WorldWideScience

Sample records for highly energetic structures

  1. Very High Performance High Nitrogen Energetic Ingredients and Energetic Polymers for Structural Components

    Science.gov (United States)

    2011-12-31

    13. SUPPLEMENTARY NOTES SoUoWtoo^ 14. ABSTRACT This project investigated new energetic materials for use with a triazole cured binder system ...The reaction was repeated using two equivalents of KH. An even more insoluble product was obtained. Figure 8 and 9 show the C-13 and N-15 CP/MAS...Sonnenberg, M. Hada, M. Ehara, K. Toyota , R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda , O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr

  2. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    Directory of Open Access Journals (Sweden)

    Liu Wang

    2015-11-01

    Full Text Available Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W-polytetrafluoroethylene (PTFE-aluminum (Al with density of 4.12 g/cm3, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt% can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s−1 coupled with the absorbed energy per unit volume of 120 J/cm3, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  3. Refined energetic ordering for sulphate-water (n = 3-6) clusters using high-level electronic structure calculations

    Science.gov (United States)

    Lambrecht, Daniel S.; McCaslin, Laura; Xantheas, Sotiris S.; Epifanovsky, Evgeny; Head-Gordon, Martin

    2012-10-01

    This work reports refinements of the energetic ordering of the known low-energy structures of sulphate-water clusters ? (n = 3-6) using high-level electronic structure methods. Coupled cluster singles and doubles with perturbative triples (CCSD(T)) is used in combination with an estimate of basis set effects up to the complete basis set limit using second-order Møller-Plesset theory. Harmonic zero-point energy (ZPE), included at the B3LYP/6-311 + + G(3df,3pd) level, was found to have a significant effect on the energetic ordering. In fact, we show that the energetic ordering is a result of a delicate balance between the electronic and vibrational energies. Limitations of the ZPE calculations, both due to electronic structure errors, and use of the harmonic approximation, probably constitute the largest remaining errors. Due to the often small energy differences between cluster isomers, and the significant role of ZPE, deuteration can alter the relative energies of low-lying structures, and, when it is applied in conjunction with calculated harmonic ZPEs, even alters the global minimum for n = 5. Experiments on deuterated clusters, as well as more sophisticated vibrational calculations, may therefore be quite interesting.

  4. Structural energetics of noble metals

    International Nuclear Information System (INIS)

    Mujibur Rahman, S.M.

    1982-06-01

    Structural energetics of the noble metals, namely Cu, Ag, and Au are investigated by employing a single-parameter pseudopotential. The calculations show that the lowest energy for all of these metals corresponds to FCC - their observed crystal structure. The one-electron contribution to the free energy is found to dominate the structural prediction for these metals. The present investigation strongly emphasizes that the effects due to band hybridization and core-core exchange play a significant role on the structural stability of the noble metals. (author)

  5. Time-of-flight secondary ion mass spectrometry with energetic cluster ion impact ionization for highly sensitive chemical structure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, K., E-mail: k.hirata@aist.go.jp [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Saitoh, Y.; Chiba, A.; Yamada, K.; Narumi, K. [Takasaki Advanced Radiation Research Institute (TARRI), Japan Atomic Energy Agency (JAEA), Takasaki, Gumma 370-1292 (Japan)

    2013-11-01

    Energetic cluster ions with energies of the order of sub MeV or greater were applied to time-of-flight (TOF) secondary ion (SI) mass spectrometry. This gave various advantages including enhancement of SIs required for chemical structure characterization and prevention of charging effects in SI mass spectra for organic targets. We report some characteristic features of TOF SI mass spectrometry using energetic cluster ion impact ionization and discuss two future applications of it.

  6. Computer simulation of structural modifications induced by highly energetic ions in uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Sasajima, Y., E-mail: sasajima@mx.ibaraki.ac.jp [Department of Materials Science and Engineering, Faculty of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511 (Japan); Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Shirakata 162-4, Tokai 319-1106 (Japan); Osada, T. [Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511 (Japan); Ishikawa, N. [Japan Atomic Energy Agency (JAEA), Shirakata Shirane 2-4, Tokai 319-1195 (Japan); Iwase, A. [Department of Materials Science, Osaka Prefecture University, Gakuen-cho 1-1, Sakai 599-8531 (Japan)

    2013-11-01

    The structural modification caused by the high-energy-ion irradiation of single-crystalline uranium dioxide was simulated by the molecular dynamics method. As the initial condition, high kinetic energy was supplied to the individual atoms within a cylindrical region of nanometer-order radius located in the center of the specimen. The potential proposed by Basak et al. [C.B. Basak, A.K. Sengupta, H.S. Kamath, J. Alloys Compd. 360 (2003) 210–216] was utilized to calculate interaction between atoms. The supplied kinetic energy was first spent to change the crystal structure into an amorphous one within a short period of about 0.3 ps, then it dissipated in the specimen. The amorphous track radius R{sub a} was determined as a function of the effective stopping power gS{sub e}, i.e., the kinetic energy of atoms per unit length created by ion irradiation (S{sub e}: electronic stopping power, g: energy transfer ratio from stopping power to lattice vibration energy). It was found that the relationship between R{sub a} and gS{sub e} follows the relation R{sub a}{sup 2}=aln(gS{sub e})+b. Compared to the case of Si and β-cristobalite single crystals, it was harder to produce amorphous track because of the long range interaction between U atoms.

  7. Computer simulation of structural modifications induced by highly energetic ions in uranium dioxide

    International Nuclear Information System (INIS)

    Sasajima, Y.; Osada, T.; Ishikawa, N.; Iwase, A.

    2013-01-01

    The structural modification caused by the high-energy-ion irradiation of single-crystalline uranium dioxide was simulated by the molecular dynamics method. As the initial condition, high kinetic energy was supplied to the individual atoms within a cylindrical region of nanometer-order radius located in the center of the specimen. The potential proposed by Basak et al. [C.B. Basak, A.K. Sengupta, H.S. Kamath, J. Alloys Compd. 360 (2003) 210–216] was utilized to calculate interaction between atoms. The supplied kinetic energy was first spent to change the crystal structure into an amorphous one within a short period of about 0.3 ps, then it dissipated in the specimen. The amorphous track radius R a was determined as a function of the effective stopping power gS e , i.e., the kinetic energy of atoms per unit length created by ion irradiation (S e : electronic stopping power, g: energy transfer ratio from stopping power to lattice vibration energy). It was found that the relationship between R a and gS e follows the relation R a 2 =aln(gS e )+b. Compared to the case of Si and β-cristobalite single crystals, it was harder to produce amorphous track because of the long range interaction between U atoms

  8. Acceleration Data Reveal Highly Individually Structured Energetic Landscapes in Free-Ranging Fishers (Pekania pennanti.

    Directory of Open Access Journals (Sweden)

    Anne K Scharf

    Full Text Available Investigating animal energy expenditure across space and time may provide more detailed insight into how animals interact with their environment. This insight should improve our understanding of how changes in the environment affect animal energy budgets and is particularly relevant for animals living near or within human altered environments where habitat change can occur rapidly. We modeled fisher (Pekania pennanti energy expenditure within their home ranges and investigated the potential environmental and spatial drivers of the predicted spatial patterns. As a proxy for energy expenditure we used overall dynamic body acceleration (ODBA that we quantified from tri-axial accelerometer data during the active phases of 12 individuals. We used a generalized additive model (GAM to investigate the spatial distribution of ODBA by associating the acceleration data to the animals' GPS-recorded locations. We related the spatial patterns of ODBA to the utilization distributions and habitat suitability estimates across individuals. The ODBA of fishers appears highly structured in space and was related to individual utilization distribution and habitat suitability estimates. However, we were not able to predict ODBA using the environmental data we selected. Our results suggest an unexpected complexity in the space use of animals that was only captured partially by re-location data-based concepts of home range and habitat suitability. We suggest future studies recognize the limits of ODBA that arise from the fact that acceleration is often collected at much finer spatio-temporal scales than the environmental data and that ODBA lacks a behavioral correspondence. Overcoming these limits would improve the interpretation of energy expenditure in relation to the environment.

  9. Structure of Energetic Particle Mediated Shocks Revisited

    International Nuclear Information System (INIS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2017-01-01

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  10. Structure of Energetic Particle Mediated Shocks Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Mostafavi, P.; Zank, G. P. [Department of Space Science, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2017-05-20

    The structure of collisionless shock waves is often modified by the presence of energetic particles that are not equilibrated with the thermal plasma (such as pickup ions [PUIs] and solar energetic particles [SEPs]). This is relevant to the inner and outer heliosphere and the Very Local Interstellar Medium (VLISM), where observations of shock waves (e.g., in the inner heliosphere) show that both the magnetic field and thermal gas pressure are less than the energetic particle component pressures. Voyager 2 observations revealed that the heliospheric termination shock (HTS) is very broad and mediated by energetic particles. PUIs and SEPs contribute both a collisionless heat flux and a higher-order viscosity. We show that the incorporation of both effects can completely determine the structure of collisionless shocks mediated by energetic ions. Since the reduced form of the PUI-mediated plasma model is structurally identical to the classical cosmic ray two-fluid model, we note that the presence of viscosity, at least formally, eliminates the need for a gas sub-shock in the classical two-fluid model, including in that regime where three are possible. By considering parameters upstream of the HTS, we show that the thermal gas remains relatively cold and the shock is mediated by PUIs. We determine the structure of the weak interstellar shock observed by Voyager 1 . We consider the inclusion of the thermal heat flux and viscosity to address the most general form of an energetic particle-thermal plasma two-fluid model.

  11. Structure and energetics correlations in some chlorohydroxypyridines

    International Nuclear Information System (INIS)

    Miranda, Margarida S.; Matos, Maria Agostinha R.; Morais, Victor M.F.

    2013-01-01

    Highlights: • Study of the structure and energetics of some chlorohydroxypyridines. • Enthalpies of formation and sublimation were determined by calorimetric techniques. • Structure and energy correlations were established. • Quantum chemical calculations allowed estimation of enthalpies of formation. -- Abstract: We have performed a study of the structure and energetics of some chlorohydroxypyridines based on experimental calorimetry techniques and high level ab initio computational calculations. The standard (p° = 0.1 MPa) molar enthalpies of formation of 2-chloro-3-hydroxypyridine (2-Cl-3-OHPy), 2-chloro-6-hydroxypyridine (2-Cl-6-OHPy) and 3-chloro-5-hydroxypyridine (3-Cl-5-OHPy) in the crystalline phase, at T = 298.15 K, were derived from the respective standard massic energies of combustion measured by rotating-bomb combustion calorimetry, in oxygen, at T = 298.15 K. The standard molar enthalpies of sublimation, at T = 298.15 K, were measured by Calvet microcalorimetry. From these experimentally determined enthalpic parameters we have derived the standard molar enthalpies of formation of the three compounds in the gaseous phase, at T = 298.15 K: 2-Cl–3-OHPy, −(76.8 ± 2.0) kJ · mol −1 ; 2-Cl-6-OHPy, −(105.0 ± 1.7) kJ · mol −1 , 3-Cl-5-OHPy −(61.2 ± 2.4) kJ · mol −1 . These values were compared with estimates obtained from very accurate computational calculations using the G3(MP2)//B3LYP composite method and appropriately chosen reactions. These calculations have also been extended to the remaining chlorohydroxypyridine isomers that were not studied experimentally. Based on B3LYP/6-31G ∗ optimized geometries and calculated G3(MP2)//B3LYP absolute enthalpies some structure–energy correlations were discussed

  12. Energetics and crystal chemistry of Ruddlesden-Popper type structures in high T(sub c) ceramic superconductors

    Science.gov (United States)

    Dwivedi, Anurag; Cormack, A. N.

    1990-01-01

    The formation of Ruddlesden-Popper type layers (alternating slabs of rocksalt and perovskite structures) is seen in these oxides which is similar in many respects to what is seen in the system Sr-Ti-O. However, it was observed that there are some significant differences, for example the rocksalt and perovskite blocks in new superconducting compounds are not necessarily electrically, unlike in Sr-Ti-O systems. This will certainly render an additional coulombic bonding energy between two different types of blocks and may well lead to significant differences in their structural chemistry. In the higher order members of the various homologous series, additional Cu-O planes are inserted in the perovskite blocks. In order for the unit cell to electrically neutral the net positive charge on rocksalt block (which remains constant throughout the homologous series) should be balanced by an equal negative charge on perovskite block. It, thus becomes necessary to create oxygen vacancies in the basic perovskite structure, when width of the perovskite slab changes on addition of extra Cu-O planes. Results of atomistic simulations suggest that these missing oxygen ions allow the Cu-O planes to buckle in these compounds. This is also supported by the absence of buckling in the first member of Bi-containing compounds in which there are no missing oxygen ions and the Sr-Ti-O series of compounds. Additional results are presented on the phase stability of polytypoid structures in these crystal chemically complex systems. The studies will focus on the determination of the location of Cu(3+) in the structures of higher order members of the La-Cu-O system and whether Cu(3+) ions or oxygen vacancies are energetically more favorable charge compensating mechanism.

  13. Enhancing Reactivity in Structural Energetic Materials

    Science.gov (United States)

    Glumac, Nick

    2017-06-01

    In many structural energetic materials, only a small fraction of the metal oxidizes, and yet this provides a significant boost in the overall energy release of the system. Different methodologies to enhance this reactivity include alloying and geometric modifications of microstructure of the reactive material (RM). In this presentation, we present the results of several years of systematic study of both chemical (alloy) and mechanical (geometry) effects on reactivity for systems with typical charge to case mass ratios. Alloys of aluminum with magnesium and lithium are considered, as these are common alloys in aerospace applications. In terms of geometric modifications, we consider surface texturing, inclusion of dense additives, and inclusion of voids. In all modifications, a measurable influence on output is observed, and this influence is related to the fragment size distribution measured from the observed residue. Support from DTRA is gratefully acknowledged.

  14. Chemistry and structure of giant molecular clouds in energetic environments

    Science.gov (United States)

    Anderson, Crystal Nicole

    2016-09-01

    observe anomalously large HCO+/HCN line ratios of >5 for the NGC 5253 SSC, 30Dor-10 and N159W clumps. However the ratio is <2 for N113, the least energetic source, on clump scales. NGC 5253, 30Dor-10 and N159W have anomalously faint HCN. The CMZ however, does not have anomalously faint HCN it actually has HCO+/HCN common of high metallicity environments, active galactic nuclei and ultra luminous infrared galaxies. These observations suggest the reason HCN has fainter emission than HCO+ must be a combination of low metallicity and energetics contributing to the change in the HCO+/HCN ratio. I find that the impact of the massive star forming regions on surrounding gas in different galaxies from small to large scales changes the chemistry within these regions. A more energetic region's chemistry seems to be different from a less energetic region. There is a richer chemistry within a less energetic region; which may suggest that the chemistry in an energetic environment is quenched due to increased photodissociation.

  15. Structure and energetics of nanotwins in cubic boron nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Shijian, E-mail: sjzheng@imr.ac.cn, E-mail: zrf@buaa.edu.cn; Ma, Xiuliang [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, Ruifeng, E-mail: sjzheng@imr.ac.cn, E-mail: zrf@buaa.edu.cn [School of Materials Science and Engineering, and International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191 (China); Huang, Rong [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200062 (China); Taniguchi, Takashi [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Ikuhara, Yuichi [Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587 (Japan); Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656 (Japan); Beyerlein, Irene J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-08-22

    Recently, nanotwinned cubic boron nitrides (NT c-BN) have demonstrated extraordinary leaps in hardness. However, an understanding of the underlying mechanisms that enable nanotwins to give orders of magnitude increases in material hardness is still lacking. Here, using transmission electron microscopy, we report that the defect density of twin boundaries depends on nanotwin thickness, becoming defect-free, and hence more stable, as it decreases below 5 nm. Using ab initio density functional theory calculations, we reveal that the Shockley partials, which may dominate plastic deformation in c-BNs, show a high energetic barrier. We also report that the c-BN twin boundary has an asymmetrically charged electronic structure that would resist migration of the twin boundary under stress. These results provide important insight into possible nanotwin hardening mechanisms in c-BN, as well as how to design these nanostructured materials to reach their full potential in hardness and strength.

  16. Structure and energetics of trivalent metal halides

    International Nuclear Information System (INIS)

    Hutchinson, F.

    1999-01-01

    Metal trihalide (MX 3 ) systems represent a stern challenge in terms of constructing transferable potential models. Starting from a previously published set of potentials, 'extended' ionic models are developed which, at the outset, include only anion polarization. Deficiencies in these models, particularly for smaller (highly polarizing) cations, axe shown to be significant. For example, crystal structures different to those observed experimentally axe adopted. The potentials axe improved upon by reference to ab initio information available for alkali halides with the 'constraint' that the parameters transfer systematically in a physically transparent manner, for example, in terms of ion radii. The possible influence of anion compression ('breathing') and the relative abundance of anion-anion interactions are considered. Simulation techniques axe developed to allow for the effective simulation of any system symmetry and for the study of transitions between different crystals (constant stress). The developed models are fully tested for a large range of metal trichloride (MCl 3 ) systems. Particular attention is paid to the comparison with recent neutron and X-ray diffraction data on the liquid state. Polarization effects axe shown to be vital in reproducing strong experimental features. The excellent agreement between simulation and experiment allows for differences in experimental procedures to be highlighted. The transferability is further tested by modelling mixtures of the lanthanides with alkali halides with potentials unchanged from the pure systems. The complex evolution of the melt structure is highlighted as the concentration of MCl 3 increases. The effectiveness of the models is tested by reference to dynamical properties. Particular attention is paid to the comparison with Raman scattering data available for a wide range of systems and mixture concentrations. The simulated spectra are generated both by a simple molecular picture of the underlying

  17. Structural, energetic and electronic properties of intercalated boron ...

    Indian Academy of Sciences (India)

    2National Institute for R&D of Isotopic and Molecular Technologies, Cluj-Napoca 400 293, Romania. MS received 8 November 2010; revised 28 March 2012. Abstract. The effects of chirality and the intercalation of transitional metal atoms inside single walled BN nano- tubes on structural, energetic and electronic properties ...

  18. Structure and energetics of clusters relevant to thorium tetrachloride melts

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    2000-08-01

    We study within an ionic model the structure and the energetics of neutral and charged clusters which may exist as structural units in molten ThCl 4 and in its liquid mixtures with alkali chlorides, with reference to Raman scattering experiments by Photiadis and Papatheodorou. As stressed by these authors, the most striking facts for ThCl 4 in comparison with other tetrachlorides (and in particular with ZrCl 4 ) are the appreciable ionic conductivity of the pure melt and the continuous structural changes which occur in the melt mixtures with varying composition. After adjusting our model to data on the isolated ThCl 4 tetrahedral molecule, we evaluate (i) the Th 2 Cl 8 dimer and the singly charged species obtained by chlorine-ion transfer between two such neutral dimers; (ii) the ThCl 6 and ThCl 7 clusters both as charged anions and as alkali -compensated species; and (iii) various oligomers carrying positive or negative double charges. Our study shows that the characteristic structural properties of the ThCl 4 compound and of the alkali-Th chloride systems are the consequence of the relatively high ionic character of the binding, which is already evident in the isolated ThCl 4 molecular monomer. (author)

  19. Solar quiescent prominences. Filamentary structure and energetics

    Czech Academy of Sciences Publication Activity Database

    Heinzel, Petr; Anzer, U.; Gunár, Stanislav

    2010-01-01

    Roč. 81, č. 2 (2010), s. 654-661 ISSN 0037-8720. [Chromospheric structure and dynamics: From old wisdom to new insights. Sunspot,, 31.08.2009-4.09.2009] R&D Projects: GA ČR GA205/09/1705; GA ČR GP205/09/P554 Institutional research plan: CEZ:AV0Z10030501 Keywords : line formation * line profiles * radiative transfer Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  20. The HZE radiation problem. [highly-charged energetic galactic cosmic rays

    Science.gov (United States)

    Schimmerling, Walter

    1990-01-01

    Radiation-exposure limits have yet to be established for missions envisioned in the framework of the Space Exploration Initiative. The radiation threat outside the earth's magnetosphere encompasses protons from solar particle events and the highly charged energetic particles constituting galactic cosmic rays; radiation biology entails careful consideration of the extremely nonuniform patterns of such particles' energy deposition. The ability to project such biological consequences of exposure to energetic particles as carcinogenicity currently involves great uncertainties from: (1) different regions of space; (2) the effects of spacecraft structures; and (3) the dose-effect relationships of single traversals of energetic particles.

  1. Energetically Unfavorable Amide Conformations for N6-Acetyllysine Side Chains in Refined Protein Structures

    Science.gov (United States)

    Genshaft, Alexander; Moser, Joe-Ann S.; D'Antonio, Edward L.; Bowman, Christine M.; Christianson, David W.

    2013-01-01

    The reversible acetylation of lysine to form N6-acetyllysine in the regulation of protein function is a hallmark of epigenetics. Acetylation of the positively charged amino group of the lysine side chain generates a neutral N-alkylacetamide moiety that serves as a molecular “switch” for the modulation of protein function and protein-protein interactions. We now report the analysis of 381 N6-acetyllysine side chain amide conformations as found in 79 protein crystal structures and 11 protein NMR structures deposited in the Protein Data Bank (PDB) of the Research Collaboratory for Structural Bioinformatics. We find that only 74.3% of N6-acetyllysine residues in protein crystal structures and 46.5% in protein NMR structures contain amide groups with energetically preferred trans or generously trans conformations. Surprisingly, 17.6% of N6-acetyllysine residues in protein crystal structures and 5.3% in protein NMR structures contain amide groups with energetically unfavorable cis or generously cis conformations. Even more surprisingly, 8.1% of N6-acetyllysine residues in protein crystal structures and 48.2% in NMR structures contain amide groups with energetically prohibitive twisted conformations that approach the transition state structure for cis-trans isomerization. In contrast, 109 unique N-alkylacetamide groups contained in 84 highly-accurate small molecule crystal structures retrieved from the Cambridge Structural Database exclusively adopt energetically preferred trans conformations. Therefore, we conclude that cis and twisted N6-acetyllysine amides in protein structures deposited in the PDB are erroneously modeled due to their energetically unfavorable or prohibitive conformations. PMID:23401043

  2. SOLAR ENERGETIC PARTICLE MODULATIONS ASSOCIATED WITH COHERENT MAGNETIC STRUCTURES

    International Nuclear Information System (INIS)

    Trenchi, L.; Bruno, R.; D'amicis, R.; Marcucci, M. F.; Telloni, D.; Zurbuchen, T. H.; Weberg, M.

    2013-01-01

    In situ observations of solar energetic particles (SEPs) often show rapid variations of their intensity profile, affecting all energies simultaneously, without time dispersion. A previously proposed interpretation suggests that these modulations are directly related to the presence of magnetic structures with a different magnetic topology. However, no compelling evidence of local changes in magnetic field or in plasma parameters during SEP modulations has been reported. In this paper, we performed a detailed analysis of SEP events and we found several signatures in the local magnetic field and/or plasma parameters associated with SEP modulations. The study of magnetic helicity allowed us to identify magnetic boundaries, associated with variations of plasma parameters, which are thought to represent the borders between adjacent magnetic flux tubes. It is found that SEP dispersionless modulations are generally associated with such magnetic boundaries. Consequently, we support the idea that SEP modulations are observed when the spacecraft passes through magnetic flux tubes, filled or devoid of SEPs, which are alternatively connected and not connected with the flare site. In other cases, we found SEP dropouts associated with large-scale magnetic holes. A possible generation mechanism suggests that these holes are formed in the high solar corona as a consequence of magnetic reconnection. This reconnection process modifies the magnetic field topology, and therefore, these holes can be magnetically isolated from the surrounding plasma and could also explain their association with SEP dropouts.

  3. Energetics of highly kinked step edges

    NARCIS (Netherlands)

    Zandvliet, Henricus J.W.

    2010-01-01

    We have determined the step edge free energy, the step edge stiffness and dimensionless inverse step edge stiffness of the highly kinked < 010> oriented step on a (001) surface of a simple square lattice within the framework of a solid-on-solid model. We have found an exact expression for the step

  4. The energetics and structure of nickel clusters: Size dependence

    International Nuclear Information System (INIS)

    Cleveland, C.L.; Landman, U.

    1991-01-01

    The energetics of nickel clusters over a broad size range are explored within the context of the many-body potentials obtained via the embedded atom method. Unconstrained local minimum energy configurations are found for single crystal clusters consisting of various truncations of the cube or octahedron, with and without (110) faces, as well as some monotwinnings of these. We also examine multitwinned structures such as icosahedra and various truncations of the decahedron, such as those of Ino and Marks. These clusters range in size from 142 to over 5000 atoms. As in most such previous studies, such as those on Lennard-Jones systems, we find that icosahedral clusters are favored for the smallest cluster sizes and that Marks' decahedra are favored for intermediate sizes (all our atomic systems larger than about 2300 atoms). Of course very large clusters will be single crystal face-centered-cubic (fcc) polyhedra: the onset of optimally stable single-crystal nickel clusters is estimated to occur at 17 000 atoms. We find, via comparisons to results obtained via atomistic calculations, that simple macroscopic expressions using accurate surface, strain, and twinning energies can usefully predict energy differences between different structures even for clusters of much smaller size than expected. These expressions can be used to assess the relative energetic merits of various structural motifs and their dependence on cluster size

  5. DFT study of the structures and energetics of 98-atom AuPd clusters.

    Science.gov (United States)

    Bruma, Alina; Ismail, Ramli; Paz-Borbón, L Oliver; Arslan, Haydar; Barcaro, Giovanni; Fortunelli, Alessandro; Li, Z Y; Johnston, Roy L

    2013-01-21

    The energetics, structures and segregation of 98-atom AuPd nanoclusters are investigated using a genetic algorithm global optimization technique with the Gupta empirical potential (comparing three different potential parameterisations) followed by local minimizations using Density Functional Theory (DFT) calculations. A shell optimization program algorithm is employed in order to study the energetics of the highly symmetric Leary Tetrahedron (LT) structure and optimization of the chemical ordering of a number of structural motifs is carried out using the Basin Hopping Monte Carlo approach. Although one of the empirical potentials is found to favour the LT structure, it is shown that Marks Decahedral and mixed FCC-HCP motifs are lowest in energy at the DFT level.

