WorldWideScience

Sample records for highly excited compound

  1. Investigations of the isospin in the highly excited compound nuclei 52Cr and 58Co

    International Nuclear Information System (INIS)

    Roth, K.

    1978-01-01

    The influence of T states excited by p bombardment on the quantities in the correlation function is investigated by means of a fluctuation analysis of the excitation function in the p and α decay channels of the compound nuclei 52 Cr and 58 Co. (AH) [de

  2. Complex fragment emission at low and high excitation energy

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1986-08-01

    Complex fragment emission has been certified as a compound nucleus process at low energies. An extension of the measurements to heavy ion reactions up to 50 MeV/u shows that most complex fragments are emitted by highly excited compound nuclei formed in incomplete fusion reactions. 12 refs., 26 figs

  3. X-Ray Absorption Near-Edge Structure (XANES) of Calcium L3,2 Edges of Various Calcium Compounds and X-Ray Excited Optical Luminescence (XEOL) Studies of Luminescent Calcium Compounds

    International Nuclear Information System (INIS)

    Ko, J. Y. Peter; Zhou Xingtai; Sham, T.-K.; Heigl, Franziskus; Regier, Tom; Blyth, Robert

    2007-01-01

    X-ray absorption at calcium L3,2 edges of various calcium compounds were measured using a high resolution Spherical Grating Monochromator (SGM) at the Canadian Light Source (CLS). We observe that each compound has its unique fine structure of L3,2 edges. This uniqueness is due to differences in local structure of compounds. We also performed (X-ray Excited Optical Luminescence) XEOL of selected luminescent calcium compounds to investigate their optical properties. XEOL is a photon-in-photon-out technique in which the optical luminescence that is excited by tunable x-rays from a synchrotron light source is monitored. Depending on excitation energy of the x-ray, relative intensities of luminescence peaks vary. Recent findings of the results will be presented here

  4. Compound grating structures in photonic crystals for resonant excitation of azobenzene

    DEFF Research Database (Denmark)

    Jahns, Sabrina; Kallweit, Christine; Adam, Jost

    Photo-switchable molecules such as azobenzene are of high interest for “smart” surfaces. Such “smart” surfaces respond to external light excitation by changing their macroscopic properties. The absorbance of light on a single normal path through a layer of azobenzene immobilized on a surface......-difference time-domain (FDTD) calculations for determination of resonance positions and electric field strengths in compound grating structures. By superimposing two single-period gratings a photonic crystal can be designed supporting multiple guided mode resonances suitable to switch azobenzenes between...

  5. Multiple Coulomb excitation effects in heavy ion compound and fusion cross sections

    International Nuclear Information System (INIS)

    Carlson, B.V.; Hussein, M.S.

    1981-11-01

    A simple model for the average S-matrix that describes heavy ion direct processes in the presence of absorption due to compound nucleus formation is developed. The fluctuation cross section and the fusion cross section are then calculated for deformed heavy ion systems where multiple Coulomb excitation is important. A simple expression for the fusion cross section valid for above-barrier energies is then obtained. The formula clearly displays the modification, due to Coulomb excitation, in the usual geometrical expression. (Author) [pt

  6. The photoluminescence spectra of micropowder of aromatic compounds under ultraviolet laser excitation

    International Nuclear Information System (INIS)

    Rakhmatullaev, I.A.; Kurbonov, A.K. et al.; Gorelik, V.S.

    2016-01-01

    The method of diagnostics of aromatic compounds on the example of novocaine, aspirin and anthracene is presented. The method is based on optical detection of photoluminescence spectra at ultraviolet laser (266 nm) excitation. Employing this method the photoluminescence spectra are obtained which allows one to establish the differences of the composition and structure of compounds. The developed method can be used for analysis the quality of the large class of luminescent bioactive structures under the ultraviolet radiation. (authors)

  7. Highly solvatochromic emission of electron donor-acceptor compounds containing propanedioato boron electron acceptors

    NARCIS (Netherlands)

    Brouwer, A.M.; Bakker, N.A.C.; Wiering, P.G.; Verhoeven, J.W.

    1991-01-01

    Light-induced electron transfer occurs in bifunctional compounds consisting of 1,3-diphenylpropanedioato boron oxalate or fluoride electron acceptors and simple aromatic electron-donor groups, linked by a methylene bridge; fluorescence from the highly polar charge-transfer excited state is

  8. Statistical emission of complex fragments from highly excited compound nucleus

    International Nuclear Information System (INIS)

    Matsuse, T.

    1991-01-01

    A full statistical analysis has been given in terms of the Extended Hauser-Feshbach method. The charge and kinetic energy distributions of 35 Cl+ 12 C reaction at E lab = 180, 200 MeV and 23 Na+ 24 Mg reaction at E lab = 89 MeV which form the 47 V compound nucleus are investigated as a prototype of the light mass system. The measured kinetic energy distributions of the complex fragments are shown to be well reproduced by the Extended Hauser-Feshbach method, so the observed complex fragment production is understood as the statistical binary decay from the compound nucleus induced by heavy-ion reaction. Next, this method is applied to the study of the complex production from the 111 In compound nucleus which is formed by the 84 Kr+ 27 Al reaction at E lab = 890 MeV. (K.A.) 18 refs., 10 figs

  9. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  10. Orientation of nuclei excited by polarized neutrons

    International Nuclear Information System (INIS)

    Lifshits, E.P.

    1986-01-01

    Polarization and radiation angular distribution of oriented nuclei in inelastic scattering of polarized neutrons were investigated. Nucleus orientation in the final state was described by polarization density matrix (PDM). If PDM is known, angular distributions, linear and circular polarization of γ-quanta emitted by a nucleus can be determined. Analytical expression for PDM, conditions of its diagonalization in the case of direct nucleus excitation and excitation by the stage of compound nucleus were obtained. Orientation of 12 C nuclei in the excited state 4.439 MeV, 2 + at energy of incident neutrons in the laboratory system from 4.8 MeV (excitation threshold) upt to 9 MeV was calculated as an example. Neutrons in initial state are completely polarized along Z axis. Calculations showed that excitation proceeds mainly by the stage of compound nucleus formation and 12 C nucleus is highly polarized in excited state

  11. Facile synthesis of upconversion nanoparticles with high purity using lanthanide oleate compounds

    Science.gov (United States)

    Kang, Ning; Ai, Chao-Chao; Zhou, Ya-Ming; Wang, Zuo; Ren, Lei

    2018-02-01

    A novel strategy for preparing highly pure NaYF4-based upconversion nanoparticles (UCNPs) was developed using lanthanide oleate compounds [Ln(OA)3] as the precursor, denoted as the Ln-OA preparation method. Compared to the conventional solvothermal method for synthesizing UCNPs using lanthanide chloride compounds (LnCl3) as the precursor (denoted as the Ln-Cl method), the Ln-OA strategy exhibited the merits of high purity, reduced purification process and a uniform size in preparing core and core-shell UCNPs excited by a 980 or 808 nm near infrared (NIR) laser. This work sheds new insight on the preparation of UCNPs and promotes their application in biomedical fields.

  12. High power laser exciter accelerators

    International Nuclear Information System (INIS)

    Martin, T.H.

    1975-01-01

    Recent developments in untriggered oil and water switching now permit the construction of compact, high energy density pulsed power sources for laser excitation. These accelerators, developed principally for electron beam fusion studies, appear adaptable to laser excitation and will provide electron beams of 10 13 to 10 14 W in the next several years. The accelerators proposed for e-beam fusion essentially concentrate the available power from the outside edge of a disk into the central region where the electron beam is formed. One of the main problem areas, that of power flow at the vacuum diode insulator, is greatly alleviated by the multiplicity of electron beams that are allowable for laser excitation. A proposal is made whereby the disk-shaped pulsed power sections are stacked vertically to form a series of radially flowing electron beams to excite the laser gas volume. (auth)

  13. EPR studies of excited state exchange and crystal-field effects in rare earth compounds

    International Nuclear Information System (INIS)

    Huang, C.Y.; Sugawara, K.; Cooper, B.R.

    1976-01-01

    EPR in excited crystal-field states of Tm 3+ , Pr 3+ , and Tb 3+ in singlet-ground-state systems and in the excited state of Ce 3+ in CeP are reviewed. Because one is looking at a crystal-field excited state resonance, the exchange, even if isotropic, does not act as a secular perturbation. This means that one obtains different effects and has access to more information about the dynamic effects of exchange than in conventional paramagnetic resonance experiments. The Tm and Pr monopnictides studied are paramagnetic at all temperatures. The most striking feature of the behavior of the GAMMA 5 /sup (2)/ EPR in the Tm compounds is the presence of an anomalous maximum in the temperature dependence of the g-factor. The relationship of this effect to anisotropic exchange is discussed. The results of the EPR of the excited GAMMA 5 /sup (2)/ level of Tb 3 + (g-factor becomes very large at T/sub N/ in antiferromagnetic TbX (X = P, As, Sb) and that of the excited GAMMA 8 level of Ce 3+ in antiferromagnetic CeP will also be reported. For sufficient dilution of the Tb 3+ in the terbium monopnictides, the systems become paramagnetic (Van Vleck paramagnets) down to 0 0 K. The Tb 3+ excited state resonance EPR in Tb/sub 0.1/ La/sub 0.9/P was studied as an example of behavior in such systems. 10 fig

  14. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  15. Realistic level densities in fragment emission at high excitation energies

    International Nuclear Information System (INIS)

    Mustafa, M.G.; Blann, M.; Ignatyuk, A.V.

    1993-01-01

    Heavy fragment emission from a 44 100 Ru compound nucleus at 400 and 800 MeV of excitation is analyzed to study the influence of level density models on final yields. An approach is used in which only quasibound shell-model levels are included in calculating level densities. We also test the traditional Fermi gas model for which there is no upper energy limit to the single particle levels. We compare the influence of these two level density models in evaporation calculations of primary fragment excitations, kinetic energies and yields, and on final product yields

  16. High energy excitations in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Prange, R.E.

    1984-01-01

    Itinerant magnets, those whose electrons move throughout the crystal, are described by band theory. Single particle excitations offer confirmation of band theory, but their description requires important corrections. The energetics of magnetism in iron and nickel is also described in band theory but requires complex bands. Magnetism above the critical temperature and the location of the critical temperature offer discriminants between the two major models of magnetism at high temperature and can be addressed by high energy excitations

  17. Selective excitation of atoms or molecules to high-lying states

    International Nuclear Information System (INIS)

    Ducas, T.W.

    1978-01-01

    This specification relates to the selective excitation of atoms or molecules to high lying states and a method of separating different isotopes of the same element by selective excitation of the isotopes. (U.K.)

  18. Recent experiments involving highly excited atoms

    International Nuclear Information System (INIS)

    Latimer, C.J.

    1979-01-01

    Very large and fragile atoms may be produced by exciting normal atoms with light or by collisions with other atomic particles. Atoms as large as 10 -6 m are now routinely produced in the laboratory and their properties studied. In this review some of the simpler experimental methods available for the production and detection of such atoms are described including tunable dye laser-excitation and field ionization. A few recent experiments which illustrate the collision properties and the effects of electric and and magnetic fields are also described. The relevance of highly excited atoms in other areas of research including radioastronomy and isotope separation are discussed. (author)

  19. Microstructure ion Nuclear Spectra at High Excitation

    International Nuclear Information System (INIS)

    Ericson, T.E.O.

    1969-01-01

    The statistical microstructure of highly excited systems is illustrated by the distribution and fluctuations of levels, widths and cross-sections of nuclei both for the case of sharp resonances and the continuum case. The coexistence of simple modes of excitation with statistical effects in terms of strength functions is illustrated by isobaric analogue states. The analogy is made with similar phenomena for coherent light, is solid-state physics and high-energy physics. (author)

  20. Neutron scattering investigation of magnetic excitations at high energy transfers

    International Nuclear Information System (INIS)

    Loong, C.K.

    1984-01-01

    With the advance of pulsed spallation neutron sources, neutron scattering investigation of elementary excitations in magnetic materials can now be extended to energies up to several hundreds of MeV. We have measured, using chopper spectrometers and time-of-flight techniques, the magnetic response functions of a series of d and f transition metals and compounds over a wide range of energy and momentum transfer. In PrO 2 , UO 2 , BaPrO 3 and CeB 6 we observed crystal-field transitions between the magnetic ground state and the excited levels in the energy range from 40 to 260 MeV. In materials exhibiting spin-fluctuation or mixed-valent character such as Ce 74 Th 26 , on the other hand, no sharp crystal-field lines but a broadened quasielastic magnetic peak was observed. The line width of the quasielastic component is thought to be connected to the spin-fluctuation energy of the 4f electrons. The significance of the neutron scattering results in relation to the ground state level structure of the magnetic ions and the spin-dynamics of the f electrons is discussed. Recently, in a study of the spin-wave excitations in itinerant magnetic systems, we have extended the spin-wave measurements in ferromagnetic iron up to about 160 MeV. Neutron scattering data at high energy transfers are of particular interest because they provide direct comparison with recent theories of itinerant magnetism. 26 references, 7 figures

  1. Surface boiling - an obvious but like no other decay mode of highly excited atomic nuclei

    International Nuclear Information System (INIS)

    Toke, J.

    2012-01-01

    Essentials of a generalized compound nucleus model are introduced based on a concept of an open microcanonical ensemble which considers explicitly the role of the diffuse surface domain and of the thermal expansion of nuclear systems in the quest for maximum entropy. This obvious generalization offers a unique and universal thermodynamic framework for understanding the changes in the gross behavior of excited nuclear systems with increasing excitation energy and, specifically, the competition between different statistical decay modes, including classical evaporation and binary fission, but also the Coulomb fragmentation of excited systems into multiple fragments - the famed multifragmentation. Importantly, the formalism offers a natural explanation, in terms of boiling or spinodal vaporization, for the experimentally observed appearance of limiting excitation energy that can be thermalized by an exited nuclear system and the associated limiting temperature. It is shown that it is the thermal expansion that leads to volume boiling in an infinite matter and surface boiling in finite nuclei. The latter constitutes an important and universal, but hitherto unappreciated decay mode of highly excited nuclei, a mode here named surface spinodal vaporization. It is also shown that in iso-asymmetric systems, thermal expansion leads to what constitutes distillation - a decay mode here named distillative spinodal vaporization

  2. High-efficiency THz modulator based on phthalocyanine-compound organic films

    International Nuclear Information System (INIS)

    He, Ting; Zhang, Bo; Shen, Jingling; Zang, Mengdi; Chen, Tianji; Hu, Yufeng; Hou, Yanbing

    2015-01-01

    We report a high efficiency, broadband terahertz (THz) modulator following a study of phthalocyanine-compound organic films irradiated with an external excitation laser. Both transmission and reflection modulations of each organic/silicon bilayers were measured using THz time-domain and continuous-wave systems. For very low intensities, the experimental results show that AlClPc/Si can achieve a high modulation factor for transmission and reflection, indicating that AlClPc/Si has a superior modulation efficiency compared with the other films (CuPc and SnCl 2 Pc). In contrast, the strong attenuation of the transmitted and reflected THz waves revealed that a nonlinear absorption process takes place at the organic/silicon interface

  3. Total cross section of highly excited strings

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, I.

    1990-01-01

    The unpolarized total cross section for the joining of two highly excited strings is calculated. The calculation is performed by taking the average overall states in the given excitation levels of the initial strings. We find that the total cross section grows with the energy and momentum of the initial states. (author). 8 refs, 1 fig

  4. Energy dependence of the ionization of highly excited atoms by collisions with excited atoms

    International Nuclear Information System (INIS)

    Shirai, T.; Nakai, Y.; Nakamura, H.

    1979-01-01

    Approximate analytical expressions are derived for the ionization cross sections in the high- and low-collision-energy limits using the improved impulse approximation based on the assumption that the electron-atom inelastic-scattering amplitude is a function only of the momentum transfer. Both cases of simultaneous excitation and de-excitation of one of the atoms are discussed. The formulas are applied to the collisions between two excited hydrogen atoms and are found very useful for estimating the cross sections in the wide range of collisions energies

  5. High excitation ISM and gas

    NARCIS (Netherlands)

    Peeters, E; Martinez-Hernandez, NL; Rodriguez-Fernandez, NJ; Tielens, [No Value

    An overview is given of ISO results on regions of high excitation ISM and gas, i.e. H II regions, the Galactic Centre and Supernova Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarised, their diagnostic

  6. Excited state Intramolecular Proton Transfer in Anthralin

    DEFF Research Database (Denmark)

    Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens

    1998-01-01

    Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results in an unus......Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results......, associated with an excited-state intramolecular proton transfer process....

  7. Highly excited atoms

    International Nuclear Information System (INIS)

    Kleppner, D.; Littman, M.G.; Zimmerman, M.L.

    1981-01-01

    Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before

  8. High Excitation Gas and ISM

    Science.gov (United States)

    Peeters, E.; Martin-Hernandez, N. L.; Rodriguez-Fernandez, N. J.; Tielens, A. G. G. M.

    2004-01-01

    An overview is given of ISO results on regions of high excitation ISM and gas, i.e. HII regions, the Galactic Centre and Supernovae Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarized, their diagnostic capabilities illustrated and their implications highlighted.

  9. Towards a unified description of light ion fusion cross section excitation functions

    International Nuclear Information System (INIS)

    Zimmer, K.W.

    1995-01-01

    A description of light heavy-ion fusion, taking into account both entrance-channel characteristics and compound-nucleus properties, is derived within a unified theory of nuclear reactions. The dependence of the imaginary fusion potential on the level density of the compound nucleus is revealed. The 12 C + 12 C, 12 C + 14 N, 10 B + 16 O and 16 O + 16 O fusion cross sections are calculated for E cm ≤ 120 MeV and compared with experimental data. The excitation energy dependence of the level-density parameter of 24 Mg, 26 Al and 32 S is inferred below 5 MeV/A. A realistic nuclear level-density model, describing the experimental level-density parameters of highly excited nuclei, is shown to be consistent with both the global features and details of the fusion cross section. 12 C + 12 C and 16 O + 16 O fusion cross section oscillations are predicted at large excitation energies, reflecting the structure of the level density of the highly excited light compound nuclei. Differences of the 12 C + 14 N and 10 B + 16 O fusion reaction mechanisms are discussed in terms of specific entrance-channel characteristics. (orig.)

  10. Towards a unified description of light ion fusion cross section excitation functions

    International Nuclear Information System (INIS)

    Zimmer, K.W.; Rebel, H.

    1994-10-01

    A description of light heavy-ion fusion, taking into account both entrace-channel characteristics and compound-nucleus properties, is derived within a unified theory of nuclear reactions. The dependence of the imaginary fusion potential on the level density of the compound nucleus is revealed. The 12 C+ 12 C, 12 C+ 14 N, 10 B+ 16 O and 16 O+ 16 O fusion cross sections are calculated for E cm ≤120 MeV and compared with experimental data. The excitation energy dependence of the level-density parameter of 24 Mg, 26 Al and 32 S is inferred below 5 MeV/A. A realistic nuclear level-density model, describing the experimental level-density parameters of highly excited nuclei, is shown to be consistent with both the global features and details of the fusion cross section. 12 C+ 12 C and 16 O+ 16 O fusion cross section oscillations are predicted at large excitation energies, reflecting the structure of the level density of the highly excited light compound nuclei. Differences of the 12 C+ 14 N and 10 B+ 16 O fusion reaction mechanisms are discussed in terms of specific entrance-channel characteristics. (orig.)

  11. High-spin excitations of atomic nuclei

    International Nuclear Information System (INIS)

    Xu Furong; National Laboratory of Heavy Ion Physics, Lanzhou; Chinese Academy of Sciences, Beijing

    2004-01-01

    The authors used the cranking shell model to investigate the high-spin motions and structures of atomic nuclei. The authors focus the collective rotations of the A∼50, 80 and 110 nuclei. The A∼50 calculations show complicated g spectroscopy, which can have significant vibration effects. The A≅80 N≅Z nuclei show rich shape coexistence with prolate and oblate rotational bands. The A≅110 nuclei near the r-process path can have well-deformed oblate shapes that become yrast and more stable with increasing rotational frequency. As another important investigation, the authors used the configuration-constrained adiabatic method to calculate the multi-quasiparticle high-K states in the A∼130, 180 and superheavy regions. The calculations show significant shape polarizations due to quasi-particle excitations for soft nuclei, which should be considered in the investigations of high-K states. The authors predicted some important high-K isomers, e.g., the 8 - isomers in the unstable nuclei of 140 Dy and 188 Pb, which have been confirmed in experiments. In superheavy nuclei, our calculations show systematic existence of high-K states. The high-K excitations can increase the productions of synthesis and the survival probabilities of superheavy nuclei. (authors)

  12. High energy radiation effects on mechanical properties of butyl rubber compounds

    International Nuclear Information System (INIS)

    Pozenato, Cristina A.; Scagliusi, Sandra R.; Cardoso, Elisabeth C.L.; Lugao, Ademar B.

    2013-01-01

    The high energy radiation on butyl rubber compounds causes a number of chemical reactions that occur after initial ionization and excitation events. These reactions lead to changes in molecular mass of the polymer through scission and crosslinking of the molecules, being able to affect the physical and mechanical properties. Butyl rubber has excellent mechanical properties and oxidation resistance as well as low gas and water vapor permeability. Due to all these properties butyl rubber is widely used industrially and particularly in tires manufacturing. In accordance with various authors, the major effect of high energy, such as gamma rays in butyl rubber, is the yielding of free-radicals along with changes in mechanical properties. There were evaluated effects imparted from high energy radiation on mechanical properties of butyl rubber compounds, non-irradiated and irradiated with 25 kGy, 50 kGy, 150 kGy and 200 kGy. It was also observed a sharp reducing in stress rupture and elongation at break for doses higher than 50 kGy, pointing toward changes in polymeric chain along build-up of free radicals and consequent degradation. (author)

  13. The [NeIV] Lines in High Excitation Gaseous Nebulae.

    Science.gov (United States)

    Aller, L H

    1970-04-01

    The "forbidden" lines of three times ionized neon are among the most precious indicators of electron temperature and excitation. They are also predicted to be among the strongest lines observed in the far ultraviolet spectra of high excitation nebulae.

  14. Photoionization study of doubly-excited helium at ultra-high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kaindl, G.; Schulz, K.; Domke, M. [Freie Universitaet Berlin (Germany)] [and others

    1997-04-01

    Ever since the pioneering work of Madden & Codling and Cooper, Fano & Prats on doubly-excited helium in the early sixties, this system may be considered as prototypical for the study of electron-electron correlations. More detailed insight into these states could be reached only much later, when improved theoretical calculations of the optically-excited {sup 1}P{sup 0} double-excitation states became available and sufficiently high energy resolution ({delta}E=4.0 meV) was achieved. This allowed a systematic investigation of the double-excitation resonances of He up to excitation energies close to the double-ionization threshold, I{sub infinity}=79.003 eV, which stimulated renewed theoretical interest into these correlated electron states. The authors report here on striking progress in energy resolution in this grazing-incidence photon-energy range of grating monochromators and its application to hitherto unobservable states of doubly-excited He. By monitoring an extremely narrow double-excitation resonance of He, with a theoretical lifetime width of less than or equal to 5 {mu}eV, a resolution of {delta}E=1.0 meV (FWHM) at 64.1 eV could be achieved. This ultra-high spectral resolution, combined with high photon flux, allowed the investigation of new Rydberg resonances below the N=3 ionization threshold, I{sub 3}, as well as a detailed comparison with ab-initio calculations.

  15. vuv fluorescence from selective high-order multiphoton excitation of N2

    International Nuclear Information System (INIS)

    Coffee, Ryan N.; Gibson, George N.

    2004-01-01

    Recent fluorescence studies suggest that ultrashort pulse laser excitation may be highly selective. Selective high-intensity laser excitation holds important consequences for the physics of multiphoton processes. To establish the extent of this selectivity, we performed a detailed comparative study of the vacuum ultraviolet fluorescence resulting from the interaction of N 2 and Ar with high-intensity infrared ultrashort laser pulses. Both N 2 and Ar reveal two classes of transitions, inner-valence ns ' l ' . From their pressure dependence, we associate each transition with either plasma or direct laser excitation. Furthermore, we qualitatively confirm such associations with the time dependence of the fluorescence signal. Remarkably, only N 2 presents evidence of direct laser excitation. This direct excitation produces ionic nitrogen fragments with inner-valence (2s) holes, two unidentified transitions, and one molecular transition, the N 2 + :X 2 Σ g + 2 Σ u + . We discuss these results in the light of a recently proposed model for multiphoton excitation

  16. Parity dependence of the nuclear level density at high excitation

    International Nuclear Information System (INIS)

    Rao, B.V.; Agrawal, H.M.

    1995-01-01

    The basic underlying assumption ρ(l+1, J)=ρ(l, J) in the level density function ρ(U, J, π) has been checked on the basis of high quality data available on individual resonance parameters (E 0 , Γ n , J π ) for s- and p-wave neutrons in contrast to the earlier analysis where information about p-wave resonance parameters was meagre. The missing level estimator based on the partial integration over a Porter-Thomas distribution of neutron reduced widths and the Dyson-Mehta Δ 3 statistic for the level spacing have been used to ascertain that the s- and p-wave resonance level spacings D(0) and D(1) are not in error because of spurious and missing levels. The present work does not validate the tacit assumption ρ(l+1, J)=ρ(l, J) and confirms that the level density depends upon parity at high excitation. The possible implications of the parity dependence of the level density on the results of statistical model calculations of nuclear reaction cross sections as well as on pre-compound emission have been emphasized. (orig.)

  17. Dinamical polarizability of highly excited hydrogen-like states

    International Nuclear Information System (INIS)

    Delone, N.B.; Krajnov, V.P.

    1982-01-01

    Analytic expressions are derived for the dynamic polarizability of highly excited hydrogen-like atomic states. It is shown that in the composite matrix element which determines the dynamic polarizability there is a strong compensation of the terms as a result of which the resulting magnitude of the dynamic polarizability is quasiclasically small compared to the individual terms of the composite matrix. It is concluded that the resonance behaviour of the dynamic polarizability of highly excited states differs significantly from the resonance behaviour of the polarizability for the ground and low-lying atomic states. The static limit and high-frequency limit of on electromagnetic field are considered

  18. Effect of high-frequency excitation on natural frequencies of spinning discs

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2000-01-01

    The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural frequenc......The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural...

  19. Novel spin excitation in the high field phase of an S=1 antiferromagnetic chain

    International Nuclear Information System (INIS)

    Hagiwara, M.; Kashiwagi, T.; Kimura, S.; Honda, Z.; Kindo, K.

    2007-01-01

    We report the results of high-field multi-frequency ESR experiment on the S=1 Heisenberg antiferromagnetic chain Ni(C 5 H 14 N 2 ) 2 N 3 (PF 6 ) for the fields up to about 55T and the frequencies up to about 2THz. We have found that excitation branches above the critical field (H c ) where the energy gap closes change into one branch around 15T which becomes close to the paramagnetic line at high fields. The branch above 15T fits well the conventional antiferromagnetic resonance mode with easy planar anisotropy. We compare the results with those in a weakly coupled antiferromagnetic dimer compound KCuCl 3 and discuss the origin of the branches observed above H c

  20. On the description of the (HI, xn) reaction excitation functions for the case of weakly fissioning compound nuclei

    International Nuclear Information System (INIS)

    Kamanin, V.V.; Karamyan, S.A.

    1980-01-01

    A possibility to obtain parameters of nuclear temperature and critical angular momentum for the compound nucleus production on the base of the (HI, xn) reaction excitation function description are considered for the case of weakly fissioning nuclei. Experimental data on 152 Sm( 12 C, 2n) 162 Er, 148 Nd( 16 O, 3n) 161 Er, sup(150)Nd(sup(16)O, 3-5n)sup(163-161)Er, sup(148)Nd(sup(18)O, 4-5n)sup(162,161)Er, sup(118)Sn(sup(40)Ar, 5-6n)sup(153,152)Er and sup(74)Ge(sup(84)Kr, 5-6n)sup(153,152)Er reactions are discussed. The formulae, taking into accout the distribution of compound nuclei in angular momentum and competition between channels of the neutron and γ-ray emission, are given. The formulae are applied for the description of the excitation functions, characterized by a good accuracy of the particle energy measuring. A satisfactory accordance between the calculation and experiment is achieved. The conclusion on sensitivity of the nuclear temperature values to exact evaluation of competition between the neutron and γ-ray emission channels is drawn

  1. Multipole giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Xia Keding; Cai Yanhuang

    1989-01-01

    The isoscalar giant surface resonance and giant dipole resonance in highly excited nuclei are discussed. Excitation energies of the giant modes in 208 Pb are calculated in a simplified model, using the concept of energy wieghted sum rule (EWSR), and the extended Thomas-Fermi approximation at the finite temperature is employed to describe the finite temperature is employed to describe the finite temperature equilibrium state. It is shown that EWSR and the energy of the resonance depend only weakly on temperature in the system. This weak dependence is analysed

  2. Hyperon compound nucleus

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1987-11-01

    The formation of various hypernuclei from K - absorption at rest is discussed from the viewpoints of compound decay of highly excited hypernuclei in contrast to the direct reaction mechanism. Recent (stopped K - , π) experiments at KEK as well as old data of emulsion and bubble chamber experiments are discussed. Some future direction of hypernuclear spectroscopy is suggested. (author)

  3. Charge transfer and excitation in high-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Berkner, K.H.; McDonald, R.J.

    1986-11-01

    Coincidence measurements of charge transfer and simultaneous projectile electron excitation provide insight into correlated two-electron processes in energetic ion-atom collisions. Projectile excitation and electron capture can occur simultaneously in a collision of a highly charged ion with a target atom; this process is called resonant transfer and excitation (RTE). The intermediate excited state which is thus formed can subsequently decay by photon emission or by Auger-electron emission. Results are shown for RTE in both the K shell of Ca ions and the L shell of Nb ions, for simultaneous projectile electron loss and excitation, and for the effect of RTE on electron capture

  4. Correlation effects in high-Tc superconductors and heavy fermion compounds

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.

    1993-10-01

    This paper describes certain aspects of Highly Correlated Systems (HCS) such as high Tc superconductors (HTSC) and some new class of Heavy Fermion (HF) systems which have been studied recently. The problem is discussed on how the charge and spin degrees of freedom participate in the specific character of superconductivity in the copper oxides and competition of the magnetism and Kondo screening in heavy fermions. The electronic structure and possible superconducting mechanisms of HTSC compounds are discussed. The similarity and dissimilarity with HF compounds is pointed out. It is shown that the spins and carriers in the copper oxides are coupled in a very nontrivial way in order to introduce the discussion and the comparison of the Emery model, the t - J-model and the Kondo-Heisenberg model. It concerns attempts to derive from fundamental multi-band Hamiltonian the reduced effective Hamiltonians to extract and separate the relevant low-energy physics. A short review of the arguments which seem to support the spin-polaron pairing mechanism in HTSC are presented. Many other topics like the idea of mixed valence states in oxides, the role of charge transfer (CT) excitations, phase separation, self-consistent nonperturbative technique, etc. are also discussed. (author). 161 refs

  5. Consideration on excitation mechanisms in a high-power two-jet plasma

    International Nuclear Information System (INIS)

    Zaksas, Natalia P.; Gerasimov, Vladimir A.

    2013-01-01

    The study of excitation mechanisms in the region before the jet confluence of a high-power two-jet plasma used for analysis of different powders has been undertaken. Distribution of excited levels of Fe atoms and ions according to the Boltzmann population was found. Measuring Fe atomic and ionic excitation temperatures showed their considerable difference (≈ 2000–2500 K). The effect of argon on line intensities of a wide range of elements was investigated by the experiment with argon covering. A negligible effect of argon covering on line intensities of atoms with ionization energy of 8 eV was revealed. This is likely to be due to Penning ionization by metastable argon followed by ion recombination with an electron and stepwise de-excitations. A more pronounced effect of argon covering was observed for ionic lines of investigated elements with total excitation energy ranging from 11 to 21 eV. Penning ionization followed by electron impact is believed to be a probable mechanism for ion excitation. The contribution of metastable argon to excitation processes results in departure from local thermodynamic equilibrium and different atomic and ionic excitation temperatures. - Highlights: • Excitation mechanisms were investigated in a high-power TJP. • Boltzmann population of excited levels of Fe atoms and ions takes place. • The considerable difference in Fe atomic and ionic excitation temperatures occurs. • Argon covering was used to study the argon effect on line intensities. • Participation of metastable argon in atom ionization was shown

  6. MOSFET-based high voltage short pulse generator for ultrasonic transducer excitation

    Science.gov (United States)

    Hidayat, Darmawan; Setianto, Syafei, Nendi Suhendi; Wibawa, Bambang Mukti

    2018-02-01

    This paper presents the generation of a high-voltage short pulse for the excitation of high frequency ultrasonic transducers. This is highly required in the purpose of various ultrasonic-based evaluations, particularly when high resolution measurement is necessary. A high voltage (+760 V) DC voltage source was pulsated by an ultrafast switching MOSFET which was driven by a pulse generator circuit consisting of an astable multivibrator, a one-shot multivibrator with Schmitt trigger input and a high current MOSFET driver. The generated pulses excited a 200-kHz and a 1-MHz ultrasonic transducers and tested in the transmission mode propagation to evaluate the performances of the generated pulse. The test results showed the generator were able to produce negative spike pulses up to -760 V voltage with the shortest time-width of 107.1 nanosecond. The transmission-received ultrasonic waves show frequency oscillation at 200 and 961 kHz and their amplitudes varied with the voltage of excitation pulse. These results conclude that the developed pulse generator is applicable to excite transducer for the generation of high frequency ultrasonic waves.

  7. Fission-evaporation competition in excited uranium and fermium nuclei

    International Nuclear Information System (INIS)

    Sagajdak, R.N.; Chepigin, V.I.; Kabachenko, A.P.

    1997-01-01

    The production cross sections and excitation functions for the 223-226 U neutron deficient isotopes have been measured in the 20 Ne+ 208 Pb and 22 Ne+ 208 Pb reactions for (4,5)n and (4-7)n evaporation channels of the de-excitation of the compound nuclei 228 U* and 230 U*, respectively. The present study considers in addition the de-excitation via the (5,6)n evaporation channels of the 224 U* compound nucleus formed in the 27 Al+ 197 Au reaction. The production cross sections of 247g,246 Fm formed after evaporation of (5,6)n and (7,8)n from the 252 Fm* and 254 Fm* compound nuclei produced in the 20 Ne+ 232 Th and 22 Ne+ 232 Th reactions were also measured respectively. The evaporation residues emerging from the target were separated in-flight from the projectiles and background reaction products by the electrostatic recoil separator VASSILISSA [1]. The investigation regards the U and Fm compound nuclei in the 40-80 MeV excitation energy range. For the analysis of the (Hl, xn) evaporation cross sections the advanced statistical model [2] calculations were used. The angular momentum dependence of the shell correction to the fission barrier, and the effects of the nuclear viscosity and dynamical deformation for these fissile excited nuclei are considered. The n /Γ t > values at the initial steps of the de-excitation cascade for the U and Fm compound nuclei were derived from the measured excitation functions and discussed from the point of view of the consequences for the fission process dynamics

  8. Review of high excitation energy structures in heavy ion collisions: target excitations and three body processes

    International Nuclear Information System (INIS)

    Frascaria, N.

    1987-09-01

    A review of experimental results on high excitation energy structures in heavy ion inelastic scattering is presented. The contribution to the spectra of the pick-up break-up mechanism is discussed in the light of the data obtained with light heavy ion projectiles. Recent results obtained with 40 Ar beams at various energies will show that target excitations contribute strongly to the measured cross section

  9. Ultra-high resolution spectroscopy of the He doubly excited states

    International Nuclear Information System (INIS)

    Bozek, J.D.; Schlachter, A.S.; Kaindl, G.; Schulz, K.

    1995-11-01

    Photoionization spectra of the doubly-excited states of He were measured using beamline 9.0.1 at the Advanced Light Source. The beamline utilizes a 4.5 m long 8 cm period undulator as its source together with a spherical grating monochromator to provide an extremely bright source of photons in the range of 20 - 300 eV. A resolving power (E/ΔE) of 64,000 was obtained from the 1 MeV FWEM (2p,3d) doubly excited state resonance of He at 64.12 eV. The high brightness of the source and the very high quality optical elements of the beamline were all essential for achieving such a high resolution. The beamline components and operation are described and spectra of the double excitation resonances of He presented

  10. Complex fragment emission from hot compound nuclei

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1986-03-01

    The experimental evidence for compound nucleus emission of complex fragments at low energies is used to interpret the emission of the same fragments at higher energies. The resulting experimental picture is that of highly excited compound nuclei formed in incomplete fusion processes which decay statistically. In particular, complex fragments appear to be produced mostly through compound nucleus decay. In the appendix a geometric-kinematic theory for incomplete fusion and the associated momentum transfer is outlined. 10 refs., 19 figs

  11. Study of highly excited high spin states via the (HI, α) reaction

    International Nuclear Information System (INIS)

    Kubono, S.

    1982-01-01

    Three subjects are discussed in this paper. 1) The mechanism of (HI, α) reactions is briefly studied. 2) Possible excitation of molecular resonance states of 12 C- 12 C in 24 Mg through the 12 C( 16 O, α) 24 Mg reaction were investigated. A precise measurement of the level widths in 24 Mg did not support the previous report that the molecular states seen in 12 C + 12 C scattering had been excited in the transfer reaction 12 C( 16 O, α) 24 Mg. 3) Highly excited states in 28 Si, which have a large parentage of 12 C- 16 O, were also studied via the 12 C( 20 Ne, α) 28 Si reaction. An angular correlation measurement revealed the lowest 8 + and 10 + states at 14.00 and 15.97 MeV, respectively, which were selectively excited in the 12 C( 20 Ne, α) reaction. These results suggest a possible new band in 28 Si. (author)

  12. Strange effects of strong high-frequency excitation

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    Three general effects of mechanical high-frequency excitation (HFE) are described: Stiffening - an apparent change in the stiffness associated with an equilibrium; Biasing - a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening...

  13. Acoustic properties of perforates under high level multi-tone excitation

    OpenAIRE

    Bodén, Hans

    2013-01-01

    This paper discusses the effect of high level multi-tone acoustic excitation on the acoustic properties of perforates. It is based on a large experimental study of the nonlinear properties of these types of samples without mean grazing or bias flow. Compared to previously published results the present investigation concentrates on the effect of multiple harmonics. It is known from previous studies that high level acoustic excitation at one frequency will change the acoustic impedance of perfo...

  14. Speckle Reduction for Ultrasonic Imaging Using Frequency Compounding and Despeckling Filters along with Coded Excitation and Pulse Compression

    Directory of Open Access Journals (Sweden)

    Joshua S. Ullom

    2012-01-01

    Full Text Available A method for improving the contrast-to-noise ratio (CNR while maintaining the −6 dB axial resolution of ultrasonic B-mode images is proposed. The technique proposed is known as eREC-FC, which enhances a recently developed REC-FC technique. REC-FC is a combination of the coded excitation technique known as resolution enhancement compression (REC and the speckle-reduction technique frequency compounding (FC. In REC-FC, image CNR is improved but at the expense of a reduction in axial resolution. However, by compounding various REC-FC images made from various subband widths, the tradeoff between axial resolution and CNR enhancement can be extended. Further improvements in CNR can be obtained by applying postprocessing despeckling filters to the eREC-FC B-mode images. The despeckling filters evaluated were the following: median, Lee, homogeneous mask area, geometric, and speckle-reducing anisotropic diffusion (SRAD. Simulations and experimental measurements were conducted with a single-element transducer (f/2.66 having a center frequency of 2.25 MHz and a −3 dB bandwidth of 50%. In simulations and experiments, the eREC-FC technique resulted in the same axial resolution that would be typically observed with conventional excitation with a pulse. Moreover, increases in CNR of 348% were obtained in experiments when comparing eREC-FC with a Lee filter to conventional pulsing methods.

  15. International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.

    Science.gov (United States)

    Aller, L H; Keyes, C D

    1980-03-01

    Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation.

  16. Excitation of high density surface plasmon polariton vortex array

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2018-06-01

    This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.

  17. Statistical and direct decay of high-lying single-particle excitations

    International Nuclear Information System (INIS)

    Gales, S.

    1993-01-01

    Transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of high-lying excitations embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by microscopic nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured particle (n,p) decay branching ratios. The neutron and proton decay studies of high-lying single-particle states in heavy nuclei are presented. (author). 13 refs., 9 figs

  18. Luminescence of CsPbBr3 films under high-power excitation

    OpenAIRE

    高橋, 一彰; 斎藤, 忠昭; 近藤, 新一; 浅田, 拡志

    2004-01-01

    Highly excited photoluminescence of CsPbBr3 has been measured for thin films prepared by crystallization from the amorphous phase into microcrystalline/ polycrystalline states. With the increase of excitation intensity, there occurs jumping of the dominant emission band from a free-exciton band to a new band originating from exciton-exciton inelastic collision. Stimulated emission is observed for the new band at very low threshold excitation intensities of the order of 10kW/cm2.

  19. The giant quadrupole resonance in highly excited rotating nuclei

    International Nuclear Information System (INIS)

    Civitarese, O.; Furui, S.; Ploszajczak, M.; Faessler, A.

    1983-01-01

    The giant quadrupole resonance in highly excited, fast rotating nuclei is studied as a function of both the nuclear temperature and the nuclear angular momentum. The photo-absorption cross sections for quadrupole radiation in 156 Dy, 160 Er and 164 Er are evaluated within the linear response theory. The strength functions of the γ-ray spectrum obtained from the decay of highly excited nuclear states by deexcitation of the isoscalar quadrupole mode show a fine structure, which depends on the temperature T, the angular momentum I and the deformation of the nucleus β. The splitting of the modes associated with the signature-conserving and signature-changing components of the quadrupole field is discussed. (orig.)

  20. Breakdown of highly excited oxygen in a DC electric field

    International Nuclear Information System (INIS)

    Vagin, N.P.; Ionin, A.A.; Klimachev, Yu.M.; Sinitsin, D.V.; Yuryshev, N.N.; Deryugin, A.A.; Kochetov, I.V.; Napartovich, A.P.

    2000-01-01

    The breakdown of oxygen in a dc electric field is studied. A high concentration of oxygen molecules in the a 1 Δ g excited state is obtained in a purely chemical reactor. A decrease in the breakdown voltage at degrees of excitation exceeding 50% is observed. The theoretical decrement in the breakdown voltage obtained by solving the Boltzmann equation is in good agreement with the experimental data

  1. Application of Excitation from Multiple Locations on a Simplified High-Lift System

    Science.gov (United States)

    Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2004-01-01

    A series of active flow control experiments were recently conducted on a simplified high-lift system. The purpose of the experiments was to explore the prospects of eliminating all but simply hinged leading and trailing edge flaps, while controlling separation on the supercritical airfoil using multiple periodic excitation slots. Excitation was provided by three. independently controlled, self-contained, piezoelectric actuators. Low frequency excitation was generated through amplitude modulation of the high frequency carrier wave, the actuators' resonant frequencies. It was demonstrated, for the first time, that pulsed modulated signal from two neighboring slots interact favorably to increase lift. Phase sensitivity at the low frequency was measured, even though the excitation was synthesized from the high-frequency carrier wave. The measurements were performed at low Reynolds numbers and included mean and unsteady surface pressures, surface hot-films, wake pressures and particle image velocimetry. A modest (6%) increase in maximum lift (compared to the optimal baseline) was obtained due t o the activation of two of the three actuators.

  2. Spectrographic determination of lanthanides in high-purity uranium compounds, after chromatographic separation by alumina-hydrofluoric acid

    International Nuclear Information System (INIS)

    Lordello, A.R.; Abrao, A.

    1979-01-01

    A method is presented for the determination of fourteen rare earth elements in high-purity uranium compounds by emission spectrography. The rare earths are chromatographically separated from uranium by using alumina-hydrofluoric acid. Lanthanum is used both as collector and internal standard. The technique of excitation involves a total consumption of the sample in a 17 ampere direct current arc. The range of determination is about 0.005 to 0.5 μg/g uranium. The coefficient of variation for Pr, Ho, Dy, Er, Tm, Lu, Gd and Tb amounts to 10%. (Author) [pt

  3. Excited Atoms and Molecules in High Pressure Gas Discharges

    International Nuclear Information System (INIS)

    Vuskovic, L.; Popovic, S.

    2003-01-01

    Various types of high-pressure non-thermal discharges are increasingly drawing attention in view of many interesting applications. These, partially ionized media in non-equilibrium state, tend to generate complex effects that are difficult to interpret without a detailed knowledge of elementary processes involved. Electronically excited molecules and atoms may play an important role as intermediate states in a wide range of atomic and molecular processes, many of which are important in high-pressure discharges. They can serve also as reservoirs of energy or as sources of high energy electrons either through the energy pooling or through superelastic collisions. By presenting the analysis of current situation on the processes involving excited atoms and molecules of interest for high-pressure gas discharges, we will attempt to draw attention on the insufficiency of available data. In the same time we will show how to circumvent this situation and still be able to develop accurate models and interpretations of the observed phenomena

  4. El strength function at high spin and excitation energy

    International Nuclear Information System (INIS)

    Barrette, J.

    1983-04-01

    Recently giant dipole resonance-like concentration of the dipole strength function in nuclei was observed at both high excitation energies and high spins. This observation raises the possibility of obtaining new information on the shape of rapidly rotating heated nuclei. Recent experimental results on this subject are reviewed

  5. Splitting of the luminescent excited state of the uranyl ion

    International Nuclear Information System (INIS)

    Flint, C.D.; Sharma, P.; Tanner, P.A.

    1982-01-01

    The luminescence spectra of some uranyl compounds has been studied. It has been proposed that the splitting of the luminescent excited state of the uranyl ion is due to a descent in symmetry experienced by the uranyl ion when it is placed in a crystal field. In recent years there has been developed a highly successful model of the electronic structure of the uranyl ion. In this paper the authors use this model to interpret the luminescence spectra of a variety of uranyl compounds

  6. Mean excitation energies for use in Bethe's stopping-power formula

    International Nuclear Information System (INIS)

    Berger, M.J.; Seltzer, S.M.

    1983-01-01

    A review has been made of the mean excitation energies that can be derived from the analysis of stopping-power and range measurements, and from semi-empirical dipole oscillator-strength distributions for gases and dielectric-response functions for solids. On the basis of this review, mean excitation energies have been selected for 43 elemental substances and 54 compounds. Additivity rules have also been considered which allow one to estimate the mean excitation energies for compounds for which no direct data are available. These additivity rules are based on the use of mean excitation energies for atomic constituents which, to a certain extent, take into account the effects of chemical binding and physical aggregation

  7. Formation of excited states in high-Z helium-like systems

    International Nuclear Information System (INIS)

    Fritzsche, S.; Fricke, B.; Brinzanescu, O.

    1999-12-01

    High-Z helium-like ions represent the simplest multi-electron systems for studying the interplay between electron-electron correlations, relativistic as well as quantum electrodynamical effects in strong fields. In contrast to the adjacent lithium-like ions, however, almost no experimental information is available about the excited states in the high-Z domain of the helium sequence. Here, we present a theoretical analysis of the X-ray production and decay dynamics of the excited states in helium-like uranium. Emphasize has been paid particularly to the formation of the 3 P 0 and 3 P 2 levels by using electron capture into hydrogen-like U 91+ . Both states are of interest for precise measurements on high-Z helium-like ions in the future. (orig.)

  8. The structure of nuclear states at low, intermediate and high excitation energies

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1976-01-01

    It is shown that within the model based on the quasiparticle-phonon interaction one can obtain the description of few-quasiparticle components of nuclear states at low, intermediate and high excitation energies. For the low-lying states the energy of each level is calculated. The few-quasiparticle components at intermediate and high excitation energies are represented to be averaged in certain energy intervals and their characteri stics are given as the corresponding strength functions. The fragmentation of single-particle states in deformed nuclei is studied. It is shown that in the distribution of the single-particle strength alongside with a large maximum there appear local maxima and the distribution itself has a long tail. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reaction of the type (d,p) and (d,t). The s,- p,- and d-wave neutron strength functions are calculated at the neutron binding energy Bn. A satisfactory agreement with experiment is obtained. The energies and Elambda-strength functions for giant multipole resonances in deformed nuclei are calculated. The energies of giant quadrupole and octupole resonances are calculated. Their widths and fine structure are being studied. It is stated that to study the structure of highly excited states it is necessary to find the values of many-quasiparticle components of the wave functions. The ways of experimental determination of these components based on the study of γ-transitions between highly excited states are discussed

  9. Density-dependent phonoriton states in highly excited semiconductors

    International Nuclear Information System (INIS)

    Nguyen Hong Quang; Nguyen Minh Khue; Nguyen Que Huong

    1995-09-01

    The dynamical aspects of the phonoriton state in highly-photoexcited semiconductors is studied theoretically. The effect of the exciton-exciton interaction and nonbosonic character of high-density excitons are taken into account. Using Green's function method and within the Random Phase Approximation it is shown that the phonoriton dispersion and damping are very sensitive to the exciton density, characterizing the excitation degree of semiconductors. (author). 18 refs, 3 figs

  10. Systematic observation of tunneling field-ionization in highly excited Rb Rydberg atoms

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Tada, M.; Kominato, K.; Shibata, M.; Yamada, S.; Haseyama, T.; Ogawa, I.; Funahashi, H.; Yamamoto, K.; Matsuki, S.

    2002-01-01

    Pulsed field ionization of high-n (90≤n≤150) manifold states in Rb Rydberg atoms has been investigated in high slew-rate regime. Two peaks in the field ionization spectra were systematically observed for the investigated n region, where the field values at the lower peak do not almost depend on the excitation energy in the manifold, while those at the higher peak increase with increasing excitation energy. The fraction of the higher peak component to the total ionization signals increases with increasing n, exceeding 80% at n=147. Characteristic behavior of the peak component and the comparison with theoretical predictions indicate that the higher peak component is due to the tunneling process. The obtained results show that the tunneling process plays increasingly the dominant role at such highly excited nonhydrogenic Rydberg atoms

  11. High energy magnetic excitations

    International Nuclear Information System (INIS)

    Endoh, Yasuo

    1988-01-01

    The report emphasizes that the current development in condensed matter physics opens a research field fit to inelastic neutron scattering experiments in the eV range which is easilly accessed by spallation neutron sources. Several important subjects adopted at thermal reactors are shown. It is desired to extend the implementation of the spectroscopic experiments for investigation of higher energy magnetic excitations. For La 2 CuO 4 , which is the mother crystal of the first high Tc materials found by Bednortz and Muller, it seems to be believed that the magnetism is well characterized by the two-dimensional Heisenberg antiferromagnetic Hamiltonian, and it is widely accepted that the magnetism is a most probable progenitor of high Tc superconductors. The unusual properties of spin correlations in this crystal have been studied extensively by standard neutron scattering techniques with steady neutrons at BNL. FeSi is not ordered magnetically but shows a very unique feature of temperature induced magnetism, which also has been studied extensively by using the thermal neutron scattering technique at BNL. In these experiments, polarized neutrons are indispensable to extract the clean magnetic components out of other components of non-magnetic scattering. (N.K.)

  12. The remarkably high excitation planetary nebula GC 6537.

    Science.gov (United States)

    Aller, L H; Hung, S; Feibelman, W A

    1999-05-11

    NGC 6537 is an unusually high excitation point symmetric planetary nebula with a rich spectrum. Its kinematical structures are of special interest. We are here primarily concerned with the high resolution spectrum as revealed by the Hamilton echelle Spectrograph at Lick Observatory (resolution approximately 0.2 A) and supplemented by UV and near-UV data. These extensive data permit a determination of interstellar extinction, plasma diagnostics, and ionic concentrations. The photoionization models that have been used successfully for many planetary nebulae are not entirely satisfactory here. The plasma electron temperature of a photoionization model cannot much exceed 20,000 K, but plasma diagnostics show that regions emitting radiation of highly ionized atoms such as [NeIV] and [NeV] are much hotter, showing that shock excitation must be important, as suggested by the remarkable kinematics of this object. Hence, instead of employing a strict photoionization model, we are guided by the nebular diagnostics, which reveal how electron temperature varies with ionization potential and accommodates density effects. The predictions of the photoionization model may be useful in estimating ionization correction factor. In effect, we have estimated the chemical composition by using both photoionization and shock considerations.

  13. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    Some nontrivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial (depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based...... on a slightly modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical...

  14. Nonlinear phenomena in the highly excited state of C60

    International Nuclear Information System (INIS)

    Byrne, H.J.; Maser, W.K.; Kaiser, M.; Akselrod, L.; Anders, J.; Ruehle, W.W.; Zhou, X.Q.; Mittelbach, A.; Roth, S.

    1993-01-01

    Under high intensity illumination, the optical and electronic properties of fullerenes are seen to undergo dramatic, nonlinear changes. The photoluminescence emission is seen to increase with approximately the third power of the input intensity above an apparent threshold intensity. Associated with this nonlinear increase is the emergence of a long lifetime emission component and a redshifting of the emission spectrum. Above the threshold intensity the photoconductive response increases with approximately the cube of the input power. In the highly excited state, the photoconductive response becomes relatively temperature independent compared to the thermally activated behaviour observed at low intensities. The characteristics of the temperature dependence are associated with a metallic-like phase in the highly excited state and therefore an optically driven insulator to metal transition is proposed as a description of the observed phenomena. (orig.)

  15. Ionization of highly excited atoms by atomic particle impact

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1976-01-01

    The ionization of a highly excited atom by a collision with an atom or molecule is considered. The theory of these processes is presented and compared with experimental data. Cross sections and ionization potential are discussed. 23 refs

  16. Magnetic Excitations in α-RuCl3

    Science.gov (United States)

    Nagler, Stephen; Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Mandrus, David; Stone, Matthew; Aczel, Adam; Li, Ling; Yiu, Yuen; Lumsden, Mark; Knolle, Johannes; Moessner, Roderich; Tennant, Alan

    2015-03-01

    The layered material α-RuCl3 is composed of stacks of weakly coupled honeycomb lattices of octahedrally coordinated Ru3+ ions. The Ru ion ground state has 5 d electrons in the low spin state, with spin-orbit coupling very strong compared to other terms in the single ion Hamiltonian. The material is therefore an excellent candidate for investigating possible Heisenberg-Kitaev physics. In addition, this compound is very amenable to investigation by neutron scattering to explore the magnetic ground state and excitations in detail. Here we discuss new time-of-flight inelastic neutron scattering data on α-RuCl3. A high energy excitation near 200 meV is identified as a transition from the single ion J=1/2 ground state to the J=3/2 excited state, yielding a direct measurement of the spin orbit coupling energy. Higher resolution measurements reveal two collective modes at much lower energy scales. The results are compared with the theoretical expectations for excitations in the Heisenberg - Kitaev model on a honeycomb lattice, and show that Kitaev interactions are important. Research at SNS supported by the DOE BES Scientific User Facilities Division.

  17. Stand-alone front-end system for high- frequency, high-frame-rate coded excitation ultrasonic imaging.

    Science.gov (United States)

    Park, Jinhyoung; Hu, Changhong; Shung, K Kirk

    2011-12-01

    A stand-alone front-end system for high-frequency coded excitation imaging was implemented to achieve a wider dynamic range. The system included an arbitrary waveform amplifier, an arbitrary waveform generator, an analog receiver, a motor position interpreter, a motor controller and power supplies. The digitized arbitrary waveforms at a sampling rate of 150 MHz could be programmed and converted to an analog signal. The pulse was subsequently amplified to excite an ultrasound transducer, and the maximum output voltage level achieved was 120 V(pp). The bandwidth of the arbitrary waveform amplifier was from 1 to 70 MHz. The noise figure of the preamplifier was less than 7.7 dB and the bandwidth was 95 MHz. Phantoms and biological tissues were imaged at a frame rate as high as 68 frames per second (fps) to evaluate the performance of the system. During the measurement, 40-MHz lithium niobate (LiNbO(3)) single-element lightweight (<;0.28 g) transducers were utilized. The wire target measure- ment showed that the -6-dB axial resolution of a chirp-coded excitation was 50 μm and lateral resolution was 120 μm. The echo signal-to-noise ratios were found to be 54 and 65 dB for the short burst and coded excitation, respectively. The contrast resolution in a sphere phantom study was estimated to be 24 dB for the chirp-coded excitation and 15 dB for the short burst modes. In an in vivo study, zebrafish and mouse hearts were imaged. Boundaries of the zebrafish heart in the image could be differentiated because of the low-noise operation of the implemented system. In mouse heart images, valves and chambers could be readily visualized with the coded excitation.

