode (B(E1) >=10 -2 W.u.). Various theoretical models are discussed, such as the octupole model, f and g boson model, second order E1 operator in IBA1 model, and the cluster model. The enhanced E1 deexcitation favors the cluster model. The low spin negative parity states lie on a J(J+1) trajectory contrary to the assumed vibrational character of the negative parity states in 218 Ra. A change in the character of states above the 11 - state is observed via a change in the moment of inertia and a decrease in the B(E1)/B(E2) branch ratios. Two quasi-particle 11 - states systematically occurring in the Ra-isotopes may be responsible for this change. The well known effect of loss of collectivity arising from two quasi-particle states, as observed in the hindrance of B(E2), is suggested to more dramatically hinder the B(E1) and lead to a reduction in the branch ratio B(E1)/B(E2). This observation suggests that the E1 enhancement is of collective character

  7. High spin levels in 66Ga, 68Ga, 70Ga and 68Ge, 70Ge, 72Ge via fusion evaporation reactions induced by α-particles

    International Nuclear Information System (INIS)

    Morand, C.

    1979-01-01

    The high spin (J 70 Ga all the members (except the 3 - one) of the (πpsub(3/2), νgsub(9/2)) configuration have been identified, in addition with the (πfsub(5/2), νgsub(9/2))sub(7 - ) and (πgsub(9/2), νgsub(9/2))sub(9 + ) states. In 66 Ga and 68 Ga most of the levels with J>7 ca be described as a result of maximum coupling of a gsub(9/2) neutron with the odd Ga core. Thus the (πgsub(9/2), νgsub(9/2))sub(9 + ) states have been safely located. In the same way the even Ge, the backbending effect at the Jsup(π)=8 + state is less and less pronouced from the 68 Ge to the 72 Ge; that can be explained by the (νgsub(9/2)) 2 sub(8 + ) configuration of this state, so that the 8 + →6 + γ-transition is more and more allowed with increasing N, i.e. as the νgsub(9/2) shell acts more and more in the lower yrast levels Jsup(π)=0 + , 2 + , 4 + , 6 + configurations [fr

  8. Evidence for single-chain magnet behavior in a Mn(III)-Ni(II) chain designed with high spin magnetic units: a route to high temperature metastable magnets.

    Science.gov (United States)

    Clérac, Rodolphe; Miyasaka, Hitoshi; Yamashita, Masahiro; Coulon, Claude

    2002-10-30

    . This result indicates the presence of a metastable state without magnetic long-range order. This material is the first experimental design of a heterometallic chain with ST = 3 magnetic units showing a "single-chain magnet" behavior predicted in 1963 by R. J. Glauber for an Ising one-dimensional system. This work opens new perspectives for one-dimensional systems to obtain high temperature metastable magnets by combining high spin magnetic units, strong interunit interactions, and uniaxial anisotropy.

  9. Self-assembly of linear [Mn II 2 Mn III ] units with end-on azido bridges: the construction of a ferromagnetic chain using S T = 7 high-spin trimers

    KAUST Repository

    Jiang, Yuan; Qin, Lei; Li, Guanghua; Abbas, Ghulam; Cao, Yaqun; Wu, Gang; Han, Tian; Zheng, Yan-Zhen; Qiu, Shilun

    2015-01-01

    © The Royal Society of Chemistry 2015. The controlled organization of high-spin complexes into 1D coordination polymers is a challenge in molecular magnetism. In this work, we report a ferromagnetic Mn trimer Mn3(HL)2(CH3OH)6(Br)4·Br·(CH3OH)21 (H2L

  10. Decay modes of high-lying excitations in nuclei

    International Nuclear Information System (INIS)

    Gales, S.

    1993-01-01

    Inelastic, charge-exchange and transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of new high-lying modes embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured branching ratios to the various decay channels as compared to statistical model calculations. As illustrative examples the decay modes of high-spin single-particle states and isovector resonances are discussed. (author) 23 refs.; 14 figs

  11. Microstructure ion Nuclear Spectra at High Excitation

    International Nuclear Information System (INIS)

    Ericson, T.E.O.

    1969-01-01

    The statistical microstructure of highly excited systems is illustrated by the distribution and fluctuations of levels, widths and cross-sections of nuclei both for the case of sharp resonances and the continuum case. The coexistence of simple modes of excitation with statistical effects in terms of strength functions is illustrated by isobaric analogue states. The analogy is made with similar phenomena for coherent light, is solid-state physics and high-energy physics. (author)

  12. High energy excitations in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Prange, R.E.

    1984-01-01

    Itinerant magnets, those whose electrons move throughout the crystal, are described by band theory. Single particle excitations offer confirmation of band theory, but their description requires important corrections. The energetics of magnetism in iron and nickel is also described in band theory but requires complex bands. Magnetism above the critical temperature and the location of the critical temperature offer discriminants between the two major models of magnetism at high temperature and can be addressed by high energy excitations

  13. Recent experiments involving highly excited atoms

    International Nuclear Information System (INIS)

    Latimer, C.J.

    1979-01-01

    Very large and fragile atoms may be produced by exciting normal atoms with light or by collisions with other atomic particles. Atoms as large as 10 -6 m are now routinely produced in the laboratory and their properties studied. In this review some of the simpler experimental methods available for the production and detection of such atoms are described including tunable dye laser-excitation and field ionization. A few recent experiments which illustrate the collision properties and the effects of electric and and magnetic fields are also described. The relevance of highly excited atoms in other areas of research including radioastronomy and isotope separation are discussed. (author)

  14. Study on the systematics of two-neutron high spin states in fp shell nuclei by means of the (α,2He) reaction

    International Nuclear Information System (INIS)

    Wienands, U.

    1983-05-01

    The (α, 2 He)-reaction was studied at 56-57 MeV incident energy at the target nuclei sup(58,60,62,64)Ni. In a laboratory angular range from 15 0 -37.5 0 the angular distributions of the absolute differential cross section were taken up. The measurements were performed with the position resolving 2 He detector developed in Bonn. By means of DWBA calculations for the first time in all final nuclei states with the configurations (fsub(5/2), gsub(9/2)) 7 -(gsub(9/2)) 8 2 +, and (gsub(9/2), dsub(5/2)) 6 + could be identified; these were except the Jsup(π)=7 - states in 60 Ni hitherto not known. The two-neutron binding energies of these states were under inclusion of further states known from literature compared with shell model calculations according to the weak coupling method of Bansal and French. By a set of 4 parameters both the two-neutron binding energies of the (fsub(5/2), gsub(9/2)) 7 - and (gsub(9/2)) 2 sub(8+) states and the one-particle binding energies of the f - sub(5/2) and g + sub(5/2) one-neutron states over a large number of nuclei could very well be reproduced. For calculations on the states with the configuration (gsub(9/2), dsub(5/2)) 6 + the present data set is not yet sufficient. The found agreement of the calculations with the experimental data shows that two-neutron high spin states in the fp shell nuclei can be correctly described by this simple picture. (orig.) [de

  15. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    Energy Technology Data Exchange (ETDEWEB)

    Deaton, M. Brett; Duez, Matthew D. [Department of Physics and Astronomy, Washington State University, Pullman, WA 99164 (United States); Foucart, Francois; O' Connor, Evan [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8 (Canada); Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela [TAPIR, MC 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Kidder, Lawrence E.; Muhlberger, Curran D., E-mail: mbdeaton@wsu.edu, E-mail: m.duez@wsu.edu [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-10

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M{sub ☉} neutron star, 5.6 M{sub ☉} black hole), high-spin (black hole J/M {sup 2} = 0.9) system with the K{sub 0} = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M{sub ☉} of nuclear matter is ejected from the system, while another 0.3 M{sub ☉} forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y{sub e} of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ∼ 6 MeV) and luminous in neutrinos (L{sub ν} ∼ 10{sup 54} erg s{sup –1}), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution.

  16. Multipole giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Xia Keding; Cai Yanhuang

    1989-01-01

    The isoscalar giant surface resonance and giant dipole resonance in highly excited nuclei are discussed. Excitation energies of the giant modes in 208 Pb are calculated in a simplified model, using the concept of energy wieghted sum rule (EWSR), and the extended Thomas-Fermi approximation at the finite temperature is employed to describe the finite temperature is employed to describe the finite temperature equilibrium state. It is shown that EWSR and the energy of the resonance depend only weakly on temperature in the system. This weak dependence is analysed

  17. Dynamical analysis of highly excited molecular spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, M.E. [Univ. of Oregon, Eugene (United States)

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  18. Shell structure effects at high excitations and many-quasiparticle configurations

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1980-01-01

    Experimental and theoretical data available on few- and many-quasiparticle components of the wave functions of complex nuclei at low, intermediate and high energies are shortly analyzed. The components are treated in the nuclear quasiparticle-phonon model. Specific features of the lowest and high-spin states, giant resonances, neutron resonances and the effects of the energy-level structure in the few-and many-particle transfer reactions are discussed. It is concluded that the most reliable nuclear properties are determined by the components, their behaviour reflecting the shell structure effects. Wich increasing excitation energy the density of levels increases exponentially and the contribution of few-quasiparticle components to the normalization of the wave functions decreases exponentially

  19. The [NeIV] Lines in High Excitation Gaseous Nebulae.

    Science.gov (United States)

    Aller, L H

    1970-04-01

    The "forbidden" lines of three times ionized neon are among the most precious indicators of electron temperature and excitation. They are also predicted to be among the strongest lines observed in the far ultraviolet spectra of high excitation nebulae.

  20. Study of high spin states in 68Zn and 68Ga using (α,pγ) and (α,nγ) reactions

    International Nuclear Information System (INIS)

    Berthet, Bernard.

    1976-01-01

    Yrast levels of 68 Zn and 6 Ga have been studied via the reactions 65 Cu(α,pγ) 68 Zn, 65 Cu(α,nγ) 68 Ga at Esub(α)=12-21MeV and 66 Zn(α,pnγ) 68 Ga at Esub(α)=25-40MeV. The level schemes have been established by means of relative yield functions, electronic timing measurements, prompt and delayed γ-γ coincidences, angular distributions and directional orientation coincidences. Spin up to 8 were assigned to observed states, for 68 Zn. For 68 Ga, spins up to 11 + were assigned to level up to 4MeV excitation and the higher ones were interpreted by coupling a 67 Ga core with a 1gsub(9/2) neutron [fr

  1. Highly excited strings I: Generating function

    Directory of Open Access Journals (Sweden)

    Dimitri P. Skliros

    2017-03-01

    Full Text Available This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES. In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators in general toroidal compactifications E=RD−1,1×TDcr−D (with generic constant Kähler and complex structure target space moduli, background Kaluza–Klein (KK gauge fields and torsion. We adopt a novel approach that does not rely on a “reverse engineering” method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particular in relation to black holes in string theory, non-locality and breakdown of local effective field theory, as well as in discussions of cosmic superstrings and their phenomenological relevance. We also discuss the manifestation of wave/particle (or rather wave/string duality in string theory.

  2. Fabrication of highly spin-polarized Co2FeAl0.5Si0.5 thin-films

    Directory of Open Access Journals (Sweden)

    M. Vahidi

    2014-04-01

    Full Text Available Ferromagnetic Heusler Co2FeAl0.5Si0.5 epitaxial thin-films have been fabricated in the L21 structure with saturation magnetizations over 1200 emu/cm3. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100 substrates and annealed at high temperatures. However, the spin polarization is considerably smaller in samples deposited on heated substrates.

  3. Energy dependence of the ionization of highly excited atoms by collisions with excited atoms

    International Nuclear Information System (INIS)

    Shirai, T.; Nakai, Y.; Nakamura, H.

    1979-01-01

    Approximate analytical expressions are derived for the ionization cross sections in the high- and low-collision-energy limits using the improved impulse approximation based on the assumption that the electron-atom inelastic-scattering amplitude is a function only of the momentum transfer. Both cases of simultaneous excitation and de-excitation of one of the atoms are discussed. The formulas are applied to the collisions between two excited hydrogen atoms and are found very useful for estimating the cross sections in the wide range of collisions energies

  4. Review of high excitation energy structures in heavy ion collisions: target excitations and three body processes

    International Nuclear Information System (INIS)

    Frascaria, N.

    1987-09-01

    A review of experimental results on high excitation energy structures in heavy ion inelastic scattering is presented. The contribution to the spectra of the pick-up break-up mechanism is discussed in the light of the data obtained with light heavy ion projectiles. Recent results obtained with 40 Ar beams at various energies will show that target excitations contribute strongly to the measured cross section

  5. Effect of oxygen vacancy and dopant concentration on the magnetic properties of high spin Co2+ doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Choudhury, B.; Choudhury, A.; Maidul Islam, A.K.M.; Alagarsamy, P.; Mukherjee, M.

    2011-01-01

    Co doped TiO 2 nanoparticles have been synthesized by a simple sol-gel route taking 7.5, 9.5 and 10.5 mol% of cobalt concentration. Formation of nanoparticles is confirmed by XRD and TEM. Increase in d-spacing occurs for (0 0 4) and (2 0 0) peak with increase in impurity content. Valence states of Co and its presence in the doped material is confirmed by XPS and EDX. The entire vacuum annealed samples show weak ferromagnetism. Increased magnetization is found for 9.5 mol% but this value again decreases for 10.5 mol% due to antiferromagnetic interactions. A blocking temperature of 37.9 K is obtained, which shows shifting to high temperature as the dopant concentration is increased. The air annealed sample shows only paramagnetic behavior. Temperature dependent magnetic measurements for the air annealed sample shows antiferromagnetic behavior with a Curie-Weiss temperature of -16 K. Here we report that oxygen vacancy and cobalt aggregates are a key factor for inducing ferromagnetism-superparamagnetism in the vacuum annealed sample. Appearance of negative Curie-Weiss temperature reveals the presence of antiferromagnetic Co 3 O 4 , which is the oxidation result of metallic Co or cobalt clusters present on the host TiO 2 . - Research highlights: → Oxygen vacancy induces ferromagnetism in cobalt doped anatase TiO2 nanoparticles. → On air annealing the sample loses ferromagnetism giving rise to paramagnetism. → Saturation magnetization decreases at higher doping concentration. → Blocking of magnetic moment occurs due to the presence of cobalt clusters.

  6. High spin states in 143Sm

    International Nuclear Information System (INIS)

    Raut, R.; Ganguly, S.; Kshetri, R.; Mukherjee, G.; Mukherjee, A.; Banerjee, P.; Saha Sarkar, M.; Bhattacharya, S.; Goswami, A.; Bhattacharjee, T.; Basu, S.K.; Mukhopadhyaya, S.; Krishichayan; Chakraborty, A.; Gangopadhyay, G.

    2004-01-01

    Large amount of experimental data has been obtained in the recent past on several Nd (Z=60) and Pm (Z=61) isotopes near N=82 shell closure which exhibits an irregular yrast sequence, typical of a non-spherical shape at low spins. The nucleus 143 Sm (Z=62) with a single neutron hole in the N=82 closed shell was investigated as a part of this proposed study

  7. High spin states in 106In

    International Nuclear Information System (INIS)

    Deo, A.Y.; Palit, R.; Naik, Z.; Joshi, P.K.; Mazumdar, I.; Jain, H.C.; Sihotra, S.; Kumar, S.; Basu, Kausik; Chakrabarti, R.; Kshetri, R.

    2007-01-01

    Systematic study of isotopes to understand evolution of magnetic rotation bands from single particle states, with increasing neutron number, and subsequent interplay between the shears mechanism and collective rotation have not been understood properly. In the following, we present experimental work done in order to address the above aspects through the study of 106 In

  8. Symposium on high spin phenomena in nuclei

    International Nuclear Information System (INIS)

    1979-10-01

    Separate abstracts were prepared for 44 of the papers given at this symposium. Six other papers have already been cited in ERA; these papers can be located by reference to the entry CONF-790323 - in the Report Number Index

  9. High-spin states in 66Zn

    International Nuclear Information System (INIS)

    Bruandet, J.F.; Agard, M.; Giorni, A.; Longequeue, J.P.; Morand, C.; Tsan Ung Chan.

    1975-01-01

    The structure of 66 Zn has been investigated by studying the yield functions, angular distributions and coincidence relationships of the γ-rays emitted during bombardment of an enriched 64 Ni foil by α particles of medium energy 27MeV. Spins up to 10 h were assigned to observed states [fr

  10. High spin states in 162Lu

    International Nuclear Information System (INIS)

    Gupta, S.L.; Pancholi, S.C.; Juneja, P.; Mehta, D.; Kumar, A.; Bhowmik, R.K.; Muralithar, S.; Rodrigues, G.; Singh, R.P.

    1997-01-01

    An experimental investigation of the odd-odd 162 Lu nucleus, following the 148 Sm( 19 F,5n) reaction at beam energy E lab =112MeV, has been performed through in-beam gamma-ray spectroscopy. It revealed three signature-split bands. The yrast band based on πh 11/2 circle-times νi 13/2 configuration exhibits anomalous signature splitting (the unfavored signature Routhian lying lower than the favored one) whose magnitude Δe ' ∼25keV, is considerably reduced in contrast to sizable normal signature splitting Δe ' ∼125 and 60 keV observed in the yrast πh 11/2 bands of the neighboring odd-A 161,163 Lu nuclei, respectively. The signature inversion in this band occurs at spin ∼20ℎ (frequency=0.37MeV). The second signature-split band, observed above the band crossing associated with the alignment of a pair of i 13/2 quasineutrons, is a band based on the four-quasiparticle [πh 11/2 [523]7/2 - times νh 9/2 [521]3/2 - times(νi 13/2 ) 2 ], i.e., EABA p (B p ), configuration. The third signature-split band is also likely to be a four-quasiparticle band with configuration similar to the second band but involving F quasineutron, i.e., FABA p (B p ). The experimental results are discussed in comparison with the existing data in the neighboring nuclei and in the framework of the cranking shell model. copyright 1997 The American Physical Society

  11. 'Static' octupole deformation at high spin

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    1985-01-01

    Rotational bands characterized by spin states of alternating parity p=(-1) I connected by enhanced E1 transitions have recently been observed in several nuclei from the Ra-Th region. They can be interpreted by means of a reflection asymmetric mean field theory. The interplay between octupole deformation and rotation is briefly discussed. For nuclei with ground state octupole deformation a transition to a reflection symmetric shape is expected around I=22. (orig.)

  12. Nuclear structure of Ra at high spin

    Indian Academy of Sciences (India)

    [15] A Kramer-Flecken et al, Nucl. Instrum. Methods A275, 333 (1989). [16] T Lonnroth et al, Phys. Rev. C27, 180 (1983). [17] Blomqvist et al, Phys. Rev. Lett. 38, 534 (1977). [18] Nushell @ MSU, B A Brown and W D M Rae (unpublished), http://www.nscl.msu.edu/ brown/. Pramana – J. Phys., Vol. 79, No. 3, September 2012.

  13. Structure of Se at high spin

    Indian Academy of Sciences (India)

    the proton-rich mass-80 nuclei shows considerable variation in going from one nucleus to ... shell gaps at N, Z = 34, 36 and 38 at large deformation. ... systematic increase of the B(E2) values for spins up to I = 14-h has been observed [2] in. 72.

  14. High spin states in 62Cu

    International Nuclear Information System (INIS)

    Tsan Ung Chan; Agard, M.; Bruandet, J.F.; Giorni, A.; Glasser, F.; Longequeue, J.P.; Morand, C.

    1977-06-01

    The 62 Cu nucleus has been studied via the reactions 60 Ni(α,pnγ), 63 Cu(p,pnγ), 52 Cr( 14 N,2p2nγ) using different in beam γ-spectroscopy techniques. The intensity of the principal γ-lines observed in different reactions leading to the 62 Cu has been compared. A brief discussion is made in terms of the independent particle model. A level scheme including levels with spin up to 9 + is proposed [fr

  15. Self-assembly of linear [Mn II 2 Mn III ] units with end-on azido bridges: the construction of a ferromagnetic chain using S T = 7 high-spin trimers

    KAUST Repository

    Jiang, Yuan

    2015-01-01

    © The Royal Society of Chemistry 2015. The controlled organization of high-spin complexes into 1D coordination polymers is a challenge in molecular magnetism. In this work, we report a ferromagnetic Mn trimer Mn3(HL)2(CH3OH)6(Br)4·Br·(CH3OH)21 (H2L = 2-[(9H-fluoren-9-yl)amino]propane-1,3-diol) with the ground spin state of ST = 7 that can be assembled into a one-dimensional coordination chain [Mn3(HL)2(CH3OH)2(Br)4(N3)(H2O)·CH3OH]∞2 using azido bridging ligands. Interestingly, the ferromagnetic nature of 1 is well retained in 2. However, due to the negligible magnetic anisotropy in 1, both 1 and 2 do not show slow-relaxation of magnetization, which indicates that during the process of molecular assembly not only the intratrimer magnetic interaction but also the magnetic anisotropy of the trimer can be reserved.

  16. The nature of the exchange coupling between high-spin Fe(III) heme o3 and CuBII in Escherichia coli quinol oxidase, cytochrome bo3: MCD and EPR studies.

    Science.gov (United States)

    Cheesman, Myles R; Oganesyan, Vasily S; Watmough, Nicholas J; Butler, Clive S; Thomson, Andrew J

    2004-04-07

    Fully oxidized cytochrome bo3 from Escherichia coli has been studied in its oxidized and several ligand-bound forms using electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopies. In each form, the spin-coupled high-spin Fe(III) heme o3 and CuB(II) ion at the active site give rise to similar fast-relaxing broad features in the dual-mode X-band EPR spectra. Simulations of dual-mode spectra are presented which show that this EPR can arise only from a dinuclear site in which the metal ions are weakly coupled by an anisotropic exchange interaction of J 1 cm-1. A variable-temperature and magnetic field (VTVF) MCD study is also presented for the cytochrome bo3 fluoride and azide derivatives. New methods are used to extract the contribution to the MCD of the spin-coupled active site in the presence of strong transitions from low-spin Fe(III) heme b. Analysis of the MCD data, independent of the EPR study, also shows that the spin-coupling within the active site is weak with J approximately 1 cm-1. These conclusions overturn a long-held view that such EPR signals in bovine cytochrome c oxidase arise from an S' = 2 ground state resulting from strong exchange coupling (J > 10(2) cm-1) within the active site.