  6. Delay in solar energetic particle onsets at high heliographic latitudes

    Directory of Open Access Journals (Sweden)

    S. Dalla

    2003-06-01

    Full Text Available Ulysses observations have shown that solar energetic particles (SEPs can easily reach high heliographic latitudes. To obtain information on the release and propagation of SEPs prior to their arrival at Ulysses, we analyse the onsets of nine large high-latitude particle events. We measure the onset times in several energy channels, and plot them versus inverse particle speed. This allows us to derive an experimental path length and time of release from the solar atmosphere. We repeat the procedure for near-Earth observations by Wind and SOHO. We find that the derived path lengths at Ulysses are 1.06 to 2.45 times the length of a Parker spiral magnetic field line connecting the spacecraft to the Sun. The time of particle release from the Sun is between 100 and 350 min later than the release time derived from in-ecliptic measurements. We find no evidence of correlation between the delay in release and the inverse of the speed of the CME associated with the event, or the inverse of the speed of the corresponding interplanetary shock. The main parameter determining the magnitude of the delay appears to be the difference in latitude between the flare and the footpoint of the spacecraft.Key words. Interplanetary physics (energetic particles – Solar physics, astrophysics and astronomy (energetic particles, flares and mass ejections

  7. Energetic Particles at High Latitudes of the Heliosphere

    International Nuclear Information System (INIS)

    Zhang Ming

    2004-01-01

    Ulysses has by now made two complete out-of-ecliptic orbits around the sun. The first encounter of the solar poles occurred in 1994-1995, when the sun was near the minimum of its activity cycle, while the second one was in 2000-2001, when the sun was at solar maximum. To our surprise, energetic particles of all origins at high latitude are not much different from those we observe near the ecliptic for at least these two phases of solar cycle. The latitude gradients of galactic and anomalous cosmic rays are positive but small at the 1994-1995 solar minimum and almost zero at the 2000-2001 solar maximum, while temporal solar cycle variation dominates their flux variation at all latitudes. Solar energetic particles from all large gradual events can be seen at both Ulysses and Earth no matter how large their spatial separations from the solar event are, and the particle flux often reaches a uniform level in the entire inner heliosphere within a few days after event onset and remains so throughout the decay phase that can sometimes last over a month. Energetic particles accelerated by low-latitude CIRs can appear at high latitudes, far beyond the latitudinal range of CIRs. All these observations suggest that latitudinal transport of energetic particles is quite easy. In addition, because the average magnetic field is radial at the pole, The Ulysses observations indicate that parallel diffusion and drift in the radial direction need to be reduced at the poles relative to their equatorial values. To achieve such behaviors of particle transport, the heliospheric magnetic field needs a significant latitudinal component at the poles. A non-zero latitudinal magnetic field component can be produced by latitudinal motion of the magnetic field line in solar corona, which can be in form of either random walk suggested by Jokipii or large scale systematic motion suggested by Fisk

  8. Energetic optimization of regenerative braking for high speed railway systems

    International Nuclear Information System (INIS)

    Frilli, Amedeo; Meli, Enrico; Nocciolini, Daniele; Pugi, Luca; Rindi, Andrea

    2016-01-01

    Highlights: • A model of longitudinal dynamics of the High-speed train ETR1000 is presented. • The model includes on board traction and braking subsystems. • Interactions between overhead line and power line are modelled. • The model is validated on real experimental data. • An energy storage strategy for a high-speed line is proposed. - Abstract: The current development trend in the railway field has led to an ever increasing interest for the energetic optimization of railway systems (especially considering the braking phases), with a strong attention to the mutual interactions between the loads represented by railway vehicles and the electrical infrastructure, including all the sub-systems related to distribution and smart energy management such as energy storage systems. In this research work, the authors developed an innovative coupled modelling approach suitable for the analysis of the energetic optimization of railway systems and based on the use of the new object oriented language Matlab-Simscape™, which presents several advantages with respect to conventional modelling tools. The proposed model has been validated considering an Italian Direct Current High-speed line and the High-speed train ETR 1000. Furthermore, the model has been used to perform an efficiency analysis, considering the use of energy storage devices. The results obtained with the developed model show that the use of energy recovery systems in high-speed railway can provide great opportunities of energy savings.

  9. Modeling of high energy laser ignition of energetic materials

    International Nuclear Information System (INIS)

    Lee, Kyung-cheol; Kim, Ki-hong; Yoh, Jack J.

    2008-01-01

    We present a model for simulating high energy laser heating and ignition of confined energetic materials. The model considers the effect of irradiating a steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultrashort (femto- and picosecond) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives. Numerically simulated pulsed-laser heating of solid target and thermal explosion of cyclotrimethylenetrinitramine, triaminotrinitrobenzene, and octahydrotetranitrotetrazine are compared to experimental results. The experimental and numerical results are in good agreement

  10. Energetic ion driven Alfven eigenmodes in Large Helical Device plasmas with three-dimensional magnetic structure and their impact on energetic ion transport

    International Nuclear Information System (INIS)

    Toi, K; Yamamoto, S; Nakajima, N; Ohdachi, S; Sakakibara, S; Osakabe, M; Murakami, S; Watanabe, K Y; Goto, M; Kawahata, K; Kolesnichenko, Ya I; Masuzaki, S; Morita, S; Narihara, K; Narushima, Y; Takeiri, Y; Tanaka, K; Tokuzawa, T; Yamada, H; Yamada, I; Yamazaki, K

    2004-01-01

    In the Large Helical Device (LHD), energetic ion driven Alfven eigenmodes (AEs) and their impact on energetic ion transport have been studied. The magnetic configuration of the LHD is three-dimensional and has negative magnetic shear over a whole plasma radius in the low beta regime. These features introduce the characteristic structures of the shear Alfven spectrum. In particular, a core-localized type of toroidicity-induced AE (TAE) is most likely because the TAE gap frequency rapidly increases towards the plasma edge. Moreover, helicity-induced AEs (HAEs) can be generated through a toroidal mode coupling as well as poloidal one in the three-dimensional configuration. The following experimental results have been obtained in LHD plasmas heated by tangential neutral beam injection: (1) observation of core-localized TAEs having odd as well as even parity, (2) eigenmode transition of the core-localized TAE to global AEs (GAEs), which phenomenon is very similar to that in a reversed shear tokamak, (3) observation of HAEs of which the frequency is about eight times higher than the TAE gap frequency, (4) enhanced radial transport/loss of energetic ions caused by bursting TAEs in a relatively high beta regime, and (5) seed formation of internal transport barriers induced by TAE-induced energetic ion transport. These results will be important and interesting information for AE physics in toroidal plasmas

  11. Structure and Stability of Deflagrations in Porous Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    stephen B. Margolis; Forman A. Williams

    1999-03-01

    Theoretical two-phase-flow analyses have recently been developed to describe the structure and stability of multi-phase deflagrations in porous energetic materials, in both confined and unconfined geometries. The results of these studies are reviewed, with an emphasis on the fundamental differences that emerge with respect to the two types of geometries. In particular, pressure gradients are usually negligible in unconfined systems, whereas the confined problem is generally characterized by a significant gas-phase pressure difference, or overpressure, between the burned and unburned regions. The latter leads to a strong convective influence on the burning rate arising from the pressure-driven permeation of hot gases into the solid/gas region and the consequent preheating of the unburned material. It is also shown how asymptotic models that are suitable for analyzing stability may be derived based on the largeness of an overall activation-energy parameter. From an analysis of such models, it is shown that the effects of porosity and two-phase flow are generally destabilizing, suggesting that degraded propellants, which exhibit greater porosity than their pristine counterparts, may be more readily subject to combustion instability and nonsteady deflagration.

  12. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  13. High-resolution transmission electron microscopy and energetics of flattened carbon nonoshells

    International Nuclear Information System (INIS)

    Bourgeois, L.N.; Bursill, L.A.

    1998-01-01

    When examined under a high-resolution transmission electron microscope, carbon soot produced alongside buckytubes in an arc-discharge is found to contain a small percentage of flattened carbon shells. These objects are shown to be small graphite flakes which eliminated their dangling bonds by terminating their edges with highly curved junctions. Ideal models for these structures are presented, and their energy estimated. The calculations show that the establishment of highly curved junctions is energetically favourable for a graphite flake in an inert atmosphere. Flattened shells also appear more stable than their 'inflated' counterparts (fullerene 'onions' and buckytubes) when the shell dimensions obey specific criteria.(authors)

  14. Mode structure symmetry breaking of energetic particle driven beta-induced Alfvén eigenmode

    Science.gov (United States)

    Lu, Z. X.; Wang, X.; Lauber, Ph.; Zonca, F.

    2018-01-01

    The mode structure symmetry breaking of energetic particle driven Beta-induced Alfvén Eigenmode (BAE) is studied based on global theory and simulation. The weak coupling formula gives a reasonable estimate of the local eigenvalue compared with global hybrid simulation using XHMGC. The non-perturbative effect of energetic particles on global mode structure symmetry breaking in radial and parallel (along B) directions is demonstrated. With the contribution from energetic particles, two dimensional (radial and poloidal) BAE mode structures with symmetric/asymmetric tails are produced using an analytical model. It is demonstrated that the symmetry breaking in radial and parallel directions is intimately connected. The effects of mode structure symmetry breaking on nonlinear physics, energetic particle transport, and the possible insight for experimental studies are discussed.

  15. Theoretical study of energetic interactions between high temperature molten materials and a low temperature fluid

    International Nuclear Information System (INIS)

    Chen, S.H.H.

    1984-01-01

    Analytical models are developed to predict the hydrodynamical transients resulting from the energetic interactions between a high temperature molten material and a low temperature liquid coolant. Initially, the molten material at high temperature and pressure is separated from the low temperature fluid by a solid metal barrier. Upon contact between the molten material and solid barrier, thermal attack occurs eventually resulting in a loss of barrier integrity. Subsequently, the molten material is injected into the liquid pool resulting in energetic interactions. The analytical models integrate a wide variety of potentially mutually-interacting transport phenomena which dominate the transient process into a deterministic scheme to predict the hydrodynamic transient process into a deterministic scheme to predict the hydrodynamic transient process. The model calculations are compared with the existing experimental results to show its engineering accuracy and adequacy in predicting such energetic interactions. Two models are formulated to bracket the transport of molten material to the rupture site for the reactor system. The stratified model minimized the rate of transport of material to the break location while the dispersed model maximized such transport. These two models are applied to a reference pressure tube reactor to evaluate the pressure transients and the potential structural damages as a result of a postulated severe primary coolant blockage in a power channel

  16. Ionization of water clusters by fast Highly Charged Ions: Stability, fragmentation, energetics and charge mobility

    International Nuclear Information System (INIS)

    Legendre, S; Maisonny, R; Capron, M; Bernigaud, V; Cassimi, A; Gervais, B; Grandin, J-P; Huber, B A; Manil, B; Rousseau, P; Tarisien, M; Adoui, L; Lopez-Tarifa, P; AlcamI, M; MartIn, F; Politis, M-F; Penhoat, M A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study dissociative ionization of water clusters by impact of fast Ni ions. Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized clusters. An unusual stability of the (H 2 O) 4 H ''+ ion is observed, which could be the signature of the so called ''Eigen'' structure in gas phase water clusters. High charge mobility, responsible for the formation of protonated water clusters that dominate the mass spectrum, is evidenced. These results are supported by CPMD and TDDFT simulations, which also reveal the mechanisms of such mobility.

  17. Left ventricular functional, structural and energetic effects of normal aging: Comparison with hypertension.

    Directory of Open Access Journals (Sweden)

    Jehill D Parikh

    Full Text Available Both aging and hypertension are significant risk factors for heart failure in the elderly. The purpose of this study was to determine how aging, with and without hypertension, affects left ventricular function.Cross-sectional study of magnetic resonance imaging and 31P spectroscopy-based measurements of left ventricular structure, global function, strains, pulse wave velocity, high energy phosphate metabolism in 48 normal subjects and 40 treated hypertensive patients (though no other cardiovascular disease or diabetes stratified into 3 age deciles from 50-79 years.Normal aging was associated with significant increases in systolic blood pressure, vascular stiffness, torsion, and impaired diastolic function (all P<0.05. Age-matched hypertension exacerbated the effects of aging on systolic pressure, and diastolic function. Hypertension alone, and not aging, was associated with increased left ventricular mass index, reduced energetic reserve, reduced longitudinal shortening and increased endocardial circumferential shortening (all P<0.05. Multiple linear regression analysis showed that these unique hypertensive features were significantly related to systolic blood pressure (P<0.05.1 Hypertension adds to the age-related changes in systolic blood pressure and diastolic function; 2 hypertension is uniquely associated with changes in several aspects of left ventricular structure, function, systolic strains, and energetics; and 3 these uniquely hypertensive-associated parameters are related to the level of systolic blood pressure and so are potentially modifiable.

  18. Multiscale Modeling of Grain Boundaries in ZrB2: Structure, Energetics, and Thermal Resistance

    Science.gov (United States)

    Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W., Jr.

    2012-01-01

    A combination of ab initio, atomistic and finite element methods (FEM) were used to investigate the structures, energetics and lattice thermal conductance of grain boundaries for the ultra high temperature ceramic ZrB2. Atomic models of idealized boundaries were relaxed using density functional theory. Information about bonding across the interfaces was determined from the electron localization function. The Kapitza conductance of larger scale versions of the boundary models were computed using non-equilibrium molecular dynamics. The interfacial thermal parameters together with single crystal thermal conductivities were used as parameters in microstructural computations. FEM meshes were constructed on top of microstructural images. From these computations, the effective thermal conductivity of the polycrystalline structure was determined.

  19. Energetic M1 transitions as a probe of nuclear collectivity at high temperatures

    International Nuclear Information System (INIS)

    Baktash, C.

    1987-01-01

    At ORNL, we have recently utilized the Spin Spectrometer setup to investigate the differential effects of increasing spin and excitation energy on nuclear shape and collectivity in 158 Yb. Along the yrast line of this and other N = 88 nuclei, weakly prolate shapes gradually give way to triaxial, and then finally to non-collective oblate shapes as the spin approaches 40 h-bar. However, above the yrast line, large deformation and collectivity once again sets in. This is evidenced by the emergence of a broad quadrupole structure (E/sub γ/ ≅ 1.2 MeV) in the continuum gamma-ray spectra that grows with increasing temperature. The short (sub ps) lifetimes of these transitions attest to the collective nature of these structures. The emergence and growth of the quadrupole structure at high excitation energies is closely correlated with the appearance of energetic (E/sub γ/ ≅ 2.5 MeV), fast M1 transitions which form another broad structure in the continuum spectra. From the centroid of the M1 bump, a quadrupole deformation parameter of 0.35 is inferred. Because of this sensitivity, these energetic M1 transitions provide a unique probe of nuclear shape in the excitation energy range of ≅ 3 to 10 MeV. 6 refs., 2 figs

  20. Identification of high-energetic particles by transition radiation

    International Nuclear Information System (INIS)

    Struczinski, W.

    1986-01-01

    This thesis gives a comprehensive survey on the application of the transition radiation for the particle identification. After a short historical review on the prediction and the detection of the transition radiation its theoretical foundations are more precisely explained. They form the foundations for the construction of an optimal transition radiation detector the principal construction of which is described. The next chapter shows some experiments by which the main predictions of the transition-radiation theory are confirmed. Then the construction and operation of two transition-radiation detectors are described which were applied at the ISR respectively SPS in the CERN in Geneva in complex experiments. The detector applied at the ISR served for the e ± identification. With two lithium radiators which were followed by xenon-filled proportional chambers an e/π separation of ≅ 10 -2 could be reached. The transition-radiation detector applied in the SPS was integrated into the European Hybrid Spectrometer. It served for the identification of high-energetic pions (> or approx. 90 GeV) against kaons and protons. With twenty units of carbon-fiber radiators which were followed by xenon-filled proportional chambers a π/K, p separation of better than 1:20 for momenta above 100 GeV could be reached. The cluster-counting method is then presented. Finally, a survey on the contemporary status in the development of transition-radiation detectors for the e/π separation is given. It is shown that by an about half a meter long detector the radiators of which consist of carbon fibers an e/π separation in the order of magnitude of ≅ 10 -2 can be reached. (orig./HSI) [de

  1. Creating high energy density in nuclei with energetic antiparticles

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1986-01-01

    The possibility of creating a phase change in nuclear matter using energetic antiprotons and antideuterons is examined. It is found that energy densities of the order of 2 GeV/c can be obtained for periods of approx.2 fm/c with the proper experimental selection of events. 10 refs., 7 figs

  2. Structural and energetic study of cation-π-cation interactions in proteins.

    Science.gov (United States)

    Pinheiro, Silvana; Soteras, Ignacio; Gelpí, Josep Lluis; Dehez, François; Chipot, Christophe; Luque, F Javier; Curutchet, Carles

    2017-04-12

    Cation-π interactions of aromatic rings and positively charged groups are among the most important interactions in structural biology. The role and energetic characteristics of these interactions are well established. However, the occurrence of cation-π-cation interactions is an unexpected motif, which raises intriguing questions about its functional role in proteins. We present a statistical analysis of the occurrence, composition and geometrical preferences of cation-π-cation interactions identified in a set of non-redundant protein structures taken from the Protein Data Bank. Our results demonstrate that this structural motif is observed at a small, albeit non-negligible frequency in proteins, and suggest a preference to establish cation-π-cation motifs with Trp, followed by Tyr and Phe. Furthermore, we have found that cation-π-cation interactions tend to be highly conserved, which supports their structural or functional role. Finally, we have performed an energetic analysis of a representative subset of cation-π-cation complexes combining quantum-chemical and continuum solvation calculations. Our results point out that the protein environment can strongly screen the cation-cation repulsion, leading to an attractive interaction in 64% of the complexes analyzed. Together with the high degree of conservation observed, these results suggest a potential stabilizing role in the protein fold, as demonstrated recently for a miniature protein (Craven et al., J. Am. Chem. Soc. 2016, 138, 1543). From a computational point of view, the significant contribution of non-additive three-body terms challenges the suitability of standard additive force fields for describing cation-π-cation motifs in molecular simulations.

  3. Stabilized super-thermite colloids: A new generation of advanced highly energetic materials

    Science.gov (United States)

    Elbasuney, Sherif; Gaber Zaky, M.; Radwan, Mostafa; Mostafa, Sherif F.

    2017-10-01

    One of the great impetus of nanotechnology on energetic materials is the achievement of nanothermites (metal-oxide/metal) which are characterized by massive heat output. Yet, full exploitation of super-thermites in highly energetic systems has not been achieved. This manuscript reports on the sustainable fabrication of colloidal Fe2O3 and CuO nanoparticles for thermite applications. TEM micrographs demonstrated mono-dispersed Fe2O3 and CuO with an average particle size of 3 and 15 nm respectively. XRD diffractograms demonstrated highly crystalline materials. SEM micrographs demonstrated a great tendency of the developed oxides to aggregate over drying process. The effective integration and dispersion of mono-dispersed colloidal thermite particles into energetic systems are vital for enhanced performance. Aluminum is of interest as highly energetic metal fuel. In this paper, synthesized Fe2O3 and CuO nanoparticles were re-dispersed in isopropyl alcohol (IPA) with aluminum nanoparticles using ultrasonic prope homogenizer. The colloidal thermite peraticles can be intgegrated into highly energetic system for subsequent nanocomposite development. Thanks to stabilization of colloidal CuO nanoparticles in IPA which could offer intimate mixing between oxidizer and metal fuel. The stabilization mechanism of CuO in IPA was correlated to steric stabilization with solvent molecules. This approach eliminated nanoparticle drying and the re-dispersion of dry aggregates into energetic materials. This manuscript shaded the light on the real development of colloidal thermite mixtures and their integration into highly energetic systems.

  4. 2,1,3-Benzothiadiazole: Study of its structure, energetics and aromaticity

    International Nuclear Information System (INIS)

    Miranda, Margarida S.; Matos, M. Agostinha R.; Morais, Victor M.F.; Liebman, Joel F.

    2012-01-01

    Highlights: ► Enthalpies of formation of 2,1,3-benzothiadiazole were determined. ► The structure of 2,1,3-benzothiadiazole was obtained from DFT calculations. ► Calculations allowed estimation of enthalpy of formation in gas phase. ► The aromaticity was evaluated by analysis of NICS values. - Abstract: The present work reports an experimental study on the energetics of 2,1,3-benzothiadiazole and a computational study on its structure, energetics and aromaticity. In the experimental part the standard (p° = 0.1 MPa) massic energy of combustion, at T = 298.15 K, was measured by rotating bomb combustion calorimetry, in oxygen, and allowed the calculation of the respective standard molar enthalpy of formation, in the crystalline phase, at T = 298.15 K. The standard molar enthalpy of sublimation, at T = 298.15 K, was measured by high-temperature Calvet microcalorimetry. From the combination of data obtained by both techniques we were able to calculate the respective standard molar enthalpy of formation, in the gas phase, at T = 298.15 K: (276.6 ± 2.5) kJ · mol −1 . This thermochemical parameter was compared with estimates obtained from high level ab initio quantum chemical calculations using the G3(MP2)//B3LYP composite method and various appropriately chosen reactions. The molecular structure of 2,1,3-benzothiadiazole was obtained from DFT calculations with the B3LYP density functional and various basis sets: 6-31G(d), 6-311(d,p), 6-311+G(3df,2p), aug-ccpVTZ and aug-ccpVQZ and its aromaticity and that of some related molecules were evaluated by analysis of nucleus independent chemical shifts (NICS) values.

  5. Interaction of energetic ions with high-density plasmas

    International Nuclear Information System (INIS)

    Gericke, D.O.; Edie, D.; Grinenko, A.; Vorberger, J.

    2010-01-01

    Complete text of publication follows. The talk will review the importance of energetic ions in different inertial confinement fusion scenarios: i) heavy ion beams are very efficient drivers that can deliver the energy for compression in indirect as well as direct drive approaches; ii) the interaction of α-particles, that are created in a burning plasma, with the surrounding cold plasma is essential for creating a burn wave; iii) laser-produced ion beams are also a strong candidate to create the hot spot needed for fast ignition. In all applications the ions interact with dense matter that is characterized by strongly coupled ions and (possibly) partially degenerate electrons. Moreover, the coupling between beam ions and target electrons can be strong as well. Under these conditions, standard approaches for the beam-plasma interactions process are known to fail. The presentation will demonstrate how advanced models for the energy loss of ions in dense plasmas can resolve the issues mentioned above. These models are largely built on quantum kinetic theory that is able to describe degeneracy and strong coupling in a systematic way. In particular, strong interactions require a quantum description for electron-ion collisions in dense plasma environments, which is done by direct solutions of the Schroedinger equation. Degeneracy and collective excitations can be included via the Lenard-Balescu description where strong interactions may be included via a pseudo-potential approach. Finally, results are shown for all three fusion applications described above. The effects related to strong coupling and degeneracy mainly concern the end of the stopping range where the beam ion dose not have enough energy to excite all possible degrees of freedom and, thus, certain processes are frozen out. However, we also find a significant reduction of the range for swift heavy ions in the GeV-range when stopping in dense matter is considered. The stopping range of α-particles in the

  6. Plasma and energetic particle structure of a collisionless quasi-parallel shock

    Science.gov (United States)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Smith, E. J.; Wenzel, K. P.; Reinhard, R.; Sanderson, T. R.; Feldman, W. C.; Parks, G. K.

    1983-01-01

    The quasi-parallel interplanetary shock of November 11-12, 1978 from both the collisionless shock and energetic particle points of view were studied using measurements of the interplanetary magnetic and electric fields, solar wind electrons, plasma and MHD waves, and intermediate and high energy ions obtained on ISEE-1, -2, and -3. The interplanetary environment through which the shock was propagating when it encountered the three spacecraft was characterized; the observations of this shock are documented and current theories of quasi-parallel shock structure and particle acceleration are tested. These observations tend to confirm present self consistent theories of first order Fermi acceleration by shocks and of collisionless shock dissipation involving firehouse instability.

  7. GAP pre-polymer, as an energetic binder and high performance additive for propellants and explosives: A review

    Directory of Open Access Journals (Sweden)

    Mehmet S. Eroglu

    2017-08-01

    Full Text Available In preparation of energetic composite formulations, functionally terminated pre-polymers have been used as binder. After physically mixing the pre-polymers with oxidizing components, metallic fuel, burning rate modifier and other minor ingredients, they are cured with a suitable curing agent to provide physical and chemical stability. These pre-polymers could be functionalized with carboxyl, epoxide or hydroxyl groups at varying average chain functionalities. For carboxyl-terminated pre-polymers, an epoxy functional curing agents could be used. If the pre-polymer possesses hydroxyl groups, isocyanate functional curing agents are the most suitable curing agents in terms of easy and efficient processing. Glycidyl azide polymer (GAP is one of the well-known low-molecular weight energetic liquid pre-polymer, which was developed to use as energetic binder, high performance additive and gas generator for high performance smokeless composite propellant and explosive formulations. Linear or branched GAP can be synthesized by nucleophilic substitution reaction of corresponding poly(epichlorohydrin (PECH with sodium azide through replacement of chloromethyl groups of PECH with pendant energetic azido-methyl groups on the polyether main chain. Positive heat of formation (+957 kJ/kg enables exothermic and rapid decomposition of GAP producing fuel rich gases. Its polyether main chain provides GAP with relatively low glass transition temperature (Tg= - 48 oC and presence of hydroxyl functional groups allows it to have easy processing in curing with isocyanate curing agents to form covalently crosslinked polyurethane structure. These outstanding properties of GAP enable it to be used as energetic polymeric binder and high performance additive in preparation of energetic materials and low vulnerable explosives.

  8. High pressure study of a highly energetic nitrogen-rich carbon nitride, cyanuric triazide

    Energy Technology Data Exchange (ETDEWEB)

    Laniel, Dominique; Desgreniers, Serge [Laboratoire de physique des solides denses, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Downie, Laura E. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Smith, Jesse S. [High Pressure Collaborative Access Team, Carnegie Institution of Washington, Argonne, Illinois 60439 (United States); Savard, Didier; Murugesu, Muralee [Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada)

    2014-12-21

    Cyanuric triazide (CTA), a nitrogen-rich energetic material, was compressed in a diamond anvil cell up to 63.2 GPa. Samples were characterized by x-ray diffraction, Raman, and infrared spectroscopy. A phase transition occurring between 29.8 and 30.7 GPa was found by all three techniques. The bulk modulus and its pressure derivative of the low pressure phase were determined by fitting the 300 K isothermal compression data to the Birch-Murnaghan equation of state. Due to the strong photosensitivity of CTA, synchrotron generated x-rays and visible laser radiation both lead to the progressive conversion of CTA into a two dimensional amorphous C=N network, starting from 9.2 GPa. As a result of the conversion, increasingly weak and broad x-ray diffraction lines were recorded from crystalline CTA as a function of pressure. Hence, a definite structure could not be obtained for the high pressure phase of CTA. Results from infrared spectroscopy carried out to 40.5 GPa suggest the high pressure formation of a lattice built of tri-tetrazole molecular units. The decompression study showed stability of the high pressure phase down to 13.9 GPa. Finally, two CTA samples, one loaded with neon and the other with nitrogen, used as pressure transmitting media, were laser-heated to approximately 1100 K and 1500 K while compressed at 37.7 GPa and 42.0 GPa, respectively. In both cases CTA decomposed resulting in amorphous compounds, as recovered at ambient conditions.