  18. Nontrivial effects of high-frequency excitation for strongly damped mechanical systems

    DEFF Research Database (Denmark)

    Fidlin, Alexander; Thomsen, Jon Juel

    2008-01-01

    Some non-trivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based on a slightly...... modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical optimally...

  19. Fusion de-excitation process in heavy ion interactions

    International Nuclear Information System (INIS)

    Fleury, A.

    1979-01-01

    Various aspects of compound nucleus formation and de-excitation are analysed with particular emphasis on de-excitation by particle emission and fission. Calculations of level densities are described and the validity of various approximations studied. The explanatory and predictive possibilities of the statistical model are pointed out [fr

  20. Core excitation and de-excitation spectroscopies of free atoms and molecules

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2006-01-01

    This article provides a review of the current status of core excitation and de-excitation spectroscopy studies of free atoms molecules using a high-resolution soft X-ray monochromator and a high-resolution electron energy analyzer, installed in the soft X-ray photochemistry beam line at SPring-8. Experimental results are discussed for 1s excitation of Ne, O 1s excitation of CO and H 2 O, and F 1s excitation of CF 4 . (author)

  1. Production of autoionizing di-excited states of barium with high angular momentum

    International Nuclear Information System (INIS)

    Roussel, F.; Breger, P.; Gounand, F.; Spiess, G.

    1988-01-01

    Autoionizing di-excited states Ba(6p 1/2 27l) with 7 ≤l≤26, have been experimentally detected. They have been produced by a method combining excitation by two lasers and l-mixing collisions between barium and xenon. Results show that a long delay between the two laser excitation steps is favourable to the production of these states. The method has proved to be very efficient (measured cross-section: σ = 3.1 . 10 -13 cm 2 ) for populating high-angular-momentum autoionizing states of barium

  2. The millimeter-wave spectrum of highly vibrationally excited SiO

    International Nuclear Information System (INIS)

    Mollaaghababa, R.; Gottlieb, C.A.; Vrtilek, J.M.; Thaddeus, P.

    1991-01-01

    The millimeter-wave rotational spectra of SiO in high vibrational states (v = 0-40) in its electronic ground state were measured between 228 and 347 GHz in a laboratory discharge through SiH4 and CO. On ascending the vibrational ladder, populations decline precipitously for the first few levels, with a vibrational temperature of about 1000 K; at v of roughly 3, however, they markedly flatten out, and from there to v of roughly 40 the temperature is of the order of 10,000 K. With the Dunham coefficients determined here, the rotational spectrum of highly vibrationally excited SiO can now be calculated into the far-infrared to accuracies required for radioastronomy. Possible astronomical sources of highly vibrationally excited SiO are certain stellar atmospheres, ultracompact H II regions, very young supernova ejecta, and dense interstellar shocks. 16 refs

  3. Direct observation of low energy nuclear spin excitations in HoCrO3 by high resolution neutron spectroscopy.

    Science.gov (United States)

    Chatterji, T; Jalarvo, N; Kumar, C M N; Xiao, Y; Brückel, Th

    2013-07-17

    We have investigated low energy nuclear spin excitations in the strongly correlated electron compound HoCrO3. We observe clear inelastic peaks at E = 22.18 ± 0.04 μeV in both energy loss and gain sides. The energy of the inelastic peaks remains constant in the temperature range 1.5-40 K at which they are observed. The intensity of the inelastic peak increases at first with increasing temperature and then decreases at higher temperatures. The temperature dependence of the energy and intensity of the inelastic peaks is very unusual compared to that observed in other Nd, Co, V and also simple Ho compounds. Huge quasielastic scattering appears at higher temperatures presumably due to the fluctuating electronic moments of the Ho ions that get increasingly disordered at higher temperatures. The strong quasielastic scattering may also originate in the first Ho crystal-field excitations at about 1.5 meV.

  4. Wobbling excitations in odd-A nuclei with high-j aligned particles

    International Nuclear Information System (INIS)

    Hamamoto, Ikuko

    2002-01-01

    Using the particle-rotor model in which one high-j quasiparticle is coupled to the core of triaxial shape, wobbling excitations are studied. The family of wobbling phonon excitations can be characterized by: (a) very similar intrinsic structure while collective rotation shows the wobbling feature; (b) strong B(E2;I→I-1) values for Δn w =1 transitions where n w expresses the number of wobbling phonons. For the Fermi level lying below the high-j shell with the most favorable triaxiality γ≅+20 deg., the wobbling phonon excitations may be more easily identified close to the yrast line, compared with the Fermi level lying around the middle of the shell with γ≅-30 deg. The spectroscopic study of the yrast states for the triaxial shape with -60 deg. <γ<0 are illustrated by taking a representative example with γ=-30 deg., in which a quantum number related with the special symmetry is introduced to help the physics understanding

  5. High power electron beam accelerators for gas laser excitation

    International Nuclear Information System (INIS)

    Kelly, J.G.; Martin, T.H.; Halbleib, J.A.

    1976-06-01

    A preliminary parameter investigation has been used to determine a possible design of a high-power, relativistic electron beam, transversely excited laser. Based on considerations of present and developing pulsed power technology, broad area diode physics and projected laser requirements, an exciter is proposed consisting of a Marx generator, pulse shaping transmission lines, radially converging ring diodes and a laser chamber. The accelerator should be able to deliver approximately 20 kJ of electron energy at 1 MeV to the 10 4 cm 2 cylindrical surface of a laser chamber 1 m long and 0.3 m in diameter in 24 ns with very small azimuthal asymmetry and uniform radial deposition

  6. Dynamical analysis of highly excited molecular spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, M.E. [Univ. of Oregon, Eugene (United States)

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  7. High Tc Superconducting Magnet Excited by a Semiconductor Thermoelectric Element

    Science.gov (United States)

    Kuriyama, T.; Ono, M.; Tabe, S.; Oguchi, A.; Okamura, T.

    2006-04-01

    A high Tc superconducting (HTS) magnet excited by a thermal electromotive force of a thermoelectric element is studied. This HTS magnet has the advantages of compactness, lightweight and continuous excitation in comparison with conventional HTS magnets, because this HTS magnet does not need a large external power source. In this system, a heat input into the cryogenic environment is necessary to excite the thermoelectric element for constant operation. This heat generation, however, causes a rise in temperature of an HTS coil and reduces the system performance. In this paper, a newly designed magnet system which adopted a two-stage GM cryocooler was investigated. It enabled us to control the temperature of a thermoelectric element and that of an HTS coil independently. The temperature of the HTS coil could be kept at 10-20 K at the second stage of the GM cryocooler, while the thermoelectric element could be excited at higher temperature in the range of 50-70 K at the first stage, where the performance of the thermoelectric element was higher. The experimental results on this HTS magnet are shown and the possibility of the thermoelectric element as a main power source of the HTS magnets is discussed.

  8. High spin spectroscopy near the N=Z line: Channel selection and excitation energy systematics

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, C.E.; Cameron, J.A.; Flibotte, S. [McMaster Univ., Ontario (Canada)] [and others

    1996-12-31

    The total {gamma}-ray and charged-particle energies emitted in fusion-evaporation reactions leading to N=Z compound systems in the A = 50-70 mass region have been measured with the 8{pi} {gamma}-ray spectrometer and the miniball charged-particle detector array. A new method of channel selection has been developed which combines particle identification with these total energy measurements and greatly improves upon the selectivity possible with particle detection alone. In addition, the event by event measurement of total {gamma}-ray energies using the BGO ball of the 8{pi} spectrometer has allowed a determination of excitation energies following particle evaporation for a large number of channels in several different reactions. The new channel selection procedure and excitation energy systematics are illustrated with data from the reaction of {sup 24}Mg on {sup 40}Ca at E{sub lab} = 80MeV.

  9. Scattering of highly excited atoms

    International Nuclear Information System (INIS)

    Raith, W.

    1980-01-01

    Experimental methods to excite atomic beams into Rydberg states and the first results of collision experiments with such beams are reported. For further information see hints under relevant topics. (orig.) [de

  10. Comparison of excitation mechanisms in the analytical regions of a high-power two-jet plasma

    International Nuclear Information System (INIS)

    Zaksas, Natalia P.

    2015-01-01

    Excitation mechanisms in the analytical regions of a high-power two-jet plasma were investigated. A new plasmatron recently developed was applied in this work. The Boltzmann population of excited levels of Fe atoms and ions was observed in both analytical regions, before and after the jet confluence, as well as in the jet confluence, which proves excitation of atoms and ions by electron impact. The disturbance of local thermodynamic equilibrium in all regions of the plasma flow was deduced on the basis of considerable difference in Fe atomic and ionic excitation temperatures. Such a difference is most likely to be caused by contribution of metastable argon to atom ionization. The region before the jet confluence has the greatest difference in Fe atomic and ionic excitation temperatures and is more non-equilibrium than the region after the confluence due to comparatively low electron and high metastable argon concentrations. Low electron concentration in this region provides lower background emission than in the region after the jet confluence, which leads to better detection limits for the majority of elements. - Highlights: • Excitation mechanisms were investigated in the analytical regions of a high-power TJP. • Boltzmann population of excited levels of Fe atoms and ions takes place in all regions of the plasma flow. • The considerable difference in Fe atomic and ionic excitation temperatures occurs. • Penning ionization by metastable argon results in disturbance of LTE in the plasma. • The region before the jet confluence is more non-equilibrium than after that

  11. Carbon K-shell excitation in small molecules by high-resolution electron impact

    International Nuclear Information System (INIS)

    Tronc, M.; King, G.C.; Read, F.H.

    1979-01-01

    The excitation of 1s carbon electrons has been observed in C0, CH 4 , CF4, C0 2 , COS, C 2 H 2 and C 2 H 4 by means of the electron energy-loss technique with high resolution (70 meV in the 300 eV excitation energy range) and at an incident electron energy of 1.5 keV. The energies, widths and vibrational structures of excited states corresponding to the promotion of 1s carbon electrons to unoccupied valence and Rydberg orbitals have been obtained. The validity of the equivalent-core model, and the role of resonances caused by potential barriers, are discussed. (author)

  12. Formation and decay of a hot compound nucleus

    Directory of Open Access Journals (Sweden)

    Carlson B.V.

    2014-04-01

    Full Text Available The compound nucleus plays an important role in nuclear reactions over a wide range of projectile-target combinations and energies. The limits that angular momentum places on its formation and existence are, for the most part, well understood. The limits on its excitation energy are not as clear. Here we first analyze general geometrical and thermodynamical features of a hot compound nucleus. We then discuss the manners by which it can decay and close by speculating on the high energy limit to its formation and existence.

  13. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 3 presents essays on the chemical generation of excited states; the cis-trans isomerization of olefins; and the photochemical rearrangements in trienes. The book also includes essays on the zimmerman rearrangements; the photochemical rearrangements of enones; the photochemical rearrangements of conjugated cyclic dienones; and the rearrangements of the benzene ring. Essays on the photo rearrangements via biradicals of simple carbonyl compounds; the photochemical rearrangements involving three-membered rings or five-membered ring heterocycles;

  14. Light emitting diode excitation emission matrix fluorescence spectroscopy.

    Science.gov (United States)

    Hart, Sean J; JiJi, Renée D

    2002-12-01

    An excitation emission matrix (EEM) fluorescence instrument has been developed using a linear array of light emitting diodes (LED). The wavelengths covered extend from the upper UV through the visible spectrum: 370-640 nm. Using an LED array to excite fluorescence emission at multiple excitation wavelengths is a low-cost alternative to an expensive high power lamp and imaging spectrograph. The LED-EEM system is a departure from other EEM spectroscopy systems in that LEDs often have broad excitation ranges which may overlap with neighboring channels. The LED array can be considered a hybrid between a spectroscopic and sensor system, as the broad LED excitation range produces a partially selective optical measurement. The instrument has been tested and characterized using fluorescent dyes: limits of detection (LOD) for 9,10-bis(phenylethynyl)-anthracene and rhodamine B were in the mid parts-per-trillion range; detection limits for the other compounds were in the low parts-per-billion range (LED-EEMs were analyzed using parallel factor analysis (PARAFAC), which allowed the mathematical resolution of the individual contributions of the mono- and dianion fluorescein tautomers a priori. Correct identification and quantitation of six fluorescent dyes in two to six component mixtures (concentrations between 12.5 and 500 ppb) has been achieved with root mean squared errors of prediction (RMSEP) of less than 4.0 ppb for all components.

  15. Two-particle excitations in the Hubbard model for high-temperature superconductors. A quantum cluster study

    International Nuclear Information System (INIS)

    Brehm, Sascha

    2009-01-01

    Two-particle excitations, such as spin and charge excitations, play a key role in high-T c cuprate superconductors (HTSC). Due to the antiferromagnetism of the parent compound the magnetic excitations are supposed to be directly related to the mechanism of superconductivity. In particular, the so-called resonance mode is a promising candidate for the pairing glue, a bosonic excitation mediating the electronic pairing. In addition, its interactions with itinerant electrons may be responsible for some of the observed properties of HTSC. Hence, getting to the bottom of the resonance mode is crucial for a deeper understanding of the cuprate materials. To analyze the corresponding two-particle correlation functions we develop in the present thesis a new, non-perturbative and parameter-free technique for T=0 which is based on the Variational Cluster Approach (VCA, an embedded cluster method for one-particle Green's functions). Guided by the spirit of the VCA we extract an effective electron-hole vertex from an isolated cluster and use a fully renormalized bubble susceptibility χ 0 including the VCA one-particle propagators. Within our new approach, the magnetic excitations of HTSC are shown to be reproduced for the Hubbard model within the relevant strong-coupling regime. Exceptionally, the famous resonance mode occurring in the underdoped regime within the superconductivity-induced gap of spin-flip electron-hole excitations is obtained. Its intensity and hourglass dispersion are in good overall agreement with experiments. Furthermore, characteristic features such as the position in energy of the resonance mode and the difference of the imaginary part of the susceptibility in the superconducting and the normal states are in accord with Inelastic Neutron Scattering (INS) experiments. For the first time, a strongly-correlated parameter-free calculation revealed these salient magnetic properties supporting the S=1 magnetic exciton scenario for the resonance mode. Besides

  16. Study of the giant dipole resonance built on highly excited states in Sn and Dy nuclei

    International Nuclear Information System (INIS)

    Stolk, A.

    1988-01-01

    A study is presented of the giant dipole resonance built on highly excited states. The aim is to get more detailed information on the properties of the GDR and to use it as a tool for the investigation of nuclear structure at high excitation energy. The high energy γ-rays seen from the decay of excited state GDRs in heavy ion fusion reactions reflect the average properties of the states populated by the γ-emission. The measurements at different initial excitation energies of 114 Sn provide information on the nuclear level density near the particle separation energy at an average angular momentum of 10ℎ. The study of shape changes at very high spin in 152-156 Dy nuclei is presented. A theoretical model developed to describe fusion-evaporation reactions is presented. 149 refs.; 63 figs.; 13 tabs

  17. Is neutron evaporation from highly excited nuclei a poisson random process

    International Nuclear Information System (INIS)

    Simbel, M.H.

    1982-01-01

    It is suggested that neutron emission from highly excited nuclei follows a Poisson random process. The continuous variable of the process is the excitation energy excess over the binding energy of the emitted neutrons and the discrete variable is the number of emitted neutrons. Cross sections for (HI,xn) reactions are analyzed using a formula containing a Poisson distribution function. The post- and pre-equilibrium components of the cross section are treated separately. The agreement between the predictions of this formula and the experimental results is very good. (orig.)

  18. Kinetics of highly vibrationally excited O2(X) molecules in inductively-coupled oxygen plasmas

    Science.gov (United States)

    Annušová, Adriana; Marinov, Daniil; Booth, Jean-Paul; Sirse, Nishant; Lino da Silva, Mário; Lopez, Bruno; Guerra, Vasco

    2018-04-01

    The high degree of vibrational excitation of O2 ground state molecules recently observed in inductively coupled plasma discharges is investigated experimentally in more detail and interpreted using a detailed self-consistent 0D global kinetic model for oxygen plasmas. Additional experimental results are presented and used to validate the model. The vibrational kinetics considers vibrational levels up to v = 41 and accounts for electron impact excitation and de-excitation (e-V), vibration-to-translation relaxation (V-T) in collisions with O2 molecules and O atoms, vibration-to-vibration energy exchanges (V-V), excitation of electronically excited states, dissociative electron attachment, and electron impact dissociation. Measurements were performed at pressures of 10–80 mTorr (1.33 and 10.67 Pa) and radio frequency (13.56 MHz) powers up to 500 W. The simulation results are compared with the absolute densities in each O2 vibrational level obtained by high sensitivity absorption spectroscopy measurements of the Schumann–Runge bands for O2(X, v = 4–18), O(3 P) atom density measurements by two-photon absorption laser induced fluorescence (TALIF) calibrated against Xe, and laser photodetachment measurements of the O‑ negative ions. The highly excited O2(X, v) distribution exhibits a shape similar to a Treanor-Gordiets distribution, but its origin lies in electron impact e-V collisions and not in V-V up-pumping, in contrast to what happens in all other molecular gases known to date. The relaxation of vibrational quanta is mainly due to V-T energy-transfer collisions with O atoms and to electron impact dissociation of vibrationally excited molecules, e+O2(X, v)→O(3P)+O(3P).

  19. Magnetic excitations and amplitude fluctuations in insulating cuprates

    Science.gov (United States)

    Chelwani, N.; Baum, A.; Böhm, T.; Opel, M.; Venturini, F.; Tassini, L.; Erb, A.; Berger, H.; Forró, L.; Hackl, R.

    2018-01-01

    We present results from light scattering experiments on three insulating antiferromagnetic cuprates, YBa2Cu3O6.05 , Bi2Sr2YCu2O8 +δ , and La2CuO4 as a function of polarization and excitation energy using samples of the latest generation. From the raw data we derive symmetry-resolved spectra. The spectral shape in B1 g symmetry is found to be nearly universal and independent of excitation energy. The spectra agree quantitatively with predictions by field theory [Eur. Phys. J. B 88, 237 (2015), 10.1140/epjb/e2015-60438-1] facilitating the precise extraction of the Heisenberg coupling J . In addition, the asymmetric lineshape on the high-energy side is found to be related to amplitude fluctuations of the magnetization. In La2CuO4 alone, minor contributions from resonance effects may be identified. The spectra in the other symmetries are not universal. The variations may be traced back to weak resonance effects and extrinsic contributions. For all three compounds we find support for the existence of chiral excitations appearing as a continuum in A2 g symmetry having an onset slightly below 3 J . In La2CuO4 an additional isolated excitation appears on top of the A2 g continuum.

  20. Generation and decay dynamics of triplet excitons in Alq3 thin films under high-density excitation conditions.

    Science.gov (United States)

    Watanabe, Sadayuki; Furube, Akihiro; Katoh, Ryuzi

    2006-08-31

    We studied the generation and decay dynamics of triplet excitons in tris-(8-hydroxyquinoline) aluminum (Alq3) thin films by using transient absorption spectroscopy. Absorption spectra of both singlet and triplet excitons in the film were identified by comparison with transient absorption spectra of the ligand molecule (8-hydroxyquinoline) itself and the excited triplet state in solution previously reported. By measuring the excitation light intensity dependence of the absorption, we found that exciton annihilation dominated under high-density excitation conditions. Annihilation rate constants were estimated to be gammaSS = (6 +/- 3) x 10(-11) cm3 s(-1) for single excitons and gammaTT = (4 +/- 2) x 10(-13) cm3 s(-1) for triplet excitons. From detailed analysis of the light intensity dependence of the quantum yield of triplet excitons under high-density conditions, triplet excitons were mainly generated through fission from highly excited singlet states populated by singlet-singlet exciton annihilation. We estimated that 30% of the highly excited states underwent fission.

  1. Interqubit coupling mediated by a high-excitation-energy quantum object

    NARCIS (Netherlands)

    Ashhab, S.; Niskanen, A.O.; Harrabi, K.; Nakamura, Y.; Picot, T.; De Groot, P.C.; Harmans, C.J.P.M.; Mooij, J.E.; Nori, F.

    2008-01-01

    We consider a system composed of two qubits and a high excitation energy quantum object used to mediate coupling between the qubits. We treat the entire system quantum mechanically and analyze the properties of the eigenvalues and eigenstates of the total Hamiltonian. After reproducing well known

  2. X-ray absorption spectroscopy on high-temperature superconductors and related compounds

    International Nuclear Information System (INIS)

    Pellegrin, E.J.H.A.

    1995-07-01

    The electronic structure of the cuprate high-temperature superconductors La 2-x Sr x CuO 4+δ , Tl 2 Ba 2 CaCu 2 O 8 and Tl 2 Ba 2 Ca 2 Cu 3 O 10 has been investigated using polarization-dependent near-edge X-ray absorption fine structure spectroscopy (NEXAFS). In addition, La 2-x Sr x NiO 4+δ has been included in the actual study as an isostructural analogue to the La 2-x Sr x CuO 4+δ system. It appears that the electronic structure of these compounds corresponds to that of a p-type doped charge-transfer insulator including electron-electron interactions on the Cu(Ni) sites and a strong hybridization between Cu(Ni) and O atoms. It is concluded that the low-energy excitations in these compounds can be described on the basis of an effective one-band Mott-Hubbard model. The polarization-dependence of the above spectra gives evidence for the strong in-plane character of the intrinsic and the doped holes. The small amount and the doping-dependence of the out-of-plane character of these charge carriers rule out models for a microscopic mechanism of superconductivity based on a large amount of hole states in the corresponding Apex-O2p z /Cu3d 3z 2 -r 2 orbitals. On the other hand, the reduction of this anisotropy in the overdoped compounds together with similar findings in the macroscopic properties seems to indicate a detrimental influence of non-planar orbitals on the superconducting properties. The differences in the energetic ordering and atomic character of the states close to the Fermi level between the undoped compounds La 2 CuO 4+δ , La 2 NiO 4+δ , and NiO have been determined from the NEXAFS data. It is found that these differences can be explained by the different size of the tetragonal crystal field splitting E Z compared to that of the Hund's rule interaction J H in these systems. This gives evidence for the high-spin d 8 ground state of the undoped nickelates (i.e. J H >E Z ). It is suggested that the polarons in La 2-x Sr x NiO 4+δ can be seen as non

  3. Elementary excitations in nuclei

    International Nuclear Information System (INIS)

    Lemmer, R.H.

    1987-01-01

    The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited

  4. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  5. Influence of collective excitations on preequilibrium and equilibrium processes

    International Nuclear Information System (INIS)

    Ignatyuk, A.V.; Lunev, V.P.

    1991-01-01

    In all models used for calculations of nuclear cross sections, the reaction mechanisms are separated into one-step and multistep direct, multistep compound, preequilibrium and compound equilibrium. However, essential variances in estimates of the direct and preequilibrium process contributions still exist. This paper presents a demonstration of the connection of these variances with the influence of collective excitations on the direct and compound processes. (author). 13 refs, 8 figs

  6. The temperature dependence of giant resonances in high-excited nucleus

    International Nuclear Information System (INIS)

    Li Ming; Song Hongqiu

    1991-01-01

    The Hartree-Fock equation and the linear response theory in finite temperature are used to calculate the positions and transition strenghths of the giant resonances of high-excited nucleus Pb 208 . The result shows a downward shift and a broadening of the giant resonance energies as temperatrue increases

  7. On the nature of highly vibrationally excited states of thiophosgene

    Indian Academy of Sciences (India)

    Understanding the nature of the highly excited molecu- lar eigenstates is equivalent to deciphering the mecha- nism of intramolecular vibrational energy redistribution. (IVR) occurring in the molecule.1 However, the assign- ment of eigenstates is far from simple. The existence of and interplay of several strong anharmonic ...

  8. Transformations in refractory compounds, caused by high pressures and temperatures

    International Nuclear Information System (INIS)

    Zajnulin, Yu.G.; Alyamovskij, S.I.; Shvejkin, G.P.

    1979-01-01

    Considered is the effect of high pressures and temperatures on structural features of refractory carbides, nitrides and monooxides of transition metals. The results are discussed on the basis of one component of the theory on daltonides and bertollides by N.S. Kurnakov - the theory of imaginary compounds, developed by G.B. Bokij. Several new ideas, resulting from this consideration, are formulated, It is shown that at high pressures and temperatures it is possible to obtain new electron modifications of compounds and to expand sufficiently the region of the existance of variable composition phases. The concept on imaginary compounds is shown to be true. A supposition is made on realization of numerous imaginary compounds at high pressures and temperatures. Other ways of production of imaginary compounds are recommended

  9. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  10. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    Woodroffe, J.A.; Keck, J.C.

    1979-01-01

    Vibrational excitation of molecules having components of a selected isotope type is used to produce a conversion from vibrational to translational excitation of the molecules by collision with the molecules of a heavy carrier gas. The resulting difference in translaton between the molecules of the selected isotope type and all other molecules of the same compound permits their separate collection. When applied to uranium enrichment, a subsonic cryogenic flow of molecules of uranium hexafluoride in combination with an argon carrier gas is directed through a cooled chamber that is illuminated by laser radiaton tuned to vibrationally excite the uranium hexafluoride molecules of a specific uranium isotope. The excited molecules collide with carrier gas molecules, causing a conversion of the excitation energy into a translation of the excited molecule, which results in a higher thermal energy or diffusivity than that of the other uranium hexafluoride molecules. The flowing molecules including the excited molecules directly enter a set of cryogenically cooled channels. The higher thermal velocity of the excited molecules increases the probability of their striking a collector surface. The molecules which strike this surface immediately condense. After a predetermined thickness of molecules is collected on the surface, the flow of uranium hexafluoride is interrupted and the chamber heated to the point of vaporization of the collected hexafluoride, permitting its removal. (LL)

  11. Radiance limits of ceramic phosphors under high excitation fluxes

    Science.gov (United States)

    Lenef, Alan; Kelso, John; Zheng, Yi; Tchoul, Maxim

    2013-09-01

    Ceramic phosphors, excited by high radiance pump sources, offer considerable potential for high radiance conversion. Interestingly, thermodynamic arguments suggest that the radiance of the luminescent spot can even exceed that of the incoming light source. In practice, however, thermal quenching and (non-thermal) optical saturation limit the maximum attainable radiance of the luminescent source. We present experimental data for Ce:YAG and Ce:GdYAG ceramics in which these limits have been investigated. High excitation fluxes are achieved using laser pumping. Optical pumping intensities exceeding 100W/mm2 have been shown to produce only modest efficiency depreciation at low overall pump powers because of the short Ce3+ lifetime, although additional limitations exist. When pump powers are higher, heat-transfer bottlenecks within the ceramic and heat-sink interfaces limit maximum pump intensities. We find that surface temperatures of these laser-pumped ceramics can reach well over 150°C, causing thermal-quenching losses. We also find that in some cases, the loss of quantum efficiency with increasing temperature can cause a thermal run-away effect, resulting in a rapid loss in converted light, possibly over-heating the sample or surrounding structures. While one can still obtain radiances on the order of many W/mm2/sr, temperature quenching effects ultimately limit converted light radiance. Finally, we use the diffusion-approximation radiation transport models and rate equation models to simulate some of these nonlinear optical pumping and heating effects in high-scattering ceramics.

  12. New properties of giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Morsch, H.P.

    1991-01-01

    Studies on the giant dipole resonance in very hot nuclei investigated in heavy ion-induced particle-γ coincidence experiments are reviewed. A signature is found in the γ-decay of excited nuceli which shows direct decay of the giant dipole resonance. This provides a new dimension in giant resonance studies and the possibility to study the dependence of giant resonance energy, width and sum rule strength on excitation energy and rotation of the system. Further, the fact that the giant resonance splits in deformed nuclei provides a unique way to get information on the shape of hot nuclei. First results are obtained on the following questions: (i)What is the nuclear shape at high temperature (T≥2 MeV)? (ii)Is there a phase transition in the nuclear shape at T∼1.7 MeV? (iii)Does motional narrowing exist in hot nuclei? (author). 19 refs., 11 figs

  13. Can Measured Synergy Excitations Accurately Construct Unmeasured Muscle Excitations?

    Science.gov (United States)

    Bianco, Nicholas A; Patten, Carolynn; Fregly, Benjamin J

    2018-01-01

    Accurate prediction of muscle and joint contact forces during human movement could improve treatment planning for disorders such as osteoarthritis, stroke, Parkinson's disease, and cerebral palsy. Recent studies suggest that muscle synergies, a low-dimensional representation of a large set of muscle electromyographic (EMG) signals (henceforth called "muscle excitations"), may reduce the redundancy of muscle excitation solutions predicted by optimization methods. This study explores the feasibility of using muscle synergy information extracted from eight muscle EMG signals (henceforth called "included" muscle excitations) to accurately construct muscle excitations from up to 16 additional EMG signals (henceforth called "excluded" muscle excitations). Using treadmill walking data collected at multiple speeds from two subjects (one healthy, one poststroke), we performed muscle synergy analysis on all possible subsets of eight included muscle excitations and evaluated how well the calculated time-varying synergy excitations could construct the remaining excluded muscle excitations (henceforth called "synergy extrapolation"). We found that some, but not all, eight-muscle subsets yielded synergy excitations that achieved >90% extrapolation variance accounted for (VAF). Using the top 10% of subsets, we developed muscle selection heuristics to identify included muscle combinations whose synergy excitations achieved high extrapolation accuracy. For 3, 4, and 5 synergies, these heuristics yielded extrapolation VAF values approximately 5% lower than corresponding reconstruction VAF values for each associated eight-muscle subset. These results suggest that synergy excitations obtained from experimentally measured muscle excitations can accurately construct unmeasured muscle excitations, which could help limit muscle excitations predicted by muscle force optimizations.

  14. Vibrational-rotational excitation: chemical reactions of vibrationally excited molecules

    International Nuclear Information System (INIS)

    Moore, C.B.; Smith, I.W.M.

    1979-03-01

    This review considers a limited number of systems, particularly gas-phase processes. Excited states and their preparation, direct bimolecular reactions, reactions of highly excited molecules, and reactions in condensed phases are discussed. Laser-induced isotope separation applications are mentioned briefly. 109 references

  15. Electron energy distributions and excitation rates in high-frequency argon discharges

    International Nuclear Information System (INIS)

    Ferreira, C.M.; Loureiro, J.

    1983-06-01

    The electron energy distribution functions and rate coefficients for excitation and ionisation in argon under the action of an uniform high-frequency electric field were calculated by numerically solving the homogeneous Boltzmann equation. Analytic calculations in the limiting cases ω>>νsub(c) and ω<<νsub(c), where ω is the wave angular frequency and νsub(c) is the electron-neutral collision frequency for momentum transfer, are also presented and shown to be in very good agreement with the numerical computations. The results reported here are relevant for the modelling of high-frequency discharges in argon and, in particular, for improving recent theoretical descriptions of a plasma column sustained by surface microwaves. The properties of surface wave produced plasmas make them interesting as possible substitutes for other more conventional plasma sources for such important applications as plasma chemistry laser excitation, plasma etching spectroscopic sources etc...

  16. Collective and single-particle states at high excitation energy

    International Nuclear Information System (INIS)

    Van den Berg, A.M.; Van der Molen, H.K.T.; Harakeh, M.N.; Akimune, H.; Daito, I.; Fujimura, H.; Fujiwara, M.; Ihara, F.; Inomata, T.

    2000-01-01

    Complete text of publication follows. Damping of high-lying single-particle states was investigated by the study of proton decay from high-lying states in 91 Nb, populated by the 90 Zr(α,t) reaction with E α = 180 MeV. In addition to decay to the ground state of 90 Zr, semi-direct decay was observed to the low-lying (2 + and 3 - ) phonon states, confirming the conclusion from other experiments that these phonon states play an important role in the damping process of the single-particle states. Furthermore, the population and decay of Isobaric Analogue States of 91 Zr, which are located at an excitation energy of about 10 - 12 MeV in 91 Nb, has been studied in the same reaction. (author)

  17. Persistent abnormalities of membrane excitability in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    The purpose of our study was to assess by threshold tracking internodal and nodal membrane excitability during the maturation process after tibial nerve crush in cat. Various excitability indices (EI) were computed non-invasively by comparing the threshold of a submaximal compound motor potential...

  18. Powerful highly efficient KrF lamps excited by surface and barrier discharges

    International Nuclear Information System (INIS)

    Borisov, V M; Vodchits, V A; El'tsov, A V; Khristoforov, O B

    1998-01-01

    An investigation was made of the characteristics of KrF lamps with different types of excitation by surface and barrier discharges in which the dielectric material was sapphire. The conditions were determined for the attainment of an extremely high yield of the KrF* fluorescence with the internal efficiency η in ∼30 % and 22% for pulsed surface and barrier discharges, respectively. A homogeneous surface discharge was maintained without gas circulation when the pulse repetition rate was 5 x 10 4 Hz. Quasicontinuous excitation of a surface discharge at near-atmospheric pressure made it possible to reach a KrF* fluorescence power density of about 80 W cm -3 , which was close to the limit set by the kinetics of the gaseous medium. Under prolonged excitation conditions the intensity of the UV output radiation was limited by the permissible heating of the gas to a temperature above which the operating life of the gaseous mixture containing fluorine fell steeply. This was the reason for the advantage of surface over barrier discharges: the former were characterised by a high thermal conductivity of a thin (∼0.2 mm) plasma layer on the surface of the cooled dielectric, which made it possible to construct powerful highly efficient KrF and ArF lamps emitting UV radiation of up to 1 W cm -2 intensity. (laser system components)

  19. Resonance Excitation of Longitudinal High Order Modes in Project X Linac

    Energy Technology Data Exchange (ETDEWEB)

    Khabiboulline, T.N.; Sukhanov, A.AUTHOR = Awida, M.; Gonin, I.; Lunin, A.AUTHOR = Solyak, N.; Yakovlev, V.; /Fermilab

    2012-05-01

    Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

  20. Resonance Excitation of Longitudinal High Order Modes in Project X Linac

    International Nuclear Information System (INIS)

    Gonin, I.V.; Khabiboulline, T.N.; Lunin, A.; Solyak, N.; Sukhanov, A.I.; Yakovlev, V.P.; Awida, M.H.

    2012-01-01

    Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

  1. Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN

    Science.gov (United States)

    Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G. A.; García-Burillo, S.; van der Werf, P.; Neri, R.; Spaans, M.; Combes, F.; Viti, S.; Mühle, S.; Armus, L.; Evans, A.; Sturm, E.; Cernicharo, J.; Henkel, C.; Greve, T. R.

    2015-12-01

    We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback. Based on observations carried out with the IRAM Plateau de Bure and ALMA Interferometers. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA

  2. Portable vibration exciter

    Science.gov (United States)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  3. Raman scattering in transition metal compounds: Titanium and compounds of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Ederer, D.L.; Shu, T. [Tulane Univ., New Orleans, LA (United States)] [and others

    1997-04-01

    The transition metal compounds form a very interesting and important set of materials. The diversity arises from the many states of ionization the transition elements may take when forming compounds. This variety provides ample opportunity for a large class of materials to have a vast range of electronic and magnetic properties. The x-ray spectroscopy of the transition elements is especially interesting because they have unfilled d bands that are at the bottom of the conduction band with atomic like structure. This group embarked on the systematic study of transition metal sulfides and oxides. As an example of the type of spectra observed in some of these compounds they have chosen to showcase the L{sub II, III} emission and Raman scattering in some titanium compounds obtained by photon excitation.

  4. Active Control of High-Speed Free Jets Using High-Frequency Excitation

    Science.gov (United States)

    Upadhyay, Puja

    Control of aerodynamic noise generated by high-performance jet engines continues to remain a serious problem for the aviation community. Intense low frequency noise produced by large-scale coherent structures is known to dominate acoustic radiation in the aft angles. A tremendous amount of research effort has been dedicated towards the investigation of many passive and active flow control strategies to attenuate jet noise, while keeping performance penalties to a minimum. Unsteady excitation, an active control technique, seeks to modify acoustic sources in the jet by leveraging the naturally-occurring flow instabilities in the shear layer. While excitation at a lower range of frequencies that scale with the dynamics of large-scale structures, has been attempted by a number of studies, effects at higher excitation frequencies remain severely unexplored. One of the major limitations stems from the lack of appropriate flow control devices that have sufficient dynamic response and/or control authority to be useful in turbulent flows, especially at higher speeds. To this end, the current study seeks to fulfill two main objectives. First, the design and characterization of two high-frequency fluidic actuators (25 and 60 kHz) are undertaken, where the target frequencies are guided by the dynamics of high-speed free jets. Second, the influence of high-frequency forcing on the aeroacoustics of high-speed jets is explored in some detail by implementing the nominally 25 kHz actuator on a Mach 0.9 (Re D = 5 x 105) free jet flow field. Subsequently, these findings are directly compared to the results of steady microjet injection experiments performed in the same rig and to prior jet noise control studies, where available. Finally, limited acoustic measurements were also performed by implementing the nominally 25 kHz actuators on jets at higher Mach numbers, including shock containing jets, and elevated temperatures. Using lumped element modeling as an initial guide, the current

  5. Modernization of the Control Systems of High-Frequency, Brush-Free, and Collector Exciters of Turbogenerators

    Energy Technology Data Exchange (ETDEWEB)

    Popov, E. N., E-mail: enpo@ruselmash.ru; Komkov, A. L.; Ivanov, S. L.; Timoshchenko, K. P. [JSC “Scientific and Industrial Enterprise “Rusélprom-Élektromash” (Russian Federation)

    2016-11-15

    Methods of modernizing the regulation systems of electric machinery exciters with high-frequency, brush-free, and collector exciters by means of microprocessor technology are examined. The main problems of modernization are to increase the response speed of a system and to use a system stabilizer to increase the stability of the power system.

  6. Excited baryon form factors at high Q2

    International Nuclear Information System (INIS)

    Paul Stoler; Gary Adams; Abdellah Ahmidouch; Chris Armstrong; K. Assamagan; Steven Avery; K. Baker; Peter Bosted; Volker Burkert; Jim Dunne; Tom Eden; Rolf Ent; V. Frolov; David Gaskell; P. Gueye; Wendy Hinton; Cynthia Keppel; Wooyoung Kim; Michael Klusman; Doug Koltenuk; David Mack; Richard Madey; David Meekins; Ralph Minehart; Joseph Mitchell; Hamlet Mkrtchyan; James Napolitano; Gabriel Niculescu; Ioana Niculescu; Mina Nozar; John Price; Paul Stoler; Vardan Tadevosyan; Liguang Tang; Michael Witkowski; Stephen Wood

    1998-01-01

    The role of resonance electroproduction at high Q 2 is discussed in the context of exclusive reactions, as well as the alternative theoretical models which are proposed to treat exclusive reactions in the few GeV 2 /c 2 region of momentum transfer. Jefferson Lab experiment 94-014, which measured the excitation of the Delta (1232) and S 11 (1535) via the reactions p(e,e ' p)pi 0 and p(e,e ' p)eta respectively at Q 2 ∼ 2.8 and 4 GeV 2 /c 2 is described, and the state of analysis reported

  7. High PRF ultrafast sliding compound doppler imaging: fully qualitative and quantitative analysis of blood flow

    Science.gov (United States)

    Kang, Jinbum; Jang, Won Seuk; Yoo, Yangmo

    2018-02-01

    Ultrafast compound Doppler imaging based on plane-wave excitation (UCDI) can be used to evaluate cardiovascular diseases using high frame rates. In particular, it provides a fully quantifiable flow analysis over a large region of interest with high spatio-temporal resolution. However, the pulse-repetition frequency (PRF) in the UCDI method is limited for high-velocity flow imaging since it has a tradeoff between the number of plane-wave angles (N) and acquisition time. In this paper, we present high PRF ultrafast sliding compound Doppler imaging method (HUSDI) to improve quantitative flow analysis. With the HUSDI method, full scanline images (i.e. each tilted plane wave data) in a Doppler frame buffer are consecutively summed using a sliding window to create high-quality ensemble data so that there is no reduction in frame rate and flow sensitivity. In addition, by updating a new compounding set with a certain time difference (i.e. sliding window step size or L), the HUSDI method allows various Doppler PRFs with the same acquisition data to enable a fully qualitative, retrospective flow assessment. To evaluate the performance of the proposed HUSDI method, simulation, in vitro and in vivo studies were conducted under diverse flow circumstances. In the simulation and in vitro studies, the HUSDI method showed improved hemodynamic representations without reducing either temporal resolution or sensitivity compared to the UCDI method. For the quantitative analysis, the root mean squared velocity error (RMSVE) was measured using 9 angles (-12° to 12°) with L of 1-9, and the results were found to be comparable to those of the UCDI method (L  =  N  =  9), i.e.  ⩽0.24 cm s-1, for all L values. For the in vivo study, the flow data acquired from a full cardiac cycle of the femoral vessels of a healthy volunteer were analyzed using a PW spectrogram, and arterial and venous flows were successfully assessed with high Doppler PRF (e.g. 5 kHz at L

  8. High PRF ultrafast sliding compound doppler imaging: fully qualitative and quantitative analysis of blood flow.

    Science.gov (United States)

    Kang, Jinbum; Jang, Won Seuk; Yoo, Yangmo

    2018-02-09

    Ultrafast compound Doppler imaging based on plane-wave excitation (UCDI) can be used to evaluate cardiovascular diseases using high frame rates. In particular, it provides a fully quantifiable flow analysis over a large region of interest with high spatio-temporal resolution. However, the pulse-repetition frequency (PRF) in the UCDI method is limited for high-velocity flow imaging since it has a tradeoff between the number of plane-wave angles (N) and acquisition time. In this paper, we present high PRF ultrafast sliding compound Doppler imaging method (HUSDI) to improve quantitative flow analysis. With the HUSDI method, full scanline images (i.e. each tilted plane wave data) in a Doppler frame buffer are consecutively summed using a sliding window to create high-quality ensemble data so that there is no reduction in frame rate and flow sensitivity. In addition, by updating a new compounding set with a certain time difference (i.e. sliding window step size or L), the HUSDI method allows various Doppler PRFs with the same acquisition data to enable a fully qualitative, retrospective flow assessment. To evaluate the performance of the proposed HUSDI method, simulation, in vitro and in vivo studies were conducted under diverse flow circumstances. In the simulation and in vitro studies, the HUSDI method showed improved hemodynamic representations without reducing either temporal resolution or sensitivity compared to the UCDI method. For the quantitative analysis, the root mean squared velocity error (RMSVE) was measured using 9 angles (-12° to 12°) with L of 1-9, and the results were found to be comparable to those of the UCDI method (L  =  N  =  9), i.e.  ⩽0.24 cm s -1 , for all L values. For the in vivo study, the flow data acquired from a full cardiac cycle of the femoral vessels of a healthy volunteer were analyzed using a PW spectrogram, and arterial and venous flows were successfully assessed with high Doppler PRF (e.g. 5 kHz at L

  9. Excite fermions in polarized eγ collisions

    International Nuclear Information System (INIS)

    Eboli, O.J.P.

    1994-01-01

    We investigate some consequences of excite leptons with 1/2 and 3/2 spins predicted by compound models in eγ collisions. Also we examine the possibility of the next generation of linear accelerators, with polarized beams, to provide information on the spin and these particle coupling

  10. Measurement of light charged particles in the decay channels of medium-mass excited compound nuclei

    Directory of Open Access Journals (Sweden)

    Valdré S.

    2014-03-01

    Indeed, in this mass region (A ~ 100 models predict that shape transitions can occur at high spin values and relatively scarce data exist in the literature about coincidence measurements between evaporation residues and light charged particles. Signals of shape transitions can be found in the variations of the lineshape of high energy gamma rays emitted from the de-excitation of GDR states gated on different region of angular momenta. For this purpose it is important to keep under control the FE and FF processes, to regulate the statistical model parameters and to control the onset of possible pre-equilibrium emissions from 300 to 600 MeV bombarding energy.

  11. Concluding remarks of international symposium on highly excited states in nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, A. M.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    This is the concluding remarks in the international symposium on highly excited states in nuclear reactions. The remarks concentrate on the giant quadrupole states. In the framework of the distorted wave Born approximation (DWB), the differential cross section can be deduced. The relevant transition matrix elements are defined, and the quantities which are measured in inelastic hadron (h, h') reactions are shown. These are used to obtain both neutron and proton transition multipole matrix elements. This is equivalent to make the isospin decomposition of the electromagnetic transition matrix elements. The ratios of the transition matrix elements of neutrons and protons of the lowest 2/sup +/ states in even-even single closed shell nuclei are evaluated and compared with experimental results. For each nucleus, the consistency between various measurements is generally good. The effect of the virtual excitation of giant 2/sup +/ states into the ground and first excited states of even-even nuclei is discussed. The accuracy of (h, h') results can be tested.

  12. Calculations on the vibrational level density in highly excited formaldehyde

    International Nuclear Information System (INIS)

    Rashev, Svetoslav; Moule, David C.

    2003-01-01

    The object of the present work is to develop a model that provides realistic estimates of the vibrational level density in polyatomic molecules in a given electronic state, at very high (chemically relevant) vibrational excitation energies. For S 0 formaldehyde (D 2 CO), acetylene, and a number of triatomics, the estimates using conventional spectroscopic formulas have yielded densities at the dissociation threshold, very much lower than the experimentally measured values. In the present work we have derived a general formula for the vibrational energy levels of a polyatomic molecule, which is a generalization of the conventional Dunham spectroscopic expansion. Calculations were performed on the vibrational level density in S 0 D 2 CO, H 2 C 2 , and NO 2 at excitation energies in the vicinity of the dissociation limit, using the newly derived formula. The results from the calculations are in reasonable agreement with the experimentally measured data

  13. Photoacidic and Photobasic Behavior of Transition Metal Compounds with Carboxylic Acid Group(s)

    Energy Technology Data Exchange (ETDEWEB)

    O’Donnell, Ryan M. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Sampaio, Renato N. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Li, Guocan [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Johansson, Patrik G. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Ward, Cassandra L. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States; Meyer, Gerald J. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States

    2016-03-10

    Excited state proton transfer studies of six Ru polypyridyl compounds with carboxylic acid/carboxylate group(s) revealed that some were photoacids and some were photobases. The compounds [RuII(btfmb)2(LL)]2+, [RuII(dtb)2(LL)]2+, and [RuII(bpy)2(LL)]2+, where bpy is 2,2'-bipyridine, btfmb is 4,4'-(CF3)2-bpy, and dtb is 4,4'-((CH3)3C)2-bpy, and LL is either dcb = 4,4'-(CO2H)2-bpy or mcb = 4-(CO2H),4'-(CO2Et)-2,2'-bpy, were synthesized and characterized. The compounds exhibited intense metal-to-ligand charge-transfer (MLCT) absorption bands in the visible region and room temperature photoluminescence (PL) with long τ > 100 ns excited state lifetimes. The mcb compounds had very similar ground state pKa’s of 2.31 ± 0.07, and their characterization enabled accurate determination of the two pKa values for the commonly utilized dcb ligand, pKa1 = 2.1 ± 0.1 and pKa2 = 3.0 ± 0.2. Compounds with the btfmb ligand were photoacidic, and the other compounds were photobasic. Transient absorption spectra indicated that btfmb compounds displayed a [RuIII(btfmb–)L2]2+* localized excited state and a [RuIII(dcb–)L2]2+* formulation for all the other excited states. Time dependent PL spectral shifts provided the first kinetic data for excited state proton transfer in a transition metal compound. PL titrations, thermochemical cycles, and kinetic analysis (for the mcb compounds) provided self-consistent pKa* values. The ability to make a single ionizable group photobasic or photoacidic through ligand design was unprecedented and was understood based on the orientation of the lowest-lying MLCT excited state dipole relative to the ligand that contained the carboxylic acid group(s).

  14. The excitation of plasma convection in the high-latitude ionosphere

    International Nuclear Information System (INIS)

    Lockwood, M.; Cowley, S.W.H.; Freeman, M.P.

    1990-01-01

    Recent observations of ionospheric flows by ground-based radars, in particular by the European Incoherent Scatter (EISCAT) facility using the Polar experiment, together with previous analyses of the response of geomagnetic disturbance to variations of the interplanetary magnetic field (IMF), suggest that convection in the high-latitude ionosphere should be considered to be the sum of two intrinsically time-dependent patterns, one driven by solar wind-magnetosphere coupling at the dayside magnetopause, the other by the release of energy in the geomagnetic tail (mainly by dayside and nightside reconnection, respectively). The flows driven by dayside coupling are largest on the dayside, where they usually dominate, are associated with an expanding polar cap area, and are excited and decay on ∼ 10-min time scales following southward and northward turnings of the IMF, respectively. The latter finding indicates that the production of new open flux at the dayside magnetopause excites magnetospheric and ionospheric flow only for a short interval, ∼ 10 min, such that the flow driven by this source subsequently decays on this time scale unless maintained by the production of more open flux tubes. Correspondingly, the flows excited by the release of energy in the tail, mainly during substorms, are largest on the nightside, are associated with a contracting polar cap boundary, and are excited on ∼ 1-hour time scales following a southward turn of the IMF. In general, the total ionospheric flow will be the sum of the flows produced by these two sources, such that due to their different response times to changes in the IMF, considerable variations in the flow pattern can occur for a given direction and strength ofthe IMF. Consequently, the ionospheric electric field cannot generally be regarded as arising from a simple mapping of the solar wind electric field along open flux tubes

  15. Neutron emission in fission of highly excited californium nuclei (E*=76 MeV)

    International Nuclear Information System (INIS)

    Blinov, M.V.; Bordyug, V.M.; Kozulin, Eh.M.; Mozhaev, A.N.; Levitovich, M.; Muzychka, Yu.A.; Penionzhkevich, Yu.Eh.; Pustyl'nik, B.I.

    1990-01-01

    The differential cross sections for neutron production in the fission of highly excited californium nuclei formed in the 238 U+ 12 C (105 MeV) reaction have been measured. From the analysis of the experimental data is follows that the number of pre-fission neutrons substantially exceeds the value obtained in the framework of the standard statistical model. The saddle-to-scission time of the excited nucleus is estimated on the basis of the neutron multiplicity. The dependences of the neutron number and neutron average energies upon the fragment mass are determined

  16. Magnetic Excitations in Cu2Fe2Ge4O13

    International Nuclear Information System (INIS)

    Masuda, Takatsugu; Zheludev, Andrey I.; Sales, Brian C.; Imai, S.; Uchinokura, K.

    2005-01-01

    Magnetic excitations in the cooperative ordered state in a weakly coupled Fe chains and Cu dimers compound Cu 2 Fe 2 Ge 4 O 13 is studied by thermal neutron scattering technique. We show that the low energy excitations up to 10 meV in wide q range are well described by spin wave theory of weakly coupled Fe chains. In higher energy range a narrow band excitation that can be associated with Cu dimers is observed at ℎω-24 meV. Both types of excitations can be understood by treating the weak coupling between Fe chains and Cu dimers at the level of Mean Field/Random Phase Approximation.

  17. Superconductivity of ternary metal compounds prepared at high pressures

    CERN Document Server

    Shirotani, I

    2003-01-01

    Various ternary metal phosphides, arsenides, antimonides, silicides and germanides have been prepared at high temperatures and high pressures. These ternary metal compounds can be classified into four groups: [1] metal-rich compounds MM' sub 4 X sub 2 and [2] MM'X, [3] non-metal-rich compounds MXX' and [4] MM' sub 4 X sub 1 sub 2 (M and M' = metal element; X and X' = non-metal element). We have studied the electrical and magnetic properties of these materials at low temperatures, and found many new superconductors with the superconducting transition temperature (T sub c) of above 10 K. The metal-rich compound ZrRu sub 4 P sub 2 with a tetragonal structure showed the superconducting transition at around 11 K, and had an upper critical field (H sub c sub 2) of 12.2 tesla (T) at 0 K. Ternary equiatomic compounds ZrRuP and ZrRuSi crystallize in two modifications, a hexagonal Fe sub 2 P-type structure [h-ZrRuP(Si)] and an orthorhombic Co sub 2 P-type structure [o-ZrRuP(Si)]. Both h-ZrRuP and h-ZrRuSi have rather h...

  18. Effect of collective response on electron capture and excitation in collisions of highly charged ions with fullerenes.

    Science.gov (United States)

    Kadhane, U; Misra, D; Singh, Y P; Tribedi, Lokesh C

    2003-03-07

    Projectile deexcitation Lyman x-ray emission following electron capture and K excitation has been studied in collisions of bare and Li-like sulphur ions (of energy 110 MeV) with fullerenes (C(60)/C(70)) and different gaseous targets. The intensity ratios of different Lyman x-ray lines in collisions with fullerenes are found to be substantially lower than those for the gas targets, both for capture and excitation. This has been explained in terms of a model based on "solidlike" effect, namely, wakefield induced stark mixing of the excited states populated via electron capture or K excitation: a collective phenomenon of plasmon excitation in the fullerenes under the influence of heavy, highly charged ions.

  19. Evolution of spin excitations in a gapped antiferromagnet from the quantum to the high-temperature limit

    DEFF Research Database (Denmark)

    Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.

    2002-01-01

    We have mapped from the quantum to the classical limit the spin excitation spectrum of the antiferromagnetic spin-1 Heisenberg chain system CsNiCl3 in its paramagnetic phase from T=5 to 200 K. Neutron scattering shows that the excitations are resonant and dispersive up to at least T=70 Ksimilar...... is in agreement with quantum Monte Carlo calculations for the spin-1 chain. xi is also consistent with the single mode approximation, suggesting that the excitations are short-lived single particle excitations. Below T=12 K where three-dimensional spin correlations are important, xi is shorter than predicted...... and the experiment is not consistent with the random phase approximation for coupled quantum chains. At T=200 K, the structure factor and second energy moment of the excitation spectrum are in excellent agreement with the high-temperature series expansion....

  20. A full-spectrum analysis of high-speed train interior noise under multi-physical-field coupling excitations

    Science.gov (United States)

    Zheng, Xu; Hao, Zhiyong; Wang, Xu; Mao, Jie

    2016-06-01

    High-speed-railway-train interior noise at low, medium, and high frequencies could be simulated by finite element analysis (FEA) or boundary element analysis (BEA), hybrid finite element analysis-statistical energy analysis (FEA-SEA) and statistical energy analysis (SEA), respectively. First, a new method named statistical acoustic energy flow (SAEF) is proposed, which can be applied to the full-spectrum HST interior noise simulation (including low, medium, and high frequencies) with only one model. In an SAEF model, the corresponding multi-physical-field coupling excitations are firstly fully considered and coupled to excite the interior noise. The interior noise attenuated by sound insulation panels of carriage is simulated through modeling the inflow acoustic energy from the exterior excitations into the interior acoustic cavities. Rigid multi-body dynamics, fast multi-pole BEA, and large-eddy simulation with indirect boundary element analysis are first employed to extract the multi-physical-field excitations, which include the wheel-rail interaction forces/secondary suspension forces, the wheel-rail rolling noise, and aerodynamic noise, respectively. All the peak values and their frequency bands of the simulated acoustic excitations are validated with those from the noise source identification test. Besides, the measured equipment noise inside equipment compartment is used as one of the excitation sources which contribute to the interior noise. Second, a full-trimmed FE carriage model is firstly constructed, and the simulated modal shapes and frequencies agree well with the measured ones, which has validated the global FE carriage model as well as the local FE models of the aluminum alloy-trim composite panel. Thus, the sound transmission loss model of any composite panel has indirectly been validated. Finally, the SAEF model of the carriage is constructed based on the accurate FE model and stimulated by the multi-physical-field excitations. The results show

  1. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    Science.gov (United States)

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  2. The Cascaded Arc: High Flows of Rovibrationally Excited H2 and its Impact on H- Ion Formation

    International Nuclear Information System (INIS)

    Gabriel, O.; Harskamp, W. E. N. van; Schram, D. C.; Sanden, M. C. M. van de; Engeln, R.

    2009-01-01

    The cascaded arc is a plasma source providing high fluxes of excited and reactive species such as ions, radicals and rovibrationally excited molecules. The plasma is produced under pressures of some kPa in a direct current arc with electrical powers up to 10 kW. The plasma leaves the arc channel through a nozzle and expands with supersonic velocity into a vacuum-chamber kept by pumps at low pressures. We investigated the case of a pure hydrogen plasma jet with and without an applied axial magnetic field that confines ions and electrons in the jet. Highly excited molecules and atoms were detected by means of laser-induced fluorescence and optical emission spectroscopy. In case of an applied magnetic field the atomic state distribution of hydrogen atoms shows an overpopulation between the electronic states p = 5, 4 and 3. The influence of the highly excited hydrogen molecules on H - ion formation and a possible mechanism involving this negative ion and producing atomic hydrogen in state p = 3 will be discussed.