  17. Ionization of highly excited atoms by atomic particle impact

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1976-01-01

    The ionization of a highly excited atom by a collision with an atom or molecule is considered. The theory of these processes is presented and compared with experimental data. Cross sections and ionization potential are discussed. 23 refs

  18. Breakdown of highly excited oxygen in a DC electric field

    International Nuclear Information System (INIS)

    Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsin, D.V.; Yuryshev, N.N.; Deryugin, A.A.; Kochetov, I.V.; Napartovich, A.P.

    2000-01-01

    The breakdown of oxygen in a dc electric field is studied. A high concentration of oxygen molecules in the a 1 Δ g excited state is obtained in a purely chemical reactor. A decrease in the breakdown voltage at degrees of excitation exceeding 50% is observed. The theoretical decrement in the breakdown voltage obtained by solving the Boltzmann equation is in good agreement with the experimental data

  19. Selective excitation of atoms or molecules to high-lying states

    International Nuclear Information System (INIS)

    Ducas, T.W.

    1978-01-01

    This specification relates to the selective excitation of atoms or molecules to high lying states and a method of separating different isotopes of the same element by selective excitation of the isotopes. (U.K.)

  20. Dinamical polarizability of highly excited hydrogen-like states

    International Nuclear Information System (INIS)

    Delone, N.B.; Krajnov, V.P.

    1982-01-01

    Analytic expressions are derived for the dynamic polarizability of highly excited hydrogen-like atomic states. It is shown that in the composite matrix element which determines the dynamic polarizability there is a strong compensation of the terms as a result of which the resulting magnitude of the dynamic polarizability is quasiclasically small compared to the individual terms of the composite matrix. It is concluded that the resonance behaviour of the dynamic polarizability of highly excited states differs significantly from the resonance behaviour of the polarizability for the ground and low-lying atomic states. The static limit and high-frequency limit of on electromagnetic field are considered

  1. Equation of state and hyperfine parameters of high-spin bridgmanite in the Earth’s lower mantle by synchrotron X-ray diffraction and Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Zhu; Wang, Fan; Lin, Jung-Fu; Fu, Suyu; Yang, Jing; Wu, Xiang; Okuchi, Takuo; Tomioka, Naotaka; Prakapenka, Vitali B.; Xiao, Yuming; Chow, Paul

    2017-02-01

    In this study, we performed synchrotron X-ray diffraction (XRD) and Mössbauer spectroscopy (SMS) measurements on two single-crystal bridgmanite samples [ Embedded Image and Embedded Image ] to investigate the combined effect of Fe and Al on the hyperfine parameters, lattice parameters, and equation of state (EoS) of bridgmanite up to 130 GPa. Our SMS results show that Fe2+ and Fe3+ in Bm6 and Al-Bm11 are predominantly located in the large pseudo-dodecahedral sites (A-site) at lower-mantle pressures. The observed drastic increase in the hyperfine quadrupole splitting (QS) between 13 and 32 GPa can be associated with an enhanced local distortion of the A-site Fe2+ in Bm6. In contrast to Bm6, the enhanced lattice distortion and the presence of extremely high QS values of Fe2+ are not observed in Al-Bm11 at high pressures. Our results here support the notion that the occurrence of the extremely high QS component of approximately 4 mm/s in bridgmanite is due to the lattice distortion in the high-spin (HS) A-site Fe2+, instead of the occurrence of the intermediate-spin state. Both A-site Fe2+ and Fe3+ in Bm6 and Al-Bm11 remain in the HS state at lower-mantle pressures. Together with XRD results, we present the first experimental evidence that the enhanced lattice distortion of A-site Fe2+ does not cause any detectable variation in the EoS parameters, but is associated with anomalous variations in the bond length, tilting angle, and shear strain in the octahedra of Bm6. Analysis of the obtained EoS parameters of bridgmanite at lower-mantle pressures indicates that the substitution of Fe in bridgmanite will cause an enhanced density and a reduced bulk sound velocity (VΦ), whereas the Al and Fe substitution has a reduced effect on density and a negligible effect on VΦ. These experimental results provide new insight into the correlation between lattice, hyperfine, and EoS parameters of bridgmanite in the Earth’s lower mantle.

  2. Complex fragment emission at low and high excitation energy

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1986-08-01

    Complex fragment emission has been certified as a compound nucleus process at low energies. An extension of the measurements to heavy ion reactions up to 50 MeV/u shows that most complex fragments are emitted by highly excited compound nuclei formed in incomplete fusion reactions. 12 refs., 26 figs

  3. Strange effects of strong high-frequency excitation

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    Three general effects of mechanical high-frequency excitation (HFE) are described: Stiffening - an apparent change in the stiffness associated with an equilibrium; Biasing - a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening...

  4. On the nature of highly vibrationally excited states of thiophosgene

    Indian Academy of Sciences (India)

    Understanding the nature of the highly excited molecu- lar eigenstates is equivalent to deciphering the mecha- nism of intramolecular vibrational energy redistribution. (IVR) occurring in the molecule.1 However, the assign- ment of eigenstates is far from simple. The existence of and interplay of several strong anharmonic ...

  5. Wobbling excitation of triaxial nuclear molecule 28Si – 28Si

    International Nuclear Information System (INIS)

    Uegaki, E; Abe, Y

    2013-01-01

    High-spin resonances observed in the 28 Si + 28 Si collisions are investigated with a molecular model. At high spins, a stable dinuclear configuration is found to be an equator-equator touching one. Since the E-E configuration is slightly triaxial, rotations of the total system induce mixing of K quantum numbers, called wobbling motion, which clearly explains the particle-γ angular correlations observed as well as the disalignments in a simple and natural way. Furthermore, predictions are given for the angular correlations of the wobbling excited states. The first excited state of wobbling shows strong alignments, which is quite different from the molecular ground state.

  6. Density-dependent phonoriton states in highly excited semiconductors

    International Nuclear Information System (INIS)

    Nguyen Hong Quang; Nguyen Minh Khue; Nguyen Que Huong

    1995-09-01

    The dynamical aspects of the phonoriton state in highly-photoexcited semiconductors is studied theoretically. The effect of the exciton-exciton interaction and nonbosonic character of high-density excitons are taken into account. Using Green's function method and within the Random Phase Approximation it is shown that the phonoriton dispersion and damping are very sensitive to the exciton density, characterizing the excitation degree of semiconductors. (author). 18 refs, 3 figs

  7. Nonlinear phenomena in the highly excited state of C60

    International Nuclear Information System (INIS)

    Byrne, H.J.; Maser, W.K.; Kaiser, M.; Akselrod, L.; Anders, J.; Ruehle, W.W.; Zhou, X.Q.; Mittelbach, A.; Roth, S.

    1993-01-01

    Under high intensity illumination, the optical and electronic properties of fullerenes are seen to undergo dramatic, nonlinear changes. The photoluminescence emission is seen to increase with approximately the third power of the input intensity above an apparent threshold intensity. Associated with this nonlinear increase is the emergence of a long lifetime emission component and a redshifting of the emission spectrum. Above the threshold intensity the photoconductive response increases with approximately the cube of the input power. In the highly excited state, the photoconductive response becomes relatively temperature independent compared to the thermally activated behaviour observed at low intensities. The characteristics of the temperature dependence are associated with a metallic-like phase in the highly excited state and therefore an optically driven insulator to metal transition is proposed as a description of the observed phenomena. (orig.)

  8. High Tc Superconducting Magnet Excited by a Semiconductor Thermoelectric Element

    Science.gov (United States)

    Kuriyama, T.; Ono, M.; Tabe, S.; Oguchi, A.; Okamura, T.

    2006-04-01

    A high Tc superconducting (HTS) magnet excited by a thermal electromotive force of a thermoelectric element is studied. This HTS magnet has the advantages of compactness, lightweight and continuous excitation in comparison with conventional HTS magnets, because this HTS magnet does not need a large external power source. In this system, a heat input into the cryogenic environment is necessary to excite the thermoelectric element for constant operation. This heat generation, however, causes a rise in temperature of an HTS coil and reduces the system performance. In this paper, a newly designed magnet system which adopted a two-stage GM cryocooler was investigated. It enabled us to control the temperature of a thermoelectric element and that of an HTS coil independently. The temperature of the HTS coil could be kept at 10-20 K at the second stage of the GM cryocooler, while the thermoelectric element could be excited at higher temperature in the range of 50-70 K at the first stage, where the performance of the thermoelectric element was higher. The experimental results on this HTS magnet are shown and the possibility of the thermoelectric element as a main power source of the HTS magnets is discussed.

  9. Excitation of high density surface plasmon polariton vortex array

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2018-06-01

    This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.

  10. The giant quadrupole resonance in highly excited rotating nuclei

    International Nuclear Information System (INIS)

    Civitarese, O.; Furui, S.; Ploszajczak, M.; Faessler, A.

    1983-01-01

    The giant quadrupole resonance in highly excited, fast rotating nuclei is studied as a function of both the nuclear temperature and the nuclear angular momentum. The photo-absorption cross sections for quadrupole radiation in 156 Dy, 160 Er and 164 Er are evaluated within the linear response theory. The strength functions of the γ-ray spectrum obtained from the decay of highly excited nuclear states by deexcitation of the isoscalar quadrupole mode show a fine structure, which depends on the temperature T, the angular momentum I and the deformation of the nucleus β. The splitting of the modes associated with the signature-conserving and signature-changing components of the quadrupole field is discussed. (orig.)

  11. Excitations

    International Nuclear Information System (INIS)

    Dorner, B.

    1996-01-01

    A short introduction to instrumental resolution is followed by a discussion of visibilities of phonon modes due to their eigenvectors. High precision phonon dispersion curves in GaAs are presented together with 'ab initio' calculations. Al 2 O 3 is taken as an example of selected visibility due to group theory. By careful determination of phonon intensities eigenvectors can be determined, such as in Silicon and Diamond. The investigation of magnon modes is shown for the garnet Fe 2 Ca 3 (GeO 4 ) 3 , where also a quantum gap due to zero point spin fluctuations was observed. The study of the splitting of excitons in CsFeCl 3 in an applied magnetic field demonstrates the possibilities of neutron polarisation analysis, which made it possible to observe a mode crossing. An outlook to inelastic X-ray scattering with very high energy resolution of synchrotron radiation is given with the examples of phonons in Beryllium and in water. (author) 19 figs., 36 refs

  12. Exotic nuclear excitations

    CERN Document Server

    Pancholi, S C

    2011-01-01

    By providing the reader with a foundational background in high spin nuclear structure physics and exploring exciting current discoveries in the field, this book presents new phenomena in a clear and compelling way. The quest for achieving the highest spin states has resulted in some remarkable successes which this monograph will address in comprehensive detail. The text covers an array of pertinent subject matter, including the rotational alignment and bandcrossings, magnetic rotation, triaxial strong deformation and wobbling motion and chirality in nuclei. Dr. Pancholi offers his readers a clearly-written and up-to-date treatment of the topics covered. The prerequisites for a proper appreciation are courses in nuclear physics and nuclear models and measurement techniques of observables like gamma-ray energies, intensities, multi-fold coincidences, angular correlations or distributions, linear polarization, internal conversion coefficients, short lifetime (pico-second range) of excited states etc. and instrum...

  13. New properties of giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Morsch, H.P.

    1991-01-01

    Studies on the giant dipole resonance in very hot nuclei investigated in heavy ion-induced particle-γ coincidence experiments are reviewed. A signature is found in the γ-decay of excited nuceli which shows direct decay of the giant dipole resonance. This provides a new dimension in giant resonance studies and the possibility to study the dependence of giant resonance energy, width and sum rule strength on excitation energy and rotation of the system. Further, the fact that the giant resonance splits in deformed nuclei provides a unique way to get information on the shape of hot nuclei. First results are obtained on the following questions: (i)What is the nuclear shape at high temperature (T≥2 MeV)? (ii)Is there a phase transition in the nuclear shape at T∼1.7 MeV? (iii)Does motional narrowing exist in hot nuclei? (author). 19 refs., 11 figs

  14. Calculations on the vibrational level density in highly excited formaldehyde

    International Nuclear Information System (INIS)

    Rashev, Svetoslav; Moule, David C.

    2003-01-01

    The object of the present work is to develop a model that provides realistic estimates of the vibrational level density in polyatomic molecules in a given electronic state, at very high (chemically relevant) vibrational excitation energies. For S 0 formaldehyde (D 2 CO), acetylene, and a number of triatomics, the estimates using conventional spectroscopic formulas have yielded densities at the dissociation threshold, very much lower than the experimentally measured values. In the present work we have derived a general formula for the vibrational energy levels of a polyatomic molecule, which is a generalization of the conventional Dunham spectroscopic expansion. Calculations were performed on the vibrational level density in S 0 D 2 CO, H 2 C 2 , and NO 2 at excitation energies in the vicinity of the dissociation limit, using the newly derived formula. The results from the calculations are in reasonable agreement with the experimentally measured data

  15. High power electron beam accelerators for gas laser excitation

    International Nuclear Information System (INIS)

    Kelly, J.G.; Martin, T.H.; Halbleib, J.A.

    1976-06-01

    A preliminary parameter investigation has been used to determine a possible design of a high-power, relativistic electron beam, transversely excited laser. Based on considerations of present and developing pulsed power technology, broad area diode physics and projected laser requirements, an exciter is proposed consisting of a Marx generator, pulse shaping transmission lines, radially converging ring diodes and a laser chamber. The accelerator should be able to deliver approximately 20 kJ of electron energy at 1 MeV to the 10 4 cm 2 cylindrical surface of a laser chamber 1 m long and 0.3 m in diameter in 24 ns with very small azimuthal asymmetry and uniform radial deposition

  16. Neutron scattering investigation of magnetic excitations at high energy transfers

    International Nuclear Information System (INIS)

    Loong, C.K.

    1984-01-01

    With the advance of pulsed spallation neutron sources, neutron scattering investigation of elementary excitations in magnetic materials can now be extended to energies up to several hundreds of MeV. We have measured, using chopper spectrometers and time-of-flight techniques, the magnetic response functions of a series of d and f transition metals and compounds over a wide range of energy and momentum transfer. In PrO 2 , UO 2 , BaPrO 3 and CeB 6 we observed crystal-field transitions between the magnetic ground state and the excited levels in the energy range from 40 to 260 MeV. In materials exhibiting spin-fluctuation or mixed-valent character such as Ce 74 Th 26 , on the other hand, no sharp crystal-field lines but a broadened quasielastic magnetic peak was observed. The line width of the quasielastic component is thought to be connected to the spin-fluctuation energy of the 4f electrons. The significance of the neutron scattering results in relation to the ground state level structure of the magnetic ions and the spin-dynamics of the f electrons is discussed. Recently, in a study of the spin-wave excitations in itinerant magnetic systems, we have extended the spin-wave measurements in ferromagnetic iron up to about 160 MeV. Neutron scattering data at high energy transfers are of particular interest because they provide direct comparison with recent theories of itinerant magnetism. 26 references, 7 figures

  17. Excited Atoms and Molecules in High Pressure Gas Discharges

    International Nuclear Information System (INIS)

    Vuskovic, L.; Popovic, S.

    2003-01-01

    Various types of high-pressure non-thermal discharges are increasingly drawing attention in view of many interesting applications. These, partially ionized media in non-equilibrium state, tend to generate complex effects that are difficult to interpret without a detailed knowledge of elementary processes involved. Electronically excited molecules and atoms may play an important role as intermediate states in a wide range of atomic and molecular processes, many of which are important in high-pressure discharges. They can serve also as reservoirs of energy or as sources of high energy electrons either through the energy pooling or through superelastic collisions. By presenting the analysis of current situation on the processes involving excited atoms and molecules of interest for high-pressure gas discharges, we will attempt to draw attention on the insufficiency of available data. In the same time we will show how to circumvent this situation and still be able to develop accurate models and interpretations of the observed phenomena

  18. Multiphoton excitation and high-harmonics generation in topological insulator.

    Science.gov (United States)

    Avetissian, H K; Avetissian, A K; Avchyan, B R; Mkrtchian, G F

    2018-05-10

    Multiphoton interaction of coherent electromagnetic radiation with 2D metallic carriers confined on the surface of the 3D topological insulator is considered. A microscopic theory describing the nonlinear interaction of a strong wave and metallic carriers with many-body Coulomb interaction is developed. The set of integrodifferential equations for the interband polarization and carrier occupation distribution is solved numerically. Multiphoton excitation of Fermi-Dirac sea of 2D massless carriers is considered for a THz pump wave. It is shown that in the moderately strong pump wave field along with multiphoton interband/intraband transitions the intense radiation of high harmonics takes place.

  19. Excited baryon form factors at high Q2

    International Nuclear Information System (INIS)

    Paul Stoler; Gary Adams; Abdellah Ahmidouch; Chris Armstrong; K. Assamagan; Steven Avery; K. Baker; Peter Bosted; Volker Burkert; Jim Dunne; Tom Eden; Rolf Ent; V. Frolov; David Gaskell; P. Gueye; Wendy Hinton; Cynthia Keppel; Wooyoung Kim; Michael Klusman; Doug Koltenuk; David Mack; Richard Madey; David Meekins; Ralph Minehart; Joseph Mitchell; Hamlet Mkrtchyan; James Napolitano; Gabriel Niculescu; Ioana Niculescu; Mina Nozar; John Price; Paul Stoler; Vardan Tadevosyan; Liguang Tang; Michael Witkowski; Stephen Wood

    1998-01-01

    The role of resonance electroproduction at high Q 2 is discussed in the context of exclusive reactions, as well as the alternative theoretical models which are proposed to treat exclusive reactions in the few GeV 2 /c 2 region of momentum transfer. Jefferson Lab experiment 94-014, which measured the excitation of the Delta (1232) and S 11 (1535) via the reactions p(e,e ' p)pi 0 and p(e,e ' p)eta respectively at Q 2 ∼ 2.8 and 4 GeV 2 /c 2 is described, and the state of analysis reported

  20. Multiphoton excitation and high-harmonics generation in topological insulator

    Science.gov (United States)

    Avetissian, H. K.; Avetissian, A. K.; Avchyan, B. R.; Mkrtchian, G. F.

    2018-05-01

    Multiphoton interaction of coherent electromagnetic radiation with 2D metallic carriers confined on the surface of the 3D topological insulator is considered. A microscopic theory describing the nonlinear interaction of a strong wave and metallic carriers with many-body Coulomb interaction is developed. The set of integrodifferential equations for the interband polarization and carrier occupation distribution is solved numerically. Multiphoton excitation of Fermi–Dirac sea of 2D massless carriers is considered for a THz pump wave. It is shown that in the moderately strong pump wave field along with multiphoton interband/intraband transitions the intense radiation of high harmonics takes place.

  1. Collective and single-particle states at high excitation energy

    International Nuclear Information System (INIS)

    Van den Berg, A.M.; Van der Molen, H.K.T.; Harakeh, M.N.; Akimune, H.; Daito, I.; Fujimura, H.; Fujiwara, M.; Ihara, F.; Inomata, T.

    2000-01-01

    Complete text of publication follows. Damping of high-lying single-particle states was investigated by the study of proton decay from high-lying states in 91 Nb, populated by the 90 Zr(α,t) reaction with E α = 180 MeV. In addition to decay to the ground state of 90 Zr, semi-direct decay was observed to the low-lying (2 + and 3 - ) phonon states, confirming the conclusion from other experiments that these phonon states play an important role in the damping process of the single-particle states. Furthermore, the population and decay of Isobaric Analogue States of 91 Zr, which are located at an excitation energy of about 10 - 12 MeV in 91 Nb, has been studied in the same reaction. (author)

  2. The remarkably high excitation planetary nebula GC 6537.

    Science.gov (United States)

    Aller, L H; Hung, S; Feibelman, W A

    1999-05-11

    NGC 6537 is an unusually high excitation point symmetric planetary nebula with a rich spectrum. Its kinematical structures are of special interest. We are here primarily concerned with the high resolution spectrum as revealed by the Hamilton echelle Spectrograph at Lick Observatory (resolution approximately 0.2 A) and supplemented by UV and near-UV data. These extensive data permit a determination of interstellar extinction, plasma diagnostics, and ionic concentrations. The photoionization models that have been used successfully for many planetary nebulae are not entirely satisfactory here. The plasma electron temperature of a photoionization model cannot much exceed 20,000 K, but plasma diagnostics show that regions emitting radiation of highly ionized atoms such as [NeIV] and [NeV] are much hotter, showing that shock excitation must be important, as suggested by the remarkable kinematics of this object. Hence, instead of employing a strict photoionization model, we are guided by the nebular diagnostics, which reveal how electron temperature varies with ionization potential and accommodates density effects. The predictions of the photoionization model may be useful in estimating ionization correction factor. In effect, we have estimated the chemical composition by using both photoionization and shock considerations.

  3. Behavior of nuclei at high angular momentum

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1982-07-01

    The present report begins with a brief overview of nuclear shapes and level structures at high-spin values. The new spectroscopy associated with angular-momentum alignments is described, and some of the exciting possibilities of this spectroscopy are explored. Nuclear moments of inertia are discussed and a somewhat different one is defined, together with a method for measuring it and some early results. Finally a few comments on the future prospects for high-spin physics are offered

  4. Radiance limits of ceramic phosphors under high excitation fluxes

    Science.gov (United States)

    Lenef, Alan; Kelso, John; Zheng, Yi; Tchoul, Maxim

    2013-09-01

    Ceramic phosphors, excited by high radiance pump sources, offer considerable potential for high radiance conversion. Interestingly, thermodynamic arguments suggest that the radiance of the luminescent spot can even exceed that of the incoming light source. In practice, however, thermal quenching and (non-thermal) optical saturation limit the maximum attainable radiance of the luminescent source. We present experimental data for Ce:YAG and Ce:GdYAG ceramics in which these limits have been investigated. High excitation fluxes are achieved using laser pumping. Optical pumping intensities exceeding 100W/mm2 have been shown to produce only modest efficiency depreciation at low overall pump powers because of the short Ce3+ lifetime, although additional limitations exist. When pump powers are higher, heat-transfer bottlenecks within the ceramic and heat-sink interfaces limit maximum pump intensities. We find that surface temperatures of these laser-pumped ceramics can reach well over 150°C, causing thermal-quenching losses. We also find that in some cases, the loss of quantum efficiency with increasing temperature can cause a thermal run-away effect, resulting in a rapid loss in converted light, possibly over-heating the sample or surrounding structures. While one can still obtain radiances on the order of many W/mm2/sr, temperature quenching effects ultimately limit converted light radiance. Finally, we use the diffusion-approximation radiation transport models and rate equation models to simulate some of these nonlinear optical pumping and heating effects in high-scattering ceramics.