  9. The energetic consequences of habitat structure for forest stream salmonids.

    Science.gov (United States)

    Naman, Sean M; Rosenfeld, Jordan S; Kiffney, Peter M; Richardson, John S

    2018-05-08

    1.Increasing habitat availability (i.e. habitat suitable for occupancy) is often assumed to elevate the abundance or production of mobile consumers; however, this relationship is often nonlinear (threshold or unimodal). Identifying the mechanisms underlying these nonlinearities is essential for predicting the ecological impacts of habitat change, yet the functional forms and ultimate causation of consumer-habitat relationships are often poorly understood. 2.Nonlinear effects of habitat on animal abundance may manifest through physical constraints on foraging that restrict consumers from accessing their resources. Subsequent spatial incongruence between consumers and resources should lead to unimodal or saturating effects of habitat availability on consumer production if increasing the area of habitat suitable for consumer occupancy comes at the expense of habitats that generate resources. However, the shape of this relationship could be sensitive to cross-ecosystem prey subsidies, which may be unrelated to recipient habitat structure and result in more linear habitat effects on consumer production. 3.We investigated habitat-productivity relationships for juveniles of stream-rearing Pacific salmon and trout (Oncorhynchus spp.), which typically forage in low-velocity pool habitats, while their prey (drifting benthic invertebrates) are produced upstream in high-velocity riffles. However, juvenile salmonids also consume subsidies of terrestrial invertebrates that may be independent of pool-riffle structure. 4.We measured salmonid biomass production in 13 experimental enclosures each containing a downstream pool and upstream riffle, spanning a gradient of relative pool area (14-80% pool). Increasing pool relative to riffle habitat area decreased prey abundance, leading to a nonlinear saturating effect on fish production. We then used bioenergetics model simulations to examine how the relationship between pool area and salmonid biomass is affected by varying levels of

  10. Structures, energetics and magnetic properties of AunSFem and ...

    African Journals Online (AJOL)

    Bheema

    relating the number of atoms needed to form a compact symmetric structure to an enhanced stability. If the d orbitals ...... This is in agreement with the experimental result of Zhang et al. (1996). .... Extended x-ray absorption fine structure study ...

  11. Structures, Energetics and Spectroscopic Fingerprints of Water Clusters n=2-24

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Soohaeng; Xantheas, Sotiris S.

    2017-06-08

    This chapter discusses the structures, energetics, and vibrational spectra of the first few (n$24) water clusters obtained from high-level electronic structure calculations. The results are discussed in the perspective of being used to parameterize/assess the accuracy of classical and quantum force fields for water. To this end, a general introduction with the classification of those force fields is presented. Several low-lying families of minima for the medium cluster sizes are considered. The transition from the “all surface” to the “fully coordinated” cluster structures occurring at nD17 and its spectroscopic signature is presented. The various families of minima for nD20 are discussed together with the low energy networks of the pentagonal dodecahedron (H2O)20 water cage. Finally, the low-energy networks of the tetrakaidecahedron (T-cage) (H2O)24 cluster are shown and their significance in the construction of periodic lattices of structure I (sI) of the hydrate lattices is discussed.

  12. Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock

    Science.gov (United States)

    Kennel, C. F.; Scarf, F. L.; Coroniti, F. V.; Russell, C. T.; Wenzel, K.-P.; Sanderson, T. R.; Van Nes, P.; Smith, E. J.; Tsurutani, B. T.; Scudder, J. D.

    1984-01-01

    ISEE 1, 2 and 3 data from 1978 on interplanetary magnetic fields, shock waves and particle energetics are examined to characterize a quasi-parallel shock. The intense shock studied exhibited a 640 km/sec velocity. The data covered 1-147 keV protons and electrons and ions with energies exceeding 30 keV in regions both upstream and downstream of the shock, and also the magnitudes of ion-acoustic and MHD waves. The energetic particles and MHD waves began being detected 5 hr before the shock. Intense halo electron fluxes appeared ahead of the shock. A closed magnetic field structure was produced with a front end 700 earth radii from the shock. The energetic protons were cut off from the interior of the magnetic bubble, which contained a markedly increased density of 2-6 keV protons as well as the shock itself.

  13. Structures and energetics of Ga2O3 polymorphs

    International Nuclear Information System (INIS)

    Yoshioka, S; Hayashi, H; Kuwabara, A; Oba, F; Matsunaga, K; Tanaka, I

    2007-01-01

    First-principles calculations are made for five Ga 2 O 3 polymorphs. The structure of ε-Ga 2 O 3 with the space group Pna 2 1 (No. 33, orthorhombic), which is sometimes called κ-Ga 2 O 3 in the literature, is consistent with experimental reports. The structure of γ-Ga 2 O 3 is optimized within 14 inequivalent configurations of defective spinel structures. Phonon dispersion curves of four polymorphs are obtained. The volume expansivity, bulk modulus, and specific heat at constant volume are computed as a function of temperature within the quasi-harmonic approximation. The Helmholtz free energies of the polymorphs are thus compared. The expansivity shows a relationship of β<ε<α<δ, while β<ε<δ<α for the bulk modulus. The formation free energies have the tendency β<ε<α<δ<γ at low temperatures. With the increase of temperature, the difference in free energy between the β-phase and the ε-phase becomes smaller. Eventually the ε phase becomes more stable at above 1600 K

  14. Structural and energetic characteristics of alkali metal hexachlorouranates (5)

    International Nuclear Information System (INIS)

    Kudryashov, V.L.; Suglobova, I.G.; Chirkst, D.Eh.

    1978-01-01

    Structure types and lattice parameters of alkali metal hexachlorouranates (5) have been determined by indicating the X-ray diffraction patterns of polycrystals. α-NaVCl 6 has a cubic structure of the Csub(s)PFsub(6) type; β-NaVCl 6 -trigonal lattice of the LiSbF 6 type; KVCl 6 and RbVCl 6 crystallize in the RbPaF 6 structure type; CsVCl 6 is isomorphous to CsPF 6 . Enthalpy values of hexachlorouranates (5) dissolution in 0.5% FeCl 3 solution and in 2% HCl have been measured and the standard enthalpy values of their formation have been calculated. The energies of crystal lattices and of the uranium-uranium-chlorine bonds have been calculated. When uranium coordination number is 6 the energy of the uranium-chlorine bond is 99.6+-0.5; when this number is 8 the energy equals 101.9+-0.5 kcal/mol

  15. Seeded Reaction Waves in Composites: Fast Structure Transforming Materials that Respond to Energetic Stimuli

    Science.gov (United States)

    2016-10-21

    change in the structure of the capsule system . The temperatures at which the capsules undergo transformation are in accordance with the results in DSC...Structure- Transforming Materials that Respond to Energetic Stimuli Sb. GRANT NUMBER N00014-13-1-0170 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd...encapsulated super- cooled fluids into a polymer matrix allows for rapid changes in mechanical properties. Frontal polymerization within a microvascular

  16. Amorphous-tetrahedral diamondlike carbon layered structures resulting from film growth energetics

    Science.gov (United States)

    Siegal, M. P.; Barbour, J. C.; Provencio, P. N.; Tallant, D. R.; Friedmann, T. A.

    1998-08-01

    High-resolution transmission electron microscopy (HRTEM) shows that amorphous-tetrahedral diamondlike carbon (a-tC) films grown by pulsed-laser deposition on Si(100) consist of three-to-four layers, depending on the growth energetics. We estimate the density of each layer using both HRTEM image contrast and Rutherford backscattering spectrometry. The first carbon layer and final surface layer have relatively low density. The bulk of the film between these two layers has higher density. For films grown under the most energetic conditions, there exists a superdense a-tC layer between the interface and bulk layers. The density of all four layers, and the thickness of the surface and interfacial layers, correlate well with the energetics of the depositing carbon species.

  17. Exploring Ultrafast Structural Dynamics for Energetic Enhancement or Disruption

    Science.gov (United States)

    2016-03-01

    it. In a pump -push/ dump probe experiment, a secondary laser pulse (push/ dump ) is used after the initial perturbation due to the pump pulse. The...increased. The pump -push/ dump probe technique is a difficult experiment that requires a highly stable laser source. Ultrafast pump -probe experiments...decomposition of solids. Journal of Applied Physics. 2001;89:4156–4166. 17. Kee TW. Femtosecond pump -push-probe and pump - dump -probe spectroscopy of

  18. Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane

    Directory of Open Access Journals (Sweden)

    D. Lario

    Full Text Available We study the variability of the heliospheric energetic proton-to-helium abundance ratios during different phases of the solar cycle. We use energetic particle, solar wind, and magnetic field data from the Ulysses, ACE and IMP-8 spacecraft to compare the H/He intensity ratio at high heliographic latitudes and in the ecliptic plane. During the first out-of-ecliptic excursion of Ulysses (1992–1996, the HI-SCALE instrument measured corotating energetic particle intensity enhancements characterized by low values (< 10 of the 0.5–1.0 MeV nucleon-1 H/He intensity ratio. During the second out-of-ecliptic excursion of Ulysses (1999–2002, the more frequent occurrence of solar energetic particle events resulted in almost continuously high (< 20 values of the H/He ratio, even at the highest heliolatitudes reached by Ulysses. Comparison with in-ecliptic measurements from an identical instrument on the ACE spacecraft showed similar H/He values at ACE and Ulysses, suggesting a remarkable uniformity of energetic particle intensities in the solar maximum heliosphere at high heliolatitudes and in the ecliptic plane. In-ecliptic observations of the H/He intensity ratio from the IMP-8 spacecraft show variations between solar maximum and solar minimum similar to those observed by Ulysses at high heliographic latitudes. We suggest that the variation of the H/He intensity ratio throughout the solar cycle is due to the different level of transient solar activity, as well as the different structure and duration that corotating solar wind structures have under solar maximum and solar minimum conditions. During solar minimum, the interactions between the two different types of solar wind streams (slow vs. fast are strong and long-lasting, allowing for a continuous and efficient acceleration of interstellar pickup He +. During solar maximum, transient events of solar origin (characterized by high values of the H/He ratio are able to globally

  19. Energetic materials under high pressures and temperatures: stability, polymorphism and decomposition of RDX

    International Nuclear Information System (INIS)

    Dreger, Z A

    2012-01-01

    A recent progress in understanding the response of energetic crystal of cyclotrimethylene trinitramine (RDX) to high pressures and temperatures is summarized. The optical spectroscopy and imaging studies under static compression and high temperatures provided new insight into phase diagram, polymorphism and decomposition mechanisms at pressures and temperatures relevant to those under shock compression. These results have been used to aid the understanding of processes under shock compression, including the shock-induced phase transition and identification of the crystal phase at decomposition. This work demonstrates that studies under static compression and high temperatures provide important complementary route for elucidating the physical and chemical processes in shocked energetic crystals.

  20. Anionic water pentamer and hexamer clusters: An extensive study of structures and energetics

    Science.gov (United States)

    Ünal, Aslı; Bozkaya, Uǧur

    2018-03-01

    An extensive study of structures and energetics for anionic pentamer and hexamer clusters is performed employing high level ab initio quantum chemical methods, such as the density-fitted orbital-optimized linearized coupled-cluster doubles (DF-OLCCD), coupled-cluster singles and doubles (CCSD), and coupled-cluster singles and doubles with perturbative triples [CCSD(T)] methods. In this study, sixteen anionic pentamer clusters and eighteen anionic hexamer clusters are reported. Relative, binding, and vertical detachment energies (VDE) are presented at the complete basis set limit (CBS), extrapolating energies of aug4-cc-pVTZ and aug4-cc-pVQZ custom basis sets. The largest VDE values obtained at the CCSD(T)/CBS level are 9.9 and 11.2 kcal mol-1 for pentamers and hexamers, respectively, which are in very good agreement with the experimental values of 9.5 and 11.1 kcal mol-1. Our binding energy results, at the CCSD(T)/CBS level, indicate strong bindings in anionic clusters due to hydrogen bond interactions. The average binding energy per water molecules is -5.0 and -5.3 kcal mol-1 for pentamers and hexamers, respectively. Furthermore, our results demonstrate that the DF-OLCCD method approaches to the CCSD(T) quality for anionic clusters. The inexpensive analytic gradients of DF-OLCCD compared to CCSD or CCSD(T) make it very attractive for high-accuracy studies.

  1. Comparison of approximations in density functional theory calculations: Energetics and structure of binary oxides

    Science.gov (United States)

    Hinuma, Yoyo; Hayashi, Hiroyuki; Kumagai, Yu; Tanaka, Isao; Oba, Fumiyasu

    2017-09-01

    High-throughput first-principles calculations based on density functional theory (DFT) are a powerful tool in data-oriented materials research. The choice of approximation to the exchange-correlation functional is crucial as it strongly affects the accuracy of DFT calculations. This study compares performance of seven approximations, six of which are based on Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) with and without Hubbard U and van der Waals corrections (PBE, PBE+U, PBED3, PBED3+U, PBEsol, and PBEsol+U), and the strongly constrained and appropriately normed (SCAN) meta-GGA on the energetics and crystal structure of elementary substances and binary oxides. For the latter, only those with closed-shell electronic structures are considered, examples of which include C u2O , A g2O , MgO, ZnO, CdO, SnO, PbO, A l2O3 , G a2O3 , I n2O3 , L a2O3 , B i2O3 , Si O2 , Sn O2 , Pb O2 , Ti O2 , Zr O2 , Hf O2 , V2O5 , N b2O5 , T a2O5 , Mo O3 , and W O3 . Prototype crystal structures are selected from the Inorganic Crystal Structure Database (ICSD) and cation substitution is used to make a set of existing and hypothetical oxides. Two indices are proposed to quantify the extent of lattice and internal coordinate relaxation during a calculation. The former is based on the second invariant and determinant of the transformation matrix of basis vectors from before relaxation to after relaxation, and the latter is derived from shifts of internal coordinates of atoms in the unit cell. PBED3, PBEsol, and SCAN reproduce experimental lattice parameters of elementary substances and oxides well with few outliers. Notably, PBEsol and SCAN predict the lattice parameters of low dimensional structures comparably well with PBED3, even though these two functionals do not explicitly treat van der Waals interactions. SCAN gives formation enthalpies and Gibbs free energies closest to experimental data, with mean errors (MEs) of 0.01 and -0.04 eV, respectively, and root

  2. Low-energetic hadron interactions in a highly granular calorimeter

    International Nuclear Information System (INIS)

    Feege, Nils

    2011-12-01

    experiment where a re-calibration after installation is not feasible on short time scales. In addition, procedures to identify dead, noisy, and unstable cells in the AHCAL, which affect the detector performance especially at low particle energies, are introduced. The analysis of low-energetic electron data (1 GeV to 20 GeV) presented in this thesis aims at evaluating the AHCAL performance, checking the detector calibration, and validating the understanding of both the detector and the simulations in this energy range. Detailed comparisons between pion data at low energies (2 GeV to 30 GeV) and different models implemented in the Geant4 simulation toolkit are presented as well. This analysis allows for validating the simulations and studying the features of individual models and gives indications for possible refinements of the simulation of hadron cascades. The energy range covered by this analysis is particularly important because it includes the validity limits of several of the investigated models. The imaging capabilities of the AHCAL are exploited to extend the range of comparisons from the overall detector response to topological cascade features. (orig.)

  3. Low-energetic hadron interactions in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Feege, Nils

    2011-12-15

    collider experiment where a re-calibration after installation is not feasible on short time scales. In addition, procedures to identify dead, noisy, and unstable cells in the AHCAL, which affect the detector performance especially at low particle energies, are introduced. The analysis of low-energetic electron data (1 GeV to 20 GeV) presented in this thesis aims at evaluating the AHCAL performance, checking the detector calibration, and validating the understanding of both the detector and the simulations in this energy range. Detailed comparisons between pion data at low energies (2 GeV to 30 GeV) and different models implemented in the Geant4 simulation toolkit are presented as well. This analysis allows for validating the simulations and studying the features of individual models and gives indications for possible refinements of the simulation of hadron cascades. The energy range covered by this analysis is particularly important because it includes the validity limits of several of the investigated models. The imaging capabilities of the AHCAL are exploited to extend the range of comparisons from the overall detector response to topological cascade features. (orig.)

  4. Structures and energetics of hydrated deprotonated cis-pinonic acid anion clusters and their atmospheric relevance

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Gao-Lei; Zhang, Jun; Valiev, Marat; Wang, Xue-Bin

    2017-01-01

    Pinonic acid, a C10-monocarboxylic acid with a hydrophilic –CO2H group and a hydrophobic hydrocarbon backbone, is a key intermediate oxidation product of α-pinene – an important monoterpene compound in biogenic emission processes that influences the atmosphere. Molecular interaction between cis-pinonic acid and water is essential for understanding its role in the formation and growth of pinene-derived secondary organic aerosols. In this work, we studied the structures, energetics, and optical properties of hydrated clusters of cis-pinonate anion (cPA–), the deprotonated form of cis-pinonic acid, by negative ion photoelectron spectroscopy and ab initio theoretical calculations. Our results show that cPA– can adopt two different structural configurations – open and folded. In the absence of waters, the open configuration has the lowest energy and provides the best agreement with the experiment. The addition waters, which mainly interact with the negatively charged -CO2– group, gradually stabilize the folded configuration and lower its energy difference relative to the most stable open-configured structure. Thermochemical and equilibrium hydrate distribution analysis suggests that the mono- and di- hydrates are likely to exist in humid atmospheric environment with high populations. The detailed molecular description of cPA– hydrated clusters unraveled in this study provides a valuable reference for understanding the initial nucleation process and aerosol formation involving organics containing both hydrophilic and hydrophobic groups, as well as for analyzing the optical properties of those organic aerosols.

  5. Amorphous chalcogenide semiconductors for solid state dosimetric systems of high-energetic ionizing radiation

    International Nuclear Information System (INIS)

    Shpotyuk, O.

    1997-01-01

    The application possibilities of amorphous chalcogenide semiconductors use as radiation-sensitive elements of high-energetic (E > 1 MeV) dosimetric systems are analysed. It is shown that investigated materials are characterized by more wide region of registered absorbed doses and low temperature threshold of radiation information bleaching in comparison with well-known analogies based on coloring oxide glasses. (author)

  6. Thermal Energetic Reactor with High Reproduction of Fission Materials

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov

    2012-01-01

    On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  7. Simulation of Metal Particulates in High Energetic Materials

    Science.gov (United States)

    2015-05-28

    temperatures and pressures disintegrate the carbon- fiber casing, thus not producing any fragments. These carbon-fiber casing warheads are a solution...Polymer-Bonded Explosive (PBX) and Livermore’s High-Energy Explosive (LX) are examples of ex- plosives that use “ plastic ” as a binder material. Other...simulation data to empirical data does not provide any benefit to this research due to the complexity of plastically bonded explosives like PBX9501. The

  8. Thermal Energetic Reactor with High Reproduction of Fission Materials

    International Nuclear Information System (INIS)

    Kotov, V.M.

    2012-01-01

    Existing thermal reactors are energy production scale limited because of low portion of raw uranium usage. Fast reactors are limited by reprocessing need of huge mass of raw uranium at the initial stage of development. The possibility of development of thermal reactors with high fission materials reproduction, which solves the problem, is discussed here. Neutron losses are decreased, uranium-thorium fuel with artificial fission materials equilibrium regime is used, additional in-core and out-core neutron sources are used for supplying of high fission materials reproduction. Liquid salt reactors can use dynamic loading regime for this purpose. Preferable construction is channel type reactor with heavy water moderator. Good materials for fuel element shells and channel walls are zirconium alloys enriched by 90Zr. Water cooled reactors with usage 12% of raw uranium and liquid metal cooled reactors with usage 25% of raw uranium are discussed. Reactors with additional neutron sources obtain full usage of raw uranium with small additional energy expenses. On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  9. High resolution, position sensitive detector for energetic particle beams

    International Nuclear Information System (INIS)

    Marsh, E.P.; Strathman, M.D.; Reed, D.A.; Odom, R.W.; Morse, D.H.; Pontau, A.E.

    1993-01-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10 10 ), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 μm for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 μm) with an image resolution of better than 0.5 μm has since been developed and its design is presented. (orig.)

  10. High resolution, position sensitive detector for energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, E P [Charles Evans and Associates, Redwood City, CA (United States); Strathman, M D [Charles Evans and Associates, Redwood City, CA (United States); Reed, D A [Charles Evans and Associates, Redwood City, CA (United States); Odom, R W [Charles Evans and Associates, Redwood City, CA (United States); Morse, D H [Sandia National Labs., Livermore, CA (United States); Pontau, A E [Sandia National Labs., Livermore, CA (United States)

    1993-05-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10[sup 10]), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 [mu]m for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 [mu]m) with an image resolution of better than 0.5 [mu]m has since been developed and its design is presented. (orig.)

  11. Polar conic current sheets as sources and channels of energetic particles in the high-latitude heliosphere

    Science.gov (United States)

    Khabarova, Olga; Malova, Helmi; Kislov, Roman; Zelenyi, Lev; Obridko, Vladimir; Kharshiladze, Alexander; Tokumaru, Munetoshi; Sokół, Justyna; Grzedzielski, Stan; Fujiki, Ken'ichi; Malandraki, Olga

    2017-04-01

    The existence of a large-scale magnetically separated conic region inside the polar coronal hole has been predicted by the Fisk-Parker hybrid heliospheric magnetic field model in the modification of Burger and co-workers (Burger et al., ApJ, 2008). Recently, long-lived conic (or cylindrical) current sheets (CCSs) have been found from Ulysses observations at high heliolatitudes (Khabarova et al., ApJ, 2017). The characteristic scale of these structures is several times lesser than the typical width of coronal holes, and the CCSs can be observed at 2-3 AU for several months. CCS crossings in 1994 and 2007 are characterized by sharp decreases in the solar wind speed and plasma beta typical for predicted profiles of CCSs. In 2007, a CCS was detected directly over the South Pole and strongly highlighted by the interaction with comet McNaught. The finding is confirmed by restorations of solar coronal magnetic field lines that reveal the occurrence of conic-like magnetic separators over the solar poles both in 1994 and 2007. Interplanetary scintillation data analysis also confirms the existence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. The occurrence of long-lived CCSs in the high-latitude solar wind could shed light on how energetic particles reach high latitudes. Energetic particle enhancements up to tens MeV were observed by Ulysses at edges of CCSs both in 1994 and 2007. In 1994 this effect was clearer, probably due to technical reasons. Accelerated particles could be produced either by magnetic reconnection at the edges of a CCS in the solar corona or in the solar wind. We discuss the role of high-latitude CCSs in propagation of energetic particles in the heliosphere and revisit previous studies of energetic particle enhancements at high heliolatitudes. We also suggest that the existence of a CCS can modify the distribution of the solar wind as a function of heliolatitude and consequently impact ionization

  12. High frequency fishbone driven by passing energetic ions in tokamak plasmas

    Science.gov (United States)

    Wang, Feng; Yu, L. M.; Fu, G. Y.; Shen, Wei

    2017-05-01

    High frequency fishbone instability driven by passing energetic ions was first reported in the Princeton beta experiment with tangential neutral-beam-injection (Heidbrink et al 1986 Phys. Rev. Lett. 57 835-8). It could play an important role for ITER-like burning plasmas, where α particles are mostly passing particles. In this work, a generalized energetic ion distribution function and finite drift orbit width effect are considered to improve the theoretical model for passing particle driving fishbone instability. For purely passing energetic ions with zero drift orbit width, the kinetic energy δ {{W}k} is derived analytically. The derived analytic expression is more accurate as compared to the result of previous work (Wang 2001 Phys. Rev. Lett. 86 5286-8). For a generalized energetic ion distribution function, the fishbone dispersion relation is derived and is solved numerically. Numerical results show that broad and off-axis beam density profiles can significantly increase the beam ion beta threshold {βc} for instability and decrease mode frequency.

  13. The structure and energetics of midlatitude disturbances accompanying cold-air outbreaks over East Asia

    Science.gov (United States)

    Lau, N.-C.; Lau, K.-M.

    1984-01-01

    The evolution of extratropical transient waves as they propagate eastward from the Eurasian land mass toward the Pacific during selected cold surge events in the winter Monsoon Experiment (MONEX) is studied. The outstanding cold surge episodes during MONEX are first identified, and the salient synoptic features related to these events are described using composite streamline charts. The structure of rapidly varying disturbances accompanying the cold surges and the associated energetics are examined, and the behavior of those fluctuations over relatively longer time scales is addressed.

  14. Dispersion Corrected Structural Properties and Quasiparticle Band Gaps of Several Organic Energetic Solids.

    Science.gov (United States)

    Appalakondaiah, S; Vaitheeswaran, G; Lebègue, S

    2015-06-18

    We have performed ab initio calculations for a series of energetic solids to explore their structural and electronic properties. To evaluate the ground state volume of these molecular solids, different dispersion correction methods were accounted in DFT, namely the Tkatchenko-Scheffler method (with and without self-consistent screening), Grimme's methods (D2, D3(BJ)), and the vdW-DF method. Our results reveal that dispersion correction methods are essential in understanding these complex structures with van der Waals interactions and hydrogen bonding. The calculated ground state volumes and bulk moduli show that the performance of each method is not unique, and therefore a careful examination is mandatory for interpreting theoretical predictions. This work also emphasizes the importance of quasiparticle calculations in predicting the band gap, which is obtained here with the GW approximation. We find that the obtained band gaps are ranging from 4 to 7 eV for the different compounds, indicating their insulating nature. In addition, we show the essential role of quasiparticle band structure calculations to correlate the gap with the energetic properties.

  15. Structural, energetic and electrical properties of boron nitride nanotubes interacting with DMMP chemical agent

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, M. Darvish, E-mail: ganji_md@yahoo.com [Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol (Iran, Islamic Republic of); Gholian, M.; Mohammadzadeh, S. [Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr (Iran, Islamic Republic of)

    2014-09-30

    Highlights: • ab initio DFT calculations were used for interaction of DMMP with BNNTs. • Full structural optimization was performed for several possible active sites. • Electronic structure of the energetically favorable complexes was analyzed. • The stability of the most stable complex was evaluated at ambient condition. • First-principles calculations showed that DMMP is strongly bound to the small diameter BNNTs. - Abstract: The adsorption of DMMP as an intoxicating chemical warfare agent onto the boron nitride nanotube has been investigated by using density functional theory calculations. Several active sites were considered for both interacting systems and full structural optimization was performed to accurately find the energetically favorable state. It is found that DMMP molecule prefers to be adsorbed strongly on the top site above the B atom of a (5, 0) BNNT with a binding energy of about −103.24 kJ mol{sup −1} and an O–B binding distance of 1.641 Å. We have performed a comparative investigation of BNNTs with different diameters and the results indicate that the DMMP adsorption ability for the side wall of the tubes significantly decreases for higher diameters BNNTs. Furthermore, the adsorption properties of DMMP molecule onto the BNNT have been investigated using the ab initio MD simulation at room temperature. Our result showed that BNNTs facilitates the DMMP detection at ambient conditions for practical applications.

  16. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions

    Science.gov (United States)

    Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Séguin, F. H.; Petrasso, R. D.; Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C.; Le Pape, S.; Mackinnon, A.; Patel, P.

    2012-01-01

    The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005), 10.1364/OPN.16.7.000030], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006), 10.1103/PhysRevLett.97.045001]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D3He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006), 10.1063/1.2228252]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.

  17. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions

    International Nuclear Information System (INIS)

    Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Seguin, F. H.; Petrasso, R. D.; Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C.; Le Pape, S.; Mackinnon, A.; Patel, P.