  3. Transition conductivity study of high temperature superconductor compounds: the role of fluctuations

    International Nuclear Information System (INIS)

    Pagnon, V.

    1991-04-01

    This memory subject is the transition conductivity study of high temperature superconductors in corelation with their anisotropy. Systematic conductivity measurements were made on YBaCuO and BaSrCaCuO in relation with temperature from 4.2 K to 1200 K, and with a magnetic field up to 8 T in several directions. Oxygen order has an effect on the characteristics at YBaCuO transition conductivity. The activation energy for oxygen absorption is about 0.5eV. One method of analysis of the conductivity fluctuations about the transition temperature is proposed. Two separate rates are noticeable in YBaCuO compound. The 3 D fluctuations rate in the immediate neighbourghood of the transition lets place to the 2 D fluctuations rate at high temperature. Transitions temperatures governing each rate are different, that's incompatible with the formula proposed by Lawrence and Doniach. On the other hand, the analogy with quasi-2 D magnetic systems seems more relevant. A magnetic field application or a lowering of oxygen concentration removes the 3 D fluctuations rate. Non ohmic effects observed at the transition conductivity foot are analysis as a non-linear 2 D excitation manifestation of the supraconductive phase. Finally, by measurements on strontium doped YBaCuO crystals, we confirm a metal-insulator transition along the C-Axe when oxygen concentration reduces. This is connected with the specific heat jump. All these results uplighten the fundamental bidimensional character of high transition temperature superconductivity [fr

  4. Study of atomic excitations in sputtering with the use of composite targets

    International Nuclear Information System (INIS)

    Kierkegaard, K.; Ludvigsen, S.; Petterson, B.; Veje, E.

    1985-01-01

    Some Li- and Na-compounds have been bombarded with 80 keV Ar + ions, and excitation of sputtered particles has been studied with optical spectrometry. Very strong excitation of Li I and Na I was observed, but essentially no excitation of electronegative elements. For levels in Li I and also in Na I with n 8, the relative level populations fall noticeably above the extrapolation of such power law behaviors. This is discussed and tentatively interpreted in terms of two-step processes. (i) The projectile excites a target electron from the valence band to the conduction band. (ii) Such an excitation is transferred resonantly to the sputtered atom on its way out. (orig.)

  5. Highly selective population of two excited states in nonresonant two-photon absorption

    International Nuclear Information System (INIS)

    Zhang Hui; Zhang Shi-An; Sun Zhen-Rong

    2011-01-01

    A nonresonant two-photon absorption process can be manipulated by tailoring the ultra-short laser pulse. In this paper, we theoretically demonstrate a highly selective population of two excited states in the nonresonant two-photon absorption process by rationally designing a spectral phase distribution. Our results show that one excited state is maximally populated while the other state population is widely tunable from zero to the maximum value. We believe that the theoretical results may play an important role in the selective population of a more complex nonlinear process comprising nonresonant two-photon absorption, such as resonance-mediated (2+1)-three-photon absorption and (2+1)-resonant multiphoton ionization. (atomic and molecular physics)

  6. Signatures of fission dynamics in highly excited nuclei produced in 197AU(800 A MeV) on proton collisions

    International Nuclear Information System (INIS)

    Benlliure, J.; Armbruster, P.; Bernas, M.

    2001-09-01

    197 Au(800 A MeV)-on-proton collisions are used to investigate the fission dynamics at high excitation energy. The kinematic properties together with the isotopic identification of the fission fragments allow to determine the mass, charge and excitation energy of the fissioning nucleus at saddle. The comparison of these observables and the measured total fission cross section with model calculations evidences a clear hindrance of fission at high excitation energy that can be explained in terms of nuclear dissipation. Assuming a statistical evaporation for other de-excitation channels than fission, an estimated value of the transient time of fission of (3 ± 1) . 10 -21 s is obtained. (orig.)

  7. Photoionization cross-sections of ground and excited valence levels of actinides

    Directory of Open Access Journals (Sweden)

    Yarzhemsky Victor G.

    2012-01-01

    Full Text Available The photoionization cross-sections of ground and excited atomic states of actinide atoms were calculated by the Dirac-Fock-Slater method for two excitation energies of X-ray radiation (1253.6 eV and 1486.6 eV. These data are required for calculations of intensities of X-ray photoelectron spectra of actinide compound valence bands and interpretation of experimental spectra.

  8. Excited states v.6

    CERN Document Server

    Lim, Edward C

    1982-01-01

    Excited States, Volume 6 is a collection of papers that discusses the excited states of molecules. The first paper discusses the linear polyene electronic structure and potential surfaces, considering both the theoretical and experimental approaches in such electronic states. This paper also reviews the theory of electronic structure and cites some experimental techniques on polyene excitations, polyene spectroscopic phenomenology, and those involving higher states of polyenes and their triplet states. Examples of these experimental studies of excited states involve the high-resolution one-pho

  9. Rotational bands on few-particle excitations of very high spin

    International Nuclear Information System (INIS)

    Andersson, C.G.; Krumlinde, J.; Leander, G.; Szymanski, Z.

    1980-01-01

    An RPA formalism is developed to investigate the existence and properties of slow collective rotation around a non-symmetry axis, when there already exists a large angular momentum K along the symmetry axis built up by aligned single-particle spins. It is found necessary to distinguish between the collectivity and the repeatability of the rotational excitations. First the formalism is applied to bands on hihg-K isomers in the well-deformed nucleus 176 Hf, where the rotational-model picture is reproduced for intermediate K-values in agreement with experiment. At high K there is a suppression of the collectivity corresponding to the diminishing vector-coupling coefficient of the rotational model, but the repeatability actually improves. The moment of inertia is predicted to remain substantially smaller than the rigid-body value so the bands slope up steeply from the yrast line at spins where pairing effects are gone. A second application is to the initially spherical nucleus 212 Rn, which is believed to acquire an oblate deformation that increases steadily with K due to the oblate shape of the aligned orbitals. In this case the repeatable excitations come higher above the yrast line than in 176 Hf, even at comparable deformations. Some collective states may occur very close to yrast, but these are more like dressed singleparticle excitations. The main differences between the two nuclei studied is interpreted as a general consequence of their different shell structure. (author)

  10. Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki

    2002-12-01

    We investigate a mechanism of nonlinear phenomena in laser-plasma interaction, a laser wakefield excited by intense laser pulses, and the possibility of generating an intense bright electron source by an intense laser pulse. We need to understand and further employ some of these phenomena for our purposes. We measure self-focusing, filamentation, and the anomalous blueshift of the laser pulse. The ionization of gas with the self-focusing causes a broad continuous spectrum with blueshift. The normal blueshift depends on the laser intensity and the plasma density. We, however, have found different phenomenon. The laser spectrum shifts to fixed wavelength independent of the laser power and gas pressure above some critical power. We call the phenomenon 'anomalous blueshift'. The results are explained by the formation of filaments. An intense laser pulse can excite a laser wakefield in plasma. The coherent wakefield excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 10 18 cm -3 is measured with a time-resolved frequency domain interferometer (FDI). The density distribution of the helium gas is measured with a time-resolved Mach-Zehnder interferometer to search for the optimum laser focus position and timing in the gas-jet. The results show an accelerating wakefield excitation of 20 GeV/m with good coherency, which is useful for ultrahigh gradient particle acceleration in a compact system. This is the first time-resolved measurement of laser wakefield excitation in a gas-jet plasma. The experimental results are compared with a Particle-in-Cell (PIC) simulation. The pump-probe interferometer system of FDI and the anomalous blueshift will be modified to the optical injection system as a relativistic electron beam injector. In 1D PIC simulation we obtain the results of high quality intense electron beam acceleration. These results illuminate the possibility of a high energy and a high quality electron beam acceleration. (author)

  11. The form of electron-atom excitation amplitudes at high momentum transfers in the Faddeev-Watson approximation

    International Nuclear Information System (INIS)

    Catalan, G.; Roberts, M.J.

    1979-01-01

    A form of the off-shell Coulomb T matrix, which has a well defined on-shell limit, is used in the Faddeev-Watson multiple-scattering expansion for a direct three-body collision process. Using the excitation of atomic hydrogen by electron impact as an example, approximations to the second-order terms, which are valid for high momentum transfers of the incident electron, are derived. It is shown how the resulting asymptotic behaviour of the second-order Faddeev-Watson approximation is related to the high momentum transfer limit of the second Born approximation. The results are generalised to the excitation of more complex atoms. The asymptotic forms of the Faddeev-Watson and Born approximations are compared with other theories and with measurements of differential cross sections and angular correlation parameters for the excitation of H(2p) and He(2 1 P). The results indicate that the Faddeev-Watson approximation converges more rapidly at high momentum transfers than does the Born approximation. (author)

  12. Optical excitations in CuO2-sheets doped and undoped with electrons

    International Nuclear Information System (INIS)

    Tokura, Y.; Arima, T.; Koshihara, S.; Takagi, H.; Ido, T.; Ishibashi, S.; Uchida, S.

    1989-01-01

    This paper reports optical reflectance spectra measured on single crystals of parent families of high T c copper oxide compounds with single-layered CuO 2 -sheets, which clearly show the strong transitons across the charge-transfer (CT) gaps at 1.5-2.0 eV in various types of CuO 2 -sheets. The carrier-doping effects on the CT excitations have been investigated on the Sr-doped La 2 CuO 4 and Ce-doped Nd 2 O 4 crystals

  13. A High-Voltage SOI CMOS Exciter Chip for a Programmable Fluidic Processor System.

    Science.gov (United States)

    Current, K W; Yuk, K; McConaghy, C; Gascoyne, P R C; Schwartz, J A; Vykoukal, J V; Andrews, C

    2007-06-01

    A high-voltage (HV) integrated circuit has been demonstrated to transport fluidic droplet samples on programmable paths across the array of driving electrodes on its hydrophobically coated surface. This exciter chip is the engine for dielectrophoresis (DEP)-based micro-fluidic lab-on-a-chip systems, creating field excitations that inject and move fluidic droplets onto and about the manipulation surface. The architecture of this chip is expandable to arrays of N X N identical HV electrode driver circuits and electrodes. The exciter chip is programmable in several senses. The routes of multiple droplets may be set arbitrarily within the bounds of the electrode array. The electrode excitation waveform voltage amplitude, phase, and frequency may be adjusted based on the system configuration and the signal required to manipulate a particular fluid droplet composition. The voltage amplitude of the electrode excitation waveform can be set from the minimum logic level up to the maximum limit of the breakdown voltage of the fabrication technology. The frequency of the electrode excitation waveform can also be set independently of its voltage, up to a maximum depending upon the type of droplets that must be driven. The exciter chip can be coated and its oxide surface used as the droplet manipulation surface or it can be used with a top-mounted, enclosed fluidic chamber consisting of a variety of materials. The HV capability of the exciter chip allows the generated DEP forces to penetrate into the enclosed chamber region and an adjustable voltage amplitude can accommodate a variety of chamber floor thicknesses. This demonstration exciter chip has a 32 x 32 array of nominally 100 V electrode drivers that are individually programmable at each time point in the procedure to either of two phases: 0deg and 180deg with respect to the reference clock. For this demonstration chip, while operating the electrodes with a 100-V peak-to-peak periodic waveform, the maximum HV electrode

  14. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.

  15. Wavelet based comparison of high frequency oscillations in the geodetic and fluid excitation functions of polar motion

    Science.gov (United States)

    Kosek, W.; Popinski, W.; Niedzielski, T.

    2011-10-01

    It has been already shown that short period oscillations in polar motion, with periods less than 100 days, are very chaotic and are responsible for increase in short-term prediction errors of pole coordinates data. The wavelet technique enables to compare the geodetic and fluid excitation functions in the high frequency band in many different ways, e.g. by looking at the semblance function. The waveletbased semblance filtering enables determination the common signal in both geodetic and fluid excitation time series. In this paper the considered fluid excitation functions consist of the atmospheric, oceanic and land hydrology excitation functions from ECMWF atmospheric data produced by IERS Associated Product Centre Deutsches GeoForschungsZentrum, Potsdam. The geodetic excitation functions have been computed from the combined IERS pole coordinates data.

  16. Proceedings of the 1984 workshop on high-energy excitations in condensed matter. Volume II

    International Nuclear Information System (INIS)

    Silver, R.N.

    1984-12-01

    This volume covers electronic excitations, momentum distributions, high energy photons, and a wrap-up session. Abstracts of individual items from the conference were prepared separately for the data base

  17. Electron Impact Excitation and Dielectronic Recombination of Highly Charged Tungsten Ions

    Directory of Open Access Journals (Sweden)

    Zhongwen Wu

    2015-11-01

    Full Text Available Electron impact excitation (EIE and dielectronic recombination (DR of tungsten ions are basic atomic processes in nuclear fusion plasmas of the International Thermonuclear Experimental Reactor (ITER tokamak. Detailed investigation of such processes is essential for modeling and diagnosing future fusion experiments performed on the ITER. In the present work, we studied total and partial electron-impact excitation (EIE and DR cross-sections of highly charged tungsten ions by using the multiconfiguration Dirac–Fock method. The degrees of linear polarization of the subsequent X-ray emissions from unequally-populated magnetic sub-levels of these ions were estimated. It is found that the degrees of linear polarization of the same transition lines, but populated respectively by the EIE and DR processes, are very different, which makes diagnosis of the formation mechanism of X-ray emissions possible. In addition, with the help of the flexible atomic code on the basis of the relativistic configuration interaction method, DR rate coefficients of highly charged W37+ to W46+ ions are also studied, because of the importance in the ionization equilibrium of tungsten plasmas under running conditions of the ITER.

  18. High energy reactions in normal metabolism and ageing of animals

    International Nuclear Information System (INIS)

    Avdonina, E.N.; Nesmeyanov, N.

    1983-01-01

    Processes involving reactions on highly excited states are thought to be of great importance for normal metabolism and aging. Excess energy of the organism is transferred to result in the formation of highly excited states of macromolecules. UV, visible light or ionizing radiation created partially by the organism itself can change metabolic process rates. According to the authors, aging is associated with the defects of macromolecules owing to high energy processes. Gerontological changes in biological materials result from the elimination of low molecular weight molecules and from the formation of unsaturated compounds. Crosslinking of the compounds, accumulation of collagen and connective tissues, the energetic overload of the organism are listed as important features of aging. (V.N.)

  19. Fission mass yields of excited medium heavy nuclei

    International Nuclear Information System (INIS)

    Sandulescu, A.; Depta, K.; Herrmann, R.; Greiner, W.; Scheid, W.

    1985-01-01

    The mass distributions resulting from the fission of excited medium mass nuclei are discussed on the basis of the fragmentation theory. It is shown that very asymmetric fission events can be expected with rates which are only a few orders of magnitude smaller than the rates for symmetric fission. As an example a calculation of the fission mass distribution of the excited 172 Yb compound nucleus is presented. This mass distribution reveals observable structures over the entire range of the mass asymmetry due to valleys in the potential energy surface for fission fragments with closed proton and neutron shells

  20. Multiphoton excitation and high-harmonics generation in topological insulator.

    Science.gov (United States)

    Avetissian, H K; Avetissian, A K; Avchyan, B R; Mkrtchian, G F

    2018-05-10

    Multiphoton interaction of coherent electromagnetic radiation with 2D metallic carriers confined on the surface of the 3D topological insulator is considered. A microscopic theory describing the nonlinear interaction of a strong wave and metallic carriers with many-body Coulomb interaction is developed. The set of integrodifferential equations for the interband polarization and carrier occupation distribution is solved numerically. Multiphoton excitation of Fermi-Dirac sea of 2D massless carriers is considered for a THz pump wave. It is shown that in the moderately strong pump wave field along with multiphoton interband/intraband transitions the intense radiation of high harmonics takes place.

  1. Multiphoton excitation and high-harmonics generation in topological insulator

    Science.gov (United States)

    Avetissian, H. K.; Avetissian, A. K.; Avchyan, B. R.; Mkrtchian, G. F.

    2018-05-01

    Multiphoton interaction of coherent electromagnetic radiation with 2D metallic carriers confined on the surface of the 3D topological insulator is considered. A microscopic theory describing the nonlinear interaction of a strong wave and metallic carriers with many-body Coulomb interaction is developed. The set of integrodifferential equations for the interband polarization and carrier occupation distribution is solved numerically. Multiphoton excitation of Fermi–Dirac sea of 2D massless carriers is considered for a THz pump wave. It is shown that in the moderately strong pump wave field along with multiphoton interband/intraband transitions the intense radiation of high harmonics takes place.

  2. Effects of Isospin on Pre-scission Particle Multiplicity of Heavy Systems and Its Excitation Energy Dependence

    Institute of Scientific and Technical Information of China (English)

    YE Wei; CHEN Na

    2004-01-01

    Isospin effects on particle emission of fissioning isobaric sources 202Fr, 202po, 202Tl and isotopic sources 189,202,212Po, and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isospin of fissioning systems, charged-particle emission is not sensitive to the strength of nuclear dissipation. In addition, we have found that increasing the excitation energy not only increases the influence of nuclear dissipation on particle emission but also greatly enhances the sensitivity of the emission of pre-scission neutrons or charged particles to the isospin of the system. Therefore, in order to extract dissipation strength more accurately by taking light particle multiplicities it is important to choose both a highly excited compound nucleus and a proper kind of particles for systems with different isospins.

  3. The effect of high level multi-tone excitation on the acoustic properties of perforates and liner samples

    OpenAIRE

    Bodén, Hans

    2012-01-01

    This paper discusses the effect of high level multi-tone acoustic excitation on the acoustic properties of perforates and liner samples. It is based on a large experimental study of the nonlinear properties of these types of samples without mean grazing or bias flow. It is known from previous studies that high level acoustic excitation at one frequency will change the acoustic impedance of perforates at other frequencies, thereby changing the boundary condition seen by the acoustic waves. Thi...

  4. Impact of laser excitation intensity on deep UV fluorescence detection in microchip electrophoresis.

    Science.gov (United States)

    Schulze, Philipp; Ludwig, Martin; Belder, Detlev

    2008-12-01

    A high intensity 266 nm continuous wave (cw-) laser developed for material processing was utilised as an excitation source for sensitive native fluorescence detection of unlabelled compounds in MCE. This 120 mW laser was attached via an optical fibre into a commercial epifluorescence microscope. With this MCE set-up we evaluated the impact of laser power on the S/N of aromatic compounds as well as of proteins. Compared with a previous work which used a 4 mW pulsed laser for excitation, improved S/N for small aromatics and to a lesser extent for proteins could be attained. The LOD of the system was determined down to 24 ng/mL for serotonin (113 nM), 24 ng/mL for propranolol (81 nM), 80 ng/mL for tryptophan (392 nM) and 80 ng/mL for an aromatic diol (475 nM). Sensitive protein detection was obtained at concentrations of 5 microg/mL for lysocyme, trypsinogen and chymotrypsinogen (340, 208 and 195 nM, respectively). Finally, a comparison of the cw- with a pulsed 266 nm laser, operating at the same average power, showed a higher attainable sensitivity of the cw-laser. This can be attributed to fluorescence saturation and photobleaching effects of the pulsed laser at high pulse energies.

  5. Enhanced Electron Attachment to Highly-Excited Molecules and Its Applications in Pulsed Plasmas

    International Nuclear Information System (INIS)

    Ding, W.X.; Ma, C.Y.; McCorkle, D.L.; Pinnaduwage, L.A.

    1999-01-01

    Studies conducted over the past several years have shown that electron attachment to highly-excited states of molecules have extremely large cross sections. We will discuss the implications of this for pulsed discharges used for H - generation, material processing, and plasma remediation

  6. Simplified Production of Organic Compounds Containing High Enantiomer Excesses

    Science.gov (United States)

    Cooper, George W. (Inventor)

    2015-01-01

    The present invention is directed to a method for making an enantiomeric organic compound having a high amount of enantiomer excesses including the steps of a) providing an aqueous solution including an initial reactant and a catalyst; and b) subjecting said aqueous solution simultaneously to a magnetic field and photolysis radiation such that said photolysis radiation produces light rays that run substantially parallel or anti-parallel to the magnetic field passing through said aqueous solution, wherein said catalyst reacts with said initial reactant to form the enantiomeric organic compound having a high amount of enantiomer excesses.

  7. Implications of electron attachment to highly-excited states in pulsed-power discharges

    International Nuclear Information System (INIS)

    Pinnaduwage, L.A.; Univ. of Tennessee, Knoxville, TN

    1997-01-01

    The author points out the possible implications of electron attachment to highly-excited states of molecules in two pulsed power technologies. One involves the pulsed H 2 discharges used for the generation of H ion beams for magnetic fusion energy and particle accelerators. The other is the power modulated plasma discharges used for material processing

  8. Data-Driven Derivation of an "Informer Compound Set" for Improved Selection of Active Compounds in High-Throughput Screening.

    Science.gov (United States)

    Paricharak, Shardul; IJzerman, Adriaan P; Jenkins, Jeremy L; Bender, Andreas; Nigsch, Florian

    2016-09-26

    Despite the usefulness of high-throughput screening (HTS) in drug discovery, for some systems, low assay throughput or high screening cost can prohibit the screening of large numbers of compounds. In such cases, iterative cycles of screening involving active learning (AL) are employed, creating the need for smaller "informer sets" that can be routinely screened to build predictive models for selecting compounds from the screening collection for follow-up screens. Here, we present a data-driven derivation of an informer compound set with improved predictivity of active compounds in HTS, and we validate its benefit over randomly selected training sets on 46 PubChem assays comprising at least 300,000 compounds and covering a wide range of assay biology. The informer compound set showed improvement in BEDROC(α = 100), PRAUC, and ROCAUC values averaged over all assays of 0.024, 0.014, and 0.016, respectively, compared to randomly selected training sets, all with paired t-test p-values agnostic fashion. This approach led to a consistent improvement in hit rates in follow-up screens without compromising scaffold retrieval. The informer set is adjustable in size depending on the number of compounds one intends to screen, as performance gains are realized for sets with more than 3,000 compounds, and this set is therefore applicable to a variety of situations. Finally, our results indicate that random sampling may not adequately cover descriptor space, drawing attention to the importance of the composition of the training set for predicting actives.

  9. Some studies on the formation of excited states of aromatic solutes in hydrocarbons and other solvents

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, G A [Leeds Univ. (UK). Cookridge High Energy Radiation Research Centre

    1976-01-01

    This paper reviews the work of the author and his co-workers on the radiation-induced formation of excited states of aromatic compounds in solution. The experimental methods used are surveyed and in particular the method of measuring the yields of triplet and singlet excited states of the solute are described. The problems discussed are: (1) the effect of solvent on the yields of excited states, (2) formation of excited states in cyclohexane and other alicyclic hydrocarbons, (3) the formation of excited states in benzene and (4) the identification of T-T absorption spectra.

  10. Shell structure effects at high excitations and many-quasiparticle configurations

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1980-01-01

    Experimental and theoretical data available on few- and many-quasiparticle components of the wave functions of complex nuclei at low, intermediate and high energies are shortly analyzed. The components are treated in the nuclear quasiparticle-phonon model. Specific features of the lowest and high-spin states, giant resonances, neutron resonances and the effects of the energy-level structure in the few-and many-particle transfer reactions are discussed. It is concluded that the most reliable nuclear properties are determined by the components, their behaviour reflecting the shell structure effects. Wich increasing excitation energy the density of levels increases exponentially and the contribution of few-quasiparticle components to the normalization of the wave functions decreases exponentially

  11. Study of high-j neutron excitations outside 136Xe

    Science.gov (United States)

    Talwar, R.; Kay, B. P.; Mitchell, A. J.; Adachi, S.; Entwisle, J. P.; Fujita, Y.; Gey, G.; Noji, S.; Ong, H. J.; Schiffer, J. P.; Tamii, A.

    2017-09-01

    The character of single-neutron excitations outside of N = 82 has been studied using nucleon transfer reactions in terms of the energy centroid of their strength as well as the fragmentation of this strength among the actual states of the nucleus. However, extending the systematic study of the N = 83 isotones to 137Xe has been challenging due to xenon being a gas at room temperature. Though several attempts have been made, a quantitative determination of the spectroscopic factors for the neutron 9/2- and 13/2+ excitations in 137Xe is still lacking. In the present work, we report on a study of the 136Xe(α,3He)137Xe reaction carried out at 100 MeV to probe the l = 5 , 9/2- and l = 6 , 13/2+ single-neutron excitations. The experimental technique and results will be presented discussing them in context of the evolution of these single-neutron excitations and the influence of the tensor interaction on the neutron single-particle states as the proton orbits are filling. This work has been supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357, the Australian Research Council Discovery Project 120104176, and the UK Science and Technology Facilities.

  12. On the Zeeman Effect in highly excited atoms: 2. Three-dimensional case

    International Nuclear Information System (INIS)

    Baseia, B.; Medeiros e Silva Filho, J.

    1984-01-01

    A previous result, found in two-dimensional hydrogen-atoms, is extended to the three-dimensional case. A mapping of a four-dimensional space R 4 onto R 3 , that establishes an equivalence between Coulomb and harmonic potentials, is used to show that the exact solution of the Zeeman effect in highly excited atoms, cannot be reached. (Author) [pt

  13. Compound Structure-Independent Activity Prediction in High-Dimensional Target Space.

    Science.gov (United States)

    Balfer, Jenny; Hu, Ye; Bajorath, Jürgen

    2014-08-01

    Profiling of compound libraries against arrays of targets has become an important approach in pharmaceutical research. The prediction of multi-target compound activities also represents an attractive task for machine learning with potential for drug discovery applications. Herein, we have explored activity prediction in high-dimensional target space. Different types of models were derived to predict multi-target activities. The models included naïve Bayesian (NB) and support vector machine (SVM) classifiers based upon compound structure information and NB models derived on the basis of activity profiles, without considering compound structure. Because the latter approach can be applied to incomplete training data and principally depends on the feature independence assumption, SVM modeling was not applicable in this case. Furthermore, iterative hybrid NB models making use of both activity profiles and compound structure information were built. In high-dimensional target space, NB models utilizing activity profile data were found to yield more accurate activity predictions than structure-based NB and SVM models or hybrid models. An in-depth analysis of activity profile-based models revealed the presence of correlation effects across different targets and rationalized prediction accuracy. Taken together, the results indicate that activity profile information can be effectively used to predict the activity of test compounds against novel targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. STUDY OF THE HIGH-SPIN STRUCTURE OF PM-146

    NARCIS (Netherlands)

    RZACAURBAN, T; DURELL, JL; PHILLIPS, WR; VARLEY, BJ; HESS, CP; PEARSON, CJ; VERMEER, WJ; VIEU, C; DIONISIO, JS; PAUTRAT, M; Urban, W

    1995-01-01

    Excited states in Pm-146 have been investigated through the Xe-136(N-15,5n) and the Nd-146(d,xn) compound-nucleus reactions. A level scheme extending up to 6.9 MeV of excitation energy and (I = 25HBAR) is proposed. Most of the high-spin levels are interpreted in terms of multi-particle-hole states

  15. Routes to formation of highly excited neutral atoms in the break-up of strongly driven hydrogen molecule

    Science.gov (United States)

    Emmanouilidou, Agapi

    2012-06-01

    We present a theoretical quasiclassical treatment of the formation, during Coulomb explosion, of highly excited neutral H atoms for strongly-driven hydrogen molecule. This process, where after the laser field is turned off, one electron escapes to the continuum while the other occupies a Rydberg state, was recently reported in an experimental study in Phys. Rev. Lett 102, 113002 (2009). We find that two-electron effects are important in order to correctly account for all pathways leading to highly excited neutral hydrogen formation [1]. We identify two pathways where the electron that escapes to the continuum does so either very quickly or after remaining bound for a few periods of the laser field. These two pathways of highly excited neutral H formation have distinct traces in the probability distribution of the escaping electron momentum components. [4pt] [1] A. Emmanouilidou, C. Lazarou, A. Staudte and U. Eichmann, Phys. Rev. A (Rapid) 85 011402 (2012).

  16. High mass-resolution electron-ion-ion coincidence measurements on core-excited organic molecules

    CERN Document Server

    Tokushima, T; Senba, Y; Yoshida, H; Hiraya, A

    2001-01-01

    Total electron-ion-ion coincidence measurements on core excited organic molecules have been carried out with high mass resolution by using multimode (reflectron/linear) time-of-flight mass analyzer. From the ion correlation spectra of core excited CH sub 3 OH and CD sub 3 OH, the reaction pathway to form H sub 3 sup + (D sub 3 sup +) is identified as the elimination of three H (D) atoms from the methyl group, not as the inter-group (-CH sub 3 and -OH) interactions. In a PEPIPICO spectrum of acetylacetone (CH sub 3 COCH sub 2 COCH sub 3) measured by using a reflectron TOF, correlations between ions up to mass number 70 with one-mass resolution was recorded.

  17. Calculation of 0-0 excitation energies of organic molecules by CIS(D) quantum chemical methods

    International Nuclear Information System (INIS)

    Grimme, Stefan; Izgorodina, Ekaterina I.

    2004-01-01

    The accuracy and reliability of the CIS(D) quantum chemical method and a spin-component scaled variant (SCS-CIS(D)) are tested for calculating 0-0 excitation energies of organic molecules. The ground and excited state geometries and the vibrational zero-point corrections are taken from (TD)DFT-B3LYP calculations. In total 32 valence excited states of different character are studied: π → π* states of polycyclic aromatic compounds/polyenes and n → π* states of carbonyl, thiocarbonyl and aza(azo)-aromatic compounds. This set is augmented by two systems of special interest, i.e., indole and the TICT state of dimethylaminbenzonitrile (DMABN). Both methods predict excitation energies that are on average higher than experiment by about 0.2 eV. The errors are found to be quite systematic (with a standard deviation of about 0.15 eV) and especially SCS-CIS(D) provides a more balanced treatment of π → π* vs. n → π* states. For the test suite of states, both methods clearly outperform the (TD)DFT-B3LYP approach. Opposed to previous conclusions about the performance of CIS(D), these methods can be recommended as reliable and efficient tools for computational studies of excited state problems in organic chemistry. In order to obtain conclusive results, however, the use of optimized excited state geometries and comparison with observables (0-0 excitation energies) are necessary

  18. Electronically excited negative ion resonant states in chloroethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, O.G., E-mail: khv@mail.ru; Lukin, V.G.; Tuimedov, G.M.; Khatymova, L.Z.; Kinzyabulatov, R.R.; Tseplin, E.E.

    2015-02-15

    Highlights: • Several novel dissociative negative ion channels were revealed in chloroethylenes. • The electronically excited resonant states were recorded in all chloroethylenes under study. • The states were assigned to the inter-shell types, but not to the core-excited Feshbach one. - Abstract: The negative ion mass spectra of the resonant electron capture by molecules of 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans, trichloroethylene and tetrachloroethylene have been recorded in the 0–12 eV range of the captured electron energy using static magnetic sector mass spectrometer modified for operation in the resonant electron capture regime. As a result, several novel low-intensive dissociation channels were revealed in the compounds under study. Additionally, the negative ion resonant states were recorded at approximately 3–12 eV, mostly for the first time. These resonant states were assigned to the electronically excited resonances of the inter-shell type by comparing their energies with those of the parent neutral molecules triplet and singlet electronically excited states known from the energy-loss spectra obtained by previous studies.

  19. Using portable Raman spectrometers for the identification of organic compounds at low temperatures and high altitudes: exobiological applications.

    Science.gov (United States)

    Jehlicka, J; Edwards, H G M; Culka, A

    2010-07-13

    Organic minerals, organic acids and NH-containing organic molecules represent important target molecules for astrobiology. Here, we present the results of the evaluation of a portable hand-held Raman spectrometer to detect these organic compounds outdoors under field conditions. These measurements were carried out during the February-March 2009 winter period in Austrian Alpine sites at temperatures ranging between -5 and -25 degrees C. The compounds investigated were detected under field conditions and their main Raman spectral features were observed unambiguously at their correct reference wavenumber positions. The results obtained demonstrate that a miniaturized Raman spectrometer equipped with 785 nm excitation could be applied with advantage as a key instrument for investigating the presence of organic minerals, organic acids and nitrogen-containing organic compounds outdoors under terrestrial low-temperature conditions. Within the payload designed by ESA and NASA for several missions focusing on Mars, Titan, Europa and other extraterrestrial bodies, Raman spectroscopy can be proposed as an important non-destructive analytical tool for the in situ identification of organic compounds relevant to life detection on planetary and moon surfaces or near subsurfaces.

  20. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    International Nuclear Information System (INIS)

    Chu, P.M.Y.

    1991-10-01

    The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH 3 production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam

  1. Low-temperature heat-capacity study of the U6X (XequivalentMn, Fe, Co, Ni) compounds

    International Nuclear Information System (INIS)

    Yang, K.N.; Maple, M.B.; DeLong, L.E.; Huber, J.G.; Junod, A.

    1989-01-01

    Measurements of the superconducting- and normal-state heat capacity of U 6 X (XequivalentMn, Fe, Co, Ni) compounds have been performed over a temperature range 1 Kapprox. 6 X compounds have strong renormalizations of the free-carrier effective mass m/sup */ in the range 10m/sub e/approx. 6 X heat capacities suggest the presence of high densities of low-energy excitations of undetermined nature. The results are analyzed in terms of models appropriate to heavy-fermion liquids, and anisotropic or strong-coupled superconductors. The U 6 X compounds form a link between relatively low-m/sup */, high-transition-temperature A15 compounds and the more extreme examples of heavy-fermion superconductors such as UBe/sub 13/, UPt 3 , and CeCuSi 2 for which m/sup */∼10 2 m/sub e/. .AE

  2. Workshop report of problems relating to multi-electron excited ions in plasma

    International Nuclear Information System (INIS)

    Fujimoto, Takashi; Suzuki, Hiroshi; Takayanagi, Toshinobu; Koike, Fumihiro; Nakamura, Koji.

    1979-08-01

    A workshop was held to discuss the problems relating to multiple electron-excited ions in plasma. The first part of this report deals with the problems of satellite lines. The satellite lines from laser plasma and vacuum sparks are discussed. Review papers on satellite lines and bielectronic recombination are also presented. The second part of this report deals with the problems of autoionization. Theory, comment on the compound state, observation of autoionization and resonance scattering, excitation cross-section, inner shell ionization, excitation through autoionization, and the bielectronic recombination of helium-like ions are discussed. (Kato, T.)

  3. The effect of high pressure on nitrogen compounds of milk

    International Nuclear Information System (INIS)

    Kielczewska, Katarzyna; Czerniewicz, Maria; Michalak, Joanna; Brandt, Waldemar

    2004-01-01

    The effect of pressurization at different pressures (from 200 to 1000 MPa, at 200 MPa intervals, t const. = 15 min) and periods of time (from 15 to 35 min, at 10 min intervals, p const. = 800 MPa) on the changes of proteins and nitrogen compounds of skimmed milk was studied. The pressurization caused an increase in the amount of soluble casein and denaturation of whey proteins. The level of nonprotein nitrogen compounds and proteoso-peptone nitrogen compounds increased as a result of the high-pressure treatment. These changes increased with an increase in pressure and exposure time. High-pressure treatment considerably affected the changes in the conformation of milk proteins, which was reflected in the changes in the content of proteins sedimenting and an increase in their degree of hydration

  4. Deviation from normal Boltzmann distribution of high-lying energy levels of iron atom excited by Okamoto-cavity microwave-induced plasmas using pure nitrogen and nitrogen–oxygen gases

    International Nuclear Information System (INIS)

    Wagatsuma, Kazuaki

    2015-01-01

    This paper describes several interesting excitation phenomena occurring in a microwave-induced plasma (MIP) excited with Okamoto-cavity, especially when a small amount of oxygen was mixed with nitrogen matrix in the composition of the plasma gas. An ion-to-atom ratio of iron, which was estimated from the intensity ratio of ion to atomic lines having almost the same excitation energy, was reduced by adding oxygen gas to the nitrogen MIP, eventually contributing to an enhancement in the emission intensities of the atomic lines. Furthermore, Boltzmann plots for iron atomic lines were observed in a wide range of the excitation energy from 3.4 to 6.9 eV, indicating that plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from the linear relationship. This overpopulation would result from any other excitation process in addition to the thermal excitation that principally determines the Boltzmann distribution. A Penning-type collision with excited species of nitrogen molecules probably explains this additional excitation mechanism, in which the resulting iron ions recombine with captured electrons, followed by cascade de-excitations between closely-spaced excited levels just below the ionization limit. As a result, these high-lying levels might be more populated than the low-lying levels of iron atom. The ionization of iron would be caused less actively in the nitrogen–oxygen plasma than in a pure nitrogen plasma, because excited species of nitrogen molecule, which can provide the ionization energy in a collision with iron atom, are consumed through collisions with oxygen molecules to cause their dissociation. It was also observed that the overpopulation occurred to a lesser extent when oxygen gas was added to the nitrogen plasma. The reason for this was also attributed to decreased number density of the excited nitrogen species due to collisions with oxygen

  5. Mean excitation energies for molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Phillip W.K.; Sauer, Stephan P.A. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Oddershede, Jens [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States); Sabin, John R., E-mail: sabin@qtp.ufl.edu [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States)

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  6. Quantum calculation of dipole excitation in fusion reaction

    International Nuclear Information System (INIS)

    Simenel, C.; Chomaz, Ph.; De France, G.

    2000-01-01

    The excitation of the giant dipole resonance by fusion is studied with N/Z asymmetry in the entrance channel. The TDHF solution exhibits a strong dipole vibration which can be associated with a giant vibration along the main axis of a fluctuating prolate shape. The consequences on the gamma-ray emission from hot compound nuclei are discussed. (author)

  7. Optical spectroscopy of f-element compounds

    International Nuclear Information System (INIS)

    Carnall, W.T.

    1978-01-01

    It is noted that the energies and intensities of transitions observed in the optical spectra of lanthanide (Ln) and actinide (An) compounds can typically be measured with a high degree of accuracy. The observed transitions can then be directly represented as upper state energy levels where the structure is induced by the environment. A discussion is presented of the systematic theoretical interpretation of these transitions both in terms of energy level structure and transition probability. Particularly for the trivalent lanthanides and actinides, the detail to which the interpretation can be carried is unique in the periodic table. The electronic structure of organometallic lanthanides and actinides is emphasized in the discussion. It is made clear that this type of ligand does not present any unique interpretive problems. The basic framework of the interpretation is not dependent upon the specific ionic environment. On the other hand, organometallic compounds represent a particularly interesting group in which to study excited state relaxation

  8. Excited-state density functional theory

    International Nuclear Information System (INIS)

    Harbola, Manoj K; Hemanadhan, M; Shamim, Md; Samal, P

    2012-01-01

    Starting with a brief introduction to excited-state density functional theory, we present our method of constructing modified local density approximated (MLDA) energy functionals for the excited states. We show that these functionals give accurate results for kinetic energy and exchange energy compared to the ground state LDA functionals. Further, with the inclusion of GGA correction, highly accurate total energies for excited states are obtained. We conclude with a brief discussion on the further direction of research that include the construction of correlation energy functional and exchange potential for excited states.

  9. Simulation of statistical γ-spectra of highly excited rare earth nuclei

    International Nuclear Information System (INIS)

    Schiller, A.; Munos, G.; Guttormsen, M.; Bergholt, L.; Melby, E.; Rekstad, J.; Siem, S.; Tveter, T.S.

    1997-05-01

    The statistical γ-spectra of highly excited even-even rare earth nuclei are simulated applying appropriate level density and strength function to a given nucleus. Hindrance effects due to K-conservation are taken into account. Simulations are compared to experimental data from the 163 Dy( 3 He,α) 162 Dy and 173 Yb( 3 He,α) 172 Yb reactions. The influence of the K quantum number at higher energies is discussed. 21 refs., 7 figs., 2 tabs

  10. Direct excitation of a high frequency wave by a low frequency wave in a plasma

    International Nuclear Information System (INIS)

    Tanaka, Takayasu

    1993-01-01

    A new mechanism is presented of an excitation of a high frequency wave by a low frequency wave in a plasma. This mechanism works when the low frequency wave varies in time in a manner deviated from a usual periodic motion with a constant amplitude. The conversion rate is usually not large but the conversion is done without time delay after the variation of the low frequency wave. The Manley Rowe relation in the usual sense does not hold in this mechanism. This mechanism can excite also waves with same or lower frequencies. (author)

  11. Entrance channel dependent light-charged particle emission of the 156Er compound

    International Nuclear Information System (INIS)

    Liang, J.F.; Bierman, J.D.; Kelly, M.P.; Sonzogni, A.A.; Vandenbosch, R.; van Schagen, J.P.S.

    1996-01-01

    Light-charged particle decay from the 156 Er compound nucleus, populated by 12 C+ 144 Sm and 60 Ni+ 96 Zr at the same excitation energy, were measured in coincidence with the evaporation residues. The high energy slope of charged particle spectra for the 60 Ni-induced reaction is steeper than for the 12 C-induced reaction. Model calculations including particle evaporation during compound nucleus formation result in good agreement with the data. This suggests that the difference in the charged particle spectra between the two entrance channels is due to a longer formation time in the 60 Ni-induced reaction. 14 refs., 3 figs

  12. Evidence for excited state intramolecular charge transfer in benzazole-based pseudo-stilbenes.

    Science.gov (United States)

    Santos, Fabiano da Silveira; Descalzo, Rodrigo Roceti; Gonçalves, Paulo Fernando Bruno; Benvenutti, Edilson Valmir; Rodembusch, Fabiano Severo

    2012-08-21

    Two azo compounds were obtained through the diazotization reaction of aminobenzazole derivatives and N,N-dimethylaniline using clay montmorillonite KSF as catalyst. The synthesized dyes were characterized using elemental analysis, Fourier transform infrared spectroscopy, and (13)C and (1)H NMR spectroscopy in solution. Their photophysical behavior was studied using UV-vis and steady-state fluorescence in solution. These dyes present intense absorption in the blue region. The spectral features of the azo compounds can be related to the pseudo-stilbene type as well as the E isomer of the dyes. Excitation at the absorption maxima does not produce emissive species in the excited state. However, excitation around 350 nm allowed dual emission of fluorescence, from both a locally excited (LE, short wavelength) and an intramolecular charge transfer (ICT, long wavelength) state, which was corroborated by a linear relation of the fluorescence maximum (ν(max)) versus the solvent polarity function (Δf) from the Lippert-Mataga correlation. Evidence of TICT in these dyes was discussed from the viscosity dependence of the fluorescence intensity in the ICT emission band. Theoretical calculations were also performed in order to study the geometry and charge distribution of the dyes in their ground and excited electronic states. Using DFT methods at the theoretical levels BLYP/Aug-cc-pVDZ, for geometry optimizations and frequency calculations, and B3LYP/6-311+G(2d), for single-point energy evaluations, the calculations revealed that the least energetic and most intense photon absorption leads to a very polar excited state that relaxes non-radioactively, which can be associated with photochemical isomerization.

  13. Lifetime measurements of odd-parity high-excitation levels of Sn I by time-resolved laser spectroscopy

    International Nuclear Information System (INIS)

    Zhang, Wei; Feng, Yanyan; Xu, Jiaxin; Dai, Zhenwen; Palmeri, Patrick; Quinet, Pascal; Biemont, Emile

    2010-01-01

    Natural radiative lifetimes of 38 odd-parity highly excited levels in neutral tin in the energy range from 43 682.737 to 56 838.68 cm -1 have been measured by a time-resolved laser-induced fluorescence technique in an atomic beam produced by laser ablation on a solid tin sample. All the levels were excited from the metastable 3 P 1, 2 and 1 D 2 levels in the ground configuration. The second and third harmonics of a dye laser were adopted as the tunable exciting source (207-250 nm). The lifetime results obtained in this paper are in the range from 4.6 to 292 ns and will be useful in extending the set of oscillator strengths available in Sn I.

  14. Highly excited strings I: Generating function

    Directory of Open Access Journals (Sweden)

    Dimitri P. Skliros

    2017-03-01

    Full Text Available This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES. In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators in general toroidal compactifications E=RD−1,1×TDcr−D (with generic constant Kähler and complex structure target space moduli, background Kaluza–Klein (KK gauge fields and torsion. We adopt a novel approach that does not rely on a “reverse engineering” method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particular in relation to black holes in string theory, non-locality and breakdown of local effective field theory, as well as in discussions of cosmic superstrings and their phenomenological relevance. We also discuss the manifestation of wave/particle (or rather wave/string duality in string theory.

  15. Continuum emission of excited sodium dimer

    International Nuclear Information System (INIS)

    Pardo, A.; Poyato, J.M.L.; Alonso, J.I.; Rico, F.R.

    1980-01-01

    A study has been made of the behaviour of excited molecular sodium using high-power Ar + laser radiation. A continuum emission was observed in the red wavelength region. This emission was thought to be caused by the formation of excited triatomic molecules. Energy transfer was observed from excited molecules to atoms. (orig.)

  16. Lifetime measurements of excited states in 73As

    International Nuclear Information System (INIS)

    Singh, K.P.; Kavakand, T.; Hajivaliei, M.

    2004-01-01

    The excited states of 73 As have been investigated via the 73 Ge(p, nγ) 73 As reaction with proton beam energies from 2.5–4.3 MeV. The lifetimes of the levels at 769.6, 860.5, 1177.8, 1188.7, 1274.9, 1344.1, 1557.1 and 1975.2 keV excitation energies have been measured for the first time using the Doppler shift attenuation method. The angular distributions have been used to assign the spins and the multipole mixing ratios using statistical theory for compound nuclear reactions. The ambiguity in the spin values for the various levels has been removed. The multipole mixing ratios for eight γ-transitions have been newly measured. (author)

  17. High-Tc Superconductors Based on FeAs Compounds

    CERN Document Server

    Izyumov, Yuri

    2010-01-01

    Physical properties and models of electronic structure are analyzed for a new class of high-TC superconductors which belong to iron-based layered compounds. Despite their variable chemical composition and differences in the crystal structure, these compounds possess similar physical characteristics, due to electron carriers in the FeAs layers and the interaction of these carriers with fluctuations of the magnetic order. A tremendous interest towards these materials is explained by the prospects of their practical use. In this monograph, a full picture of the formation of physical properties of these materials, in the context of existing theory models and electron structure studies, is given. The book is aimed at a broad circle of readers: physicists who study electronic properties of the FeAs compounds, chemists who synthesize them and specialists in the field of electronic structure calculations in solids. It is helpful not only to researchers active in the fields of superconductivity and magnetism, but also...

  18. High-performance liquid chromatographic method for guanylhydrazone compounds.

    Science.gov (United States)

    Cerami, C; Zhang, X; Ulrich, P; Bianchi, M; Tracey, K J; Berger, B J

    1996-01-12

    A high-performance liquid chromatographic method has been developed for a series of aromatic guanylhydrazones that have demonstrated therapeutic potential as anti-inflammatory agents. The compounds were separated using octadecyl or diisopropyloctyl reversed-phase columns, with an acetonitrile gradient in water containing heptane sulfonate, tetramethylammonium chloride, and phosphoric acid. The method was used to reliably quantify levels of analyte as low as 785 ng/ml, and the detector response was linear to at least 50 micrograms/ml using a 100 microliters injection volume. The assay system was used to determine the basic pharmacokinetics of a lead compound, CNI-1493, from serum concentrations following a single intravenous injection in rats.

  19. Controlling light oxidation flavor in milk by blocking riboflavin excitation wavelengths by interference.

    Science.gov (United States)

    Webster, J B; Duncan, S E; Marcy, J E; O'Keefe, S F

    2009-01-01

    Milk packaged in glass bottles overwrapped with iridescent films (treatments blocked either a single visible riboflavin [Rb] excitation wavelength or all visible Rb excitation wavelengths; all treatments blocked UV Rb excitation wavelengths) was exposed to fluorescent lighting at 4 degrees C for up to 21 d and evaluated for light-oxidized flavor. Controls consisted of bottles with no overwrap (light-exposed treatment; represents the light barrier properties of the glass packaging) and bottles overwrapped with aluminum foil (light-protected treatment). A balanced incomplete block multi-sample difference test, using a ranking system and a trained panel, was used for evaluation of light oxidation flavor intensity. Volatiles were evaluated by gas chromatography and Rb degradation was evaluated by fluorescence spectroscopy. Packaging overwraps limited production of light oxidation flavor over time but not to the same degree as the complete light block. Blocking all visible and UV Rb excitation wavelengths reduced light oxidation flavor better than blocking only a single visible excitation wavelength plus all UV excitation wavelengths. Rb degraded over time in all treatments except the light-protected control treatment and only minor differences in the amount of degradation among treatments was observed. Hexanal production was significantly higher in the light-exposed control treatment compared to the light-protected control treatment from day 7; it was only sporadically significantly higher in the 570 nm and 400 nm block treatments. Pentanal, heptanal, and an unidentified volatile compound also increased in concentration over time, but there were no significant differences in concentration among the packaging overwrap treatments for these compounds.

  20. Moessbauer studies of non-linear excitations and gold cluster compounds

    International Nuclear Information System (INIS)

    Smit, H.H.A.

    1988-01-01

    Moessbauer effect spectroscopy has been applied to the study of three polynuclear gold cluster compounds. The resulting information on the local vibrational density of states has been compared to several models which take the finite size of the particles into consideration. 188 refs.; 34 figs.; 103 schemes; 8 tabs

  1. Excitation of high numbers harmonics by flows of oscillators in a periodic potential

    International Nuclear Information System (INIS)

    Buts, V.A.; Marekha, V.I.; Tolstoluzhsky, A.P.

    2005-01-01

    It is shown that the maximum of radiation spectrum of nonrelativistic oscillators, which move into a periodically inhomogeneous potential, can be in the region of high numbers harmonics. Spectrum of such oscillators radiation becomes similar to the radiation spectrum of relativistic oscillators. The equations, describing the non-linear self-consistent theory of excitations, of high numbers harmonics by ensemble of oscillators are formulated and its numerical analysis is conducted. The numerical analysis has confirmed the capability of radiation of high numbers of harmonics. Such peculiarity of radiation allows t expect of creation of nonrelativistic FEL

  2. Environmental Chemistry Compound Identification Using High ...

    Science.gov (United States)

    There is a growing need for rapid chemical screening and prioritization to inform regulatory decision-making on thousands of chemicals in the environment. We have previously used high-resolution mass spectrometry to examine household vacuum dust samples using liquid chromatography time-of-flight mass spectrometry (LC-TOF/MS). Using a combination of exact mass, isotope distribution, and isotope spacing, molecular features were matched with a list of chemical formulas from the EPA’s Distributed Structure-Searchable Toxicity (DSSTox) database. This has further developed our understanding of how openly available chemical databases, together with the appropriate searches, could be used for the purpose of compound identification. We report here on the utility of the EPA’s iCSS Chemistry Dashboard for the purpose of compound identification using searches against a database of over 720,000 chemicals. We also examine the benefits of QSAR prediction for the purpose of retention time prediction to allow for alignment of both chromatographic and mass spectral properties. This abstract does not reflect U.S. EPA policy presentation at the Eastern Analytical Symposium.

  3. ANISOTROPY EFFECTS IN SINGLE-ELECTRON TRANSFER BETWEEN LASER-EXCITED ATOMS AND HIGHLY-CHARGED IONS

    NARCIS (Netherlands)

    Recent collision experiments are reviewed in which one-electron transfer between laser excited target atoms and (highly charged) keV-ions has been studied. Especially results showing a dependence of the charge exchange on the initial target orbital alignment are discussed. The question to what

  4. High-lying Gamow-Teller excited states in the deformed nuclei,76Ge,82Se and N = 20 nuclei in the island of inversion by the Deformed QRPA (DQRPA)

    Science.gov (United States)

    Cheoun, Myung-Ki; Ha, Eunja

    2013-07-01

    With the advent of high analysis technology in detecting the Gamow-Teller (GT) excited states beyond one nucleon emission threshold, the quenching of the GT strength to the Ikeda sum rule (ISR) seems to be recovered by the high-lying (HL) GT states. We address that these HL GT excited states result from the smearing of the Fermi surface by the increase of the chemical potential owing to the deformation within a framework of the deformed quasi-particle random phase approximation (DQRPA). Detailed mechanism leading to the smearing is discussed, and comparisons to the available experimental data on 76Ge,82Se and N = 20 nuclei are shown to explain the strong peaks on the HL GT excited states.

  5. High-lying Gamow-Teller excited states in the deformed nuclei,76Ge,82Se and N = 20 nuclei in the island of inversion by the Deformed QRPA (DQRPA)

    International Nuclear Information System (INIS)

    Cheoun, Myung-Ki; Ha, Eunja

    2013-01-01

    With the advent of high analysis technology in detecting the Gamow-Teller (GT) excited states beyond one nucleon emission threshold, the quenching of the GT strength to the Ikeda sum rule (ISR) seems to be recovered by the high-lying (HL) GT states. We address that these HL GT excited states result from the smearing of the Fermi surface by the increase of the chemical potential owing to the deformation within a framework of the deformed quasi-particle random phase approximation (DQRPA). Detailed mechanism leading to the smearing is discussed, and comparisons to the available experimental data on 76 Ge, 82 Se and N = 20 nuclei are shown to explain the strong peaks on the HL GT excited states

  6. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    Directory of Open Access Journals (Sweden)

    K. Nishio

    2015-09-01

    Full Text Available Mass distributions of fission fragments from the compound nuclei 180Hg and 190Hg formed in fusion reactions 36Ar + 144Sm and 36Ar + 154Sm, respectively, were measured at initial excitation energies of E⁎(Hg180=33–66 MeV and E⁎(Hg190=48–71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses A¯L/A¯H=79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of A¯L/A¯H=83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. This behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.

  7. Model for fusion and cool compound nucleus formation based on the fragmentation theory

    International Nuclear Information System (INIS)

    Malhotra, N.; Aroumougame, R.; Saroha, D.R.; Gupta, R.K.

    1986-01-01

    Collective potential energy surfaces are calculated in both the adiabatic and sudden approximations by using the asymmetric two-center shell model in the Strutinsky method. It is shown that fusion of two colliding heavy ions occurs by their crossing over of the adiabatic interaction barrier. The adiabatic scattering potentials present two barriers, whereas no barrier is shown to occur in sudden scattering potentials. The first barrier is obtained just past the saddle shape but is too low, such that a deep inelastic process is expected. The other, inner, barrier is high enough to let the system fall into the fusion well, whose excitation energy then determines whether a cool compound nucleus is produced or the fusion-fission process occurs. For a given compound nucleus, the excitation energy is found to be small for only a few target-projectile combinations, which increase as their mass asymmetry increases. Such target-projectile combinations which refer to a cool compound nucleus can be identified by a simple calculation of the fragmentation potential based on the ground state binding energies with Coulomb and proximity effects calculated at a constant relative separation of the two nuclei. Our calculations are made for the composite systems with 102 < or =Z < or =114

  8. Model for fusion and cool compound nucleus formation based on the fragmentation theory

    International Nuclear Information System (INIS)

    Malhotra, N.; Aroumougame, R.; Saroha, D.R.; Gupta, R.K.

    1985-07-01

    The collective potential energy surfaces are calculated in both the adiabatic and sudden approximations by using the asymmetric two centre shell model in Strutinsky method. It is shown that fusion of two colliding heavy ions occur by their crossing over of the adiabatic interaction barrier. The adiabatic scattering potentials present two barriers whereas no barrier is shown to occur in sudden scattering potentials. The first barrier is obtained just past the saddle shape but is too low, such that a deep inelastic process is expected. The other, inner, barrier is high enough to let the system fall into the fusion well, whose excitation energy then determine whether a cool compound nucleus is produced or the fusion-fission process occurs. For a given compound nucleus, the excitation energy is found to be small for only a few target-projectile combinations, which increase as their mass asymmetry increases. Such target-projectile combinations which refer to a cool compound nucleus, can be identified by a simple calculation of the fragmentation potential based on the ground state binding energies with Couloumb and proximity effects calculated at a constant relative separation of the two nuclei. Our calculations are made for the composite systems with 102<=Z<=114. (author)

  9. High-energy neutron irradiation of superconducting compounds

    International Nuclear Information System (INIS)

    Sweedler, A.R.; Snead, C.L.; Newkirk, L.; Valencia, F.; Geballe, T.H.; Schwall, R.H.; Matthias, B.T.; Corenswit, E.