  5. Properties of Highly Rotationally Excited H2 in Photodissociation Regions

    Science.gov (United States)

    Cummings, Sally Jane; Wan, Yier; Stancil, Phillip C.; Yang, Benhui H.; Zhang, Ziwei

    2018-06-01

    H2 is the dominant molecular species in the vast majority of interstellar environments and it plays a crucial role as a radiative coolant. In photodissociation regions, it is one of the primary emitters in the near to mid-infrared which are due to lines originating from highly excited rotational levels. However, collisional data for rotational levels j>10 are sparse, particularly for H2-H2 collisions. Utilizing new calculations for para-H2 and ortho-H2 collisional rate coefficients with H2 for j as high as 30, we investigate the effects of the new results in standard PDR models with the spectral simulation package Cloudy. We also perform Cloudy models of the Orion Bar and use Radex to explore rotational line ratio diagnostics. The resulting dataset of H2 collisional data should find wide application to other molecular environments. This work was support by Hubble Space Telescope grant HST-AR-13899.001-A and NASA grants NNX15AI61G and NNX16AF09G.

  6. Parity dependence of the nuclear level density at high excitation

    International Nuclear Information System (INIS)

    Rao, B.V.; Agrawal, H.M.

    1995-01-01

    The basic underlying assumption ρ(l+1, J)=ρ(l, J) in the level density function ρ(U, J, π) has been checked on the basis of high quality data available on individual resonance parameters (E 0 , Γ n , J π ) for s- and p-wave neutrons in contrast to the earlier analysis where information about p-wave resonance parameters was meagre. The missing level estimator based on the partial integration over a Porter-Thomas distribution of neutron reduced widths and the Dyson-Mehta Δ 3 statistic for the level spacing have been used to ascertain that the s- and p-wave resonance level spacings D(0) and D(1) are not in error because of spurious and missing levels. The present work does not validate the tacit assumption ρ(l+1, J)=ρ(l, J) and confirms that the level density depends upon parity at high excitation. The possible implications of the parity dependence of the level density on the results of statistical model calculations of nuclear reaction cross sections as well as on pre-compound emission have been emphasized. (orig.)

  7. Excitation and ionization of highly charged ions by electron impact

    International Nuclear Information System (INIS)

    Sampson, D.H.

    1989-01-01

    Two approaches for very rapid calculation of atomic data for high temperature plasma modeling have been developed. The first uses hydrogenic basis states and has been developed and applied in many papers discussed in previous progress reports. Hence, it is only briefly discussed here. The second is a very rapid, yet accurate, fully relativistic approach that has been developed over the past two or three years. It is described in more detail. Recently it has been applied to large scale production of atomic data. Specifically, it has been used to calculate relativistic distorted wave collision strengths and oscillator strengths for the following: all transitions from the ground level to the n=3 and 4 excited levels in the 71 Neon-like ions with nuclear charge number Z in the range 22 ≤ Z ≤ 92; all transitions among the 2s 1/2 , 2p 1/2 and 2p 3/2 levels and from them to all nlj levels with n=3,4 and 5 in the 85 Li-like ions with 8 ≤ Z ≤ 92; all transitions among the 3s 1/2 , 3p 3/2 , 3d 3/2 and 3d 5/2 levels and from them to all nlj levels with n=4 and 5 in the 71 Na-like ions with 22 ≤ Z ≤ 92; and all transitions among 4s 1/2 , 4p 1/2 , 4p 3/2 , 4d 3/2 , 4d 5/2 , 4f 5/2 and 4f 7/2 levels and from them to all nlj levels with n=5 in the 33 Cu-like ions with 60 ≤ Z ≤ 92. Also the program has been extended to give cross-sections for excitation to specific magnetic sublevels of the target ion by an electron beam and very recently it has been extended to give relativistic distorted wave cross sections for ionization of highly charged ions by electron impact

  8. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto

    2017-01-01

    iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL...... state lifetime of iron based complexes due to spin crossover-the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand...

  9. Neutron emission probability at high excitation and isospin

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2005-01-01

    One-neutron and two-neutron emission probability at different excitations and varying isospin have been studied. Several degrees of freedom like deformation, rotations, temperature, isospin fluctuations and shell structure are incorporated via statistical theory of hot rotating nuclei

  10. Collective, stochastic and nonequilibrium behavior of highly excited hadronic matter

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, P [Los Alamos National Lab., NM (USA). Theoretical Div.

    1984-04-23

    We discuss selected problems concerning the dynamics and stochastic behavior of highly excited matter, particularly the QCD plasma. For the latter we consider the equation of state, kinetics, quasiparticles, flow properties and possible chaos and turbulence. The promise of phase space distribution functions for covariant transport and kinetic theory is stressed. The possibility and implications of a stochastic bag are spelled out. A simplified space-time model of hadronic collisions is pursued, with applications to A-A collisions and other matters. The domain wall between hadronic and plasma phase is of potential importance: its thickness and relation to surface tension is noticed. Finally, we review the recently developed stochastic cell model of multiparticle distributions and KNO scaling. This topic leads to the notion that fractional dimensions are involved in a rather general dynamical context. We speculate that various scaling phenomena are independent of the full dynamical structure, depending only on a general stochastic framework having to do with simple maps and strange attractors. 42 refs.

  11. Collective, stochastic and nonequilibrium behavior of highly excited hadronic matter

    International Nuclear Information System (INIS)

    Carruthers, P.

    1983-01-01

    We discuss selected problems concerning the dynamic and stochasticc behavior of highly excited matter, particularly the QCD plasma. For the latter we consider the equation of state, kinetics, quasiparticles, flow properties and possible chaos and turbulence. The promise of phase space distribution functions for covariant transport and kinetic theory is stressed. The possibility and implications of a stochastic bag are spelled out. A simplified space-time model of hadronic collisions is pursued, with applications to A-A collisions and other matters. The domain wall between hadronic and plasma phase is of potential importance: its thickness and relation to surface tension are noticed. Finally we reviewed the recently developed stochastic cell model of multiparticle distributions and KNO scaling. This topic leads to the notion that fractal dimensions are involved in a rather general dynamical context. We speculate that various scaling phenomena are independent of the full dynamical structure, depending only on a general stochastic framework having to do with simple maps and strange attractors. 42 references

  12. Charge transfer and excitation in high-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Berkner, K.H.; McDonald, R.J.

    1986-11-01

    Coincidence measurements of charge transfer and simultaneous projectile electron excitation provide insight into correlated two-electron processes in energetic ion-atom collisions. Projectile excitation and electron capture can occur simultaneously in a collision of a highly charged ion with a target atom; this process is called resonant transfer and excitation (RTE). The intermediate excited state which is thus formed can subsequently decay by photon emission or by Auger-electron emission. Results are shown for RTE in both the K shell of Ca ions and the L shell of Nb ions, for simultaneous projectile electron loss and excitation, and for the effect of RTE on electron capture

  13. Realistic level densities in fragment emission at high excitation energies

    International Nuclear Information System (INIS)

    Mustafa, M.G.; Blann, M.; Ignatyuk, A.V.

    1993-01-01

    Heavy fragment emission from a 44 100 Ru compound nucleus at 400 and 800 MeV of excitation is analyzed to study the influence of level density models on final yields. An approach is used in which only quasibound shell-model levels are included in calculating level densities. We also test the traditional Fermi gas model for which there is no upper energy limit to the single particle levels. We compare the influence of these two level density models in evaporation calculations of primary fragment excitations, kinetic energies and yields, and on final product yields

  14. Consideration on excitation mechanisms in a high-power two-jet plasma

    International Nuclear Information System (INIS)

    Zaksas, Natalia P.; Gerasimov, Vladimir A.

    2013-01-01

    The study of excitation mechanisms in the region before the jet confluence of a high-power two-jet plasma used for analysis of different powders has been undertaken. Distribution of excited levels of Fe atoms and ions according to the Boltzmann population was found. Measuring Fe atomic and ionic excitation temperatures showed their considerable difference (≈ 2000–2500 K). The effect of argon on line intensities of a wide range of elements was investigated by the experiment with argon covering. A negligible effect of argon covering on line intensities of atoms with ionization energy of 8 eV was revealed. This is likely to be due to Penning ionization by metastable argon followed by ion recombination with an electron and stepwise de-excitations. A more pronounced effect of argon covering was observed for ionic lines of investigated elements with total excitation energy ranging from 11 to 21 eV. Penning ionization followed by electron impact is believed to be a probable mechanism for ion excitation. The contribution of metastable argon to excitation processes results in departure from local thermodynamic equilibrium and different atomic and ionic excitation temperatures. - Highlights: • Excitation mechanisms were investigated in a high-power TJP. • Boltzmann population of excited levels of Fe atoms and ions takes place. • The considerable difference in Fe atomic and ionic excitation temperatures occurs. • Argon covering was used to study the argon effect on line intensities. • Participation of metastable argon in atom ionization was shown

  15. Studies of spin excitations with electromagnetic and hadronic probes

    International Nuclear Information System (INIS)

    Lindgren, R.A.; Petrovich, F.

    1982-01-01

    Excitation of unnatural parity states, predominantly of high spin, using electromagnetic and hadronic probes, is discussed. Spectroscopic strengths are deduced from studies of (e,e'), (p,p'), (π.π'), and (p,n) for states whose doorway is the stretched particle-hole configuration. These levels are excited primarily through the isovector electromagnetic-nucleon magnetization coupling, nucleon-nucleon tensor coupling, and pion-nucleon spin-orbit coupling. The extracted isovector spectroscopic strength is typically 38% of the extreme single particle-hole model and about 66% of that predicted by more realistic nuclear structure calculations. The observed isoscalar strength is only about one half of the isovector strength. The results obtained with the three different probes are quite consistent. The primary conclusion is that the missing strength for these high spin excitations is at least as large as for the low spin M1 and GT excitations. This implies the existence of other important quenching mechanisms since the Δ-N -1 mechanism involved in the discussion of the low spin excitation affects only the isovector transitions and contributes little to high spin excitations. A method for using (e,e') and π + /π - cross section ratios to separate and determine the absolute isoscalar and isovector spin densities for T 0 to T 0 transitions in N is not equal to Z nuclei is also discussed and some comments on extracting information from (e,e') and (p,p') studies at high q on low spin 1 + and 2 - levels are presented. 78 references

  16. Study of high-j neutron excitations outside 136Xe

    Science.gov (United States)

    Talwar, R.; Kay, B. P.; Mitchell, A. J.; Adachi, S.; Entwisle, J. P.; Fujita, Y.; Gey, G.; Noji, S.; Ong, H. J.; Schiffer, J. P.; Tamii, A.

    2017-09-01

    The character of single-neutron excitations outside of N = 82 has been studied using nucleon transfer reactions in terms of the energy centroid of their strength as well as the fragmentation of this strength among the actual states of the nucleus. However, extending the systematic study of the N = 83 isotones to 137Xe has been challenging due to xenon being a gas at room temperature. Though several attempts have been made, a quantitative determination of the spectroscopic factors for the neutron 9/2- and 13/2+ excitations in 137Xe is still lacking. In the present work, we report on a study of the 136Xe(α,3He)137Xe reaction carried out at 100 MeV to probe the l = 5 , 9/2- and l = 6 , 13/2+ single-neutron excitations. The experimental technique and results will be presented discussing them in context of the evolution of these single-neutron excitations and the influence of the tensor interaction on the neutron single-particle states as the proton orbits are filling. This work has been supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357, the Australian Research Council Discovery Project 120104176, and the UK Science and Technology Facilities.

  17. Luminescence decay in condensed argon under high energy excitation

    International Nuclear Information System (INIS)

    Carvalho, M.J.; Klein, G.

    1978-01-01

    α and β particles were used to study the luminescence of condensed argon. The scintillation decay has always two components independently of the phase and the kind of the exciting particles. Decay time constants are given for solid, liquid and also gaseous argon. Changes in the relative intensity values of the two components are discussed in terms of track effects

  18. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    of sea state parameters — influence of filtering. Ocean Engineering 2007;34:1797–810.], where time series of ship responses were generated from a known wave spectrum for the purpose of the inverse process — the estimation of the underlying wave excitations. Similar response generations and vice versa...

  19. vuv fluorescence from selective high-order multiphoton excitation of N2

    International Nuclear Information System (INIS)

    Coffee, Ryan N.; Gibson, George N.

    2004-01-01

    Recent fluorescence studies suggest that ultrashort pulse laser excitation may be highly selective. Selective high-intensity laser excitation holds important consequences for the physics of multiphoton processes. To establish the extent of this selectivity, we performed a detailed comparative study of the vacuum ultraviolet fluorescence resulting from the interaction of N 2 and Ar with high-intensity infrared ultrashort laser pulses. Both N 2 and Ar reveal two classes of transitions, inner-valence ns ' l ' . From their pressure dependence, we associate each transition with either plasma or direct laser excitation. Furthermore, we qualitatively confirm such associations with the time dependence of the fluorescence signal. Remarkably, only N 2 presents evidence of direct laser excitation. This direct excitation produces ionic nitrogen fragments with inner-valence (2s) holes, two unidentified transitions, and one molecular transition, the N 2 + :X 2 Σ g + 2 Σ u + . We discuss these results in the light of a recently proposed model for multiphoton excitation

  20. Effect of high-frequency excitation on natural frequencies of spinning discs

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2000-01-01

    The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural frequenc......The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural...

  1. Aspects of data on the breakup of highly excited nuclei

    International Nuclear Information System (INIS)

    Warwick, A.I.; Wieman, H.H.; Gutbrod, H.H.; Ritter, H.G.; Stelzer, H.; Weik, F.; Kaufman, S.B.; Steinberg, E.P.; Wilkins, B.D.

    1983-05-01

    There is an awakening of theoretical interest in the mechanisms by which nuclear fragments (4 less than or equal to A less than or equal to 150) are produced in violent collisions of heavy ions. With this in mind we review some aspects of the available experimental data and point out some challenging features against which to test the models. The concept of evaporation is tremendously powerful when applied to pieces of nuclei of low excitation (1 or 2 MeV/u). Current interest focuses on higher excitations, at the point where the binding energy of the system vanishes. This is the transition from liquid nuclei to a gas of nucleons, and it may be that the critical phenomena that certainly exist in infinite nuclear matter will be manifest in finite nuclei under these conditions

  2. Superconductivity and charge transfer excitations in high Tc superconductors

    International Nuclear Information System (INIS)

    Balseiro, C.A.; Alascio, B.; Gagliano, E.; Rojo, A.

    1988-01-01

    We present some numerical results to show that in a simple model which includes Cu 3d and O 2p orbitals together with inter and intra atomic correlations pairing between holes can occur due to charge transfer excitations. We present also a simple approximation to derive an effective Hamiltonian containing an interaction between particles which is attractive for some values of the different microscopic parameters

  3. Single-particle and collective excitations in Ni-63

    OpenAIRE

    Albers, M.; Zhu, S.; Janssens, R. V. F.; Gellanki, Jnaneswari; Ragnarsson, Ingemar; Alcorta, M.; Baugher, T.; Bertone, P. F.; Carpenter, M. P.; Chiara, C. J.; Chowdhury, P.; Deacon, A. N.; Gade, A.; DiGiovine, B.; Hoffman, C. R.

    2013-01-01

    A study of excited states in Ni-63 up to an excitation energy of 28 MeV and a probable spin of 57/2 was carried out with the Mg-26(Ca-48,2 alpha 3n gamma)Ni-63 reaction at beam energies between 275 and 320 MeV. Three collective bands, built upon states of single-particle character, were identified. For two of the three bands, the transition quadrupole moments were extracted, herewith quantifying the deformation at high spin. The results have been compared with shell-model and cranked Nilsson-...

  4. Luminescence of CsPbBr3 films under high-power excitation

    OpenAIRE

    高橋, 一彰; 斎藤, 忠昭; 近藤, 新一; 浅田, 拡志

    2004-01-01

    Highly excited photoluminescence of CsPbBr3 has been measured for thin films prepared by crystallization from the amorphous phase into microcrystalline/ polycrystalline states. With the increase of excitation intensity, there occurs jumping of the dominant emission band from a free-exciton band to a new band originating from exciton-exciton inelastic collision. Stimulated emission is observed for the new band at very low threshold excitation intensities of the order of 10kW/cm2.

  5. Statistical and direct decay of high-lying single-particle excitations

    International Nuclear Information System (INIS)

    Gales, S.

    1993-01-01

    Transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of high-lying excitations embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by microscopic nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured particle (n,p) decay branching ratios. The neutron and proton decay studies of high-lying single-particle states in heavy nuclei are presented. (author). 13 refs., 9 figs

  6. High-j neutron excitations outside 136Xe

    Science.gov (United States)

    Talwar, R.; Kay, B. P.; Mitchell, A. J.; Adachi, S.; Entwisle, J. P.; Fujita, Y.; Gey, G.; Noji, S.; Ong, H. J.; Schiffer, J. P.; Tamii, A.

    2017-08-01

    The ν 0 h9 /2 and ν 0 i13 /2 strength at 137Xe, a single neutron outside the N =82 shell closure, has been determined using the 136Xe(α ,3He)137Xe reaction carried out at 100 MeV. We confirm the recent observation of the second 13 /2+ state and reassess previous data on the 9 /2- states, obtaining spectroscopic factors. These new data provide additional constraints on predictions of the same single-neutron excitations at 133Sn.

  7. Experimental investigation of particle-hole excitations in 91Nb

    International Nuclear Information System (INIS)

    Singh, Purnima; Palit, R.; Choudhury, D.

    2014-01-01

    Investigation of high-spin states in nuclei near N = 50 shell closure have attracted considerable attention in recent years. These nuclei provide a suitable laboratory for testing the residual interactions of the spherical shell model. Studies of N = 50, Z ∼ 40 nuclei, revealed that the low-lying states in these nuclei arise from proton excitations within the f 5/2 , p 3/2 , p 1/2 , and g 9/2 orbits. The higher angular momentum states were observed to have dominant contribution of 1p - 1h configurations involving a single g 9/2 neutron excitation across the N = 50 shell gap into the d 5/2 orbit. A comprehensive study of multiparticle-multihole (mp-mh) excitations in these nuclei may provide necessary insight into the evolution of shell structure above N = 50 shell gap. However, till date there is no experimental evidence of states involving two or more neutron excitations across the N = 50 shell gap in N = 50, Z ∼ 40 nuclei. The present work investigates high-spin states in the N = 50 nucleus, 91 Nb, with the purpose to search for states involving 2p - 2h excitations across the N = 50 shell closure

  8. Fission of highly excited nuclei investigated in complete kinematic measurements

    International Nuclear Information System (INIS)

    Rodriguez-Sanchez, J. L.; Benlliure, J.; Taieb, J.; Avarez-Pol, H.; Audouin, L.; Ayyad, Y.; Belier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelic-Heil, A.; Kurz, N.; Laurent, B.; Martin, J. F.; Paradela, C.; Pellereau, E.; Pietras, B.; Prochazka, A.; Ramos, D.; Rodriguez-Tajes, C.; Rossi, D.; Simon, H.; Tassan-Got, L.; Vargas, J.; Voss, B.

    2013-01-01

    Fission is an extremely complex mechanism that requires a dynamical approach to describe the evolution of the process in terms of intrinsic and collective excitations of the nuclear constituents. In order to determine these effects a complex experimental setup was mounted at GSI, which allowed us for the first time the full identification in charge and mass of all fission fragments thanks to a magnetic separation and the use of the inverse kinematic technique. Moreover, we also measured the neutron multiplicities and the light-charged particles emitted in coincidence with fission. These complete kinematic measurements will be used to define sensitive observables to dissipative and transient effects in fission. In this manuscript we present the first results for the total fission cross sections. (authors)

  9. Core excitations across the neutron shell gap in 207Tl

    Directory of Open Access Journals (Sweden)

    E. Wilson

    2015-07-01

    Full Text Available The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations using two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.

  10. DECAY MODES OF HIGH-LYING SINGLE-PARTICLE STATES IN PB-209

    NARCIS (Netherlands)

    BEAUMEL, D; FORTIER, S; GALES, S; GUILLOT, J; LANGEVINJOLIOT, H; LAURENT, H; MAISON, JM; VERNOTTE, J; BORDEWIJK, JA; BRANDENBURG, S; KRASZNAHORKAY, A; CRAWLEY, GM; MASSOLO, CP; RENTERIA, M

    The neutron decay of high-lying single-particle states in Pb-209 excited by means of the (alpha, He-3) reaction has been investigated at 122 MeV incident energy using a multidetector array. The high-spin values of these states, inferred from previous inclusive experiments, are confirmed by the

  11. High-spin, multiparticle isomers in 121,123Sb

    International Nuclear Information System (INIS)

    Jones, G. A.; Walker, P. M.; Podolyak, Zs.; Cullen, I. J.; Garnsworthy, A. B.; Liu, Z.; Thompson, N. J.; Williams, S. J.; Zhu, S.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Seweryniak, D.; Carroll, J. J.; Chakrawarthy, R. S.; Hackman, G.; Chowdhury, P.; Dracoulis, G. D.; Lane, G. J.; Kondev, F. G.

    2008-01-01

    Isomers in near-spherical Z=51, antimony isotopes are reported here for the first time using fusion-fission reactions between 27 Al and a pulsed 178 Hf beam of energy, 1150 MeV. γ rays were observed from the decay of isomeric states with half-lives, T 1/2 =200(30) and 52(3)μs, and angular momenta I=((25/2)) and I π =(23/2) + , in 121,123 Sb, respectively. These states are proposed to correspond to ν(h (11/2) ) 2 configurations, coupled to an odd d (5/2) or g (7/2) proton. Nanosecond isomers were also identified at I π =(19/2) - [T 1/2 =8.5(5) ns] in 121 Sb and I π =((15/2) - ) [T 1/2 =37(4) ns] in 123 Sb. Information on spins and parities of states in these nuclei was obtained using a combination of angular correlation and intensity-balance measurements. The configurations of states in these nuclei are discussed using a combination of spin/energy systematics and shell-model calculations for neighboring tin isotones and antimony isotopes

  12. Critical emission from a high-spin black hole

    Science.gov (United States)

    Lupsasca, Alexandru; Porfyriadis, Achilleas P.; Shi, Yichen

    2018-03-01

    We consider a rapidly spinning black hole surrounded by an equatorial, geometrically thin, slowly accreting disk that is stationary and axisymmetric. We analytically compute the broadening of electromagnetic line emissions from the innermost part of the disk, which resides in the near-horizon region. The result is independent of the disk's surface emissivity and therefore universal. This is an example of critical behavior in astronomy that is potentially observable by current or future telescopes.