    2012-01-01

    The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005)], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006)]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D 3 He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006)]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.

  18. Amorphous chalcogenide semiconductors for solid state dosimetric systems of high-energetic ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Pedagogical University, Czestochowa (Poland)]|[Institute of Materials, Lvov (Ukraine)

    1997-12-31

    The application possibilities of amorphous chalcogenide semiconductors use as radiation-sensitive elements of high-energetic (E > 1 MeV) dosimetric systems are analysed. It is shown that investigated materials are characterized by more wide region of registered absorbed doses and low temperature threshold of radiation information bleaching in comparison with well-known analogies based on coloring oxide glasses. (author). 16 refs, 1 tab.

  19. Evidence against the energetic cost hypothesis for the short introns in highly expressed genes

    Directory of Open Access Journals (Sweden)

    Niu Deng-Ke

    2008-05-01

    Full Text Available Abstract Background In animals, the moss Physcomitrella patens and the pollen of Arabidopsis thaliana, highly expressed genes have shorter introns than weakly expressed genes. A popular explanation for this is selection for transcription efficiency, which includes two sub-hypotheses: to minimize the energetic cost or to minimize the time cost. Results In an individual human, different organs may differ up to hundreds of times in cell number (for example, a liver versus a hypothalamus. Considered at the individual level, a gene specifically expressed in a large organ is actually transcribed tens or hundreds of times more than a gene with a similar expression level (a measure of mRNA abundance per cell specifically expressed in a small organ. According to the energetic cost hypothesis, the former should have shorter introns than the latter. However, in humans and mice we have not found significant differences in intron length between large-tissue/organ-specific genes and small-tissue/organ-specific genes with similar expression levels. Qualitative estimation shows that the deleterious effect (that is, the energetic burden of long introns in highly expressed genes is too negligible to be efficiently selected against in mammals. Conclusion The short introns in highly expressed genes should not be attributed to energy constraint. We evaluated evidence for the time cost hypothesis and other alternatives.

  20. Kinetic and energetic approaches to analysis of scabbing fracture of structural steels under thermal shock

    International Nuclear Information System (INIS)

    Molitvin, A.M.

    2002-01-01

    The regularities of the scabbing fracture of nine brands of structural steels under the conditions of the impact of the nuclear explosion X-ray irradiation are studied. The time dependences of the scabbing strength of the structural materials under thermal shock, initiated by the X-ray irradiation, are established within the frames of the approach to the problem on the scabbing fracture. The time dependences of the critical specific energy of the steels fracture under the conditions of the X-ray irradiation effect are determined within the frames of the energetic approach to the problem on the scabbing fracture, based on the comparison of the sample energy reserve and fracture work [ru

  1. The structure and dynamics of energetic displacement cascades in Cu and Ni. A molecular dynamics computer simulation study

    International Nuclear Information System (INIS)

    Diaz de la Rubia, T.

    1989-01-01

    The primary state of damage present in a solid as a result of particle irradiation has been a topic of interest to the physics and materials research community over the last forty years. Energetic displacement cascades resulting from the heavy ion irradiation of a solid play a prominent role in radiation damage and non-equilibrium processing of materials; however, their study has been hampered by the small size (∼10 -20 cm 3 ) and short lifetime (∼10 -11 s) as well as by their highly non-homogeneous nature. In this work, the molecular dynamics computer simulation technique is employed to study the structure and dynamics of energetic displacement cascades in Cu and Ni. The atomic interactions in Cu were described with the use of the Gibson II form of the Born-Mayer pair potential while for Ni the Johnson-Erginsoy pair potential was employed. Calculations were also carried out with the use of the embedded atom method many-body potentials. The results provide the first detailed microscopic description of the evolution of the cascade. The author shows for the first time, that a process akin to melting takes place in the core of the cascade. Atomic mixing, point defect production and point defect agglomeration, all processes directly related to the evolution of the cascade, are then explained in terms of a simple model in which the liquid-like nature of the cascade plays a dominant role in determining the primary state of damage

  2. Nanoclusters in bcc-Fe containing vacancies, copper and nickel: Structure and energetics

    International Nuclear Information System (INIS)

    Al-Motasem, A.T.; Posselt, M.; Bergner, F.

    2011-01-01

    Highlights: → Fe-Cu-Ni model alloys for RPV steels. → Atomistic simulation, mainly MMC and MD simulations. → Finding the most stable configurations of defect clusters. → Energetics of clusters, formation and binding energies. → Size dependence of monomer binding energy formula as input for OKMC methods. - Abstract: The most stable atomic configuration of coherent nanoclusters in bcc-Fe formed by vacancies, Cu and Ni as well as the corresponding energetics are determined by on-lattice simulated annealing and subsequent off-lattice relaxation. An interatomic potential recently designed for investigations of radiation-induced effects in the ternary Fe-Cu-Ni system is used in the atomistic simulations. Ternary v l Cu m Ni n clusters show a core-shell structure with vacancies in the core coated by a shell of Cu atoms, followed by a shell of Ni atoms. In binary Cu m Ni n clusters the Cu core is covered by a shell of Ni atoms. On the contrary, binary v l Ni n clusters consist of a pure vacancy cluster surrounded by an agglomeration of Ni atoms. The latter is similar to a pure Ni cluster (Ni n ) and consists of Ni atoms at the second nearest neighbor distance. Because of this special arrangement of atoms v l Ni n and Ni n are also called quasi-clusters. In all clusters investigated Ni atoms may be nearest neighbors of Cu atoms but never nearest neighbors of vacancies or other Ni atoms. The atomic configurations found can be understood by the peculiarities of the binding between vacancies, Cu, Ni and Fe atoms. The structure obtained for Cu m Ni n clusters is in agreement with previous theoretical results and with indications from measurements while for the other clusters reference data are not available. It is shown that the presence of Ni atoms promotes the nucleation of clusters containing vacancies and Cu. This is in agreement with experimental observations and with recent results of atomic kinetic Monte Carlo simulations. Based on the specific atomic structure

  3. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    Energy Technology Data Exchange (ETDEWEB)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States); Assadi, Amir [University of Wisconsin-Madison, Mathematics Department (United States); Markley, John L. [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States)], E-mail: eghbalni@nmrfam.wisc.edu

    2005-05-15

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states.

  4. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    International Nuclear Information System (INIS)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash; Assadi, Amir; Markley, John L.

    2005-01-01

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states

  5. Achieving a long-lived high-beta plasma state by energetic beam injection

    Science.gov (United States)

    Guo, H. Y.; Binderbauer, M. W.; Tajima, T.; Milroy, R. D.; Steinhauer, L. C.; Yang, X.; Garate, E. G.; Gota, H.; Korepanov, S.; Necas, A.; Roche, T.; Smirnov, A.; Trask, E.

    2015-04-01

    Developing a stable plasma state with high-beta (ratio of plasma to magnetic pressures) is of critical importance for an economic magnetic fusion reactor. At the forefront of this endeavour is the field-reversed configuration. Here we demonstrate the kinetic stabilizing effect of fast ions on a disruptive magneto-hydrodynamic instability, known as a tilt mode, which poses a central obstacle to further field-reversed configuration development, by energetic beam injection. This technique, combined with the synergistic effect of active plasma boundary control, enables a fully stable ultra-high-beta (approaching 100%) plasma with a long lifetime.

  6. Structural and energetic effects of A2A adenosine receptor mutations on agonist and antagonist binding.

    Directory of Open Access Journals (Sweden)

    Henrik Keränen

    Full Text Available To predict structural and energetic effects of point mutations on ligand binding is of considerable interest in biochemistry and pharmacology. This is not only useful in connection with site-directed mutagenesis experiments, but could also allow interpretation and prediction of individual responses to drug treatment. For G-protein coupled receptors systematic mutagenesis has provided the major part of functional data as structural information until recently has been very limited. For the pharmacologically important A(2A adenosine receptor, extensive site-directed mutagenesis data on agonist and antagonist binding is available and crystal structures of both types of complexes have been determined. Here, we employ a computational strategy, based on molecular dynamics free energy simulations, to rationalize and interpret available alanine-scanning experiments for both agonist and antagonist binding to this receptor. These computer simulations show excellent agreement with the experimental data and, most importantly, reveal the molecular details behind the observed effects which are often not immediately evident from the crystal structures. The work further provides a distinct validation of the computational strategy used to assess effects of point-mutations on ligand binding. It also highlights the importance of considering not only protein-ligand interactions but also those mediated by solvent water molecules, in ligand design projects.

  7. The quiet time structure of energetic (35--560 keV) radiation belt electrons

    International Nuclear Information System (INIS)

    Lyons, L.R.; Williams, D.J.

    1975-01-01

    Detailed Explorer 45 equatorial observations of the quiet time structure of radiation belt electrons (35--560 keV) for 1.7approximately-less-thanLapproximately-less-than5.2 are presented. Throughout the slot region and outer regions of the plasmasphere the observed pitch angle distributions are found to agree with those expected from resonant interactions with the plasmaspheric whistler mode wave band. Coulomb collisions become the dominant loss mechanism within the inner zone. The overall two-zone structure of the observed radial profiles is found to agree with the equilibrium structure expected to result from a balance between pitch angle scattering losses and radial diffusion from an average outer zone source. This agreement suggests that the dominant quiet time source and loss mechanisms have been identified and evaluated for energetic radiation belt electrons within the plasmasphere. In the outer regions of the plasmasphere (Lapprox.5) the equilibrium structure is observed to be modified by daily flux variations associated with changes in the level of magnetic activity that occur even during relatively quiet times. Within the inner region of the plasmasphere (Lapproximately-less-than3.5), electron fluxes are decoupled from these magnetic activity variations by the long time scales (>10 days) required for pitch angle and radial diffusion. Consequently, fluxes of these electrons are observed to remain nearly constant at equilibrium levels throughout the quiet periods examined

  8. Interchannel interactions in high-energetic radiationless transitions of neon-like ions

    International Nuclear Information System (INIS)

    Fritzsche, S.; Zschornack, G.; Musiol, G.; Soff, G.

    1990-07-01

    Relativistic K-LL Auger transition rates in intermediate coupling including interchannel interactions are presented for nine ions in the neon-isoelectronic sequence up to uranium. For neutral neon a comparison with experimental data is given. We demonstrate for the first time, that intercontinuum interactions result in a remarkable redistribution of individual transition rates even in high-energetic transitions. For instance, channel mixing shifts the K-L 1 L 1 rate by about 4% and the K-L 3 L 3 (J = 0) rate by about 11% in neon-like uranium, while total Auger rates are almost not affected. (orig.)

  9. The production of Higgs bosons in high-energetic heavy-ion collisions

    International Nuclear Information System (INIS)

    Vidovic, M.

    1991-09-01

    The aim of this diploma thesis was to produce the Higgs boson in high-energetic, peripheral heavy-ion collisions by purely electromagnetic processes. In order to take only peripheral collisions into consideration and to avoid the strong hadronic background of central collisions the equivalent-photon method for the case of the Higgs boson was extended concerning an impact-parameter study. By this it was possible to exclude the contribution of central collisions by cut in the impact parameter at b=2R, in order to determine thus the production rate for purely peripheral collisions. (orig./HSI) [de

  10. Accurate structures and energetics of neutral-framework zeotypes from dispersion-corrected DFT calculations

    Science.gov (United States)

    Fischer, Michael; Angel, Ross J.

    2017-05-01

    Density-functional theory (DFT) calculations incorporating a pairwise dispersion correction were employed to optimize the structures of various neutral-framework compounds with zeolite topologies. The calculations used the PBE functional for solids (PBEsol) in combination with two different dispersion correction schemes, the D2 correction devised by Grimme and the TS correction of Tkatchenko and Scheffler. In the first part of the study, a benchmarking of the DFT-optimized structures against experimental crystal structure data was carried out, considering a total of 14 structures (8 all-silica zeolites, 4 aluminophosphate zeotypes, and 2 dense phases). Both PBEsol-D2 and PBEsol-TS showed an excellent performance, improving significantly over the best-performing approach identified in a previous study (PBE-TS). The temperature dependence of lattice parameters and bond lengths was assessed for those zeotypes where the available experimental data permitted such an analysis. In most instances, the agreement between DFT and experiment improved when the experimental data were corrected for the effects of thermal motion and when low-temperature structure data rather than room-temperature structure data were used as a reference. In the second part, a benchmarking against experimental enthalpies of transition (with respect to α-quartz) was carried out for 16 all-silica zeolites. Excellent agreement was obtained with the PBEsol-D2 functional, with the overall error being in the same range as the experimental uncertainty. Altogether, PBEsol-D2 can be recommended as a computationally efficient DFT approach that simultaneously delivers accurate structures and energetics of neutral-framework zeotypes.

  11. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams

    Science.gov (United States)

    Chen, Feng

    2009-10-01

    A range of ion beam techniques have been used to fabricate a variety of photonic guiding structures in the well-known lithium niobate (LiNbO3 or LN) crystals that are of great importance in integrated photonics/optics. This paper reviews the up-to-date research progress of ion-beam-processed LiNbO3 photonic structures and reports on their fabrication, characterization, and applications. Ion beams are being used with this material in a wide range of techniques, as exemplified by the following examples. Ion beam milling/etching can remove the selected surface regions of LiNbO3 crystals via the sputtering effects. Ion implantation and swift ion irradiation can form optical waveguide structures by modifying the surface refractive indices of the LiNbO3 wafers. Crystal ion slicing has been used to obtain bulk-quality LiNbO3 single-crystalline thin films or membranes by exfoliating the implanted layer from the original substrate. Focused ion beams can either generate small structures of micron or submicron dimensions, to realize photonic bandgap crystals in LiNbO3, or directly write surface waveguides or other guiding devices in the crystal. Ion beam-enhanced etching has been extensively applied for micro- or nanostructuring of LiNbO3 surfaces. Methods developed to fabricate a range of photonic guiding structures in LiNbO3 are introduced. Modifications of LiNbO3 through the use of various energetic ion beams, including changes in refractive index and properties related to the photonic guiding structures as well as to the materials (i.e., electro-optic, nonlinear optic, luminescent, and photorefractive features), are overviewed in detail. The application of these LiNbO3 photonic guiding structures in both micro- and nanophotonics are briefly summarized.

  12. Energetic Systems

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetic Systems Division provides full-spectrum energetic engineering services (project management, design, analysis, production support, in-service support,...

  13. High power laser research and development at the Laboratory for Laser Energetics

    International Nuclear Information System (INIS)

    Soures, J.M.; McCrory, R.L.; Cerqua, K.A.

    1986-01-01

    As part of its research mission - to investigate the interaction of intense radiation with matter - the Laboratory for Laser Energetics (LLE) of the University of Rochester is developing a number of high-peak power and high-average-power laser systems. In this paper we highlight some of the LLE work on solid-state laser research, development and applications. Specifically, we discuss the performance and operating characteristics of Omega, a twenty-four beam, 4000 Joule, Nd:glass laser system which is frequently tripled using the polarization mismatch scheme. We also discuss progress in efforts to develop high-average-power solid-state laser systems with active-mirror and slab geometries and to implement liquid-crystal devices in high-power Nd:glass lasers. Finally we present results from a program to develop a compact, ultrahigh-peak-power solid-state laser using the concept of frequency chirped pulse amplification

  14. Warming alters energetic structure and function but not resilience of soil food webs

    Science.gov (United States)

    Schwarz, Benjamin; Barnes, Andrew D.; Thakur, Madhav P.; Brose, Ulrich; Ciobanu, Marcel; Reich, Peter B.; Rich, Roy L.; Rosenbaum, Benjamin; Stefanski, Artur; Eisenhauer, Nico

    2017-12-01

    Climate warming is predicted to alter the structure, stability, and functioning of food webs1-5. Yet, despite the importance of soil food webs for energy and nutrient turnover in terrestrial ecosystems, the effects of warming on these food webs—particularly in combination with other global change drivers—are largely unknown. Here, we present results from two complementary field experiments that test the interactive effects of warming with forest canopy disturbance and drought on energy flux in boreal-temperate ecotonal forest soil food webs. The first experiment applied a simultaneous above- and belowground warming treatment (ambient, +1.7 °C, +3.4 °C) to closed-canopy and recently clear-cut forest, simulating common forest disturbance6. The second experiment crossed warming with a summer drought treatment (-40% rainfall) in the clear-cut habitats. We show that warming reduces energy flux to microbes, while forest canopy disturbance and drought facilitates warming-induced increases in energy flux to higher trophic levels and exacerbates the reduction in energy flux to microbes, respectively. Contrary to expectations, we find no change in whole-network resilience to perturbations, but significant losses in ecosystem functioning. Warming thus interacts with forest disturbance and drought, shaping the energetic structure of soil food webs and threatening the provisioning of multiple ecosystem functions in boreal-temperate ecotonal forests.

  15. High energy ions and energetic plasma irradiation effects on aluminum in a Filippov-type plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, M.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)], E-mail: mroshan20@yahoo.com; Rawat, R.S. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Babazadeh, A.R.; Emami, M.; Sadat Kiai, S.M. [Plasma Physics Research Center, AEOI, 14155-1339 Tehran (Iran, Islamic Republic of); Verma, R.; Lin, J.J.; Talebitaher, A.R.; Lee, P.; Springham, S.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)

    2008-12-30

    High energy ions and energetic plasma irradiation of aluminum cathode inserts have been accomplished in nitrogen and argon filled plasma focus device. The Filippov-type plasma focus facility, Dena, with 288 {mu}F capacitor bank and charging voltage of 25 kV (90 kJ maximum storage energy) was first optimized for strong ion beam generation for nitrogen and argon gases by maximizing hard X-ray emission efficiency. X-ray diffraction analysis as well as scanning electron microscopy along with energy dispersive X-ray spectroscopy carried out to study the structural, morphological and compositional profile of the treated samples. Change in preferred orientation, emergence of meta-stable phases, generation of copper micro-droplets, and production of cracks across the sample are demonstrated and discussed. The micro-hardness measurements in Vickers scale reveal that after ion irradiation, the surface hardness of samples is reduced.

  16. Structural and energetic characterization of anhydrous and hemihydrated 2-mercaptoimidazole: Calorimetric, X-ray diffraction, and computational studies

    International Nuclear Information System (INIS)

    Silva, Ana L.R.; Morais, Victor M.F.; Ribeiro da Silva, Maria D.M.C.; Simões, Ricardo G.; Bernardes, Carlos E.S.

    2016-01-01

    Highlights: • Rotating-bomb combustion calorimetry was used to obtain the enthalpy of formation of crystalline 2-mercaptoimidazole. • Enthalpy of sublimation of 2-mercaptoimidazole was measured by Calvet microcalorimetry. • Enthalpy of interaction between substituents is calculated using isodesmic reactions. • Crystal X-ray diffraction determinations for anhydrous and hemihydrate 2-mercaptoimidazole forms were carried. • Gas-phase enthalpies of formation of 2-mercaptoimidazole and 1,3-dihydro-2H-imidazole-2-thione estimated by the G3 method. - Abstract: This paper reports an experimental and theoretical study on the structural and energetic characterization of the 2-mercaptoimidazole (2-MI) in the solid and in the gaseous phases. The single crystal X-ray diffraction determinations on the anhydrous and hemihydrate 2-MI forms were carried out at T = (296 ± 2) K and T = (150 ± 2) K, respectively, and suggest that in both forms the 2-MI molecule is closer to the thione conformation, albeit some single bond character is possible. The energy of combustion of the title compound was measured by rotating-bomb combustion calorimetry, being used to derive the corresponding enthalpy of formation in the crystalline-phase. The enthalpy of sublimation of 2-MI, at T = 298.15 K, was obtained from high temperature Calvet microcalorimetry measurements. These two parameters yielded the gas-phase enthalpy of formation, allowing the inherent energetic analysis of the molecule. This result was discussed together with the corresponding predictions for 2-MI and its tautomer, 1,3-dihydro-2H-imidazole-2-thione, by the G3 method. The dehydration reaction of 2-MI · 0.5H_2O(cr) was also investigated and the corresponding enthalpy of dehydration was determined by Calvet microcalorimetry.

  17. Energetic evaluation of high pressure PEM electrolyzer systems for intermediate storage of renewable energies

    International Nuclear Information System (INIS)

    Bensmann, B.; Hanke-Rauschenbach, R.; Peña Arias, I.K.; Sundmacher, K.

    2013-01-01

    Three pathways for high pressure hydrogen production by means of water electrolysis are energetically compared. Besides the two classic paths, comprising either the pressurization of the product gas (path I) or the mechanical pressurization of the feed water (path II), a third path is discussed. It involves the electrochemical co-compression during the electrolysis. The energetic evaluation is based on a uniform model description of the different hydrogen production pathways. It consists of integral, steady-state balances for energy, entropy and mass as well as a modern equation of state. From this the reversible energy demand is used to identify the inherent thermodynamic drawbacks of the pathways. The additional consideration of irreversibilities allows for the determination of efficiency losses due to device specific characteristics. For hydrogen delivery pressures of up to 40 bar the classical pathways are out-performed by path III. Since the hydrogen is already produced at elevated pressure this eliminates the need for an energy consuming mechanical hydrogen compression and spares the additional energy demand due to the oxygen pressurization. However, with increasing pressure differences the hydrogen back-diffusion strongly decreases the Faradaic efficiency of the asymmetric electrolyzer that has to be compensated by an additional energy supply

  18. Intense energetic electron flux enhancements in Mercury's magnetosphere: An integrated view with high-resolution observations from MESSENGER.

    Science.gov (United States)

    Baker, Daniel N; Dewey, Ryan M; Lawrence, David J; Goldsten, John O; Peplowski, Patrick N; Korth, Haje; Slavin, James A; Krimigis, Stamatios M; Anderson, Brian J; Ho, George C; McNutt, Ralph L; Raines, Jim M; Schriver, David; Solomon, Sean C

    2016-03-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.

  19. Structure and energetics of InN and GaN dimers

    Science.gov (United States)

    Šimová, Lucia; Tzeli, Demeter; Urban, Miroslav; Černušák, Ivan; Theodorakopoulos, Giannoula; Petsalakis, Ioannis D.

    2008-06-01

    Large-scale mapping of various dimers of indium nitride and gallium nitride in singlet and triplet electronic states is reported. Second-order perturbation theory with Møller-Plesset partitioning of the Hamiltonian (MP2) and coupled-cluster with single and double excitations corrected for the triple excitations (CCSD(T)) are used for the geometry determinations and evaluation of excitation and dissociation energies. For gallium and nitrogen we have used the singly augmented correlation-consistent triple-zeta basis set (aug-cc-pVTZ), for indium we have used the aug-cc-pVTZ-pseudopotential basis set. The dissociation energies are corrected for basis set superposition error (BBSE) including geometrical relaxation of the monomers. We compare and discuss the similarities and dissimilarities in the structural patterns and energetics of both groups of isomers, including the effect of the BSSE. Our computations show that there are not only different ground states for In 2N 2 and Ga 2N 2 but also different numbers of stable stationary points on their potential energy surface. We compare our results with the molecular data published so far for these systems.

  20. Structure and energetics of InN and GaN dimers

    International Nuclear Information System (INIS)

    Simova, Lucia; Tzeli, Demeter; Urban, Miroslav; Cernusak, Ivan; Theodorakopoulos, Giannoula; Petsalakis, Ioannis D.

    2008-01-01

    Large-scale mapping of various dimers of indium nitride and gallium nitride in singlet and triplet electronic states is reported. Second-order perturbation theory with Moller-Plesset partitioning of the Hamiltonian (MP2) and coupled-cluster with single and double excitations corrected for the triple excitations (CCSD(T)) are used for the geometry determinations and evaluation of excitation and dissociation energies. For gallium and nitrogen we have used the singly augmented correlation-consistent triple-zeta basis set (aug-cc-pVTZ), for indium we have used the aug-cc-pVTZ-pseudopotential basis set. The dissociation energies are corrected for basis set superposition error (BBSE) including geometrical relaxation of the monomers. We compare and discuss the similarities and dissimilarities in the structural patterns and energetics of both groups of isomers, including the effect of the BSSE. Our computations show that there are not only different ground states for In 2 N 2 and Ga 2 N 2 but also different numbers of stable stationary points on their potential energy surface. We compare our results with the molecular data published so far for these systems

  1. High temporal resolution energetic particle soundings at the magnetopause on November 8, 1977, using ISEE 2

    International Nuclear Information System (INIS)

    Fritz, T.A.; Fahnenstiel, S.C.

    1982-01-01

    We present a detailed analysis of >24 keV ion data obtained from the ISEE 2 satellite on an inbound crossing of the magnetopause at 1130 LT on November 8, 1977, from 0200 to 0330 UT. Based on the technique presented by Williams (1979) of sounding the position of the magnetopause using energetic particle azimuthal asymmetries, we exploit the four second time resolution available on the ISEE 2 satellite to determine the location, structure, orientation, and temporal variation of the magnetopause region. We find that the trapping boundary for energetic ions is sharp and well defined for approx.35 keV ions and that it corresponds most of the time to the time to earthward edge of the plasma boundary layer. Usually magnetosheath plasma penetrated the trapping boundary only up to distances approximately that of the plasma (1 keV) ion gyroradius (approx.100 km). On some occasions magnetosheath-like plasma was observed up to 800 km inside the trapping boundary but these occurrences were usually associated with rapid trapping boundary movement with velocities exceeding 50 km/s. If the trapping boundary determines the position of the last closed field line, the occasional occurrence of magnetosheath plasma deep inside the trapping boundary is inconsistent with accepted merging theories. The determination of the position of the trapping boundary using five separate ion energy channels from 24 to 70 keV was internally consistent for the lowest three channels although the higher energy channels consistently indicated somewhat smaller values. Radial motion was present affecting the position of the trapping boundary on two scales; a wave-like oscillation with a period of approx.105 s superimposed on a larger scale irregular 'breathing' motion. We argue that the wave nature of the trapping boundary was the cause of the slight difference between the higher and lower energy ion trapping boundary locations

  2. Energetic high-voltage breakdowns in vacuum over a large gap for ITER neutral beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Villecroze, F., E-mail: Frederic.villecroze@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Christin, L.; Esch, H.P.L. de; Simonin, A. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Schunke, B.; Svensson, L.; Hemsworth, R.; Boilson, D. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: ► We performed energetic high voltage breakdowns up to 370 kV with a stored energy of 1 kJ. ► No breakdowns at 200 kV could be produced over a gap of 85 mm using 100 cm{sup 2} copper electrodes. ► Electrodes damage was visible after the experiment. ► The number of arcs impacts is orders of magnitude above the number of breakdowns. -- Abstract: CEA has undertaken tests to study the resilience of copper electrodes in vacuum against energetic high-voltage breakdowns using external capacitors to provide the energy. Earlier tests succeeded in dissipating a maximum of 150 J in a 30 mm gap, limited by the equivalent series resistance (ESR) in the external capacitors. Using new ones with an ESR that is a factor of 10 lower it was unsuccessfully tried to produce breakdowns at 200 kV over the 85 mm gap, despite the use of a UV flash lamp and a “field enhancement ring” (FER) that locally increased the electric field on the cathode by 50%. Consequently, the breakdowns had to be produced by raising the voltage to 300–350 kV while maintaining the gap at 85 mm. During these tests, single breakdowns dissipated up to 1140 J in the 85 mm vacuum gap. Inspection of the electrodes revealed that substantial amounts of copper appear have been evaporated from the anode and deposited on to the cathode. Also electrode deconditioning occurred.