    1975-01-01

    The effect of high-energy neutron irradiation (E greater than 1 MeV) at ambient reactor temperatures on the superconducting properties of a variety of superconducting compounds is reported. The materials studied include the A-15 compounds Nb 3 Sn, Nb 3 Al, Nb 3 Ga, Nb 3 Ge and V 3 Si, the C-15 Laves phase HfV 2 , the ternary molybdenum sulfide Mo 3 Pb 0 . 5 S 4 and the layered dichalcogenide NbSe 2 . The superconducting transition temperature has been measured for all of the above materials for neutron fluences up to 5 x 10 19 n/cm 2 . The critical current for multifilamentary Nb 3 Sn has also been determined for fields up to 16 T and fluences between 3 x 10 17 n/cm 2 and 1.1 x 10 19 n/cm 2

  10. A Strategy for Magnifying Vibration in High-Energy Orbits of a Bistable Oscillator at Low Excitation Levels

    International Nuclear Information System (INIS)

    Wang Guang-Qing; Liao Wei-Hsin

    2015-01-01

    This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is used to magnify the base vibration displacement to significantly enhance the output characteristics of the bistable oscillator. The dimensionless electromechanical equations of the bistable oscillator with an EM are derived, and the effects of the mass and stiffness ratios between the EM and the bistable oscillator on the output displacement are studied. It is shown that the jump phenomenon occurs at a lower excitation level with increasing the mass and stiffness ratios. With the comparison of the displacement trajectories and the phase portraits obtained from experiments, it is validated that the bistable oscillator with an EM can effectively oscillate in a high-energy orbit and can generate a superior output vibration at a low excitation level as compared with the bistable oscillator without an EM. (paper)

  11. Lifetime measurements of odd-parity high-excitation levels of Sn I by time-resolved laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Feng, Yanyan; Xu, Jiaxin; Dai, Zhenwen [College of Physics, Jilin University and Key Lab of Coherent Light, Atomic and Molecular Spectroscopy, Ministry of Education, Changchun 130021 (China); Palmeri, Patrick; Quinet, Pascal; Biemont, Emile, E-mail: dai@jlu.edu.c [Astrophysique et Spectroscopie, Universite de Mons-UMONS, B-7000 Mons (Belgium)

    2010-10-28

    Natural radiative lifetimes of 38 odd-parity highly excited levels in neutral tin in the energy range from 43 682.737 to 56 838.68 cm{sup -1} have been measured by a time-resolved laser-induced fluorescence technique in an atomic beam produced by laser ablation on a solid tin sample. All the levels were excited from the metastable {sup 3}P{sub 1,} {sub 2} and {sup 1}D{sub 2} levels in the ground configuration. The second and third harmonics of a dye laser were adopted as the tunable exciting source (207-250 nm). The lifetime results obtained in this paper are in the range from 4.6 to 292 ns and will be useful in extending the set of oscillator strengths available in Sn I.

  12. Radiative-lifetime measurements and calculations of odd-parity highly excited levels in Ba i

    International Nuclear Information System (INIS)

    Zhang Wei; Du Shan; Palmeri, Patrick; Quinet, Pascal; Biemont, Emile; Dai Zhenwen

    2010-01-01

    Natural radiative lifetime measurements have been performed for 70 odd-parity highly excited levels of neutral barium in the energy range from 308 15.512 to 417 59.93 cm -1 by a time-resolved laser-induced fluorescence technique in a laser-produced plasma. The lifetime values measured in this paper are in the range from 11.3 to 901 ns. They are compared with the published lifetimes of four levels. Two of them are in good agreement, whereas for the other two our measurements are slightly longer than the published data. The reasons for the discrepancies are discussed. Comparisons with theoretical results of the Hartree-Fock method with relativistic corrections illustrate the difficulties associated with the use of Cowan's codes for obtaining accurate branching fractions for transitions depopulating highly excited levels along the Rydberg series of heavy neutral elements. This work will be useful to extend the set of oscillator strengths available in Ba i.

  13. A highly efficient surface plasmon polaritons excitation achieved with a metal-coupled metal-insulator-metal waveguide

    Directory of Open Access Journals (Sweden)

    Hongyan Yang

    2014-12-01

    Full Text Available We propose a novel metal-coupled metal-insulator-metal (MC-MIM waveguide which can achieve a highly efficient surface plasmon polaritons (SPPs excitation. The MC-MIM waveguide is formed by inserting a thin metal film in the insulator of an MIM. The introduction of the metal film, functioning as an SPPs coupler, provides a space for the interaction between SPPs and a confined electromagnetic field of the intermediate metal surface, which makes energy change and phase transfer in the metal-dielectric interface, due to the joint action of incomplete electrostatic shielding effect and SPPs coupling. Impacts of the metal film with different materials and various thickness on SPPs excitation are investigated. It is shown that the highest efficient SPPs excitation is obtained when the gold film thickness is 60 nm. The effect of refractive index of upper and lower symmetric dielectric layer on SPPs excitation is also discussed. The result shows that the decay value of refractive index is 0.3. Our results indicate that this proposed MC-MIM waveguide may offer great potential in designing a new SPPs source.

  14. Excited-state relaxation of some aminoquinolines

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The absorption and fluorescence spectra, fluorescence quantum yields and lifetimes, and fluorescence rate constants ( k f of 2-amino-3-( 2 ′ -benzoxazolylquinoline (I, 2-amino-3-( 2 ′ -benzothiazolylquinoline (II, 2-amino-3-( 2 ′ -methoxybenzothiazolyl-quinoline (III, 2-amino-3-( 2 ′ -benzothiazolylbenzoquinoline (IV at different temperatures have been measured. The shortwavelength shift of fluorescence spectra of compounds studied (23–49 nm in ethanol as the temperature decreases (the solvent viscosity increases points out that the excited-state relaxation process takes place. The rate of this process depends essentially on the solvent viscosity, but not the solvent polarity. The essential increasing of fluorescence rate constant k f (up to about 7 times as the solvent viscosity increases proves the existence of excited-state structural relaxation consisting in the mutual internal rotation of molecular fragments of aminoquinolines studied, followed by the solvent orientational relaxation.

  15. Luminescence of Ce3+ at two different sites in ?-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation

    NARCIS (Netherlands)

    Hou, D.; Han, B.; Chen, W.; Liang, H.; Su, Q.; Dorenbos, P.; Huang, Y.; Gao, Z.; Tao, Y.

    2010-01-01

    A series of Ce3+ doped ?-Sr2?2xCexNaxP2O7 phosphor compounds has been prepared using a high-temperature solid-state reaction technique. The luminescence properties under vacuum ultraviolet-UV and x-ray excitation were studied. Luminescence spectra reveal three UV-emitting peaks at about 310, 330,

  16. Getting super-excited with modified dispersion relations

    Energy Technology Data Exchange (ETDEWEB)

    Ashoorioon, Amjad; Casadio, Roberto [INFN—Sezione di Bologna, viale B. Pichat 6/2, I-40127 Bologna (Italy); Geshnizjani, Ghazal; Kim, Hyung J., E-mail: amjad.ashoorioon@bo.infn.it, E-mail: roberto.casadio@bo.infn.it, E-mail: ggeshniz@uwaterloo.ca, E-mail: h268kim@uwaterloo.ca [Department of Applied Mathematics, University of Waterloo Waterloo, Ontario, N2L 3G1 (Canada)

    2017-09-01

    We demonstrate that in some regions of parameter space, modified dispersion relations can lead to highly populated excited states, which we dub as 'super-excited' states. In order to prepare such super-excited states, we invoke dispersion relations that have negative slope in an interim sub-horizon phase at high momenta. This behaviour of quantum fluctuations can lead to large corrections relative to the Bunch-Davies power spectrum, which mimics highly excited initial conditions. We identify the Bogolyubov coefficients that can yield these power spectra. In the course of this computation, we also point out the shortcomings of the gluing method for evaluating the power spectrum and the Bogolyubov coefficients. As we discuss, there are other regions of parameter space, where the power spectrum does not get modified. Therefore, modified dispersion relations can also lead to so-called 'calm excited states'. We conclude by commenting on the possibility of obtaining these modified dispersion relations within the Effective Field Theory of Inflation.

  17. Comparison of sensitivities and detection limits between direct excitation and secondary excitation modes in energy dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Artz, B.E.; Short, M.A.

    1976-01-01

    A comparison was made between the direct tube excitation mode and the secondary target excitation mode using a Kevex 0810 energy dispersive x-ray fluorescence system. Relative sensitivities and detection limits were determined with two system configurations. The first configuration used a standard, high power, x-ray fluorescence tube to directly excite the specimen. Several x-ray tubes, including chromium, molybdenum, and tungsten, both filtered and not filtered, were employed. The second configuration consisted of using the x-ray tube to excite a secondary target which in turn excited the specimen. Appropriate targets were compared to the direct excitation results. Relative sensitivities and detection limits were determined for K-series lines for elements from magnesium to barium contained in a low atomic number matrix and in a high atomic number matrix

  18. Effects of a Single Session of High Intensity Interval Treadmill Training on Corticomotor Excitability following Stroke: Implications for Therapy

    Directory of Open Access Journals (Sweden)

    Sangeetha Madhavan

    2016-01-01

    Full Text Available Objective. High intensity interval treadmill training (HIITT has been gaining popularity for gait rehabilitation after stroke. In this study, we examined the changes in excitability of the lower limb motor cortical representation (M1 in chronic stroke survivors following a single session of HIITT. We also determined whether exercise-induced changes in excitability could be modulated by transcranial direct current stimulation (tDCS enhanced with a paretic ankle skill acquisition task. Methods. Eleven individuals with chronic stroke participated in two 40-minute treadmill-training sessions: HIITT alone and HITT preceded by anodal tDCS enhanced with a skill acquisition task (e-tDCS+HIITT. Transcranial magnetic stimulation (TMS was used to assess corticomotor excitability of paretic and nonparetic tibialis anterior (TA muscles. Results. HIIT alone reduced paretic TA M1 excitability in 7 of 11 participants by ≥ 10%. e-tDCS+HIITT increased paretic TA M1 excitability and decreased nonparetic TA M1 excitability. Conclusions. HIITT suppresses corticomotor excitability in some people with chronic stroke. When HIITT is preceded by tDCS in combination with a skill acquisition task, the asymmetry of between-hemisphere corticomotor excitability is reduced. Significance. This study provides preliminary data indicating that the cardiovascular benefits of HIITT may be achieved without suppressing motor excitability in some stroke survivors.

  19. Fluorescence spectra of Rhodamine 6G for high fluence excitation laser radiation

    CERN Document Server

    Hung, J; Olaizola, A M

    2003-01-01

    Fluorescence spectral changes of Rhodamine 6G in ethanol and glycerol solutions and deposited as a film on a silica surface have been studied using a wide range of pumping field fluence at 532 nm at room temperature. Blue shift of the fluorescence spectra and fluorescence quenching of the dye molecule in solution are observed at high excitation fluence values. Such effects are not reported for the film sample. The effects are interpreted as the result of population redistribution in the solute-solvent molecular system induced by the high fluence field and the fluence dependence of the radiationless decay mechanism.

  20. Neutron emission probability at high excitation and isospin

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2005-01-01

    One-neutron and two-neutron emission probability at different excitations and varying isospin have been studied. Several degrees of freedom like deformation, rotations, temperature, isospin fluctuations and shell structure are incorporated via statistical theory of hot rotating nuclei

  1. Very high rotational excitation of CO in a cooled electric discharge through carbon monoxide

    Science.gov (United States)

    Cossart-Magos, Claudina; Cossart, Daniel

    2000-02-01

    Infrared emission from 12CO and 13CO, excited in the cathode region of a discharge tube immersed in liquid nitrogen, was recorded by Fourier-transform spectrometry at a resolution of 0.005 cm-1. The Δv=1 sequence bands recorded in the 2500-1800 cm-1 spectral interval, indicate the existence of three different rotational populations; (i) molecules in the zero-ground level with Trot≈100 K (responsible for reabsorption of part of the 1-0 emission band); (ii) molecules with Trot≈275 K (maximum intensity for Jmax'≈6 in each band, Tvib≈3000 K for v'=2-4, Tvib≈8600 K for v'=5-13); (iii) molecules with v' limited to 6, for which R-rotational lines are observed for J' values between 50 and 120 (Jmax'≈90, non-Boltzmannian population distribution). The full-width at half-maximum (FWHM) of all the observed lines is less than 0.007 cm-1. A Doppler width of 0.005 cm-1 and translational temperature Ttr≈280 K can be deduced. Such high-J levels of the CO molecule had never been observed in the laboratory. In the absorption spectrum of the Sun photosphere, the same lines present FWHM values 5-8 times larger. The best available Dunham coefficients are checked to reproduce the high-J lines wave numbers to at least 0.001 cm-1. Dissociative recombination of the dimer (CO)2+ cation, which is likely to be formed in our experimental conditions, is discussed as a possible mechanism to produce CO fragments with very high rotational excitation, while keeping vibrational excitation limited to v'=6.

  2. Electron distribution function in electron-beam-excited plasmas

    International Nuclear Information System (INIS)

    Brau, C.A.

    1976-01-01

    In monatomic plasmas excited by high-intensity relativistic electron beams, the electron secondary distribution function is dominated by elastic electron-electron collisions at low electron energies and by inelastic electron-atom collisions at high electron energies (above the excitation threshold). Under these conditions, the total rate of excitation by inelastic collisions is limited by the rate at which electron-electron collisions relax the distribution function in the neighborhood of the excitation threshold. To describe this effect quantitatively, an approximate analytic solution of the electron Boltzmann equation is obtained, including both electron-electron and inelastic collisions. The result provides a simple formula for the total rate of excitation

  3. The photodissociation and reaction dynamics of vibrationally excited molecules

    Energy Technology Data Exchange (ETDEWEB)

    Crim, F.F. [Univ. of Wisconsin, Madison (United States)

    1993-12-01

    This research determines the nature of highly vibrationally excited molecules, their unimolecular reactions, and their photodissociation dynamics. The goal is to characterize vibrationally excited molecules and to exploit that understanding to discover and control their chemical pathways. Most recently the author has used a combination of vibrational overtone excitation and laser induced fluorescence both to characterize vibrationally excited molecules and to study their photodissociation dynamics. The author has also begun laser induced grating spectroscopy experiments designed to obtain the electronic absorption spectra of highly vibrationally excited molecules.

  4. Dynamic modification of the fragmentation of COq+ excited states generated with high-order harmonics

    International Nuclear Information System (INIS)

    Cao, W.; De, S.; Singh, K. P.; Chen, S.; Laurent, G.; Ray, D.; Ben-Itzhak, I.; Cocke, C. L.; Schoeffler, M. S.; Belkacem, A.; Osipov, T.; Rescigno, T.; Alnaser, A. S.; Bocharova, I. A.; Zherebtsov, S.; Kling, M. F.; Litvinyuk, I. V.

    2010-01-01

    The dynamic process of fragmentation of CO q+ excited states is investigated using a pump-probe approach. EUV radiation (32-48 eV) generated by high-order harmonics was used to ionize and excite CO molecules and a time-delayed infrared (IR) pulse (800 nm) was used to influence the evolution of the dissociating multichannel wave packet. Two groups of states, separable experimentally by their kinetic-energy release (KER), are populated by the EUV and lead to C + -O + fragmentation: direct double ionization of the neutral molecule and fragmentation of the cation leading to C + -O*, followed by autoionization of O*. The IR pulse was found to modify the KER of the latter group in a delay-dependent way which is explained with a model calculation.

  5. Detection of chlorinated aromatic compounds

    Science.gov (United States)

    Ekechukwu, A.A.

    1996-02-06

    A method for making a composition for measuring the concentration of chlorinated aromatic compounds in aqueous fluids, and an optical probe for use with the method are disclosed. The composition comprises a hydrophobic polymer matrix, preferably polyamide, with a fluorescent indicator uniformly dispersed therein. The indicator fluoresces in the presence of the chlorinated aromatic compounds with an intensity dependent on the concentration of these compounds in the fluid of interest, such as 8-amino-2-naphthalene sulfonate. The probe includes a hollow cylindrical housing that contains the composition in its distal end. The probe admits an aqueous fluid to the probe interior for exposure to the composition. An optical fiber transmits excitation light from a remote source to the composition while the indicator reacts with chlorinated aromatic compounds present in the fluid. The resulting fluorescence light signal is reflected to a second optical fiber that transmits the light to a spectrophotometer for analysis. 5 figs.

  6. Lettuce flavonoids screening and phenotyping by chlorophyll fluorescence excitation ratio.

    Science.gov (United States)

    Zivcak, Marek; Brückova, Klaudia; Sytar, Oksana; Brestic, Marian; Olsovska, Katarina; Allakhverdiev, Suleyman I

    2017-06-01

    Environmentally induced variation and the genotypic differences in flavonoid and phenolic content in lettuce can be reliably detected using the appropriate parameters derived from the records of rapid non-invasive fluorescence technique. The chlorophyll fluorescence excitation ratio method was designed as a rapid and non-invasive tool to estimate the content of UV-absorbing phenolic compounds in plants. Using this technique, we have assessed the dynamics of accumulation of flavonoids related to developmental changes and environmental effects. Moreover, we have tested appropriateness of the method to identify the genotypic differences and fluctuations in total phenolics and flavonoid content in lettuce. Six green and two red genotypes of lettuce (Lactuca sativa L.) grown in pots were exposed to two different environments for 50 days: direct sunlight (UV-exposed) and greenhouse conditions (low UV). The indices based on the measurements of chlorophyll fluorescence after red, green and UV excitation indicated increase of the content of UV-absorbing compounds and anthocyanins in the epidermis of lettuce leaves. In similar, the biochemical analyses performed at the end of the experiment confirmed significantly higher total phenolic and flavonoid content in lettuce plants exposed to direct sun compared to greenhouse conditions and in red compared to green genotypes. As the correlation between the standard fluorescence indices and the biochemical records was negatively influenced by the presence of red genotypes, we proposed the use of a new parameter named Modified Flavonoid Index (MFI) taking into an account both absorbance changes due to flavonol and anthocyanin content, for which the correlation with flavonoid and phenolic content was relatively good. Thus, our results confirmed that the fluorescence excitation ratio method is useful for identifying the major differences in phenolic and flavonoid content in lettuce plants and it can be used for high-throughput pre

  7. Trajectory study of supercollision relaxation in highly vibrationally excited pyrazine and CO2.

    Science.gov (United States)

    Li, Ziman; Sansom, Rebecca; Bonella, Sara; Coker, David F; Mullin, Amy S

    2005-09-01

    Classical trajectory calculations were performed to simulate state-resolved energy transfer experiments of highly vibrationally excited pyrazine (E(vib) = 37,900 cm(-1)) and CO(2), which were conducted using a high-resolution transient infrared absorption spectrometer. The goal here is to use classical trajectories to simulate the supercollision energy transfer pathway wherein large amounts of energy are transferred in single collisions in order to compare with experimental results. In the trajectory calculations, Newton's laws of motion are used for the molecular motion, isolated molecules are treated as collections of harmonic oscillators, and intermolecular potentials are formed by pairwise Lennard-Jones potentials. The calculations qualitatively reproduce the observed energy partitioning in the scattered CO(2) molecules and show that the relative partitioning between bath rotation and translation is dependent on the moment of inertia of the bath molecule. The simulations show that the low-frequency modes of the vibrationally excited pyrazine contribute most to the strong collisions. The majority of collisions lead to small DeltaE values and primarily involve single encounters between the energy donor and acceptor. The large DeltaE exchanges result from both single impulsive encounters and chattering collisions that involve multiple encounters.

  8. Engineering biosynthesis of high-value compounds in photosynthetic organisms.

    Science.gov (United States)

    O'Neill, Ellis C; Kelly, Steven

    2017-09-01

    The photosynthetic, autotrophic lifestyle of plants and algae position them as ideal platform organisms for sustainable production of biomolecules. However, their use in industrial biotechnology is limited in comparison to heterotrophic organisms, such as bacteria and yeast. This usage gap is in part due to the challenges in generating genetically modified plants and algae and in part due to the difficulty in the development of synthetic biology tools for manipulating gene expression in these systems. Plant and algal metabolism, pre-installed with multiple biosynthetic modules for precursor compounds, bypasses the requirement to install these pathways in conventional production organisms, and creates new opportunities for the industrial production of complex molecules. This review provides a broad overview of the successes, challenges and future prospects for genetic engineering in plants and algae for enhanced or de novo production of biomolecules. The toolbox of technologies and strategies that have been used to engineer metabolism are discussed, and the potential use of engineered plants for industrial manufacturing of large quantities of high-value compounds is explored. This review also discusses the routes that have been taken to modify the profiles of primary metabolites for increasing the nutritional quality of foods as well as the production of specialized metabolites, cosmetics, pharmaceuticals and industrial chemicals. As the universe of high-value biosynthetic pathways continues to expand, and the tools to engineer these pathways continue to develop, it is likely plants and algae will become increasingly valuable for the biomanufacturing of high-value compounds.

  9. Quinary excitation method for pulse compression ultrasound measurements.

    Science.gov (United States)

    Cowell, D M J; Freear, S

    2008-04-01

    A novel switched excitation method for linear frequency modulated excitation of ultrasonic transducers in pulse compression systems is presented that is simple to realise, yet provides reduced signal sidelobes at the output of the matched filter compared to bipolar pseudo-chirp excitation. Pulse compression signal sidelobes are reduced through the use of simple amplitude tapering at the beginning and end of the excitation duration. Amplitude tapering using switched excitation is realised through the use of intermediate voltage switching levels, half that of the main excitation voltages. In total five excitation voltages are used creating a quinary excitation system. The absence of analogue signal generation and power amplifiers renders the excitation method attractive for applications with requirements such as a high channel count or low cost per channel. A systematic study of switched linear frequency modulated excitation methods with simulated and laboratory based experimental verification is presented for 2.25 MHz non-destructive testing immersion transducers. The signal to sidelobe noise level of compressed waveforms generated using quinary and bipolar pseudo-chirp excitation are investigated for transmission through a 0.5m water and kaolin slurry channel. Quinary linear frequency modulated excitation consistently reduces signal sidelobe power compared to bipolar excitation methods. Experimental results for transmission between two 2.25 MHz transducers separated by a 0.5m channel of water and 5% kaolin suspension shows improvements in signal to sidelobe noise power in the order of 7-8 dB. The reported quinary switched method for linear frequency modulated excitation provides improved performance compared to pseudo-chirp excitation without the need for high performance excitation amplifiers.

  10. Ion implantation in compound semiconductors for high-performance electronic devices

    International Nuclear Information System (INIS)

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-01-01

    Advanced electronic devices based on compound semiconductors often make use of selective area ion implantation doping or isolation. The implantation processing becomes more complex as the device dimensions are reduced and more complex material systems are employed. The authors review several applications of ion implantation to high performance junction field effect transistors (JFETs) and heterostructure field effect transistors (HFETs) that are based on compound semiconductors, including: GaAs, AlGaAs, InGaP, and AlGaSb

  11. Experimental investigation shell model excitations of 89Zr up to high spin and its comparison with 88,90Zr

    International Nuclear Information System (INIS)

    Saha, S.; Palit, R.; Sethi, J.

    2012-01-01

    The excited states of nuclei near N=50 closed shell provide suitable laboratory for testing the interactions of shell model states, possible presence of high spin isomers and help in understanding the shape transition as the higher orbitals are occupied. In particular, the structure of N = 49 isotones (and Z =32 to 46) with one hole in N=50 shell gap have been investigated using different reactions. Interestingly, the high spin states in these isotones have contribution from particle excitations across the respective proton and neutron shell gaps and provide suitable testing ground for the prediction of shell model interactions describing theses excitations across the shell gap. In the literature, extensive study of the high spin states of heavier N = 49 isotones starting with 91 Mo up to 95 Pd are available. Limited information existed on the high spin states of lighter isotones. Therefore, the motivation of the present work is to extend the high spin structure of 89 Zr and to characterize the structure of these levels through comparison with the large scale shell model calculations based on two new residual interactions in f 5/2 pg 9/2 model space

  12. Semi classical model of the neutron resonance compound nucleus

    International Nuclear Information System (INIS)

    Ohkubo, Makio

    1995-01-01

    A Semi-classical model of compound nucleus is developed, where time evolution and recurrence for many degrees of freedom (oscillators) excited simultaneously are explicitly considered. The effective number of oscillators plays the role in the compound nucleus, and the nuclear temperatures are derived, which are in good agreement with the traditional values. Time structures of the compound nucleus at resonance are considered, from which equidistant level series with an envelope of strength function of giant resonance nature is obtained. S-matrix formulation for fine structure resonance is derived. (author)

  13. Investigating the fission process at high excitation energies through proton induced reactions on 181Ta

    International Nuclear Information System (INIS)

    Ayyad, Y.; Benlliure, J.; Casajeros, E.; Alvarez Pol, H.; Paradela, C.; Perez-Loureido, D.; Tarrio, D.; Bacquias, A.; Boudard, A.; Kezzar, K.; Leray, S.; Enqvist, T.; Foehr, V.; Kelic, A.; Pleskac, R.

    2010-01-01

    In this work we have investigated the total fission cross section of 181 Ta + 1 H at FRS (Fragment Separator - GSI) at 1, 0.8, 0.5 and 0.3 GeV with a specific setup, providing high accuracy measurements of the cross section values. the comparison of our data with previous results reveals a good agreement at high energies. However the situation remains unclear at lower energies. In general, our results covering a wide range of energy, are smoother. We have also compared the results obtained in this experiment, with several calculations performed with the intra-nuclear cascade model (INCL v4.1) coupled to de-excitation code (ABLAv3p), according to two different models describing fission process at high-excitation energies: statistical model of Bohr and Wheeler and the dynamical description of the fission process. We have showed that a simple statistical description largely over-predict the measured cross-section. Only a dynamical description of the fission, involving the role of the viscosity of the nuclear matter, provides a realistic result.

  14. Influence of nuclear dissipation on fission dynamics of the excited ...

    Indian Academy of Sciences (India)

    2016-05-31

    May 31, 2016 ... cle emission starts from an initial state corresponding to the ground state of the compound nucleus whose shape is characterized by the collective coordinate r0, the corresponding conjugate initial momentum p0, the intrinsic excitation energy Eint with the corresponding temperature T0 = √. Eint/a(r0) and ...

  15. Excited-state intramolecular proton transfer and photoswitching in hydroxyphenyl-imidazopyridine derivatives: A theoretical study

    Science.gov (United States)

    Omidyan, Reza; Iravani, Maryam

    2016-11-01

    The MP2/CC2 and CASSCF theoretical approaches have been employed to determine the excited state proton transfer and photophysical nature of the four organic compounds, having the main frame of hydroxyphenyl-imidzaopyridine (HPIP). The nitrogen insertion effect, in addition to amine (-NH2) substitution has been investigated extensively by following the transition energies and deactivation pathways of resulted HPIP derivatives. It has been predicted that the excited state intramolecular proton transfer with or without small barrier is the most important feature of these compounds. Also, for all of the considered HPIP derivatives, a conical intersection (CI) between ground and the S1 excited state has been predicted. The strong non-adiabatic coupling in the CI (S1/S0), drives the system back to the ground state in which the proton may either return to the phenoxy unit and thus close the photocycle, or the system can continue the twisting motion that results in formation of a γ-photochromic species. This latter species can be responsible for photochromism of HPIP derivative systems.

  16. Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Md. Wahadoszamen

    2015-01-01

    Full Text Available A dispersive Raman spectrometer was used with three different excitation sources (Argon-ion, He-Ne, and Diode lasers operating at 514.5 nm, 633 nm, and 782 nm, resp.. The system was employed to a variety of Raman active compounds. Many of the compounds exhibit very strong fluorescence while being excited with a laser emitting at UV-VIS region, hereby imposing severe limitation to the detection efficiency of the particular Raman system. The Raman system with variable excitation laser sources provided us with a desired flexibility toward the suppression of unwanted fluorescence signal. With this Raman system, we could detect and specify the different vibrational modes of various hazardous organic compounds and some typical dyes (both fluorescent and nonfluorescent. We then compared those results with the ones reported in literature and found the deviation within the range of ±2 cm−1, which indicates reasonable accuracy and usability of the Raman system. Then, the surface enhancement technique of Raman spectrum was employed to the present system. To this end, we used chemically prepared colloidal suspension of silver nanoparticles as substrate and Rhodamine 6G as probe. We could observe significant enhancement of Raman signal from Rhodamine 6G using the colloidal solution of silver nanoparticles the average magnitude of which is estimated to be 103.

  17. Dispersive excitations in the high-temperature superconductor La2-xSrxCuO4

    DEFF Research Database (Denmark)

    Christensen, N.B.; McMorrow, D.F.; Rønnow, H.M.

    2004-01-01

    High-resolution neutron scattering experiments on optimally doped La(2-x)Sr(x)CuO(4) (x=0.16) reveal that the magnetic excitations are dispersive. The dispersion is the same as in YBa(2)Cu(3)O(6.85), and is quantitatively related to that observed with charge sensitive probes. The associated veloc...

  18. Piezoelectric Shunt Vibration Damping of F-15 Panel under High Acoustic Excitation

    Science.gov (United States)

    Wu, Shu-Yau; Turner, Travis L.; Rizzi, Stephen A.

    2000-01-01

    At last year's SPIE symposium, we reported results of an experiment on structural vibration damping of an F-15 underbelly panel using piezoelectric shunting with five bonded PZT transducers. The panel vibration was induced with an acoustic speaker at an overall sound pressure level (OASPL) of about 90 dB. Amplitude reductions of 13.45 and 10.72 dB were achieved for the first and second modes, respectively, using single- and multiple-mode shunting. It is the purpose of this investigation to extend the passive piezoelectric shunt-damping technique to control structural vibration induced at higher acoustic excitation levels, and to examine the controllability and survivability of the bonded PZT transducers at these high levels. The shunting experiment was performed with the Thermal Acoustic Fatigue Apparatus (TAFA) at the NASA Langley Research Center using the same F-15 underbelly panel. The TAFA is a progressive wave tube facility. The panel was mounted in one wall of the TAFA test section using a specially designed mounting fixture such that the panel was subjected to grazing-incidence acoustic excitation. Five PZT transducers were used with two shunt circuits designed to control the first and second modes of the structure between 200 and 400 Hz. We first determined the values of the shunt inductance and resistance at an OASPL of 130 dB. These values were maintained while we gradually increased the OASPL from 130 to 154 dB in 6-dB steps. During each increment, the frequency response function between accelerometers on the panel and the acoustic excitation measured by microphones, before and after shunting, were recorded. Good response reduction was observed up to the 148dB level. The experiment was stopped at 154 dB due to wire breakage from vibration at a transducer wire joint. The PZT transducers, however, were still bonded well on the panel and survived at this high dB level. We also observed shifting of the frequency peaks toward lower frequency when the OASPL

  19. The estimation of the G-values for ionization and excitation of ten-electron molecules

    International Nuclear Information System (INIS)

    Okazaki, Kiyoshi; Sato, Shin; Ohno, Shin-ichi.

    1976-01-01

    The binary-encounter collision theory is applied to calculate the G-values for the ionization and excitation of methane, ammonia, and water irradiated by 100 keV electrons. Double collision of the incident electron in a molecule is also taken into account. On the assumption of the occurrence of certain reactions in the systems, the G-values for electrons, various radicals, and several final products were estimated. Some of the results are as follows: the G-values for electrons were 3.60 for methane, 3.56 for ammonia, and 3.00 for water. These values are in fair agreement with the experimental values: 3.6 for methane, 3.8 for ammonia, and 3.3 for water. The calculated G-value for hot hydrogen atoms was about 1.0 for all three compounds. The ratios of the G-value for excitation to that for electons are 1.1 for methane, 1.5 for ammonia, and 1.7 for water. An estimation was also made of the G-value for the emission of highly-excited hydrogen atoms using reported cross sections. The G-values are 0.1 for methane and ammonia, and 0.2 for water. (auth.)

  20. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  1. Detecting aromatic compounds on planetary surfaces using ultraviolet time-resolved fluorescence spectroscopy

    Science.gov (United States)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2018-02-01

    Many aromatic organic molecules exhibit strong and characteristic fluorescence when excited with ultraviolet radiation. As laser excitation in the ultraviolet generates both fluorescence and resonantly enhanced Raman scattering of aromatic vibrational modes, combined Raman and fluorescence instruments have been proposed to search for organic compounds on Mars. In this work the time-resolved fluorescence of a suite of 24 compounds composed of 2-5 ringed alternant, non-alternant, and heterocyclic PAHs was measured. Fluorescence instrumentation with similar specifications to a putative flight instrument was capable of observing the fluorescence decay of these compounds with a sub-ns resolution. Incorporating time-resolved capabilities was also found to increase the ability to discriminate between individual PAHs. Incorporating time-resolved fluorescence capabilities into an ultraviolet gated Raman system intended for a rover or lander can increase the ability to detect and characterize PAHs on planetary surfaces.

  2. The properties of 4'-N,N-dimethylaminoflavonol in the ground and excited states

    Science.gov (United States)

    Moroz, V. V.; Chalyi, A. G.; Roshal, A. D.

    2008-09-01

    The mechanism of protonation of 4-N,N-dimethylaminoflavonol and the structure of its protolytic forms in the ground and excited states were studied by electron absorption and fluorescence (steady-state and time-resolved) spectroscopy and with the use of the RM1 quantum-chemical method. A comparison of equilibrium constants and the theoretical enthalpies of formation showed that excitation should be accompanied by the inversion of the basicity of the electron acceptor groups of this compound and, as a consequence, changes in the structure of its monocationic form. An analysis of the spectral parameters of the protolytic 4-N,N-dimethylaminoflavonol forms, however, showed that their structure and the sequence of protonation in the excited state were the same as in the ground state. Changes in the structure of the monocation in the excited state were not observed because of the fast radiationless deactivation of this form and the occurrence of excited state intramolecular proton transfer in aprotic solvents.

  3. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    Science.gov (United States)

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Strategies for dereplication of natural compounds using high-resolution tandem mass spectrometry.

    Science.gov (United States)

    Kind, Tobias; Fiehn, Oliver

    2017-09-01

    Complete structural elucidation of natural products is commonly performed by nuclear magnetic resonance spectroscopy (NMR), but annotating compounds to most likely structures using high-resolution tandem mass spectrometry is a faster and feasible first step. The CASMI contest 2016 (Critical Assessment of Small Molecule Identification) provided spectra of eighteen compounds for the best manual structure identification in the natural products category. High resolution precursor and tandem mass spectra (MS/MS) were available to characterize the compounds. We used the Seven Golden Rules, Sirius2 and MS-FINDER software for determination of molecular formulas, and then we queried the formulas in different natural product databases including DNP, UNPD, ChemSpider and REAXYS to obtain molecular structures. We used different in-silico fragmentation tools including CFM-ID, CSI:FingerID and MS-FINDER to rank these compounds. Additional neutral losses and product ion peaks were manually investigated. This manual and time consuming approach allowed for the correct dereplication of thirteen of the eighteen natural products.

  5. V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions

    Science.gov (United States)

    Mewe, R.

    1999-07-01

    This book contains a comprehensive description of the basic principles of the theoretical spectroscopy and experimental spectroscopic diagnostics of Rydberg atoms and ions, i.e., atoms in highly excited states with a very large principal quantum number (n≫1). Rydberg atoms are characterized by a number of peculiar physical properties as compared to atoms in the ground or a low excited state. They have a very small ionization potential (∝1/n2), the highly excited electron has a small orbital velocity (∝1/n), the radius (∝n2) is very large, the excited electron has a long orbital period (∝n3), and the radiation lifetime is very long (∝n3-5). At the same time the R. atom is very sensitive to perturbations from external fields in collisions with charged and neutral targets. In recent years, R. atoms have been observed in laboratory and cosmic conditions for n up to ˜1000, which means that the size amounts to about 0.1 mm, ˜106 times that of an atom in the ground state. The scope of this monograph is to familiarize the reader with today's approaches and methods for describing isolated R. atoms and ions, radiative transitions between highly excited states, and photoionization and photorecombination processes. The authors present a number of efficient methods for describing the structure and properties of R. atoms and calculating processes of collisions with neutral and charged particles as well as spectral-line broadening and shift of Rydberg atomic series in gases, cool and hot plasmas in laboratories and in astrophysical sources. Particular attention is paid to a comparison of theoretical results with available experimental data. The book contains 9 chapters. Chapter 1 gives an introduction to the basic properties of R. atoms (ions), Chapter 2 is devoted to an account of general methods describing an isolated Rydberg atom. Chapter 3 is focussed on the recent achievements in calculations of form factors and dipole matrix elements of different types of

  6. Optical spectroscopy of orbital and magnetic excitations in vanadates and cuprates

    International Nuclear Information System (INIS)

    Benckiser, Eva Vera

    2007-10-01

    Within the scope of this thesis, the low-energy excitations of undoped Mott insulators RVO 3 with R = Y, Ho, and Ce, (Sr,Ca)CuO 2 and La 8 Cu 7 O 19 have been investigated by means of optical spectroscopy. The compounds RVO 3 with R=rare-earth ion recently have attracted a lot of interest because of their unusual structural, orbital, and magnetic properties. The compounds undergo a series of temperatureinduced phase transitions accompanied by a change of orbital and magnetic order. Furthermore, it has been proposed that YVO 3 represents the first realization of a one-dimensional orbital liquid and an orbital Peierls phase, with a transition to an orbitally ordered phase at lower temperatures. In this thesis, we present the optical conductivity σ(ω) of RVO 3 with R=Y, Ho, and Ce for energies from 0.1 to 1.6 eV as a function of temperature (10-300 K) and polarization of the incident light parallel to the crystallographic axes (σ a ,σ b ,σ c ). Our main experimental result is the observation of two absorption features at 0.55 eV in σ a (ω) and 0.4 eV in σ c (ω) which are assigned to collective orbital excitations, in contrast to conventional local crystal-field transitions. Altogether, our results strongly suggest that in RVO 3 with R=Y, Ho, and Ce the orbital exchange interactions play a decisive role. In a second study, we have investigated the magnetic excitations of low-dimensional quantum magnets, namely the spin chain (Sr,Ca)CuO 2 and the five-leg ladder La 8 Cu 7 O 19 . For (Sr,Ca)CuO 2 , two absorption features around 0.4 eV in σ c (ω) (chain direction) and σ b (ω) (inter-chain direction) are identified as magnetic contributions to the optical conductivity. The analysis of σ c (ω) enables the very precise determination of the nearest-neighbor exchange coupling J c as a function of temperature and Ca substitution. We have found J c =(227±4) meV for SrCuO 2 at low temperatures and no effect on J c upon Ca-substitution of 10%. Furthermore, we

  7. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay

    DEFF Research Database (Denmark)

    Rodenko, Olga; Eriksson, Susann; Tidemand-Lichtenberg, Peter

    2017-01-01

    of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by factor of 5 for standard troponin I and by factor of 3 for a research high-sensitivity troponin I assay, compared...... to the flash lamp excitation. The obtained limit of detection was 0.22 ng/L measured on plasma with the research highsensitivity troponin I assay and 1.9 ng/L measured on tris-saline-azide buffer containing bovine serum albumin with the standard troponin I assay. We discuss the optimization of time...

  8. High-content, high-throughput screening for the identification of cytotoxic compounds based on cell morphology and cell proliferation markers.

    Directory of Open Access Journals (Sweden)

    Heather L Martin

    Full Text Available Toxicity is a major cause of failure in drug discovery and development, and whilst robust toxicological testing occurs, efficiency could be improved if compounds with cytotoxic characteristics were identified during primary compound screening. The use of high-content imaging in primary screening is becoming more widespread, and by utilising phenotypic approaches it should be possible to incorporate cytotoxicity counter-screens into primary screens. Here we present a novel phenotypic assay that can be used as a counter-screen to identify compounds with adverse cellular effects. This assay has been developed using U2OS cells, the PerkinElmer Operetta high-content/high-throughput imaging system and Columbus image analysis software. In Columbus, algorithms were devised to identify changes in nuclear morphology, cell shape and proliferation using DAPI, TOTO-3 and phosphohistone H3 staining, respectively. The algorithms were developed and tested on cells treated with doxorubicin, taxol and nocodazole. The assay was then used to screen a novel, chemical library, rich in natural product-like molecules of over 300 compounds, 13.6% of which were identified as having adverse cellular effects. This assay provides a relatively cheap and rapid approach for identifying compounds with adverse cellular effects during screening assays, potentially reducing compound rejection due to toxicity in subsequent in vitro and in vivo assays.

  9. Stabilization of nonlinear excitations by disorder

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.

    1998-01-01

    Using analytical and numerical techniques we analyze the static and dynamical properties of solitonlike excitations in the presence of parametric disorder in the one-dimensional nonlinear Schrodinger equation with a homogeneous power nonlinearity. Both the continuum and the discrete problem...... are investigated. We find that otherwise unstable excitations can be stabilized by the presence of disorder in the continuum problem. For the very narrow excitations of the discrete problem we find that the disorder has no effect on the averaged behavior. Finally, we show that the disorder can be applied to induce...... a high degree of controllability of the spatial extent of the stable excitations in the continuum system....

  10. Investigation of the antiferromagnetic - ferromagnetic dimer chain compound BaCu{sub 2}V{sub 2}O{sub 8} at zero and finite temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Klyushina, Ekaterina; Lake, Bella [Helmholtz-Zentrum Berlin fuer Materialien und Energie (Germany); Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany); Tiegel, Alexander; Manmana, Salvatore [Georg-August-Universitaet Goettingen (Germany); Islam, Nazmul; Klemke, Bastian [Helmholtz-Zentrum Berlin fuer Materialien und Energie (Germany); Park, Jitae [Heinz Maier-Leibnitz Zentrum, TU Muenchen, Garching (Germany); Honecker, Andreas [Universite de Cergy-Pontoise (France)

    2016-07-01

    Highly dimerized quantum magnets have attracted a great deal of attention in the recently due to the unconventional temperature behavior of their magnetic excitations. Here we present our investigations of the highly dimerized antiferromagnet-ferromagnetic 1D chain BaCu{sub 2}V{sub 2}O{sub 8} both at base and at finite temperatures. The single crystal inelastic neutron scattering measurements at base temperature reveal that there are two excitation branches which disperse along the L direction over the energy range of 36-46 meV. The comparison with DMRG simulations indicates that the antiferromagnetic dimers are coupled ferromagnetically along the c axis. The line shape of the excitations at the dispersion minima was found to become asymmetry with increasing temperature. Thus unconventional thermal behavior also exists in dimer compounds with ferromagnetic interdimer coupling.

  11. Mean excitation energies for molecular ions

    DEFF Research Database (Denmark)

    Jensen, Phillip W.K.; Sauer, Stephan P.A.; Oddershede, Jens

    2017-01-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase...

  12. Wideband excitation in nonlinear vibro-acoustic modulation for damage detection

    Science.gov (United States)

    Klepka, A.; Adamczyk, M.; Pieczonka, L.; Staszewski, W. J.

    2016-04-01

    The paper discusses the use of wideband excitation in nonlinear vibro-acoustic modulation technique (VAM) used for damage detection. In its original form, two mono-harmonic signals (low and high frequency) are used for excitation. The low frequency excitation is typically selected based on a modal analysis test and high frequency excitation is selected arbitrarily in the ultrasonic frequency range. This paper presents a different approach with use of wideband excitation signals. The proposed approach gives the possibility to simplify the testing procedure by omitting the modal test used to determine the value of low frequency excitation. Simultaneous use of wideband excitation for high frequency solves the ambiguity related to the selection of the frequency of acoustic wave. Broadband excitation signals require, however, more elaborate signal processing methods to determine the intensity of modulation for a given bandwidth. The paper discusses the proposed approach and the related signal processing procedure. Experimental validation of the proposed technique is performed on a laminated composite plate with a barely visible impact damage that was generated in an impact test. Piezoceramic actuators are used for vibration excitation and a scanning laser vibrometer is used for noncontact data acquisition.

  13. Response moments of dynamic systems under non-Gaussian random excitation by the equivalent non-Gaussian excitation method

    International Nuclear Information System (INIS)

    Tsuchida, Takahiro; Kimura, Koji

    2016-01-01

    Equivalent non-Gaussian excitation method is proposed to obtain the response moments up to the 4th order of dynamic systems under non-Gaussian random excitation. The non-Gaussian excitation is prescribed by the probability density and the power spectrum, and is described by an Ito stochastic differential equation. Generally, moment equations for the response, which are derived from the governing equations for the excitation and the system, are not closed due to the nonlinearity of the diffusion coefficient in the equation for the excitation even though the system is linear. In the equivalent non-Gaussian excitation method, the diffusion coefficient is replaced with the equivalent diffusion coefficient approximately to obtain a closed set of the moment equations. The square of the equivalent diffusion coefficient is expressed by a quadratic polynomial. In numerical examples, a linear system subjected to nonGaussian excitations with bimodal and Rayleigh distributions is analyzed by using the present method. The results show that the method yields the variance, skewness and kurtosis of the response with high accuracy for non-Gaussian excitation with the widely different probability densities and bandwidth. The statistical moments of the equivalent non-Gaussian excitation are also investigated to describe the feature of the method. (paper)

  14. Magnetic excitations in ferromagnetic phase of MnP

    International Nuclear Information System (INIS)

    Yano, Shin-ichiro; Itoh, Shinichi; Yokoo, Tetsuya; Satoh, Setsuo; Kawana, Daichi; Kousaka, Yusuke; Akimitsu, Jun; Endoh, Yasuo

    2013-01-01

    Inelastic neutron scattering experiments were performed on an intermetallic compound, MnP. We used a newly developed High Resolution Chopper Spectrometer, HRC, for energy transfers E≤75meV, besides various triple axis spectrometers; LTAS for energy transfers E≤2meV, TOPAN for E≤7.5meV and TAS-1 for E≤35meV. Spin wave excitations were observed in the ferromagnetic phase of MnP in the entire Brillouin zone along the a ⁎ - and b ⁎ -axes. The zone boundary energies of spin waves were determined to be around 60 meV along the a ⁎ -axis and around 75 meV along the b ⁎ -axis, and the dispersion relations showed two branches for both axes. The observed dispersion relations of spin waves were well described by an isotropic Heisenberg interaction adding a single ion anisotropy with two sub-lattices. - Highlights: • Inelastic neutron scattering experiments were performed mainly using pulsed neutrons. • Spin waves were observed in the ferromagnetic phase of an intermetallic compound MnP. • The dispersion relations were determined entirely along the a ⁎ - and b ⁎ -axes. • We could describe the observed dispersion relations by a two sub-lattice model

  15. The nuclear fluctuation width and the method of maxima in excitation curves

    International Nuclear Information System (INIS)

    Burjan, V.

    1988-01-01

    The method of counting maxima of excitation curves in the region of the occurrence of nuclear cross section fluctuations is extended to the case of the more realistic maxima defined as a sequence of five points instead of the simpler and commonly used case of a sequence of three points of an excitation curve. The dependence of the coefficient b (5) (κ), relating the number of five-point maxima and the mean level width Γ of the compound nucleus, on the relative distance K of excitation curve points is calculated. The influence of the random background on the coefficient b (5) (κ) is discussed and a comparison with the properties of the three-point coefficient b (3) (κ) is made - also in connection with the contribution of the random background. The calculated values of b (5) (κ) are well reproduced by the data obtained from the analysis of artificial excitation curves. (orig.)

  16. Competition between excited core states and 1homega single-particle excitations at comparable energies in {sup 207}Pb from photon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pietralla, N., E-mail: pietralla@ikp.tu-darmstadt.d [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); Li, T.C. [Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Fritzsche, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Ahmed, M.W. [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Ahn, T.; Costin, A. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany); Enders, J. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Li, J. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Mueller, S.; Neumann-Cosel, P. von [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Pinayev, I.V. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Ponomarev, V.Yu.; Savran, D. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Tonchev, A.P.; Tornow, W.; Weller, H.R. [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Werner, V. [A.W. Wright Nuclear Structure Laboratory (WNSL), Yale University, New Haven, CT (United States); Wu, Y.K. [Duke Free Electron Laser Laboratory (DFELL), Duke University, Durham, NC 27708 (United States); Zilges, A. [Institut fuer Kernphysik, Universitaet zu Koeln, 50937 Koeln (Germany)

    2009-10-26

    The Pb(gamma{sup -}>,gamma{sup '}) photon scattering reaction has been studied with the nearly monochromatic, linearly polarized photon beams at the High Intensity gamma-ray Source (HIgammaS) at the DFELL. Azimuthal scattering intensity asymmetries measured with respect to the polarization plane of the beam have been used for the first time to assign both the spin and parity quantum numbers of dipole excited states of {sup 206,207,208}Pb at excitation energies in the vicinity of 5.5 MeV. Evidence for dominant particle-core coupling is deduced from these results along with information on excitation energies and electromagnetic transition matrix elements. Implications of the existence of weakly coupled states built on highly excited core states in competition with 1homega single particle (hole) excitations at comparable energies are discussed.

  17. Resonant X-ray emission spectroscopy in Dy compounds

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Okada, Kozo; Kotani, Akio.

    1994-01-01

    The excitation spectrum of the L 3 -M 5 X-ray emission of Dy compounds in the pre-edge region of Dy L 3 X-ray absorption near edge structure (L 3 -XANES) is theoretically investigated based upon the coherent second order optical formula with multiplet coupling effects. The spectral broadening of the excitation spectrum is determined by the M 5 core hole lifetime, being free from the L 3 core hole lifetime. The fine pre-edge structure of the L 3 edge due to the 2p→4f quadrupole transition can be seen in the excitation spectrum, while this structure is invisible in the conventional XANES, in agreement with the recent experimental results. We clarify the conditions for the excitation spectrum to be regarded as the absorption spectrum with a smaller width. The resonant X-ray emission spectra for various incident photon energies around the L 3 edge are also calculated. (author)

  18. Electron impact excitation of xenon from the metastable state to the excited states

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jun; Dong Chenzhong; Xie Luyou; Zhou Xiaoxin [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Jianguo [Institute of Applied Physics and Computational Mathematic, Beijing 100088 (China)], E-mail: dongcz@nwnu.edu.cn

    2008-12-28

    The electron impact excitation cross sections from the lowest metastable state 5p{sup 5}6sJ = 2 to the six lowest excited states of the 5p{sup 5}6p configuration of xenon are calculated systematically by using the fully relativistic distorted wave method. In order to discuss the effects of target state descriptions on the electron impact excitation cross sections, two correlation models are used to describe the target states based on the multiconfiguration Dirac-Fock (MCDF) method. It is found that the correlation effects play a very important role in low energy impact. For high energy impact, however, the cross sections are not sensitive to the description of the target states, but many more partial waves must be included.

  19. Excitation of short wavelength Alfven oscillations by high energy ions in tokamak

    International Nuclear Information System (INIS)

    Beasley, C.O. Jr.; Lominadze, J.G.; Mikhailovskii, A.B.

    1975-08-01

    The excitation of Alfven waves by fast untrapped ions in axisymmetric tokamaks is described by the dispersion relation epsilon 11 - c 2 k/sub parallel bars/ 2 /ω 2 = 0. Using this relation a new class of instability connected with the excitation of Alfven oscillations is described. (U.S.)

  20. Three exciting areas of experimental physical sciences : high temperature superconductors, metal clusters and super molecules of carbon

    International Nuclear Information System (INIS)

    Rao, C.N.

    1992-01-01

    The author has narrated his experience in carrying out research in three exciting areas of physical sciences. These areas are : high temperature superconductors, metal clusters and super molecules of carbon. (M.G.B.)

  1. Some remarks on the disintegration of highly excited Ag and Br nuclei observed in photographic emulsion in view of the quark model

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, T.; Breivik, F.O.; Soerensen, S.O. (Oslo Univ. (Norway). Inst. for Teoretisk Fysikk)

    1980-01-01

    The angular distribution of the tracks of the particles emitted from highly excited Ag and Br nuclei after the cascade are consistent with isotropy, in disfavour of the hypothesis of fission preceding some subsequent disintegration by isotropic single particle emission. If it is assumed that the highly excited nucleus behaves as a gas of quarks which are confined within the Ag(Br) nucleus, the confinement may possibly cause delays between the subsequent emissions of particles in favour of thermodynamical equilibrium. Some comments are given on the mass of a quark in the nucleus and on the energy distribution of the particles emitted from these excited nuclei.

  2. Some remarks on the disintegration of highly excited Ag and Br nuclei observed in photographic emulsion in view of the quark model

    International Nuclear Information System (INIS)

    Jacobsen, T.; Breivik, F.O.; Soerensen, S.O.

    1980-01-01

    The angular distribution of the tracs of the particles emitted from highly excited Ag and Br nuclei after the cascade are consistent with isotropy, in disfavour of the hypothesis of fission preceding some subsequent disintegration by isotropic single particle emission. If it is assumed that the highly excited nucleus behaves as a gas of quarks which are confined within the Ag(Br) nucleus, the confinement may possibly cause delays between the subsequent emissions of particles in favour of thermodynamical equilibrium. Some comments are given on the mass of a quark in the nucleus and on the energy distribution of the particles emitted from these excited nuclei. (author)

  3. 201Hg excitation in plasma produced by laser

    International Nuclear Information System (INIS)

    Comet, Maxime

    2014-01-01

    The use of high power lasers allows the study of the properties of matter in extreme conditions of temperature and density. Indeed, the interaction of a power laser and a target creates a plasma in which the temperature is high enough to reach important degrees of ionization. These conditions can allow the excitation of the nucleus. A nucleus of interest to study the processes of nuclear excitation is the 201 Hg. This work aims to design an experiment where the 201 Hg excitation will be observed in a plasma produced by a high power laser. The first part of this manuscript presents the calculation of the expected nuclear excitation rates in the plasma. For about ten years, nuclear excitation rates have been calculated using the average atom model. To validate this model a code named ADAM (French acronym for Beyond The Average Atom Model) was developed to calculate the nuclear excitation rates under the DCA (Detailed Configuration Accounting) hypothesis. ADAM allows us to deduce the thermo dynamical domain where the nuclear excitation rates determined with the average atom model are relevant. The second part of this manuscript presents the coupling of the excitation rate calculation with a hydrodynamic code to calculate the number of excited nuclei produced in one laser shot for different laser intensity. Finally, in the last part, first experimental approaches which will be used to design an experiment on a laser installation are presented. These approaches are based on the detection and determination of the amount of multicharged ions obtained far from the target (∼80 cm). For this purpose, an electrostatic analyzer was used. (author) [fr

  4. Influence of collective excitations on pre-equilibrium and equilibrium processes

    International Nuclear Information System (INIS)

    Ignatyuk, A.V.; Lunev, V.P.

    1990-01-01

    The influence of the collective states excitations on equilibrium and preequilibrium processes in reaction is discussed. It is shown that for a consistent description of the contribution of preequilibrium and equilibrium compound processes collective states should be taken into account in the level density calculations. The microscopic and phenomenological approaches for the level density calculations are discussed. 13 refs.; 8 figs

  5. Study of the excitation bands in 75Br and 77Rb

    International Nuclear Information System (INIS)

    Luehmann, L.

    1985-01-01

    Via the compound-nucleus reactions 62 Ni( 16 O,p2n) 75 Br, 66 Zn( 12 C,p2n) 75 Br, and 40 Ca( 40 Ca,3p) 77 Rb the excitation behaviour of the nuclei 75 Br and 77 Rb was studied. By the application of different gamma-spectroscopic methods as the measurement of γ angular anisotropies, nγ-spectra, excitation functions, and γγ-coincidences the known level schemes could be extended by 10 respectively 16 transitions. Recoil-distance Doppler-shift and Doppler-shift attenuation measurements served for the determination of the lifetimes of 42 nuclear states in the range 0.1 ps [de

  6. Electron-impact excitation and ionization cross sections for ground state and excited helium atoms

    International Nuclear Information System (INIS)

    Ralchenko, Yu.; Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de

    2008-01-01

    Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n≤4 are treated individually, while the states with n≥5 are considered degenerate. For the processes involving transitions to and from n≥5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form

  7. Simulation of kinetic processes in the nuclear-excited helium non-ideal dusty plasma

    International Nuclear Information System (INIS)

    Budnik, A.P.; Kosarev, V.A.; Rykov, V.A.; Fortov, V.E.; Vladimirov, V.I.; Deputatova, L.V.

    2009-01-01

    The paper is devoted to the studying of kinetic processes in the nuclear-excited plasma of the helium gas with the fine uranium (or its chemical compounds) particles admixture. A new theoretical model for the mathematical simulation of the kinetic processes in dusty plasma of helium gas was developed. The main goal of this investigation is to determine possibilities of a creation of non-ideal dusty plasma, containing nano- and micro-particles, and excited by fission fragments (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Optical studies of multiply excited states

    International Nuclear Information System (INIS)

    Mannervik, S.