  13. High-spin properties of some nuclei around A = 160

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1985-05-01

    Two new types of behavior have been observed in 156 Er. The first is a terminating band ending on a 42+ fully aligned state. The second is a strong cross feeding among four negative parity bands, due most likely to a severe reduction or collapse of the neutron pairing. In 158 Er we have found two sequences feeding the 38+ level; one slow and one fast. This suggests that some feeding goes through regions of oblate (or nearly so) shapes, and some does not. Lifetimes have been determined for levels around 30+ in 166 Yb, which seem to be longer than is easily explained. 23 refs, 8 figs

  14. Unresolved gamma rays from high-spin states

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1985-08-01

    The γ-rays which are emitted from the highest spin states in nuclei cannot be resolved using present techniques. Nevertheless, methods are being developed to study nuclear structures in this spin range. For example, coincidence data has been used in the study of superdeformations and moments of inertia. While the general properties of these correlation plots are in accord with present expectations, there are several puzzling features of the data which require more study. One unresolved aspect concerns γ-ray energy spreads in a given decay pathway. In addition, higher-order correlation methods are in various stages of inception. 15 refs., 16 figs

  15. Nuclear structure at high spin using multidetector gamma array and ...

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... large angular momentum using heavy-ion fusion evaporation reactions ... Gamma detector array (GDA) [6,7], at Inter-University Accelerator Centre (IUAC) is .... used in the present work has improved the quality of coincidence ...

  16. Multi-photon Rabi oscillations in high spin paramagnetic impurity

    International Nuclear Information System (INIS)

    Bertaina, S; Groll, N; Chen, L; Chiorescu, I

    2011-01-01

    We report on multiple photon monochromatic quantum oscillations (Rabi oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of Mn 2+ (S = 5/2) impurities in MgO. We find that when the microwave magnetic field is similar or large than the anisotropy splitting, the Rabi oscillations have a spectrum made of many frequencies not predicted by the S = l/2 Rabi model. We show that these new frequencies come from multiple photon coherent manipulation of the multi-level spin impurity. We develop a model based on the crystal field theory and the rotating frame approximation, describing the observed phenomenon with a very good agreement.

  17. High-spin properties of some nuclei around A=160

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1985-01-01

    Two new types of behaviour have been observed in 156 Er. The first is a terminating band ending on a 42+ fully aligned state. The second is a strong cross feeding among four negative parity bands, due most likely to a severe reduction or collapse of the neutron pairing. In 158 Er we have found two sequences feeding the 38+ level; one slow and one fast. This suggests that some feeding goes through regions of oblate (or nearly so) shapes, and some does not. Lifetimes have been determined for levels around 30+ in 166 Yb, which seem to be longer than is easily explained. (orig.)

  18. High-spin structure of yrast-band in Kr

    Indian Academy of Sciences (India)

    320(70) fs was obtained from the present data at 75. ° for the 24. + level. Zeigler's stopping powers have been used for the calculation of the energy loss parameters of the recoiling nuclei. The experimental data along with the theoretical fits for the lifetimes measured can be seen in figure 1. The present lifetime values up to ...

  19. New materials research for high spin polarized current

    International Nuclear Information System (INIS)

    Tezuka, Nobuki

    2012-01-01

    The author reports here a thorough investigation of structural and magnetic properties of Co 2 FeAl 0.5 Si 0.5 Heusler alloy films, and the tunnel magnetoresistance effect for junctions with Co 2 FeAl 0.5 Si 0.5 electrodes, spin injection into GaAs semiconductor from Co 2 FeAl 0.5 Si 0.5 , and spin filtering phenomena for junctions with CoFe 2 O 4 ferrite barrier. It was observed that tunnel magnetoresistance ratio up to 832%(386%) at 9 K (room temperature), which corresponds to the tunnel spin polarization of 0.90 (0.81) for the junctions using Co 2 FeAl 0.5 Si 0.5 Heusler electrodes by optimizing the fabrication condition. It was also found that the tunnel magnetoresistance ratio are almost the same between the junctions with Co 2 FeAl 0.5 Si 0.5 Heusler electrodes on Cr buffered (1 0 0) and (1 1 0) MgO substrates, which indicates that tunnel spin polarization of Co 2 FeAl 0.5 Si 0.5 for these two direction are almost the same. The next part of this paper is a spin filtering effect using a Co ferrite. The spin filtering effect was observed through a thin Co-ferrite barrier. The inverse type tunnel magnetoresistance ratio of −124% measured at 10 K was obtained. The inverse type magnetoresistance suggests the negative spin polarization of Co-ferrite barrier. The magnetoresistance ratio of −124% corresponds to the spin polarization of −0.77 by the Co-ferrite barrier. The last part is devoted to the spin injection from Co 2 FeAl 0.5 Si 0.5 into GaAs. The spin injection signal was clearly obtained by three terminal Hanle measurement. The spin relaxation time was estimated to be 380 ps measured at 5 K.

  20. Decrease in collectivity at high spins in 79Rb nucleus

    International Nuclear Information System (INIS)

    Sinha, Rishi Kumar; Dhal, Anukul; Chaturvedi, L.; Agarwal, Priyanka; Suresh Kumar; Jain, A.K.; Monika; Thind, K.S.; Bikram Singh, Bir; Rajesh Kumar; Govil, I.M.; Bringel, P.; Neusser, A.; Rakesh Kumar; Golda, K.S.; Singh, R.P.; Muralithar, S.; Madhvan, N.; Das, J.J.; Bhowmik, R.K.; Sinha, A.K.; Pancholi, S.C.; Joshi, P.K.

    2004-01-01

    The life time for the +ve and -ve parity πg 9/2 πp 3/2 bands in 79 Rb were measured by the Doppler Shift Attenuation Methods (DSAM) to investigate nuclear collectivity as a function of rotational frequency

  1. The interacting boson model with the high spin bosons

    International Nuclear Information System (INIS)

    Mizusaki, T.; Otsuka, T.; Yoshinaga, N.

    1991-01-01

    The phenomenological study in the Ra region was carried out from the view of the sdg-IBM2. The sdg hamiltonian whose parameters are almost kept constant for the isotopes can successfully describe the spherical-deformed phase transition of the Ra isotopes and the enhancement of the moment of inertia of the β band. We emphasize that the role of the g boson is important in the actinide region. (author)

  2. High-spin rotational states in {sup 179}Os

    Energy Technology Data Exchange (ETDEWEB)

    Burde, J [Lawrence Berkeley Lab., CA (United States); [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Deleplanque, M A; Diamond, R M; Macchiavelli, A O; Stephens, F S; Beausang, C W [Lawrence Berkeley Lab., CA (United States)

    1992-08-01

    The rotational bands of the osmium isotopes display very interesting properties that vary with the neutron number. On the one hand the yrast bands of {sup 182,184,186}Os display a sudden and rather strong gain in aligned angular momentum,, whereas the lighter osmium nuclei such as {sup 176,178,180}Os show a more gradual increase of alignment characteristic of strongly interacting bands. In addition, an unusual rotational band has been found in {sup 178}Os. It consists of seven regularly spaced transitions about 36 keV apart which correspond closely to the spacing of the superdeformed band in {sup 152}Dy after an A{sup 5/3} normalization. this band populates the yrast band directly, and the moment of inertia J{sup (1)} is found to be much smaller than J{sup (2)}. The most likely interpretation of this is a band with large deformation which is undergoing systematic changes in deformation, pairing and/or alignment. This latter finding in particular motivated us to carry out research on the higher spin states in {sup 179}Os. Dracoulis et al. have published their results on 5 rotational bands in {sup 179}Os. In the present work we found six new bands and extended appreciably the spin limits in the other five. (author). 5 refs., 3 figs.

  3. Nuclear structure of 216 Ra at high spin

    Indian Academy of Sciences (India)

    Bi(10B, 3n) reaction at an incident beam energy of 55 MeV and 209Bi(11B, 4n) reaction at incident beam energies ranging from 65 to 78 MeV. Based on coincidence data, the level scheme for 216Ra has been considerably extended up to ...

  4. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.

    1992-01-01

    This report discusses the following topics relating to inertial confinement with spin polarized hydrogen targets: low temperature implementation of mating a target to omega; dilution-refrigerator cold-entry and retrieval system; target shell tensile strength characterization at low temperatures; and proton and deuteron spin-lattice relaxation measurements in HD in the millikelvin temperature range

  5. High spin polarisation at the HERA electron storage ring

    International Nuclear Information System (INIS)

    Barber, D.P.; Boege, M.; Bremer, H.D.; Brinkmann, R.; Gianfelice-Wendt, E.; Kaiser, R.; Klanner, R.; Lewin, H.C.; Meyners, N.; Ripken, G.; Zapfe, K.; Boettcher, H.; Dueren, M.; Steffens, E.; Lomperski, M.; Rith, K.; Westphal, D.; Zetsche, F.

    1993-04-01

    This paper describes the progress made in 1992 towards increasing the vertical electron beam polarization at HERA. Utilizing harmonic spin-orbit corrections and beam tuning, the vertical polarization has been increased from 15% to nearly 60% at a beam energy of 26.7 GeV. The long-term reproducibility of the polarization is excellent. Measurements of the build-up time and the energy dependence of the polarization are also described. (orig.)

  6. International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.

    Science.gov (United States)

    Aller, L H; Keyes, C D

    1980-03-01

    Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation.

  7. Structure of high excited nuclear states and elastic scattering

    International Nuclear Information System (INIS)

    Zhivopistsev, F.A.; Rzhevskij, E.S.

    1979-01-01

    An approach to a unified description of nuclear reactions and nuclear structure based on the formalism of the quantum Green functions and on the ideas of the theory of finite Fermi systems has been formulated. New structural vertices are introduced, which are responsible for nucleon collectivization in an atomic nucleus and for the excitation of many-phonon, quasideuteron, quasitriton and other configurations. The vertices define both the processes of particle scattering by atomic nuclei (T matrix and optical potentials) and the nuclear structure (secular equations and wave functions). The vertices are determined from the equations with effective many-particle forces Fsub(nm)sup(c). In their turn the Fsub(nm)sup(c) forces are either determined from a comparison of theory and experiment, or calculated from the equations with more fundamental nucleon-nucleon forces in a nucleus. The effective forces Fsub(nm)sup(c) are more universal than the constants of the theory of finite Fermi-systems, which extends the boundaries of applicability of the particle-hole formalism in the description of nuclear processes. In this approach the traditional methods of description of the nuclear structure, based on particular models of hamiltonian and wave functions, acquire a natural interpretation

  8. The character of resonant charge exchange involving highly excited atoms

    International Nuclear Information System (INIS)

    Kosarim, A. V.; Smirnov, B. M.; Capitelli, M.; Laricchiuta, A.

    2012-01-01

    We study the process of resonant charge exchange involving excited helium atoms with the principal quantum number n = 5 colliding with the helium ion in the ground state in the collision energy range from thermal up to 10 eV. This information may be important for the analysis of planet atmospheres containing helium, in particular, for Jupiter’s atmosphere, but our basic interest is the transition from the quantum to classical description of this process, where, due to large cross sections, evaluations of the cross sections are possible. For the chosen process, quantum theory allows determining the cross section as a result of a tunnel electron transition, while classical theory accounts for over-barrier electron transitions. The classical theory additionally requires effective transitions between states with close energies. The analysis of these transitions for helium with n = 5 shows that electron momenta and their projections are mixed for a part of the states, while for other states, the mixing is absent. A simple criterion to separate such states is given. In addition, the main contribution to the cross section of resonant charge exchange follows from tunnel electron transitions. As a result, the quantum theory is better for calculating the cross sections of resonant charge exchange than the classical one and also allows finding the partial cross sections of resonant charge exchange, while the classical approach gives the cross section of resonant charge exchange in a simple manner with the accuracy of 20%.

  9. Proceedings of the 1984 workshop on high-energy excitations in condensed matter. Volume II

    International Nuclear Information System (INIS)

    Silver, R.N.

    1984-12-01

    This volume covers electronic excitations, momentum distributions, high energy photons, and a wrap-up session. Abstracts of individual items from the conference were prepared separately for the data base

  10. High-spin structure of the neutron-rich odd-odd sup 1 sup 0 sup 6 sup , sup 1 sup 0 sup 8 sub 4 sub 5 Rh and sup 1 sup 1 sup 0 sup , sup 1 sup 1 sup 2 sub 4 sub 7 Ag isotopes

    CERN Document Server

    Porquet, M G; Deloncle, I; Wilson, A; Venkova, T; Petkov, P; Kutsarova, T; Astier, A; Buforn, N; Meyer, M; Redon, N; Duprat, J; Gall, B J P; Hoellinger, F; Schulz, N; Gautherin, C; Lucas, R; Gueorguieva, E; Minkova, A; Sergolle, H

    2002-01-01

    The sup 1 sup 0 sup 6 sup , sup 1 sup 0 sup 8 Rh and sup 1 sup 1 sup 0 sup , sup 1 sup 1 sup 2 Ag nuclei have been produced as fission fragments following the fusion reaction sup 2 sup 8 Si+ sup 1 sup 7 sup 6 Yb at 145 MeV bombarding energy and studied with the Eurogam2 array. The yrast high-spin states of these four odd-odd nuclei, which are observed for the first time, consist of rotational bands in which the odd proton occupies the pi g sub 9 sub / sub 2 subshell and the odd neutron the nu h sub 1 sub 1 sub / sub 2 subshell. Their behaviour as a function of spin values does not vary with the number of neutrons: as observed in the odd-N neighbouring nuclei, the motion of the odd neutron remains decoupled from the motion of the core, from N=61 to N=65. Moreover, the staggering observed in the yrast bands of odd-odd isotopes is strongly reduced as compared to the large values displayed by the rotational bands built on the pi g sub 9 sub / sub 2 subshell in the odd-A Rh and Ag isotopes. The results of particle...

  11. Acoustic properties of perforates under high level multi-tone excitation

    OpenAIRE

    Bodén, Hans

    2013-01-01

    This paper discusses the effect of high level multi-tone acoustic excitation on the acoustic properties of perforates. It is based on a large experimental study of the nonlinear properties of these types of samples without mean grazing or bias flow. Compared to previously published results the present investigation concentrates on the effect of multiple harmonics. It is known from previous studies that high level acoustic excitation at one frequency will change the acoustic impedance of perfo...

  12. Photoionization study of doubly-excited helium at ultra-high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kaindl, G.; Schulz, K.; Domke, M. [Freie Universitaet Berlin (Germany)] [and others

    1997-04-01

    Ever since the pioneering work of Madden & Codling and Cooper, Fano & Prats on doubly-excited helium in the early sixties, this system may be considered as prototypical for the study of electron-electron correlations. More detailed insight into these states could be reached only much later, when improved theoretical calculations of the optically-excited {sup 1}P{sup 0} double-excitation states became available and sufficiently high energy resolution ({delta}E=4.0 meV) was achieved. This allowed a systematic investigation of the double-excitation resonances of He up to excitation energies close to the double-ionization threshold, I{sub infinity}=79.003 eV, which stimulated renewed theoretical interest into these correlated electron states. The authors report here on striking progress in energy resolution in this grazing-incidence photon-energy range of grating monochromators and its application to hitherto unobservable states of doubly-excited He. By monitoring an extremely narrow double-excitation resonance of He, with a theoretical lifetime width of less than or equal to 5 {mu}eV, a resolution of {delta}E=1.0 meV (FWHM) at 64.1 eV could be achieved. This ultra-high spectral resolution, combined with high photon flux, allowed the investigation of new Rydberg resonances below the N=3 ionization threshold, I{sub 3}, as well as a detailed comparison with ab-initio calculations.

  13. Alternative Experimental Evidence for Chiral Restoration in Excited Baryons

    International Nuclear Information System (INIS)

    Glozman, L. Ya.

    2007-01-01

    It has been suggested that chiral symmetry is approximately restored in excited hadrons at zero temperature and density (effective symmetry restoration). Using very general chiral symmetry arguments, it is shown that those excited nucleons that are assumed from the spectroscopic patterns to be in approximate chiral multiplets must only weakly decay into the Nπ channel (f N*Nπ /f NNπ ) 2 NNπ . It turns out that for all those well-established excited nucleons which can be classified into chiral doublets the ratio is (f N*Nπ /f NNπ ) 2 ∼0.1 or much smaller for the high-spin states. In contrast, the only well-established excited nucleon for which the chiral partner cannot be identified from the spectroscopic data, N(1520), has a decay constant into the Nπ channel that is comparable with f NNπ

  14. Production of autoionizing di-excited states of barium with high angular momentum

    International Nuclear Information System (INIS)

    Roussel, F.; Breger, P.; Gounand, F.; Spiess, G.

    1988-01-01

    Autoionizing di-excited states Ba(6p 1/2 27l) with 7 ≤l≤26, have been experimentally detected. They have been produced by a method combining excitation by two lasers and l-mixing collisions between barium and xenon. Results show that a long delay between the two laser excitation steps is favourable to the production of these states. The method has proved to be very efficient (measured cross-section: σ = 3.1 . 10 -13 cm 2 ) for populating high-angular-momentum autoionizing states of barium

  15. Multi-quasiparticle excitations in 145Tb

    International Nuclear Information System (INIS)

    Zheng Yong; Zhou Xiaohong; Zhang Yuhu; Liu Minliang; Guo Yingxiang; Lei Xiangguo; Kusakari, H.; Sugawara, M.

    2004-01-01

    High-spin states in 145 Tb have been populated using the 118 Sn( 32 S, 1p4n) reaction at a beam energy of 165 MeV. The level scheme of 145 Tb has been established for the first time. The level scheme shows characteristics of spherical or slightly oblate nucleus. Based on the systematic trends of the level structure in the neighboring N=80 isotones, the level structure in 145 Tb below 2 MeV excitation is well explained by coupling an h 11/2 valence proton to the even-even 144 Gd core. Above 2 MeV excitation, most of the yrast levels are interpreted with multi-quasiparticle shell-model configurations. (authors)

  16. Stochastic evolutions and hadronization of highly excited hadronic matter

    International Nuclear Information System (INIS)

    Carruthers, P.

    1984-01-01

    Stochastic ingredients of high energy hadronic collisions are analyzed, with emphasis on multiplicity distributions. The conceptual simplicity of the k-cell negative binomial distribution is related to the evolution of probability distributions via the Fokker-Planck and related equations. The connection to underlying field theory ideas is sketched. 17 references

  17. The high-spin {sup 178m2}Hf isomer: production, chemical and isotopic separations, gamma spectrometry and internal conversion electrons spectrometry; L`isomere de haut spin {sup 178m2}Hf: production, separations chimiques et isotopiques, spectrometrie gamma et spectrometrie d`electrons de conversion interne

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J B

    1993-10-13

    The high-spin isometric state of the nucleus 178Hf is a challenge for new and exotic nuclear physics studies. With its long half-life of 31 years, the production of a reasonable micro-weight quantity, with an isometric to ground state ratio as high as 5 per cent, is now regularly performed by intensive irradiations of ytterbium targets with helium ions of 36 MeV. Using sur-enriched, at 99,998 per cent, ytterbium 176 that we have prepared at the PARIS mass separator, the isomer purity has been improved. Targets of such material but also of enriched stable isotopes of hafnium have been prepared by electro-spraying of methanolic and acetic solutions. By inelastic diffusion of protons and deuton on these targets, the energy of the first state of the rotation band built on the isomer has been measured. Isotopic separations of the isomer have been performed, with a yield greater than 20 per cent, by the use of isotopically pure hafnium 176 as carrier. The separated beam of the mass 178 allowed to record the complete hyperfine spectrum of the isomer and to measure, for the first time, the magnetic dipole moment and the electric quadrupole moment. Isomer targets, implanted in various materials like copper, iron and hafnium monocrystal, provide the opportunity to accurately measure gamma and internal conversion decay of this nuclei and so to precise the multipolarity mixing of all transitions from K=16{sup +} to K=8{sup -}. (author). 49 refs., 47 figs., 11 tabs.

  18. Density-dependent squeezing of excitons in highly excited semiconductors

    International Nuclear Information System (INIS)

    Nguyen Hong Quang.

    1995-07-01

    The time evolution from coherent states to squeezed states of high density excitons is studied theoretically based on the boson formalism and within the Random Phase Approximation. Both the mutual interaction between excitons and the anharmonic exciton-photon interaction due to phase-space filling of excitons are taken into account. It is shown that the exciton squeezing depends strongly on the exciton density in semiconductors and becomes smaller with increasing the latter. (author). 16 refs, 2 figs

  19. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    2008-01-01

    Some non-trivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based on a slightly...... modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical optimally...

  20. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    Some nontrivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial (depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based...... on a slightly modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical...

  1. High excitation rovibrational molecular analysis in warm environments

    Science.gov (United States)

    Zhang, Ziwei; Stancil, Phillip C.; Cumbee, Renata; Ferland, Gary J.

    2017-06-01

    Inspired by advances in infrared observation (e.g., Spitzer, Herschel and ALMA), we investigate rovibrational emission CO and SiO in warm astrophysical environments. With recent innovation in collisional rate coefficients and rescaling methods, we are able to construct more comprehensive collisional data with high rovibrational states (vibration up to v=5 and rotation up to J=40) and multiple colliders (H2, H and He). These comprehensive data sets are used in spectral simulations with the radiative transfer codes RADEX and Cloudy. We obtained line ratio diagnostic plots and line spectra for both near- and far-infrared emission lines over a broad range of density and temperature for the case of a uniform medium. Considering the importance of both molecules in probing conditions and activities of UV-irradiated interstellar gas, we model rovibrational emission in photodissociation region (PDR) and AGB star envelopes (such as VY Canis Majoris, IK Tau and IRC +10216) with Cloudy. Rotational diagrams, energy distribution diagrams, and spectra are produced to examine relative state abundances, line emission intensity, and other properties. With these diverse models, we expect to have a better understanding of PDRs and expand our scope in the chemical architecture and evolution of AGB stars and other UV-irradiated regions. The soon to be launched James Webb Space Telescope (JWST) will provide high resolution observations at near- to mid-infrared wavelengths, which opens a new window to study molecular vibrational emission calling for more detailed chemical modeling and comprehensive laboratory astrophysics data on more molecules. This work was partially supported by NASA grants NNX12AF42G and NNX15AI61G. We thank Benhui Yang, Kyle Walker, Robert Forrey, and N. Balakrishnan for collaborating on the collisional data adopted in the current work.