  3. Interfacial structures and energetics of the strengthening precipitate phase in creep-resistant Mg-Nd-based alloys.

    Science.gov (United States)

    Choudhuri, D; Banerjee, R; Srinivasan, S G

    2017-01-17

    The extraordinary creep-resistance of Mg-Nd-based alloys can be correlated to the formation of nanoscale-platelets of β 1 -Mg 3 Nd precipitates, that grow along 〈110〉 Mg in bulk hcp-Mg and on dislocation lines. The growth kinetics of β 1 is sluggish even at high temperatures, and presumably occurs via vacancy migration. However, the rationale for the high-temperature stability of precipitate-matrix interfaces and observed growth direction is unknown, and may likely be related to the interfacial structure and excess energy. Therefore, we study two interfaces- {112} β1 /{100} Mg and {111} β1 /{110} Mg - that are commensurate with β 1 /hcp-Mg orientation relationship via first principles calculations. We find that β 1 acquires plate-like morphology to reduce small lattice strain via the formation of energetically favorable {112} β1 /{100} Mg interfaces, and predict that β 1 grows along 〈110〉 Mg on dislocation lines due to the migration of metastable {111} β1 /{110} Mg . Furthermore, electronic charge distribution of the two interfaces studied here indicated that interfacial-energy of coherent precipitates is sensitive to the population of distorted lattice sites, and their spatial extent in the vicinity of interfaces. Our results have implications for alloy design as they suggest that formation of β 1 -like precipitates in the hcp-Mg matrix will require well-bonded coherent interface along precipitate broad-faces, while simultaneously destabilizing other interfaces.

  4. Microhydration effect on structural, energetic and light scattering properties of first branched interstellar molecule ( i-PrCN)

    OpenAIRE

    Chakraborty, Sumana; Routh, Swati; Krishnappa, Madhu

    2015-01-01

    In this work, we have focused on microsolvation of isopropyl cyanide (i-PrCN) as isopropyl cyanide has been recently detected in interstellar space and is of great importance from the astrochemical and bio-chemical point of view for its branching carbon chains. Such branches are needed for many molecules crucial to life, such as the amino acids that build proteins. The phenomenon of the formation of hydrogen bond affects structure, energetic and electric properties of microhydrated isopropyl ...

  5. SIMULATIONS OF LATERAL TRANSPORT AND DROPOUT STRUCTURE OF ENERGETIC PARTICLES FROM IMPULSIVE SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Tooprakai, P. [Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Seripienlert, A.; Ruffolo, D.; Chuychai, P. [Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand); Matthaeus, W. H., E-mail: david.ruf@mahidol.ac.th [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2016-11-10

    We simulate trajectories of energetic particles from impulsive solar flares for 2D+slab models of magnetic turbulence in spherical geometry to study dropout features, i.e., sharp, repeated changes in the particle density. Among random-phase realizations of two-dimensional (2D) turbulence, a spherical harmonic expansion can generate homogeneous turbulence over a sphere, but a 2D fast Fourier transform (FFT) locally mapped onto the lateral coordinates in the region of interest is much faster computationally, and we show that the results are qualitatively similar. We then use the 2D FFT field as input to a 2D MHD simulation, which dynamically generates realistic features of turbulence such as coherent structures. The magnetic field lines and particles spread non-diffusively (ballistically) to a patchy distribution reaching up to 25° from the injection longitude and latitude at r ∼ 1 au. This dropout pattern in field line trajectories has sharper features in the case of the more realistic 2D MHD model, in better qualitative agreement with observations. The initial dropout pattern in particle trajectories is relatively insensitive to particle energy, though the energy affects the pattern’s evolution with time. We make predictions for future observations of solar particles near the Sun (e.g., at 0.25 au), for which we expect a sharp pulse of outgoing particles along the dropout pattern, followed by backscattering that first remains close to the dropout pattern and later exhibits cross-field transport to a distribution that is more diffusive, yet mostly contained within the dropout pattern found at greater distances.

  6. SIMULATIONS OF LATERAL TRANSPORT AND DROPOUT STRUCTURE OF ENERGETIC PARTICLES FROM IMPULSIVE SOLAR FLARES

    International Nuclear Information System (INIS)

    Tooprakai, P.; Seripienlert, A.; Ruffolo, D.; Chuychai, P.; Matthaeus, W. H.

    2016-01-01

    We simulate trajectories of energetic particles from impulsive solar flares for 2D+slab models of magnetic turbulence in spherical geometry to study dropout features, i.e., sharp, repeated changes in the particle density. Among random-phase realizations of two-dimensional (2D) turbulence, a spherical harmonic expansion can generate homogeneous turbulence over a sphere, but a 2D fast Fourier transform (FFT) locally mapped onto the lateral coordinates in the region of interest is much faster computationally, and we show that the results are qualitatively similar. We then use the 2D FFT field as input to a 2D MHD simulation, which dynamically generates realistic features of turbulence such as coherent structures. The magnetic field lines and particles spread non-diffusively (ballistically) to a patchy distribution reaching up to 25° from the injection longitude and latitude at r ∼ 1 au. This dropout pattern in field line trajectories has sharper features in the case of the more realistic 2D MHD model, in better qualitative agreement with observations. The initial dropout pattern in particle trajectories is relatively insensitive to particle energy, though the energy affects the pattern’s evolution with time. We make predictions for future observations of solar particles near the Sun (e.g., at 0.25 au), for which we expect a sharp pulse of outgoing particles along the dropout pattern, followed by backscattering that first remains close to the dropout pattern and later exhibits cross-field transport to a distribution that is more diffusive, yet mostly contained within the dropout pattern found at greater distances.

  7. Structural-energetic interpretation of competition between complex forms in the UBr3-MBr systems

    International Nuclear Information System (INIS)

    Suglobova, I.G.; Chirkst, D.Eh.

    1978-01-01

    The calorimetric method has been used for determining standard enthalpy values of the formation of bromouranates of alkali metals (M 2 UBr 5 ) and for checking the enthalpy value of the uranium tribromide formation. ΔH 0 of UBr 3 formation is -182.2+-0.5 kcal/mol. Enthalpies of the formation of pentabromouranates from binary bromides (and from simple substances) are: -6.6(-384.3) for K 2 VBr 5 , -9.7(-390.9) for Rb 2 VBr 5 , -10.21(-395.0) kcal/mol for Cs 2 VBr 5 . The error is +-0.5(+-10) kcal/mol. For Cs 3 VBr 6 the enthalpy of the formation is -10+-2 (-496+-3) kcal/mol. The M 2 VBr 5 compounds have rhombic lattices of the Tl 2 AlF 5 type. Sizes of elementary cells and uranium-alkali metal distances in polycrystals of the complexes have been determined on the base of X-ray diffraction patterns. Obtained picnometric densities of 4.51 (M=K), 4.79 (M=Rb), and 4.86+-0.01 g/cm 3 (M=Cs) agree with calculated values. The energy of the V(3)-Br bond is 53+-2 kcal/mol when the uranium coordination number equals 6. A new method has been proposed for evaluating the energy of the crystal lattice of the complexes by interionic distance with the aid of linear extrapolation of expeimental data for binary compounds in logarythmic coordinates. The relationship has been shown between the values and the nature of outer-spherical energetic effects and crystal structure of the complexes

  8. High concentrations of H2O2 make aerobic glycolysis energetically more favourable than cellular respiration.

    Directory of Open Access Journals (Sweden)

    Hamid R Molavian

    2016-08-01

    Full Text Available Since the original observation of the Warburg Effect in cancer cells, over eight decades ago, the major question of why aerobic glycolysis is favored over oxidative phosphorylation has remained unresolved. An understanding of this phenomenon may well be the key to the development of more effective cancer therapies. In this paper, we use a semi-empirical method to throw light on this puzzle. We show that aerobic glycolysis is in fact energetically more favorable than oxidative phosphorylation for concentrations of peroxide (H2O2 above some critical threshold value. The fundamental reason for this is the activation and high engagement of the pentose phosphate pathway (PPP in response to the production of reactive oxygen species H2O2 by mitochondria and the high concentration of H2O2 (produced by mitochondria and other sources. This makes oxidative phosphorylation an inefficient source of energy since it leads (despite high levels of ATP production to a concomitant high energy consumption in order to respond to the hazardous waste products resulting from cellular processes associated with this metabolic pathway. We also demonstrate that the high concentration of H2O2 results in an increased glucose consumption, and also increases the lactate production in the case of glycolysis.

  9. Probing the Energetics of Dynactin Filament Assembly and the Binding of Cargo Adaptor Proteins Using Molecular Dynamics Simulation and Electrostatics-Based Structural Modeling.

    Science.gov (United States)

    Zheng, Wenjun

    2017-01-10

    Dynactin, a large multiprotein complex, binds with the cytoplasmic dynein-1 motor and various adaptor proteins to allow recruitment and transportation of cellular cargoes toward the minus end of microtubules. The structure of the dynactin complex is built around an actin-like minifilament with a defined length, which has been visualized in a high-resolution structure of the dynactin filament determined by cryo-electron microscopy (cryo-EM). To understand the energetic basis of dynactin filament assembly, we used molecular dynamics simulation to probe the intersubunit interactions among the actin-like proteins, various capping proteins, and four extended regions of the dynactin shoulder. Our simulations revealed stronger intersubunit interactions at the barbed and pointed ends of the filament and involving the extended regions (compared with the interactions within the filament), which may energetically drive filament termination by the capping proteins and recruitment of the actin-like proteins by the extended regions, two key features of the dynactin filament assembly process. Next, we modeled the unknown binding configuration among dynactin, dynein tails, and a number of coiled-coil adaptor proteins (including several Bicaudal-D and related proteins and three HOOK proteins), and predicted a key set of charged residues involved in their electrostatic interactions. Our modeling is consistent with previous findings of conserved regions, functional sites, and disease mutations in the adaptor proteins and will provide a structural framework for future functional and mutational studies of these adaptor proteins. In sum, this study yielded rich structural and energetic information about dynactin and associated adaptor proteins that cannot be directly obtained from the cryo-EM structures with limited resolutions.

  10. Study of the degradation process of polyimide induced by high energetic ion irradiation

    International Nuclear Information System (INIS)

    Severin, Daniel

    2008-01-01

    The dissertation focuses on the radiation hardness of Kapton under extreme radiation environment conditions. To study ion-beam induced modifications, Kapton foils were irradiated at the GSI linear accelerator UNILAC using several projectiles (e.g. Ti, Mo, Au, and U) within a large fluence regime (1 x 10 10 -5 x 10 12 ions/cm 2 ). The irradiated Kapton foils were analysed by means of infrared and UV/Vis spectroscopy, tensile strength measurement, mass loss analysis, and dielectric relaxation spectroscopy. For testing the radiation stability of Kapton at the cryogenic operation temperature (5-10 K) of the superconducting magnets, additional irradiation experiments were performed at the Grand Accelerateur National d' Ions Lourds (GANIL, France) focusing on the online analysis of the outgassing process of small volatile degradation fragments. The investigations of the electrical properties analysed by dielectric relaxation spectroscopy exhibit a different trend: high fluence irradiations with light ions (e.g. Ti) lead to a slight increase of the conductivity, whereas heavy ions (e.g. Sm, Au) cause a drastic change already in the fluence regime of nonoverlapping tracks (5 x 10 10 ions/cm 2 ). Online analysis of the outgassing process during irradiation at cryogenic temperatures shows the release of a variety of small gaseous molecules (e.g. CO, CO 2 , and short hydro carbons). Also a small amount of large polymer fragments is identified. The results allow the following conclusions which are of special interest for the application of Kapton as insulating material in a high-energetic particle radiation environment. a) The material degradation measured with the optical spectroscopy and tensile strength tests are scalable with the dose deposited by the ions. The high correlation of the results allows the prediction of the mechanical degradation with the simple and non-destructive infrared spectroscopy. The degradation curve points to a critical material degradation which

  11. Study of the degradation process of polyimide induced by high energetic ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Severin, Daniel

    2008-09-19

    The dissertation focuses on the radiation hardness of Kapton under extreme radiation environment conditions. To study ion-beam induced modifications, Kapton foils were irradiated at the GSI linear accelerator UNILAC using several projectiles (e.g. Ti, Mo, Au, and U) within a large fluence regime (1 x 10{sup 10}-5 x 10{sup 12} ions/cm{sup 2}). The irradiated Kapton foils were analysed by means of infrared and UV/Vis spectroscopy, tensile strength measurement, mass loss analysis, and dielectric relaxation spectroscopy. For testing the radiation stability of Kapton at the cryogenic operation temperature (5-10 K) of the superconducting magnets, additional irradiation experiments were performed at the Grand Accelerateur National d' Ions Lourds (GANIL, France) focusing on the online analysis of the outgassing process of small volatile degradation fragments. The investigations of the electrical properties analysed by dielectric relaxation spectroscopy exhibit a different trend: high fluence irradiations with light ions (e.g. Ti) lead to a slight increase of the conductivity, whereas heavy ions (e.g. Sm, Au) cause a drastic change already in the fluence regime of nonoverlapping tracks (5 x 10{sup 10} ions/cm{sup 2}). Online analysis of the outgassing process during irradiation at cryogenic temperatures shows the release of a variety of small gaseous molecules (e.g. CO, CO{sub 2}, and short hydro carbons). Also a small amount of large polymer fragments is identified. The results allow the following conclusions which are of special interest for the application of Kapton as insulating material in a high-energetic particle radiation environment. a) The material degradation measured with the optical spectroscopy and tensile strength tests are scalable with the dose deposited by the ions. The high correlation of the results allows the prediction of the mechanical degradation with the simple and non-destructive infrared spectroscopy. The degradation curve points to a

  12. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.; Komvopoulos, K.

    2012-01-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical

  13. Investigation of the imaging properties of inorganic scintillation screens using high energetic ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Lieberwirth, Alice [TU Darmstadt (Germany); JWG Universitaet Frankfurt/Main (Germany); Forck, Peter; Sieber, Thomas [GSI Darmstadt (Germany); Ensinger, Wolfgang; Lederer, Stephan [TU Darmstadt (Germany); Kester, Oliver [JWG Universitaet Frankfurt/Main (Germany)

    2016-07-01

    Inorganic scintillation screens are a common diagnostics tool in heavy ion accelerators. In order to investigate the imaging properties of various screen materials, four different material compositions were irradiated at GSI, using protons up to Uranium ions as projectiles. Beams were extracted from SIS18 with high energy (300 MeV/u) in slow and fast extraction mode. During irradiation the scintillation response of the screens was simultaneously recorded by two different optical setups to investigate light output, profile characteristics and emission spectra. It was observed, that fast extracted beams induce in general lower light output than slow extracted beams, while the light output per deposited energy decreases with atomic number. The analysis of the spectral emission as well as investigations with classical optical methods showed no significant defect-building in all materials, not even under irradiation with increasing beam intensity or over long time periods. The investigated scintillation screens can be considered as stable under irradiation with high energetic heavy ion pulses and are appropriate for beam diagnostics applications in future accelerator facilities like FAIR. Characteristic properties and application areas of the screens are presented in the poster.

  14. ELM triggering by energetic particle driven mode in wall-stabilized high-β plasmas

    International Nuclear Information System (INIS)

    Matsunaga, G.; Aiba, N.; Shinohara, K.; Asakura, N.; Isayama, A.; Oyama, N.

    2013-01-01

    In the JT-60U high-β plasmas above the no-wall β limit, a triggering of an edge localized mode (ELM) by an energetic particle (EP)-driven mode has been observed. This EP-driven mode is thought to be driven by trapped EPs and it has been named EP-driven wall mode (EWM) on JT-60U (Matsunaga et al 2009 Phys. Rev. Lett. 103 045001). When the EWM appears in an ELMy H-mode phase, ELM crashes are reproducibly synchronized with the EWM bursts. The EWM-triggered ELM has a higher repetition frequency and less energy loss than those of the natural ELM. In order to trigger an ELM by the EP-driven mode, some conditions are thought to be needed, thus an EWM with large amplitude and growth rate, and marginal edge stability. In the scrape-off layer region, several measurements indicate an ion loss induced by the EWM. The ion transport is considered as the EP transport through the edge region. From these observations, the EP contributions to edge stability are discussed as one of the ELM triggering mechanisms. (paper)

  15. Large eddy simulation study of the kinetic energy entrainment by energetic turbulent flow structures in large wind farms

    Science.gov (United States)

    VerHulst, Claire; Meneveau, Charles

    2014-02-01

    In this study, we address the question of how kinetic energy is entrained into large wind turbine arrays and, in particular, how large-scale flow structures contribute to such entrainment. Previous research has shown this entrainment to be an important limiting factor in the performance of very large arrays where the flow becomes fully developed and there is a balance between the forcing of the atmospheric boundary layer and the resistance of the wind turbines. Given the high Reynolds numbers and domain sizes on the order of kilometers, we rely on wall-modeled large eddy simulation (LES) to simulate turbulent flow within the wind farm. Three-dimensional proper orthogonal decomposition (POD) analysis is then used to identify the most energetic flow structures present in the LES data. We quantify the contribution of each POD mode to the kinetic energy entrainment and its dependence on the layout of the wind turbine array. The primary large-scale structures are found to be streamwise, counter-rotating vortices located above the height of the wind turbines. While the flow is periodic, the geometry is not invariant to all horizontal translations due to the presence of the wind turbines and thus POD modes need not be Fourier modes. Differences of the obtained modes with Fourier modes are documented. Some of the modes are responsible for a large fraction of the kinetic energy flux to the wind turbine region. Surprisingly, more flow structures (POD modes) are needed to capture at least 40% of the turbulent kinetic energy, for which the POD analysis is optimal, than are needed to capture at least 40% of the kinetic energy flux to the turbines. For comparison, we consider the cases of aligned and staggered wind turbine arrays in a neutral atmospheric boundary layer as well as a reference case without wind turbines. While the general characteristics of the flow structures are robust, the net kinetic energy entrainment to the turbines depends on the presence and relative

  16. FLARE VERSUS SHOCK ACCELERATION OF HIGH-ENERGY PROTONS IN SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Cliver, E. W.

    2016-01-01

    Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 10 5 ) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ∼2 × 10 3 , similar to those of comparably sized well-connected (W20–W90) SEP events.

  17. Binding energetics of substitutional and interstitial helium and di-helium defects with grain boundary structure in α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Tschopp, M. A., E-mail: mark.tschopp@gatech.edu [Dynamic Research Corporation, (on site at) U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Center for Advanced Vehicular Systems, Mississippi State University, Starkville, Mississippi 39762 (United States); Gao, F.; Yang, L. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Solanki, K. N. [Arizona State University, School for Engineering of Matter, Transport and Energy, Tempe, Arizona 85287 (United States)

    2014-01-21

    The formation/binding energetics and length scales associated with the interaction between He atoms and grain boundaries in BCC α-Fe were explored. Ten different low Σ grain boundaries from the 〈100〉 and 〈110〉 symmetric tilt grain boundary systems were used. In this work, we then calculated formation/binding energies for 1–2 He atoms in the substitutional and interstitial sites (HeV, He{sub 2}V, HeInt, He{sub 2}Int) at all potential grain boundary sites within 15 Å of the boundary (52 826 simulations total). The present results provide detailed information about the interaction energies and length scales of 1–2 He atoms with grain boundaries for the structures examined. A number of interesting new findings emerge from the present study. For instance, the Σ3(112) twin boundary in BCC Fe possesses a much smaller binding energy than other boundaries, which corresponds in long time dynamics simulations to the ability of an interstitial He defect to break away from the boundary in simulations on the order of nanoseconds. Additionally, positive correlations between the calculated formation/binding energies of the He defects (R > 0.9) asserts that the local environment surrounding each site strongly influences the He defect energies and that highly accurate quantum mechanics calculations of lower order defects may be an adequate predictor of higher order defects. Various metrics to quantify or classify the local environment were compared with the He defect binding energies. The present work shows that the binding and formation energies for He defects are important for understanding the physics of He diffusion and trapping by grain boundaries, which can be important for modeling He interactions in polycrystalline steels.

  18. Binding energetics of substitutional and interstitial helium and di-helium defects with grain boundary structure in α-Fe

    International Nuclear Information System (INIS)

    Tschopp, M. A.; Gao, F.; Yang, L.; Solanki, K. N.

    2014-01-01

    The formation/binding energetics and length scales associated with the interaction between He atoms and grain boundaries in BCC α-Fe were explored. Ten different low Σ grain boundaries from the 〈100〉 and 〈110〉 symmetric tilt grain boundary systems were used. In this work, we then calculated formation/binding energies for 1–2 He atoms in the substitutional and interstitial sites (HeV, He 2 V, HeInt, He 2 Int) at all potential grain boundary sites within 15 Å of the boundary (52 826 simulations total). The present results provide detailed information about the interaction energies and length scales of 1–2 He atoms with grain boundaries for the structures examined. A number of interesting new findings emerge from the present study. For instance, the Σ3(112) twin boundary in BCC Fe possesses a much smaller binding energy than other boundaries, which corresponds in long time dynamics simulations to the ability of an interstitial He defect to break away from the boundary in simulations on the order of nanoseconds. Additionally, positive correlations between the calculated formation/binding energies of the He defects (R > 0.9) asserts that the local environment surrounding each site strongly influences the He defect energies and that highly accurate quantum mechanics calculations of lower order defects may be an adequate predictor of higher order defects. Various metrics to quantify or classify the local environment were compared with the He defect binding energies. The present work shows that the binding and formation energies for He defects are important for understanding the physics of He diffusion and trapping by grain boundaries, which can be important for modeling He interactions in polycrystalline steels

  19. Aromaticity and stability going in opposite directions: An energetic, structural, magnetic and electronic study of aminopyrimidines

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Galvão, Tiago L.P.; Rocha, Inês M.; Santos, Ana Filipa L.O.M.

    2012-01-01

    Highlights: ► Δ f H m o (cr) of 2,4-diaminopyrimidine and 2,4,6-triaminopyrimidine were obtained by combustion calorimetry. ► Sublimation thermodynamics of the compounds was studied by Knudsen effusion technique. ► Ab initio computational calculations were performed for mono-, di- and triaminopyrimidine isomers. ► Molecular energetics were correlated with several criteria of aromaticity. ► The influence of intramolecular hydrogen bonds was explored. - Abstract: The relation between molecular energetics and aromaticity was investigated for the interaction between the amino functional group and the nitrogen atoms of the pyridine and pyrimidine rings, using experimental thermodynamic techniques and computational geometries, enthalpies, chemical shifts, atomic charges and the Quantum Theory of Atoms in Molecules. 2,4-diaminopyrimidine and 2,4,6-triaminopyrimidine were studied by static bomb combustion calorimetry and Knudsen effusion technique. The derived gaseous-phase enthalpies of formation together with the enthalpies of formation of the three isomers of aminopyridine reported in the literature, were compared with the calculated computationally ones and extended to other diamino- and triaminopyrimidine isomers using the MP2/6-311++G(d,p) level of theory. The results were analyzed in terms of enthalpy of interaction between substituents and, due to the absence of meaningful stereochemical hindrance, strong inductive effects, or intramolecular hydrogen bonds according to QTAIM results, the resonance electron delocalization plays an almost exclusive role in the very exothermic enthalpies obtained. Therefore, this enthalpy of interaction was used as an experimental energetic measure of resonance effects and analyzed in terms of aromaticity. It was found that more conjugation between substituents means less aromaticity according to the magnetic (NICS) and electronic (Shannon) criteria, but more aromaticity according to the geometric (HOMA) criterion.

  20. Simulations of the atomic structure, energetics, and cross slip of screw dislocations in copper

    DEFF Research Database (Denmark)

    Rasmussen, Torben; Jacobsen, Karsten Wedel; Leffers, Torben

    1997-01-01

    Using nanoscale atomistic simulations it has been possible to address the problem of cross slip of a dissociated screw dislocation in an fee metal (Cu) by a method not suffering from the limitations imposed by elasticity theory. The focus has been on different dislocation configurations relevant...... linear-elasticity theory showing recombination or repulsion of the partials near the free surface. Such recombination at the free surface might be important in the context of cross slip because it allows the creation of the above-mentioned energetically favorable constriction alone. In addition we...... to monitor the annihilation process, thereby determining the detailed dislocation reactions during annihilation....

  1. The Glitches and Rotational History of the Highly Energetic Young Pulsar PSR J0537–6910

    Science.gov (United States)

    Ferdman, R. D.; Archibald, R. F.; Gourgouliatos, K. N.; Kaspi, V. M.

    2018-01-01

    We present a timing and glitch analysis of the young X-ray pulsar PSR J0537‑6910, located within the Large Magellanic Cloud, using 13 yr of data from the now-decommissioned Rossi X-ray Timing Explorer. Rotating with a spin period of 16 ms, PSR J0537‑6910 is the fastest-spinning and most energetic young pulsar known. It also displays the highest glitch activity of any known pulsar. We have found 42 glitches over the data span, corresponding to a glitch rate of 3.2 yr‑1, with an overall glitch activity rate of 8.8× {10}-7 {{yr}}-1. The high glitch frequency has allowed us to study the glitch behavior in ways that are inaccessible in other pulsars. We observe a strong linear correlation between spin frequency glitch magnitude and wait time to the following glitch. We also find that the post-glitch spin-down recovery is well described by a single two-component model fit to all glitches for which we have adequate input data. This consists of an exponential amplitude A=(7.6+/- 1.0)× {10}-14 {{{s}}}-2, decay timescale τ ={27}-6+7 {day}s, and linear slope m=(4.1+/- 0.4)× {10}-16 {{{s}}}-2 {{day}}-1. The latter slope corresponds to a second frequency derivative \\ddot{ν }=(4.7+/- 0.5)× {10}-22 {{{s}}}-3, from which we find an implied braking index n=7.4+/- 0.8. We also present a maximum likelihood technique for searching for periods in event-time data, which we used to both confirm previously published values and determine rotation frequencies in later observations. We discuss the implied constraints on glitch models from the observed behavior of this system, which we argue cannot be fully explained in the context of existing theories.

  2. Ignition and Reaction Analysis of High Loading Nano-Al/Fluoropolymer Energetic Composite Films

    Science.gov (United States)

    2014-01-01

    A novel hybrid binder system for extrudable composite propellant,” International Journal of Energetic Materials and Chemical Propulsion, Vol. 11...Vol. 27, No. 5, 2002, pp. 262-266. 6 Wang, Y., Travas-Sejdic, J., Steiner, R., “Polymer gel electrolyte supported with microporous polyolefin

  3. A theoretical study of molecular structure, optical properties and bond activation of energetic compound FOX-7 under intense electric fields

    Science.gov (United States)

    Tao, Zhiqiang; Wang, Xin; Wei, Yuan; Lv, Li; Wu, Deyin; Yang, Mingli

    2017-02-01

    Molecular structure, vibrational and electronic absorption spectra, chemical reactivity of energetic compound FOX-7, one of the most widely used explosives, were studied computationally in presence of an electrostatic field of 0.01-0.05 a.u. The Csbnd N bond, which usually triggers the decomposition of FOX-7, is shortened/elongated under a parallel/antiparallel field. The Csbnd N bond activation energy varies with the external electric field, decreasing remarkably with the field strength in regardless of the field direction. This is attributed to two aspects: the bond weakening by the field parallel to the Csbnd N bond and the stabilization effect on the transition-state structure by the field antiparallel to the bond. The variations in the structure and property of FOX-7 under the electric fields were further analyzed with its distributional polarizability, which is dependent on the charge transfer characteristics through the Csbnd N bond.