    1989-01-01

    Optical studies of multiply-excited states are reviewed with emphasis on emission spectroscopy. From optical measurements, properties such as excitation energies, lifetimes and autoionization widths can be determined with high accuracy, which constitutes a challenge for modern computational methods. This article mainly covers work on two-, three- and four-electron systems, but also sodium-like quartet systems. Furthermore, some comments are given on bound multiply-excited states in negative ions. Fine structure effects on transition wavelengths and lifetimes (autoionization) are discussed. In particular, the most recent experimental and theoretical studies of multiply-excited states are covered. Some remaining problems, which require further attention, are discussed in more detail. (orig.) With 228 refs

  9. High temperature superconductivity: Concept, preparation and testing of high Tc superconductor compounds, and applications

    International Nuclear Information System (INIS)

    Harara, Wafik

    1992-06-01

    Many studies have been carried out on high temperature superconductors with transition temperature above that of the liquid nitrogen. In this scientific study the concept and the mechanism of this phenomena are discussed, in addition the examples of preparation and testing of high temperature superconductors compounds are shown. Also the most important applications in industry are explained. (author). 15 refs., 2 tabs., 18 figs

  10. Electron beam excitation assisted optical microscope with ultra-high resolution.

    Science.gov (United States)

    Inami, Wataru; Nakajima, Kentaro; Miyakawa, Atsuo; Kawata, Yoshimasa

    2010-06-07

    We propose electron beam excitation assisted optical microscope, and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nanometric light source is faster than that in conventional near-field scanning optical microscopes. The microscope enables to observe optical constants such as absorption, refractive index, polarization, and their dynamic behavior on a nanometric scale. The microscope opens new microscopy applications in nano-technology and nano-science.

  11. Excitation of Nucleon Resonances

    International Nuclear Information System (INIS)

    Burkert, Volker D.

    2001-01-01

    I discuss developments in the area of nucleon resonance excitation, both necessary and feasible, that would put our understanding of nucleon structure in the regime of strong QCD on a qualitatively new level. They involve the collection of high quality data in various channels, a more rigorous approach in the search for ''missing'' resonances, an effort to compute some critical quantities in nucleon resonance excitations from first principles, i.e. QCD, and a proposal focused to obtain an understanding of a fundamental quantity in nucleon structure

  12. Synthesis and reforming of high molecular-weigth compounds by the utilization of radiation

    International Nuclear Information System (INIS)

    Machi, Sueo

    1976-01-01

    Radiation effects on the synthesis are reforming of high molecular-weight compounds are reviewed. The report is divided into four main parts. The first part deals with the characteristics of the radiation processing. The reaction can be started in a wide range of temperature including very low temperature. Catalysts are unnecessary. The reaction velocity is fast, and the reaction in solid phase can be started uniformly. And the quality of products is well controllable. The second part deals with the synthesis of high molecular-weight compounds by radiation polymerization. Radical polymerization and ionizing polymerization, gas phase and liquid phase polymerization, the polymerization and copolymerization of fluorine-containing monomers, and solid phase polymerization and low temperature polymerization are included in this part. Attention is directed to the continuous production system for the radiation polymerization of ethylene developed by Japan Atomic Energy Research Institute. The third part deals with the reforming of high molecular-weight compounds by radiation graft polymerization. The combination of backbone polymers and monomers for reforming plastics and fibers, the membranes for reverse osmosis, porous membranes, and ion exchange membranes are included. The fourth part deals with the reforming of high molecular-weight compounds by the cross-linking. Polyethylene, PVC, ethyl acrylate copolymer and the like are included. (Iwakiri, K.)

  13. High-j neutron excitations outside 136Xe

    Science.gov (United States)

    Talwar, R.; Kay, B. P.; Mitchell, A. J.; Adachi, S.; Entwisle, J. P.; Fujita, Y.; Gey, G.; Noji, S.; Ong, H. J.; Schiffer, J. P.; Tamii, A.

    2017-08-01

    The ν 0 h9 /2 and ν 0 i13 /2 strength at 137Xe, a single neutron outside the N =82 shell closure, has been determined using the 136Xe(α ,3He)137Xe reaction carried out at 100 MeV. We confirm the recent observation of the second 13 /2+ state and reassess previous data on the 9 /2- states, obtaining spectroscopic factors. These new data provide additional constraints on predictions of the same single-neutron excitations at 133Sn.

  14. Transport coefficients in high-temperature ionized air flows with electronic excitation

    Science.gov (United States)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  15. Microscopic unitary description of tidal excitations in high-energy string-brane collisions

    CERN Document Server

    D'Appollonio, Giuseppe; Russo, Rodolfo; Veneziano, Gabriele

    2013-01-01

    The eikonal operator was originally introduced to describe the effect of tidal excitations on higher-genus elastic string amplitudes at high energy. In this paper we provide a precise interpretation for this operator through the explicit tree-level calculation of generic inelastic transitions between closed strings as they scatter off a stack of parallel Dp-branes. We perform this analysis both in the light-cone gauge, using the Green-Schwarz vertex, and in the covariant formalism, using the Reggeon vertex operator. We also present a detailed discussion of the high energy behaviour of the covariant string amplitudes, showing how to take into account the energy factors that enhance the contribution of the longitudinally polarized massive states in a simple way.

  16. Excitation and ionization of highly charged ions by electron impact

    International Nuclear Information System (INIS)

    Sampson, D.H.

    1989-01-01

    Two approaches for very rapid calculation of atomic data for high temperature plasma modeling have been developed. The first uses hydrogenic basis states and has been developed and applied in many papers discussed in previous progress reports. Hence, it is only briefly discussed here. The second is a very rapid, yet accurate, fully relativistic approach that has been developed over the past two or three years. It is described in more detail. Recently it has been applied to large scale production of atomic data. Specifically, it has been used to calculate relativistic distorted wave collision strengths and oscillator strengths for the following: all transitions from the ground level to the n=3 and 4 excited levels in the 71 Neon-like ions with nuclear charge number Z in the range 22 ≤ Z ≤ 92; all transitions among the 2s 1/2 , 2p 1/2 and 2p 3/2 levels and from them to all nlj levels with n=3,4 and 5 in the 85 Li-like ions with 8 ≤ Z ≤ 92; all transitions among the 3s 1/2 , 3p 3/2 , 3d 3/2 and 3d 5/2 levels and from them to all nlj levels with n=4 and 5 in the 71 Na-like ions with 22 ≤ Z ≤ 92; and all transitions among 4s 1/2 , 4p 1/2 , 4p 3/2 , 4d 3/2 , 4d 5/2 , 4f 5/2 and 4f 7/2 levels and from them to all nlj levels with n=5 in the 33 Cu-like ions with 60 ≤ Z ≤ 92. Also the program has been extended to give cross-sections for excitation to specific magnetic sublevels of the target ion by an electron beam and very recently it has been extended to give relativistic distorted wave cross sections for ionization of highly charged ions by electron impact

  17. The influence of compound admixtures on the properties of high-content slag cement

    Energy Technology Data Exchange (ETDEWEB)

    Dongxu, L.; Xuequan, W.; Jinlin, S.; Yujiang, W.

    2000-01-01

    Based on the activation theory of alkali and sulfate, the influence of compound admixtures on the properties of high-content slag cement was studied by testing the strength, pore structure, hydrates, and microstructure, Test results show that compound admixtures can obviously improve the properties of high-content slag cement. The emphasis of the present research is two-fold: substituting gypsum with anhydrite and calcining gypsum. These both can improve early and later performance.

  18. Raman active high energy excitations in URu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Buhot, Jonathan [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France); High Field Magnet Laboratory (HFML - EMFL), Institute for Molecules and Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen (Netherlands); Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France); Piekarz, Przemysław [Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakòw (Poland); Lapertot, Gérard [Université Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble (France); CEA, INAC-SPSMS, F-38000 Grenoble (France); Aoki, Dai [Université Grenoble Alpes, INAC-SPSMS, F-38000 Grenoble (France); CEA, INAC-SPSMS, F-38000 Grenoble (France); Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Méasson, Marie-Aude, E-mail: marie-aude.measson@univ-paris-diderot.fr [Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162 CNRS, Université Paris Diderot - Paris 7, Bât. Condorcet, 75205 Paris Cedex 13 (France)

    2017-02-01

    We have performed Raman scattering measurements on URu{sub 2}Si{sub 2} single crystals on a large energy range up to ∼1300 cm{sup −1} and in all the Raman active symmetries as a function of temperature down to 15 K. A large excitation, active only in the E{sub g} symmetry, is reported. It has been assigned to a crystal electric field excitation on the Uranium site. We discuss how this constrains the crystal electric field scheme of the Uranium ions. Furthermore, three excitations in the A{sub 1g} symmetry are observed. They have been associated to double Raman phonon processes consistently with ab initio calculations of the phonons dispersion.

  19. One- and two-dimensional sublattices as preconditions for high-Tc superconductivity

    International Nuclear Information System (INIS)

    Krueger, E.

    1989-01-01

    In an earlier paper it was proposed describing superconductivity in the framework of a nonadiabatic Heisenberg model in order to interprete the outstanding symmetry proper ties of the (spin-dependent) Wannier functions in the conduction bands of superconductors. This new group-theoretical model suggests that Cooper pair formation can only be mediated by boson excitations carrying crystal-spin-angular momentum. While in the three-dimensionally isotropic lattices of the standard superconductors phonons are able to transport crystal-spin-angular momentum, this is not true for phonons propagating through the one- or two-dimensional Cu-O sublattices of the high-T c compounds. Therefore, if such an anisotropic material is superconducting, it is necessarily higher-energetic excitations (of well-defined symmetry) which mediate pair formation. This fact is proposed being responsible for the high transition temperatures of these compounds. (author)

  20. Characterization of excited-state reactions with instant spectra of fluorescence kinetics

    International Nuclear Information System (INIS)

    Tomin, Vladimir I.; Ushakou, Dzmitryi V.

    2015-01-01

    Comprehensible knowledge of the excited-state proton transfer processes in organic compounds is overwhelmingly important not only for physics, but also chemistry and Life Sciences, since they play a key role in main processes of photosynthesis and functioning of biological organisms. Moreover compounds with Excited-State Intramolecular Proton Transfer (ESIPT) are in the focus of the interest of scientists throughout the world, because dual fluorescence spectra of such objects corresponding to two forms of molecular structure (normal and photoproduct) are very sensitive to characteristics of molecular microenvironment. This property allows to use such substances as fluorescent probes for diverse applications in chemistry and Life Sciences. But at the same time studying of proton transfer processes is not simple, because this process is characterized by extremely fast times (on picoseconds time scale and less order) and very often contribution of reverse reactions is essentially complicates an interpretation of observed properties of dual fluorescence. Hence, understanding of a role of reversible reactions is crucial for a comprehensive description of all processes accompanying excited state reactions. We discuss new approach for treatment ESIPT reaction on the basis of experimentally measured instant spectra of dual fluorescence and temporal behavior of ratiometric signal of normal to tautomer form intensities. Simple analytical expressions show in transparent way how to distinguish a degree of reverse reaction contribution to ratiometric signal. A validation of the approach under consideration is fulfilled with two different flavonols – 3-hydroxyflavone and 4′-(Dimethylamino)-3-hydroxyflavone – representing two extreme cases in affecting reversible reaction on dual emission. A comparing of new approach and traditional method when we analyze kinetics of separate the N* and T* fluorescence bands decays, has been carried out. - Highlights: • The excited

  1. Characterization of excited-state reactions with instant spectra of fluorescence kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Tomin, Vladimir I., E-mail: tomin@apsl.edu.pl; Ushakou, Dzmitryi V.

    2015-10-15

    Comprehensible knowledge of the excited-state proton transfer processes in organic compounds is overwhelmingly important not only for physics, but also chemistry and Life Sciences, since they play a key role in main processes of photosynthesis and functioning of biological organisms. Moreover compounds with Excited-State Intramolecular Proton Transfer (ESIPT) are in the focus of the interest of scientists throughout the world, because dual fluorescence spectra of such objects corresponding to two forms of molecular structure (normal and photoproduct) are very sensitive to characteristics of molecular microenvironment. This property allows to use such substances as fluorescent probes for diverse applications in chemistry and Life Sciences. But at the same time studying of proton transfer processes is not simple, because this process is characterized by extremely fast times (on picoseconds time scale and less order) and very often contribution of reverse reactions is essentially complicates an interpretation of observed properties of dual fluorescence. Hence, understanding of a role of reversible reactions is crucial for a comprehensive description of all processes accompanying excited state reactions. We discuss new approach for treatment ESIPT reaction on the basis of experimentally measured instant spectra of dual fluorescence and temporal behavior of ratiometric signal of normal to tautomer form intensities. Simple analytical expressions show in transparent way how to distinguish a degree of reverse reaction contribution to ratiometric signal. A validation of the approach under consideration is fulfilled with two different flavonols – 3-hydroxyflavone and 4′-(Dimethylamino)-3-hydroxyflavone – representing two extreme cases in affecting reversible reaction on dual emission. A comparing of new approach and traditional method when we analyze kinetics of separate the N* and T* fluorescence bands decays, has been carried out. - Highlights: • The excited

  2. Native Fluorescence Detection Methods, Devices, and Systems for Organic Compounds

    Science.gov (United States)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)

    2018-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds VOCs have been identified as serious health hazards. Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined.

  3. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds

    Science.gov (United States)

    Mounet, Nicolas; Gibertini, Marco; Schwaller, Philippe; Campi, Davide; Merkys, Andrius; Marrazzo, Antimo; Sohier, Thibault; Castelli, Ivano Eligio; Cepellotti, Andrea; Pizzi, Giovanni; Marzari, Nicola

    2018-02-01

    Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van der Waals density functional theory, validated against experimental structural data and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural prototypes and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.

  4. Red-excitation resonance Raman analysis of the nu(Fe=O) mode of ferryl-oxo hemoproteins.

    Science.gov (United States)

    Ikemura, Kenichiro; Mukai, Masahiro; Shimada, Hideo; Tsukihara, Tomitake; Yamaguchi, Satoru; Shinzawa-Itoh, Kyoko; Yoshikawa, Shinya; Ogura, Takashi

    2008-11-05

    The Raman excitation profile of the nuFe O mode of horseradish peroxidase compound II exhibits a maximum at 580 nm. This maximum is located within an absorption band with a shoulder assignable to an oxygen-to-iron charge transfer band on the longer wavelength side of the alpha-band. Resonance Raman bands of the nuFe O mode of various ferryl-oxo type hemoproteins measured at 590 nm excitation indicate that many hemoproteins in the ferryl-oxo state have an oxygen-to-iron charge transfer band in the visible region. Since this red-excited resonance Raman technique causes much less photochemical damage in the proteins relative to blue-excited resonance Raman spectroscopy, it produces a higher signal-to-noise ratio and thus represents a powerful tool for investigations of ferryl-oxo intermediates of hemoproteins.

  5. Decomposition and Ignition of the high-nitrogen compound triaminoguanidinium azotetrazolate (TAGzT)

    Energy Technology Data Exchange (ETDEWEB)

    Tappan, Bryce C.; Ali, Arif N.; Son, Steven F. [Dynamic Experimentation Division, DX-2 High Explosives Science and Technology, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Brill, Thomas B. [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States)

    2006-06-15

    The high-nitrogen compound triaminoguanidinium azotetrazolate (TAGzT) belongs to a class of C, H and N compounds that are free of both oxygen and metal, but retain energetic material properties as a result of their high heat of formation. Its decomposition thus lacks secondary oxidation reactions of carbon and hydrogen. The fact that TAGzT is over 80% nitrogen makes it potentially useful as a gas generant and energetic material with a low flame temperature to increase the impulse in gun or rocket propellants. The burning rate, laser ignition and flash pyrolysis (T-jump/FTIR spectroscopy) characteristics were determined. It was found that TAGzT exhibits one of the fastest low-pressure burning rates yet measured for an organic compound. Both the decomposition and ignition behavior of TAGzT are dominated by condensed phase reactions. T-Jump/FTIR spectroscopy indicates that condensed phase reactions release about 65% of the energy, which helps to explain the high burning rate at low pressure. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  6. Electron-Impact Excitation of Uracil Luminescence on a Ceramic Surface

    Science.gov (United States)

    Shafranyosh, I. I.; Mitropolskiy, I. E.; Kuzma, V. V.; Svyda, Yu. Yu.; Sukhoviya, M. I.

    2018-03-01

    Photoelectron spectroscopy was applied to pyrimidine nitrogenous bases, an important class of six-membered heterocyclic compounds incorporated into nucleic acids. The emission spectrum of uracil adsorbed on a ceramic surface that was obtained by bombardment with 600-eV electrons in a high vacuum was analyzed. Broad bands with maxima at 335, 435, and 495 nm were observed in the UV and visible regions. The strongest band (λ = 335 nm) was attributed to fluorescence and corresponded to a singlet-singlet transition from the first excited electronic state into the molecular ground state. Electronic transitions from a triplet T1 into the ground state formed a weaker phosphorescence band (λ = 435 nm). The nature of the band maximum at 495 nm is discussed. The obtained luminescence spectrum was compared with photoluminescence spectra in various phases.

  7. Electron impact excitation of the lowest doublet and quartet core-excited autoionizing states in Rb atoms

    International Nuclear Information System (INIS)

    Borovik, A; Roman, V; Zatsarinny, O; Bartschat, K

    2013-01-01

    Electron impact excitation of the (4p 5 5s 2 ) 2 P 3/2,1/2 and (4p 5 4d5s) 4 P 1/2,3/2,5/2 autoionizing states in rubidium atoms was studied experimentally by measuring the ejected-electron excitation functions and theoretically by employing a fully relativistic Dirac B-spline R-matrix (close-coupling) model. The experimental data were collected in an impact energy range from the respective excitation thresholds up to 50 eV with an incident electron energy resolution of 0.2 eV and an observation angle of 54.7°. Absolute values of the excitation cross sections were obtained by normalizing to the theoretical predictions. The observed near-threshold resonance structures were also analysed by comparison with theory. For the 2 P 3/2,1/2 doublet states, a detailed analysis of the R-matrix results reveals that the most intense resonances are related to odd-parity negative-ion states with dominant configurations 4p 5 5s5p 2 and 4p 5 4d5s6s. The measured excitation functions for the 2 P 1/2 and 4 P J states indicate a noticeable cascade population due to the radiative decay from high-lying autoionizing states. A comparative analysis with similar data for other alkali atoms is also presented.

  8. Coulomb excitation

    International Nuclear Information System (INIS)

    McGowan, F.K.; Stelson, P.H.

    1974-01-01

    The theory of Coulomb excitation and a brief review of pertinent treatments of the Coulomb excitation process that are useful for the analysis of experiments are given. Examples demonstrating the scope of nuclear structure information obtainable from gamma spectroscopy are presented. Direct Elambda excitation of 232 Th is discussed in terms of the one phonon octupole vibrational spectrum. B(MI) reduced transition probabilities resulting from Coulomb excitation of odd-A deformed nuclei with heavy ions are presented as a test of the rotational model. The use of gamma ray coincidence and particle-gamma coincidence as tools for investigating Coulomb excitation is discussed. (U.S.)

  9. Development of longitudinally excited CO2 laser

    Science.gov (United States)

    Masroon, N. S.; Tanaka, M.; Tei, M.; Uno, K.; Tsuyama, M.; Nakano, H.

    2018-05-01

    Simple, compact, and affordable discharged-pumped CO2 laser controlled by a fast high voltage solid state switch has been developed. In this study, longitudinal excitation scheme has been adapted for simple configuration. In the longitudinal excitation scheme, the discharge is produced along the direction of the laser axis, and the electrodes are well separated with a small discharge cross-section. Triggered spark gap switch is usually used to switch out the high voltage because of simple and low cost. However, the triggered spark gap operates in the arc mode and suffer from recovery problem causing a short life time and low efficiency for high repetition rate operation. As a result, there is now considerable interest in replacing triggered spark gap switch with solid state switches. Solid state switches have significant advantages compared to triggered spark gap switch which include longer service lifetime, low cost and stable high trigger pulse. We have developed simple and low cost fast high voltage solid state switch that consists of series connected-MOSFETs. It has been installed to the longitudinally excited CO2 laser to realize the gap switch less operation. Characteristics of laser oscillation by varying the discharge length, charging voltage, capacitance and gas pressure have been evaluated. Longer discharge length produce high power of laser oscillation. Optimum charging voltage and gas pressure were existed for longitudinally excited CO2 laser.

  10. High excitation of the species in nitrogen–aluminum plasma generated by electron cyclotron resonance microwave discharge of N2 gas and pulsed laser ablation of Al target

    International Nuclear Information System (INIS)

    Liang, Peipei; Li, Yanli; Cai, Hua; You, Qinghu; Yang, Xu; Huang, Feiling; Sun, Jian; Xu, Ning; Wu, Jiada

    2014-01-01

    A reactive nitrogen–aluminum plasma generated by electron cyclotron resonance (ECR) microwave discharge of N 2 gas and pulsed laser ablation of an Al target is characterized spectroscopically by time-integrated and time-resolved optical emission spectroscopy (OES). The vibrational and rotational temperatures of N 2 species are determined by spectral simulation. The generated plasma strongly emits radiation from a variety of excited species including ambient nitrogen and ablated aluminum and exhibits unique features in optical emission and temperature evolution compared with the plasmas generated by a pure ECR discharge or by the expansion of the ablation plume. The working N 2 gas is first excited by ECR discharge and the excitation of nitrogen is further enhanced due to the fast expansion of the aluminum plume induced by target ablation, while the excitation of the ablated aluminum is prolonged during the plume expansion in the ECR nitrogen plasma, resulting in the formation of strongly reactive nitrogen–aluminum plasma which contains highly excited species with high vibrational and rotational temperatures. The enhanced intensities and the prolonged duration of the optical emissions of the combined plasma would provide an improved analytical capability for spectrochemical analysis. - Highlights: • ECR discharge and pulsed laser ablation generate highly excited ECR–PLA plasma. • The expansion of PLA plasma results in excitation enhancement of ECR plasma species. • The ECR plasma leads to excitation prolongation of PLA plasma species. • The ECR–PLA plasma emits strong emissions from a variety of excited species. • The ECR–PLA plasma maintains high vibrational–rotational temperatures for a long time

  11. Properties of Highly Rotationally Excited H2 in Photodissociation Regions

    Science.gov (United States)

    Cummings, Sally Jane; Wan, Yier; Stancil, Phillip C.; Yang, Benhui H.; Zhang, Ziwei

    2018-06-01

    H2 is the dominant molecular species in the vast majority of interstellar environments and it plays a crucial role as a radiative coolant. In photodissociation regions, it is one of the primary emitters in the near to mid-infrared which are due to lines originating from highly excited rotational levels. However, collisional data for rotational levels j>10 are sparse, particularly for H2-H2 collisions. Utilizing new calculations for para-H2 and ortho-H2 collisional rate coefficients with H2 for j as high as 30, we investigate the effects of the new results in standard PDR models with the spectral simulation package Cloudy. We also perform Cloudy models of the Orion Bar and use Radex to explore rotational line ratio diagnostics. The resulting dataset of H2 collisional data should find wide application to other molecular environments. This work was support by Hubble Space Telescope grant HST-AR-13899.001-A and NASA grants NNX15AI61G and NNX16AF09G.

  12. Electronic excitations in fast ion-solid collisions

    International Nuclear Information System (INIS)

    Burgdoerfer, J.

    1990-01-01

    We review recent developments in the study of electronic excitation of projectiles in fast ion-solid collisions. Our focus will be primarily on theory but experimental advances will also be discussed. Topics include the evidence for velocity-dependent thresholds for the existence of bound states, wake-field effects on excited states, the electronic excitation of channeled projectiles, transport phenomena, and the interaction of highly charged ions with surfaces. 44 refs., 14 figs

  13. Recent advances in the 5f-relevant electronic states and unconventional superconductivity of actinide compounds

    International Nuclear Information System (INIS)

    Haga, Yoshinori; Sakai, Hironori; Kambe, Shinsaku

    2007-01-01

    Recent advances in the understanding of the 5f-relevant electronic states and unconventional superconducting properties are reviewed in actinide compounds of UPd 2 Al 3 . UPt 3 , URu 2 Si 2 , UGe 2 , and PuRhGa 5 . These are based on the experimental results carried out on high-quality single crystal samples, including transuranium compounds, which were grown by using combined techniques. The paring state and the gap structure of these superconductors are discussed, especially for the corresponding Fermi surfaces which were clarified by the de Haas-van Alphen experiment and the energy band calculations. A detailed systematic study using the NQR/NMR spectroscopy reveals the d-wave superconductivity in PuRhGa 5 and the difference of magnetic excitations due to the difference of ground states in U-, Np-, and Pu-based AnTGa 5 (T: transition metal) compounds. (author)

  14. Motor pathway excitability in ATP13A2 mutation carriers

    DEFF Research Database (Denmark)

    Zittel, S; Kroeger, J; van der Vegt, J P M

    2012-01-01

    OBJECTIVE: To describe excitability of motor pathways in Kufor-Rakeb syndrome (PARK9), an autosomal recessive nigro-striatal-pallidal-pyramidal neurodegeneration caused by a mutation in the ATP13A2 gene, using transcranial magnetic stimulation (TMS). METHODS: Five members of a Chilean family...... with an ATP13A2 mutation (one affected mutation carrier (MC) with a compound heterozygous mutation, 4 asymptomatic MC with a single heterozygous mutation) and 11 healthy subjects without mutations were studied. We measured motor evoked potentials (MEP), the contralateral silent period (cSP), short interval....... RESULTS: CSP duration was increased in the symptomatic ATP13A2 MC. The iSP measurements revealed increased interhemispheric inhibition in both the compound heterozygous and the heterozygous MC. CONCLUSION: A compound heterozygous mutation in the ATP13A2 gene is associated with increased intracortical...

  15. Many-body effects in the gain spectra of highly excited quantum-dot lasers

    International Nuclear Information System (INIS)

    Schneider, H. C.; Chow, W. W.; Koch, S. W.

    2001-01-01

    Optical gain spectra are computed for quantum dots under high excitation conditions, where there is a non-negligible two-dimensional carrier density surrounding the dots. Using a screened Hartree-Fock theory to describe the influence of the Coulomb interaction, we find different self-energy shifts for the dot and quantum-well transitions. Furthermore, in contrast to the result for quantum-well and bulk systems, the peak gain at the quantum-dot transition computed including Coulomb effects is reduced from its free carrier value

  16. cyclo-addition reaction of triplet carbonyl compounds to substituted ...

    Indian Academy of Sciences (India)

    Unknown

    cited state energy of the olefin must be higher than that of the ketone so that ... the first singlet and triplet1,3 (n, π*) excited state of the carbonyl compounds.3,4 ... of the oxetane via carbon–carbon and carbon–oxygen attacks. They found the ...

  17. Applications of high order harmonic radiation to UVX-solids interaction: high excitation density in electronic relaxation dynamics and surface damaging

    International Nuclear Information System (INIS)

    De Grazia, M.

    2007-12-01

    The new sources of radiation in the extreme-UV (X-UV: 10-100 nm), which deliver spatially coherent, ultra-short and intense pulses, allow studying high flux processes and ultra-fast dynamics in various domains. The thesis work presents two applications of the high-order laser harmonics (HH) to solid state physics. In Part I, we describe the optimization of the harmonic for studies of X-UV/solids interaction. In Part II, we investigate effects of high excitation density in the dynamics of electron relaxation in dielectric scintillator crystals - tungstates and fluorides, using time-resolved luminescence spectroscopy. Quenching of luminescence at short time gives evidence of the competition between radiative and non-radiative recombination of self-trapped excitons (STE). The non-radiative channel is identified to mutual interaction of STE at high excitation density. In Part III, we study the X-UV induced damage mechanism in various materials, either conductor (amorphous carbon) or insulators (organic polymers, e.g., PMMA). In PMMA-Plexiglas, in the desorption regime (0.2 mJ/cm 2 , i.e., below damage threshold), the surface modifications reflect X-UV induced photochemical processes that are tentatively identified, as a function of dose: at low dose, polymer chain scission followed by the blow-up of the volatile, low-molecular fragments leads to crater formation; at high dose, cross-linking in the near-surface layer of remaining material leads to surface hardening. These promising results have great perspectives considering the performances already attained and planned in the next future in the development of the harmonic sources. (author)

  18. Analysis of the excitation functions for 3He- and α-induced reactions on 107Ag and 109Ag

    International Nuclear Information System (INIS)

    Misaelides, P.

    1976-06-01

    Excitation functions of 32 3 He- and α-induced nuclear reactions on 107 Ag and 109 Ag have been measured. The incident projectile energies ranged from 10 to 40 MeV for the 3 He-ions and 10 to 100 MeV for the α-particles. The recoil range of some 3 He-induced reaction products and the isomeric ratio values indicate the predominance of a precompound-compound nucleous mechanism. The experimental cross sections were compared with the excitation functions calculated on the basis of the compound nucleus and hybrid models. Using the values n 0 ( 3 He) = 5 and n 0 (α) = 4 for the initial exciton number and a = A/12.5 for the level density parameter a satisfactory reproduction of the experimental results for the α-induced reactions was achieved, whereas the calculated excitation functions for the 3 He-induced reactions are about a factor of two higher. (orig.) [de

  19. From Coherently Excited Highly Correlated States to Incoherent Relaxation Processes in Semiconductors

    International Nuclear Information System (INIS)

    Scha''fer, W.; Lo''venich, R.; Fromer, N. A.; Chemla, D. S.

    2001-01-01

    Recent theories of highly excited semiconductors are based on two formalisms, referring to complementary experimental conditions, the real-time nonequilibrium Green's function techniques and the coherently controlled truncation of the many-particle problem. We present a novel many-particle theory containing both of these methods as limiting cases. As a first example of its application, we investigate four-particle correlations in a strong magnetic field including dephasing resulting from the growth of incoherent one-particle distribution functions. Our results are the first rigorous solution concerning formation and decay of four-particle correlations in semiconductors. They are in excellent agreement with experimental data

  20. Electronic excitation of some silicium compounds in the vacuum ultravi olet region

    International Nuclear Information System (INIS)

    Rocco, M.L.M.

    1986-01-01

    Angle-resolved electron energy-loss spectra have been measured for the tetramethylsilane, trimethylchlorosilane and dimethyldichloresilane molecules in the 5 - 300 eV energy range. The spectra have been obtained at 1 KeV incident energy, with an energy resolution of about 0.5 eV (valense region) and 0.8 eV (inner-shell region). Both the valence and core-level excitation bands can be as associated to transitions to Rydber and valence states. No dipole-allowed transition has been observed in the spectra measured in the angular range of 1 to 9 degrees (valence region) and 3 to 7 degrees (inner-shell region). (Author) [pt

  1. Elucidation of the relationships between H-bonding patterns and excited state dynamics in cyclovalone.

    Science.gov (United States)

    Lamperti, Marco; Maspero, Angelo; Tønnesen, Hanne H; Bondani, Maria; Nardo, Luca

    2014-08-28

    Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated.

  2. Elucidation of the Relationships between H-Bonding Patterns and Excited State Dynamics in Cyclovalone

    Directory of Open Access Journals (Sweden)

    Marco Lamperti

    2014-08-01

    Full Text Available Cyclovalone is a synthetic curcumin derivative in which the keto-enolic system is replaced by a cyclohexanone ring. This modification of the chemical structure might in principle result in an excited state that is more stable than that of curcumin, which in turn should produce an enhanced phototoxicity. Indeed, although curcumin exhibits photosensitized antibacterial activity, this compound is characterized by very fast excited-state dynamics which limit its efficacy as a photosensitizer. In previous works we showed that the main non-radiative decay pathway of keto-enolic curcuminoids is through excited-state transfer of the enolic proton to the keto-oxygen. Another effective deactivation pathway involves an intermolecular charge transfer mechanism occurring at the phenyl rings, made possible by intramolecular H-bonding between the methoxy and the hydroxyl substituent. In this paper we present UV-Vis and IR absorption spectra data with the aim of elucidating the intramolecular charge distribution of this compound and its solvation patterns in different environments, with particular focus on solute-solvent H-bonding features. Moreover, we discuss steady state and time-resolved fluorescence data that aim at characterizing the excited-state dynamics of cyclovalone, and we compare its decay photophysics to that of curcumin. Finally, because during the characterization procedures we found evidence of very fast photodegradation of cyclovalone, its photostability in four organic solvents was studied by HPLC and the corresponding relative degradation rates were calculated.

  3. Excitation of high energy levels under laser exposure of suspensions of nanoparticles in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute, 38, Vavilov Street, 119991 Moscow (Russian Federation)], E-mail: shafeev@kapella.gpi.ru; Simakin, A.V. [Wave Research Center of A.M. Prokhorov General Physics Institute, 38, Vavilov Street, 119991 Moscow (Russian Federation); Bozon-Verduraz, F. [ITODYS, UMR CNRS 7086, Universite Paris 7-Denis Diderot, 2, place Jussieu, 75251 Paris cedex 05 (France); Robert, M. [Laboratoire d' Electrochimie Moleculaire, UMR CNRS 7591, Universite Paris 7 Denis Diderot, 2, place Jussieu, 75251 Paris cedex 05 (France)

    2007-12-15

    Laser exposure of suspensions of nanoparticles in liquids leads to excitation of high energy levels in both liquid and nanoparticle material. The emission spectrum of the colloidal solution under exposure of a suspension metallic nanoparticles in water to radiation of a Nd:YAG laser of a picosecond range of pulse duration is discussed. Excitation of nuclear energy levels and neutron release is experimentally studied on the model system of transmutation of Hg into Au that occurs under exposure of Hg nanodrops suspended in D{sub 2}O. The proposed mechanism involves: (i) emission of X-ray photons by Hg nanoparticles upon laser exposure, leading to neutron release from D{sub 2}O, (ii) initiation of Hg {yields} Au transmutation by the capture of neutrons. The effect of transmutation is more pronounced using {sup 196}Hg isotope instead of Hg of natural isotope composition. The influence of laser pulse duration on the degree of transmutation (from fs through ns range) is discussed.

  4. Intramolecular evolution from a locally excited state to an excimer-like state in a multichromophoric dendrimer evidenced by a femtosecond fluorescence upconversion study

    NARCIS (Netherlands)

    Karni, Y.; Jordens, S.; Belder, G. De; Schweitzer, G.; Hofkens, J.; Gensch, T.; Maus, M.; Schryver, F.C. De; Herrmann, A.; Müllen, K.

    1999-01-01

    A time-resolved fluorescence upconversion study on a polyphenylene dendrimer with eight peryleneimide chromophores on the surface and on a monochromophoric model compound is reported. The time-dependent fluorescence spectra of the dendrimer show that the initial excitation is into a locally excited

  5. Hydrogen bonded supra-molecular framework in inorganic-organic hybrid compounds: Syntheses, structures, and photoluminescent properties

    Science.gov (United States)

    Yan, Li; Liu, Wei; Li, Chuanbi; Wang, Yifei; Ma, Li; Dong, Qinqin

    2013-03-01

    Two novel compounds constructed from aromatic acid and N-Heterocyclic ligands have been synthesized by hydrothermal reaction: [Cd(mip)(1,8-NDC)(H2O)]2 (1) [mip = 2-(3-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, 1,8-NDC = naphthalene-1,8-dicarboxylic acid] and Cd(mip)2(NTC)2 (2) [NTC = nicotinic acid]. Compounds 1 and 2 are characterized by elemental analysis, IR, single crystal X-ray diffraction and thermogravimetric analysis (TGA). Single-crystal X-ray investigation reveals that compounds 1-2 are 0 dimensional (0D) structures, and the existence of hydrogen bonds and π-π interactions lead the 0D to 2D novel framework. Hydrogen bonds and π-π interactions are powerful non-covalent intermolecular interactions for directing supra-molecular architectures. TG analysis shows clear courses of weight loss, which corresponds to the decomposition of different ligands. At room temperature, compound 1 exhibits emission at 449 nm upon excitation at 325 nm, and compound 2 shows a strong emission at 656 nm upon excitation at 350 nm. Fluorescent spectrum displays that compounds 1 and 2 are potential luminescent materials.

  6. A new wire fabrication processing using high Ga content Cu-Ga compound in V3Ga compound superconducting wire

    International Nuclear Information System (INIS)

    Hishinuma, Yoshimitsu; Nishimura, Arata; Kikuchi, Akihiro; Iijima, Yasuo; Takeuchi, Takao

    2007-01-01

    A superconducting magnet system is also one of the important components in an advanced magnetic confinement fusion reactor. Then it is required to have a higher magnetic field property to confine and maintain steady-sate burning deuterium (D)-tritium (T) fusion plasma in the large interspace during the long term operation. Burning plasma is sure to generate 14 MeV fusion neutrons during deuterium-tritium reaction, and fusion neutrons will be streamed and penetrated to superconducting magnet through large ports with damping neutron energy. Therefore, it is necessary to consider carefully not only superconducting property but also neutron irradiation property in superconducting materials for use in a future fusion reactor, and a 'low activation and high field superconducting magnet' will be required to realize the fusion power plant beyond International Thermonuclear Experimental Reactor (ITER). V-based superconducting material has a much shorter decay time of induced radioactivity compared with the Nb-based materials. We thought that the V 3 Ga compound was one of the most promising materials for the 'low activation and higher field superconductors' for an advanced fusion reactor. However, the present critical current density (J c ) property of V 3 Ga compound wire is insufficient for apply to fusion magnet applications. We investigated a new route PIT process using a high Ga content Cu-Ga compound in order to improve the superconducting property of the V 3 Ga compound wire. (author)

  7. Fracton pairing mechanism for unconventional superconductors: Self-assembling organic polymers and copper-oxide compounds

    DEFF Research Database (Denmark)

    Milovanov, A.V.; Juul Rasmussen, J.

    2002-01-01

    Self-assembling organic polymers and copper-oxide compounds are two classes of unconventional superconductors, whose challenging behavior does not comply with the traditional picture of Bardeen-Cooper-Schrieffer (BCS) superconductivity in regular crystals. In this paper, we propose a theoretical...... or holes) exchange fracton excitations, quantum oscillations of fractal lattices that mimic the complex microscopic organization of the unconventional superconductors. For the copper oxides, the superconducting transition temperature T-c as predicted by the fracton mechanism is of the order of similar to......150 K. We suggest that the marginal ingredient of the high-temperature superconducting phase is provided by fracton coupled holes that condensate in the conducting copper-oxygen planes owing to the intrinsic field-effect-transistor configuration of the cuprate compounds. For the gate...

  8. The dynamics of highly excited hydrogen atoms in microwave fields: Application of the Floquet picture of quantum mechanics

    International Nuclear Information System (INIS)

    Holthaus, M.

    1990-04-01

    The study of short-time phenomena in strongly interacting quantum systems requires on the theoretical side the development of methods, which are both non-perturbative and 'dynamical', which thus regard the change of outer parameters in the slope of time. For systems with a periodic, fast and a further slow, parametric time dependence both requirements are fulfilled by the Floquet picture of quantum mechanics. This picture, which starts from the adiabatic evolution on effective quasi-energy surfaces, is presented in the first chapter of the present thesis, whereby especially the term of the adiabaticity for periodically time dependent systems is explained. In the second chapter the Floquet theory is applied to the description of microwave experiments with highly excited hydrogen atoms. Here it is shown that the Floquet picture permits to understand a manifold of experimental observations under a unified point of view. Really these microwave experiments offer an ideal possibility for the test of the Floquet picture: On the one hand there is the strength of the outer field of the same order of magnitude as that of the nuclear field, by which the highly excited electron is bound, on the other hand in the experiment an extremely precise control of amplitude, frequency, and pulse shape is possible, so that the conditions for a detailed comparison of theory and experiment are given. The insights, which model calculations yield in the dynamics of highly excited hydrogen atoms in strong alternating fields, allow a prediction of further effects, for which it is to be looked for in new experiments. In the following third chapter some further aspects of these model calculations are discussed, whereby also common properties of the dynamics of excited atoms in microwave fields and that of atoms under the influence of strong laser pulses are discussed. (orig./HSI) [de

  9. Electron excitation of alkali atoms

    International Nuclear Information System (INIS)

    Ormonde, S.

    1979-02-01

    The development and testing of a synthesized close-coupling effective model potential ten-channel electron-atom scattering code and some preliminary calculations of resonances in cross sections for the excitation of excited states of potassium by low energy electrons are described. The main results obtained are: identification of 1 S and 1 D structures in excitation cross sections below the 5 2 S threshold of neutral potassium; indications of additional structures - 1 P and 1 D between the 5 2 S and 5 2 D thresholds; and a suggested explanation of anomalously high interstate-electron impact excitation cross sections inferred from experiments on potassium-seeded plasmas. The effective potential model imbedded in the code can be used to simulate any atomic system that can be approximated by a single bound electron outside an ionic core. All that is needed is a set of effective potential parameters--experimental or theoretical. With minor modifications the code could be adapted to calculations of electron scattering by two-electron systems

  10. Coulomb excitation of radioactive {sup 79}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Lister, C.J.; Blumenthal, D.; Davids, C.N. [and others

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  11. Measurement and analysis of excitation functions in (α,np) reactions on 128,130Te

    International Nuclear Information System (INIS)

    Singh, B.P.; Sankaracharyulu, M.G.V.; Ansari, M.A.; Prasad, R.; Bhardwaj, H.D.

    1992-02-01

    Excitation functions for the reactions 128 Te(α,np) 130 I, 130 Te(α,np) 132 I and 130 Te(α,np) 132m I have been measured using stacked foil technique and have also been calculated using statistical model with and without the inclusion of pre-equilibrium emission. As expected, inclusion of pre-equilibrium emission in compound nucleus calculations agree well with the experimental excitation functions. The pre-equilibrium fraction has been found to be energy and target mass number dependent. (author). 37 refs, 7 figs, 3 tabs

  12. Luminescence of the SrCl2:Pr crystals under high-energy excitation

    International Nuclear Information System (INIS)

    Antonyak, O.T.; Voloshinovskii, A.S.; Vistovskyy, V.V.; Stryganyuk, G.B.; Kregel, O.P.

    2014-01-01

    The present research was carried out in order to elucidate the mechanisms of energy transfer from the crystal lattice to Pr 3+ ions in SrCl 2 . The luminescence excitation and emission spectra as well as luminescence kinetics of the SrCl 2 :Pr single crystals containing 0.2 mol% Pr were investigated at 300 and 10 K using the vacuum ultraviolet (VUV) synchrotron radiation. The X-ray excited luminescence spectra of the SrCl 2 :Pr (C Pr =0.2 and 0.5 mol%) and SrCl 2 :Pr, K (C Pr =1.5 mol%; C K =1.5 mol%) crystals were studied at 294 and 80 K. Under optical excitation of the samples in the Pr 3+ absorption bands, there were observed five fast ultraviolet emissions assigned to the 4f 1 5d→4f 2 transitions, and two long-wave bands corresponding to the f–f transitions. Furthermore, the intrinsic emission bands of SrCl 2 were observed at 10 K. The X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal containing 0.2 mol% Pr, besides intrinsic emission band near 400 nm, has got a long-wave band at about 490 nm of the Pr 3+ centers. There were not observed any emission bands of the Pr 3+ centers corresponding to the 4f 1 5d–4f 2 transitions in the X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal. The possible mechanisms of energy transfer from the SrCl 2 matrix to the Pr 3+ centers are discussed. -- Highlights: • Spectral-luminescent properties of SrCl 2 :Pr have been investigated. • The identification of emission 4f–4f and 5d–4f bands of Pr 3+ ions was performed. • Adding of potassium prevents clustering of the Pr 3+ centers in the SrCl 2 :Pr, K crystals. • Under X-ray excitation at 80–300 K only Pr 3+ 4f–4f and intrinsic emission is observed

  13. Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System

    Directory of Open Access Journals (Sweden)

    Jia Ying-xin

    2013-03-01

    Full Text Available According to an ultra-high resolution airborne SAR system with better than 0.1 m resolution, a wideband Linear Frequency Modulated (LFM pulse compression exciter with 14.8 GHz carrier and 3.2 GHz bandwidth is designed and implemented. The selection of signal generation scheme and some key technique points for wideband LFM waveform is presented in detail. Then, an acute test and analysis of the LFM signal is performed. The final airborne experiments demonstrate the validity of the LFM source which is one of the subsystems in an ultra-high resolution airborne SAR system.

  14. Quark compound Bag model for NN scattering up to 1 GeV

    International Nuclear Information System (INIS)

    Fasano, C.; Lee, T.S.H.

    1987-01-01

    A Quark Compound Bag model has been constructed to describe NN s-wave scattering up to 1 GeV. The model contains a vertex interaction H/sub D/leftrightarrow/NN/ for describing the excitation of a confined six-quark Bag state, and a meson-exchange interaction obtained from modifying the phenomenological core of the Paris potential. Explicit formalisms and numerical results are presented to reveal the role of the Bag excitation mechanism in determining the relative wave function, P- and S-matrix of NN scattering. We explore the merit as well as the shortcoming of the Quark Compound Bag model developed by the ITEP group. It is shown that the parameters of the vertex interaction H/sub D/leftrightarrow/NN/ can be more rigorously determined from the data if the notation of the Chiral/Cloudy Bag model is used to allow the presence of the background meson-exchange interaction inside Bag excitation region. The application of the model in the study of quark degrees of freedom in nuclei is discussed. 41 refs., 6 figs., 3 tabs

  15. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    of sea state parameters — influence of filtering. Ocean Engineering 2007;34:1797–810.], where time series of ship responses were generated from a known wave spectrum for the purpose of the inverse process — the estimation of the underlying wave excitations. Similar response generations and vice versa...

  16. Probability of collective excited state decay

    International Nuclear Information System (INIS)

    Manykin, Eh.A.; Ozhovan, M.I.; Poluehktov, P.P.

    1987-01-01

    Decay mechanisms of condensed excited state formed of highly excited (Rydberg) atoms are considered, i.e. stability of so-called Rydberg substance is analyzed. It is shown that Auger recombination and radiation transitions are the basic processes. The corresponding probabilities are calculated and compared. It is ascertained that the ''Rydberg substance'' possesses macroscopic lifetime (several seconds) and in a sense it is metastable

  17. In which metals are high electronic excitations able to create damage?

    International Nuclear Information System (INIS)

    Legrand, P.; Dunlop, A.; Lesueur, D.; Lorenzelli, N.; Morillo, J.; Bouffard, S.

    1992-01-01

    Since a few years a certain number of results have shown that high energy deposition through electronic excitation can lead to damage creation in metallic targets. In order to test which is the right parameter favouring damage creation (high d-electrons density favouring electron-phonon coupling, various electrical conductivities, existence of different displacive phase transformations . . .) chosen metallic targets (Zr, Co, Ti, Ag, Pd, Pt, W, Ni) were irradiated on the french accelerator GANIL in Caen, at cryogenic temperatures with GeV-ions (Pb, O). In situ electrical resistance variation measurements at low temperature were achieved, followed by isochronal annealing of defects and post-X-ray observations at room temperature. This study shows that a very strong enhancement of the damage production occurs only in Zr, Ti and Co which present different allotropic phases and in particular a displacive transformation associated with soft modes in the phonon spectrum. The structure of stage I recovery of all the samples depends on the electronic stopping power

  18. Self-excited vibration control for axially fast excited beam by a time delay state feedback

    International Nuclear Information System (INIS)

    Hamdi, Mustapha; Belhaq, Mohamed

    2009-01-01

    This work examines the control of self-excited vibration of a simply-supported beam subjected to an axially high-frequency excitation. The investigation of the resonant cases are not considered in this paper. The control is implemented via a corrective position feedback with time delay. The objective of this control is to eliminate the undesirable self-excited vibrations with an appropriate choice of parameters. The issue of stability is also addressed in this paper. Using the technique of direct partition of motion, the dynamic of discretized equations is separated into slow and fast components. The multiple scales method is then performed on the slow dynamic to obtain a slow flow for the amplitude and phase. Analysis of this slow flow provides analytical approximations locating regions in parameters space where undesirable self-excited vibration can be eliminated. A numerical study of these regions is performed on the original discretized system and compared to the analytical prediction showing a good agreement.

  19. A compilation of information on the {sup 31}P(p,{alpha}){sup 28}Si reaction and properties of excited levels in the compound nucleus {sup 32}S

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.E.; Smith, D.L. [Argonne National Lab., IL (United States). Technology Development Div.

    1997-11-01

    This report documents a survey of the literature, and provides a compilation of data contained therein, for the {sup 31}P(p,{alpha}){sup 28}Si reaction. Attention is paid here to resonance states in the compound-nuclear system {sup 32}S formed by {sup 31}P + p, with emphasis on the alpha-particle decay channels, {sup 28}Si + {alpha} which populate specific levels in {sup 28}Si. The energy region near the proton separation energy for {sup 32}S is especially important in this context for applications in nuclear astrophysics. Properties of the excited states in {sup 28}Si are also considered. Summaries of all the located references are provided and numerical data contained in them are compiled in EXFOR format where applicable.

  20. Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo [William R. Wiley Environmental; Kowalski, Karol [William R. Wiley Environmental

    2017-08-11

    The representation and storage of two-electron integral tensors are vital in large- scale applications of accurate electronic structure methods. Low-rank representation and efficient storage strategy of integral tensors can significantly reduce the numerical overhead and consequently time-to-solution of these methods. In this paper, by combining pivoted incomplete Cholesky decomposition (CD) with a follow-up truncated singular vector decomposition (SVD), we develop a decomposition strategy to approximately represent the two-electron integral tensor in terms of low-rank vectors. A systematic benchmark test on a series of 1-D, 2-D, and 3-D carbon-hydrogen systems demonstrates high efficiency and scalability of the compound two-step decomposition of the two-electron integral tensor in our implementation. For the size of atomic basis set N_b ranging from ~ 100 up to ~ 2, 000, the observed numerical scaling of our implementation shows O(N_b^{2.5~3}) versus O(N_b^{3~4}) of single CD in most of other implementations. More importantly, this decomposition strategy can significantly reduce the storage requirement of the atomic-orbital (AO) two-electron integral tensor from O(N_b^4) to O(N_b^2 log_{10}(N_b)) with moderate decomposition thresholds. The accuracy tests have been performed using ground- and excited-state formulations of coupled- cluster formalism employing single and double excitations (CCSD) on several bench- mark systems including the C_{60} molecule described by nearly 1,400 basis functions. The results show that the decomposition thresholds can be generally set to 10^{-4} to 10^{-3} to give acceptable compromise between efficiency and accuracy.

  1. Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay.

    Directory of Open Access Journals (Sweden)

    Ikechukwu Okoli

    2009-09-01

    Full Text Available Candida albicans, the most common human pathogenic fungus, can establish a persistent lethal infection in the intestine of the microscopic nematode Caenorhabditis elegans. The C. elegans-C. albicans infection model was previously adapted to screen for antifungal compounds. Modifications to this screen have been made to facilitate a high-throughput assay including co-inoculation of nematodes with C. albicans and instrumentation allowing precise dispensing of worms into assay wells, eliminating two labor-intensive steps. This high-throughput method was utilized to screen a library of 3,228 compounds represented by 1,948 bioactive compounds and 1,280 small molecules derived via diversity-oriented synthesis. Nineteen compounds were identified that conferred an increase in C. elegans survival, including most known antifungal compounds within the chemical library. In addition to seven clinically used antifungal compounds, twelve compounds were identified which are not primarily used as antifungal agents, including three immunosuppressive drugs. This assay also allowed the assessment of the relative minimal inhibitory concentration, the effective concentration in vivo, and the toxicity of the compound in a single assay.

  2. Mechanism of Corrosion by Naphthenic Acids and Organosulfur Compounds at High Temperatures

    Science.gov (United States)

    Jin, Peng

    Due to the law of supply and demand, the last decade has witnessed a skyrocketing in the price of light sweet crude oil. Therefore, refineries are increasingly interested in "opportunity crudes", characterized by their discounted price and relative ease of procurement. However, the attractive economics of opportunity crudes come with the disadvantage of high acid/organosulfur compound content, which could lead to corrosion and even failure of facilities in refineries. However, it is generally accepted that organosulfur compounds may form protective iron sulfide layers on the metal surface and decrease the corrosion rate. Therefore, it is necessary to investigate the corrosive property of crudes at high temperatures, the mechanism of corrosion by acids (naphthenic acids) in the presence of organosulfur compounds, and methods to mitigate its corrosive effect. In 2004, an industrial project was initiated at the Institute for Corrosion and Multiphase Technology to investigate the corrosion by naphthenic acids and organosulfur compounds. In this project, for each experiment there were two experimentation phases: pretreatment and challenge. In the first pretreatment phase, a stirred autoclave was filled with a real crude oil fraction or model oil of different acidity and organosulfur compound concentration. Then, the stirred autoclave was heated to high temperatures to examine the corrosivity of the oil to different materials (specimens made from CS and 5% Cr containing steel were used). During the pretreatment, corrosion product layers were formed on the metal surface. In the second challenge phase, the steel specimens pretreated in the first phase were inserted into a rotating cylinder autoclave, called High Velocity Rig (HVR). The HVR was fed with a high-temperature oil solution of naphthenic acids to attack the iron sulfide layers. Based on the difference of specimen weight loss between the two steps, the net corrosion rate could be calculated and the protectiveness

  3. Continuum corrections to the level density and its dependence on excitation energy, n-p asymmetry, and deformation

    International Nuclear Information System (INIS)

    Charity, R.J.; Sobotka, L.G.

    2005-01-01

    In the independent-particle model, the nuclear level density is determined from the neutron and proton single-particle level densities. The single-particle level density for the positive-energy continuum levels is important at high excitation energies for stable nuclei and at all excitation energies for nuclei near the drip lines. This single-particle level density is subdivided into compound-nucleus and gas components. Two methods are considered for this subdivision: In the subtraction method, the single-particle level density is determined from the scattering phase shifts. In the Gamov method, only the narrow Gamov states or resonances are included. The level densities calculated with these two methods are similar; both can be approximated by the backshifted Fermi-gas expression with level-density parameters that are dependent on A, but with very little dependence on the neutron or proton richness of the nucleus. However, a small decrease in the level-density parameter is predicted for some nuclei very close to the drip lines. The largest difference between the calculations using the two methods is the deformation dependence of the level density. The Gamov method predicts a very strong peaking of the level density at sphericity for high excitation energies. This leads to a suppression of deformed configurations and, consequently, the fission rate predicted by the statistical model is reduced in the Gamov method

  4. Pure-Phase Selective Excitation in Fast-Relaxing Systems

    Science.gov (United States)

    Zangger, Klaus; Oberer, Monika; Sterk, Heinz

    2001-09-01

    Selective pulses have been used frequently for small molecules. However, their application to proteins and other macromolecules has been limited. The long duration of shaped-selective pulses and the short T2 relaxation times in proteins often prohibited the use of highly selective pulses especially on larger biomolecules. A very selective excitation can be obtained within a short time by using the selective excitation sequence presented in this paper. Instead of using a shaped low-intensity radiofrequency pulse, a cluster of hard 90° pulses, delays of free precession, and pulsed field gradients can be used to selectively excite a narrow chemical shift range within a relatively short time. Thereby, off-resonance magnetization, which is allowed to evolve freely during the free precession intervals, is destroyed by the gradient pulses. Off-resonance excitation artifacts can be removed by random variation of the interpulse delays. This leads to an excitation profile with selectivity as well as phase and relaxation behavior superior to that of commonly used shaped-selective pulses. Since the evolution of scalar coupling is inherently suppressed during the double-selective excitation of two different scalar-coupled nuclei, the presented pulse cluster is especially suited for simultaneous highly selective excitation of N-H and C-H fragments. Experimental examples are demonstrated on hen egg white lysozyme (14 kD) and the bacterial antidote ParD (19 kD).

  5. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-03-10

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected for the device based on the natural frequency. Additionally, a second voltage amplitude of a second source of excitation can be selected for the device, and the first and second sources of excitation can be applied to the device. After applying the first and second sources of excitation, a frequency of the second source of excitation can be swept. Using the methods of multi- frequency excitation described herein, new operating frequencies, operating frequency ranges, resonance frequencies, resonance frequency ranges, and/or resonance responses can be achieved for devices and systems.

  6. Luminescence of highly excited nonpolar a-plane GaN and AlGaN/GaN multiple quantum wells

    International Nuclear Information System (INIS)

    Jursenas, S.; Kuokstis, E.; Miasojedovas, S.; Kurilcik, G.; Zukauskas, A.; Chen, C.Q.; Yang, J.W.; Adivarahan, V.; Asif Khan, M.