  2. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  3. Piezoelectric self sensing actuators for high voltage excitation

    International Nuclear Information System (INIS)

    Grasso, E; Totaro, N; Janocha, H; Naso, D

    2013-01-01

    Self sensing techniques allow the use of a piezoelectric transducer simultaneously as an actuator and as a sensor. Such techniques are based on knowledge of the transducer behaviour and on measurements of electrical quantities, in particular voltage and charge. Past research work has mainly considered the linear behaviour of piezoelectric transducers, consequently restricting the operating driving voltages to low values. In this work a new self sensing technique is proposed which is able to perform self sensing reconstruction both at low and at high driving voltages. This technique, in fact, makes use of a hysteretic model to describe the nonlinear piezoelectric capacitance necessary for self sensing reconstruction. The capacitance can be measured and identified at the antiresonances of a vibrating structure with a good approximation. After providing a mathematical background to deal with the main aspects of self sensing, this technique is compared theoretically and experimentally to a typical linear one by using an aluminum plate with one bonded self sensing transducer and a positive position feedback (PPF) controller to verify the performance in self sensing based vibration control. (paper)

  4. The structure of nuclear states at low, intermediate and high excitation energies

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1976-01-01

    It is shown that within the model based on the quasiparticle-phonon interaction one can obtain the description of few-quasiparticle components of nuclear states at low, intermediate and high excitation energies. For the low-lying states the energy of each level is calculated. The few-quasiparticle components at intermediate and high excitation energies are represented to be averaged in certain energy intervals and their characteri stics are given as the corresponding strength functions. The fragmentation of single-particle states in deformed nuclei is studied. It is shown that in the distribution of the single-particle strength alongside with a large maximum there appear local maxima and the distribution itself has a long tail. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reaction of the type (d,p) and (d,t). The s,- p,- and d-wave neutron strength functions are calculated at the neutron binding energy Bn. A satisfactory agreement with experiment is obtained. The energies and Elambda-strength functions for giant multipole resonances in deformed nuclei are calculated. The energies of giant quadrupole and octupole resonances are calculated. Their widths and fine structure are being studied. It is stated that to study the structure of highly excited states it is necessary to find the values of many-quasiparticle components of the wave functions. The ways of experimental determination of these components based on the study of γ-transitions between highly excited states are discussed

  5. Ultra-high resolution spectroscopy of the He doubly excited states

    International Nuclear Information System (INIS)

    Bozek, J.D.; Schlachter, A.S.; Kaindl, G.; Schulz, K.

    1995-11-01

    Photoionization spectra of the doubly-excited states of He were measured using beamline 9.0.1 at the Advanced Light Source. The beamline utilizes a 4.5 m long 8 cm period undulator as its source together with a spherical grating monochromator to provide an extremely bright source of photons in the range of 20 - 300 eV. A resolving power (E/ΔE) of 64,000 was obtained from the 1 MeV FWEM (2p,3d) doubly excited state resonance of He at 64.12 eV. The high brightness of the source and the very high quality optical elements of the beamline were all essential for achieving such a high resolution. The beamline components and operation are described and spectra of the double excitation resonances of He presented

  6. Systematic observation of tunneling field-ionization in highly excited Rb Rydberg atoms

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Tada, M.; Kominato, K.; Shibata, M.; Yamada, S.; Haseyama, T.; Ogawa, I.; Funahashi, H.; Yamamoto, K.; Matsuki, S.

    2002-01-01

    Pulsed field ionization of high-n (90≤n≤150) manifold states in Rb Rydberg atoms has been investigated in high slew-rate regime. Two peaks in the field ionization spectra were systematically observed for the investigated n region, where the field values at the lower peak do not almost depend on the excitation energy in the manifold, while those at the higher peak increase with increasing excitation energy. The fraction of the higher peak component to the total ionization signals increases with increasing n, exceeding 80% at n=147. Characteristic behavior of the peak component and the comparison with theoretical predictions indicate that the higher peak component is due to the tunneling process. The obtained results show that the tunneling process plays increasingly the dominant role at such highly excited nonhydrogenic Rydberg atoms

  7. Kinetics of highly vibrationally excited O2(X) molecules in inductively-coupled oxygen plasmas

    Science.gov (United States)

    Annušová, Adriana; Marinov, Daniil; Booth, Jean-Paul; Sirse, Nishant; Lino da Silva, Mário; Lopez, Bruno; Guerra, Vasco

    2018-04-01

    The high degree of vibrational excitation of O2 ground state molecules recently observed in inductively coupled plasma discharges is investigated experimentally in more detail and interpreted using a detailed self-consistent 0D global kinetic model for oxygen plasmas. Additional experimental results are presented and used to validate the model. The vibrational kinetics considers vibrational levels up to v = 41 and accounts for electron impact excitation and de-excitation (e-V), vibration-to-translation relaxation (V-T) in collisions with O2 molecules and O atoms, vibration-to-vibration energy exchanges (V-V), excitation of electronically excited states, dissociative electron attachment, and electron impact dissociation. Measurements were performed at pressures of 10–80 mTorr (1.33 and 10.67 Pa) and radio frequency (13.56 MHz) powers up to 500 W. The simulation results are compared with the absolute densities in each O2 vibrational level obtained by high sensitivity absorption spectroscopy measurements of the Schumann–Runge bands for O2(X, v = 4–18), O(3 P) atom density measurements by two-photon absorption laser induced fluorescence (TALIF) calibrated against Xe, and laser photodetachment measurements of the O‑ negative ions. The highly excited O2(X, v) distribution exhibits a shape similar to a Treanor-Gordiets distribution, but its origin lies in electron impact e-V collisions and not in V-V up-pumping, in contrast to what happens in all other molecular gases known to date. The relaxation of vibrational quanta is mainly due to V-T energy-transfer collisions with O atoms and to electron impact dissociation of vibrationally excited molecules, e+O2(X, v)→O(3P)+O(3P).

  8. MOSFET-based high voltage short pulse generator for ultrasonic transducer excitation

    Science.gov (United States)

    Hidayat, Darmawan; Setianto, Syafei, Nendi Suhendi; Wibawa, Bambang Mukti

    2018-02-01

    This paper presents the generation of a high-voltage short pulse for the excitation of high frequency ultrasonic transducers. This is highly required in the purpose of various ultrasonic-based evaluations, particularly when high resolution measurement is necessary. A high voltage (+760 V) DC voltage source was pulsated by an ultrafast switching MOSFET which was driven by a pulse generator circuit consisting of an astable multivibrator, a one-shot multivibrator with Schmitt trigger input and a high current MOSFET driver. The generated pulses excited a 200-kHz and a 1-MHz ultrasonic transducers and tested in the transmission mode propagation to evaluate the performances of the generated pulse. The test results showed the generator were able to produce negative spike pulses up to -760 V voltage with the shortest time-width of 107.1 nanosecond. The transmission-received ultrasonic waves show frequency oscillation at 200 and 961 kHz and their amplitudes varied with the voltage of excitation pulse. These results conclude that the developed pulse generator is applicable to excite transducer for the generation of high frequency ultrasonic waves.

  9. Active Control of High-Speed Free Jets Using High-Frequency Excitation

    Science.gov (United States)

    Upadhyay, Puja

    Control of aerodynamic noise generated by high-performance jet engines continues to remain a serious problem for the aviation community. Intense low frequency noise produced by large-scale coherent structures is known to dominate acoustic radiation in the aft angles. A tremendous amount of research effort has been dedicated towards the investigation of many passive and active flow control strategies to attenuate jet noise, while keeping performance penalties to a minimum. Unsteady excitation, an active control technique, seeks to modify acoustic sources in the jet by leveraging the naturally-occurring flow instabilities in the shear layer. While excitation at a lower range of frequencies that scale with the dynamics of large-scale structures, has been attempted by a number of studies, effects at higher excitation frequencies remain severely unexplored. One of the major limitations stems from the lack of appropriate flow control devices that have sufficient dynamic response and/or control authority to be useful in turbulent flows, especially at higher speeds. To this end, the current study seeks to fulfill two main objectives. First, the design and characterization of two high-frequency fluidic actuators (25 and 60 kHz) are undertaken, where the target frequencies are guided by the dynamics of high-speed free jets. Second, the influence of high-frequency forcing on the aeroacoustics of high-speed jets is explored in some detail by implementing the nominally 25 kHz actuator on a Mach 0.9 (Re D = 5 x 105) free jet flow field. Subsequently, these findings are directly compared to the results of steady microjet injection experiments performed in the same rig and to prior jet noise control studies, where available. Finally, limited acoustic measurements were also performed by implementing the nominally 25 kHz actuators on jets at higher Mach numbers, including shock containing jets, and elevated temperatures. Using lumped element modeling as an initial guide, the current

  10. Particle-hole excitations in N=50 nuclei

    International Nuclear Information System (INIS)

    Johnstone, I.P.; Skouras, L.D.

    1997-01-01

    Energy levels in N=50 nuclei are calculated allowing single-particle excitations from the p 1/2 and g 9/2 shells into the d 5/2 , s 1/2 , d 3/2 , and g 7/2 shells. Important parts of the interaction are determined by least-squares fits to known levels. Agreement with experiment is very good. The high-spin particle-hole states appear to be mainly yrast levels in mass 93 and higher, but are not in 90 Zr. copyright 1997 The American Physical Society

  11. Direct excitation of a high frequency wave by a low frequency wave in a plasma

    International Nuclear Information System (INIS)

    Tanaka, Takayasu

    1993-01-01

    A new mechanism is presented of an excitation of a high frequency wave by a low frequency wave in a plasma. This mechanism works when the low frequency wave varies in time in a manner deviated from a usual periodic motion with a constant amplitude. The conversion rate is usually not large but the conversion is done without time delay after the variation of the low frequency wave. The Manley Rowe relation in the usual sense does not hold in this mechanism. This mechanism can excite also waves with same or lower frequencies. (author)

  12. Neutron emission in fission of highly excited californium nuclei (E*=76 MeV)

    International Nuclear Information System (INIS)

    Blinov, M.V.; Bordyug, V.M.; Kozulin, Eh.M.; Mozhaev, A.N.; Levitovich, M.; Muzychka, Yu.A.; Penionzhkevich, Yu.Eh.; Pustyl'nik, B.I.

    1990-01-01

    The differential cross sections for neutron production in the fission of highly excited californium nuclei formed in the 238 U+ 12 C (105 MeV) reaction have been measured. From the analysis of the experimental data is follows that the number of pre-fission neutrons substantially exceeds the value obtained in the framework of the standard statistical model. The saddle-to-scission time of the excited nucleus is estimated on the basis of the neutron multiplicity. The dependences of the neutron number and neutron average energies upon the fragment mass are determined

  13. Is neutron evaporation from highly excited nuclei a poisson random process

    International Nuclear Information System (INIS)

    Simbel, M.H.

    1982-01-01

    It is suggested that neutron emission from highly excited nuclei follows a Poisson random process. The continuous variable of the process is the excitation energy excess over the binding energy of the emitted neutrons and the discrete variable is the number of emitted neutrons. Cross sections for (HI,xn) reactions are analyzed using a formula containing a Poisson distribution function. The post- and pre-equilibrium components of the cross section are treated separately. The agreement between the predictions of this formula and the experimental results is very good. (orig.)

  14. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    International Nuclear Information System (INIS)

    Chu, P.M.Y.

    1991-10-01

    The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH 3 production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam

  15. Surface boiling - an obvious but like no other decay mode of highly excited atomic nuclei

    International Nuclear Information System (INIS)

    Toke, J.

    2012-01-01

    Essentials of a generalized compound nucleus model are introduced based on a concept of an open microcanonical ensemble which considers explicitly the role of the diffuse surface domain and of the thermal expansion of nuclear systems in the quest for maximum entropy. This obvious generalization offers a unique and universal thermodynamic framework for understanding the changes in the gross behavior of excited nuclear systems with increasing excitation energy and, specifically, the competition between different statistical decay modes, including classical evaporation and binary fission, but also the Coulomb fragmentation of excited systems into multiple fragments - the famed multifragmentation. Importantly, the formalism offers a natural explanation, in terms of boiling or spinodal vaporization, for the experimentally observed appearance of limiting excitation energy that can be thermalized by an exited nuclear system and the associated limiting temperature. It is shown that it is the thermal expansion that leads to volume boiling in an infinite matter and surface boiling in finite nuclei. The latter constitutes an important and universal, but hitherto unappreciated decay mode of highly excited nuclei, a mode here named surface spinodal vaporization. It is also shown that in iso-asymmetric systems, thermal expansion leads to what constitutes distillation - a decay mode here named distillative spinodal vaporization

  16. Dispersive excitations in the high-temperature superconductor La2-xSrxCuO4

    DEFF Research Database (Denmark)

    Christensen, N.B.; McMorrow, D.F.; Rønnow, H.M.

    2004-01-01

    High-resolution neutron scattering experiments on optimally doped La(2-x)Sr(x)CuO(4) (x=0.16) reveal that the magnetic excitations are dispersive. The dispersion is the same as in YBa(2)Cu(3)O(6.85), and is quantitatively related to that observed with charge sensitive probes. The associated veloc...

  17. Interqubit coupling mediated by a high-excitation-energy quantum object

    NARCIS (Netherlands)

    Ashhab, S.; Niskanen, A.O.; Harrabi, K.; Nakamura, Y.; Picot, T.; De Groot, P.C.; Harmans, C.J.P.M.; Mooij, J.E.; Nori, F.

    2008-01-01

    We consider a system composed of two qubits and a high excitation energy quantum object used to mediate coupling between the qubits. We treat the entire system quantum mechanically and analyze the properties of the eigenvalues and eigenstates of the total Hamiltonian. After reproducing well known

  18. On the Zeeman Effect in highly excited atoms: 2. Three-dimensional case

    International Nuclear Information System (INIS)

    Baseia, B.; Medeiros e Silva Filho, J.

    1984-01-01

    A previous result, found in two-dimensional hydrogen-atoms, is extended to the three-dimensional case. A mapping of a four-dimensional space R 4 onto R 3 , that establishes an equivalence between Coulomb and harmonic potentials, is used to show that the exact solution of the Zeeman effect in highly excited atoms, cannot be reached. (Author) [pt

  19. The temperature dependence of giant resonances in high-excited nucleus

    International Nuclear Information System (INIS)

    Li Ming; Song Hongqiu

    1991-01-01

    The Hartree-Fock equation and the linear response theory in finite temperature are used to calculate the positions and transition strenghths of the giant resonances of high-excited nucleus Pb 208 . The result shows a downward shift and a broadening of the giant resonance energies as temperatrue increases

  20. Enhanced Electron Attachment to Highly-Excited Molecules and Its Applications in Pulsed Plasmas

    International Nuclear Information System (INIS)

    Ding, W.X.; Ma, C.Y.; McCorkle, D.L.; Pinnaduwage, L.A.

    1999-01-01

    Studies conducted over the past several years have shown that electron attachment to highly-excited states of molecules have extremely large cross sections. We will discuss the implications of this for pulsed discharges used for H - generation, material processing, and plasma remediation

  1. Implications of electron attachment to highly-excited states in pulsed-power discharges

    International Nuclear Information System (INIS)

    Pinnaduwage, L.A.; Univ. of Tennessee, Knoxville, TN

    1997-01-01

    The author points out the possible implications of electron attachment to highly-excited states of molecules in two pulsed power technologies. One involves the pulsed H 2 discharges used for the generation of H ion beams for magnetic fusion energy and particle accelerators. The other is the power modulated plasma discharges used for material processing

  2. Carbon K-shell excitation in small molecules by high-resolution electron impact

    International Nuclear Information System (INIS)

    Tronc, M.; King, G.C.; Read, F.H.

    1979-01-01

    The excitation of 1s carbon electrons has been observed in C0, CH 4 , CF4, C0 2 , COS, C 2 H 2 and C 2 H 4 by means of the electron energy-loss technique with high resolution (70 meV in the 300 eV excitation energy range) and at an incident electron energy of 1.5 keV. The energies, widths and vibrational structures of excited states corresponding to the promotion of 1s carbon electrons to unoccupied valence and Rydberg orbitals have been obtained. The validity of the equivalent-core model, and the role of resonances caused by potential barriers, are discussed. (author)

  3. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    Science.gov (United States)

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  4. A High-Voltage SOI CMOS Exciter Chip for a Programmable Fluidic Processor System.

    Science.gov (United States)

    Current, K W; Yuk, K; McConaghy, C; Gascoyne, P R C; Schwartz, J A; Vykoukal, J V; Andrews, C

    2007-06-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport fluidic droplet samples on programmable paths across the array of driving electrodes on its hydrophobically coated surface. This exciter chip is the engine for dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip systems, creating field excitations that inject and move fluidic droplets onto and about the manipulation surface. The architecture of this chip is expandable to arrays of N X N identical HV electrode driver circuits and electrodes. The exciter chip is programmable in several senses. The routes of multiple droplets may be set arbitrarily within the bounds of the electrode array. The electrode excitation waveform voltage amplitude, phase, and frequency may be adjusted based on the system configuration and the signal required to manipulate a particular fluid droplet composition. The voltage amplitude of the electrode excitation waveform can be set from the minimum logic level up to the maximum limit of the breakdown voltage of the fabrication technology. The frequency of the electrode excitation waveform can also be set independently of its voltage, up to a maximum depending upon the type of droplets that must be driven. The exciter chip can be coated and its oxide surface used as the droplet manipulation surface or it can be used with a top-mounted, enclosed fluidic chamber consisting of a variety of materials. The HV capability of the exciter chip allows the generated DEP forces to penetrate into the enclosed chamber region and an adjustable voltage amplitude can accommodate a variety of chamber floor thicknesses. This demonstration exciter chip has a 32 x 32 array of nominally 100 V electrode drivers that are individually programmable at each time point in the procedure to either of two phases: 0deg and 180deg with respect to the reference clock. For this demonstration chip, while operating the electrodes with a 100-V peak-to-peak periodic waveform, the maximum HV electrode

  5. Application of Excitation from Multiple Locations on a Simplified High-Lift System

    Science.gov (United States)

    Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2004-01-01

    A series of active flow control experiments were recently conducted on a simplified high-lift system. The purpose of the experiments was to explore the prospects of eliminating all but simply hinged leading and trailing edge flaps, while controlling separation on the supercritical airfoil using multiple periodic excitation slots. Excitation was provided by three. independently controlled, self-contained, piezoelectric actuators. Low frequency excitation was generated through amplitude modulation of the high frequency carrier wave, the actuators' resonant frequencies. It was demonstrated, for the first time, that pulsed modulated signal from two neighboring slots interact favorably to increase lift. Phase sensitivity at the low frequency was measured, even though the excitation was synthesized from the high-frequency carrier wave. The measurements were performed at low Reynolds numbers and included mean and unsteady surface pressures, surface hot-films, wake pressures and particle image velocimetry. A modest (6%) increase in maximum lift (compared to the optimal baseline) was obtained due t o the activation of two of the three actuators.

  6. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  7. Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki

    2002-12-01

    We investigate a mechanism of nonlinear phenomena in laser-plasma interaction, a laser wakefield excited by intense laser pulses, and the possibility of generating an intense bright electron source by an intense laser pulse. We need to understand and further employ some of these phenomena for our purposes. We measure self-focusing, filamentation, and the anomalous blueshift of the laser pulse. The ionization of gas with the self-focusing causes a broad continuous spectrum with blueshift. The normal blueshift depends on the laser intensity and the plasma density. We, however, have found different phenomenon. The laser spectrum shifts to fixed wavelength independent of the laser power and gas pressure above some critical power. We call the phenomenon 'anomalous blueshift'. The results are explained by the formation of filaments. An intense laser pulse can excite a laser wakefield in plasma. The coherent wakefield excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 10 18 cm -3 is measured with a time-resolved frequency domain interferometer (FDI). The density distribution of the helium gas is measured with a time-resolved Mach-Zehnder interferometer to search for the optimum laser focus position and timing in the gas-jet. The results show an accelerating wakefield excitation of 20 GeV/m with good coherency, which is useful for ultrahigh gradient particle acceleration in a compact system. This is the first time-resolved measurement of laser wakefield excitation in a gas-jet plasma. The experimental results are compared with a Particle-in-Cell (PIC) simulation. The pump-probe interferometer system of FDI and the anomalous blueshift will be modified to the optical injection system as a relativistic electron beam injector. In 1D PIC simulation we obtain the results of high quality intense electron beam acceleration. These results illuminate the possibility of a high energy and a high quality electron beam acceleration. (author)

  8. Formation of excited states in high-Z helium-like systems

    International Nuclear Information System (INIS)

    Fritzsche, S.; Fricke, B.; Brinzanescu, O.

    1999-12-01

    High-Z helium-like ions represent the simplest multi-electron systems for studying the interplay between electron-electron correlations, relativistic as well as quantum electrodynamical effects in strong fields. In contrast to the adjacent lithium-like ions, however, almost no experimental information is available about the excited states in the high-Z domain of the helium sequence. Here, we present a theoretical analysis of the X-ray production and decay dynamics of the excited states in helium-like uranium. Emphasize has been paid particularly to the formation of the 3 P 0 and 3 P 2 levels by using electron capture into hydrogen-like U 91+ . Both states are of interest for precise measurements on high-Z helium-like ions in the future. (orig.)

  9. The millimeter-wave spectrum of highly vibrationally excited SiO

    International Nuclear Information System (INIS)

    Mollaaghababa, R.; Gottlieb, C.A.; Vrtilek, J.M.; Thaddeus, P.

    1991-01-01

    The millimeter-wave rotational spectra of SiO in high vibrational states (v = 0-40) in its electronic ground state were measured between 228 and 347 GHz in a laboratory discharge through SiH4 and CO. On ascending the vibrational ladder, populations decline precipitously for the first few levels, with a vibrational temperature of about 1000 K; at v of roughly 3, however, they markedly flatten out, and from there to v of roughly 40 the temperature is of the order of 10,000 K. With the Dunham coefficients determined here, the rotational spectrum of highly vibrationally excited SiO can now be calculated into the far-infrared to accuracies required for radioastronomy. Possible astronomical sources of highly vibrationally excited SiO are certain stellar atmospheres, ultracompact H II regions, very young supernova ejecta, and dense interstellar shocks. 16 refs

  10. Signatures of fission dynamics in highly excited nuclei produced in 197AU(800 A MeV) on proton collisions

    International Nuclear Information System (INIS)

    Benlliure, J.; Armbruster, P.; Bernas, M.