  4. Hepatic mitochondrial energetics during catch-up fat with high-fat diets rich in lard or safflower oil.

    Science.gov (United States)

    Crescenzo, Raffaella; Bianco, Francesca; Falcone, Italia; Tsalouhidou, Sofia; Yepuri, Gayathri; Mougios, Vassilis; Dulloo, Abdul G; Liverini, Giovanna; Iossa, Susanna

    2012-09-01

    We have investigated whether altered hepatic mitochondrial energetics could explain the differential effects of high-fat diets with low or high ω6 polyunsaturated fatty acid content (lard vs. safflower oil) on the efficiency of body fat recovery (catch-up fat) during refeeding after caloric restriction. After 2 weeks of caloric restriction, rats were isocalorically refed with a low-fat diet (LF) or high-fat diets made from either lard or safflower oil for 1 week, and energy balance and body composition changes were assessed. Hepatic mitochondrial energetics were determined from measurements of liver mitochondrial mass, respiratory capacities, and proton leak. Compared to rats refed the LF, the groups refed high-fat diets showed lower energy expenditure and increased efficiency of fat gain; these differences were less marked with high-safflower oil than with high-lard diet. The increase in efficiency of catch-up fat by the high-fat diets could not be attributed to differences in liver mitochondrial activity. By contrast, the lower fat gain with high-safflower oil than with high-lard diet is accompanied by higher mitochondrial proton leak and increased proportion of arachidonic acid in mitochondrial membranes. In conclusion, the higher efficiency for catch-up fat on high-lard diet than on LF cannot be explained by altered hepatic mitochondrial energetics. By contrast, the ability of the high-safflower oil diet to produce a less pronounced increase in the efficiency of catch-up fat may partly reside in increased incorporation of arachidonic acid in hepatic mitochondrial membranes, leading to enhanced proton leak and mitochondrial uncoupling.

  5. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    Science.gov (United States)

    Sellar, Brian; Harding, Samuel; Richmond, Marshall

    2015-08-01

    An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the water column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1 MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of C-ADP to standard divergent ADP (D-ADP) velocity measurements reveals a mean difference of 8 mm s-1, standard deviation of 18 mm s-1, and an order of magnitude reduction in realisable length scale. C-ADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the C-ADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved quantification of flow turbulence. Since waves are simultaneously measured via profiled velocities, pressure measurements and surface detection, it is expected that derivatives of this system will be a powerful tool in

  6. Dynamic transition in the structure of an energetic crystal during chemical reactions at shock front prior to detonation.

    Science.gov (United States)

    Nomura, Ken-Ichi; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya; van Duin, Adri C T; Goddard, William A

    2007-10-05

    Mechanical stimuli in energetic materials initiate chemical reactions at shock fronts prior to detonation. Shock sensitivity measurements provide widely varying results, and quantum-mechanical calculations are unable to handle systems large enough to describe shock structure. Recent developments in reactive force-field molecular dynamics (ReaxFF-MD) combined with advances in parallel computing have paved the way to accurately simulate reaction pathways along with the structure of shock fronts. Our multimillion-atom ReaxFF-MD simulations of l,3,5-trinitro-l,3,5-triazine (RDX) reveal that detonation is preceded by a transition from a diffuse shock front with well-ordered molecular dipoles behind it to a disordered dipole distribution behind a sharp front.

  7. A population of highly energetic transient events in the centres of active galaxies

    Science.gov (United States)

    Kankare, E.; Kotak, R.; Mattila, S.; Lundqvist, P.; Ward, M. J.; Fraser, M.; Lawrence, A.; Smartt, S. J.; Meikle, W. P. S.; Bruce, A.; Harmanen, J.; Hutton, S. J.; Inserra, C.; Kangas, T.; Pastorello, A.; Reynolds, T.; Romero-Cañizales, C.; Smith, K. W.; Valenti, S.; Chambers, K. C.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.

    2017-12-01

    Recent all-sky surveys have led to the discovery of new types of transients. These include stars disrupted by the central supermassive black hole, and supernovae that are 10-100 times more energetic than typical ones. However, the nature of even more energetic transients that apparently occur in the innermost regions of their host galaxies is hotly debated1-3. Here we report the discovery of the most energetic of these to date: PS1-10adi, with a total radiated energy of 2.3 × 1052 erg. The slow evolution of its light curve and persistently narrow spectral lines over ˜ 3 yr are inconsistent with known types of recurring black hole variability. The observed properties imply powering by shock interaction between expanding material and large quantities of surrounding dense matter. Plausible sources of this expanding material are a star that has been tidally disrupted by the central black hole, or a supernova. Both could satisfy the energy budget. For the former, we would be forced to invoke a new and hitherto unseen variant of a tidally disrupted star, while a supernova origin relies principally on environmental effects resulting from its nuclear location. Remarkably, we also discover that PS1-10adi is not an isolated case. We therefore surmise that this new population of transients has previously been overlooked due to incorrect association with underlying central black hole activity.

  8. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  9. Analysis of the structural changes in domestic consumption of FUEL and energetic resources of Moscow

    Directory of Open Access Journals (Sweden)

    L. G. Moiseykina

    2017-01-01

    identify existing trends in the development of the fuel and energy complex in the capital region Results. The analysis allowed to identify the current trends in consumption of the main types of fuel and energy resources in Moscow, to assess the structure and structural changes in consumption of fuel and energy resources in Moscow, in order to assess the energy efficiency of the fuel and energy complex of the capital. Conclusion. The main goal of Moscow’s energy policy is to create an economically efficient, dynamically developing and financially sustainable fuel and energy complex equipped with advanced technologies and highly qualified personnel and meeting the requirements of the time and status of Moscow. Increasing the efficiency of the use of fuel and energy resources, for Moscow as one of the coldest capitals of the world, is becoming one of the priority tasks. Consequently, another task of developing the fuel and energy complex of the city is to expand the scale of the introduction of secondary energy resources and bring the indicator of their use to 50%. That is why, a comprehensive analysis of the dynamics and structure of consumption of fuel and energy resources will allow not only to assess the existing patterns of distribution and trends, but also as a consequence to form a highly effective energy strategy for the megacity. 

  10. Photoelectrical Properties and Energetical Structure of Thin Films of Indandione Derivatives

    Directory of Open Access Journals (Sweden)

    Maira INDRIKOVA

    2011-07-01

    Full Text Available A sandwich type structure of two dimetilaminobenziliden-1,3-indandione (DMABI derivatives placed between metal electrodes was made to investigate the photoelectrical properties of these derivatives. DMABI is an organic isolator with a wide energy gap and high quantum efficiency of the photogeneration, DMABI derivatives have received also considerable attention because of its large dipole moment and optical nonlinearities. Besides, since it is a photosensitive material, its use in solar systems is very promising. The energy gap of each material and combined system was observed from the spectral dependence of the quantum efficiency of the photoconductivity and results are compared with results of oxidation and reduction potential of the materials. The values showed a good correlation between experimental data of the photoconductivity and voltamperometry and calculated data of the HOMO and LUMO levels of the molecules.http://dx.doi.org/10.5755/j01.ms.17.2.480

  11. Energetics of intrinsic point defects in uranium dioxide from electronic-structure calculations

    International Nuclear Information System (INIS)

    Nerikar, Pankaj; Watanabe, Taku; Tulenko, James S.; Phillpot, Simon R.; Sinnott, Susan B.

    2009-01-01

    The stability range of intrinsic point defects in uranium dioxide is determined as a function of temperature, oxygen partial pressure, and non-stoichiometry. The computational approach integrates high accuracy ab initio electronic-structure calculations and thermodynamic analysis supported by experimental data. In particular, the density functional theory calculations are performed at the level of the spin polarized, generalized gradient approximation and includes the Hubbard U term; as a result they predict the correct anti-ferromagnetic insulating ground state of uranium oxide. The thermodynamic calculations enable the effects of system temperature and partial pressure of oxygen on defect formation energy to be determined. The predicted equilibrium properties and defect formation energies for neutral defect complexes match trends in the experimental literature quite well. In contrast, the predicted values for charged complexes are lower than the measured values. The calculations predict that the formation of oxygen interstitials becomes increasingly difficult as higher temperatures and reducing conditions are approached

  12. UNRAVELLING THE COMPLEX STRUCTURE OF AGN-DRIVEN OUTFLOWS. II. PHOTOIONIZATION AND ENERGETICS

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Woo, Jong-Hak [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr [Department of Astronomy and Center for Galaxy EVolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-12-20

    Outflows have been shown to be prevalent in galaxies hosting luminous active galactic nuclei (AGNs); they present a physically plausible way to couple the AGN energy output with the interstellar medium of their hosts. Despite their prevalence, accurate characterization of these outflows has been challenging. In the second of a series of papers, we use Gemini Multi-Object Spectrograph integral field unit (IFU) data of six local ( z  < 0.1) and moderate-luminosity Type 2 AGNs to study the ionization properties and energetics of AGN-driven outflows. We find strong evidence connecting the extreme kinematics of the ionized gas to the AGN photoionization. The kinematic component related to the AGN-driven outflow is clearly separated from other kinematic components, such as virial motions or rotation, on the velocity and velocity dispersion diagram. Our spatially resolved kinematic analysis reveals that 30 to 90% of the total mass and kinetic energy of the outflow is contained within the central kpc of the galaxy. The spatially integrated mass and kinetic energy of the gas entrained in the outflow correlate well with the AGN bolometric luminosity and results in energy conversion efficiencies between 0.01% and 1%. Intriguingly, we detect ubiquitous signs of ongoing circumnuclear star formation. Their small size, the centrally contained mass and energy, and the universally detected circumnuclear star formation cast doubts on the potency of these AGN-driven outflows as agents of galaxy-scale negative feedback.

  13. Contaminant Organic Complexes: Their Structure and Energetics in Surface Decontamination Processes

    International Nuclear Information System (INIS)

    Satish C. B. Myneni

    2005-01-01

    Siderophores are biological macromolecules (400-2000 Da) released by bacteria in iron limiting situations to sequester Fe from iron oxyhydroxides and silicates in the natural environment. These molecules contain hydroxamate and phenolate functional groups, and exhibit very high affinity for Fe 3+ . While several studies were conducted to understand the behavior of siderophores and their application to the metal sequestration and mineral dissolution, only a few of them have examined the molecular structure of siderophores and their interactions with metals and mineral surfaces in aqueous solutions. Improved understanding of the chemical state of different functional moieties in siderophores can assist in the application of these biological molecules in actinide separation, sequestration and decontamination processes. The focus of our research group is to evaluate the (a) functional group chemistry of selected siderophores and their metal complexes in aqueous solutions, and (b) the nature of siderophore interactions at the mineral-water interfaces. We selected desferrioxamine B (desB), a hydroxamate siderophore, and its small structural analogue, acetohydroxamic acid (aHa), for this investigation. We examined the functional group chemistry of these molecules as a function of pH, and their complexation with aqueous and solid phase Fe(III). For solid phase Fe, we synthesized all naturally occurring Fe(III)-oxyhydroxides (goethite, lepidocrocite, akaganeite, feroxyhite) and hematite. We also synthesized Fe-oxides (goethite and hematite) of different sizes to evaluate the influence of particle size on mineral dissolution kinetics. We used a series of molecular techniques to explore the functional group chemistry of these molecules and their complexes. Infrared spectroscopy is used to specifically identify the variations in oxime group as a function of pH and Fe(III) complexation. Resonance Raman spectroscopy was used to evaluate the nature of hydroxamate binding in the

  14. Same but not alike: Structure, flexibility and energetics of domains in multi-domain proteins are influenced by the presence of other domains.

    Science.gov (United States)

    Vishwanath, Sneha; de Brevern, Alexandre G; Srinivasan, Narayanaswamy

    2018-02-01

    The majority of the proteins encoded in the genomes of eukaryotes contain more than one domain. Reasons for high prevalence of multi-domain proteins in various organisms have been attributed to higher stability and functional and folding advantages over single-domain proteins. Despite these advantages, many proteins are composed of only one domain while their homologous domains are part of multi-domain proteins. In the study presented here, differences in the properties of protein domains in single-domain and multi-domain systems and their influence on functions are discussed. We studied 20 pairs of identical protein domains, which were crystallized in two forms (a) tethered to other proteins domains and (b) tethered to fewer protein domains than (a) or not tethered to any protein domain. Results suggest that tethering of domains in multi-domain proteins influences the structural, dynamic and energetic properties of the constituent protein domains. 50% of the protein domain pairs show significant structural deviations while 90% of the protein domain pairs show differences in dynamics and 12% of the residues show differences in the energetics. To gain further insights on the influence of tethering on the function of the domains, 4 pairs of homologous protein domains, where one of them is a full-length single-domain protein and the other protein domain is a part of a multi-domain protein, were studied. Analyses showed that identical and structurally equivalent functional residues show differential dynamics in homologous protein domains; though comparable dynamics between in-silico generated chimera protein and multi-domain proteins were observed. From these observations, the differences observed in the functions of homologous proteins could be attributed to the presence of tethered domain. Overall, we conclude that tethered domains in multi-domain proteins not only provide stability or folding advantages but also influence pathways resulting in differences in

  15. Structures, Bonding, and Energetics of Potential Triatomic Circumstellar Molecules Containing Group 15 and 16 Elements.

    Science.gov (United States)

    Turner, Walter E; Agarwal, Jay; Schaefer, Henry F

    2015-12-03

    The recent discovery of PN in the oxygen-rich shell of the supergiant star VY Canis Majoris points to the formation of several triatomic molecules involving oxygen, nitrogen, and phosphorus; these are also intriguing targets for main-group synthetic inorganic chemistry. In this research, high-level ab initio electronic structure computations were conducted on the potential circumstellar molecule OPN and several of its heavier group 15 and 16 congeners (SPN, SePN, TePN, OPP, OPAs, and OPSb). For each congener, four isomers were examined. Optimized geometries were obtained with coupled cluster theory [CCSD(T)] using large Dunning basis sets [aug-cc-pVQZ, aug-cc-pV(Q+d)Z, and aug-cc-pVQZ-PP], and relative energies were determined at the complete basis set limit of CCSDT(Q) from focal point analyses. The linear phosphorus-centered molecules were consistently the lowest in energy of the group 15 congeners by at least 6 kcal mol(-1), resulting from double-triple and single-double bond resonances within the molecule. The linear nitrogen-centered molecules were consistently the lowest in energy of the group 16 congeners by at least 5 kcal mol(-1), due to the electronegative central nitrogen atom encouraging electron delocalization throughout the molecule. For OPN, OPP, and SPN, anharmonic vibrational frequencies and vibrationally corrected rotational constants are predicted; good agreement with available experimental data is observed.

  16. Genetic Polymorphisms and Weight Loss in Obesity: A Randomised Trial of Hypo-Energetic High- versus Low-Fat Diets

    Science.gov (United States)

    Sørensen, Thorkild I. A; Boutin, Philippe; Taylor, Moira A; Larsen, Lesli H; Verdich, Camilla; Petersen, Liselotte; Holst, Claus; Echwald, Søren M; Dina, Christian; Toubro, Søren; Petersen, Martin; Polak, Jan; Clément, Karine; Martínez, J. Alfredo; Langin, Dominique; Oppert, Jean-Michel; Stich, Vladimir; Macdonald, Ian; Arner, Peter; Saris, Wim H. M; Pedersen, Oluf; Astrup, Arne; Froguel, Philippe

    2006-01-01

    Objectives: To study if genes with common single nucleotide polymorphisms (SNPs) associated with obesity-related phenotypes influence weight loss (WL) in obese individuals treated by a hypo-energetic low-fat or high-fat diet. Design: Randomised, parallel, two-arm, open-label multi-centre trial. Setting: Eight clinical centres in seven European countries. Participants: 771 obese adult individuals. Interventions: 10-wk dietary intervention to hypo-energetic (−600 kcal/d) diets with a targeted fat energy of 20%–25% or 40%–45%, completed in 648 participants. Outcome Measures: WL during the 10 wk in relation to genotypes of 42 SNPs in 26 candidate genes, probably associated with hypothalamic regulation of appetite, efficiency of energy expenditure, regulation of adipocyte differentiation and function, lipid and glucose metabolism, or production of adipocytokines, determined in 642 participants. Results: Compared with the noncarriers of each of the SNPs, and after adjusting for gender, age, baseline weight and centre, heterozygotes showed WL differences that ranged from −0.6 to 0.8 kg, and homozygotes, from −0.7 to 3.1 kg. Genotype-dependent additional WL on low-fat diet ranged from 1.9 to −1.6 kg in heterozygotes, and from 3.8 kg to −2.1 kg in homozygotes relative to the noncarriers. Considering the multiple testing conducted, none of the associations was statistically significant. Conclusions: Polymorphisms in a panel of obesity-related candidate genes play a minor role, if any, in modulating weight changes induced by a moderate hypo-energetic low-fat or high-fat diet. PMID:16871334

  17. High spin structure functions

    International Nuclear Information System (INIS)

    Khan, H.

    1990-01-01

    This thesis explores deep inelastic scattering of a lepton beam from a polarized nuclear target with spin J=1. After reviewing the formation for spin-1/2, the structure functions for a spin-1 target are defined in terms of the helicity amplitudes for forward compton scattering. A version of the convolution model, which incorporates relativistic and binding energy corrections is used to calculate the structure functions of a neutron target. A simple parameterization of these structure functions is given in terms of a few neutron wave function parameters and the free nucleon structure functions. This allows for an easy comparison of structure functions calculated using different neutron models. (author)

  18. High thermal load structure

    International Nuclear Information System (INIS)

    Tsujimura, Seiichi; Toyota, Masahiko.

    1995-01-01

    A highly thermal load structure applied to a plasma-opposed equipment of a thermonuclear device comprises heat resistant protection tiles and a cooling tube disposed in the protection tiles. As the protection tiles, a carbon/carbon composite material is used. The carbon/carbon composite material on the heat receiving surface comprises carbon fibers disposed in one direction (one dimensionally) arranged from the heat receiving surface toward the cooling tube. The carbon/carbon composite material on the side opposite to the heat receiving surface comprises carbon fibers arranged two-dimensionally in the direction perpendicular to the longitudinal direction of the cooling tube. Then, the cooling tube is interposed between the one-dimensional carbon/carbon composite material and the two-dimensional carbon/carbon composite material, and they are joined with each other by vacuum brazing. This can improve heat removing performance. In addition, thermal stresses at the joined portion is reduced. Further, electromagnetic force generated in the thermonuclear device is reduced. (I.N.)

  19. High thermal load structure

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Seiichi; Toyota, Masahiko

    1995-06-16

    A highly thermal load structure applied to a plasma-opposed equipment of a thermonuclear device comprises heat resistant protection tiles and a cooling tube disposed in the protection tiles. As the protection tiles, a carbon/carbon composite material is used. The carbon/carbon composite material on the heat receiving surface comprises carbon fibers disposed in one direction (one dimensionally) arranged from the heat receiving surface toward the cooling tube. The carbon/carbon composite material on the side opposite to the heat receiving surface comprises carbon fibers arranged two-dimensionally in the direction perpendicular to the longitudinal direction of the cooling tube. Then, the cooling tube is interposed between the one-dimensional carbon/carbon composite material and the two-dimensional carbon/carbon composite material, and they are joined with each other by vacuum brazing. This can improve heat removing performance. In addition, thermal stresses at the joined portion is reduced. Further, electromagnetic force generated in the thermonuclear device is reduced. (I.N.).

  20. Energetic Diagrams and Structural Properties of Monohaloacetylenes HC≡CX (X = F, Cl, Br).

    Science.gov (United States)

    Khiri, D; Hochlaf, M; Chambaud, G

    2016-08-04

    Highly correlated electronic wave functions within the Multi Reference Configuration Interaction (MRCI) approach are used to study the stability and the formation processes of the monohaloacetylenes HCCX and monohalovinylidenes C2HX (X = F, Cl, Br) in their electronic ground state. These tetra-atomics can be formed through the reaction of triatomic fragments C2F, C2Cl, and C2Br with a hydrogen atom or of C2H with halogen atoms via barrierless reactions, whereas the reactions between the diatomics [C2 + HX] need to overcome barriers of 1.70, 0.89, and 0.58 eV for X = F, Cl, and Br. It is found that the linear HCCX isomers, in singlet symmetry, are more stable than the singlet C2HX iso-forms by 1.995, 2.083, and 1.958 eV for X = F, Cl, and Br. The very small isomerization barriers from iso to linear forms are calculated 0.067, 0.044, and 0.100 eV for F, Cl, and Br systems. The dissociation energies of the HCCX systems (without ZPE corrections), resulting from the breaking of the CX bond, are calculated to be 5.647, 4.691, and 4.129 eV for X = F, Cl, Br, respectively. At the equilibrium geometry of the X(1)Σ(+) state of HCCX, the vertical excitation energies in singlet and triplet symmetries are all larger than the respective dissociation energies. Stable excited states are found only as (3)A', (3)A″, and (1)A″ monohalovinylidene structures.

  1. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe2O3/multi-walled carbon nanotube (MWCNT)

    International Nuclear Information System (INIS)

    Zhang, Tianfu; Ma, Zhuang; Li, Guoping; Wang, Zhen; Zhao, Benbo; Luo, Yunjun

    2016-01-01

    Electrostatic self-assembly in organic solvent without intensively oxidative or corrosive environments, was adopted to prepare Al/Fe 2 O 3 /MWCNT nanostructured energetic materials as an energy generating material. The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe 2 O 3 (oxide) nanoparticles. This spontaneous assembly method without any surfactant chemistry or other chemical and biological moieties decreased the aggregation of the same nanoparticles largely, moreover, the poor interfacial contact between the Al (fuel) and Fe 2 O 3 (oxide) nanoparticles was improved significantly, which was the key characteristic of high performance nanostructured energetic materials. In addition, the assembly process was confirmed as Diffusion-Limited Aggregation. The assembled Al/Fe 2 O 3 /MWCNT nanostructured energetic materials showed excellent performance with heat release of 2400 J/g, peak pressure of 0.42 MPa and pressurization rate of 105.71 MPa/s, superior to that in the control group Al/Fe 2 O 3 nanostructured energetic materials prepared by sonication with heat release of 1326 J/g, peak pressure of 0.19 MPa and pressurization rate of 33.33 MPa/s. Therefore, the approach, which is facile, opens a promising route to the high performance nanostructured energetic materials. - Graphical abstract: The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe 2 O 3 (oxide) nanoparticles. - Highlights: • A facile spontaneous electrostatic assembly strategy without surfactant was adopted. • The fuels and oxidizers assembled into densely packed nanostructured composites. • The assembled nanostructured energetic materials have excellent performance. • This high performance energetic material can be scaled up for practical application. • This strategy can be applied into other nanostructured

  2. Molecular dynamics simulation for the influence of incident angles of energetic carbon atoms on the structure and properties of diamond-like carbon films

    International Nuclear Information System (INIS)

    Li, Xiaowei; Ke, Peiling; Lee, Kwang-Ryeol; Wang, Aiying

    2014-01-01

    The influence of incident angles of energetic carbon atoms (0–60°) on the structure and properties of diamond-like carbon (DLC) films was investigated by the molecular dynamics simulation using a Tersoff interatomic potential. The present simulation revealed that as the incident angles increased from 0 to 60°, the surface roughness of DLC films increased and the more porous structure was generated. Along the growth direction of DLC films, the whole system could be divided into four regions including substrate region, transition region, stable region and surface region except the case at the incident angle of 60°. When the incident angle was 45°, the residual stress was significantly reduced by 12% with little deterioration of mechanical behavior. The further structure analysis using both the bond angles and bond length distributions indicated that the compressive stress reduction mainly resulted from the relaxation of highly distorted C–C bond length. - Highlights: • The dependence of films properties on different incident angles was investigated. • The change of incident angles reduced the stress without obvious damage of density. • The stress reduction attributed to the relaxation of highly distorted bond length

  3. On the interactions between energetic electrons and lightning whistler waves observed at high L-shells on Van Allen Probes

    Science.gov (United States)

    Zheng, H.; Holzworth, R. H., II; Brundell, J. B.; Hospodarsky, G. B.; Jacobson, A. R.; Fennell, J. F.; Li, J.

    2017-12-01

    Lightning produces strong broadband radio waves, called "sferics", which propagate in the Earth-ionosphere waveguide and are detected thousands of kilometers away from their source. Global real-time detection of lightning strokes including their time, location and energy, is conducted with the World Wide Lightning Location Network (WWLLN). In the ionosphere, these sferics couple into very low frequency (VLF) whistler waves which propagate obliquely to the Earth's magnetic field. A good match has previously been shown between WWLLN sferics and Van Allen Probes lightning whistler waves. It is well known that lightning whistler waves can modify the distribution of energetic electrons in the Van Allen belts by pitch angle scattering into the loss cone, especially at low L-Shells (referred to as LEP - Lightning-induced Electron Precipitation). It is an open question whether lightning whistler waves play an important role at high L-shells. The possible interactions between energetic electrons and lightning whistler waves at high L-shells are considered to be weak in the past. However, lightning is copious, and weak pitch angle scattering into the drift or bounce loss cone would have a significant influence on the radiation belt populations. In this work, we will analyze the continuous burst mode EMFISIS data from September 2012 to 2016, to find out lightning whistler waves above L = 3. Based on that, MAGEIS data are used to study the related possible wave-particle interactions. In this talk, both case study and statistical analysis results will be presented.

  4. Energetic map

    International Nuclear Information System (INIS)

    2012-01-01

    This report explains the energetic map of Uruguay as well as the different systems that delimits political frontiers in the region. The electrical system importance is due to the electricity, oil and derived , natural gas, potential study, biofuels, wind and solar energy

  5. Spatial structure of the plasma sheet boundary layer at distances greater than 180 RE as derived from energetic particle measurements on GEOTAIL

    Directory of Open Access Journals (Sweden)

    T. Yamamoto

    Full Text Available We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RE. Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last. Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H+ layer is confined within that of the energetic electron, the He++ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology.