    2004-01-01

    Carrier recombination dynamics in polar and nonpolar GaN epilayers and GaN/AlGaN multiple quantum wells grown over sapphire substrates with a various crystallographic orientation were studied under high photoexcitation by 20 ps laser pulses. The transient luminescence featured a significant enhancement on nonradiative recombination of free carriers for nonpolar a-plane GaN epilayers compared to conventional c-plane samples. The epitaxial layer overgrowth technique was demonstrated to significantly improve the quality of nonpolar a-plane films. This was proved by more than 40-fold increase in luminescence decay time (430 ps compared to ≤ 10 ps in the ordinary a-plane epilayer). Under high-excitation regime, a complete screening of built-in electric field by free carriers in multiple quantum wells grown on c-plane and r-plane sapphire substrates was achieved. Under such high excitation, luminescence efficiency and carrier lifetime of multiple quantum wells were shown to be determined by the substrate quality. (author)

  7. Axonal excitability properties in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Vucic, Steve; Kiernan, Matthew C

    2006-07-01

    To investigate axolemmal ion channel function in patients diagnosed with sporadic amyotrophic lateral sclerosis (ALS). A recently described threshold tracking protocol was implemented to measure multiple indices of axonal excitability in 26 ALS patients by stimulating the median motor nerve at the wrist. The excitability indices studied included: stimulus-response curve (SR); strength-duration time constant (tauSD); current/threshold relationship; threshold electrotonus to a 100 ms polarizing current; and recovery curves to a supramaximal stimulus. Compound muscle action potential (CMAP) amplitudes were significantly reduced in ALS patients (ALS, 2.84+/-1.17 mV; controls, 8.27+/-1.09 mV, P<0.0005) and the SR curves for both 0.2 and 1 ms pulse widths were shifted in a hyperpolarized direction. Threshold electrotonus revealed a greater threshold change to both depolarizing and hyperpolarizing conditioning stimuli, similar to the 'fanned out' appearance that occurs with membrane hyperpolarization. The tauSD was significantly increased in ALS patients (ALS, 0.50+/-0.03 ms; controls, 0.42+/-0.02 ms, P<0.05). The recovery cycle of excitability following a conditioning supramaximal stimulus revealed increased superexcitability in ALS patients (ALS, 29.63+/-1.25%; controls, 25.11+/-1.01%, P<0.01). Threshold tracking studies revealed changes indicative of widespread dysfunction in axonal ion channel conduction, including increased persistent Na+ channel conduction, and abnormalities of fast paranodal K+ and internodal slow K+ channel function, in ALS patients. An increase in persistent Na+ conductances coupled with reduction in K+ currents would predispose axons of ALS patients to generation of fasciculations and cramps. Axonal excitability studies may provide insight into mechanisms responsible for motor neuron loss in ALS.

  8. Fluorescence fluctuation of Rhodamine 6G dye for high repetition rate laser excitation

    International Nuclear Information System (INIS)

    Singh, Nageshwar; Patel, Hemant K.; Dixit, S.K.; Vora, H.S.

    2013-01-01

    In this paper, fluorescence from Rhodamine 6G dye for stationary and flowing liquid medium, excited by copper vapor laser, operating at 6 kHz pulse repetition frequency, was investigated. Large fluctuations in spectral width (about 5 nm) and spectral intensity in the fluorescence from stationary dye solution were observed, while fluctuations in the spectral width diminish in a flowing dye medium. However, this increases spectral intensity and slightly red shifts the fluorescence peak emission wavelength. Theoretical analysis was carried out to explain the observed results by incorporating the temperature induced refractive index, beam deflection and spectral variation in stationary dye solution. Numerical analysis of thermal load and contour of temperature in the optical pumped region inside the dye cell in stationary, 0.2 and 1.5 m/s flow velocity was also investigated to support our analysis. - Highlights: ► High repetition rate excitation generates inhomogeneity in the gain medium. ► Fluorescence of Rhodamine 6G in stationary and flowing medium was carried out. ► Fluorescence fluctuations lessen in flowing medium in contrast to stationary medium. ► Our theoretical and numerical analysis enlightens the experimented outcome trend.

  9. Aspects of data on the breakup of highly excited nuclei

    International Nuclear Information System (INIS)

    Warwick, A.I.; Wieman, H.H.; Gutbrod, H.H.; Ritter, H.G.; Stelzer, H.; Weik, F.; Kaufman, S.B.; Steinberg, E.P.; Wilkins, B.D.

    1983-05-01

    There is an awakening of theoretical interest in the mechanisms by which nuclear fragments (4 less than or equal to A less than or equal to 150) are produced in violent collisions of heavy ions. With this in mind we review some aspects of the available experimental data and point out some challenging features against which to test the models. The concept of evaporation is tremendously powerful when applied to pieces of nuclei of low excitation (1 or 2 MeV/u). Current interest focuses on higher excitations, at the point where the binding energy of the system vanishes. This is the transition from liquid nuclei to a gas of nucleons, and it may be that the critical phenomena that certainly exist in infinite nuclear matter will be manifest in finite nuclei under these conditions

  10. The population transfer of high excited states of Rydberg lithium atoms in a microwave field

    International Nuclear Information System (INIS)

    Jiang Lijuan; Zhang Xianzhou; Ma Huanqiang; Jia Guangrui; Zhang Yonghui; Xia Lihua

    2012-01-01

    Using the time-dependent multilevel approach (TDMA), the properties of high excited Rydberg lithium atom have been obtained in the microwave field. The population transfer of lithium atom are studied on numerical calculation, quantum states are controlled and manipulated by microwave field. It shows that the population can be completely transferred to the target state by changing the chirped rate and field amplitude. (authors)

  11. Optical spectroscopy of orbital and magnetic excitations in vanadates and cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Benckiser, Eva Vera

    2007-10-15

    Within the scope of this thesis, the low-energy excitations of undoped Mott insulators RVO{sub 3} with R = Y, Ho, and Ce, (Sr,Ca)CuO{sub 2} and La{sub 8}Cu{sub 7}O{sub 19} have been investigated by means of optical spectroscopy. The compounds RVO{sub 3} with R=rare-earth ion recently have attracted a lot of interest because of their unusual structural, orbital, and magnetic properties. The compounds undergo a series of temperatureinduced phase transitions accompanied by a change of orbital and magnetic order. Furthermore, it has been proposed that YVO{sub 3} represents the first realization of a one-dimensional orbital liquid and an orbital Peierls phase, with a transition to an orbitally ordered phase at lower temperatures. In this thesis, we present the optical conductivity {sigma}({omega}) of RVO{sub 3} with R=Y, Ho, and Ce for energies from 0.1 to 1.6 eV as a function of temperature (10-300 K) and polarization of the incident light parallel to the crystallographic axes ({sigma}{sub a},{sigma}{sub b},{sigma}{sub c}). Our main experimental result is the observation of two absorption features at 0.55 eV in {sigma}{sub a}({omega}) and 0.4 eV in {sigma}{sub c}({omega}) which are assigned to collective orbital excitations, in contrast to conventional local crystal-field transitions. Altogether, our results strongly suggest that in RVO{sub 3} with R=Y, Ho, and Ce the orbital exchange interactions play a decisive role. In a second study, we have investigated the magnetic excitations of low-dimensional quantum magnets, namely the spin chain (Sr,Ca)CuO{sub 2} and the five-leg ladder La{sub 8}Cu{sub 7}O{sub 19}. For (Sr,Ca)CuO{sub 2}, two absorption features around 0.4 eV in {sigma}{sub c}({omega}) (chain direction) and {sigma}{sub b}({omega}) (inter-chain direction) are identified as magnetic contributions to the optical conductivity. The analysis of {sigma}{sub c}({omega}) enables the very precise determination of the nearest-neighbor exchange coupling J{sub c} as a

  12. Opposite effects of low and high doses of Abeta42 on electrical network and neuronal excitability in the rat prefrontal cortex.

    Science.gov (United States)

    Wang, Yun; Zhang, Guangping; Zhou, Hongwei; Barakat, Amey; Querfurth, Henry

    2009-12-21

    Changes in neuronal synchronization have been found in patients and animal models of Alzheimer's disease (AD). Synchronized behaviors within neuronal networks are important to such complex cognitive processes as working memory. The mechanisms behind these changes are not understood but may involve the action of soluble beta-amyloid (Abeta) on electrical networks. In order to determine if Abeta can induce changes in neuronal synchronization, the activities of pyramidal neurons were recorded in rat prefrontal cortical (PFC) slices under calcium-free conditions using multi-neuron patch clamp technique. Electrical network activities and synchronization among neurons were significantly inhibited by low dose Abeta42 (1 nM) and initially by high dose Abeta42 (500 nM). However, prolonged application of high dose Abeta42 resulted in network activation and tonic firing. Underlying these observations, we discovered that prolonged application of low and high doses of Abeta42 induced opposite changes in action potential (AP)-threshold and after-hyperpolarization (AHP) of neurons. Accordingly, low dose Abeta42 significantly increased the AP-threshold and deepened the AHP, making neurons less excitable. In contrast, high dose Abeta42 significantly reduced the AP-threshold and shallowed the AHP, making neurons more excitable. These results support a model that low dose Abeta42 released into the interstitium has a physiologic feedback role to dampen electrical network activity by reducing neuronal excitability. Higher concentrations of Abeta42 over time promote supra-synchronization between individual neurons by increasing their excitability. The latter may disrupt frontal-based cognitive processing and in some cases lead to epileptiform discharges.

  13. Opposite effects of low and high doses of Abeta42 on electrical network and neuronal excitability in the rat prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available Changes in neuronal synchronization have been found in patients and animal models of Alzheimer's disease (AD. Synchronized behaviors within neuronal networks are important to such complex cognitive processes as working memory. The mechanisms behind these changes are not understood but may involve the action of soluble beta-amyloid (Abeta on electrical networks. In order to determine if Abeta can induce changes in neuronal synchronization, the activities of pyramidal neurons were recorded in rat prefrontal cortical (PFC slices under calcium-free conditions using multi-neuron patch clamp technique. Electrical network activities and synchronization among neurons were significantly inhibited by low dose Abeta42 (1 nM and initially by high dose Abeta42 (500 nM. However, prolonged application of high dose Abeta42 resulted in network activation and tonic firing. Underlying these observations, we discovered that prolonged application of low and high doses of Abeta42 induced opposite changes in action potential (AP-threshold and after-hyperpolarization (AHP of neurons. Accordingly, low dose Abeta42 significantly increased the AP-threshold and deepened the AHP, making neurons less excitable. In contrast, high dose Abeta42 significantly reduced the AP-threshold and shallowed the AHP, making neurons more excitable. These results support a model that low dose Abeta42 released into the interstitium has a physiologic feedback role to dampen electrical network activity by reducing neuronal excitability. Higher concentrations of Abeta42 over time promote supra-synchronization between individual neurons by increasing their excitability. The latter may disrupt frontal-based cognitive processing and in some cases lead to epileptiform discharges.

  14. Studies of spin excitations with electromagnetic and hadronic probes

    International Nuclear Information System (INIS)

    Lindgren, R.A.; Petrovich, F.

    1982-01-01

    Excitation of unnatural parity states, predominantly of high spin, using electromagnetic and hadronic probes, is discussed. Spectroscopic strengths are deduced from studies of (e,e'), (p,p'), (π.π'), and (p,n) for states whose doorway is the stretched particle-hole configuration. These levels are excited primarily through the isovector electromagnetic-nucleon magnetization coupling, nucleon-nucleon tensor coupling, and pion-nucleon spin-orbit coupling. The extracted isovector spectroscopic strength is typically 38% of the extreme single particle-hole model and about 66% of that predicted by more realistic nuclear structure calculations. The observed isoscalar strength is only about one half of the isovector strength. The results obtained with the three different probes are quite consistent. The primary conclusion is that the missing strength for these high spin excitations is at least as large as for the low spin M1 and GT excitations. This implies the existence of other important quenching mechanisms since the Δ-N -1 mechanism involved in the discussion of the low spin excitation affects only the isovector transitions and contributes little to high spin excitations. A method for using (e,e') and π + /π - cross section ratios to separate and determine the absolute isoscalar and isovector spin densities for T 0 to T 0 transitions in N is not equal to Z nuclei is also discussed and some comments on extracting information from (e,e') and (p,p') studies at high q on low spin 1 + and 2 - levels are presented. 78 references

  15. Kirishites, a new type of natural high-carbon compounds

    Science.gov (United States)

    Marin, Yu. B.; Skublov, G. T.; Yushkin, N. P.

    2010-01-01

    On the right-hand bank of the Volkhov River, in the natural area of tektite-like glasses (Volkhovites), fragments of shungites and slags with bunches of hairlike dark brownish enclosures were found. The filament thickness ranged from 20 to 100 μm, and separate “hairlines” were 3 cm in length. The composition of shungites and “hairlines” was found to be identical, which allowed us to consider the latter as aposhungite carbon formations. The high-carbon hairline structures associated with volkhovites are called kirishites. Kirishites are a new type of high-carbon structures that formed simultaneously with volkhovites in the case of explosion-type delivery of carbon slag and shungite fragments to the daylight surface during Holocene explosive activity. Under sharply reductive conditions, the slags partially melted, the melts were segregated, and carbonaceous-silicate and carbonaceous-ferriferous glasses formed with subsequent decompression-explosive liberation of carbon-supersaturated structures, which were extruded from shungite and slag fragments in the form of a resinoid mass. The “hairlines” were found to be zonal in structure: the central axial zones are composed of high-nitrogen hydrocarbon compounds, and peripheral regions are essentially carbonaceous with a high content of organic-mineral compounds and numerous microanomalies of petrogenic, volatile, rare, and ore elements. Infrared spectroscopy identified in kirishites proteinlike compounds, diagnosed in absorption bands (in cm-1) 600-720 (Amid V), 1200-1300 (Amid III), 1480-1590 (Amid II), 1600-1700 (Amid I), 3000-3800 (vibrations in NH2 and II groups). Gas chromatography, with the possibility of differentiation of left- and right-handed forms, revealed a broad spectrum of amino acids in kirishites, with their total content found to be the absolutely highest record for natural bitumens, an order of magnitude higher than the largest amino acid concentrations ever revealed in fibrous high

  16. Coulomb excitation of atoms by fast multicharged ions

    International Nuclear Information System (INIS)

    Yudin, G.L.

    1980-01-01

    Investigated is coulomb eXcitation of discrete levels of a hydrogen-like atom by a fast multicharged ion. Obtained are dependences of probabilities of channels 1S→nS and 1S→nP on the sight parameter in the zero order of sudden excitation theory. 1S-2S transition is considered in detail. Carried out are calculations for excitation of the hydrogen atom by the wholy bare carbon atom. It is shown, that at low values of excitation pr.ocess parameter eta excitation probability is a monotonously decreasing function of the impact parameter. With the growth of eta the situation is changed, and at low impact parameters the probability of 1S-2S transition is decreased. At high impact parameters approximation of sudden excitations is unacceptable, here lagging of coulomb interaction is essential

  17. Excited baryon form-factors at high momentum transfer at CEBAF at higher energies

    Energy Technology Data Exchange (ETDEWEB)

    Stoler, P. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-04-01

    The possibilities of measuring the properties of excited nucleons at high Q{sup 2} by means of exclusive single meson production at CEBAF with an electron energy of 8 GeV is considered. The motivation is to access short range phenomena in baryon structure, and to investigate the transition from the low Q{sup 2} non-perturbative QCD regime, where constituent quark models are valid, to higher Q{sup 2} where it is believed perturbative QCD plays an increasingly important role. It is found that high quality baryon decay angular distributions can be obtained for the most prominent states up to Q{sup 2} {approximately} 12 GeV{sup 2}/c{sup 2} using a set of moderate resolution, large solid angle magnetic spectrometers.

  18. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.

    2010-08-11

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (EÌ?TE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients. © 2010 American Chemical Society.

  19. High-spin isomers in 212Rn in the region of triple neutron core-excitations

    Science.gov (United States)

    Dracoulis, G. D.; Lane, G. J.; Byrne, A. P.; Davidson, P. M.; Kibédi, T.; Nieminen, P.; Watanabe, H.; Wilson, A. N.

    2008-04-01

    The level scheme of 212Rn has been extended to spins of ∼ 38 ℏ and excitation energies of about 13 MeV using the 204Hg(13C, 5n)212Rn reaction and γ-ray spectroscopy. Time correlated techniques have been used to obtain sensitivity to weak transitions and channel selectivity. The excitation energy of the 22+ core-excited isomer has been established at 6174 keV. Two isomers with τ = 25 (2) ns and τ = 12 (2) ns are identified at 12211 and 12548 keV, respectively. These are the highest-spin nuclear isomers now known, and are attributed to configurations involving triple neutron core-excitations coupled to the aligned valence protons. Semi-empirical shell-model calculations can account for most states observed, but with significant energy discrepancies for some configurations.

  20. High-spin isomers in 212Rn in the region of triple neutron core-excitations

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Lane, G.J.; Byrne, A.P.; Davidson, P.M.; Kibedi, T.; Nieminen, P.; Watanabe, H.; Wilson, A.N.

    2008-01-01

    The level scheme of 212 Rn has been extended to spins of ∼38h and excitation energies of about 13 MeV using the 204 Hg( 13 C, 5n) 212 Rn reaction and γ-ray spectroscopy. Time correlated techniques have been used to obtain sensitivity to weak transitions and channel selectivity. The excitation energy of the 22 + core-excited isomer has been established at 6174 keV. Two isomers with τ=25(2) ns and τ=12(2) ns are identified at 12211 and 12548 keV, respectively. These are the highest-spin nuclear isomers now known, and are attributed to configurations involving triple neutron core-excitations coupled to the aligned valence protons. Semi-empirical shell-model calculations can account for most states observed, but with significant energy discrepancies for some configurations

  1. Machine learning of molecular electronic properties in chemical compound space

    International Nuclear Information System (INIS)

    Montavon, Grégoire; Müller, Klaus-Robert; Rupp, Matthias; Gobre, Vivekanand; Hansen, Katja; Tkatchenko, Alexandre; Vazquez-Mayagoitia, Alvaro; Anatole von Lilienfeld, O

    2013-01-01

    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure–property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost. (paper)

  2. Machine learning of molecular electronic properties in chemical compound space

    Science.gov (United States)

    Montavon, Grégoire; Rupp, Matthias; Gobre, Vivekanand; Vazquez-Mayagoitia, Alvaro; Hansen, Katja; Tkatchenko, Alexandre; Müller, Klaus-Robert; Anatole von Lilienfeld, O.

    2013-09-01

    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost.

  3. Development of a model for the description of highly excited states in odd-A deformed nuclei

    International Nuclear Information System (INIS)

    Malov, L.A.; Soloviev, V.G.

    1975-01-01

    An approximate method is suggested for solution of the set of equations, obtained earlier for describing the structure of intermediate-and high-excitation states within the framework of the model taking into account quasiparticle-phonon interaction. The analysis is conducted for the case of an odd deformed nucleus, when several one-quasiparticle components are simultaneously taken into account

  4. A study of excitation functions for the radio-active isotopes produced by α-induced reactions in gold

    International Nuclear Information System (INIS)

    Singh, B.P.; Prasad, R.; Bhardwaj, H.D.

    1992-04-01

    Excitation functions for the reactions 197 Au(α,xn) 201-x Tl(x=1-4) have been measured in the energy range approx. 30-60 MeV using stacked foil technique. Ge(Li) gamma ray spectroscopy has been used for the analysis of irradiated samples. Excitation functions have also been calculated theoretically using two different computer codes (ACT and ALICE) with and without the inclusion of pre-equilibrium emission. As expected inclusion of pre-equilibrium emission to the compound nucleon calculations agree well with the experimentally measured excitation functions. An interesting trend in pre-equilibrium fraction with energy has been observed. (author). 33 refs, 6 figs

  5. Effects of classical resonances on the chaotic microwave ionization of highly excited hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R V

    1987-05-01

    Experimental measurements of the microwave ionization of highly excited hydrogen atoms with principal quantum numbers ranging from n = 32 to 90 are well described by a classical treatment of the nonlinear electron dynamics. In particular, the measurements of the threshold field for the onset of significant ionization exhibits a curious dependence on the microwave frequency with distinct peaks at rational values of the scaled frequency, n/sup 3/..cap omega.. = 1, 2/3, 1/2, 2/5, 1/3, 1/4, 1/5, which is in excellent agreement with the predictions for the onset of classical chaos in a one-dimensional model of the experiment. In the classical theory this frequency dependence of the threshold fields is due to the stabilizing effect of nonlinear resonances (''islands'') in the classical phase space which is greatly enhanced when the microwave perturbation is turned on slowly (adiabatically) as in the experiments. Quantum calculations for this one-dimensional model also exhibit this stabilizing effect due to the preferential excitation of localized quasi-energy states.

  6. Design considerations for highly effective fluorescence excitation and detection optical systems for molecular diagnostics

    Science.gov (United States)

    Kasper, Axel; Van Hille, Herbert; Kuk, Sola

    2018-02-01

    Modern instruments for molecular diagnostics are continuously optimized for diagnostic accuracy, versatility and throughput. The latest progress in LED technology together with tailored optics solutions allows developing highly efficient photonics engines perfectly adapted to the sample under test. Super-bright chip-on-board LED light sources are a key component for such instruments providing maximum luminous intensities in a multitude of narrow spectral bands. In particular the combination of white LEDs with other narrow band LEDs allows achieving optimum efficiency outperforming traditional Xenon light sources in terms of energy consumption, heat dissipation in the system, and switching time between spectral channels. Maximum sensitivity of the diagnostic system can only be achieved with an optimized optics system for the illumination and imaging of the sample. The illumination beam path must be designed for optimum homogeneity across the field while precisely limiting the angular distribution of the excitation light. This is a necessity for avoiding spill-over to the detection beam path and guaranteeing the efficiency of the spectral filtering. The imaging optics must combine high spatial resolution, high light collection efficiency and optimized suppression of excitation light for good signal-to-noise ratio. In order to achieve minimum cross-talk between individual wells in the sample, the optics design must also consider the generation of stray light and the formation of ghost images. We discuss what parameters and limitations have to be considered in an integrated system design approach covering the full path from the light source to the detector.

  7. Spectroscopy and reactions of vibrationally excited transient molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H.L. [Univ. of Pennsylvania, Philadelphia (United States)

    1993-12-01

    Spectroscopy, energy transfer and reactions of vibrationally excited transient molecules are studied through a combination of laser-based excitation techniques and efficient detection of emission from the energized molecules with frequency and time resolution. Specifically, a Time-resolved Fourier Transform Emission Spectroscopy technique has been developed for detecting dispersed laser-induced fluorescence in the IR, visible and UV regions. The structure and spectroscopy of the excited vibrational levels in the electronic ground state, as well as energy relaxation and reactions induced by specific vibronic excitations of a transient molecule can be characterized from time-resolved dispersed fluorescence in the visible and UV region. IR emissions from highly vibrational excited levels, on the other hand, reveal the pathways and rates of collision induced vibrational energy transfer.

  8. Relative excitation functions for singly-excited and core-excited levels of S V--S IX populated by the beam-foil interaction

    International Nuclear Information System (INIS)

    Moenke, D.; Bengtsson, P.; Engstroem, L.; Hutton, R.; Jupen, C.; Kirm, M.; Westerlind, M.

    1994-01-01

    We have investigated the relative excitation functions for low-lying singly excited and low-lying core-excited levels in S V (S 4+ ) to S IX (S 8+ ) after beam-foil excitation using ions in the energy range 2--10 MeV. The spectral line intensities have been normalized to the same number of particles at each ion energy and corrections for the level lifetimes have been made. The overall accuracy of the measured relative excitation function at each energy and charge state is estimated to be better than 2%. A comparison of the relative excitation functions for singly excited and core-excited lines shows a difference in S VII, but not in S VI

  9. Borides and vitreous compounds sintered as high-energy fuels

    International Nuclear Information System (INIS)

    Mota, J.M.; Abenojar, J.; Martinez, M.A.; Velasco, F.; Criado, A.J.

    2004-01-01

    Boron was chosen as fuel in view of its excellent thermodynamic values for combustion, as compared to traditional fuels. The problem of the boron in combustion is the formation of a surface layer of oxide, which delays the ignition process, reducing the performance of the rocket engine. This paper presents a high-energy fuel for rocket engines. It is composed of sintered boron (borides and carbides and vitreous compounds) with a reducing chemical agent. Borides and boron carbide were prepared since the combustion heat of the latter is similar to that of the amorphous boron (in: K.K. Kuo (Ed.), Boron-Based Solid Propellant and Solid Fuel, Vol. 427, CRC Press, Boca Raton, FL, 1993). Several chemical reducing elements were used, such as aluminum, magnesium, and coke. As the raw material for boron, different compounds were used: amorphous boron, boric acid and boron oxide

  10. Bose-Einstein condensation in the Han purple compound: a high field NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, Steffen; Horvatic, Mladen; Berthier, Claude [Laboratoire National des Champs Magnetiques Intenses, CNRS, Grenoble (France); Stern, Raivo [NICPB, Tallinn (Estonia); Kimura, Tsuyoshi [Osaka University, Osaka (Japan)

    2011-07-01

    The quasi-2D, antiferromagnetic exchange coupled spin-1/2 dimer compound BaCuSi{sub 2}O{sub 6} (Han purple) is considered as a prototype of the magnetic field induced Bose-Einstein Condensation (BEC) of triplet excitations on a lattice. Recently, BaCuSi{sub 2}O{sub 6} has been claimed to exhibit an unusual reduction of dimensionality of the BEC from 3D to 2D when lowering the temperature, induced by frustration between adjacent planes. However, due to a structural transformation at 90 K, different intradimer exchange couplings and different gaps ({delta}{sub B}/{delta}{sub A}=1.16) exist in every second plane along the c axis. First Nuclear Magnetic Resonance (NMR) experiments have shown that this leads to a population of bosons in the B planes, n{sub B}, much smaller than in A planes in the field range {delta}{sub A}/g{mu}{sub B} < H < {delta}{sub B}/g{mu}{sub B} where n{sub B}=0 is expected in a model of uncoupled planes. More recently, a better model has been presented, which takes into account both frustration and quantum fluctuations. This leads to a non-zero population n{sub B} of uncondensed bosons in the B plane, increasing quadratically with (H-H{sub c1}), as compared to the linear dependence of n{sub A}. In our contribution we compare our new NMR results, obtained at high magnetic fields (23-27 T) and low temperatures (50 mK), to these models.

  11. Dual structure in the charge excitation spectrum of electron-doped cuprates

    Science.gov (United States)

    Bejas, Matías; Yamase, Hiroyuki; Greco, Andrés

    2017-12-01

    Motivated by the recent resonant x-ray scattering (RXS) and resonant inelastic x-ray scattering (RIXS) experiments for electron-doped cuprates, we study the charge excitation spectrum in a layered t -J model with the long-range Coulomb interaction. We show that the spectrum is not dominated by a specific type of charge excitations, but by different kinds of charge fluctuations, and is characterized by a dual structure in the energy space. Low-energy charge excitations correspond to various types of bond-charge fluctuations driven by the exchange term (J term), whereas high-energy charge excitations are due to usual on-site charge fluctuations and correspond to plasmon excitations above the particle-hole continuum. The interlayer coupling, which is frequently neglected in many theoretical studies, is particularly important to the high-energy charge excitations.

  12. Determination of the n-octanol/water partition coefficients of weakly ionizable basic compounds by reversed-phase high-performance liquid chromatography with neutral model compounds.

    Science.gov (United States)

    Liang, Chao; Han, Shu-ying; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin

    2014-11-01

    A strategy to utilize neutral model compounds for lipophilicity measurement of ionizable basic compounds by reversed-phase high-performance liquid chromatography is proposed in this paper. The applicability of the novel protocol was justified by theoretical derivation. Meanwhile, the linear relationships between logarithm of apparent n-octanol/water partition coefficients (logKow '') and logarithm of retention factors corresponding to the 100% aqueous fraction of mobile phase (logkw ) were established for a basic training set, a neutral training set and a mixed training set of these two. As proved in theory, the good linearity and external validation results indicated that the logKow ''-logkw relationships obtained from a neutral model training set were always reliable regardless of mobile phase pH. Afterwards, the above relationships were adopted to determine the logKow of harmaline, a weakly dissociable alkaloid. As far as we know, this is the first report on experimental logKow data for harmaline (logKow = 2.28 ± 0.08). Introducing neutral compounds into a basic model training set or using neutral model compounds alone is recommended to measure the lipophilicity of weakly ionizable basic compounds especially those with high hydrophobicity for the advantages of more suitable model compound choices and convenient mobile phase pH control. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Continuous extraction of phenolic compounds from pomegranate peel using high voltage electrical discharge.

    Science.gov (United States)

    Xi, Jun; He, Lang; Yan, Liang-Gong

    2017-09-01

    Pomegranate peel, a waste generated from fruit processing industry, is a potential source of phenolic compounds that are known for their anti-oxidative properties. In this study, a continuous high voltage electrical discharge (HVED) extraction system was for the first time designed and optimized for phenolic compounds from pomegranate peel. The optimal conditions for HVED were: flow rate of materials 12mL/min, electrodes gap distance 3.1mm (corresponding to 29kV/cm of electric field intensity) and liquid to solid ratio 35mL/g. Under these conditions, the experimental yield of phenolic compounds was 196.7±6.4mg/g, which closely agreed with the predicted value (199.83mg/g). Compared with the warm water maceration, HVED method possessed higher efficiency for the extraction of phenolic compounds. The results demonstrated that HVED technique could be a very effective method for continuous extraction of natural compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Cascade γ-decay of a heavy nucleus compound state: the experimental picture

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.; Khitrov, V.A.

    1997-01-01

    Peculiarities of excitation and decay (for assigned final state of excited levels of 35 nuclei from 114 Cd to 200 Hg in energy range, equal approximately to the neutron binding energy, were studied in experiments with the use of the method of summation of amplitudes of coinciding pulses from Ge-detectors. Main features of the process of cascade γ-decay of compound states (neutron resonances) of the most complex nuclei were revealed in the whole range of levels dictating this process

  15. Application of organic compounds for high-order harmonic generation of ultrashort pulses

    Science.gov (United States)

    Ganeev, R. A.

    2016-02-01

    The studies of the high-order nonlinear optical properties of a few organic compounds (polyvinyl alcohol, polyethylene, sugar, coffee, and leaf) are reported. Harmonic generation in the laser-produced plasmas containing the molecules and large particles of above materials is demonstrated. These studies showed that the harmonic distributions and harmonic cutoffs from organic compound plasmas were similar to those from the graphite ablation. The characteristic feature of observed harmonic spectra was the presence of bluesided lobes near the lower-order harmonics.

  16. Comparative study of the excitation functions of nuclear reactions induced by light ions (protons and α) and heavy ions (Ne, Ca, Ar) and, after neutron evaporation, leading to platinum and polonium isotopes. Analysis by de-excitation programme allowing for the angular momentum and fission

    International Nuclear Information System (INIS)

    Lagarde, Brigitte.

    1979-01-01

    This work is a study on the de-excitation of heavy nuclei from the Pt - Po area obtained by the complete fusion of various projectiles (p, 3 He, 4 He, 20 Ne, 40 Ar and 40 Ca) and of various targets. The aim was to create from different couples the same compound nucleus of a mass equal to the sum of the masses of the component parts. The excitation energy of the system thus created can vary between 60 and 120 MeV. The experimental study of one or more particular de-excitation channels performed by measuring the cross sections of residual nuclei production for various bombardment energies is a very conventional approach. An in depth examination was made of the effect of the angular momentum given to the compound nucleus by the input channel to the de-excitation processes. Now the population of orbital angular momenta depends essentially on the mass of the projectile at equal velocities. Consequently, the utilization of projectiles extending from the proton to mass 40 covers a wide range. Decay by neutrons is not the only de-excitation method. Fission has a significant role particularly for the Po's and consequently this strongly diminishes the probability (P,xn). The decay of (α,xn) when going from the compound nucleus of 204 Po to 182 Pt makes it possble to evaluate the importance of the phenomenon and to have an item of experimental information that can be compared to a theoretical calculation. Theoretical calculations using the 'ALICE' code which expresses schematically the reduction in level densities by subtracting from the excitation energy a rotation energy and the 'JULIAN' code which uses a more accurate level density calculation and takes into account the gamma emission competing with the emission of neutrons show that the last programme reports the experimental results whereas the 'ALICE' code does not enable a consistent presentation to be made of all the results by light and heavy ions. Finally, it had to be agreed that the fission does not intervene as

  17. Luminescence decay in condensed argon under high energy excitation

    International Nuclear Information System (INIS)

    Carvalho, M.J.; Klein, G.

    1978-01-01

    α and β particles were used to study the luminescence of condensed argon. The scintillation decay has always two components independently of the phase and the kind of the exciting particles. Decay time constants are given for solid, liquid and also gaseous argon. Changes in the relative intensity values of the two components are discussed in terms of track effects

  18. Excitation temperature of a solution plasma during nanoparticle synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Genki, E-mail: genki@eng.hokudai.ac.jp; Nakasugi, Yuki; Akiyama, Tomohiro [Center for Advanced Research of Energy and Materials, Hokkaido University, Sapporo 060-8628 (Japan)

    2014-08-28

    Excitation temperature of a solution plasma was investigated by spectroscopic measurements to control the nanoparticle synthesis. In the experiments, the effects of edge shielding, applied voltage, and electrode material on the plasma were investigated. When the edge of the Ni electrode wire was shielded by a quartz glass tube, the plasma was uniformly generated together with metallic Ni nanoparticles. The emission spectrum of this electrode contained OH, H{sub α}, H{sub β}, Na, O, and Ni lines. Without an edge-shielded electrode, the continuous infrared radiation emitted at the edge created a high temperature on the electrode surface, producing oxidized coarse particles as a result. The excitation temperature was estimated from the Boltzmann plot. When the voltages were varied at the edge-shielded electrode with low average surface temperature by using different electrolyte concentrations, the excitation temperature of current-concentration spots increased with an increase in the voltage. The size of the Ni nanoparticles decreased at high excitation temperatures. Although the formation of nanoparticles via melting and solidification of the electrode surface has been considered in the past, vaporization of the electrode surface could occur at a high excitation temperature to produce small particles. Moreover, we studied the effects of electrodes of Ti, Fe, Ni, Cu, Zn, Zr, Nb, Mo, Pd, Ag, W, Pt, Au, and various alloys of stainless steel and Cu–Ni alloys. With the exception of Ti, the excitation temperatures ranged from 3500 to 5500 K and the particle size depended on both the excitation temperature and electrode-material properties.

  19. Autoresonant Excitation of Antiproton Plasmas

    CERN Document Server

    Andresen, Gorm B; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D; Butler, Eoin; Carpenter, P T; Cesar, Claudio L; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C; Gill, David R; Hangst, Jeffrey S; Hardy, Walter N; Hayden, Michael E; Humphries, Andrew J; Hurt, J L; Hydomako, Richard; Jonsell, Svante; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Silveira, Daniel M; So, Chukman; Storey, James W; Thompson, Robert I; van der Werf, Dirk P; Wurtele, Jonathan S; Yamazaki, Yasunori

    2011-01-01

    We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination.

  20. High-throughput phytochemical characterization of non-cannabinoid compounds of cannabis plant and seed, from Pakistan

    International Nuclear Information System (INIS)

    Ahmad, F.; Abbasi, T.; Farman, K.; Akrem, A.; Asif, M.; Mahmood, S.; Iqbal, M.U.

    2018-01-01

    The herbs are the natural resources for the infinite phenolic compounds that are used in pharmaceutical industry. These herbs are of significant importance due to their beneficial usage for the human health. Here, we studied a common herbs Cannabis sativa, an important member of the family Cannabaceae for phytochemical characterization. The methanol extract of whole Cannabis plant and seed was analyzed for the identification of non-cannabinoid compounds through High Performance Liquid Chromatography (HPLC) technique, because the non-cannabinoid compounds have not been much studied in C. sativa. These compounds are very useful in different diseases, used in cosmetics and as antioxidant agent. HPLC analysis revealed the presence of a variety of non-cannabinoid compounds including Quercetin, Gallic acid, p-Coumaric acid, m-Coumaric acid, Caffeic acid, Cinnamic acid, Ferulic acid, Benzoic acid and Kampferol. Furthermore, Quercetin was observed with high concentration in whole plant sample, whereas high Gallic acid and absence of m-coumaric acid was noted in the Cannabis seed. It was also observed that plant samples were with higher concentration of cinnamic acid as compared to seed. The Caffeic acid, Benzoic acid and Ferulic acid were in low concentration in both Cannabis plant and seed samples. Kampferol is another important non-cannabinoid compound that was also quantified in both samples. This research will be providing a foundation for further molecular characterization of Cannabis plant and seed for their beneficial usage. (author)

  1. Collective, stochastic and nonequilibrium behavior of highly excited hadronic matter

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, P [Los Alamos National Lab., NM (USA). Theoretical Div.

    1984-04-23

    We discuss selected problems concerning the dynamics and stochastic behavior of highly excited matter, particularly the QCD plasma. For the latter we consider the equation of state, kinetics, quasiparticles, flow properties and possible chaos and turbulence. The promise of phase space distribution functions for covariant transport and kinetic theory is stressed. The possibility and implications of a stochastic bag are spelled out. A simplified space-time model of hadronic collisions is pursued, with applications to A-A collisions and other matters. The domain wall between hadronic and plasma phase is of potential importance: its thickness and relation to surface tension is noticed. Finally, we review the recently developed stochastic cell model of multiparticle distributions and KNO scaling. This topic leads to the notion that fractional dimensions are involved in a rather general dynamical context. We speculate that various scaling phenomena are independent of the full dynamical structure, depending only on a general stochastic framework having to do with simple maps and strange attractors. 42 refs.

  2. Collective, stochastic and nonequilibrium behavior of highly excited hadronic matter

    International Nuclear Information System (INIS)

    Carruthers, P.

    1983-01-01

    We discuss selected problems concerning the dynamic and stochasticc behavior of highly excited matter, particularly the QCD plasma. For the latter we consider the equation of state, kinetics, quasiparticles, flow properties and possible chaos and turbulence. The promise of phase space distribution functions for covariant transport and kinetic theory is stressed. The possibility and implications of a stochastic bag are spelled out. A simplified space-time model of hadronic collisions is pursued, with applications to A-A collisions and other matters. The domain wall between hadronic and plasma phase is of potential importance: its thickness and relation to surface tension are noticed. Finally we reviewed the recently developed stochastic cell model of multiparticle distributions and KNO scaling. This topic leads to the notion that fractal dimensions are involved in a rather general dynamical context. We speculate that various scaling phenomena are independent of the full dynamical structure, depending only on a general stochastic framework having to do with simple maps and strange attractors. 42 references

  3. Synthesis and chemical recycling of high polymers using C1 compounds; C1 kagobutsu ni yoru kobunshi no chemical recycle

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, T. [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1997-09-01

    The paper outlined a study of the synthesis of high polymers using C1 compounds which are continuously usable chemical materials and the related compounds such as the derivatives, and also the chemical recycle. In the case of waste plastics mixed in urban refuse, effective is the chemical recycle where C1 compounds obtained by gasifying the mixed waste are used as high polymer material. For the synthesis and recycle of high polymers using C1 compounds, there are three routes: Route A (recycle via high polymer materials), Route B (recycle via C1 compounds and high polymer materials), and Route C including global-scale carbon recycle (recycle via carbon dioxide from biodegradable plastics using microorganism). Among high polymers, those that can be synthesized from C1 compounds, for example, polymethylene, polyacetal and polyketone can be chemically recycled by Route B. 30 refs., 2 figs., 1 tab.

  4. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay.

    Science.gov (United States)

    Rodenko, Olga; Eriksson, Susann; Tidemand-Lichtenberg, Peter; Troldborg, Carl Peder; Fodgaard, Henrik; van Os, Sylvana; Pedersen, Christian

    2017-08-01

    High-sensitivity cardiac troponin assay development enables determination of biological variation in healthy populations, more accurate interpretation of clinical results and points towards earlier diagnosis and rule-out of acute myocardial infarction. In this paper, we report on preliminary tests of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by factor of 5 for standard troponin I and by factor of 3 for a research high-sensitivity troponin I assay, compared to the flash lamp excitation. The obtained limit of detection was 0.22 ng/L measured on plasma with the research high-sensitivity troponin I assay and 1.9 ng/L measured on tris-saline-azide buffer containing bovine serum albumin with the standard troponin I assay. We discuss the optimization of time-resolved detection of lanthanide fluorescence based on the time constants of the system and analyze the background and noise sources in a heterogeneous fluoroimmunoassay. We determine the limiting factors and their impact on the measurement performance. The suggested model can be generally applied to fluoroimmunoassays employing the dry-cup concept.

  5. Excitation of atoms and molecules in collisions with highly charged ions

    International Nuclear Information System (INIS)

    Watson, R.L.

    1992-01-01

    This report discusses research of multicharged nitrogen, oxygen and carbon monoxide molecular ions produced with collision with multicharged argon ions. Properties like ionization, dissociation, and excitation are investigated

  6. Resonantly enhanced production of excited fragments of gaseous molecules following core-level excitation

    International Nuclear Information System (INIS)

    Chen, J.M.; Lu, K.T.; Lee, J.M.; Ho, S.C.; Chang, H.W.; Lee, Y.Y.

    2005-01-01

    State-selective dissociation dynamics for the excited fragments of gaseous Si(CH 3 ) 2 Cl 2 following Cl 2p and Si 2p core-level excitations have been investigated by resonant photoemission spectroscopy and dispersed UV/optical fluorescence spectroscopy. The main features in the gaseous Si(CH 3 ) 2 Cl 2 fluorescence spectrum are identified as the emission from excited Si*, Si + *, CH* and H*. The core-to-Rydberg excitations at both Si 2p and Cl 2p edges lead to a noteworthy production of not only the excited atomic fragments, neutral and ionic (Si*, Si + *) but also the excited diatomic fragments (CH*). In particular, the excited neutral atomic fragments Si* are significantly reinforced. The experimental results provide deeper insight into the state-selective dissociation dynamics for the excited fragments of molecules via core-level excitation

  7. A Preliminary Transcranial Magnetic Stimulation Study of Cortical Inhibition and Excitability in High-Functioning Autism and Asperger Disorder

    Science.gov (United States)

    Enticott, Peter G.; Rinehart, Nicole J.; Tonge, Bruce J.; Bradshaw, John L.; Fitzgerald, Paul B.

    2010-01-01

    Aim: Controversy surrounds the distinction between high-functioning autism (HFA) and Asperger disorder, but motor abnormalities are associated features of both conditions. This study examined motor cortical inhibition and excitability in HFA and Asperger disorder using transcranial magnetic stimulation (TMS). Method: Participants were diagnosed by…

  8. Superconductivity and charge transfer excitations in high Tc superconductors

    International Nuclear Information System (INIS)

    Balseiro, C.A.; Alascio, B.; Gagliano, E.; Rojo, A.

    1988-01-01

    We present some numerical results to show that in a simple model which includes Cu 3d and O 2p orbitals together with inter and intra atomic correlations pairing between holes can occur due to charge transfer excitations. We present also a simple approximation to derive an effective Hamiltonian containing an interaction between particles which is attractive for some values of the different microscopic parameters

  9. Receiver-exciter controller design

    Science.gov (United States)

    Jansma, P. A.

    1982-01-01

    A description of the general design of both the block 3 and block 4 receiver-exciter controllers for the Deep Space Network (DSN) Mark IV-A System is presented along with the design approach. The controllers are designed to enable the receiver-exciter subsystem (RCV) to be configured, calibrated, initialized and operated from a central location via high level instructions. The RECs are designed to be operated under the control of the DMC subsystem. The instructions are in the form of standard subsystem blocks (SSBs) received via the local area network (LAN). The centralized control provided by RECs and other DSCC controllers in Mark IV-A is intended to reduce DSN operations costs from the Mark III era.

  10. Organic high ionic strength aqueous two-phase solvent system series for separation of ultra-polar compounds by spiral high-speed counter-current chromatography

    Science.gov (United States)

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2011-01-01

    Existing two-phase solvent systems for high-speed countercurrent chromatography cover the separation of hydrophobic to moderately polar compounds, but often fail to provide suitable partition coefficient values for highly polar compounds such as sulfonic acids, catecholamines and zwitter ions. The present paper introduces a new solvent series which can be applied for the separation of these polar compounds. It is composed of 1-butanol, ethanol, saturated ammonium sulfate and water at various volume ratios and consists of a series of 10 steps which are arranged according to the polarity of the solvent system so that the two-phase solvent system with suitable K values for the target compound(s) can be found in a few steps. Each solvent system gives proper volume ratio and high density difference between the two phases to provide a satisfactory level of retention of the stationary phase in the spiral column assembly. The method is validated by partition coefficient measurement of four typical polar compounds including methyl green (basic dye), tartrazine (sulfonic acid), tyrosine (zwitter ion) and epinephrine (a catecholamine), all of which show low partition coefficient values in the polar 1-butanol-water system. The capability of the method is demonstrated by separation of three catecholamines. PMID:22033108

  11. Crystal field excitations of YbMn{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mole, R.A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234 (Australia); School of Physical, Environmental and Mathematical Sciences, The University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600 (Australia); Hofmann, M. [School of Physical, Environmental and Mathematical Sciences, The University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600 (Australia); Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universität München, 85747 Garching (Germany); Adroja, D.T. [ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, OX11 OQX (United Kingdom); Moze, O. [Dipartimento di Fisica, Università degli Studi di Modena e Reggio Emilia, Modena (Italy); Campbell, S.J., E-mail: stewart.campbell@adfa.edu.au [School of Physical, Environmental and Mathematical Sciences, The University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600 (Australia)

    2013-12-15

    The crystal field excitations of the rare earth intermetallic compound YbMn{sub 2}Si{sub 2} have been measured by inelastic neutron scattering over the temperature range 2.5–50 K. The YbMn{sub 2}Si{sub 2} spectra exhibit three low energy excitations (∼3–7 meV) in the antiferromagnetic AFil region above the magnetic phase transition at T{sub N2} = 30(5) K. The crystal field parameters have been determined for YbMn{sub 2}Si{sub 2} in the antiferromagnetic AFil region. A further two inelastic excitations (∼9 meV, 17 meV) are observed below T{sub N2}=30(5) K, the temperature at which the high temperature antiferromagnetic structure is reported to exhibit doubling of the magnetic cell. Energy level diagrams have been determined for Yb{sup 3+} ions in the different sites above (single site) and below the magnetic transition temperature (two sites). The excitation energies for both sites are shown to be temperature independent with the temperature dependences of the transition intensities for the two sites described well by a simple Boltzmann model. The spectra below T{sub N2} cannot be described fully in terms of molecular field models based on either a single Yb{sup 3+} site or two Yb{sup 3+} sites. This indicates that the magnetic behaviour of YbMn{sub 2}Si{sub 2} is more complicated than previously considered. The inability to account fully for excitations below the magnetic phase transition may be due to an, as yet, unresolved structural transition associated with the magnetic transition. - Highlights: • The inelastic neutron scattering from YbMn{sub 2}Si{sub 2} has been investigated over the temperature range 2.5–50 K. • The crystal field splitting has been monitored through the magnetic transition at 30(5) K. • We have determined the crystal field parameters for the antiferromagnetic AFil region. • The transition intensities are described well by Boltzmann occupancy models. • The spectra below the magnetic transition have been analysed by

  12. High-throughput microfluidic mixing and multiparametric cell sorting for bioactive compound screening.

    Science.gov (United States)

    Young, Susan M; Curry, Mark S; Ransom, John T; Ballesteros, Juan A; Prossnitz, Eric R; Sklar, Larry A; Edwards, Bruce S

    2004-03-01

    HyperCyt, an automated sample handling system for flow cytometry that uses air bubbles to separate samples sequentially introduced from multiwell plates by an autosampler. In a previously documented HyperCyt configuration, air bubble separated compounds in one sample line and a continuous stream of cells in another are mixed in-line for serial flow cytometric cell response analysis. To expand capabilities for high-throughput bioactive compound screening, the authors investigated using this system configuration in combination with automated cell sorting. Peptide ligands were sampled from a 96-well plate, mixed in-line with fluo-4-loaded, formyl peptide receptor-transfected U937 cells, and screened at a rate of 3 peptide reactions per minute with approximately 10,000 cells analyzed per reaction. Cell Ca(2+) responses were detected to as little as 10(-11) M peptide with no detectable carryover between samples at up to 10(-7) M peptide. After expansion in culture, cells sort-purified from the 10% highest responders exhibited enhanced sensitivity and more sustained responses to peptide. Thus, a highly responsive cell subset was isolated under high-throughput mixing and sorting conditions in which response detection capability spanned a 1000-fold range of peptide concentration. With single-cell readout systems for protein expression libraries, this technology offers the promise of screening millions of discrete compound interactions per day.

  13. Gamma decay of the compound state and change of structure of the 124Te excited levels

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.; Khitrov, V.A.

    2008-01-01

    Independent analysis of a large amount of data on the spectrum of gamma rays of the radiative capture of thermal neutrons in 123 Te (Σ(i γ E γ )/B n = 0.49) obtained in Rez made it possible to obtain new and reliable information on the dependence of sums of radiative strength functions of dipole gamma transitions on the energy of levels excited by them. These data, as does the level density in 124 Te, demonstrate a strong change of structure of the nucleus practically for the whole region of the levels excited by a captured neutron. As in the earlier studied nuclei (using data on the intensities of two-step cascades), it is possible to reproduce the stated parameters of the gamma-decay process to the accuracy of experiment only by the models directly taking into account the coexistence and interaction of the usual and superfluid component of the nuclear matter

  14. Identification of fluorescent compounds with non-specific binding property via high throughput live cell microscopy.

    Directory of Open Access Journals (Sweden)

    Sangeeta Nath

    Full Text Available INTRODUCTION: Compounds exhibiting low non-specific intracellular binding or non-stickiness are concomitant with rapid clearing and in high demand for live-cell imaging assays because they allow for intracellular receptor localization with a high signal/noise ratio. The non-stickiness property is particularly important for imaging intracellular receptors due to the equilibria involved. METHOD: Three mammalian cell lines with diverse genetic backgrounds were used to screen a combinatorial fluorescence library via high throughput live cell microscopy for potential ligands with high in- and out-flux properties. The binding properties of ligands identified from the first screen were subsequently validated on plant root hair. A correlative analysis was then performed between each ligand and its corresponding physiochemical and structural properties. RESULTS: The non-stickiness property of each ligand was quantified as a function of the temporal uptake and retention on a cell-by-cell basis. Our data shows that (i mammalian systems can serve as a pre-screening tool for complex plant species that are not amenable to high-throughput imaging; (ii retention and spatial localization of chemical compounds vary within and between each cell line; and (iii the structural similarities of compounds can infer their non-specific binding properties. CONCLUSION: We have validated a protocol for identifying chemical compounds with non-specific binding properties that is testable across diverse species. Further analysis reveals an overlap between the non-stickiness property and the structural similarity of compounds. The net result is a more robust screening assay for identifying desirable ligands that can be used to monitor intracellular localization. Several new applications of the screening protocol and results are also presented.

  15. A Simultaneous and Continuous Excitation Method for High-Speed Electrical Impedance Tomography with Reduced Transients and Noise Sensitivity

    Directory of Open Access Journals (Sweden)

    Antoine Dupré

    2018-03-01

    Full Text Available This paper presents a concept for soft field tomographic scan of all the projections of electromagnetic waves emanating from an array of electrodes. Instead of the sequential excitation of all pairs of electrodes in the list of all projections, the new method present here consists of a single and continuous excitation. This excitation signal is the linear combination of the excitation signals in the projection set at different AC frequencies. The response to a given projection is discriminated by selecting the corresponding AC frequency component in the signal spectra of the digitally demodulated signals. The main advantage of this method is the suppression of transients after each projection, which is particularly problematic in electrical impedance tomography due to contact impedance phenomena and skin effect. The second benefit over the sequential scan method is the increased number of samples for each measurement for reduced noise sensitivity with digital demodulation. The third benefit is the increased temporal resolution in high-speed applications. The main drawback is the increased number of signal sources required (one per electrode. This paper focuses on electrical impedance tomography, based on earlier work by the authors. An experimental proof-of-concept using a simple 4-electrodes electrical impedance tomographic system is presented using simulations and laboratory data. The method presented here may be extended to other modalities (ultrasonic, microwave, optical, etc..

  16. Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel

    Science.gov (United States)

    Badran, Hussain Ali

    In this work thermal lens spectrometry (TLS) is applied to investigate the thermo-optical properties of new organometallic compound containing azomethine group, Dichloro bis [2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II), doped polyacrylamide gel using transistor-transistor logic (TTL) modulated cw 532 nm laser beam as an excitation beam modulated at 10 Hz frequency and probe beam wavelength 635 nm at 14 mW. The technique is applied to determine the thermal diffusivities, ds/dT and the linear thermal expansion coefficient of the sample. All-optical switching effects with low background and high stability are demonstrated.

  17. Screening for Antifibrotic Compounds Using High Throughput System Based on Fluorescence Polarization

    Directory of Open Access Journals (Sweden)

    Branko Stefanovic

    2014-04-01

    Full Text Available Fibroproliferative diseases are one of the leading causes of death worldwide. They are characterized by reactive fibrosis caused by uncontrolled synthesis of type I collagen. There is no cure for fibrosis and development of therapeutics that can inhibit collagen synthesis is urgently needed. Collagen α1(I mRNA and α2(I mRNA encode for type I collagen and they have a unique 5' stem-loop structure in their 5' untranslated regions (5'SL. Collagen 5'SL binds protein LARP6 with high affinity and specificity. The interaction between LARP6 and the 5'SL is critical for biosynthesis of type I collagen and development of fibrosis in vivo. Therefore, this interaction represents is an ideal target to develop antifibrotic drugs. A high throughput system to screen for chemical compounds that can dissociate LARP6 from 5'SL has been developed. It is based on fluorescence polarization and can be adapted to screen for inhibitors of other protein-RNA interactions. Screening of 50,000 chemical compounds yielded a lead compound that can inhibit type I collagen synthesis at nanomolar concentrations. The development, characteristics, and critical appraisal of this assay are presented.

  18. Magnetic Excitations in Weakly Coupled Spin Dimers and Chains Material Cu2Fe2Ge4O13

    International Nuclear Information System (INIS)

    Masuda, Takatsugu; Zheludev, Andrey I.; Sales, Brian C.; Imai, S.; Uchinokura, K.; Park, S.

    2005-01-01

    Magnetic excitations in a weakly coupled spin dimers and chains compound Cu 2 Fe 2 Ge 4 O 13 are measured by inelastic neutron scattering. Both structure factors and dipsersion of low-energy excitations up to 10 meV energy transfer are well described by a semiclassical spin wave theory involving interacting Fe 3+ (S=5/2) chains. Additional dispersionsless excitations are observed at higher energies, at ℎω=24 meV, and associated with singlet-triplet transitions within Cu 2+ dimers. Both types of excitations can be understood by treating weak interactions between the Cu 2+ and Fe 3+ subsystems at the level of the mean-field random phase approximation. However, this simple model fails to account for the measured temperature dependence of the 24 meV mode.

  19. Study on growth of highly pure uranium compounds

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Ochiai, Akira; Suzuki, Kenji.

    1992-01-01

    We developed the systems for growing highly pure uranium compounds to study their intrinsic physical properties. Uranium metal was zone refined under low contamination conditions as far as possible. Chemical analysis of the purified uranium was performed using the inductive coupled plasma emission spectrometry (ICP). The problem that emission spectra of the uranium conceal those of analyzed impurities was settled by extraction of the uranium using tri-n-butyl-phosphate (TBP). The result shows that some metallic impurities such as Pb, Mn, Cu etc. evaporated by the r.f. heating and other usual metallic impurities moved to the end of rod with molten zone. Therefore, we conclude that the zone refining technique is much effective to the removal of metallic impurities and we obtained highly purified uranium metal of 99.99 % up with regard to metallic impurities. Using the purified uranium, we attempted to grow a highly pure uranium-titanium single crystals. (author)

  20. Self-Exciting Point Process Modeling of Conversation Event Sequences

    Science.gov (United States)

    Masuda, Naoki; Takaguchi, Taro; Sato, Nobuo; Yano, Kazuo

    Self-exciting processes of Hawkes type have been used to model various phenomena including earthquakes, neural activities, and views of online videos. Studies of temporal networks have revealed that sequences of social interevent times for individuals are highly bursty. We examine some basic properties of event sequences generated by the Hawkes self-exciting process to show that it generates bursty interevent times for a wide parameter range. Then, we fit the model to the data of conversation sequences recorded in company offices in Japan. In this way, we can estimate relative magnitudes of the self excitement, its temporal decay, and the base event rate independent of the self excitation. These variables highly depend on individuals. We also point out that the Hawkes model has an important limitation that the correlation in the interevent times and the burstiness cannot be independently modulated.