    2001-09-01

    197 Au(800 A MeV)-on-proton collisions are used to investigate the fission dynamics at high excitation energy. The kinematic properties together with the isotopic identification of the fission fragments allow to determine the mass, charge and excitation energy of the fissioning nucleus at saddle. The comparison of these observables and the measured total fission cross section with model calculations evidences a clear hindrance of fission at high excitation energy that can be explained in terms of nuclear dissipation. Assuming a statistical evaporation for other de-excitation channels than fission, an estimated value of the transient time of fission of (3 ± 1) . 10 -21 s is obtained. (orig.)

  11. Stand-alone front-end system for high- frequency, high-frame-rate coded excitation ultrasonic imaging.

    Science.gov (United States)

    Park, Jinhyoung; Hu, Changhong; Shung, K Kirk

    2011-12-01

    A stand-alone front-end system for high-frequency coded excitation imaging was implemented to achieve a wider dynamic range. The system included an arbitrary waveform amplifier, an arbitrary waveform generator, an analog receiver, a motor position interpreter, a motor controller and power supplies. The digitized arbitrary waveforms at a sampling rate of 150 MHz could be programmed and converted to an analog signal. The pulse was subsequently amplified to excite an ultrasound transducer, and the maximum output voltage level achieved was 120 V(pp). The bandwidth of the arbitrary waveform amplifier was from 1 to 70 MHz. The noise figure of the preamplifier was less than 7.7 dB and the bandwidth was 95 MHz. Phantoms and biological tissues were imaged at a frame rate as high as 68 frames per second (fps) to evaluate the performance of the system. During the measurement, 40-MHz lithium niobate (LiNbO(3)) single-element lightweight (<;0.28 g) transducers were utilized. The wire target measure- ment showed that the -6-dB axial resolution of a chirp-coded excitation was 50 μm and lateral resolution was 120 μm. The echo signal-to-noise ratios were found to be 54 and 65 dB for the short burst and coded excitation, respectively. The contrast resolution in a sphere phantom study was estimated to be 24 dB for the chirp-coded excitation and 15 dB for the short burst modes. In an in vivo study, zebrafish and mouse hearts were imaged. Boundaries of the zebrafish heart in the image could be differentiated because of the low-noise operation of the implemented system. In mouse heart images, valves and chambers could be readily visualized with the coded excitation.

  12. Electron energy distributions and excitation rates in high-frequency argon discharges

    International Nuclear Information System (INIS)

    Ferreira, C.M.; Loureiro, J.

    1983-06-01

    The electron energy distribution functions and rate coefficients for excitation and ionisation in argon under the action of an uniform high-frequency electric field were calculated by numerically solving the homogeneous Boltzmann equation. Analytic calculations in the limiting cases ω>>νsub(c) and ω<<νsub(c), where ω is the wave angular frequency and νsub(c) is the electron-neutral collision frequency for momentum transfer, are also presented and shown to be in very good agreement with the numerical computations. The results reported here are relevant for the modelling of high-frequency discharges in argon and, in particular, for improving recent theoretical descriptions of a plasma column sustained by surface microwaves. The properties of surface wave produced plasmas make them interesting as possible substitutes for other more conventional plasma sources for such important applications as plasma chemistry laser excitation, plasma etching spectroscopic sources etc...

  13. The population transfer of high excited states of Rydberg lithium atoms in a microwave field

    International Nuclear Information System (INIS)

    Jiang Lijuan; Zhang Xianzhou; Ma Huanqiang; Jia Guangrui; Zhang Yonghui; Xia Lihua

    2012-01-01

    Using the time-dependent multilevel approach (TDMA), the properties of high excited Rydberg lithium atom have been obtained in the microwave field. The population transfer of lithium atom are studied on numerical calculation, quantum states are controlled and manipulated by microwave field. It shows that the population can be completely transferred to the target state by changing the chirped rate and field amplitude. (authors)

  14. Simulation of statistical γ-spectra of highly excited rare earth nuclei

    International Nuclear Information System (INIS)

    Schiller, A.; Munos, G.; Guttormsen, M.; Bergholt, L.; Melby, E.; Rekstad, J.; Siem, S.; Tveter, T.S.

    1997-05-01

    The statistical γ-spectra of highly excited even-even rare earth nuclei are simulated applying appropriate level density and strength function to a given nucleus. Hindrance effects due to K-conservation are taken into account. Simulations are compared to experimental data from the 163 Dy( 3 He,α) 162 Dy and 173 Yb( 3 He,α) 172 Yb reactions. The influence of the K quantum number at higher energies is discussed. 21 refs., 7 figs., 2 tabs

  15. Powerful highly efficient KrF lamps excited by surface and barrier discharges

    International Nuclear Information System (INIS)

    Borisov, V M; Vodchits, V A; El'tsov, A V; Khristoforov, O B

    1998-01-01

    An investigation was made of the characteristics of KrF lamps with different types of excitation by surface and barrier discharges in which the dielectric material was sapphire. The conditions were determined for the attainment of an extremely high yield of the KrF* fluorescence with the internal efficiency η in ∼30 % and 22% for pulsed surface and barrier discharges, respectively. A homogeneous surface discharge was maintained without gas circulation when the pulse repetition rate was 5 x 10 4 Hz. Quasicontinuous excitation of a surface discharge at near-atmospheric pressure made it possible to reach a KrF* fluorescence power density of about 80 W cm -3 , which was close to the limit set by the kinetics of the gaseous medium. Under prolonged excitation conditions the intensity of the UV output radiation was limited by the permissible heating of the gas to a temperature above which the operating life of the gaseous mixture containing fluorine fell steeply. This was the reason for the advantage of surface over barrier discharges: the former were characterised by a high thermal conductivity of a thin (∼0.2 mm) plasma layer on the surface of the cooled dielectric, which made it possible to construct powerful highly efficient KrF and ArF lamps emitting UV radiation of up to 1 W cm -2 intensity. (laser system components)

  16. Excitation of high numbers harmonics by flows of oscillators in a periodic potential

    International Nuclear Information System (INIS)

    Buts, V.A.; Marekha, V.I.; Tolstoluzhsky, A.P.

    2005-01-01

    It is shown that the maximum of radiation spectrum of nonrelativistic oscillators, which move into a periodically inhomogeneous potential, can be in the region of high numbers harmonics. Spectrum of such oscillators radiation becomes similar to the radiation spectrum of relativistic oscillators. The equations, describing the non-linear self-consistent theory of excitations, of high numbers harmonics by ensemble of oscillators are formulated and its numerical analysis is conducted. The numerical analysis has confirmed the capability of radiation of high numbers of harmonics. Such peculiarity of radiation allows t expect of creation of nonrelativistic FEL

  17. Microscopic analysis of wobbling excitations in 156Dy and 162Yb

    International Nuclear Information System (INIS)

    Nazmitdinov, R. G.; Kvasil, J.

    2007-01-01

    In the cranked Nilsson-plus-random-phase approximation, we study low-lying quadrupole excitations of positive parity and negative signature in 156 Dy and 162 Yb at high spins. Special attention is paid to a consistent description of wobbling excitations and their identification among excited states. A good agreement between the available experimental data and the results of calculations is obtained. We find that the lowest odd-spin γ-vibrational states in 156 Dy transform into wobbling excitations after the backbending associated with the transition from an axially symmetric shape to a nonaxial shape. Similar results are predicted for 162 Yb. The analysis of electromagnetic transitions uniquely determines the sign of the γ deformation in both nuclei after the transition point

  18. Wobbling excitations in odd-A nuclei with high-j aligned particles

    International Nuclear Information System (INIS)

    Hamamoto, Ikuko

    2002-01-01

    Using the particle-rotor model in which one high-j quasiparticle is coupled to the core of triaxial shape, wobbling excitations are studied. The family of wobbling phonon excitations can be characterized by: (a) very similar intrinsic structure while collective rotation shows the wobbling feature; (b) strong B(E2;I→I-1) values for Δn w =1 transitions where n w expresses the number of wobbling phonons. For the Fermi level lying below the high-j shell with the most favorable triaxiality γ≅+20 deg., the wobbling phonon excitations may be more easily identified close to the yrast line, compared with the Fermi level lying around the middle of the shell with γ≅-30 deg. The spectroscopic study of the yrast states for the triaxial shape with -60 deg. <γ<0 are illustrated by taking a representative example with γ=-30 deg., in which a quantum number related with the special symmetry is introduced to help the physics understanding

  19. Highly selective population of two excited states in nonresonant two-photon absorption

    International Nuclear Information System (INIS)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong

    2011-01-01

    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse. In this paper, we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution. Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value. We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption, such as resonance-mediated (2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization. (atomic and molecular physics)

  20. High mass-resolution electron-ion-ion coincidence measurements on core-excited organic molecules

    CERN Document Server

    Tokushima, T; Senba, Y; Yoshida, H; Hiraya, A

    2001-01-01

    Total electron-ion-ion coincidence measurements on core excited organic molecules have been carried out with high mass resolution by using multimode (reflectron/linear) time-of-flight mass analyzer. From the ion correlation spectra of core excited CH sub 3 OH and CD sub 3 OH, the reaction pathway to form H sub 3 sup + (D sub 3 sup +) is identified as the elimination of three H (D) atoms from the methyl group, not as the inter-group (-CH sub 3 and -OH) interactions. In a PEPIPICO spectrum of acetylacetone (CH sub 3 COCH sub 2 COCH sub 3) measured by using a reflectron TOF, correlations between ions up to mass number 70 with one-mass resolution was recorded.

  1. Resonance Excitation of Longitudinal High Order Modes in Project X Linac

    Energy Technology Data Exchange (ETDEWEB)

    Khabiboulline, T.N.; Sukhanov, A.AUTHOR = Awida, M.; Gonin, I.; Lunin, A.AUTHOR = Solyak, N.; Yakovlev, V.; /Fermilab

    2012-05-01

    Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

  2. Dynamic modification of the fragmentation of COq+ excited states generated with high-order harmonics

    International Nuclear Information System (INIS)

    Cao, W.; De, S.; Singh, K. P.; Chen, S.; Laurent, G.; Ray, D.; Ben-Itzhak, I.; Cocke, C. L.; Schoeffler, M. S.; Belkacem, A.; Osipov, T.; Rescigno, T.; Alnaser, A. S.; Bocharova, I. A.; Zherebtsov, S.; Kling, M. F.; Litvinyuk, I. V.

    2010-01-01

    The dynamic process of fragmentation of CO q+ excited states is investigated using a pump-probe approach. EUV radiation (32-48 eV) generated by high-order harmonics was used to ionize and excite CO molecules and a time-delayed infrared (IR) pulse (800 nm) was used to influence the evolution of the dissociating multichannel wave packet. Two groups of states, separable experimentally by their kinetic-energy release (KER), are populated by the EUV and lead to C + -O + fragmentation: direct double ionization of the neutral molecule and fragmentation of the cation leading to C + -O*, followed by autoionization of O*. The IR pulse was found to modify the KER of the latter group in a delay-dependent way which is explained with a model calculation.

  3. Resonance Excitation of Longitudinal High Order Modes in Project X Linac

    International Nuclear Information System (INIS)

    Gonin, I.V.; Khabiboulline, T.N.; Lunin, A.; Solyak, N.; Sukhanov, A.I.; Yakovlev, V.P.; Awida, M.H.

    2012-01-01

    Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

  4. Modernization of the Control Systems of High-Frequency, Brush-Free, and Collector Exciters of Turbogenerators

    Energy Technology Data Exchange (ETDEWEB)

    Popov, E. N., E-mail: enpo@ruselmash.ru; Komkov, A. L.; Ivanov, S. L.; Timoshchenko, K. P. [JSC “Scientific and Industrial Enterprise “Rusélprom-Élektromash” (Russian Federation)

    2016-11-15

    Methods of modernizing the regulation systems of electric machinery exciters with high-frequency, brush-free, and collector exciters by means of microprocessor technology are examined. The main problems of modernization are to increase the response speed of a system and to use a system stabilizer to increase the stability of the power system.

  5. Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation

    CERN Document Server

    Hung, J; Olaizola, A M

    2003-01-01

    Fluorescence spectral changes of Rhodamine 6G in ethanol and glycerol solutions and deposited as a film on a silica surface have been studied using a wide range of pumping field fluence at 532 nm at room temperature. Blue shift of the fluorescence spectra and fluorescence quenching of the dye molecule in solution are observed at high excitation fluence values. Such effects are not reported for the film sample. The effects are interpreted as the result of population redistribution in the solute-solvent molecular system induced by the high fluence field and the fluence dependence of the radiationless decay mechanism.

  6. Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System

    Directory of Open Access Journals (Sweden)

    Jia Ying-xin

    2013-03-01

    Full Text Available According to an ultra-high resolution airborne SAR system with better than 0.1 m resolution, a wideband Linear Frequency Modulated (LFM pulse compression exciter with 14.8 GHz carrier and 3.2 GHz bandwidth is designed and implemented. The selection of signal generation scheme and some key technique points for wideband LFM waveform is presented in detail. Then, an acute test and analysis of the LFM signal is performed. The final airborne experiments demonstrate the validity of the LFM source which is one of the subsystems in an ultra-high resolution airborne SAR system.

  7. Concluding remarks of international symposium on highly excited states in nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, A. M.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    This is the concluding remarks in the international symposium on highly excited states in nuclear reactions. The remarks concentrate on the giant quadrupole states. In the framework of the distorted wave Born approximation (DWB), the differential cross section can be deduced. The relevant transition matrix elements are defined, and the quantities which are measured in inelastic hadron (h, h') reactions are shown. These are used to obtain both neutron and proton transition multipole matrix elements. This is equivalent to make the isospin decomposition of the electromagnetic transition matrix elements. The ratios of the transition matrix elements of neutrons and protons of the lowest 2/sup +/ states in even-even single closed shell nuclei are evaluated and compared with experimental results. For each nucleus, the consistency between various measurements is generally good. The effect of the virtual excitation of giant 2/sup +/ states into the ground and first excited states of even-even nuclei is discussed. The accuracy of (h, h') results can be tested.

  8. The excitation of plasma convection in the high-latitude ionosphere

    International Nuclear Information System (INIS)

    Lockwood, M.; Cowley, S.W.H.; Freeman, M.P.

    1990-01-01

    Recent observations of ionospheric flows by ground-based radars, in particular by the European Incoherent Scatter (EISCAT) facility using the Polar experiment, together with previous analyses of the response of geomagnetic disturbance to variations of the interplanetary magnetic field (IMF), suggest that convection in the high-latitude ionosphere should be considered to be the sum of two intrinsically time-dependent patterns, one driven by solar wind-magnetosphere coupling at the dayside magnetopause, the other by the release of energy in the geomagnetic tail (mainly by dayside and nightside reconnection, respectively). The flows driven by dayside coupling are largest on the dayside, where they usually dominate, are associated with an expanding polar cap area, and are excited and decay on ∼ 10-min time scales following southward and northward turnings of the IMF, respectively. The latter finding indicates that the production of new open flux at the dayside magnetopause excites magnetospheric and ionospheric flow only for a short interval, ∼ 10 min, such that the flow driven by this source subsequently decays on this time scale unless maintained by the production of more open flux tubes. Correspondingly, the flows excited by the release of energy in the tail, mainly during substorms, are largest on the nightside, are associated with a contracting polar cap boundary, and are excited on ∼ 1-hour time scales following a southward turn of the IMF. In general, the total ionospheric flow will be the sum of the flows produced by these two sources, such that due to their different response times to changes in the IMF, considerable variations in the flow pattern can occur for a given direction and strength ofthe IMF. Consequently, the ionospheric electric field cannot generally be regarded as arising from a simple mapping of the solar wind electric field along open flux tubes

  9. Effects of a Single Session of High Intensity Interval Treadmill Training on Corticomotor Excitability following Stroke: Implications for Therapy

    Directory of Open Access Journals (Sweden)

    Sangeetha Madhavan

    2016-01-01

    Full Text Available Objective. High intensity interval treadmill training (HIITT has been gaining popularity for gait rehabilitation after stroke. In this study, we examined the changes in excitability of the lower limb motor cortical representation (M1 in chronic stroke survivors following a single session of HIITT. We also determined whether exercise-induced changes in excitability could be modulated by transcranial direct current stimulation (tDCS enhanced with a paretic ankle skill acquisition task. Methods. Eleven individuals with chronic stroke participated in two 40-minute treadmill-training sessions: HIITT alone and HITT preceded by anodal tDCS enhanced with a skill acquisition task (e-tDCS+HIITT. Transcranial magnetic stimulation (TMS was used to assess corticomotor excitability of paretic and nonparetic tibialis anterior (TA muscles. Results. HIIT alone reduced paretic TA M1 excitability in 7 of 11 participants by ≥ 10%. e-tDCS+HIITT increased paretic TA M1 excitability and decreased nonparetic TA M1 excitability. Conclusions. HIITT suppresses corticomotor excitability in some people with chronic stroke. When HIITT is preceded by tDCS in combination with a skill acquisition task, the asymmetry of between-hemisphere corticomotor excitability is reduced. Significance. This study provides preliminary data indicating that the cardiovascular benefits of HIITT may be achieved without suppressing motor excitability in some stroke survivors.

  10. Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN

    Science.gov (United States)

    Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G. A.; García-Burillo, S.; van der Werf, P.; Neri, R.; Spaans, M.; Combes, F.; Viti, S.; Mühle, S.; Armus, L.; Evans, A.; Sturm, E.; Cernicharo, J.; Henkel, C.; Greve, T. R.

    2015-12-01

    We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback. Based on observations carried out with the IRAM Plateau de Bure and ALMA Interferometers. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA

  11. Very high rotational excitation of CO in a cooled electric discharge through carbon monoxide

    Science.gov (United States)

    Cossart-Magos, Claudina; Cossart, Daniel

    2000-02-01

    Infrared emission from 12CO and 13CO, excited in the cathode region of a discharge tube immersed in liquid nitrogen, was recorded by Fourier-transform spectrometry at a resolution of 0.005 cm-1. The Δv=1 sequence bands recorded in the 2500-1800 cm-1 spectral interval, indicate the existence of three different rotational populations; (i) molecules in the zero-ground level with Trot≈100 K (responsible for reabsorption of part of the 1-0 emission band); (ii) molecules with Trot≈275 K (maximum intensity for Jmax'≈6 in each band, Tvib≈3000 K for v'=2-4, Tvib≈8600 K for v'=5-13); (iii) molecules with v' limited to 6, for which R-rotational lines are observed for J' values between 50 and 120 (Jmax'≈90, non-Boltzmannian population distribution). The full-width at half-maximum (FWHM) of all the observed lines is less than 0.007 cm-1. A Doppler width of 0.005 cm-1 and translational temperature Ttr≈280 K can be deduced. Such high-J levels of the CO molecule had never been observed in the laboratory. In the absorption spectrum of the Sun photosphere, the same lines present FWHM values 5-8 times larger. The best available Dunham coefficients are checked to reproduce the high-J lines wave numbers to at least 0.001 cm-1. Dissociative recombination of the dimer (CO)2+ cation, which is likely to be formed in our experimental conditions, is discussed as a possible mechanism to produce CO fragments with very high rotational excitation, while keeping vibrational excitation limited to v'=6.

  12. From Coherently Excited Highly Correlated States to Incoherent Relaxation Processes in Semiconductors

    International Nuclear Information System (INIS)

    Scha''fer, W.; Lo''venich, R.; Fromer, N. A.; Chemla, D. S.

    2001-01-01

    Recent theories of highly excited semiconductors are based on two formalisms, referring to complementary experimental conditions, the real-time nonequilibrium Green's function techniques and the coherently controlled truncation of the many-particle problem. We present a novel many-particle theory containing both of these methods as limiting cases. As a first example of its application, we investigate four-particle correlations in a strong magnetic field including dephasing resulting from the growth of incoherent one-particle distribution functions. Our results are the first rigorous solution concerning formation and decay of four-particle correlations in semiconductors. They are in excellent agreement with experimental data

  13. Many-body effects in the gain spectra of highly excited quantum-dot lasers

    International Nuclear Information System (INIS)

    Schneider, H. C.; Chow, W. W.; Koch, S. W.

    2001-01-01

    Optical gain spectra are computed for quantum dots under high excitation conditions, where there is a non-negligible two-dimensional carrier density surrounding the dots. Using a screened Hartree-Fock theory to describe the influence of the Coulomb interaction, we find different self-energy shifts for the dot and quantum-well transitions. Furthermore, in contrast to the result for quantum-well and bulk systems, the peak gain at the quantum-dot transition computed including Coulomb effects is reduced from its free carrier value

  14. Design considerations for highly effective fluorescence excitation and detection optical systems for molecular diagnostics

    Science.gov (United States)

    Kasper, Axel; Van Hille, Herbert; Kuk, Sola

    2018-02-01

    Modern instruments for molecular diagnostics are continuously optimized for diagnostic accuracy, versatility and throughput. The latest progress in LED technology together with tailored optics solutions allows developing highly efficient photonics engines perfectly adapted to the sample under test. Super-bright chip-on-board LED light sources are a key component for such instruments providing maximum luminous intensities in a multitude of narrow spectral bands. In particular the combination of white LEDs with other narrow band LEDs allows achieving optimum efficiency outperforming traditional Xenon light sources in terms of energy consumption, heat dissipation in the system, and switching time between spectral channels. Maximum sensitivity of the diagnostic system can only be achieved with an optimized optics system for the illumination and imaging of the sample. The illumination beam path must be designed for optimum homogeneity across the field while precisely limiting the angular distribution of the excitation light. This is a necessity for avoiding spill-over to the detection beam path and guaranteeing the efficiency of the spectral filtering. The imaging optics must combine high spatial resolution, high light collection efficiency and optimized suppression of excitation light for good signal-to-noise ratio. In order to achieve minimum cross-talk between individual wells in the sample, the optics design must also consider the generation of stray light and the formation of ghost images. We discuss what parameters and limitations have to be considered in an integrated system design approach covering the full path from the light source to the detector.

  15. Investigating the fission process at high excitation energies through proton induced reactions on 181Ta

    International Nuclear Information System (INIS)

    Ayyad, Y.; Benlliure, J.; Casajeros, E.; Alvarez Pol, H.; Paradela, C.; Perez-Loureido, D.; Tarrio, D.; Bacquias, A.; Boudard, A.; Kezzar, K.; Leray, S.; Enqvist, T.; Foehr, V.; Kelic, A.; Pleskac, R.