  6. Spatial structure of the plasma sheet boundary layer at distances greater than 180 RE as derived from energetic particle measurements on GEOTAIL

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    1997-10-01

    Full Text Available We have analyzed the onsets of energetic particle bursts detected by the ICS and STICS sensors of the EPIC instrument on board the GEOTAIL spacecraft in the deep magnetotail (i.e., at distances greater than 180 RE. Such bursts are commonly observed at the plasma-sheet boundary layer (PSBL and are highly collimated along the magnetic field. The bursts display a normal velocity dispersion (i.e., the higher-speed particles are seen first, while the progressively lower speed particles are seen later when observed upon entry of the spacecraft from the magnetotail lobes into the plasma sheet. Upon exit from the plasma sheet a reverse velocity dispersion is observed (i.e., lower-speed particles disappear first and higher-speed particles disappear last. Three major findings are as follows. First, the tailward-jetting energetic particle populations of the distant-tail plasma sheet display an energy layering: the energetic electrons stream along open PSBL field lines with peak fluxes at the lobes. Energetic protons occupy the next layer, and as the spacecraft moves towards the neutral sheet progressively decreasing energies are encountered systematically. These plasma-sheet layers display spatial symmetry, with the plane of symmetry the neutral sheet. Second, if we consider the same energy level of energetic particles, then the H+ layer is confined within that of the energetic electron, the He++ layer is confined within that of the proton, and the oxygen layer is confined within the alpha particle layer. Third, whenever the energetic electrons show higher fluxes inside the plasma sheet as compared to those at the boundary layer, their angular distribution is isotropic irrespective of the Earthward or tailward character of fluxes, suggesting a closed field line topology.

  7. Structural, Dynamical, and Energetical Consequences of Rett Syndrome Mutation R133C in MeCP2

    Directory of Open Access Journals (Sweden)

    Tugba G. Kucukkal

    2015-01-01

    Full Text Available Rett Syndrome (RTT is a progressive neurodevelopmental disease affecting females. RTT is caused by mutations in the MECP2 gene and various amino acid substitutions have been identified clinically in different domains of the multifunctional MeCP2 protein encoded by this gene. The R133C variant in the methylated-CpG-binding domain (MBD of MeCP2 is the second most common disease-causing mutation in the MBD. Comparative molecular dynamics simulations of R133C mutant and wild-type MBD have been performed to understand the impact of the mutation on structure, dynamics, and interactions of the protein and subsequently understand the disease mechanism. Two salt bridges within the protein and two critical hydrogen bonds between the protein and DNA are lost upon the R133C mutation. The mutation was found to weaken the interaction with DNA and also cause loss of helicity within the 141-144 region. The structural, dynamical, and energetical consequences of R133C mutation were investigated in detail at the atomic resolution. Several important implications of this have been shown regarding protein stability and hydration dynamics as well as its interaction with DNA. The results are in agreement with previous experimental studies and further provide atomic level understanding of the molecular origin of RTT associated with R133C variant.

  8. Bi-layer structure of counterstreaming energetic electron fluxes: a diagnostic tool of the acceleration mechanism in the Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2010-02-01

    Full Text Available For the first time we identify a bi-layer structure of energetic electron fluxes in the Earth's magnetotail and establish (using datasets mainly obtained by the Geotail Energetic Particles and Ion Composition (EPIC/ICS instrument that it actually provides strong evidence for a purely spatial structure. Each bi-layer event is composed of two distinct layers with counterstreaming energetic electron fluxes, parallel and antiparallel to the local ambient magnetic field lines; in particular, the tailward directed fluxes always occur in a region adjacent to the lobes. Adopting the X-line as a standard reconnection model, we determine the occurrence of bi-layer events relatively to the neutral point, in the substorm frame; four (out of the shown seven events are observed earthward and three tailward, a result implying that four events probably occurred with the substorm's local recovery phase. We discuss the bi-layer events in terms of the X-line model; they add more constraints for any candidate electron acceleration mechanism. It should be stressed that until this time, none proposed electron acceleration mechanism has discussed or predicted these layered structures with all their properties. Then we discuss the bi-layer events in terms of the much promising "akis model", as introduced by Sarafopoulos (2008. The akis magnetic field topology is embedded in a thinned plasma sheet and is potentially causing charge separation. We assume that as the Rc curvature radius of the magnetic field line tends to become equal to the ion gyroradius rg, then the ions become non-adiabatic. At the limit Rc=rg the demagnetization process is also under way and the frozen-in magnetic field condition is violated by strong wave turbulence; hence, the ion particles in this geometry are stochastically scattered. In addition, ion diffusion probably takes place across the magnetic field, since an

  9. High-resolution simulations of cylindrical void collapse in energetic materials: Effect of primary and secondary collapse on initiation thresholds

    Science.gov (United States)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    Void collapse in energetic materials leads to hot spot formation and enhanced sensitivity. Much recent work has been directed towards simulation of collapse-generated reactive hot spots. The resolution of voids in calculations to date has varied as have the resulting predictions of hot spot intensity. Here we determine the required resolution for reliable cylindrical void collapse calculations leading to initiation of chemical reactions. High-resolution simulations of collapse provide new insights into the mechanism of hot spot generation. It is found that initiation can occur in two different modes depending on the loading intensity: Either the initiation occurs due to jet impact at the first collapse instant or it can occur at secondary lobes at the periphery of the collapsed void. A key observation is that secondary lobe collapse leads to large local temperatures that initiate reactions. This is due to a combination of a strong blast wave from the site of primary void collapse and strong colliding jets and vortical flows generated during the collapse of the secondary lobes. The secondary lobe collapse results in a significant lowering of the predicted threshold for ignition of the energetic material. The results suggest that mesoscale simulations of void fields may suffer from significant uncertainty in threshold predictions because unresolved calculations cannot capture the secondary lobe collapse phenomenon. The implications of this uncertainty for mesoscale simulations are discussed in this paper.

  10. Structures, energetics and magnetic properties of Au n SFe m and ...

    African Journals Online (AJOL)

    Momona Ethiopian Journal of Science ... important from the understanding point of view of the physics and chemistry involved in describing observed phenomenon. This paper presents the results of systematic theoretical investigation of the structural ... This value is higher than the magnetic moment of Fe atom in bulk gold.

  11. Research Update: The electronic structure of hybrid perovskite layers and their energetic alignment in devices

    Directory of Open Access Journals (Sweden)

    Selina Olthof

    2016-09-01

    Full Text Available In recent years, the interest in hybrid organic–inorganic perovskites has increased at a rapid pace due to their tremendous success in the field of thin film solar cells. This area closely ties together fundamental solid state research and device application, as it is necessary to understand the basic material properties to optimize the performances and open up new areas of application. In this regard, the energy levels and their respective alignment with adjacent charge transport layers play a crucial role. Currently, we are lacking a detailed understanding about the electronic structure and are struggling to understand what influences the alignment, how it varies, or how it can be intentionally modified. This research update aims at giving an overview over recent results regarding measurements of the electronic structure of hybrid perovskites using photoelectron spectroscopy to summarize the present status.

  12. Nitrogen-Rich Energetic Metal-Organic Framework: Synthesis, Structure, Properties, and Thermal Behaviors of Pb(II Complex Based on N,N-Bis(1H-tetrazole-5-yl-Amine

    Directory of Open Access Journals (Sweden)

    Qiangqiang Liu

    2016-08-01

    Full Text Available The focus of energetic materials is on searching for a high-energy, high-density, insensitive material. Previous investigations have shown that 3D energetic metal–organic frameworks (E-MOFs have great potential and advantages in this field. A nitrogen-rich E-MOF, Pb(bta·2H2O [N% = 31.98%, H2bta = N,N-Bis(1H-tetrazole-5-yl-amine], was prepared through a one-step hydrothermal reaction in this study. Its crystal structure was determined through single-crystal X-ray diffraction, Fourier transform infrared spectroscopy, and elemental analysis. The complex has high heat denotation (16.142 kJ·cm−3, high density (3.250 g·cm−3, and good thermostability (Tdec = 614.9 K, 5 K·min−1. The detonation pressure and velocity obtained through theoretical calculations were 43.47 GPa and 8.963 km·s−1, respectively. The sensitivity test showed that the complex is an impact-insensitive material (IS > 40 J. The thermal decomposition process and kinetic parameters of the complex were also investigated through thermogravimetry and differential scanning calorimetry. Non-isothermal kinetic parameters were calculated through the methods of Kissinger and Ozawa-Doyle. Results highlighted the nitrogen-rich MOF as a potential energetic material.

  13. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.

    2012-07-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical and experimental results. The thickness of a-C films deposited at different incidence angles was investigated in the light of Monte Carlo simulations, and the calculated depth profiles were compared with those obtained from high-resolution transmission electron microscopy (TEM). The topography and structure of the a-C films were studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The film thickness decreased with the increase of the incidence angle, while the surface roughness increased and the content of tetrahedral carbon hybridization (sp 3) decreased significantly with the increase of the incidence angle above 45° , measured from the surface normal. TEM, AFM, and XPS results indicate that the smoothest and thinnest a-C films with the highest content of sp 3 carbon bonding were produced for an incidence angle of 45°. The findings of this study have direct implications in ultrahigh-density magnetic recording, where ultrathin and smooth a-C films with high sp 3 contents are of critical importance. © 2012 IEEE.

  14. Radial dose distribution around an energetic heavy ion and an ion track structure model

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Katsutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ohno, Shin-ichi; Namba, Hideki; Taguchi, Mitsumasa; Watanabe, Ritsuko

    1997-03-01

    Ionization currents produced in a small wall-less ionization chamber located at varying distance from the 200 MeV Ni{sup 12+} ion`path traversing Ar gas were measured and utilized to construct a track structure model. Using the LET value of 200 MeV Ni{sup 12+} and G(Fe{sup 3+}) in Fricke solutions (= 15.4) for fast electrons, we estimate G(Fe{sup 3+}) for this ion to be 5.0. (author)

  15. Energetics and structure of the lower E region associated with sporadic E layer

    Directory of Open Access Journals (Sweden)

    K.-I. Oyama

    2008-09-01

    Full Text Available The electron temperature (Te, electron density (Ne, and two components of the electric field were measured from the height of 90 km to 150 km by one of the sounding rockets launched during the SEEK-2 campaign. The rocket went through sporadic E layer (Es at the height of 102 km–109 km during ascent and 99 km–108 km during decent, respectively. The energy density of thermal electrons calculated from Ne and Te shows the broad maximum in the height range of 100–110 km, and it decreases towards the lower and higher altitudes, which implies that a heat source exists in the height region of 100 km–110 km. A 3-D picture of Es, that was drawn by using Te, Ne, and the electric field data, corresponded to the computer simulation; the main structure of Es is projected to a higher altitude along the magnetic line of force, thus producing irregular structures of Te, Ne and electric field in higher altitude.

  16. Energetics and structure of the lower E region associated with sporadic E layer

    Directory of Open Access Journals (Sweden)

    K.-I. Oyama

    2008-09-01

    Full Text Available The electron temperature (Te, electron density (Ne, and two components of the electric field were measured from the height of 90 km to 150 km by one of the sounding rockets launched during the SEEK-2 campaign. The rocket went through sporadic E layer (Es at the height of 102 km–109 km during ascent and 99 km–108 km during decent, respectively. The energy density of thermal electrons calculated from Ne and Te shows the broad maximum in the height range of 100–110 km, and it decreases towards the lower and higher altitudes, which implies that a heat source exists in the height region of 100 km–110 km. A 3-D picture of Es, that was drawn by using Te, Ne, and the electric field data, corresponded to the computer simulation; the main structure of Es is projected to a higher altitude along the magnetic line of force, thus producing irregular structures of Te, Ne and electric field in higher altitude.

  17. A DFT-D study of structural and energetic properties of TiO2 modifications

    International Nuclear Information System (INIS)

    Moellmann, Jonas; Ehrlich, Stephan; Tonner, Ralf; Grimme, Stefan

    2012-01-01

    The structures and relative energies of the three naturally occurring modifications of titanium dioxide (rutile, brookite and anatase) were investigated. For an accurate description, atom-pairwise dispersion-corrected density functional theory (DFT-D) was applied. The DFT-D3 scheme was extended non-empirically to improve the description of Ti atoms in bulk systems. New dispersion coefficients were derived from TDDFT calculations for electrostatically embedded TiO 2 clusters. The dispersion coefficient C 6 TiTi is reduced by a factor of 18 compared to the free atom. The three TiO 2 modifications were optimized in periodic plane-wave calculations with dispersion-corrected GGA (PBE, revPBE) and hybrid density functionals (PBE0, revPBE0). The calculated lattice parameters are in good agreement with experimental data, in particular the dispersion-corrected PBE0 and revPBE0 hybrid functionals. Although the observed relative stabilities could not be reproduced in all cases, dispersion corrections improve the results. For an accurate description of bulk metal oxides, London dispersion is a prominent force that should not be neglected when energies and structures are computed with DFT. Additionally, the influence of dispersion interactions on the relaxation of the TiO 2 (110) surface is investigated.

  18. Flare energetics

    Science.gov (United States)

    Wu, S. T.; Dejager, C.; Dennis, B. R.; Hudson, H. S.; Simnett, G. M.; Strong, K. T.; Bentley, R. D.; Bornmann, P. L.; Bruner, M. E.; Cargill, P. J.

    1986-01-01

    In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested.

  19. Energetics and Structural Characterization of the large-scale Functional Motion of Adenylate Kinase

    Science.gov (United States)

    Formoso, Elena; Limongelli, Vittorio; Parrinello, Michele

    2015-02-01

    Adenylate Kinase (AK) is a signal transducing protein that regulates cellular energy homeostasis balancing between different conformations. An alteration of its activity can lead to severe pathologies such as heart failure, cancer and neurodegenerative diseases. A comprehensive elucidation of the large-scale conformational motions that rule the functional mechanism of this enzyme is of great value to guide rationally the development of new medications. Here using a metadynamics-based computational protocol we elucidate the thermodynamics and structural properties underlying the AK functional transitions. The free energy estimation of the conformational motions of the enzyme allows characterizing the sequence of events that regulate its action. We reveal the atomistic details of the most relevant enzyme states, identifying residues such as Arg119 and Lys13, which play a key role during the conformational transitions and represent druggable spots to design enzyme inhibitors. Our study offers tools that open new areas of investigation on large-scale motion in proteins.

  20. Structural and energetic properties of La3+ in water/DMSO mixtures

    Science.gov (United States)

    Montagna, Maria; Spezia, Riccardo; Bodo, Enrico

    2017-11-01

    By using molecular dynamics based on a custom polarizable force field, we have studied the solvation of La3+ in an equimolar mixture of dimethylsulfoxide (DMSO) with water. An extended structural analysis has been performed to provide a complete picture of the physical properties at the basis of the interaction of La3+ with both solvents. Through our simulations we found that, very likely, the first solvation shell in the mixture is not unlike the one found in pure water or pure DMSO and contains 9 solvent molecules. We have also found that the solvation is preferentially due to DMSO molecules with the water initially present in first shell quickly leaving to the bulk. The dehydration process of the first shell has been analyzed by both plain MD simulations and a constrained dynamics approach; the free energy profiles for the extraction of water from first shell have also been computed.

  1. Thermochemical study of some chloro and bromo alkyl substituted phthalimides: Structural-energetic correlations

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Santos, Claudia P.F.; Monte, Manuel J.S.; Sousa, Carlos A.D.

    2007-01-01

    The standard (p 0 = 0.1 MPa) massic energies of combustion, Δ c u 0 , for crystalline N-chloromethylphthalimide, N-(2-chloroethyl)phthalimide, N-(2-bromoethyl)phthalimide, and N-(3-bromopropyl)phthalimide were determined, at the temperature 298.15 K, using a rotating-bomb combustion calorimeter. The standard molar enthalpies of sublimation, Δ cr g H m 0 , at T = 298.15 K were determined for all compounds by Calvet microcalorimetry and for N-chloromethylphthalimide also derived from the variation with the temperature of its vapour pressures measured by the Knudsen effusion technique. The results are presented in a table. These values were used to derive the standard molar enthalpies of formation of the compounds in their crystalline and gaseous phases, respectively. The derived standard molar enthalpies of formation, in the gaseous state, are analyzed in terms of enthalpic increments and interpreted in terms of molecular structure

  2. Structural, spectroscopic and energetic parameters of P-bearing species having astrophysical importance

    Directory of Open Access Journals (Sweden)

    Kevin Gooniah

    2015-12-01

    Full Text Available Molecular parameters such as equilibrium structure, dipole moment, rotational constant, harmonic frequency, IR intensity, adiabatic electron affinity, atomisation energy and ionisation potential of some P-bearing molecules PS, PO and HC3P in their neutral, cationic and anionic forms were investigated using the popular B3LYP hybrid density functional with four basis sets 6-311++G(2df,2pd, 6-311++G(3df,3pd, cc-pVTZ and aug-cc-pVTZ. The computed data conform well to those existing in the literature. Therefore, the predicted data for those molecules or ions which are not available in the literature should be reliable.

  3. Probing the chemistry, electronic structure and redox energetics in pentavalent organometallic actinide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Christopher R [Los Alamos National Laboratory; Vaughn, Anthony E [Los Alamos National Laboratory; Morris, David E [Los Alamos National Laboratory; Kiplinger, Jaqueline L [Los Alamos National Laboratory

    2008-01-01

    Complexes of the early actinides (Th-Pu) have gained considerable prominence in organometallic chemistry as they have been shown to undergo chemistries not observed with their transition- or lanthanide metal counterparts. Further, while bonding in f-element complexes has historically been considered to be ionic, the issue of covalence remains a subject of debate in the area of actinide science, and studies aimed at elucidating key bonding interactions with 5f-orbitals continue to garner attention. Towards this end, our interests have focused on the role that metal oxidation state plays in the structure, reactivity and spectral properties of organouranium complexes. We report our progress in the synthesis of substituted U{sup V}-imido complexes using various routes: (1) Direct oxidation of U{sup IV}-imido complexes with copper(I) salts; (2) Salt metathesis with U{sup V}-imido halides; (3) Protonolysis and insertion of an U{sup V}-imido alkyl or aryl complex with H-N{double_bond}CPh{sub 2} or N{triple_bond}C-Ph, respectively, to form a U{sup V}-imido ketimide complex. Further, we report and compare the crystallographic, electrochemical, spectroscopic and magnetic characterization of the pentavalent uranium (C{sub 5}Me{sub 5}){sub 2}U({double_bond}N-Ar)(Y) series (Y = OTf, SPh, C{triple_bond}C-Ph, NPh{sub 2}, OPh, N{double_bond}CPh{sub 2}) to further interrogate the molecular, electronic, and magnetic structures of this new class of uranium complexes.

  4. Structural and energetic hot-spots for the interaction between a ladder-like polycyclic ether and the anti-ciguatoxin antibody 10C9Fab.

    Science.gov (United States)

    Ui, Mihoko; Tanaka, Yoshikazu; Tsumuraya, Takeshi; Fujii, Ikuo; Inoue, Masayuki; Hirama, Masahiro; Tsumoto, Kouhei

    2011-03-01

    The mechanism by which anti-ciguatoxin antibody 10C9Fab recognizes a fragment of ciguatoxin CTX3C (CTX3C-ABCDE) was investigated by mutational analysis based on structural data. 10C9Fab has an extraordinarily large and deep antigen-binding pocket at the center of its variable region. We mutated several residues located at the antigen-binding pocket to Ala, and kinetic analysis of the interactions between the mutant proteins and the antigen fragment was performed. The results indicate that some residues associated with the rigid antigen-binding pocket are structural hot-spots and that L-N94 is an energetic hot-spot for association of the antibody with the antigen fragment CTX3C-ABCDE, suggesting the importance of structural complementarity and energetic hot-spot interactions for specific recognition of polycyclic ethers.

  5. Investigations on imaging properties of inorganic scintillation screens under irradiation with high energetic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Lieberwirth, Alice

    2016-09-15

    This work represents the investigations in imagine properties of inorganic scintillation screens as diagnostic elements in heavy ion accelerator facilities, that were performed at GSI Helmholtz Centre for Heavy Ion Research (Darmstadt, Germany) and TU Darmstadt. The screen materials can be classified in groups of phosphor screens (P43 and P46 phosphor), single crystals (cerium-doped Y{sub 3}Al{sub 5}O{sub 12}) and polycrystalline aluminum oxides (pure and chromium-doped Al{sub 2}O{sub 3}). Out of these groups, a selection of seven screens were irradiated by five different projectiles (proton, nitrogen, nickel, xenon and uranium), that were extracted from SIS18 in fast (1 μs) and slow (300-400 ms) extraction mode at a specific energy of E{sub spec}=300 MeV/u. The number of irradiating particles per pulse was varied between 10{sup 7} and 2.10{sup 10} ppp and the scintillation response was recorded by a complex optical system. The records served on the one hand for investigations in the two-dimensional response to the irradiating beam, namely the light output L, the light yield Y and the characteristics of the beam profiles in horizontal and vertical direction. On the other hand the wavelength spectrum of the scintillation was recorded for investigations in variations of the material structure. A data analysis was performed based on a dedicated Python script. Additionally three conventional methods (UV/Vis transmission spectroscopy, X-Ray diffraction, Raman fluorescence spectroscopy) were performed after the beam times for investigations in the material structure. Nevertheless, neither structural variations nor material defects, induced by the ion irradiation, were proven within the accuracy range of the used instrumentation and the given ion fluences. Besides the irradiation under varying beam intensity, radiation hardness tests with fast and slow extracted Nickel pulses at 2.10{sup 9} ppp and a specific energy around E{sub spec}∼300 MeV/u were performed and the

  6. Structures, Energetics, and IR Spectra of Monohydrated Inorganic Acids: Ab initio and DFT Study.

    Science.gov (United States)

    Kołaski, Maciej; Zakharenko, Aleksey A; Karthikeyan, S; Kim, Kwang S

    2011-10-11

    We carried out extensive calculations of diverse inorganic acids interacting with a single water molecule, through a detailed analysis of many possible conformations. The optimized structures were obtained by using density functional theory (DFT) and the second order Møller-Plesset perturbation theory (MP2). For the most stable conformers, we calculated the interaction energies at the complete basis set (CBS) limit using coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The -OH stretching harmonic and anharmonic frequencies are provided as fingerprints of characteristic conformers. The zero-point energy (ZPE) uncorrected/corrected (ΔEe/ΔE0) interaction energies and the enthalpies/free energies (ΔHr/ΔGr at room temperature and 1 bar) are reported. Various comparisons are made between many diverse inorganic acids (HmXOn where X = B/N/P/Cl/Br/I, m = 1-3, and n = 0-4) as well as other simple inorganic acids. In many cases, we find that the dispersion-driven van der Waals interactions between X in inorganic acid molecules and O in water molecules as well as the X(+)···O(-) electrostatic interactions are important.

  7. Development of high pressure deuterium gas targets for the generation of intense mono-energetic fast neutron beams

    International Nuclear Information System (INIS)

    Guzek, J.; Richardson, K.; Franklyn, C.B.; Waites, A.; McMurray, W.R.; Watterson, J.I.W.; Tapper, U.A.S.

    1999-01-01

    Two different technical solutions to the problem of generation of mono-energetic fast neutron beams on the gaseous targets are presented here. A simple and cost-effective design of a cooled windowed gas target system is described in the first part of this paper. It utilises a thin metallic foil window and circulating deuterium gas cooled down to 100 K. The ultimate beam handling capability of such target is determined by the properties of the window. Reliable performance of this gas target system was achieved at 1 bar of deuterium gas, when exposed to a 45 μA beam of 5 MeV deuterons, for periods in excess of 6 h. Cooling of the target gas resulted in increased fast neutron output and improved neutron to gamma-ray ratio. The second part of this paper discusses the design of a high pressure, windowless gas target for use with pulsed, low duty cycle accelerators. A rotating seal concept was applied to reduce the gas load in a differentially pumped system. This allows operation at 1.23 bar of deuterium gas pressure in the gas cell region. Such a gas target system is free from the limitations of the windowed target but special attention has to be paid to the heat dissipation capability of the beam dump, due to the use of a thin target. The rotating seal concept is particularly suitable for use with accelerators such as radio-frequency quadrupole (RFQ) linacs that operate with a very high peak current at low duty cycle. The performance of both target systems was comprehensively characterized using the time-of-flight (TOF) technique. This demonstrated that very good quality mono-energetic fast neutron beams were produced with the slow neutron and gamma-ray component below 10% of the total target output

  8. Energetic, structural and electronic properties of metal vacancies in strained AlN/GaN interfaces.

    Science.gov (United States)

    Kioseoglou, J; Pontikis, V; Komninou, Ph; Pavloudis, Th; Chen, J; Karakostas, Th

    2015-04-01

    AlN/GaN heterostructures have been studied using density-functional pseudopotential calculations yielding the formation energies of metal vacancies under the influence of local interfacial strains, the associated charge distribution and the energies of vacancy-induced electronic states. Interfaces are built normal to the polar direction of the wurtzite structure by joining two single crystals of AlN and GaN that are a few atomic layers thick; thus, periodic boundary conditions generate two distinct heterophase interfaces. We show that the formation energy of vacancies is a function of their distance from the interfaces: the vacancy-interface interaction is found repulsive or attractive, depending on the type of the interface. When the interaction is attractive, the vacancy formation energy decreases with increasing the associated electric charge, and hence the equilibrium vacancy concentration at the interface is greater. This finding can reveal the well-known morphological differences existing between the two types of investigated interfaces. Moreover, we found that the electric charge is strongly localized around the Ga vacancy, while in the case of Al vacancies is almost uniformly distributed throughout the AlN/GaN heterostructure. Crucially, for the applications of heterostructures, metal vacancies introduce deep states in the calculated bandgap at energy levels from 0.5 to 1 eV above the valence band maximum (VBM). It is, therefore, predicted that vacancies could initiate 'green luminescence' i.e. light emission in the energy range of 2.5 eV stemming from electronic transitions between these extra levels, and the conduction band, or energy levels, due to shallow donors.

  9. Energetic electron processes fluorescence effects for structured nanoparticles X-ray analysis and nuclear medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Taborda, A.; Desbrée, A. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SDI/LEDI, BP-17, 31, Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses (France); Carvalho, A. [IEQUALTECS, Lda, Rua Dr. Francisco Sá Carneiro, 36, 2500-065 S. Gregório CLD (Portugal); Chaves, P.C. [C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km 139.7, 2685-066 Bobadela LRS (Portugal); Reis, M.A., E-mail: mareis@ctn.tecnico.ulisboa.pt [IEQUALTECS, Lda, Rua Dr. Francisco Sá Carneiro, 36, 2500-065 S. Gregório CLD (Portugal); C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km 139.7, 2685-066 Bobadela LRS (Portugal)

    2016-08-15

    Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 10{sup 3} barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing {sup 57}Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.