  1. Comparison of Nerve Excitability Testing, Nerve Conduction Velocity, and Behavioral Observations for Acrylamide Induced Peripheral Neuropathy

    Science.gov (United States)

    Nerve excitability (NE) testing is a sensitive method to test for peripheral neurotoxicity in humans,and may be more sensitive than compound nerve action potential (CNAP) or nerve conduction velocity (NCV).We used acrylamide to compare the NE and CNAP/NCV methods. Behavioral test...

  2. The electronic structure of VO in its ground and electronically excited states: A combined matrix isolation and quantum chemical (MRCI) study

    International Nuclear Information System (INIS)

    Hübner, Olaf; Hornung, Julius; Himmel, Hans-Jörg

    2015-01-01

    The electronic ground and excited states of the vanadium monoxide (VO) molecule were studied in detail. Electronic absorption spectra for the molecule isolated in Ne matrices complement the previous gas-phase spectra. A thorough quantum chemical (multi-reference configuration interaction) study essentially confirms the assignment and characterization of the electronic excitations observed for VO in the gas-phase and in Ne matrices and allows the clarification of open issues. It provides a complete overview over the electronically excited states up to about 3 eV of this archetypical compound

  3. Optimum design and research on novel vehicle hybrid excitation synchronous generator

    Directory of Open Access Journals (Sweden)

    Liu Zhong-Shu

    2017-01-01

    Full Text Available Hybrid excitation is an organic combination of permanent magnet excitation and electric excitation. Hybrid excitation synchronous generator (HESG both has the advantages of light quality, less losses and high efficiency like permanent magnet generator and the advantages of good magnetic field adjusting performance like electric excitation generator, so it is very suitable for the vehicle application. This paper presented a novel vehicle HESG which has skew stator core, permanent magnet rotor and both armature winding and field winding in the stator. Using ANSYS software, simulating the electric excitation field and the magnetic field, and finally the main parameters of HESG were designed. The simulation and the test results both show that the novel vehicle PMSG has the advantages of small cogging torque, high efficiency, small harmonic component output voltage and low waveform aberration, so as to meet the design requirements fully.

  4. TCP (truncated compound Poisson) process for multiplicity distributions in high energy collisions

    International Nuclear Information System (INIS)

    Srivastave, P.P.

    1990-01-01

    On using the Poisson distribution truncated at zero for intermediate cluster decay in a compound Poisson process, the authors obtain TCP distribution which describes quite well the multiplicity distributions in high energy collisions. A detailed comparison is made between TCP and NB for UA5 data. The reduced moments up to the fifth agree very well with the observed ones. The TCP curves are narrower than NB at high multiplicity tail, look narrower at very high energy and develop shoulders and oscillations which become increasingly pronounced as the energy grows. At lower energies the distributions, of the data for fixed intervals of rapidity for UA5 data and for the data (at low energy) for e + e - annihilation and pion-proton, proton-proton and muon-proton scattering. A discussion of compound Poisson distribution, expression of reduced moments and Poisson transforms are also given. The TCP curves and curves of the reduced moments for different values of the parameters are also presented

  5. A high excitation magnetic quadrupole lens quadruplet incorporating a single octupole lens for a low spherical aberration probe forming lens system

    Science.gov (United States)

    Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi

    2018-03-01

    This paper describes the design of a new probe forming lens system consisting of a high excitation magnetic quadrupole lens quadruplet that incorporates a single magnetic octupole lens. This system achieves both a high demagnification and a low spherical aberration compared to conventional high excitation systems and is intended for deployment for the Harbin 300 MeV proton microprobe for applications in space science and ion beam therapy. This relative simplicity of the ion optical design to include a single octupole lens minimizes the risks associated with the constructional and operational precision usually needed for the probe forming lens system and this system could also be deployed in microprobe systems that operate with less magnetically rigid ions. The design of the new system is validated with reference to two independent ion optical computer codes.

  6. Quinolone Amides as Antitrypanosomal Lead Compounds with In Vivo Activity.

    Science.gov (United States)

    Hiltensperger, Georg; Hecht, Nina; Kaiser, Marcel; Rybak, Jens-Christoph; Hoerst, Alexander; Dannenbauer, Nicole; Müller-Buschbaum, Klaus; Bruhn, Heike; Esch, Harald; Lehmann, Leane; Meinel, Lorenz; Holzgrabe, Ulrike

    2016-08-01

    Human African trypanosomiasis (HAT) is a major tropical disease for which few drugs for treatment are available, driving the need for novel active compounds. Recently, morpholino-substituted benzyl amides of the fluoroquinolone-type antibiotics were identified to be compounds highly active against Trypanosoma brucei brucei Since the lead compound GHQ168 was challenged by poor water solubility in previous trials, the aim of this study was to introduce structural variations to GHQ168 as well as to formulate GHQ168 with the ultimate goal to increase its aqueous solubility while maintaining its in vitro antitrypanosomal activity. The pharmacokinetic parameters of spray-dried GHQ168 and the newly synthesized compounds GHQ242 and GHQ243 in mice were characterized by elimination half-lives ranging from 1.5 to 3.5 h after intraperitoneal administration (4 mice/compound), moderate to strong human serum albumin binding for GHQ168 (80%) and GHQ243 (45%), and very high human serum albumin binding (>99%) for GHQ242. For the lead compound, GHQ168, the apparent clearance was 112 ml/h and the apparent volume of distribution was 14 liters/kg of body weight (BW). Mice infected with T. b. rhodesiense (STIB900) were treated in a stringent study scheme (2 daily applications between days 3 and 6 postinfection). Exposure to spray-dried GHQ168 in contrast to the control treatment resulted in mean survival durations of 17 versus 9 days, respectively, a difference that was statistically significant. Results that were statistically insignificantly different were obtained between the control and the GHQ242 and GHQ243 treatments. Therefore, GHQ168 was further profiled in an early-treatment scheme (2 daily applications at days 1 to 4 postinfection), and the results were compared with those obtained with a control treatment. The result was statistically significant mean survival times exceeding 32 days (end of the observation period) versus 7 days for the GHQ168 and control treatments

  7. High-frequency conductivity of optically excited charge carriers in hydrogenated nanocrystalline silicon investigated by spectroscopic femtosecond pump–probe reflectivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Yurkevich, Igor V. [Aston University, Nonlinearity and Complexity Research Group, Birmingham B4 7ET (United Kingdom); Zakar, Ammar [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Kaplan, Andrey, E-mail: a.kaplan.1@bham.ac.uk [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom)

    2015-10-01

    We report an investigation into the high-frequency conductivity of optically excited charge carriers far from equilibrium with the lattice. The investigated samples consist of hydrogenated nanocrystalline silicon films grown on a thin film of silicon oxide on top of a silicon substrate. For the investigation, we used an optical femtosecond pump–probe setup to measure the reflectance change of a probe beam. The pump beam ranged between 580 and 820 nm, whereas the probe wavelength spanned 770 to 810 nm. The pump fluence was fixed at 0.6 mJ/cm{sup 2}. We show that at a fixed delay time of 300 fs, the conductivity of the excited electron–hole plasma is described well by a classical conductivity model of a hot charge carrier gas found at Maxwell–Boltzmann distribution, while Fermi–Dirac statics is not suitable. This is corroborated by values retrieved from pump–probe reflectance measurements of the conductivity and its dependence on the excitation wavelength and carrier temperature. The conductivity decreases monotonically as a function of the excitation wavelength, as expected for a nondegenerate charge carrier gas. - Highlights: • We study high‐frequency conductivity of excited hydrogenated nanocrystalline silicon. • Reflectance change was measured as a function of pump and probe wavelength. • Maxwell–Boltzmann transport theory was used to retrieve the conductivity. • The conductivity decreases monotonically as a function of the pump wavelength.

  8. Theoretical resonant electron-impact vibrational excitation, dissociative recombination and dissociative excitation cross sections of ro-vibrationally excited BeH"+ ion

    International Nuclear Information System (INIS)

    Laporta, V.; Chakrabarti, K.; Celiberto, R.; Janev, R. K.; Mezei, J. Zs.; Niyonzima, S.; Tennyson, J.; Schneider, I.F.

    2017-01-01

    A theoretical study of resonant vibrational excitation, dissociative recombination and dissociative excitation processes of the beryllium monohydride cation, BeH"+ , induced by electron impact, is reported. Full sets of ro-vibrationally-resolved cross sections and of the corresponding Maxwellian rate coefficients are presented for the three processes. Particular emphasis is given to the high-energy behaviour. Potential curves of "2σ"+, "2σ and "2δ symmetries and the corresponding resonance widths, obtained from R-matrix calculations, provide the input for calculations which use a local complex-potential model for resonant collisions in each of the three symmetries. Rotational motion of nuclei and isotopic effects are also discussed. The relevant results are compared with those obtained using a multichannel quantum defect theory method. Full results are available from the Phys4Entry database.

  9. Springing response due to bidirectional wave excitation

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena

    2005-01-01

    theories deal with the unidirectional wave excitation. This is quite standard. The problem is how to include more than one directional wave systems described by a wave spectrum with arbitrary heading. The main objective of the present work has been to account for the additional second-order springing......-linear (second order) high frequency springing analyses with unidirectional wave excitation are much more scattered. Some of the reasons are different level of wave excitation accounted in the different Executive Summary ivtheories, inclusion of additional hydrodynamic phenomena e.g. slamming in the time...... because, to the author's knowledge, this is the first time that the wave data were collected simultaneously with stress records on the deck of the ship. This is highly appreciated because one can use the precise input and not only the most probable sea state statistics. The actual picture of the sea waves...

  10. Application of an antenna excited high pressure microwave discharge to compact discharge lamps

    International Nuclear Information System (INIS)

    Kando, M; Fukaya, T; Ohishi, Y; Mizojiri, T; Morimoto, Y; Shido, M; Serita, T

    2008-01-01

    A novel type of high pressure microwave discharge has been investigated to feed the microwave power at the centre of the compact high pressure discharge lamps using the antenna effect. This method of microwave discharge is named as the antenna excited microwave discharge (AEMD). The 2.45 GHz microwave of around 50 W from the solid state microwave generator can sustain a stable plasma column in the small gap between a couple of antennas fitted on the compact lamp filled with discharge gases at a pressure higher than atmosphere. The AEMD has been applied to a compact metal halide lamp and an extremely high pressure mercury discharge lamp. As a result, the metal halide lamp showed high luminous efficacy of around 130 lm W -1 . The excellent lamp properties obtained here can be explained by the low heating loss at the antennas and the lamp wall. The profiles of the microwave electric field in the lamp and the microwave launcher have been numerically calculated to consider the microwave power supply into the lamp

  11. Dissociation dynamics of anionic and excited neutral fragments of gaseous SiCl4 following Cl 2p and Si 2p core-level excitations

    International Nuclear Information System (INIS)

    Chen, J M; Lu, K T; Lee, J M; Chou, T L; Chen, H C; Chen, S A; Haw, S C; Chen, T H

    2008-01-01

    The state-selective dissociation dynamics for anionic and excited neutral fragments of gaseous SiCl 4 following Cl 2p and Si 2p core-level excitations were characterized by combining measurements of the photon-induced anionic dissociation, x-ray absorption and UV/visible dispersed fluorescence. The transitions of core electrons to high Rydberg states/doubly excited states in the vicinity of both Si 2p and Cl 2p ionization thresholds of gaseous SiCl 4 lead to a remarkably enhanced production of anionic, Si - and Cl - , fragments and excited neutral atomic, Si*, fragments. This enhancement via core-level excitation near the ionization threshold of gaseous SiCl 4 is explained in terms of the contributions from the Auger decay of doubly excited states, shake-modified resonant Auger decay, or/and post-collision interaction. These complementary results provide insight into the state-selective anionic and excited neutral fragmentation of gaseous molecules via core-level excitation.

  12. Intrinsically High Thermoelectric Performance in AgInSe2 n-Type Diamond-Like Compounds.

    Science.gov (United States)

    Qiu, Pengfei; Qin, Yuting; Zhang, Qihao; Li, Ruoxi; Yang, Jiong; Song, Qingfeng; Tang, Yunshan; Bai, Shengqiang; Shi, Xun; Chen, Lidong

    2018-03-01

    Diamond-like compounds are a promising class of thermoelectric materials, very suitable for real applications. However, almost all high-performance diamond-like thermoelectric materials are p-type semiconductors. The lack of high-performance n-type diamond-like thermoelectric materials greatly restricts the fabrication of diamond-like material-based modules and their real applications. In this work, it is revealed that n-type AgInSe 2 diamond-like compound has intrinsically high thermoelectric performance with a figure of merit ( zT ) of 1.1 at 900 K, comparable to the best p-type diamond-like thermoelectric materials reported before. Such high zT is mainly due to the ultralow lattice thermal conductivity, which is fundamentally limited by the low-frequency Ag-Se "cluster vibrations," as confirmed by ab initio lattice dynamic calculations. Doping Cd at Ag sites significantly improves the thermoelectric performance in the low and medium temperature ranges. By using such high-performance n-type AgInSe 2 -based compounds, the diamond-like thermoelectric module has been fabricated for the first time. An output power of 0.06 W under a temperature difference of 520 K between the two ends of the module is obtained. This work opens a new window for the applications using the diamond-like thermoelectric materials.

  13. Fission excitation function for 19F + 194,196,198Pt at near and above barrier energies

    Directory of Open Access Journals (Sweden)

    Singh Varinderjit

    2015-01-01

    Full Text Available Fission excitation functions for 19F + 194,196,198Pt reactions populating 213,215,217Fr compound nuclei are reported. Out of these three compound nuclei, 213Fr is a shell closed (N=126 compound nucleus and the other two are away from the shell closure. From a comparison of the experimental fission cross-sections with the statistical model predictions, it is observed that the fission cross-sections are underestimated by the statistical model predictions using shell corrected finite range rotating liquid drop model (FRLDM fission barriers. Further the FRLDM fission barriers are reduced to fit the fission cross-sections over the entire measured energy range.

  14. A High-Content Live-Cell Viability Assay and Its Validation on a Diverse 12K Compound Screen.

    Science.gov (United States)

    Chiaravalli, Jeanne; Glickman, J Fraser

    2017-08-01

    We have developed a new high-content cytotoxicity assay using live cells, called "ImageTOX." We used a high-throughput fluorescence microscope system, image segmentation software, and the combination of Hoechst 33342 and SYTO 17 to simultaneously score the relative size and the intensity of the nuclei, the nuclear membrane permeability, and the cell number in a 384-well microplate format. We then performed a screen of 12,668 diverse compounds and compared the results to a standard cytotoxicity assay. The ImageTOX assay identified similar sets of compounds to the standard cytotoxicity assay, while identifying more compounds having adverse effects on cell structure, earlier in treatment time. The ImageTOX assay uses inexpensive commercially available reagents and facilitates the use of live cells in toxicity screens. Furthermore, we show that we can measure the kinetic profile of compound toxicity in a high-content, high-throughput format, following the same set of cells over an extended period of time.

  15. Decay properties of rare earth nuclei at high excitation and low spin

    International Nuclear Information System (INIS)

    Atac, A.

    1989-01-01

    The purpose of this study was to examine the decay pattern of highly excited rare earth nuclei for which the decay process is expected to be governed by statistical laws. The aim was to investigate how good the statistical model describes the nuclear system and to search for possible deviation from it. It is shown that the gamma decay spectra following both the ( 3 He,α) pick-up reactions and the inelastic ( 3 He, 3 He') reactions reveal similar type of bumps. This leads to the conclusion that the bump structures are not a result of a particular reaction mechanism, but that they have a more general origin. The study is mainly devoted to an examination of the nature of the bumps. 22 refs

  16. High frequency time modulation of neutrons by LiNbO3 crystals with surface acoustic waves excited under the diffraction condition

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Granzer, E.; Kikuta, Seishi; Tomimitsu, Hiroshi; Doi, Kenji.

    1985-01-01

    High frequency time modulation of neutrons was investigated by using Y-cut LiNbO 3 crystals with surface acoustic waves excited. A double crystal arrangement of (+, -) parallel setting was used for 030 symmetric Bragg-case reflections. Synchronized standing waves with a resonance frequency of 14.26 MHz were excited on the both crystals. Variation of the diffracted intensity with phase difference between two standing waves was studied. The result showed an intensity change of diffracted neutrons with twice the resonance frequency. (author)

  17. Transitions between compound states of spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskii, S.G.; Markushev, V.P.; Furman, V.I.

    1980-01-01

    Wigner's statistical matrices are used to study the average reduced g widths and their dispersion for g transitions from a compound state c to another state f, with a lower excitation energy but of arbitrary complexity, for spherical nuclei. It is found that the Porter--Thomas distribution holds for the g widths for all cases of practical interest. In g transitions between compound states c and c' with E/sub g/< or =2 MeV, the most important transitions are M1 transitions involving the major many-quasiparticle components of state c and E1 transitions involving the minor components of state c. It is shown that the strength functions predicted by the various theories for M1 and E1 transitions between compound states with E/sub g/< or =2 MeV are similar. Preference is assigned to the M1-transition version because of experimental results on (n,ga) reactions with thermal and resonance neutrons

  18. Degree of dispersion monitoring by ultrasonic transmission technique and excitation of the transducer's harmonics

    Science.gov (United States)

    Schober, G.; Heidemeyer, P.; Kretschmer, K.; Bastian, M.; Hochrein, T.

    2014-05-01

    The degree of dispersion of filled polymer compounds is an important quality parameter for various applications. For instance, there is an influence on the chroma in pigment colored plastics or on the mechanical properties of filled or reinforced compounds. Most of the commonly used offline methods are work-intensive and time-consuming. Moreover, they do not allow an all-over process monitoring. In contrast, the ultrasonic technique represents a suitable robust and process-capable inline method. Here, we present inline ultrasonic measurements on polymer melts with a fundamental frequency of 1 MHz during compounding. In order to extend the frequency range we additionally excite the fundamental and the odd harmonics vibrations at 3 and 5 MHz. The measurements were carried out on a compound consisting of polypropylene and calcium carbonate. For the simulation of agglomerates calcium carbonate with a larger particle size was added with various rates. The total filler content was kept constant. The frequency selective analysis shows a linear correlation between the normalized extinction and the rate of agglomerates simulated by the coarser filler. Further experiments with different types of glass beads with a well-defined particle size verify these results. A clear correlation between the normalized extinction and the glass bead size as well as a higher damping with increasing frequency corresponds to the theoretical assumption. In summary the dispersion quality can be monitored inline by the ultrasonic technique. The excitation of the ultrasonic transducer's harmonics generates more information about the material as the usage of the pure harmonic vibration.

  19. Pre-compound emission in low-energy heavy-ion interactions

    Directory of Open Access Journals (Sweden)

    Kumar Sharma Manoj

    2017-01-01

    Full Text Available Recent experimental studies have shown the presence of pre-compound emission component in heavy ion reactions at low projectile energy ranging from 4 to 7 MeV/nucleons. In earlier measurements strength of the pre-compound component has been estimated from the difference in forward-backward distributions of emitted particles. Present measurement is a part of an ongoing program on the study of reaction dynamics of heavy ion interactions at low energies aimed at investigating the effect of momentum transfer in compound, precompound, complete and incomplete fusion processes in heavy ion reactions. In the present work on the basis of momentum transfer the measurement of the recoil range distributions of heavy residues has been used to decipher the components of compound and pre-compound emission processes in the fusion of 16O projectile with 159Tb and 169Tm targets. The analysis of recoil range distribution measurements show two distinct linear momentum transfer components corresponding to pre-compound and compound nucleus processes are involved. In order to obtain the mean input angular momentum associated with compound and pre-compound emission processes, an online measurement of the spin distributions of the residues has been performed. The analysis of spin distribution indicate that the mean input angular momentum associated with pre-compound products is found to be relatively lower than that associated with compound nucleus process. The pre-compound components obtained from the present analysis are consistent with those obtained from the analysis of excitation functions.

  20. Pre-compound emission in low-energy heavy-ion interactions

    Science.gov (United States)

    Sharma, Manoj Kumar; Shuaib, Mohd.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Singh, Devendra P.; Unnati; Singh, B. P.; Prasad, R.

    2017-11-01

    Recent experimental studies have shown the presence of pre-compound emission component in heavy ion reactions at low projectile energy ranging from 4 to 7 MeV/nucleons. In earlier measurements strength of the pre-compound component has been estimated from the difference in forward-backward distributions of emitted particles. Present measurement is a part of an ongoing program on the study of reaction dynamics of heavy ion interactions at low energies aimed at investigating the effect of momentum transfer in compound, precompound, complete and incomplete fusion processes in heavy ion reactions. In the present work on the basis of momentum transfer the measurement of the recoil range distributions of heavy residues has been used to decipher the components of compound and pre-compound emission processes in the fusion of 16O projectile with 159Tb and 169Tm targets. The analysis of recoil range distribution measurements show two distinct linear momentum transfer components corresponding to pre-compound and compound nucleus processes are involved. In order to obtain the mean input angular momentum associated with compound and pre-compound emission processes, an online measurement of the spin distributions of the residues has been performed. The analysis of spin distribution indicate that the mean input angular momentum associated with pre-compound products is found to be relatively lower than that associated with compound nucleus process. The pre-compound components obtained from the present analysis are consistent with those obtained from the analysis of excitation functions.

  1. High spatial resolution and high contrast visualization of brain arteries and veins. Impact of blood pool contrast agent and water-selective excitation imaging at 3T

    International Nuclear Information System (INIS)

    Spuentrup, E.; Jacobs, J.E.; Kleimann, J.F.

    2010-01-01

    Purpose: To investigate a blood pool contrast agent and water-selective excitation imaging at 3 T for high spatial and high contrast imaging of brain vessels including the veins. Methods and Results: 48 clinical patients (47 ± 18 years old) were included. Based on clinical findings, twenty-four patients received a single dose of standard extracellular Gadoterate-meglumine (Dotarem registered ) and 24 received the blood pool contrast agent Gadofosveset (Vasovist registered ). After finishing routine MR protocols, all patients were investigated with two high spatial resolution (0.15 mm 3 voxel size) gradient echo sequences in random order in the equilibrium phase (steady-state) as approved by the review board: A standard RF-spoiled gradient-echo sequence (HR-SS, TR/TE 5.1 / 2.3 msec, FA 30 ) and a fat-suppressed gradient-echo sequence with water-selective excitation (HR-FS, 1331 binominal-pulse, TR/TE 8.8 / 3.8 msec, FA 30 ). The images were subjectively assessed (image quality with vessel contrast, artifacts, depiction of lesions) by two investigators and contrast-to-noise ratios (CNR) were compared using the Student's t-test. The image quality and CNR in the HR-FS were significantly superior compared to the HR-SS for both contrast agents (p < 0.05). The CNR was also improved when using the blood pool agent but only to a minor extent while the subjective image quality was similar for both contrast agents. Conclusion: The utilized sequence with water-selective excitation improved image quality and CNR properties in high spatial resolution imaging of brain arteries and veins. The used blood pool contrast agent improved the CNR only to a minor extent over the extracellular contrast agent. (orig.)

  2. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  3. Guanidine and guanidinium cation in the excited state—theoretical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Antol, Ivana, E-mail: iantol@emma.irb.hr; Glasovac, Zoran [Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Crespo-Otero, Rachel; Barbatti, Mario [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr (Germany)

    2014-08-21

    Diverse ab initio and density-functional-theory methods were used to investigate geometries, energies, and electronic absorption spectra of guanidine and its protonated form, as well as their photo-deactivation processes. It was shown that the guanidine is a weakly absorbing species with the excitation spectrum consisting mostly of transitions to the Rydberg excited states and one valence n-π{sub 4} state. The lowest energy band has a maximum at ca. 6.9 eV (∼180 nm). The protonation of guanidine affects its excitation spectrum substantially. A major shift of the Rydberg states to higher energies is clearly visible and strongly absorbing transitions from the ground state to the π{sub 3}-π{sub 4} and π{sub 2}-π{sub 4} states appears at 7.8 eV (∼160 nm). Three low-lying conical intersections (two for guanidine and one for protonated guanidine) between the ground state and the first excited singlet state were located. They are accessible from the Franck–Condon region through amino N–H stretching and out-of-plane deformations in guanidine and protonated guanidine, respectively. The relaxation of the π{sub 3}-3s Rydberg state via amino N–H bond stretching was hindered by a barrier. The nondissociated conical intersection in protonated guanidine mediates the radiationless deactivation of the compound after excitation into the π{sub 3}-π{sub 4} state. This fact is detrimental for the photostability of guanidine, since its conjugate acid is stable in aqueous solution over a wide pH range and in protein environment, where guanidinium moiety in arginine is expected to be in a protonated form.

  4. Ferroelectric and magnetic properties in high-pressure synthesized BiFeO3 compound

    International Nuclear Information System (INIS)

    Zhai, L.; Shi, Y.G.; Gao, J.L.; Tang, S.L.; Du, Y.W.

    2011-01-01

    Highlights: → A high-density polycrystalline BiFeO 3 compound was synthesized by high-pressure annealing method. → The sample showed weak ferromagnetic at room temperature, which could be attributed to the lattice distortion induced by the high-pressure annealing. → Irregular domains were observed on the surface of the sample by piezoresponse force microscopy, and a typical hysteresis loop was obtained. - Abstract: High-density polycrystalline BiFeO 3 compound was synthesized by high-pressure annealing. Measurements of crystal structure, magnetic, and ferroelectric properties were made on the sample. It was found that the sample was almost single phase with a distorted R3c structure. The results of the X-ray photoelectron spectra demonstrate that the oxidation state of Fe in the sample is Fe 3+ . The room-temperature field dependence of magnetization for BiFeO 3 exhibits a hysteretic behavior. The observed weak ferromagnetism could be ascribed to the lattice distortion induced by the high-pressure annealing. In addition, the local ferroelectric performance of the sample was studied by piezoresponse force microscopy.

  5. Electromagnetic radiation of ultrarelativistic particles at scattering in excited medium

    International Nuclear Information System (INIS)

    Malyshevskij, V.S.

    1990-01-01

    The interaction between relativistic particles and a gaseous or condensed medium with a high density of nondegenerate excited quantum states involves the coherent conversion of atomic or molecular excitations into electromagnetic radiation

  6. Exotic nuclear excitations

    CERN Document Server

    Pancholi, S C

    2011-01-01

    By providing the reader with a foundational background in high spin nuclear structure physics and exploring exciting current discoveries in the field, this book presents new phenomena in a clear and compelling way. The quest for achieving the highest spin states has resulted in some remarkable successes which this monograph will address in comprehensive detail. The text covers an array of pertinent subject matter, including the rotational alignment and bandcrossings, magnetic rotation, triaxial strong deformation and wobbling motion and chirality in nuclei. Dr. Pancholi offers his readers a clearly-written and up-to-date treatment of the topics covered. The prerequisites for a proper appreciation are courses in nuclear physics and nuclear models and measurement techniques of observables like gamma-ray energies, intensities, multi-fold coincidences, angular correlations or distributions, linear polarization, internal conversion coefficients, short lifetime (pico-second range) of excited states etc. and instrum...

  7. Nuclear transitions induced by atomic excitations

    International Nuclear Information System (INIS)

    Dyer, P.; Bounds, J.A.; Haight, R.C.; Luk, T.S.

    1988-01-01

    In the two-step pumping scheme for a gamma-ray laser, an essential step is that of exciting the nucleus from a long-lived storage isomer to a nearby short- lived state that then decays to the upper lasing level. An experiment is in progress to induce this transfer by first exciting the atomic electrons with UV photons. The incident photons couple well to the electrons, which then couple via a virtual photon to the nucleus. As a test case, excitation of the 235 U nucleus is being sought, using a high- brightness UV laser. The excited nuclear state, having a 26- minute half-life, decays by internal conversion, resulting in emission of an atomic electron. A pulsed infrared laser produces an atomic beam of 235 U which is then bombarded by the UV laser beam. Ions are collected, and conversion electrons are detected by a channel electron multiplier. In preliminary experiments, an upper limit of 7 x 10 -5 has been obtained for the probability of exciting a 235 U atom in the UV beam for one picosecond at an intensity of about 10 15 W/cm 2 . Experiments with higher sensitivities and at higher UV beam intensities are underway

  8. Ultrafast responses of dipolar and octupolar compounds with dipicolinate as an electron acceptor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaochuan, E-mail: ycwang@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Siyuan; Liu, Dajun; Wang, Guiqiu [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Xiao, Haibo [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China)

    2016-11-01

    Two dipolar compounds with dipicolinate as electron acceptor group named trans-dimethyl-4-[4’-(N,N-dimethylamino)-styry1]-pyridin-2,6-dicarboxylate (M-1), trans-dimethyl-4-[4'-(N,N-diphenylamino)-styry1]-pyridin-2,6-dicarboxylate (P-1) as well as a P-1 based multi-branched octupolar compound {4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl) vinyl]}-N,N-bis{4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl)vinylphenyl]} aniline (P-3) with intense two-photon fluorescence emission properties are systematically investigated by using steady-state absorption and fluorescence spectroscopy, Z-scan, and two-photon excited fluorescence (TPF) method. The two-photon absorption cross section of octupolar compound P-3 in THF solution is determined to be 376 GM, which is approximately 12 times greater than that of dipolar counterpart P-1 (32 GM). Transient absorption spectroscopy is employed to investigate the excited state dynamics of the dipolar and octupolar compounds. The formation and relaxation lifetimes of the intra-molecular charge transfer (ICT) state are determined to be in the ranges of several picoseconds and several-hundreds of picoseconds, respectively, for all the three compounds in THF solutions. An extended π-conjugated system and increased intra-molecular cooperative effect are responsible for the observed large two-photon absorption character. - Highlights: • Octupolar compound gain 12-fold enhancement of two photon absorption. • Dynamic properties of intra-molecular charge transfer state are determined. • Cooperative effect is responsible for great increase of two photon character.

  9. On Rhythms in Neuronal Networks with Recurrent Excitation.

    Science.gov (United States)

    Börgers, Christoph; Takeuchi, R Melody; Rosebrock, Daniel T

    2018-02-01

    We investigate rhythms in networks of neurons with recurrent excitation, that is, with excitatory cells exciting each other. Recurrent excitation can sustain activity even when the cells in the network are driven below threshold, too weak to fire on their own. This sort of "reverberating" activity is often thought to be the basis of working memory. Recurrent excitation can also lead to "runaway" transitions, sudden transitions to high-frequency firing; this may be related to epileptic seizures. Not all fundamental questions about these phenomena have been answered with clarity in the literature. We focus on three questions here: (1) How much recurrent excitation is needed to sustain reverberating activity? How does the answer depend on parameters? (2) Is there a positive minimum frequency of reverberating activity, a positive "onset frequency"? How does it depend on parameters? (3) When do runaway transitions occur? For reduced models, we give mathematical answers to these questions. We also examine computationally to which extent our findings are reflected in the behavior of biophysically more realistic model networks. Our main results can be summarized as follows. (1) Reverberating activity can be fueled by extremely weak slow recurrent excitation, but only by sufficiently strong fast recurrent excitation. (2) The onset of reverberating activity, as recurrent excitation is strengthened or external drive is raised, occurs at a positive frequency. It is faster when the external drive is weaker (and the recurrent excitation stronger). It is slower when the recurrent excitation has a longer decay time constant. (3) Runaway transitions occur only with fast, not with slow, recurrent excitation. We also demonstrate that the relation between reverberating activity fueled by recurrent excitation and runaway transitions can be visualized in an instructive way by a (generalized) cusp catastrophe surface.

  10. Large-Scale Quantum Many-Body Perturbation on Spin and Charge Separation in the Excited States of the Synthesized Donor-Acceptor Hybrid PBI-Macrocycle Complex.

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-03-17

    The reliable calculation of the excited states of charge-transfer (CT) compounds poses a major challenge to the ab initio community because the frequently employed method, time-dependent density functional theory (TD-DFT), massively relies on the underlying density functional, resulting in heavily Hartree-Fock (HF) exchange-dependent excited-state energies. By applying the highly sophisticated many-body perturbation approach, we address the encountered unreliabilities and inconsistencies of not optimally tuned (standard) TD-DFT regarding photo-excited CT phenomena, and present results concerning accurate vertical transition energies and the correct energetic ordering of the CT and the first visible singlet state of a recently synthesized thermodynamically stable large hybrid perylene bisimide-macrocycle complex. This is a large-scale application of the quantum many-body perturbation approach to a chemically relevant CT system, demonstrating the system-size independence of the quality of the many-body-based excitation energies. Furthermore, an optimal tuning of the ωB97X hybrid functional can well reproduce the many-body results, making TD-DFT a suitable choice but at the expense of introducing a range-separation parameter, which needs to be optimally tuned. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rapid NMR method for the quantification of organic compounds in thin stillage.

    Science.gov (United States)

    Ratanapariyanuch, Kornsulee; Shen, Jianheng; Jia, Yunhua; Tyler, Robert T; Shim, Youn Young; Reaney, Martin J T

    2011-10-12

    Thin stillage contains organic and inorganic compounds, some of which may be valuable fermentation coproducts. This study describes a thorough analysis of the major solutes present in thin stillage as revealed by NMR and HPLC. The concentration of charged and neutral organic compounds in thin stillage was determined by excitation sculpting NMR methods (double pulse field gradient spin echo). Compounds identified by NMR included isopropanol, ethanol, lactic acid, 1,3-propanediol, acetic acid, succinic acid, glycerophosphorylcholine, betaine, glycerol, and 2-phenylethanol. The concentrations of lactic and acetic acid determined with NMR were comparable to those determined using HPLC. HPLC and NMR were complementary, as more compounds were identified using both methods. NMR analysis revealed that stillage contained the nitrogenous organic compounds betaine and glycerophosphorylcholine, which contributed as much as 24% of the nitrogen present in the stillage. These compounds were not observed by HPLC analysis.

  12. Basic features of compound and deep inelastic reactions

    International Nuclear Information System (INIS)

    Gregoire, C.

    1984-03-01

    After a general introduction and a lecture devoted to the dissipation mechanisms, we will study successively the charge equilibration, the angular momentum transfer, the mass exchanges and the compound nucleus formation with its de-excitation. The deformation degrees of freedom are considered when necessary. The self consistent treatments are not presented here and we refer for this purpose to the other lectures on this topic given during the School

  13. Laser techniques for spectroscopy of core-excited atomic levels

    Science.gov (United States)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  14. Formation of highly oxygenated organic molecules from aromatic compounds

    Science.gov (United States)

    Molteni, Ugo; Bianchi, Federico; Klein, Felix; El Haddad, Imad; Frege, Carla; Rossi, Michel J.; Dommen, Josef; Baltensperger, Urs

    2018-02-01

    Anthropogenic volatile organic compounds (AVOCs) often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs), such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs) with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene) and ethylbenzene), as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl). We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.

  15. Formation of highly oxygenated organic molecules from aromatic compounds

    Directory of Open Access Journals (Sweden)

    U. Molteni

    2018-02-01

    Full Text Available Anthropogenic volatile organic compounds (AVOCs often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs, such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene and ethylbenzene, as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl. We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.

  16. The observation of nonlinear ion cyclotron wave excitation during high-harmonic fast wave heating in the large helical device

    International Nuclear Information System (INIS)

    Kasahara, H.; Seki, T.; Kumazawa, R.; Saito, K.; Mutoh, T.; Kubo, S.; Shimozuma, T.; Igami, H.; Yoshimura, Y.; Takahashi, H.; Yamada, I.; Tokuzawa, T.; Ohdachi, S.; Morita, S.; Nomura, G.; Shimpo, F.; Komori, A.; Motojima, O.; Oosako, T.; Takase, Y.

    2008-01-01

    A wave detector, a newly designed magnetic probe, is installed in the large helical device (LHD). This wave detector is a 100-turn loop coil with electrostatic shield. Comparing a one-loop coil to this detector, this detector has roughly constant power coupling in the lower frequency range of 40 MHz, and it can easily detect magnetic wave in the frequency of a few megahertz. During high-harmonic fast wave heating, lower frequency waves (<10 MHz) were observed in the LHD for the first time, and for the power density threshold of lower frequency wave excitation (7.5 MHz) the power density of excited pumped wave (38.47 MHz) was approximately -46 dBm/Hz. These lower frequencies are kept constant for electron density and high energy particle distribution, and these lower frequency waves seem to be ion cyclotron waves caused by nonlinear wave-particle interaction, for example, parametric decay instability.

  17. Excited state proton transfer in 9-aminoacridine carboxamides in water and in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Charles A. [Iowa State Univ., Ames, IA (United States)

    1995-09-26

    The 9-aminoacridine molecule is important in several different fields of chemistry. The absorption and fluorescence spectra of this compound are pH sensitive and it is this property that allowed it to be used as a pH probe in different chemical environments. The compound exhibits proton transfer reactions which are among the most fundamental of chemical reactions. The planarity of 9-aminoacridine allows it to intercalate into DNA. Intercalation is a process in which the aromatic flat surface of the intercalator inserts between adjacent base pairs of DNA. The large surface area of 9-aminoacridine`s fused tricyclic ring system allows strong intercalative binding through van der Waals attractions. 9-aminoacridine and many of its derivatives have been tried as possible antitumor drugs. The cytotoxicity of an antitumor agent can be dramatically increased through the addition of one or two cationic side chains. This increase in cytotoxicity using the 9-aminoacridine compound as a parent molecule has been investigated through various derivatives with cationic side chains consisting of different number of carbon atoms between the proximal and distal N atoms. Similar derivatives varied the position of the carboxamide side chain on the aromatic ring system. The objective of this work is to first create a baseline study of the excited state kinetics of the 9-aminoacridine carboxamides in the absence of DNA. The baseline study will allow the excited state kinetics of these antitumor drugs when placed in DNA to be more fully understood.

  18. Nuclear spin and isospin excitations

    International Nuclear Information System (INIS)

    Osterfeld, F.

    1992-01-01

    A review is given of our present knowledge of collective spin-isospin excitations in nuclei. Most of this knowledge comes from intermediate-energy charge-exchange reactions and from inelastic electron- and proton-scattering experiments. The nuclear-spin dynamics is governed by the spin-isospin-dependent two-nucleon interaction in the medium. This interaction gives rise to collective spin modes such as the giant Gamow-Teller resonances. An interesting phenomenon is that the measured total Gamow-Teller transition strength in the resonance region is much less than a model-independent sum rule predicts. Two physically different mechanisms have been discussed to explain this so-called quenching of the total Gamow-Teller strength: coupling to subnuclear degrees of freedom in the form of Δ-isobar excitation and ordinary nuclear configuration mixing. Both detailed nuclear structure calculations and extensive analyses of the scattering data suggest that the nuclear configuration mixing effect is the more important quenching mechanism, although subnuclear degrees of freedom cannot be ruled out. The quenching phenomenon occurs for nuclear-spin excitations at low excitation energies (ω∼10--20 MeV) and small-momentum transfers (q≤0.5 fm -1 ). A completely opposite effect is anticipated in the high (ω,q)-transfer region (0≤ω≤500 MeV, 0.5≤q≤3 fm -1 ). The nuclear spin-isospin response might be enhanced due to the attractive pion field inside the nucleus. Charge-exchange reactions at GeV incident energies have been used to study the quasifree peak region and the Δ-resonance region. An interesting result of these experiments is that the Δ excitation in the nucleus is shifted downwards in energy relative to the Δ excitation of the free proton

  19. Food for thought: Impact of metabolism on neuronal excitability.

    Science.gov (United States)

    Katsu-Jiménez, Yurika; Alves, Renato M P; Giménez-Cassina, Alfredo

    2017-11-01

    Neuronal excitability is a highly demanding process that requires high amounts of energy and needs to be exquisitely regulated. For this reason, brain cells display active energy metabolism to support their activity. Independently of their roles as energy substrates, compelling evidence shows that the nature of the fuels that neurons use contribute to fine-tune neuronal excitability. Crosstalk of neurons with glial populations also plays a prominent role in shaping metabolic flow in the brain. In this review, we provide an overview on how different carbon substrates and metabolic pathways impact neurotransmission, and the potential implications for neurological disorders in which neuronal excitability is deregulated, such as epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Bond Shortening (1.4 Å) in the Singlet and Triplet Excited States of [Ir2(dimen)4]2+ in Solution Determined by Time-Resolved X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Martin Kristoffer; Harlang, Tobias; Christensen, Morten

    2011-01-01

    Ground- and excited-state structures of the bimetallic, ligand-bridged compound Ir2(dimen)42+ are investigated in acetonitrile by means of time-resolved X-ray scattering. Following excitation by 2 ps laser pulses at 390 nm, analysis of difference scattering patterns obtained at eight different ti...

  1. Electronic-excitation energy transfer in heterogeneous dye solutions under laser excitation

    International Nuclear Information System (INIS)

    Levshin, L.V.; Mukushev, B.T.; Saletskii, A.M.

    1995-01-01

    An experimental study has been made of electronic-excitation energy transfer (EEET) among dye molecules of different types for different exciting-fight wavelengths and temperatures. Upon selective laser excitation of the donor, the inhomogeneous broadening of molecular levels increases the probability of EEET from the donor to acceptor molecules. The efficiency of this process is directly proportional to the acceptor molecule concentration and is temperature dependent. The EEET is accompanied by the spectral migration of energy among donor molecules, which reduces the fluorescence quantum efficiency of the donor. Increasing the frequency of the exciting light decreases in the donor fluorescence quantum efficiency. An increase in the acceptor molecule concentration results in a decrease of the spectral migration of excitation in the donor molecule system. 5 refs., 5 figs

  2. Atmospheric hydroxyl radical production from electronically excited NO2 and H2O.

    Science.gov (United States)

    Li, Shuping; Matthews, Jamie; Sinha, Amitabha

    2008-03-21

    Hydroxyl radicals are often called the "detergent" of the atmosphere because they control the atmosphere's capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation.

  3. High-Resolution Spectroscopy of Jet-Cooled 1,1 '-Diphenylethylene: Electronically Excited and Ionic States of a Prototypical Cross-Conjugated System

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Rijs, A.; van Walree, C. A.; Zgierski, M. Z.; Buma, W. J.

    2011-01-01

    The photophysics of a prototypical cross-conjugated pi-system, 1,1'-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio

  4. High-sensitivity detection of cardiac troponin I with UV LED excitation for use in point-of-care immunoassay

    OpenAIRE

    Rodenko, Olga; Eriksson, Susann; Tidemand-Lichtenberg, Peter; Troldborg, Carl Peder; Fodgaard, Henrik; van Os, Sylvana; Pedersen, Christian

    2017-01-01

    High-sensitivity cardiac troponin assay development enables determination of biological variation in healthy populations, more accurate interpretation of clinical results and points towards earlier diagnosis and rule-out of acute myocardial infarction. In this paper, we report on preliminary tests of an immunoassay analyzer employing an optimized LED excitation to measure on a standard troponin I and a novel research high-sensitivity troponin I assay. The limit of detection is improved by fac...

  5. Study on Excitation-triggered Damage Mechanism in Perilous Rock

    Science.gov (United States)

    Chen, Hongkai; Wang, Shengjuan

    2017-12-01

    Chain collapse is easy to happen for perilous rock aggregate locating on steep high slope, and one of the key scientific problems is the damage mechanism of perilous rock under excitation action at perilous rock rupture. This paper studies excitation-triggered damage mechanism in perilous rock by wave mechanics, which gives three conclusions. Firstly, when only the normal incidence attenuation spread of excitation wave is considered, while the energy loss is ignored for excitation wave to spread in perilous rock aggregate, the paper establishes one method to calculate peak velocity when excitation wave passes through boundary between any two perilous rock blocks in perilous rock aggregate. Secondly, following by Sweden and Canmet criteria, the paper provides one wave velocity criterion for excitation-triggered damage in the aggregate. Thirdly, assuming double parameters of volume strain of cracks or fissures in rock meet the Weibull distribution, one method to estimate micro-fissure in excitation-triggered damage zone in perilous rock aggregate is established. The studies solve the mechanical description problem for excitation-triggered damage in perilous rock, which is valuable in studies on profoundly rupture mechanism.

  6. Kinetics studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.

    1994-04-01

    The objective of this contract was the study of state-to-state, electronic energy transfer reactions relevant to the excited state chemistry observed in discharges. We studied deactivation reactions and excitation transfer in collisions of excited states of xenon and krypton atoms with Ar, Kr, Xe and chlorine. The reactant states were excited selectively in two-photon transitions using tunable u.v. and v.u.v. lasers. Excited states produced by the collision were observed by their fluorescence. Reaction rates were measured by observing the time dependent decay of signals from reactant and product channels. In addition we measured interaction potentials of the reactants by laser spectroscopy where the laser induced fluorescence or ionization is measured as a function of laser wavelength (excitation spectra) or by measuring fluorescence spectra at fixed laser frequencies with monochromators. The spectra were obtained in the form of either lineshapes or individual lines from rovibrational transitions of bound states. Our research then required several categories of experiments in order to fully understand a reaction process: 1. High resolution laser spectroscopy of bound molecules or lineshapes of colliding pairs is used to determine potential curves for reactants. 2. Direct measurements of state-to-state reaction rates were measured by studying the time dependent loss of excited reactants and the time dependent formation of products. 3. The energy selectivity of a laser can be used to excite reactants on an excited surface with controlled internuclear configurations. For free states of reactants (as exist in a gas cell) this has been termed laser assisted reactions, while for initially bound states (as chemically bound reactants or dimers formed in supersonic beams) the experiments have been termed photo-fragmentation spectroscopy

  7. On isospin excitation energy

    International Nuclear Information System (INIS)

    Li Wenfei; Zhang Fengshou; Chen Liewen

    2001-01-01

    Within the framework of Hartree-Fock theory using the extended Skyrme effective interaction, the isospin excitation energy as a function of relative neutron excess δ was investigated at different temperatures and densities. It was found that the isospin excitation energy decreased with the increment of temperature and/or the decrement of density. The authors pointed out that the decrement of isospin excitation energy was resulted from the weakening of quantum effect with increment of temperature and/or decrement of density. Meanwhile, the relationship between the isospin excitation energy and the symmetry energy was discussed and found that the symmetry energy was just a part of the isospin excitation energy. With increasing temperature and decreasing density, the contribution of the symmetry energy to the isospin excitation energy becomes more and more important. The isospin excitation energy as a function of relative neutron excess was also investigated using different potential parameters. The results shows that the isospin excitation energy is almost independent of the incompressibility and the effective mass, but strongly depends on the symmetry energy strength coefficient, which indicates that it is possible to extract the symmetry energy of the nuclear equation of state by investigating the isospin excitation energy in experiments

  8. Experimental investigation of particle-hole excitations in 91Nb

    International Nuclear Information System (INIS)

    Singh, Purnima; Palit, R.; Choudhury, D.

    2014-01-01

    Investigation of high-spin states in nuclei near N = 50 shell closure have attracted considerable attention in recent years. These nuclei provide a suitable laboratory for testing the residual interactions of the spherical shell model. Studies of N = 50, Z ∼ 40 nuclei, revealed that the low-lying states in these nuclei arise from proton excitations within the f 5/2 , p 3/2 , p 1/2 , and g 9/2 orbits. The higher angular momentum states were observed to have dominant contribution of 1p - 1h configurations involving a single g 9/2 neutron excitation across the N = 50 shell gap into the d 5/2 orbit. A comprehensive study of multiparticle-multihole (mp-mh) excitations in these nuclei may provide necessary insight into the evolution of shell structure above N = 50 shell gap. However, till date there is no experimental evidence of states involving two or more neutron excitations across the N = 50 shell gap in N = 50, Z ∼ 40 nuclei. The present work investigates high-spin states in the N = 50 nucleus, 91 Nb, with the purpose to search for states involving 2p - 2h excitations across the N = 50 shell closure

  9. Multi-quantum excitation in optically pumped alkali atom: rare gas mixtures

    Science.gov (United States)

    Galbally-Kinney, K. L.; Rawlins, W. T.; Davis, S. J.

    2014-03-01

    Diode-pumped alkali laser (DPAL) technology offers a means of achieving high-energy gas laser output through optical pumping of the D-lines of Cs, Rb, and K. The exciplex effect, based on weak attractive forces between alkali atoms and polarizable rare gas atoms (Ar, Kr, Xe), provides an alternative approach via broadband excitation of exciplex precursors (XPAL). In XPAL configurations, we have observed multi-quantum excitation within the alkali manifolds which result in infrared emission lines between 1 and 4 μm. The observed excited states include the 42FJ states of both Cs and Rb, which are well above the two-photon energy of the excitation laser in each case. We have observed fluorescence from multi-quantum states for excitation wavelengths throughout the exciplex absorption bands of Cs-Ar, Cs-Kr, and Cs-Xe. The intensity scaling is roughly first-order or less in both pump power and alkali concentration, suggesting a collisional energy pooling excitation mechanism. Collisional up-pumping appears to present a parasitic loss term for optically pumped atomic systems at high intensities, however there may also be excitation of other lasing transitions at infrared wavelengths.

  10. Removal of sulfur compounds from diesel using ArF laser and oxygen.

    Science.gov (United States)

    Gondal, M A; Siddiqui, M N; Al-Hooshani, K

    2013-01-01

    A laser-based technique for deep desulfurization of diesel and other hydrocarbon fuels by removal of dimethyldibenzothiophene (DMDBT), a persistent sulfur contaminant in fuel oils has been developed. We report a selective laser excitation of DMDBT in diesel and model compounds such as n-hexane in a reaction chamber under oxygen environment where oxidative reactions can take place. ArF laser emitting at 193 nm was employed for excitation of oxygen and DMDBT, while for process optimization, the laser energy was varied from 50 to 200 mJ/cm(2). The laser-irradiated DMDBT solution under continuous oxygen flow was analyzed by UV absorption spectrometer to determine the photochemical oxidative degradation of DMDBT. In just 5 min of laser irradiation time, almost 95% DMDBT was depleted in a diesel containing 200 ppm of DMDBT. This article provides a new method for the removal of sulfur compounds from diesel by laser based photochemical process.

  11. Technology transfer and application of SERS continuous monitor for trace organic compounds

    International Nuclear Information System (INIS)

    Swindle, D.W. Jr.; Vo-Dinh, T.; Yalcintas, M.G.

    1992-01-01

    An in situ-enhanced Raman Scattering (SERS) continuous monitoring system was developed for exciting and collecting SERS signals generated on silver-coated microparticles deposited on a continuously rotating filter-paper support. SERS measurements were successfully conducted for several organic compounds. An in situ SERS fiber-optic system was also developed for exciting and collecting SERS signals generated from a sensing tip having silver-coated microparticles deposited on a glass-plate support. These devices will be very useful in remote identification of unknown chemicals from hazardous waste sites. This patented technology has been licensed from Oak Ridge National Laboratory to an analytical instrumentation firm which is in the process of completing development and marketing these detectors. Advantages to using this technology range from increased safety and sensitivity for detecting hazardous compounds to better statistics and reliable results. During this presentation, efforts of the Environmental Restoration Program to evaluate and support development of this technology will be described

  12. Ionization steps and phase-space metamorphoses in the pulsed microwave ionization of highly excited hydrogen atoms

    International Nuclear Information System (INIS)

    Bayfield, J.E.; Luie, S.Y.; Perotti, L.C.; Skrzypkowski, M.P.

    1996-01-01

    As the peak electric field of the microwave pulse is increased, steps in the classical microwave ionization probability of the highly excited hydrogen atom are produced by phase-space metamorphosis. They arise from new layers of Kolmogorov-Arnold-Moser (KAM) islands being exposed as KAM surfaces are destroyed. Both quantum numerical calculations and laboratory experiments exhibit the ionization steps, showing that such metamorphoses influence pulsed semiclassical systems. copyright 1996 The American Physical Society

  13. Nuclear excited power generation system

    International Nuclear Information System (INIS)

    Parker, R.Z.; Cox, J.D.

    1989-01-01

    A power generation system is described, comprising: a gaseous core nuclear reactor; means for passing helium through the reactor, the helium being excited and forming alpha particles by high frequency radiation from the core of the gaseous core nuclear reactor; a reaction chamber; means for coupling chlorine and hydrogen to the reaction chamber, the helium and alpha particles energizing the chlorine and hydrogen to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for coupling the helium back to the gaseous core nuclear reactor; and means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, to be coupled back to the reaction chamber in a closed loop. The patent also describes a power generation system comprising: a gaseous core nuclear reactor; means for passing hydrogen through the reactor, the hydrogen being excited by high frequency radiation from the core; means for coupling chlorine to a reaction chamber, the hydrogen energizing the chlorine in the chamber to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, and means for coupling the hydrogen back to the gaseous core nuclear reactor in a closed loop

  14. Dual fluorescence excitation spectra of methyl salicylate in a free jet

    Science.gov (United States)

    Heimbrook, Lou Ann; Kenny, Jonathan E.; Kohler, Bryan E.; Scott, Gary W.

    1981-11-01

    Separate fluorescence excitation spectra of the blue- and UV-emitting forms of methyl salicylate cooled in a free-jet expansion are reported. This study represents the first observation of the detailed vibrational structure of these transitions. The two excitation spectra have no features in common, and their intensity patterns are very different. Many individual lines are ˜2 cm-1 wide (nearly laser limited), although in the excitation spectrum of the UV emission, spectral congestion persists at high energies despite the high degree of cooling. (AIP)

  15. Statistical features of pre-compound processes in nuclear reactions

    International Nuclear Information System (INIS)

    Hussein, M.S.; Rego, R.A.

    1983-04-01

    Several statistical aspects of multistep compound processes are discussed. The connection between the cross-section auto-correlation function and the average number of maxima is emphasized. The restrictions imposed by the non-zero value of the energy step used in measuring the excitation fuction and the experimental error are discussed. Applications are made to the system 25 Mg( 3 He,p) 27 Al. (Author) [pt

  16. Multi-Exciter Vibroacoustic Simulation of Hypersonic Flight Vibration

    International Nuclear Information System (INIS)

    GREGORY, DANNY LYNN; CAP, JEROME S.; TOGAMI, THOMAS C.; NUSSER, MICHAEL A.; HOLLINGSHEAD, JAMES RONALD

    1999-01-01

    Many aerospace structures must survive severe high frequency, hypersonic, random vibration during their flights. The random vibrations are generated by the turbulent boundary layer developed along the exterior of the structures during flight. These environments have not been simulated very well in the past using a fixed-based, single exciter input with an upper frequency range of 2 kHz. This study investigates the possibility of using acoustic ardor independently controlled multiple exciters to more accurately simulate hypersonic flight vibration. The test configuration, equipment, and methodology are described. Comparisons with actual flight measurements and previous single exciter simulations are also presented

  17. Excitation spectra and forward injection electroluminescence of Er/sup 3+/ ions in ZnS

    International Nuclear Information System (INIS)

    Jiaqi, Y.; Tianren, Z.; Wenlian, L.

    1985-01-01

    Trivalent rare earth ions (RE/sup 3+/) are efficient luminescent centers for electroluminescence (EL) of thin films of II-VI compounds, which are promising display materials and attract more and more attention. The mechanism of all EL devices of RE/sup 3+/ available so far is hot electron impact excitation. Based on the analysis of excitation spectra of RE/sup 3+/ in ZnS, the authors have pointed out the possibility of a new type of EL of RE/sup 3+/ - forward injection EL, which have potential of reducing operation voltage and raising efficiency. The forward injection EL of RE/sup 3+/ has been observed and experimentally proven in ZnS:Er/sup 3+/ diode for the first time

  18. Proposal of measuring the mechanisms of nuclear excitation leading to fission with the ADONE jet-target tagged photon beam

    International Nuclear Information System (INIS)

    Lucherini, V.; Bianchi, N.; De Sanctis, E.; Guaraldo, C.; Levi Sandri, P.; Muccifora, V.; Polli, E.; Reolon, A.R.; Aiello, S.; De Filippo, E.; Lanzano', G.; Lo Nigro, S.; Milone, C.; Pagano, A.; Botvina, A.S.; Iljinov, A.S.; Mebel, M.V.