    2010-01-01

    In this work we have investigated the total fission cross section of 181 Ta + 1 H at FRS (Fragment Separator - GSI) at 1, 0.8, 0.5 and 0.3 GeV with a specific setup, providing high accuracy measurements of the cross section values. the comparison of our data with previous results reveals a good agreement at high energies. However the situation remains unclear at lower energies. In general, our results covering a wide range of energy, are smoother. We have also compared the results obtained in this experiment, with several calculations performed with the intra-nuclear cascade model (INCL v4.1) coupled to de-excitation code (ABLAv3p), according to two different models describing fission process at high-excitation energies: statistical model of Bohr and Wheeler and the dynamical description of the fission process. We have showed that a simple statistical description largely over-predict the measured cross-section. Only a dynamical description of the fission, involving the role of the viscosity of the nuclear matter, provides a realistic result.

  16. Measurement of light charged particles in the decay channels of medium-mass excited compound nuclei

    Directory of Open Access Journals (Sweden)

    Valdré S.

    2014-03-01

    Indeed, in this mass region (A ~ 100 models predict that shape transitions can occur at high spin values and relatively scarce data exist in the literature about coincidence measurements between evaporation residues and light charged particles. Signals of shape transitions can be found in the variations of the lineshape of high energy gamma rays emitted from the de-excitation of GDR states gated on different region of angular momenta. For this purpose it is important to keep under control the FE and FF processes, to regulate the statistical model parameters and to control the onset of possible pre-equilibrium emissions from 300 to 600 MeV bombarding energy.

  17. Wavelet based comparison of high frequency oscillations in the geodetic and fluid excitation functions of polar motion

    Science.gov (United States)

    Kosek, W.; Popinski, W.; Niedzielski, T.

    2011-10-01

    It has been already shown that short period oscillations in polar motion, with periods less than 100 days, are very chaotic and are responsible for increase in short-term prediction errors of pole coordinates data. The wavelet technique enables to compare the geodetic and fluid excitation functions in the high frequency band in many different ways, e.g. by looking at the semblance function. The waveletbased semblance filtering enables determination the common signal in both geodetic and fluid excitation time series. In this paper the considered fluid excitation functions consist of the atmospheric, oceanic and land hydrology excitation functions from ECMWF atmospheric data produced by IERS Associated Product Centre Deutsches GeoForschungsZentrum, Potsdam. The geodetic excitation functions have been computed from the combined IERS pole coordinates data.

  18. Effect of collective response on electron capture and excitation in collisions of highly charged ions with fullerenes.

    Science.gov (United States)

    Kadhane, U; Misra, D; Singh, Y P; Tribedi, Lokesh C

    2003-03-07

    Projectile deexcitation Lyman x-ray emission following electron capture and K excitation has been studied in collisions of bare and Li-like sulphur ions (of energy 110 MeV) with fullerenes (C(60)/C(70)) and different gaseous targets. The intensity ratios of different Lyman x-ray lines in collisions with fullerenes are found to be substantially lower than those for the gas targets, both for capture and excitation. This has been explained in terms of a model based on "solidlike" effect, namely, wakefield induced stark mixing of the excited states populated via electron capture or K excitation: a collective phenomenon of plasmon excitation in the fullerenes under the influence of heavy, highly charged ions.

  19. Evolution of spin excitations in a gapped antiferromagnet from the quantum to the high-temperature limit

    DEFF Research Database (Denmark)

    Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.

    2002-01-01

    We have mapped from the quantum to the classical limit the spin excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain system CsNiCl3 in its paramagnetic phase from T=5 to 200 K. Neutron scattering shows that the excitations are resonant and dispersive up to at least T=70 Ksimilar...... is in agreement with quantum Monte Carlo calculations for the spin-1 chain. xi is also consistent with the single mode approximation, suggesting that the excitations are short-lived single particle excitations. Below T=12 K where three-dimensional spin correlations are important, xi is shorter than predicted...... and the experiment is not consistent with the random phase approximation for coupled quantum chains. At T=200 K, the structure factor and second energy moment of the excitation spectrum are in excellent agreement with the high-temperature series expansion....

  20. Three exciting areas of experimental physical sciences : high temperature superconductors, metal clusters and super molecules of carbon

    International Nuclear Information System (INIS)

    Rao, C.N.

    1992-01-01

    The author has narrated his experience in carrying out research in three exciting areas of physical sciences. These areas are : high temperature superconductors, metal clusters and super molecules of carbon. (M.G.B.)

  1. The effect of high level multi-tone excitation on the acoustic properties of perforates and liner samples

    OpenAIRE

    Bodén, Hans

    2012-01-01

    This paper discusses the effect of high level multi-tone acoustic excitation on the acoustic properties of perforates and liner samples. It is based on a large experimental study of the nonlinear properties of these types of samples without mean grazing or bias flow. It is known from previous studies that high level acoustic excitation at one frequency will change the acoustic impedance of perforates at other frequencies, thereby changing the boundary condition seen by the acoustic waves. Thi...

  2. Trajectory study of supercollision relaxation in highly vibrationally excited pyrazine and CO2.

    Science.gov (United States)

    Li, Ziman; Sansom, Rebecca; Bonella, Sara; Coker, David F; Mullin, Amy S

    2005-09-01

    Classical trajectory calculations were performed to simulate state-resolved energy transfer experiments of highly vibrationally excited pyrazine (E(vib) = 37,900 cm(-1)) and CO(2), which were conducted using a high-resolution transient infrared absorption spectrometer. The goal here is to use classical trajectories to simulate the supercollision energy transfer pathway wherein large amounts of energy are transferred in single collisions in order to compare with experimental results. In the trajectory calculations, Newton's laws of motion are used for the molecular motion, isolated molecules are treated as collections of harmonic oscillators, and intermolecular potentials are formed by pairwise Lennard-Jones potentials. The calculations qualitatively reproduce the observed energy partitioning in the scattered CO(2) molecules and show that the relative partitioning between bath rotation and translation is dependent on the moment of inertia of the bath molecule. The simulations show that the low-frequency modes of the vibrationally excited pyrazine contribute most to the strong collisions. The majority of collisions lead to small DeltaE values and primarily involve single encounters between the energy donor and acceptor. The large DeltaE exchanges result from both single impulsive encounters and chattering collisions that involve multiple encounters.

  3. Radiative-lifetime measurements and calculations of odd-parity highly excited levels in Ba i

    International Nuclear Information System (INIS)

    Zhang Wei; Du Shan; Palmeri, Patrick; Quinet, Pascal; Biemont, Emile; Dai Zhenwen

    2010-01-01

    Natural radiative lifetime measurements have been performed for 70 odd-parity highly excited levels of neutral barium in the energy range from 308 15.512 to 417 59.93 cm -1 by a time-resolved laser-induced fluorescence technique in a laser-produced plasma. The lifetime values measured in this paper are in the range from 11.3 to 901 ns. They are compared with the published lifetimes of four levels. Two of them are in good agreement, whereas for the other two our measurements are slightly longer than the published data. The reasons for the discrepancies are discussed. Comparisons with theoretical results of the Hartree-Fock method with relativistic corrections illustrate the difficulties associated with the use of Cowan's codes for obtaining accurate branching fractions for transitions depopulating highly excited levels along the Rydberg series of heavy neutral elements. This work will be useful to extend the set of oscillator strengths available in Ba i.

  4. Electron Impact Excitation and Dielectronic Recombination of Highly Charged Tungsten Ions

    Directory of Open Access Journals (Sweden)

    Zhongwen Wu

    2015-11-01

    Full Text Available Electron impact excitation (EIE and dielectronic recombination (DR of tungsten ions are basic atomic processes in nuclear fusion plasmas of the International Thermonuclear Experimental Reactor (ITER tokamak. Detailed investigation of such processes is essential for modeling and diagnosing future fusion experiments performed on the ITER. In the present work, we studied total and partial electron-impact excitation (EIE and DR cross-sections of highly charged tungsten ions by using the multiconfiguration Dirac–Fock method. The degrees of linear polarization of the subsequent X-ray emissions from unequally-populated magnetic sub-levels of these ions were estimated. It is found that the degrees of linear polarization of the same transition lines, but populated respectively by the EIE and DR processes, are very different, which makes diagnosis of the formation mechanism of X-ray emissions possible. In addition, with the help of the flexible atomic code on the basis of the relativistic configuration interaction method, DR rate coefficients of highly charged W37+ to W46+ ions are also studied, because of the importance in the ionization equilibrium of tungsten plasmas under running conditions of the ITER.

  5. Novel spin excitation in the high field phase of an S=1 antiferromagnetic chain

    International Nuclear Information System (INIS)

    Hagiwara, M.; Kashiwagi, T.; Kimura, S.; Honda, Z.; Kindo, K.

    2007-01-01

    We report the results of high-field multi-frequency ESR experiment on the S=1 Heisenberg antiferromagnetic chain Ni(C 5 H 14 N 2 ) 2 N 3 (PF 6 ) for the fields up to about 55T and the frequencies up to about 2THz. We have found that excitation branches above the critical field (H c ) where the energy gap closes change into one branch around 15T which becomes close to the paramagnetic line at high fields. The branch above 15T fits well the conventional antiferromagnetic resonance mode with easy planar anisotropy. We compare the results with those in a weakly coupled antiferromagnetic dimer compound KCuCl 3 and discuss the origin of the branches observed above H c

  6. Microscopic unitary description of tidal excitations in high-energy string-brane collisions

    CERN Document Server

    D'Appollonio, Giuseppe; Russo, Rodolfo; Veneziano, Gabriele

    2013-01-01

    The eikonal operator was originally introduced to describe the effect of tidal excitations on higher-genus elastic string amplitudes at high energy. In this paper we provide a precise interpretation for this operator through the explicit tree-level calculation of generic inelastic transitions between closed strings as they scatter off a stack of parallel Dp-branes. We perform this analysis both in the light-cone gauge, using the Green-Schwarz vertex, and in the covariant formalism, using the Reggeon vertex operator. We also present a detailed discussion of the high energy behaviour of the covariant string amplitudes, showing how to take into account the energy factors that enhance the contribution of the longitudinally polarized massive states in a simple way.

  7. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.

    2010-08-11

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (EÌ?TE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients. © 2010 American Chemical Society.

  8. Excited baryon form-factors at high momentum transfer at CEBAF at higher energies

    Energy Technology Data Exchange (ETDEWEB)

    Stoler, P. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-04-01

    The possibilities of measuring the properties of excited nucleons at high Q{sup 2} by means of exclusive single meson production at CEBAF with an electron energy of 8 GeV is considered. The motivation is to access short range phenomena in baryon structure, and to investigate the transition from the low Q{sup 2} non-perturbative QCD regime, where constituent quark models are valid, to higher Q{sup 2} where it is believed perturbative QCD plays an increasingly important role. It is found that high quality baryon decay angular distributions can be obtained for the most prominent states up to Q{sup 2} {approximately} 12 GeV{sup 2}/c{sup 2} using a set of moderate resolution, large solid angle magnetic spectrometers.

  9. V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions

    Science.gov (United States)

    Mewe, R.

    1999-07-01

    This book contains a comprehensive description of the basic principles of the theoretical spectroscopy and experimental spectroscopic diagnostics of Rydberg atoms and ions, i.e., atoms in highly excited states with a very large principal quantum number (n≫1). Rydberg atoms are characterized by a number of peculiar physical properties as compared to atoms in the ground or a low excited state. They have a very small ionization potential (∝1/n2), the highly excited electron has a small orbital velocity (∝1/n), the radius (∝n2) is very large, the excited electron has a long orbital period (∝n3), and the radiation lifetime is very long (∝n3-5). At the same time the R. atom is very sensitive to perturbations from external fields in collisions with charged and neutral targets. In recent years, R. atoms have been observed in laboratory and cosmic conditions for n up to ˜1000, which means that the size amounts to about 0.1 mm, ˜106 times that of an atom in the ground state. The scope of this monograph is to familiarize the reader with today's approaches and methods for describing isolated R. atoms and ions, radiative transitions between highly excited states, and photoionization and photorecombination processes. The authors present a number of efficient methods for describing the structure and properties of R. atoms and calculating processes of collisions with neutral and charged particles as well as spectral-line broadening and shift of Rydberg atomic series in gases, cool and hot plasmas in laboratories and in astrophysical sources. Particular attention is paid to a comparison of theoretical results with available experimental data. The book contains 9 chapters. Chapter 1 gives an introduction to the basic properties of R. atoms (ions), Chapter 2 is devoted to an account of general methods describing an isolated Rydberg atom. Chapter 3 is focussed on the recent achievements in calculations of form factors and dipole matrix elements of different types of

  10. Transport coefficients in high-temperature ionized air flows with electronic excitation

    Science.gov (United States)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  11. Excitation of high energy levels under laser exposure of suspensions of nanoparticles in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute, 38, Vavilov Street, 119991 Moscow (Russian Federation)], E-mail: shafeev@kapella.gpi.ru; Simakin, A.V. [Wave Research Center of A.M. Prokhorov General Physics Institute, 38, Vavilov Street, 119991 Moscow (Russian Federation); Bozon-Verduraz, F. [ITODYS, UMR CNRS 7086, Universite Paris 7-Denis Diderot, 2, place Jussieu, 75251 Paris cedex 05 (France); Robert, M. [Laboratoire d' Electrochimie Moleculaire, UMR CNRS 7591, Universite Paris 7 Denis Diderot, 2, place Jussieu, 75251 Paris cedex 05 (France)

    2007-12-15

    Laser exposure of suspensions of nanoparticles in liquids leads to excitation of high energy levels in both liquid and nanoparticle material. The emission spectrum of the colloidal solution under exposure of a suspension metallic nanoparticles in water to radiation of a Nd:YAG laser of a picosecond range of pulse duration is discussed. Excitation of nuclear energy levels and neutron release is experimentally studied on the model system of transmutation of Hg into Au that occurs under exposure of Hg nanodrops suspended in D{sub 2}O. The proposed mechanism involves: (i) emission of X-ray photons by Hg nanoparticles upon laser exposure, leading to neutron release from D{sub 2}O, (ii) initiation of Hg {yields} Au transmutation by the capture of neutrons. The effect of transmutation is more pronounced using {sup 196}Hg isotope instead of Hg of natural isotope composition. The influence of laser pulse duration on the degree of transmutation (from fs through ns range) is discussed.

  12. Investigations of the valence-shell excitations of molecular ethane by high-energy electron scattering

    Science.gov (United States)

    Xu, Wei-Qing; Xu, Long-Quan; Qi, De-Guang; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan

    2018-04-01

    The differential cross sections and generalized oscillator strengths for the low-lying excitations of the valence-shell 1eg orbital electron in ethane have been measured for the first time at a high incident electron energy of 1500 eV and a scattering angular range of 1.5°-10°. A weak feature, termed X here, with a band center of about 7.5 eV has been observed, which was also announced by the previous experimental and theoretical studies. The dynamic behaviors of the generalized oscillator strengths for the 3s (8.7 eV), 3s+3p (9.31 eV, 9.41 eV), and X (˜7.5 eV) transitions on the momentum transfer squared have been obtained. The integral cross sections of these transitions from their thresholds to 5000 eV have been obtained with the aid of the BE-scaling (B is the binding energy and E is the excitation energy) method. The optical oscillator strengths of the above transitions determined by extrapolating their generalized oscillator strengths to the limit of the squared momentum transfer K2 → 0 are in good agreement with the ones from the photoabsorption spectrum [J. W. Au et al., Chem. Phys. 173, 209 (1993)], which indicates that the present differential cross sections, generalized oscillator strengths, and integral cross sections can serve as benchmark data.

  13. Effects of classical resonances on the chaotic microwave ionization of highly excited hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R V

    1987-05-01

    Experimental measurements of the microwave ionization of highly excited hydrogen atoms with principal quantum numbers ranging from n = 32 to 90 are well described by a classical treatment of the nonlinear electron dynamics. In particular, the measurements of the threshold field for the onset of significant ionization exhibits a curious dependence on the microwave frequency with distinct peaks at rational values of the scaled frequency, n/sup 3/..cap omega.. = 1, 2/3, 1/2, 2/5, 1/3, 1/4, 1/5, which is in excellent agreement with the predictions for the onset of classical chaos in a one-dimensional model of the experiment. In the classical theory this frequency dependence of the threshold fields is due to the stabilizing effect of nonlinear resonances (''islands'') in the classical phase space which is greatly enhanced when the microwave perturbation is turned on slowly (adiabatically) as in the experiments. Quantum calculations for this one-dimensional model also exhibit this stabilizing effect due to the preferential excitation of localized quasi-energy states.

  14. Fluorescence fluctuation of Rhodamine 6G dye for high repetition rate laser excitation

    International Nuclear Information System (INIS)

    Singh, Nageshwar; Patel, Hemant K.; Dixit, S.K.; Vora, H.S.

    2013-01-01

    In this paper, fluorescence from Rhodamine 6G dye for stationary and flowing liquid medium, excited by copper vapor laser, operating at 6 kHz pulse repetition frequency, was investigated. Large fluctuations in spectral width (about 5 nm) and spectral intensity in the fluorescence from stationary dye solution were observed, while fluctuations in the spectral width diminish in a flowing dye medium. However, this increases spectral intensity and slightly red shifts the fluorescence peak emission wavelength. Theoretical analysis was carried out to explain the observed results by incorporating the temperature induced refractive index, beam deflection and spectral variation in stationary dye solution. Numerical analysis of thermal load and contour of temperature in the optical pumped region inside the dye cell in stationary, 0.2 and 1.5 m/s flow velocity was also investigated to support our analysis. - Highlights: ► High repetition rate excitation generates inhomogeneity in the gain medium. ► Fluorescence of Rhodamine 6G in stationary and flowing medium was carried out. ► Fluorescence fluctuations lessen in flowing medium in contrast to stationary medium. ► Our theoretical and numerical analysis enlightens the experimented outcome trend.

  15. Piezoelectric Shunt Vibration Damping of F-15 Panel under High Acoustic Excitation

    Science.gov (United States)

    Wu, Shu-Yau; Turner, Travis L.; Rizzi, Stephen A.

    2000-01-01

    At last year's SPIE symposium, we reported results of an experiment on structural vibration damping of an F-15 underbelly panel using piezoelectric shunting with five bonded PZT transducers. The panel vibration was induced with an acoustic speaker at an overall sound pressure level (OASPL) of about 90 dB. Amplitude reductions of 13.45 and 10.72 dB were achieved for the first and second modes, respectively, using single- and multiple-mode shunting. It is the purpose of this investigation to extend the passive piezoelectric shunt-damping technique to control structural vibration induced at higher acoustic excitation levels, and to examine the controllability and survivability of the bonded PZT transducers at these high levels. The shunting experiment was performed with the Thermal Acoustic Fatigue Apparatus (TAFA) at the NASA Langley Research Center using the same F-15 underbelly panel. The TAFA is a progressive wave tube facility. The panel was mounted in one wall of the TAFA test section using a specially designed mounting fixture such that the panel was subjected to grazing-incidence acoustic excitation. Five PZT transducers were used with two shunt circuits designed to control the first and second modes of the structure between 200 and 400 Hz. We first determined the values of the shunt inductance and resistance at an OASPL of 130 dB. These values were maintained while we gradually increased the OASPL from 130 to 154 dB in 6-dB steps. During each increment, the frequency response function between accelerometers on the panel and the acoustic excitation measured by microphones, before and after shunting, were recorded. Good response reduction was observed up to the 148dB level. The experiment was stopped at 154 dB due to wire breakage from vibration at a transducer wire joint. The PZT transducers, however, were still bonded well on the panel and survived at this high dB level. We also observed shifting of the frequency peaks toward lower frequency when the OASPL

  16. Theories and experiments on the stiffening effect of high-frequency excitation for continuous elastic systems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    theories, each providing valuable insight. One of these is capable of predicting the vertical string lift due to stiffening in terms of simple expressions, with results that agree very well with experimental measurements for a wide range of conditions. It appears that resonance effects cannot be ignored...... for demonstrating and measuring the stiffening effect in a simple setting, in the form of a horizontal piano string subjected to longitudinal high-frequency excitation at the clamped base and free at the other end. A simplest possible theoretical model is set up and analyzed using a hierarchy of three approximating......, as was done in a few related studies¿¿unless the system has very low modal density or heavy damping; thus first-order consideration to resonance effects is included. Using the specific example with experimental support to put confidence on the proposed theory, expressions for predicting the stiffening effect...

  17. The origin of small and large molecule behavior in the vibrational relaxation of highly excited molecules

    International Nuclear Information System (INIS)

    Gordon, R.J.

    1990-01-01

    An explanation is proposed for the qualitatively different types of behavior that have been reported for the vibrational relaxation of highly excited diatomic and polyatomic molecules. It is argued that all of the diatomic molecules that have been studied in bulk relax adiabatically at room temperature. In contrast, large polyatomic molecules have low frequency modes which act at ''doorway'' modes for the rest of the molecules, producing an impulsive relaxation mechanism. The theoretical work of Nesbitt and Hynes showed that impulsive collisions result in an exponential decay of the average vibrational energy of a Morse oscillator, whereas adiabatic collisions produce nonexponential power law behavior. We propose that this result explains a large body of data for the vibrational relaxation of small and large molecules

  18. Highly sensitive time resolved singlet oxygen luminescence detection using LEDs as the excitation source

    International Nuclear Information System (INIS)

    Hackbarth, S; Schlothauer, J; Preuss, A; Röder, B

    2013-01-01

    For the first time singlet oxygen luminescence kinetics in living cells were detected at high precision using LED light for excitation. As LED technology evolves, the light intensity emitted by standard LEDs allows photosensitized singlet oxygen luminescence detection in solution and cell suspensions. We present measurements superior to those of most actual laser powered setups regarding precision of singlet oxygen kinetics in solutions and cell suspensions. Data presented here show that LED based setups allow the determination of the photosensitizer triplet and singlet oxygen decay times in vitro with an accuracy of 0.1 μs. This enables monitoring of the photosensitizer efficiency and interaction with the cellular components using illumination doses small enough not to cause cell death. (letter)

  19. Decay properties of rare earth nuclei at high excitation and low spin

    International Nuclear Information System (INIS)

    Atac, A.

    1989-01-01

    The purpose of this study was to examine the decay pattern of highly excited rare earth nuclei for which the decay process is expected to be governed by statistical laws. The aim was to investigate how good the statistical model describes the nuclear system and to search for possible deviation from it. It is shown that the gamma decay spectra following both the ( 3 He,α) pick-up reactions and the inelastic ( 3 He, 3 He') reactions reveal similar type of bumps. This leads to the conclusion that the bump structures are not a result of a particular reaction mechanism, but that they have a more general origin. The study is mainly devoted to an examination of the nature of the bumps. 22 refs

  20. Comparison of excitation mechanisms in the analytical regions of a high-power two-jet plasma

    International Nuclear Information System (INIS)

    Zaksas, Natalia P.

    2015-01-01

    Excitation mechanisms in the analytical regions of a high-power two-jet plasma were investigated. A new plasmatron recently developed was applied in this work. The Boltzmann population of excited levels of Fe atoms and ions was observed in both analytical regions, before and after the jet confluence, as well as in the jet confluence, which proves excitation of atoms and ions by electron impact. The disturbance of local thermodynamic equilibrium in all regions of the plasma flow was deduced on the basis of considerable difference in Fe atomic and ionic excitation temperatures. Such a difference is most likely to be caused by contribution of metastable argon to atom ionization. The region before the jet confluence has the greatest difference in Fe atomic and ionic excitation temperatures and is more non-equilibrium than the region after the confluence due to comparatively low electron and high metastable argon concentrations. Low electron concentration in this region provides lower background emission than in the region after the jet confluence, which leads to better detection limits for the majority of elements. - Highlights: • Excitation mechanisms were investigated in the analytical regions of a high-power TJP. • Boltzmann population of excited levels of Fe atoms and ions takes place in all regions of the plasma flow. • The considerable difference in Fe atomic and ionic excitation temperatures occurs. • Penning ionization by metastable argon results in disturbance of LTE in the plasma. • The region before the jet confluence is more non-equilibrium than after that

  1. Excitation of atoms and molecules in collisions with highly charged ions

    International Nuclear Information System (INIS)

    Watson, R.L.

    1992-01-01

    This report discusses research of multicharged nitrogen, oxygen and carbon monoxide molecular ions produced with collision with multicharged argon ions. Properties like ionization, dissociation, and excitation are investigated

  2. Application of an antenna excited high pressure microwave discharge to compact discharge lamps

    International Nuclear Information System (INIS)

    Kando, M; Fukaya, T; Ohishi, Y; Mizojiri, T; Morimoto, Y; Shido, M; Serita, T

    2008-01-01

    A novel type of high pressure microwave discharge has been investigated to feed the microwave power at the centre of the compact high pressure discharge lamps using the antenna effect. This method of microwave discharge is named as the antenna excited microwave discharge (AEMD). The 2.45 GHz microwave of around 50 W from the solid state microwave generator can sustain a stable plasma column in the small gap between a couple of antennas fitted on the compact lamp filled with discharge gases at a pressure higher than atmosphere. The AEMD has been applied to a compact metal halide lamp and an extremely high pressure mercury discharge lamp. As a result, the metal halide lamp showed high luminous efficacy of around 130 lm W -1 . The excellent lamp properties obtained here can be explained by the low heating loss at the antennas and the lamp wall. The profiles of the microwave electric field in the lamp and the microwave launcher have been numerically calculated to consider the microwave power supply into the lamp

  3. HIGHLY EXCITED H2 IN HERBIG–HARO 7: FORMATION PUMPING IN SHOCKED MOLECULAR GAS?

    International Nuclear Information System (INIS)

    Pike, R. E.; Geballe, T. R.; Burton, M. G.; Chrysostomou, A.

    2016-01-01

    We have obtained K -band spectra at R ∼ 5000 and an angular resolution of 0.″3 of a section of the Herbig–Haro 7 (HH7) bow shock, using the Near-Infrared Integral Field Spectrograph at Gemini North. Present in the portion of the data cube corresponding to the brightest part of the bow shock are emission lines of H 2 with upper state energies ranging from ∼6000 K to the dissociation energy of H 2 , ∼50,000 K. Because of low signal-to-noise ratios, the highest excitation lines cannot be easily seen elsewhere in the observed region. However, excitation temperatures, measured throughout much of the observed region using lines from levels as high as 25,000 K, are a strong function of upper level energy, indicating that the very highest levels are populated throughout. The level populations in the brightest region are well fit by a two-temperature model, with 98.5% of the emitting gas at T = 1800 K and 1.5% at T = 5200 K. The bulk of the H 2 line emission in HH7, from the 1800 K gas, has previously been well-modeled by a continuous shock, but the 5200 K cozmponent is inconsistent with standalone standard continuous shock models. We discuss various possible origins for the hot component and suggest that this component is H 2 newly reformed on dust grains and then ejected from them, presumably following dissociation of some of the H 2 by the shock.

  4. Investigations of the isospin in the highly excited compound nuclei 52Cr and 58Co

    International Nuclear Information System (INIS)

    Roth, K.

    1978-01-01

    The influence of T states excited by p bombardment on the quantities in the correlation function is investigated by means of a fluctuation analysis of the excitation function in the p and α decay channels of the compound nuclei 52 Cr and 58 Co. (AH) [de

  5. Excitation of short wavelength Alfven oscillations by high energy ions in tokamak

    International Nuclear Information System (INIS)

    Beasley, C.O. Jr.; Lominadze, J.G.; Mikhailovskii, A.B.

    1975-08-01

    The excitation of Alfven waves by fast untrapped ions in axisymmetric tokamaks is described by the dispersion relation epsilon 11 - c 2 k/sub parallel bars/ 2 /ω 2 = 0. Using this relation a new class of instability connected with the excitation of Alfven oscillations is described. (U.S.)

  6. Generation and decay dynamics of triplet excitons in Alq3 thin films under high-density excitation conditions.

    Science.gov (United States)

    Watanabe, Sadayuki; Furube, Akihiro; Katoh, Ryuzi

    2006-08-31

    We studied the generation and decay dynamics of triplet excitons in tris-(8-hydroxyquinoline) aluminum (Alq3) thin films by using transient absorption spectroscopy. Absorption spectra of both singlet and triplet excitons in the film were identified by comparison with transient absorption spectra of the ligand molecule (8-hydroxyquinoline) itself and the excited triplet state in solution previously reported. By measuring the excitation light intensity dependence of the absorption, we found that exciton annihilation dominated under high-density excitation conditions. Annihilation rate constants were estimated to be gammaSS = (6 +/- 3) x 10(-11) cm3 s(-1) for single excitons and gammaTT = (4 +/- 2) x 10(-13) cm3 s(-1) for triplet excitons. From detailed analysis of the light intensity dependence of the quantum yield of triplet excitons under high-density conditions, triplet excitons were mainly generated through fission from highly excited singlet states populated by singlet-singlet exciton annihilation. We estimated that 30% of the highly excited states underwent fission.

  7. Electronic excitation effects on secondary ion emission in highly charged ion-solid interaction

    International Nuclear Information System (INIS)

    Sekioka, T.; Terasawa, M.; Mitamura, T.; Stoeckli, M.P.; Lehnert, U.; Fehrenbach, C.

    2001-01-01

    In order to investigate the secondary ion emission from the surface of conductive materials bombarded by highly charged heavy ions, we have done two types of experiments. First, we have measured the yield of the sputtered ions from the surface of solid targets of conductive materials (Al, Si, Ni, Cu) bombarded by Xe q+ (q=15-44) at 300 keV (v p =0.30 a.u) and at 1.0 MeV (v p =0.54 a.u). In view of the secondary ion yields as a function of the potential energy of the projectile, the increase rates below q=35, where the potential energy amounts to 25.5 keV, were rather moderate and showed a prominent increase above q=35. These phenomena were rather strong in the case of the metal targets. Second, we have measured the energy dependence of the yield of the sputtered ions from the surface of solid targets of conductive materials (C, Al) bombarded by Xe q+ (q=30,36,44) between 76 keV (v p =0.15 a.u) and 6.0 MeV (v p =1.3 a.u). A broad enhancement of the secondary ion yield has been found for Al target bombarded by Xe 44+ . From these experimental results, the electronic excitation effects in conductive materials for impact of slow highly charged heavy ions bearing high potential energy is discussed

  8. Routes to formation of highly excited neutral atoms in the break-up of strongly driven hydrogen molecule

    Science.gov (United States)

    Emmanouilidou, Agapi

    2012-06-01

    We present a theoretical quasiclassical treatment of the formation, during Coulomb explosion, of highly excited neutral H atoms for strongly-driven hydrogen molecule. This process, where after the laser field is turned off, one electron escapes to the continuum while the other occupies a Rydberg state, was recently reported in an experimental study in Phys. Rev. Lett 102, 113002 (2009). We find that two-electron effects are important in order to correctly account for all pathways leading to highly excited neutral hydrogen formation [1]. We identify two pathways where the electron that escapes to the continuum does so either very quickly or after remaining bound for a few periods of the laser field. These two pathways of highly excited neutral H formation have distinct traces in the probability distribution of the escaping electron momentum components. [4pt] [1] A. Emmanouilidou, C. Lazarou, A. Staudte and U. Eichmann, Phys. Rev. A (Rapid) 85 011402 (2012).

  9. Research of the Electron Cyclotron Emission with Vortex Property excited by high power high frequency Gyrotron

    Science.gov (United States)

    Goto, Yuki; Kubo, Shin; Tsujimura, Tohru; Takubo, Hidenori

    2017-10-01

    Recently, it has been shown that the radiation from a single electron in cyclotron motion has vortex property. Although the cyclotron emission exists universally in nature, the vortex property has not been featured because this property is normally cancelled out due to the randomness in gyro-phase of electrons and the development of detection of the vortex property has not been well motivated. In this research, we are developing a method to generate the vortex radiation from electrons in cyclotron motion with controlled gyro-phase. Electron that rotates around the uniform static magnetic field is accelerated by right-hand circular polarized (RHCP) radiation resonantly when the cyclotron frequency coincides with the applied RHCP radiation frequency. A large number of electrons can be coherently accelerated in gyro-phase by a RHCP high power radiation so that these electrons can radiate coherent emission with vortex feature. We will show that vortex radiation created by purely rotating electrons for the first time.

  10. Detailed Characterization of a Nanosecond-Lived Excited State: X-ray and Theoretical Investigation of the Quintet State in Photoexcited [Fe(terpy) 2 ] 2+

    International Nuclear Information System (INIS)

    Vanko, Gyorgy; Bordage, Amelie; Papai, Matyas; Haldrup, Kristoffer; March, Anne Marie; Galler, Andreas; Assefa, Tadesse; Cabaret, Delphine; Juhin, Amelie; Driel, Tim B. van; Gallo, Erik; Rovezzi, Mauro; Nemeth, Zoltan; Rozsalyi, Emese; Rozgonyi, Tamas; Uhlig, Jens; Gawelda, Wojciech

    2015-01-01

    Theoretical predictions show that depending on the populations of the Fe 3d xy , 3d xz , and 3d yz orbitals two possible quintet states can exist for the high-spin state of the photoswitchable model system [Fe(terpy) 2 ] 2+ . The differences in the structure and molecular properties of these 5B2 and 5E quintets are very small and pose a substantial challenge for experiments to resolve them. Yet for a better understanding of the physics of this system, which can lead to the design of novel molecules with enhanced photoswitching performance, it is vital to determine which high-spin state is reached in the transitions that follow the light excitation. The quintet state can be prepared with a short laser pulse and can be studied with cutting-edge time-resolved X-ray techniques. Here we report on the application of an extended set of X-ray spectroscopy and scattering techniques applied to investigate the quintet state of [Fe(terpy) 2 ] 2+ 80 ps after light excitation. High-quality X-ray absorption, nonresonant emission, and resonant emission spectra as well as X-ray diffuse scattering data clearly reflect the formation of the high-spin state of the [Fe(terpy) 2 ] 2+ molecule; moreover, extended X-ray absorption fine structure spectroscopy resolves the Fe-ligand bond-length variations with unprecedented bond-length accuracy in time-resolved experiments. With ab initio calculations we determine why, in contrast to most related systems, one configurational mode is insufficient for the description of the low-spin (LS)-high-spin (HS) transition. We identify the electronic structure origin of the differences between the two possible quintet modes, and finally, we unambiguously identify the formed quintet state as 5E, in agreement with our theoretical expectations

  11. In which metals are high electronic excitations able to create damage?

    International Nuclear Information System (INIS)

    Legrand, P.; Dunlop, A.; Lesueur, D.; Lorenzelli, N.; Morillo, J.; Bouffard, S.

    1992-01-01

    Since a few years a certain number of results have shown that high energy deposition through electronic excitation can lead to damage creation in metallic targets. In order to test which is the right parameter favouring damage creation (high d-electrons density favouring electron-phonon coupling, various electrical conductivities, existence of different displacive phase transformations . . .) chosen metallic targets (Zr, Co, Ti, Ag, Pd, Pt, W, Ni) were irradiated on the french accelerator GANIL in Caen, at cryogenic temperatures with GeV-ions (Pb, O). In situ electrical resistance variation measurements at low temperature were achieved, followed by isochronal annealing of defects and post-X-ray observations at room temperature. This study shows that a very strong enhancement of the damage production occurs only in Zr, Ti and Co which present different allotropic phases and in particular a displacive transformation associated with soft modes in the phonon spectrum. The structure of stage I recovery of all the samples depends on the electronic stopping power

  12. Optical emission from a high-refractive-index waveguide excited by a traveling electron beam

    International Nuclear Information System (INIS)

    Kuwamura, Yuji; Yamada, Minoru; Okamoto, Ryuichi; Kanai, Takeshi; Fares, Hesham

    2008-01-01

    An optical emission scheme was demonstrated, in which a high-refractive-index waveguide is excited by a traveling electron beam in a vacuum environment. The waveguide was made of Si-SiO 2 layers. The velocity of light propagating in the waveguide was slowed down to 1/3 of that in free space due to the high refractive index of Si. The light penetrated partly into the vacuum in the form of a surface wave. The electron beam was emitted from an electron gun and propagated along the surface of the waveguide. When the velocity of the electron coincided with that of the light, optical emission was observed. This emission is a type of Cherenkov radiation and is not conventional cathode luminescence from the waveguide materials because Si and SiO 2 are transparent to light at the emitted wavelength. This type of emission was observed in an optical wavelength range from 1.2 to 1.6 μm with an electron acceleration voltage of 32-42 kV. The characteristics of the emitted light, such as the polarization direction and the relation between the acceleration voltage of the electron beam and the optical wavelength, coincided well with the theoretical results. The coherent length of an electron wave in the vacuum was confirmed to be equal to the electron spacing, as found by measuring the spectral profile of the emitted light

  13. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay

    DEFF Research Database (Denmark)

    Rodenko, Olga; Eriksson, Susann; Tidemand-Lichtenberg, Peter

    2017-01-01

    of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by factor of 5 for standard troponin I and by factor of 3 for a research high-sensitivity troponin I assay, compared...... to the flash lamp excitation. The obtained limit of detection was 0.22 ng/L measured on plasma with the research highsensitivity troponin I assay and 1.9 ng/L measured on tris-saline-azide buffer containing bovine serum albumin with the standard troponin I assay. We discuss the optimization of time...

  14. Radio-frequency wave excitation and damping on a high β plasma column

    International Nuclear Information System (INIS)

    Meuth, H.

    1984-01-01

    Azimuthally symmetric (m = 0) radio-frequency (RF) waves for zero and for finite axial wave number k/sub z/ are investigated on the High BETA Q Machine, a two-meter, 20 cm-diameter, low-compression linear theta pinch (T greater than or equal to 200 eV, n approx. = 10 15 cm -3 ) fast rising (0.4 μs) compression field. The (k/sub z/ = 0) modes occur spontaneously following the implosion phase of the discharge. A novel 100-MW 1 to 1.3 MHz, short wavelength current drive excites the plasma column in the vicinity of the lowest fast magnetoacoustic mode at various filling pressures. This current drive is designed as an integral part of the compression coil, which is segmented with a 20-cm axial wavelength (k/sub z/ = 0.314 cm -1 ). The electron density oscillations along major and minor chords at various positions are measured by interferometry perpendicular to the pinch axis. The oscillatory radial magnetic field component between pinch wall and hot plasma edge is measured by probes. Phases, amplitudes and radial mode structure are studied for the free (k = 0) modes and the externally driven (k does not equal 0) modes for various filling pressures of deuterium. The energy deposition from the externally driven RF wave leads to a radial expansion of the plasma column, as observed by axial interferometry and by excluded flux measurements

  15. Excitation of atoms and molecules in collisions with highly charged ions

    International Nuclear Information System (INIS)

    Watson, R.L.

    1993-01-01

    A study of the double ionization of He by high-energy N 7+ ions was extended up in energy to 40 MeV/amu. Coincidence time-of-flight studies of multicharged N 2 , O 2 , and CO molecular ions produced in collisions with 97-MeV Ar 14+ ions were completed. Analysis of the total kinetic energy distributions and comparison with the available data for CO 2+ and CO 3+ from synchrotron radiation experiments led to the conclusion that ionization by Ar-ion impact populates states having considerably higher excitation energies than those accessed by photoionization. The dissociation fractions for CO 1+ and CO 2+ molecular ions, and the branching ratios for the most prominent charge division channels of CO 2+ through CO 7+ were determined from time-of-flight singles and coincidence data. An experiment designed to investigate the orientation dependence of dissociative multielectron ionization of molecules by heavy ion impact was completed. Measurements of the cross sections for K-shell ionization of intermediate-Z elements by 30-MeV/amu H, N, Ne, and Ar ions were completed. The cross sections were determined for solid targets of Z = 13, 22, 26, 29, 32, 40, 42, 46, and 50 by recording the spectra of K x rays with a Si(Li) spectrometer

  16. Statistical properties of highly excited quantum eigenstates of a strongly chaotic system

    International Nuclear Information System (INIS)

    Aurich, R.; Steiner, F.

    1992-06-01

    Statistical properties of highly excited quantal eigenstates are studied for the free motion (geodesic flow) on a compact surface of constant negative curvature (hyperbolic octagon) which represents a strongly chaotic system (K-system). The eigenstates are expanded in a circular-wave basis, and it turns out that the expansion coefficients behave as Gaussian pseudo-random numbers. It is shown that this property leads to a Gaussian amplitude distribution P(ψ) in the semiclassical limit, i.e. the wavefunctions behave as Gaussian random functions. This behaviour, which should hold for chaotic systems in general, is nicely confirmed for eigenstates lying 10000 states above the ground state thus probing the semiclassical limit. In addition, the autocorrelation function and the path-correlation function are calculated and compared with a crude semiclassical Bessel-function approximation. Agreement with the semiclassical prediction is only found, if a local averaging is performed over roughly 1000 de Broglie wavelengths. On smaller scales, the eigenstates show much more structure than predicted by the first semiclassical approximation. (orig.)

  17. Improved heating efficiency with High-Intensity Focused Ultrasound using a new ultrasound source excitation.

    Science.gov (United States)

    Bigelow, Timothy A

    2009-01-01

    High-Intensity Focused Ultrasound (HIFU) is quickly becoming one of the best methods to thermally ablate tissue noninvasively. Unlike RF or Laser ablation, the tissue can be destroyed without inserting any probes into the body minimizing the risk of secondary complications such as infections. In this study, the heating efficiency of HIFU sources is improved by altering the excitation of the ultrasound source to take advantage of nonlinear propagation. For ultrasound, the phase velocity of the ultrasound wave depends on the amplitude of the wave resulting in the generation of higher harmonics. These higher harmonics are more efficiently converted into heat in the body due to the frequency dependence of the ultrasound absorption in tissue. In our study, the generation of the higher harmonics by nonlinear propagation is enhanced by transmitting an ultrasound wave with both the fundamental and a higher harmonic component included. Computer simulations demonstrated up to a 300% increase in temperature increase compared to transmitting at only the fundamental for the same acoustic power transmitted by the source.

  18. High sensitivity detection of selenium by laser excited atomic fluorescence spectrometry using electrothermal atomization

    International Nuclear Information System (INIS)

    Heitmann, U.; Hese, A.; Schoknecht, G.; Gries, W.

    1995-01-01

    The high sensitivity detection of the trace element selenium is reported. The analytical method applied is Laser Excited Atomic Fluorescence Spectrometry using Electrothermal Atomization within a graphite furnace atomizer. For the production of tunable laser radiation in the VUV spectral region a laser system was developed which consists of two dye lasers pumped by a Nd:YAG laser. The laser radiations are subsequently frequency doubled and sum frequency mixed by nonlinear optical KDP or BBO crystals, respectively. The system works with a repetition rate of 20 Hz and provides output energies of up to 100 μJ in the VUV at a pulse duration of 5 ns. The analytical investigations were focused on the detection of selenium in aqueous solutions and samples of human whole blood. From measurements on aqueous standards detection limits of 1.5 ng/l for selenium were obtained, with corresponding absolute detected masses of only 15 fg. The linear dynamic range spanned six orders of magnitude and good precision was achieved. In case of human whole blood samples the recovery was found to be within the range of 96% to 104%. The determination of the selenium content yielded medians of [119.5 ± 17.3] μg/l for 200 frozen blood samples taken in 1988 and [109.1 ± 15.6] μg/l for 103 fresh blood samples. (author)

  19. High-sensitivity measurements of the excitation function for Bhabha scattering at MeV energies

    International Nuclear Information System (INIS)

    Tsertos, H.; Kozhuharov, C.; Armbruster, P.; Kienle, P.; Krusche, B.; Schreckenbach, K.

    1989-02-01

    Using a monochromatic e + beam scattered on a Be foil and a high-resolution detector device, the excitation function for elastic e + e - scattering was measured with a statistical accuracy of 0.25% in 1.4 keV steps in the c.m.-energy range between 770 keV and 840 keV (1.79 - 1.86 MeV/c 2 ) at c.m. scattering angles between 80 0 and 100 0 (FWHM). Within the experimental sensitivity of 0.5 b.eV/sr (c.m.) for the energy-integrated differential cross section no resonances were observed (97% CL). From this limit we infer that a hypothetical spinless resonant state should have a width of less than 1.9 meV corresponding to a lifetime limit of 3.5x10 -13 s. This limit establishes the most stringent bound for new particles in this mass range derived from Bhabha scattering and is independent of assumptions about the internal structure of the hypothetical particles. Less sensitivite limits were, in addition, derived around 520 keV c.m. energy (≅ 1.54 MeV/c 2 ) from an investigation with a thorium and a mylar foil as scatterers. (orig.)

  20. Portable vibration exciter

    Science.gov (United States)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.