    1990-01-01

    The mechanisms of excitation with subsequent fission of heavy nuclei can be conveniently studied by means of photons, since this probe is able to interact deeply inside the nucleus. We propose the use of the (200-1200 MeV) tagged photon beam from the ADONE Jet Target in order to study the mass-energy and total momentum distributions of fission fragments, to obtain experimental information on the configurations (excitation energy and nucleonic composition) of produced compound nuclei and on their decay channels

  19. Effect of aromatic compounds on radiation resistance of polymers studied by optical emission

    International Nuclear Information System (INIS)

    Kawanishi, Shunichi; Hagiwara, Miyuki

    1987-10-01

    To clarify the effects of condensed bromoacenaphthylene (con-BACN) as a newly developed flame retardant on the radiation resistance of ethylene-propylene-diene-terpolymer (EPDM), optical emission behavior of aromatic compounds, acenaphthylene and acenaphthene as model compound of con-BACN was studied. The energy absorbed in polymer matrix is transferred to the aromatic molecules very fast within 1 ns, and introduces excited states of aromatic compound. The fluorescence from naphthalene units of the additives with peak at 337 and 350 nm (named AT emission band) was observed in EPDM containing acenaphthene or acenaphthylene. When aromatic peroxide was used as a crosslinking agent, another emission band (Xn band) was observed at 400 nm. It was found that these emission bands play a role in trapping sites in which a part of radiation energy release in the form of fluorescence. The energy level of the excited state was correlated to the radiation stability measured with coloration and oxidation reaction of the polymer. Furthermore, acenaphthylene having a reactive vinyl bond forms excimer emission band Ex whose level is lower than those of AT and Xn bands, and therefore, enhances radiation stability of matrix polymer by giving effective routes for energy release. (author)

  20. Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power

    DEFF Research Database (Denmark)

    Liu, Haichun; Xu, Can T.; Dumlupinar, Gökhan

    2013-01-01

    We have accomplished deep tissue optical imaging of upconverting nanoparticles at 800 nm, using millisecond single pulse excitation with high peak power. This is achieved by carefully choosing the pulse parameters, derived from time-resolved rate-equation analysis, which result in higher intrinsic...... quantum yield that is utilized by upconverting nanoparticles for generating this near infrared upconversion emission. The pulsed excitation approach thus promises previously unreachable imaging depths and shorter data acquisition times compared with continuous wave excitation, while simultaneously keeping...... therapy and remote activation of biomolecules in deep tissues....

  1. Photoionization dynamics of excited molecular states

    International Nuclear Information System (INIS)

    Dehmer, J.L.; O'Halloran, M.A.; Tomkins, F.S.; Dehmer, P.M.; Pratt, S.T.

    1987-01-01

    Resonance Enhanced Multiphoton Ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of opportunities for exploring excited state physics and chemistry at the quantum-state-specific level. Here we will first give a brief overview of the large variety of experimental approaches to excited state phenomena made possible by REMPI. Then we will examine in more detail, recent studies of the three photon resonant, four photon (3 + 1) ionization of H 2 via the C 'PI/sup u/ state. Strong non-Franck-Condon behavior in the photoelectron spectra of this nominally simple Rydberg state has led to the examination of a variety of dynamical mechanisms. Of these, the role of doubly excited autoionizing states now seems decisive. Progress on photoelectron studies of autoionizing states in H 2 , excited in a (2 + 1) REMPI process via the E, F 1 Σ/sub g/ + will also be briefly discussed. 26 refs., 7 figs

  2. Research of operational properties of compound based on high viscosity styrene-butadiene rubber SSBR-2560 TDAE HV

    Directory of Open Access Journals (Sweden)

    M. I. Falyakhov

    2016-01-01

    Full Text Available The article consider the influence of replacement of SSBR-2560 TDAE batch production on high viscosity SSBR-2560-TDAE HV in the tread recipe on the tire performance properties. Obtained samples were highly viscosity styrene butadiene rubber did not differ in the microstructure of the SSBR-2560 TDAE batch production. Increasing the molecular weight possible to increase the Mooney viscosity of the rubber, however, is known to one of adverse factors is the deterioration of processability of rubber compounds based on polymers. In this connection, investigated the behavior in the step mixing compound based on high viscosity SSBR rubber. We chose recipes tread of the tire with a high content of organic silicon filler. It is established that the equivalent replacement of the polymer in the tread recipe does not lead to significant changes in the basic parameters of rubber mixing. We observed a slight increase in the energy consumption for the preparation of the rubber compounds, as well as the discharge temperature at each stage. It was shown to improve the distribution of the filler in the polymer matrix for the compound based on SSBR-2560 TDAE HV. The results showed that compound based on high viscosity SSBR improves rolling resistance and traction characteristics, while maintaining abrasion in comparison with the SSBR-2560-M27 batch production. Recommended use this brand in the production of rubber car tires.

  3. EDITORIAL: New materials with high spin polarization: half-metallic Heusler compounds

    Science.gov (United States)

    Felser, Claudia; Hillebrands, Burkard

    2007-03-01

    The development of magnetic Heusler compounds, specifically designed as materials for spintronic applications, has made tremendous progress in the very recent past [1-21]. Heusler compounds can be made as half-metals, showing a high spin polarization of the conduction electrons of up to 100% [1]. These materials are exceptionally well suited for applications in magnetic tunnel junctions acting, for example, as sensors for magnetic fields. The tunnelling magneto-resistance (TMR) effect is the relative change in the electrical resistance upon application of a small magnetic field. Tunnel junctions with a TMR effect of 580% at 4 K were reported by the group of Miyazaki and Ando [1], consisting of two Co2MnSi Heusler electrodes. High Curie temperatures were found in Co2 Heusler compounds with values up to 1120 K in Co2FeSi [2]. The latest results are for a TMR device made from the Co2FeAl0.5Si0.5 Heusler compound and working at room temperature with a TMR effect of 174% [3]. The first significant magneto-resistance effect was discovered in Co2Cr0.6Fe0.4Al (CCFA) in Mainz [4]. With the classical Heusler compound CCFA as one electrode, the record TMR effect at 4 K is 240% [5]. Positive and negative TMR values at room temperature utilizing magnetic tunnel junctions with one Heusler compound electrode render magnetic logic possible [6]. Research efforts exist, in particular, in Japan and in Germany. The status of research as of winter 2005 was compiled in a recent special volume of Journal of Physics D: Applied Physics [7-20]. Since then specific progress has been made on the issues of (i) new advanced Heusler materials, (ii) advanced characterization, and (iii) advanced devices using the new materials. In Germany, the Mainz and Kaiserslautern based Research Unit 559 `New Materials with High Spin Polarization', funded since 2004 by the Deutsche Forschungsgemeinschaft, is a basic science approach to Heusler compounds, and it addresses the first two topics in particular

  4. First-principles calculations of a high-pressure synthesized compound PtC

    International Nuclear Information System (INIS)

    Li Linyan; Yu Wen; Jin Changqing

    2005-01-01

    The first-principles density-functional method is used to study the recently high-pressure synthesized compound PtC. It is confirmed by our calculations that platinum carbide has a zinc-blende ground-state phase at zero pressure and that the rock-salt structure is a high-pressure phase. The theoretical transition pressure from zinc-blende to rock-salt structure is determined to be 52 GPa. Furthermore, our calculation shows the possibility that the PtC experimentally synthesized under high pressure conditions might undergo a transition from rock-salt to zinc-blende structure after a pressure quench to ambient conditions

  5. Tunability of photoswitchable ruthenium sulfoxide compounds on the basis of ligand substitution

    Energy Technology Data Exchange (ETDEWEB)

    Eicke, Sebastian; Dieckmann, Volker; Springfeld, Kristin; Imlau, Mirco [Deparment of Physics, University of Osnabrueck (Germany)

    2010-07-01

    Photoswitchable ruthenium sulfoxide compounds provide a light-induced linkage isomerization in combination with pronounced changes in characteristic optical properties. As representative of the ruthenium sulfoxide group the molecular compound [Ru(bpy){sub 2}(R-OSO)]{sup +} (OSO: 2-methylsulfinylbenzoate) can be tuned in its optical properties by the substitution of the photoswitchable ligands (R=Bn, BnCl, BnMe). These modified sulfoxides were studied in respect to their photochromic properties and kinetics of the generation and relaxation of the light-induced isomers. The kinetics were determined by pump-probe technique and show in each case two reversible thermal decay processes following Arrhenius law. The two photo-excited states offer lifetimes in the magnitude of {tau}{sub 1}{approx}10{sup 3} s and {tau}{sub 2}{approx}10{sup 4} s at room temperature with activation energies about E{sub A,I}=0.72 eV to 0.92 eV and E{sub A,II}=0.8 eV to 1.00 eV. Another respresentative of the photoswitchable sulfoxides is the [Ru(bpy){sub 2}(pySO)]{sup 2+} compound. This molecule is the first sulfoxide which allows for reversible switching between the ground and metastable states by light exposure. With this compound the sulfoxides are highly qualified for optical data storage on a molecular scale.

  6. High-resolution spectroscopy of jet-cooled 1,1 '-diphenylethylene: electronically excited and ionic states of a prototypical cross-conjugated system

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Rijs, A.; van Walree, C.A.; Zgierski, M.Z.; Buma, W.J.

    2011-01-01

    The photophysics of a prototypical cross-conjugated π-system, 1,1′-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio calculations. We

  7. Study and characterization of phosphors excited in the V UV and UV range by the synchrotron radiation

    International Nuclear Information System (INIS)

    Gerard, I.

    1993-01-01

    A characterization tool using synchrotron radiation as a light source to record excitation spectra of the visible luminescence of phosphors induced by photons in the V UV and UV range, at several temperatures (10 to 300 K), is developed. The absorption and deexcitation mechanisms in Y F 3 , La F 3 and Th F 4 matrices doped with Eu 3+ , Tb 3+ , Dy 3+ and Er 3+ ions and polluted with oxygen ions, are examined; charge transfer bands appear clearly. The 4 f n to 4 f n-1 5 d transition bands are also observed on the excitation spectra of the visible luminescence of these compounds and two processes are proposed to interpret the energy relaxation. In order to determine the candidates for the color plasma display panel, measurements of luminous and external quantum yields for efficient phosphors are carried out. The Y F 3 :Eu 3+ compound is shown as a good candidate for the red emission in color plasma display panels

  8. Method of producing excited states of atomic nuclei

    International Nuclear Information System (INIS)

    Morita, M.; Morita, R.

    1976-01-01

    A method is claimed of producing excited states of atomic nuclei which comprises bombarding atoms with x rays or electrons, characterized in that (1) in the atoms selected to be produced in the excited state of their nuclei, (a) the difference between the nuclear excitation energy and the difference between the binding energies of adequately selected two electron orbits is small enough to introduce the nuclear excitation by electron transition, and (b) the system of the nucleus and the electrons in the case of ionizing an orbital electron in said atoms should satisfy the spin and parity conservation laws; and (2) the energy of the bombarding x rays or electrons should be larger than the binding energy of one of the said two electron orbits which is located at shorter distance from the atomic nucleus. According to the present invention, atomic nuclei can be excited in a relatively simple manner without requiring the use of large scale apparatus, equipment and production facilities, e.g., factories. It is also possible to produce radioactive substances or separate a particular isotope with an extremely high purity from a mixture of isotopes by utilizing nuclear excitation

  9. Properties of Haldane Excitations and Multiparticle States in the Antiferromagnetic Spin-1 Chain Compound CsNiCl3

    International Nuclear Information System (INIS)

    Kenzelmann, M.; Cowley, R.A.; Buyers, W.J.L.; Tun, Z.; Coldea, Radu; Enderle, M.

    2002-01-01

    We report inelastic time-of-flight and triple-axis neutron scattering measurements of the excitation spectrum of the coupled antiferromagnetic spin-1 Heisenberg chain system CsNiCl 3 . Measurements over a wide range of wave-vector transfers along the chain confirm that above T N CsNiCl 3 is in a quantum-disordered phase with an energy gap in the excitation spectrum. The spin correlations fall off exponentially with increasing distance with a correlation length ζ = 4.0(2) sites at T = 6.2K. This is shorter than the correlation length for an antiferromagnetic spin-1 Heisenberg chain at this temperature, suggesting that the correlations perpendicular to the chain direction and associated with the interchain coupling lower the single-chain correlation length. A multiparticle continuum is observed in the quantum-disordered phase in the region in reciprocal space where antiferromagnetic fluctuations are strongest, extending in energy up to twice the maximum of the dispersion of the well-defined triplet excitations. We show that the continuum satisfies the Hohenberg-Brinkman sum rule. The dependence of the multiparticle continuum on the chain wave vector resembles that of the two-spinon continuum in antiferromagnetic spin-1/2 Heisenberg chains. This suggests the presence of spin-1/2 degrees of freedom in CsNiCl 3 for T ∼< 12 K, possibly caused by multiply frustrated interchain interactions.

  10. High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy.

    Science.gov (United States)

    Slipchenko, Mikhail N; Le, Thuc T; Chen, Hongtao; Cheng, Ji-Xin

    2009-05-28

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We used a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of the compound Raman microscope was evaluated on lipid bodies of cultured cells and live animals. Our data indicate that the in vivo fat contains much more unsaturated fatty acids (FAs) than the fat formed via de novo synthesis in 3T3-L1 cells. Furthermore, in vivo analysis of subcutaneous adipocytes and glands revealed a dramatic difference not only in the unsaturation level but also in the thermodynamic state of FAs inside their lipid bodies. Additionally, the compound Raman microscope allows tracking of the cellular uptake of a specific fatty acid and its abundance in nascent cytoplasmic lipid droplets. The high-speed vibrational imaging and spectral analysis capability renders compound Raman microscopy an indispensible analytical tool for the study of lipid-droplet biology.

  11. Neutron emission in fission of highly excited californium nuclei (E* = 76 MeV)

    International Nuclear Information System (INIS)

    Blinov, M.V.; Bordyug, V.M.; Kozulin, E.M.; Levitovich, M.; Mozhaev, A.N.; Muzychka, Yu.A.; Penionzhkevich, Yu.E.; Pustyl'nik, B.I.

    1990-01-01

    Differential cross sections for neutron production have been measured in fission of excited californium nuclei produced in the reaction 238 U + 12 C (105 MeV). It follows from analysis of the experimental results that the number of neutrons emitted before fission considerably exceeds the number obtained in the framework of the standard statistical model. On the basis of the multiplicity of neutrons they authors have estimated the time of fission of the excited nucleus. The dependence of the number of neutrons and their average energies on the mass of the fragments is determined

  12. Boltzmann statistical consideration on the excitation mechanism of iron atomic lines emitted from glow discharge plasmas

    International Nuclear Information System (INIS)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki

    2011-01-01

    A Boltzmann plot for many iron atomic lines having excitation energies of 3.3–6.9 eV was investigated in glow discharge plasmas when argon or neon was employed as the plasma gas. The plot did not show a linear relationship over a wide range of the excitation energy, but showed that the emission lines having higher excitation energies largely deviated from a normal Boltzmann distribution whereas those having low excitation energies (3.3–4.3 eV) well followed it. This result would be derived from an overpopulation among the corresponding energy levels. A probable reason for this is that excitations for the high-lying excited levels would be caused predominantly through a Penning-type collision with the metastable atom of argon or neon, followed by recombination with an electron and then stepwise de-excitations which can populate the excited energy levels just below the ionization limit of iron atom. The non-thermal excitation occurred more actively in the argon plasma rather than the neon plasma, because of a difference in the number density between the argon and the neon metastables. The Boltzmann plots yields important information on the reason why lots of Fe I lines assigned to high-lying excited levels can be emitted from glow discharge plasmas. - Highlights: ► This paper shows the excitation mechanism of Fe I lines from a glow discharge plasma. ► A Boltzmann distribution is studied among iron lines of various excitation levels. ► We find an overpopulation of the high-lying energy levels from the normal distribution. ► It is caused through Penning-type collision of iron atom with argon metastable atom.

  13. Simultaneous Determination of Ibuprofen and Caffeine in Urine Samples by Combining MCR-ALS and Excitation-emission Data

    Directory of Open Access Journals (Sweden)

    Masoumeh Mohammadnejad

    2016-06-01

    Full Text Available Second order advantage of excitation-emission fluorescence matrix was applied for the simultaneous determination of ibuprofen and caffeine. The proposed method is based on the measurement of the native fluorescence and recording emission spectra of ibuprofen and caffeine in different excitation wavelengths. The mixture of these compounds was resolved by multivariate curve resolution coupled with alternative least squares (MCR-ALS on constructed matrix. The EEM spectra were recorded at excitation wavelengths from 250-275 nm; the emission wavelengths ranged from 275-400 nm. For each particular quantitative determination, an augmented matrix was defined. The resolution of each augmented-data matrix gave an estimation of the excitation and emission spectra of the species included in the model. Ibuprofen and caffeine were determined in concentration range from 0.10-8.00 and 0.50-15.00 mg ml-1, respectively. The minimal sample pretreatment and relatively low running cost, make this method a good alternative to existing methods for determination of the analytes in urine samples.

  14. Effects of intermediate load on performance limitations in excitation control

    Directory of Open Access Journals (Sweden)

    Pichai Aree

    2008-05-01

    Full Text Available The stability of excitation control systems is of great concern in power system operations. In this paper, the effects of intermediate load on performance limitation in excitation control are studied. The results reveal that the open-loop characteristic of synchronous machine’s flux linkage can be changed from minimum to non-minimum phase at a high level of intermediate load. This change leads to instability of synchronous machines under manual excitation control. A particular emphasis is also given to investigate the fundamental limitations in excitation control, imposed by non-minimum phases with regard to the open-loop right-half-plane (ORHP pole. The study demonstrates the difficulties of excitation control tuning to achieve the desired performance and robustness under the ORHP pole occurrence. Moreover, this paper shows the conditional stability in excitation control loop, where either an increase or decrease of the exciter gain causes a destabilization of the system’s stability. Frequency response techniques are used for these investigations.

  15. Magnetostriction of some cubic rare earth-Co2 compounds in high magnetic fields

    International Nuclear Information System (INIS)

    Moral, A. del; Melville, D.

    1975-01-01

    Magnetostriction measurements have been carried out in the cubic Laves phase compounds DyCo 2 , HoCo 2 and ErCo 2 from 10 K to well above their respective Neel temperatures Tsub(N). Pulsed magnetic fields up to 15 T (150kOe) were applied. The observed magnetostrictions are very large (approximately 10 -3 ) being similar to those found in the RFe 2 compounds. The measurements confirm the extremely high anisotropy of these materials. At the highest fields the polycrystalline samples are still undergoing rotational magnetization processes. The expected values of the saturation magnetostriction at O K are similar in sign and magnitude to those found in the corresponding rare earth metals. This fact and the scaling of magnetostriction with rare earth sublattice magnetization indicates that the rare earth ion is the main source of the magnetostriction. The metamagnetic transition above Tsub(N) has been studied, the relation between critical field and temperature being nonlinear for HoCo 2 and ErCo 2 . The compounds are highly anisotropic above Tsub(N) and all the features indicate that the field-induced phases are likely to be ferrimagnetic. (author)

  16. Molecular-level characterization of crude oil compounds combining reversed-phase high-performance liquid chromatography with off-line high-resolution mass spectrometry

    Science.gov (United States)

    Sim, Arum; Cho, Yunju; Kim, Daae; Witt, Matthias; Birdwell, Justin E.; Kim, Byung Ju; Kim, Sunghwan

    2014-01-01

    A reversed-phase separation technique was developed in a previous study (Loegel et al., 2012) and successfully applied to the de-asphalted fraction of crude oil. However, to the best of our knowledge, the molecular-level characterization of oil fractions obtained by reversed-phase high-performance liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (MS) has not yet been reported. A detailed characterization of the oil fractions prepared by reversed-phase HPLC was performed in this study. HPLC fractionation was carried out on conventional crude oil and an oil shale pyrolysate. The analyses of the fractions showed that the carbon number of alkyl chains and the double bond equivalent (DBE) value were the major factors determining elution order. The compounds with larger DBE (presumably more condensed aromatic structures) and smaller carbon number (presumably compounds with short side chains) were eluted earlier but those compounds with lower DBE values (presumably less aromatic structures) and higher carbon number (presumably compounds with longer alkyl chains) eluted later in the chromatograms. This separation behavior is in good agreement with that expected from the principles of reversed-phase separation. The data presented in this study show that reversed-phase chromatography is effective in separating crude oil compounds and can be combined with ultrahigh-resolution MS data to better understand natural oils and oil shale pyrolysates.

  17. Molecular-alignment dependence in the transfer excitation of H2

    International Nuclear Information System (INIS)

    Wang, Y.D.; McGuire, J.H.; Weaver, O.L.; Corchs, S.E.; Rivarola, R.D.

    1993-01-01

    Molecular-alignment effects in the transfer excitation of H 2 by high-velocity heavy ions are studied using a two-step mechanism with amplitudes evaluated from first-order perturbation theory. Two-electron transfer excitation is treated as a result of two independent collision processes (excitation and electron transfer). Cross sections for each one-electron subprocess as well as the combined two-electron process are calculated as functions of the molecular-alignment angle. Within the independent-electron approximation, the dynamic roles of electron excitation and transfer in conjunction with molecular alignment are explored. While both excitation and transfer cross sections may strongly depend on molecular alignment, it is electron transfer that is largely responsible for the molecular-alignment dependence in the transfer excitation process. Interpretation of some experimental observations based on this model will also be discussed

  18. Single photon excimer laser photodissociation of highly vibrationally excited polyatomic molecules

    International Nuclear Information System (INIS)

    Tiee, J.J.; Wampler, F.B.; Rice, W.W.

    1980-01-01

    The ir + uv photodissociation of SF 6 has been performed using CO 2 and ArF lasers. The two-color photolysis significantly enhances the photodissociation process over ArF irradiation alone and is found to preserve the initial isotopic specificity of the ir excitation process

  19. Coherent electromagnetic excitation and disintegration of relativistic nuclei passing through crystals

    International Nuclear Information System (INIS)

    Pivovarov, Yu.L.; Shirokov, A.A.; Vorobiev, S.A.

    1990-01-01

    The energy dependence of electromagnetic excitation and electromagnetic disintegration cross sections for relativistic nuclei passing through crystals is investigated both theoretically and by means of computer simulation. For electromagnetic excitation, resonant peaks are found at definite energy values. An increase of electromagnetic excitation and disintegration cross sections in crystals at very high energies is found to be due to coherent addition of amplitudes. Numerical results are presented for the electric dipole excitation of fluorine nuclei and electromagnetic deuteron disintegration. (orig.)

  20. A study of the cavity polariton under strong excitation:dynamics and nonlinearities in II-VI micro-cavities

    International Nuclear Information System (INIS)

    Muller, Markus

    2000-01-01

    This work contains an experimental study of the photoluminescence dynamics of cavity polaritons in strong coupling micro-cavities based on II-VI semiconductor compounds. The small exciton size and the strong exciton binding energy in these materials allowed us to study the strong coupling regime between photon and exciton up to high excitation densities, exploring the linear and non-linear emission regimes. Our main experimental techniques are picosecond time-resolved and angular photoluminescence spectroscopy. In the linear regime and for a negative photon-exciton detuning, we observe a suppression of the polariton relaxation by the emission of acoustic phonons leading to a non-equilibrium polariton distribution on the lower branch. This 'bottleneck' effect, which has already been described for polaritons in bulk semiconductors, results from the pronounced photon like character of the polaritons near k(parallel) = 0 in this configuration. At high excitation densities, non-linear relaxation processes, namely final state stimulation of the relaxation and polariton-polariton scattering, bypass this bottleneck giving rise to a very rapid relaxation down to the bottom of the band. We show that this dramatic change in the relaxation dynamics is finally responsible of the super-linear increase of the polariton emission from these states. (author) [fr

  1. Assessment of mural invasion depth of gastric carcinoma with high-resolution compound sonographic imaging in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Hoon; Kim, Eun A; Yoon, Kwon Ha; Yun, Ki Jung; Kim, Jeong Ho; Won, Jong Jin [Wonkwang University School of Medicine, Iksan (Korea, Republic of)

    2002-11-01

    To evaluate whether the accuracy of invasion depth assessment in gastric carcinoma in vitro can be improved with high-resolution spatial compound sonographic imaging. In sixteen fresh gastric specimens obtained from patients with preoperatively biopsy proven gastric carcinoma, normal and lesional areas were scanned using conventional and compound imaging technique with a 15-MHz linear transducer. Two radiologists independently compared the sharpness and the contrast of images obtained with two different modes and determined the layers invaded by cancer with consensus. The invasion depths by images were compared with histopathologic results. The sharpness and the contrast in normal and lesional areas were significantly higher in compound imaging (p<0.01) than those in conventional imaging and interobserver agreement was over moderate, with k-value of 0.41 to 0.86. But the accuracy in invasion depth assessment was 68.8% (11/16) on conventional imaging and 75% (12/16) on compound imaging and non different significantly between two modes (p>0305). High-resolution spatial compound sonographic imaging has improved image quality, compared with conventional imaging, but the accuracy of invasion depth assessment in gastric carcinoma was not significantly different.

  2. Wall-slip of highly filled powder injection molding compounds: Effect of flow channel geometry and roughness

    Science.gov (United States)

    Hausnerova, Berenika; Sanetrnik, Daniel; Paravanova, Gordana

    2014-05-01

    The paper deals with the rheological behavior of highly filled compounds proceeded via powder injection molding (PIM) and applied in many sectors of industry (automotive, medicine, electronic or military). Online rheometer equipped with slit dies varying in surface roughness and dimensions was applied to investigate the wall-slip as a rheological phenomenon, which can be considered as a parameter indicating the separation of compound components (polymer binder and metallic powder) during high shear rates when injection molded.

  3. High field magnetization process of (Sm, Nd)2Fe17Ny compounds

    International Nuclear Information System (INIS)

    Yu, M.J.; Tang, N.; Liu, Y.L.; Tegus, O.; Lu, Y.; Kuang, J.P.; Yang, F.M.; Li, X.; Zhou, G.F.; Boer, F.R. de

    1992-01-01

    The crystal structure and high-field magnetization process of (Sm 1-x Nd x ) 2 Fe 17 N y compounds (x = 0.0, 0.1, ..., 1.0, 2 1-x Nd x ) 2 Fe 17 N y compounds were found to crystallize in the rhombohedral Th 2 Zn 17 structure. As x increases, the Curie temperature decreases. The anisotropy fields and easy magnetization direction were investigated from 1.5 K to room temperature by means of high-field magnetization measurements and AC-susceptibility measurements, combined with X-ray diffraction on random and magnetically aligned powder samples. The anisotropy field decreases with increasing x and approaches a minimum value at about x = 0.6, then increases again. A tentative spin phase diagram for the (Sm 1-x Nd x ) 2 Fe 17 N y series is presented. At room temperature, the easy magnetization direction remains along the c-axis up to x = 0.6. (orig.)

  4. Multiple-heteroatom-containing sulfur compounds in a high sulfur coal

    International Nuclear Information System (INIS)

    Winans, R.E.; Neill, P.H.

    1990-01-01

    Flash vacuum pyrolysis of a high sulfur coal has been combined with high resolution mass spectrometry yielding information on aromatic sulfur compounds containing an additional heteroatom. Sulfur emission from coal utilization is a critical problem and in order to devise efficient methods for removing organic sulfur, it is important to know what types of molecules contain sulfur. A high sulfur Illinois No. 6 bituminous coal (Argonne Premium Coal Sample No. 3) was pyrolyzed on a platinum grid using a quartz probe inserted into a modified all glass heated inlet system and the products characterized by high resolution mass spectrometry (HRMS). A significant number of products were observed which contained both sulfur and an additional heteroatom. In some cases two additional heteroatoms were observed. These results are compared to those found in coal extracts and liquefaction products

  5. Very low-excitation Herbig-Haro objects

    International Nuclear Information System (INIS)

    Boehm, K.H.; Brugel, E.W.; Mannery, E.

    1980-01-01

    Spectrophotometric observations show that H-H 7 and H-H 11 belong to a class of very low-excitation Herbig-Haro objects of which H-H 47 has been the only known example. Typical properties include line flux ratios [N I] (lambda5198+lambda5200)/Hβ and [S II] lambda/6717/Hα, which are both considerably larger than 1, very strong [O I] and [C I] lines, as well as relatively faint [O II] lines. So far no shock-wave models are available for these low-excitation objects. H-H 7 and H-H 11 have electron densities which are lower by about one order of magnitude, and electron temperatures which are slightly lower than those for high-excitation objects like H-H 1 and H-H 2. H-H 11 has a filling factor of about 1, much higher than other H-H objects

  6. Core excitations across the neutron shell gap in 207Tl

    Directory of Open Access Journals (Sweden)

    E. Wilson

    2015-07-01

    Full Text Available The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations using two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.

  7. Boltzmann statistical consideration on the excitation mechanism of iron atomic lines emitted from glow discharge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2011-11-15

    A Boltzmann plot for many iron atomic lines having excitation energies of 3.3-6.9 eV was investigated in glow discharge plasmas when argon or neon was employed as the plasma gas. The plot did not show a linear relationship over a wide range of the excitation energy, but showed that the emission lines having higher excitation energies largely deviated from a normal Boltzmann distribution whereas those having low excitation energies (3.3-4.3 eV) well followed it. This result would be derived from an overpopulation among the corresponding energy levels. A probable reason for this is that excitations for the high-lying excited levels would be caused predominantly through a Penning-type collision with the metastable atom of argon or neon, followed by recombination with an electron and then stepwise de-excitations which can populate the excited energy levels just below the ionization limit of iron atom. The non-thermal excitation occurred more actively in the argon plasma rather than the neon plasma, because of a difference in the number density between the argon and the neon metastables. The Boltzmann plots yields important information on the reason why lots of Fe I lines assigned to high-lying excited levels can be emitted from glow discharge plasmas. - Highlights: Black-Right-Pointing-Pointer This paper shows the excitation mechanism of Fe I lines from a glow discharge plasma. Black-Right-Pointing-Pointer A Boltzmann distribution is studied among iron lines of various excitation levels. Black-Right-Pointing-Pointer We find an overpopulation of the high-lying energy levels from the normal distribution. Black-Right-Pointing-Pointer It is caused through Penning-type collision of iron atom with argon metastable atom.

  8. Width and strength of the hot giant dipole resonance. The role of the life time of the compound nucleus and the transition from order to chaos

    International Nuclear Information System (INIS)

    Chomaz, P.

    1996-01-01

    A bump in the γ decay spectrum is observed at high energies which is due to the excitation of the Giant Dipole Resonance (GDR) in the compound nucleus. The fact is discussed that the total width of the γ-ray spectrum of the GDR transitions must contain twice the width of the compound nucleus levels. This implies that one must except a rapid increase of the width of the GDR. This increase contributes to the observed saturation of the photon multiplicity. A new suppression factor due to the lost of collectivity induced by the fast particle emission is proposed. (K.A.)

  9. Large reversible magnetostrictive effect of MnCoSi-based compounds prepared by high-magnetic-field solidification

    Science.gov (United States)

    Hu, Q. B.; Hu, Y.; Zhang, S.; Tang, W.; He, X. J.; Li, Z.; Cao, Q. Q.; Wang, D. H.; Du, Y. W.

    2018-01-01

    The MnCoSi compound is a potential magnetostriction material since the magnetic field can drive a metamagnetic transition from an antiferromagnetic phase to a high magnetization phase in it, which accompanies a large lattice distortion. However, a large driving magnetic field, magnetic hysteresis, and poor mechanical properties seriously hinder its application for magnetostriction. By substituting Fe for Mn and introducing vacancies of the Mn element, textured and dense Mn0.97Fe0.03CoSi and Mn0.88CoSi compounds are prepared through a high-magnetic-field solidification approach. As a result, large room-temperature and reversible magnetostriction effects are observed in these compounds at a low magnetic field. The origin of this large magnetostriction effect and potential applications are discussed.

  10. A scalable piezoelectric impulse-excited energy harvester for human body excitation

    International Nuclear Information System (INIS)

    Pillatsch, P; Yeatman, E M; Holmes, A S

    2012-01-01

    Harvesting energy from low-frequency and non-harmonic excitations typical of human motion presents specific challenges. While resonant devices do have an advantage in environments where the excitation frequency is constant, and while they can make use of the entire proof mass travel range in the case of excitation amplitudes that are smaller than the internal displacement limit, they are not suitable for body applications since the frequencies are random and the amplitudes tend to be larger than the device size. In this paper a piezoelectric, impulse-excited approach is presented. A cylindrical proof mass actuates an array of piezoelectric bi-morph beams through magnetic attraction. After the initial excitation these transducers are left to vibrate at their natural frequency. This increases the operational frequency range as well as the electromechanical coupling. The principle of impulse excitation is discussed and a centimetre-scale functional model is introduced as a proof of concept. The obtained data show the influence of varying the frequency, acceleration and proof mass. Finally, a commercially available integrated circuit for voltage regulation is tested. At a frequency of 2 Hz and an acceleration of 2.7 m s −2 a maximal power output of 2.1 mW was achieved. (paper)

  11. Self-Compensating Excitation of Fluxgate Sensors for Space Magnetometers

    DEFF Research Database (Denmark)

    Cerman, Alec; Merayo, José M.G.; Brauer, Peter

    2008-01-01

    The paper presents design and implementation of the new self-compensating excitation circuitry to the new generation of high-precise space vector magnetometers. The application starts with complex study including design of new robust model of the non-linear inductor leading to investigation...... of the most crucial points, continuous by design of the self-compensating excitation unit and concludes with unit complex testing and application to the magnetometer. The application of the self-compensation of the excitation decreases temperature drift of the magnetometer offset caused by the temperature...

  12. Electron impact excitation and ionization of laser-excited sodium atoms Na*(7d)

    International Nuclear Information System (INIS)

    Nienhaus, J.; Dorn, A.; Mehlhorn, W.; Zatsarinny, O.I.

    1997-01-01

    We have investigated the ejected-electron spectrum following impact excitation and ionization of laser-excited Na * (nl) atoms by 1.5 keV electrons. By means of two-laser excitation 3s → 3p 3/2 → 7d and subsequent cascading transitions about 8% (4%) of the target atoms were in excited states with n > 3 (7d). The experimental ejected-electron spectrum due to the decay of Auger and autoionization states of laser-excited atoms Na * (nl) with n = 4-7 has been fully interpreted by comprehensive calculations of the energies, cross sections and decay probabilities of the corresponding states. The various processes contributing to the ejected-electron spectrum are with decreasing magnitude: 2s ionization leading to 2s2p 6 nl Auger states, 2p → 3s excitation leading to 2p 5 3s( 1 P)nl autoionization states and 2s → 3l' excitation leading to 2s2p 6 3l'( 1 L)nl autoionization states. (Author)

  13. Electron-impact excitation of the potassium atom

    International Nuclear Information System (INIS)

    Phelps, J.O.; Solomon, J.E.; Korff, D.F.; Lin, C.C.; Lee, E.T.P.

    1979-01-01

    Absolute optical electron-impact excitation functions for 24 transitions of the sharp, principal, diffuse, and fundamental spectral series of potassium have been measured. The determination of the density of the potassium vapor in the collision chamber was made by measuring the degree of transmission, by the vapor, of potassium resonance radiation generated externally in a fluorescence cell. Direct excitation functions were determined for 14 states (5S, 6S, 7S, 8S, 4P, 5P, 6P, 7P, 3D, 5D, 6D, 5F, 6F, and 7F) with the aid of known radiative-transition probabilities. Theoretical calculations of these same 14 excitation functions, as well as 4D and 4F, were carried out by means of the Born approximation. The 4P, 5P, 5S, 3D, and 4D direct excitation functions at intermediate energies (10--25 eV) were also calculated by the method of multistate close coupling, neglecting projectile--target-electron exchange. The high-energy (above 100 eV) Born-approximation cross sections agree with the experimental results for 4P and for all S states, but are lower than experimental results, by 30--40%, for the D and F states. At intermediate energies the close-coupling excitation calculations agree well with the experimental excitation functions for 4P and 5P, but are significantly higher than experimental values for 5S and 3D. The discrepancies between the experimental and theoretical results are probably due to a combination of systematic experimental errors, errors in the available transition-probability values, and errors in the theoretical excitation functions introduced by the use of approximate excited-state wave functions (Hartree-Fock-Slater), by the neglect of projectile--target-electron exchange. The polarization of the 4P-4S and 3D-4P radiation produced by electron impact was measured, and the results were used to determine the direct excitation functions of the separate magnetic sublevels of the 4P state

  14. X-ray attenuation coefficient measurements for photon energies 4.508-13.375 keV in Cu, Cr and their compounds and the validity of the mixture rule

    International Nuclear Information System (INIS)

    Turgut, Ue.; Simsek, Oe.; Bueyuekkasap, E.; Ertugrul, M.

    2004-01-01

    To investigate the validity of the mixture rule which is used to compute the mass attenuation coefficients in compounds, the total mass attenuation coefficients for Cu, Cr elements and Cu 2 O, CuC 2 O 4 , CuCl 2 ·2H 2 O, Cu(C 2 H 3 O 2 ) 2 ·H 2 O, Cr 2 O 3 , Cr(NO 3 ) 3 , Cr 2 (SO 4 ) 3 ·H 2 O, Cr 3 (CH 3 CO 7 )(OH) 2 compounds were measured at photon energies between 4.508 and 13.375 keV by using the secondary excitation method. Ti, Mn, Fe, Ni, Zn, Ge, As, Rb elements were used as secondary exciters. 59.5 keV gamma rays emitted from an 241 Am annular source were used to excite the secondary exciters and Kα (K-L 3 , L 2 ) rays emitted from the secondary exciter were counted by a Si(Li) detector with a resolution of 160 eV at 5.9 keV. Our measurements indicate that the mixture rule is not a suitable method for the computation of mass attenuation coefficients of compounds especially at an energy that is near the absorption edge. Obtained values were compared with theoretical values

  15. Abnormal photothermal effect of laser radiation on highly defect oxide bronze nanoparticles under the sub-threshold excitation of absorption

    Science.gov (United States)

    Gulyaev, P.; Kotvanova, M.; Omelchenko, A.

    2017-05-01

    The mechanism of abnormal photo-thermal effect of laser radiation on nanoparticles of oxide bronzes has been proposed in this paper. The basic features of the observed effect are: a) sub-threshold absorption of laser radiation by the excitation of donor-like levels formed in the energy gap due to superficial defects of the oxide bronze nano-crystals; b) an interband radiationless transition of energy of excitation on deep triplet levels and c) consequent recombination occurring at the plasmon absorption. K or Na atoms thermally intercalated to the octahedral crystal structure of TiO2 in the wave SHS combustion generate acceptor levels in the gap. The prepared oxide bronzes of the non-stoichiometric composition NaxTiO2 and KxTiO2 were examined by high resolution TEM, and then grinded in a planetary mill with powerful dispersion energy density up to 4000 J/g. This made it possible to obtain nanoparticles about 50 nm with high surface defect density (1017-1019 cm-2 at a depth of 10 nm). High photo-thermal effect of laser radiation on the defect nanocrystals observed after its impregnation into cartilaginous tissue exceeds 7 times in comparison with the intact ones.

  16. Semiconductor-machine system for controlling excitation of synchronous medium power generators

    Energy Technology Data Exchange (ETDEWEB)

    Vrtikapa, G

    1982-01-01

    A system for controlling excitation (ARP-29/1) is described which was developed at the ''Nikola Tesla'' institute (Czechoslavakia) for rebuilding the Zvornik hydroelectric plant with 30 MV X A units. The system corresponds to the modern level of automation and considers positive characteristics of existing equipment, it is easily included in a technological process, has small dimensions and is easily installed during overhaul of a electric generating plant, and it allows one to obtain good economic results. Two years of use have confirmed the high reliability and quality of the excitation. The excitation control system consists of synchronous motor, excitation system, automatic control of voltage, manual control of excitation unit, unit for automatic following and switching, relay automatic device with protection and warning. The excitation system of the generator has: thyristor rectifier, thyristor converter, a bridge with thyristor control unit, machine excitation generator, switch for demagnetization. The excitation system is supplied from an electric power network or from a three phase generator with permanent magnets.

  17. Fincher-Burke excitations in single-Q chromium

    CERN Document Server

    Böni, P; Stadler, C; Roessli, B; Shirane, G; Werner, S A

    2002-01-01

    The low-energy excitations of incommensurate antiferromagnetic Cr have been investigated by means of high-resolution, inelastic neutron scattering with unpolarized, cold neutrons within an energy range E<9 meV. In agreement with previous measurements we observe Fincher-Burke excitations in the transverse spin density wave phase that appear between the unresolved spin-wave peaks at the incommensurate positions Q sup+-=(1+- delta,0,0). In contrast to the previous measurements, our high-resolution data shows that the Fincher-Burke modes do not follow a linear dispersion. Therefore, they have nothing in common with the acoustic phonon branch. The major part of the scattering is concentrated in the range 4 meV

  18. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.

    2016-02-19

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  19. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.; Xu, Q.; Li, Q.; Xu, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Liu, Y.; Zhang, S.; Zhang, Xixiang; Han, J.; Zhang, W.

    2016-01-01

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  20. The electrochemical reduction processes of solid compounds in high temperature molten salts.

    Science.gov (United States)

    Xiao, Wei; Wang, Dihua

    2014-05-21

    Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.

  1. Liquid lithium target as a high intensity, high energy neutron source

    Science.gov (United States)

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  2. Liquid lithium target as a high intensity, high energy neutron source

    International Nuclear Information System (INIS)

    Parkin, D.M.; Dudey, N.D.

    1976-01-01

    The invention described provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then ''boil off'' or evaporate a neutron

  3. Validations of CNDOL approximate Hamiltonian as a fast and reliable method to obtain vertical excitation energies in polyatomic systems

    International Nuclear Information System (INIS)

    Montero-Alejo, Ana L.; Gonzalez-Santana, Susana; Montero-Cabrera, Luis A.; Hernandez-Rodriguez, Erix Wiliam; Fuentes-Montero, Maria Elena; Bunge-Molina, Carlos F.; Gonzalez, Augusto

    2008-01-01

    Theoretical prediction of vertical excitation energies and an estimation of charge distributions of polyatomic systems can be calculated, through the configuration interaction of single (CIS) excited determinants procedure, with the CNDOL (Complete Neglect of Differential Overlap considering the l azimuthal quantum number) Hamiltonians. This method does not use adjusted parameters to fit experimental data and only employ a priori data on atomic orbitals and simple formulas to substitute large computations of electronic integrals. In this sense, different functions for bi-electron integrals have been evaluated in order to improve the approximate Hamiltonian. The reliability of predictions and theoretical consistence has been tested with a benchmark set of organic molecules that covers important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic, hydrocarbons, heterocycles, carbonyl compounds, and nucleobases. The calculations are done at identical geometries (MP2) with the same basis set (6-31G) for these medium-sized molecules and the obtained results were statistically compared with other analogous methods and experimental data. The accuracy of prediction of each CNDOL vertical transitions energy increases while the active space is more complete allowing the best variational optimization of CIS matrices i.e. molecular excited states. Moreover and due to the feasible computation procedure for large polyatomic systems, the studies have been extended, as a preliminary work, in the field of optoelectronic materials for photovoltaic applications. Hence, the excitation energies of different conjugated Phenyl-cored Thiophene Dendrimers optimized by DFT (Density Functional Theory) were calculated and show good agreement with the experiment data. The predicted charge distribution during the excitation contributes to understand the photophysics process on these kind materials. (Full text)

  4. Stick-Slip Analysis of a Drill String Subjected to Deterministic Excitation and Stochastic Excitation

    Directory of Open Access Journals (Sweden)

    Hongyuan Qiu

    2016-01-01

    Full Text Available Using a finite element model, this paper investigates the torsional vibration of a drill string under combined deterministic excitation and random excitation. The random excitation is caused by the random friction coefficients between the drill bit and the bottom of the hole and assumed as white noise. Simulation shows that the responses under random excitation become random too, and the probabilistic distribution of the responses at each discretized time instant is obtained. The two points, entering and leaving the stick stage, are examined with special attention. The results indicate that the two points become random under random excitation, and the distributions are not normal even when the excitation is assumed as Gaussian white noise.

  5. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  6. Fractional excitations in the square-lattice quantum antiferromagnet

    DEFF Research Database (Denmark)

    Piazza, B. Dalla; Mourigal, M.; Christensen, Niels Bech

    2015-01-01

    -projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wavevector, these fractional excitations are bound and form conventional magnons. Our results establish...... the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration....

  7. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  8. High-performance liquid chromatography of quinoidal imminium compounds derived from triphenylmethanes

    Science.gov (United States)

    Abidi, S.L.

    1983-01-01

    A series of eleven p-aminotriphenylmethane dyes have been studied by high-performance liquid chromatography (HPLC). The combined use of HPLC and spectrophotometry permits specific detection of these compounds in the visible range around 600 nm. As the high affinity of the imminium cations for the active sites of the hydrocarbonaceous stationary phase has presented difficulties for reversed-phase HPLC with pure solvents, organic electrolytes were added to the mobile phase to facilitate the elution of the components with improved selectivity, sensitivity (minimum detection limit, 0.1 μg/ml), and peak symmetry. The effects of chromatographic variables on the component retentivity were investigated. Retention times of the dye analytes decreased with increasing concentration of the added ionic reagent and with decreasing number of the hydrophobic alkyl substituents on the nitrogen atom. The influence of pH on the retention parameters appears to parallel that observed previously for cationic quaternary ammonium compounds. Among the acidic reagents employed, naphthalenesulfonic acid yielded the most satisfactory results. The use of binary electrolyte systems invariably improved the chromatographic behavior of the imminium solutes analyzed. Results obtained with two different octadecylsilica columns have been compared.

  9. High-temperature thermopower of some REIn3 compounds

    International Nuclear Information System (INIS)

    Kletowski, Z.; Resel, R.

    1995-01-01

    The temperature dependences of the thermopower of six REIn 3 compounds (RE=La, Pr, Gd, Dy, Er and Lu) were measured in the temperature range up to 1000 K. The observed changes in the slopes of the temperature versus thermopower curves for all the investigated compounds are interpreted as originating from a special shape of the density of states (DOS) near the Fermi energy, E F . ((orig.))

  10. Electron-excited molecule interactions

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Tennessee Univ., Knoxville, TN

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10 6 to 10 7 times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs

  11. Atomic substitution in selected high-temperature superconductors: Elucidating the nature of Raman spectra excitations

    Science.gov (United States)

    Hewitt, Kevin Cecil

    2000-10-01

    In this thesis, the effects of atomic substitution on the vibrational and electronic excitations found in the Raman spectra of selected high-temperature superconductors (HTS) are studied. In particular, atomic and isotopic substitution methods have been used to determine the character of features observed in the Raman spectra of Bi2Sr2Ca n-1CunO2 n+4+delta (n = 1 - Bi2201, n = 2 - Bi2212) and YBa2Cu3O7-delta (Y123). In Bi2201, Pb substitution for Bi (and Sr) has led to the reduction and eventual removal of the structural modulation, characteristic of all members of the Bi-family of HTS. The high quality single crystals and our sensitive triple spectrometer enabled identification of a pair of low frequency modes. The modes are determined to arise from shear and compressional rigid-layer vibrations. The normal state of underdoped cuprates is characterized by a pseudogap of unknown origin. In crystals of underdoped Bi2212 a spectral peak found at 590 cm-1, previously attributed to the pairing of quasiparticles (above Tc) and hence to the formation of a normal state pseudogap, has been found to soften by 3.8% with oxygen isotope exchange. In addition, the feature is absent in fully oxygenated and yttrium underdoped crystals. In this study, the first of its kind on underdoped and isotope substituted Bi2212, the feature has been assigned to stretching vibrations of oxygen in the a-b plane. Bi2212 crystals with varying hole concentrations (0.07 Raman scattering experiments that sample the diagonal (B 2g) and principal axes (B1 g) of the BZ have led us to conclude that the superconducting gap possesses dx2-y2 symmetry, in the underdoped and overdoped regimes. It is found that the magnitude of the superconducting gap (Delta(k)) is sensitive to changes in p. Studies of the pair-breaking peak found in the B1g spectra allow us to conclude that the magnitude of the maximum gap (Deltamax) decreases monotonically with increasing hole doping, for p > 0.13. The pair

  12. Fission of 255,256Es, 255-257Fm, and 258Md at moderate excitation energies

    NARCIS (Netherlands)

    Britt, H.C.; Hoffman, D.C.; Plicht, J. van der; Wilhelmy, J.; Cheifetz, E.; Dupzyk, R.J.; Lougheed, R.W.

    1984-01-01

    The fission of 255,256Es, 255-257Fm, and 258Md has been studied in the excitation energy range from threshold to 25 MeV. A target of 254Es was used in the direct reaction studies; (d,pf), (t,pf), (3He,df), (3He,pf), and in the compound induced fission reactions formed with p, d, t, and α particle

  13. Investigations of the valence-shell excitations of molecular ethane by high-energy electron scattering

    Science.gov (United States)

    Xu, Wei-Qing; Xu, Long-Quan; Qi, De-Guang; Chen, Tao; Liu, Ya-Wei; Zhu, Lin-Fan

    2018-04-01

    The differential cross sections and generalized oscillator strengths for the low-lying excitations of the valence-shell 1eg orbital electron in ethane have been measured for the first time at a high incident electron energy of 1500 eV and a scattering angular range of 1.5°-10°. A weak feature, termed X here, with a band center of about 7.5 eV has been observed, which was also announced by the previous experimental and theoretical studies. The dynamic behaviors of the generalized oscillator strengths for the 3s (8.7 eV), 3s+3p (9.31 eV, 9.41 eV), and X (˜7.5 eV) transitions on the momentum transfer squared have been obtained. The integral cross sections of these transitions from their thresholds to 5000 eV have been obtained with the aid of the BE-scaling (B is the binding energy and E is the excitation energy) method. The optical oscillator strengths of the above transitions determined by extrapolating their generalized oscillator strengths to the limit of the squared momentum transfer K2 → 0 are in good agreement with the ones from the photoabsorption spectrum [J. W. Au et al., Chem. Phys. 173, 209 (1993)], which indicates that the present differential cross sections, generalized oscillator strengths, and integral cross sections can serve as benchmark data.

  14. a simple a simple excitation control excitation control excitation

    African Journals Online (AJOL)

    eobe

    field voltages determined follow a simple quadratic relationship that offer a very simple control scheme, dependent on only the stator current. Keywords: saturated reactances, no-load field voltage, excitation control, synchronous generators. 1. Introduction. Introduction. Introduction. The commonest generator in use today is ...

  15. Casimir interaction between gas media of excited atoms

    International Nuclear Information System (INIS)

    Sherkunov, Yury

    2007-01-01

    The retarded dispersion interaction (Casimir interaction) between two dilute dielectric media at high temperatures is considered. The excited atoms are taken into account. It is shown that the perturbation technique cannot be applied to this problem due to divergence of integrals. A non-perturbative approach based on kinetic Green functions is implemented. We consider the interaction between two atoms (one of them is excited) embedded in an absorbing dielectric medium. We take into account the possible absorption of photons in the medium, which solves the problem of divergence. The force between two plane dilute dielectric media is calculated at pair interaction approximation. We show that the result of quantum electrodynamics differs from the Lifshitz formula for dilute gas media at high temperatures (if the number of excited atoms is significant). According to quantum electrodynamics, the interaction may be either attractive or repulsive depending on the temperature and the density numbers of the media

  16. Excitation of twin-vortex flow in the nightside high-latitude ionosphere during an isolated substorm

    Directory of Open Access Journals (Sweden)

    A. Grocott

    Full Text Available We present SuperDARN radar observations of the ionospheric flow during a well-observed high-latitude substorm which occurred during steady northward IMF conditions on 2 December 1999. These data clearly demonstrate the excitation of large-scale flow associated with the substorm expansion phase, with enhanced equatorward flows being observed in the pre-midnight local time sector of the expansion phase auroral bulge and westward electrojet, and enhanced return sunward flows being present at local times on either side, extending into the dayside sector. The flow pattern excited was thus of twin-vortex form, with foci located at either end of the substorm auroral bulge, as imaged by the Polar VIS UV imager. Estimated total transpolar voltages were ~40 kV prior to expansion phase onset, grew to ~80 kV over a ~15 min interval during the expansion phase, and then decayed to ~35 kV over ~10 min during recovery. The excitation of the large-scale flow pattern resulted in the development of magnetic disturbances which extended well outside of the region directly disturbed by the substorm, depending upon the change in the flow and the local ionospheric conductivity. It is estimated that the nightside reconnection rate averaged over the 24-min interval of the substorm was ~65– 75 kV, compared with continuing dayside reconnection rates of ~30–45 kV. The net closure of open flux during the sub-storm was thus ~0.4–0.6 × 108 Wb, representing ~15–20% of the open flux present at onset, and corresponding to an overall contraction of the open-closed field line boundary by ~1° latitude.

    Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; plasma convection

  17. The CLAS Excited Baryon Program at Jefferson Laboratory

    International Nuclear Information System (INIS)

    Crede, Volker

    2009-01-01

    Nucleons are complex systems of confined quarks and exhibit characteristic spectra of excited states. Highly excited nucleon states are sensitive to details of quark confinement which is poorly understood within Quantum Chromodynamics (QCD), the fundamental theory of strong interactions. Thus, measurements of excited states and the corresponding determination of their properties are needed to come to a better understanding of how confinement works in nucleons. However, the excited states of the nucleon cannot simply be inferred from cleanly separated spectral lines. Quite the contrary, a spectral analysis in nucleon resonance physics is challenging because of the fact that the resonances are broadly overlapping states which decay into a multitude of final states involving mesons and baryons. To provide a consistent and complete picture of an individual nucleon resonance, the various possible production and decay channels must be treated in a multi-channel framework that permits separat

  18. Whole body traveling wave magnetic resonance imaging at high field strength: homogeneity, efficiency, and energy deposition as compared with traditional excitation mechanisms.

    Science.gov (United States)

    Zhang, Bei; Sodickson, Daniel K; Lattanzi, Riccardo; Duan, Qi; Stoeckel, Bernd; Wiggins, Graham C

    2012-04-01

    In 7 T traveling wave imaging, waveguide modes supported by the scanner radiofrequency shield are used to excite an MR signal in samples or tissue which may be several meters away from the antenna used to drive radiofrequency power into the system. To explore the potential merits of traveling wave excitation for whole-body imaging at 7 T, we compare numerical simulations of traveling wave and TEM systems, and juxtapose full-wave electrodynamic simulations using a human body model with in vivo human traveling wave imaging at multiple stations covering the entire body. The simulated and in vivo traveling wave results correspond well, with strong signal at the periphery of the body and weak signal deep in the torso. These numerical results also illustrate the complicated wave behavior that emerges when a body is present. The TEM resonator simulation allowed comparison of traveling wave excitation with standard quadrature excitation, showing that while the traveling wave B +1 per unit drive voltage is much less than that of the TEM system, the square of the average B +1 compared to peak specific absorption rate (SAR) values can be comparable in certain imaging planes. Both systems produce highly inhomogeneous excitation of MR signal in the torso, suggesting that B(1) shimming or other parallel transmission methods are necessary for 7 T whole body imaging. Copyright © 2011 Wiley-Liss, Inc.

  19. Elementary excitations in single-chain magnets

    Science.gov (United States)

    Lutz, Philipp; Aguilà, David; Mondal, Abhishake; Pinkowicz, Dawid; Marx, Raphael; Neugebauer, Petr; Fâk, Björn; Ollivier, Jacques; Clérac, Rodolphe; van Slageren, Joris

    2017-09-01

    Single-chain magnets (SCMs) are one-dimensional coordination polymers or spin chains that display slow relaxation of the magnetization. Typically their static magnetic properties are described by the Heisenberg model, while the description of their dynamic magnetic properties is based on an Ising-like model. The types of excitations predicted by these models (collective vs localized) are quite different. Therefore we probed the nature of the elementary excitations for two SCMs abbreviated Mn2Ni and Mn2Fe , as well as a mononuclear derivative of the Mn2Fe chain, by means of high-frequency electron paramagnetic resonance spectroscopy (HFEPR) and inelastic neutron scattering (INS). We find that the HFEPR spectra of the chains are clearly distinct from those of the monomer. The momentum transfer dependence of the INS intensity did not reveal significant dispersion, indicating an essentially localized nature of the excitations. At the lowest temperatures these are modified by the occurrence of short-range correlations.

  20. Isoscalar spin excitation in 40Ca

    International Nuclear Information System (INIS)

    Morlet, M.; Willis, A.; Van de Wiele, J.; Marty, N.; Johnson, B.N.; Bimbot, L.; Guillot, J.; Jourdan, F.; Langevin-Joliot, H.; Rosier, L.; Glashausser, C.; Beatty, D.; Edwards, G.W.R.; Green, A.; Djalali, C.; Youn, M.Y.

    1992-01-01

    A signature S d y of isoscalar spin-transfer strength has been tested in the inelastic scattering of 400 MeV deuterons from 12 C. It was then applied to the study of 40 Ca over an angular range from 3 deg to 7 deg (momentum transfer range from 0.26 to 0.8 fm -1 ) and an excitation energy range from 6.25 to 42 MeV. This is the first study of isoscalar spin strength in the continuum. Spin excitations were found in the 9 MeV region, and over a broad range in the continuum with a cluster of strength around 15 MeV. The results are compared with spin-flip probability measurements in proton scattering. In contrast to the total relative spin response, which is strongly enhanced at high excitation, the isoscalar relative spin response is roughly consistent with non interacting Fermi gas values. (authors) 39 refs., 13 figs., 1 tab