  10. High latitude ionospheric structure

    International Nuclear Information System (INIS)

    1984-06-01

    The Earth's ionosphere is an important element in solar-terrestrial energy transfer processes. As a major terrestrial sink for many solar and magnetospheric events, the ionosphere has characteristic features that are traced to such seemingly remote phenomena as solar flares, radiation belt wave-particle interactions and magnetospheric substorms. In considering the multiple of solar-terrestrial plasma interactions, it is important to recognize that the high-latitude ionosphere is not altogether a simple receptor of various energy deposition processes. The high-altitude ionosphere plays an active feedback role by controlling the conductivity at the base of far-reaching magnetic field lines and by providing a plasma source for the magnetosphere. Indeed, the role of the ionosphere during magnetospheric substorms is emerging as a topic for meaningful study in the overall picture of magnetospheric-ionospheric coupling

  11. Internal tides affect benthic community structure in an energetic submarine canyon off SW Taiwan

    Science.gov (United States)

    Liao, Jian-Xiang; Chen, Guan-Ming; Chiou, Ming-Da; Jan, Sen; Wei, Chih-Lin

    2017-07-01

    Submarine canyons are major conduits of terrestrial and shelf organic matter, potentially benefiting the seafloor communities in the food-deprived deep sea; however, strong bottom currents driven by internal tides and the potentially frequent turbidity currents triggered by storm surges, river flooding, and earthquakes may negatively impact the benthos. In this study, we investigated the upper Gaoping Submarine Canyon (GPSC), a high-sediment-yield canyon connected to a small mountain river (SMR) off southwest (SW) Taiwan. By contrasting the benthic meiofaunal and macrofaunal communities within and outside the GPSC, we examined how food supplies and disturbance influenced the benthic community assemblages. The benthic communities in the upper GPSC were mainly a nested subset of the adjacent slope assemblages. Several meiofaunal (e.g. ostracods) and macrofaunal taxa (e.g. peracarid crustaceans and mollusks) that typically occurred on the slope were lost from the canyon. The polychaete families switched from diverse feeding guilds on the slope to motile subsurface deposit feeders dominant in the canyon. The diminishing of epibenthic peracarids and proliferation of deep burrowing polychaetes in the GPSC resulted in macrofauna occurring largely within deeper sediment horizons in the canyon than on the slope. The densities and numbers of taxa were depressed with distinct and more variable composition in the canyon than on the adjacent slope. Both the densities and numbers of taxa were negatively influenced by internal tide flushing and positively influenced by food availability; however, the internal tides also negatively influenced the food supplies. While the meiofauna and macrofauna densities were both depressed by the extreme physical conditions in the GPSC, only the macrofaunal densities increased with depth in the canyon, presumably related to increased frequency and intensity of disturbance toward the canyon head. The population densities of meiofauna, on the

  12. High Thermal Conductivity Composite Structures

    National Research Council Canada - National Science Library

    Bootle, John

    1999-01-01

    ... applications and space based radiators. The advantage of this material compared to competing materials that it can be used to fabricate high strength, high thermal conductivity, relatively thin structures less than 0.050" thick...

  13. High-beta linac structures

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1979-01-01

    Accelerating structures for high-beta linacs that have been and are in use are reviewed in terms of their performance. Particular emphasis is given to room-temperature structures and the disk-and-washer structure. The disk-and-washer structure has many attractive features that are discussed for pulsed high-gradient linacs, for 100% duty-cycle medium-gradient linacs and for high-current linacs requiring maximal amounts of stored energy in the electric fields available to the beam

  14. A first principles study of energetics and electronic structural responses of uranium-based coordination polymers to Np incorporation

    International Nuclear Information System (INIS)

    Saha, Saumitra; Becker, Udo

    2018-01-01

    Recently developed coordination polymers (CPs) and metal organic frameworks (MOFs) may find applications in areas such as catalysis, hydrogen storage, and heavy metal immobilization. Research on the potential application of actinide-based CPs (An-CP/MOFs) is not as advanced as transition metal-based MOFs. In order to modify their structures necessary for optimizing thermodynamic and electronic properties, here, we described how a specific topology of a particular actinide-based CP or MOF responds to the incorporation of other actinides considering their diverse coordination chemistry associated with the multiple valence states and charge-balancing mechanisms. In this study, we apply a recently developed DFT-based method to determine the relative stability of transuranium incorporated CPs in comparison to their uranium counterpart considering both solid and aqueous state sources and sinks to understand the mechanism and energetics of charge-balanced Np 5+ incorporation into three uranium-based CPs. The calculated Np 5+ + H + incorporation energies for these CPs range from 0.33 to 0.52 eV, depending on the organic linker, when using the solid oxide Np source Np 2 O 5 and U sink UO 3 . Incorporation energies of these CPs using aqueous sources and sinks increase to 2.85-3.14 eV. The thermodynamic and structural analysis in this study aides in determining, why certain MOF topologies and ligands are selective for some actinides and not for others. This means that once this method is extended across a variety of CPs with their respective linker molecules and different actinides, it can be used to identify certain CPs with certain organic ligands being specific for certain actinides. This information can be used to construct CPs for actinide separation. This is the first determination of the electronic structure (band structure, density of states) of these uranium- and transuranium-based CPs which may eventually lead to design CPs with certain optical or catalytic

  15. A first principles study of energetics and electronic structural responses of uranium-based coordination polymers to Np incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Saumitra [Melbourne Univ., VIC (Australia). Australian Research Council Centre of Excellence for Advanced Molecular Imaging; Becker, Udo [Michigan Univ., Ann Arbor, MI (United States). Dept. of Earth and Environmental Sciences

    2018-04-01

    Recently developed coordination polymers (CPs) and metal organic frameworks (MOFs) may find applications in areas such as catalysis, hydrogen storage, and heavy metal immobilization. Research on the potential application of actinide-based CPs (An-CP/MOFs) is not as advanced as transition metal-based MOFs. In order to modify their structures necessary for optimizing thermodynamic and electronic properties, here, we described how a specific topology of a particular actinide-based CP or MOF responds to the incorporation of other actinides considering their diverse coordination chemistry associated with the multiple valence states and charge-balancing mechanisms. In this study, we apply a recently developed DFT-based method to determine the relative stability of transuranium incorporated CPs in comparison to their uranium counterpart considering both solid and aqueous state sources and sinks to understand the mechanism and energetics of charge-balanced Np{sup 5+} incorporation into three uranium-based CPs. The calculated Np{sup 5+} + H{sup +} incorporation energies for these CPs range from 0.33 to 0.52 eV, depending on the organic linker, when using the solid oxide Np source Np{sub 2}O{sub 5} and U sink UO{sub 3}. Incorporation energies of these CPs using aqueous sources and sinks increase to 2.85-3.14 eV. The thermodynamic and structural analysis in this study aides in determining, why certain MOF topologies and ligands are selective for some actinides and not for others. This means that once this method is extended across a variety of CPs with their respective linker molecules and different actinides, it can be used to identify certain CPs with certain organic ligands being specific for certain actinides. This information can be used to construct CPs for actinide separation. This is the first determination of the electronic structure (band structure, density of states) of these uranium- and transuranium-based CPs which may eventually lead to design CPs with certain

  16. High beta, sawtooth-free tokamak operation using energetic trapped particles

    International Nuclear Information System (INIS)

    White, R.B.; Bussac, M.N.; Romanelli, F.

    1988-08-01

    It is shown that a population of high energy trapped particles, such as that produced by ion cyclotron heating in tokamaks, can result in a plasma completely stable to both sawtooth oscillations and the fishbone mode. The stable window of operation increases in size with plasma temperature and with trapped particle energy, and provides a means of obtaining a stable plasma with high current and high beta. 13 refs., 2 figs

  17. Electrostatic interactions for directed assembly of high performance nanostructured energetic materials of Al/Fe{sub 2}O{sub 3}/multi-walled carbon nanotube (MWCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianfu; Ma, Zhuang; Li, Guoping; Wang, Zhen; Zhao, Benbo; Luo, Yunjun, E-mail: yjluo@bit.edu.cn

    2016-05-15

    Electrostatic self-assembly in organic solvent without intensively oxidative or corrosive environments, was adopted to prepare Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials as an energy generating material. The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. This spontaneous assembly method without any surfactant chemistry or other chemical and biological moieties decreased the aggregation of the same nanoparticles largely, moreover, the poor interfacial contact between the Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles was improved significantly, which was the key characteristic of high performance nanostructured energetic materials. In addition, the assembly process was confirmed as Diffusion-Limited Aggregation. The assembled Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials showed excellent performance with heat release of 2400 J/g, peak pressure of 0.42 MPa and pressurization rate of 105.71 MPa/s, superior to that in the control group Al/Fe{sub 2}O{sub 3} nanostructured energetic materials prepared by sonication with heat release of 1326 J/g, peak pressure of 0.19 MPa and pressurization rate of 33.33 MPa/s. Therefore, the approach, which is facile, opens a promising route to the high performance nanostructured energetic materials. - Graphical abstract: The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. - Highlights: • A facile spontaneous electrostatic assembly strategy without surfactant was adopted. • The fuels and oxidizers assembled into densely packed nanostructured composites. • The assembled nanostructured energetic materials have excellent performance. • This high performance energetic material can be scaled up for practical application. • This

  18. Ab initio configuration interaction study on the energetics and electronic structure of the 1-52Σ+ and 1-32Π states of CS+

    International Nuclear Information System (INIS)

    Honjou, Nobumitsu

    2006-01-01

    The energetics and electronic structure of the 1-5 2 Σ + and 1-3 2 Π states of CS + at and around the equilibrium internuclear distance R e for the CS X 1 Σ + state are studied by carrying out ab initio configuration interaction (CI) calculations. The spectroscopic constants of T e , ω e , and R e for the 1-4 2 Σ + , 1 2 Π, and 3 2 Π states are evaluated from the CI potential energy curves (PECs). The avoided crossing between the 2-3 2 Σ + PECs causes the 3 2 Σ + minimum and explains the observed high intensities for the photoionization from the CS X 1 Σ + state to both the 2-3 2 Σ + states. The avoided crossing between the 3-4 2 Σ + PECs produces the 3 2 Σ + maximum and 4 2 Σ + well minimum. The avoided crossing between the 2-3 2 Π PECs results in the 3 2 Π minimum and a small minimum spacing (0.14 eV) between the PECs

  19. Production of high-energetic photons in the heavy ion reaction 136Xe + 48Ti at ELab = 18.5 MeV/u

    International Nuclear Information System (INIS)

    Enders, G.

    1991-05-01

    The production mechanism for high-energetic photons in heavy ion collisions was studied on the example of the deep inelastic reaction 136 Xe+ 48 Ti at a projectile energy of 18.5 MeV/u in an exclusive experiment, in which photons and heavy reaction fragments were detected in coincidence. (orig.) [de

  20. Synergistic and alkaline stability studies of mixtures of simulated high level waste sludge with selected energetic compounds

    International Nuclear Information System (INIS)

    Fondeur, F.F.

    2000-01-01

    This study examined the stability of mercury oxalate and mercury fulminate in alkaline sludge simulating Savannah River Site waste. These compounds represent two classes of energetic compounds previously speculated as potential components in sludge stored without a supernatant liquid

  1. 1999 Summer Research Program for High School Juniors at the University of Rochester's Laboratory for Laser Energetics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-10-09

    oak-B202--During the summer of 1999, 12 students from Rochester-area high schools participated in the Laboratory for Laser Energetics' Summer High School Research Program. The goal of this program is to excite a group of high school students about careers in the areas of science and technology by exposing them to research in a state-of-the-art environment. Too often, students are exposed to ''research'' only through classroom laboratories that have prescribed procedures and predictable results. In LLE's summer program, the students experience all of the trials, tribulations, and rewards of scientific research. By participating in research in a real environment, the students often become more enthusiastic about careers in science and technology. In addition, LLE gains from the contributions of the many highly talented students who are attracted to the program. The students spent most of their time working on their individual research projects with members of LLE's technical staff. The projects were related to current research activities at LLE and covered a broad range of areas of interest including laser modeling, diagnostic development, chemistry, liquid crystal devices, and opacity data visualization. The students, their high schools, their LLE supervisors and their project titles are listed in the table. Their written reports are collected in this volume. The students attended weekly seminars on technical topics associated with LLE's research. Topics this year included lasers, fusion, holography, optical materials, global warming, measurement errors, and scientific ethics. The students also received safety training, learned how to give scientific presentations, and were introduced to LLE's resources, especially the computational facilities. The program culminated with the High School Student Summer Research Symposium on 25 August at which the students presented the results of their research to an audience that

  2. Monitoring of energetic characteristics of electron beams during formation of high-power pulsed bremsstrahlung

    International Nuclear Information System (INIS)

    Ivaschenko, D.M.; Mordasov, N.G.; Chlenov, A.M.

    2005-01-01

    A method and a device for monitoring the dynamic and integrated characteristics of high-power electron and bremsstrahlung beams of the pulse accelerators are proposed. The transfer functions for various types of a target in operating conditions of the pulse accelerator UIN-10 are presented. Possibilities if the integrated diagnostics of acceleration rate of the electron beams with simultaneous testing of the bremsstrahlung parameters as a local field point beyond the converting target are shown [ru

  3. New Techniques for Investigating Properties of Energetic Solids at High Static and Dynamic Pressures.

    Science.gov (United States)

    1976-09-01

    fluid. For optical measurements in the regions of extremely high absorption ( lOs — io6 cm~~) thin films are required with a thickness of 500—5000L The top...round trip in the cavity. The result is a series of extremely narrow pulses, each pulse a few picoseconds ( lO ~~2 seconds) in duration and separated...electronic pulsar and electro—optic selection elements, it is possible to extract a single picosecond pulse from the train. This is I achieved by placing a

  4. Energetics of small scale turbulence in the lower stratosphere from high resolution radar measurements

    Directory of Open Access Journals (Sweden)

    J. Dole

    2001-08-01

    Full Text Available Very high resolution radar measurements were performed in the troposphere and lower stratosphere by means of the PROUST radar. The PROUST radar operates in the UHF band (961 MHz and is located in St. Santin, France (44°39’ N, 2°12’ E. A field campaign involving high resolution balloon measurements and the PROUST radar was conducted during April 1998. Under the classical hypothesis that refractive index inhomogeneities at half radar wavelength lie within the inertial subrange, assumed to be isotropic, kinetic energy and temperature variance dissipation rates were estimated independently in the lower stratosphere. The dissipation rate of temperature variance is proportional to the dissipation rate of available potential energy. We therefore estimate the ratio of dissipation rates of potential to kinetic energy. This ratio is a key parameter of atmospheric turbulence which, in locally homogeneous and stationary conditions, is simply related to the flux Richardson number, Rf .Key words. Meteorology and atmospheric dynamics (turbulence – Radio science (remote sensing

  5. Energetics of small scale turbulence in the lower stratosphere from high resolution radar measurements

    Directory of Open Access Journals (Sweden)

    J. Dole

    Full Text Available Very high resolution radar measurements were performed in the troposphere and lower stratosphere by means of the PROUST radar. The PROUST radar operates in the UHF band (961 MHz and is located in St. Santin, France (44°39’ N, 2°12’ E. A field campaign involving high resolution balloon measurements and the PROUST radar was conducted during April 1998. Under the classical hypothesis that refractive index inhomogeneities at half radar wavelength lie within the inertial subrange, assumed to be isotropic, kinetic energy and temperature variance dissipation rates were estimated independently in the lower stratosphere. The dissipation rate of temperature variance is proportional to the dissipation rate of available potential energy. We therefore estimate the ratio of dissipation rates of potential to kinetic energy. This ratio is a key parameter of atmospheric turbulence which, in locally homogeneous and stationary conditions, is simply related to the flux Richardson number, Rf .

    Key words. Meteorology and atmospheric dynamics (turbulence – Radio science (remote sensing

  6. Advanced High Temperature Structural Seals

    Science.gov (United States)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-10-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  7. Search for new phenomena in events with a highly energetic jet and missing transverse momentum with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00387867

    This thesis present the search for new phenomena in events with a highly energetic jet and large missing transverse momentum at ATLAS with data collected in Run 2 during 2015 and 2016 corresponding to 36.1 fb-1. This search, also referred to as 'monojet search' exhibits a unique sensitivity to BSM models predicting heavy particles that may escape the detector untraced. If an object, such as a jet, recoils against these particles a monojet signature is produced. The search exploits the discrimination power of the E_{T}^{miss} spectrum between background and BSM signals. The E_{T}^{miss} spectrum is fitted in 10 bins in four orthogonal control regions simultaneously to estimate the background contribution in the signal region and determine the probability of various signal hypothesis from the observed data distribution. The fit model relies on state of the art theory predictions concerning NLO QCD and nNLO EW corrections to the major V+jets backgrounds and uses as well data driven techniques. Therefore, the pr...

  8. High-resolution energetic particle measurements at 6.6 R/sub E/ 1. Electron micropulsations

    International Nuclear Information System (INIS)

    Higbie, P.R.; Belian, R.D.; Baker, D.N.

    1978-01-01

    The three papers dealing with data from satellites 1976--059A which we present in this issue represent the first publication of data from the new series of charged particle analyzer (CPA) instruments designed to measure energetic particle fluxes at geosynchronous altitudes. This first report presents new results on electron micropulsation phenomena and includes a concise description of the instrument. We often observe highly periodic modulations which persist for times as long as 2 hours in the spin-averaged counting rate data. These flux oscillations occur most frequently in the 30- to 300-keV electron data but are occasionally seen in higher-energy electron or low-energy proton data. The pitch angle distributions of the observed modulated fluxes may be either 'cigar-shaped' or 'pancake-shaped.' Oscillations at different energies are in phase, although the gross counting rate may be changing in an energy-time dispersive manner. The occurrence distribution of these modulations in local time suggests that they are related to Pc 5 geomagnetic micropulsations observed at ground stations

  9. Energetic balance in an ultrasonic reactor using focused or flat high frequency transducers.

    Science.gov (United States)

    Hallez, L; Touyeras, F; Hihn, J Y; Klima, J

    2007-09-01

    In order to undertake irradiation of polymer blocks or films by ultrasound, this paper deals with the measurements of ultrasonic power and its distribution within the cell by several methods. The electric power measured at the transducer input is compared to the ultrasonic power input to the cell evaluated by calorimetry and radiation force measurement for different generator settings. Results obtained in the specific case of new transducer types (composites and focused composites i.e., HIFU: high intensity focused ultrasound) provide an opportunity to conduct a discussion about measurement methods. It has thus been confirmed that these measurement techniques can be applied to HIFU transducers. For all cases, results underlined the fact that measurement of radiation pressure for power evaluation is more adapted to low powers (generator-transducer-liquid and sample.

  10. Energetics and stability of azulene: From experimental thermochemistry to high-level quantum chemical calculations

    International Nuclear Information System (INIS)

    Sousa, Clara C.S.; Matos, M. Agostinha R.; Morais, Victor M.F.

    2014-01-01

    Highlights: • Experimental standard molar enthalpy of formation, sublimation azulene. • Mini-bomb combustion calorimetry, sublimation Calvet microcalorimetry. • High level composite ab initio calculations. • Computational estimate of the enthalpy of formation of azulene. • Discussion of stability and aromaticity of azulene. - Abstract: The standard (p 0 = 0.1 MPa) molar enthalpy of formation for crystalline azulene was derived from the standard molar enthalpy of combustion, in oxygen, at T = 298.15 K, measured in a mini-bomb combustion calorimeter (aneroid isoperibol calorimeter) and the standard molar enthalpy of sublimation, at T = 298.15 K, measured by Calvet microcalorimetry. From these experiments, the standard molar enthalpy of formation of azulene in the gaseous phase at T = 298.15 K was calculated. In addition, very accurate quantum chemical calculations at the G3 and G4 composite levels of calculation were conducted in order to corroborate our experimental findings and further clarify and establish the definitive standard enthalpy of formation of this interesting non-benzenoid hydrocarbon

  11. Energetics of high-intensity exercise (soccer) with particular reference to fatigue.

    Science.gov (United States)

    Reilly, T

    1997-06-01

    Soccer entails intermittent exercise with bouts of short, intense activity punctuating longer periods of low-level, moderate-intensity exercise. High levels of blood lactate may sometimes be observed during a match but the active recovery periods at submaximal exercise levels allow for its removal on a continual basis. While anaerobic efforts are evident in activity with the ball and shadowing fast-moving opponents, the largest strain is placed on aerobic metabolism. On average, competitive soccer corresponds to an energy expenditure of about 75% maximal aerobic power. The energy expenditure varies with playing position, being highest among midfield players. Muscle glycogen levels can be reduced towards the end of a game, the level of reduction being reflected in a decrease in work rate. Blood glucose levels are generally well-maintained, although body temperature may rise by 2 degrees C even in temperate conditions. The distance covered by players tends to under-reflect the energy expended. Unorthodox modes of motion-running backwards and sideways, accelerating, decelerating and changing direction-accentuate the metabolic loading. These are compounded by the extra requirements for energy associated with dribbling the ball and contesting possession. The overall energy expended is extreme when players are required to play extra-time in tournaments. Training, nutritional and tactical strategies may be used to reduce the effects of fatigue that may occur late in the game.

  12. Energetics and dynamics of droplet evaporation in high temperature intermediate Reynolds number flows

    Science.gov (United States)

    Renksizbulut, M.

    Nusselt Numbers and drag coefficients of single-component liquid droplets and solid spheres in high temperature, intermediate Reynolds Number flows were investigated. The evaporation of suspended water, Methanol and n-Heptane droplets were followed in laminar air streams up to 1059 K in temperature using a steady-state measurement technique. It is found that the dynamic blowing effect of evaporation causes large reductions in heat transfer rates, and that the film conditions constitute an appropriate reference state for the evaluation of thermophysical properties. The numerical results indicate that the blowing effect of evaporation on momentum transfer is to reduce friction drag very significantly but at the same time increase pressure drag by almost an equal amount; the net effect on the total drag force being only a marginal reduction. In all cases, it is found that thermophysical property variations play a very dominant role in reducing the drag forces acting on cold particles. Results are analysed and a correlation for stagnation-point heat transfer is also presented.

  13. Quantum dynamics of small H2 and D2 clusters in the large cage of structure II clathrate hydrate: Energetics, occupancy, and vibrationally averaged cluster structures

    Science.gov (United States)

    Sebastianelli, Francesco; Xu, Minzhong; Bačić, Zlatko

    2008-12-01

    We report diffusion Monte Carlo (DMC) calculations of the quantum translation-rotation (T-R) dynamics of one to five para-H2 (p-H2) and ortho-D2 (o-D2) molecules inside the large hexakaidecahedral (51264) cage of the structure II clathrate hydrate, which was taken to be rigid. These calculations provide a quantitative description of the size evolution of the ground-state properties, energetics, and the vibrationally averaged geometries, of small (p-H2)n and (o-D2)n clusters, n=1-5, in nanoconfinement. The zero-point energy (ZPE) of the T-R motions rises steeply with the cluster size, reaching 74% of the potential well depth for the caged (p-H2)4. At low temperatures, the rapid increase of the cluster ZPE as a function of n is the main factor that limits the occupancy of the large cage to at most four H2 or D2 molecules, in agreement with experiments. Our DMC results concerning the vibrationally averaged spatial distribution of four D2 molecules, their mean distance from the cage center, the D2-D2 separation, and the specific orientation and localization of the tetrahedral (D2)4 cluster relative to the framework of the large cage, agree very well with the low-temperature neutron diffraction experiments involving the large cage with the quadruple D2 occupancy.

  14. Furan interaction with the Si(001)-(2 x 2) surface: structural, energetics, and vibrational spectra from first-principles

    International Nuclear Information System (INIS)

    Miotto, R; Ferraz, A C

    2009-01-01

    In this work we employ the state of the art pseudopotential method, within a generalized gradient approximation to the density functional theory, to investigate the adsorption process of furan on the silicon (001) surface. A direct comparison of different adsorption structures with x-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS), high resolution electron energy loss spectroscopy (HREELS), near edge x-ray absorption fine structure (NEXAFS), and high resolution spectroscopy experimental data allows us to identify the [4+2 ] cycloaddition reaction as the most probable adsorbate. In addition, theoretical scanning tunnelling microscopy (STM) images are presented, with a view to contributing to further experimental investigations.

  15. Density and temperature of energetic electrons in the Earth's magnetotail derived from high-latitude GPS observations during the declining phase of the solar cycle

    Directory of Open Access Journals (Sweden)

    M. H. Denton

    2011-10-01

    Full Text Available Single relativistic-Maxwellian fits are made to high-latitude GPS-satellite observations of energetic electrons for the period January 2006–November 2010; a constellation of 12 GPS space vehicles provides the observations. The derived fit parameters (for energies ~0.1–1.0 MeV, in combination with field-line mapping on the nightside of the magnetosphere, provide a survey of the energetic electron density and temperature distribution in the magnetotail between McIlwain L-values of L=6 and L=22. Analysis reveals the characteristics of the density-temperature distribution of energetic electrons and its variation as a function of solar wind speed and the Kp index. The density-temperature characteristics of the magnetotail energetic electrons are very similar to those found in the outer electron radiation belt as measured at geosynchronous orbit. The energetic electron density in the magnetotail is much greater during increased geomagnetic activity and during fast solar wind. The total electron density in the magnetotail is found to be strongly correlated with solar wind speed and is at least a factor of two greater for high-speed solar wind (VSW=500–1000 km s−1 compared to low-speed solar wind (VSW=100–400 km s−1. These results have important implications for understanding (a how the solar wind may modulate entry into the magnetosphere during fast and slow solar wind, and (b if the magnetotail is a source or a sink for the outer electron radiation belt.

  16. Investigation of structural materials of reactors using high-energy heavy-ion irradiations

    International Nuclear Information System (INIS)

    Wang Zhiguang

    2007-01-01

    Radiation damage in structural materials of fission/fusion reactors is mainly attributed to the evolution of intensive atom displacement damage induced by energetic particles (n, α and/or fission fragments) and high-rate helium doping by direct α particle bombardments and/or (n, α) reactions. It can cause severe degradation of reactor structural materials such as surface blistering, bulk void swelling, deformation, fatigue, embrittlement, stress erosion corrosion and so on that will significantly affect the operation safety of reactors. However, up to now, behavior of structural materials at the end of their service can hardly be fully tested in a real reactor. In the present work, damage process in reactor structural materials is briefly introduced, then the advantages of energetic ion implantation/irradiation especially high-energy heavy ion irradiation are discussed, and several typical examples on simulation of radiation effects in reactor candidate structural materials using high-energy heavy ion irradiations are pronounced. Experimental results and theoretical analysis suggested that irradiation with energetic particles especially high-energy heavy ions is very useful technique for simulating the evolution of microstructures and macro-properties of reactor structural materials. Furthermore, an on-going plan of material irradiation experiments using high energy H- and He-ions based on the Heavy Ion Research Facilities in Lanzhou (HIRFL) is also briefly interpreted. (authors)

  17. Effects of substrate temperature, substrate orientation, and energetic atomic collisions on the structure of GaN films grown by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Schiaber, Ziani S.; Lisboa-Filho, Paulo N.; Silva, José H. D. da [Universidade Estadual Paulista, UNESP, Bauru, São Paulo 17033-360 (Brazil); Leite, Douglas M. G. [Universidade Federal de Itajubá, UNIFEI, Itajubá, Minas Gerais 37500-903 (Brazil); Bortoleto, José R. R. [Universidade Estadual Paulista, UNESP, Sorocaba, São Paulo 18087-180 (Brazil)

    2013-11-14

    The combined effects of substrate temperature, substrate orientation, and energetic particle impingement on the structure of GaN films grown by reactive radio-frequency magnetron sputtering are investigated. Monte-Carlo based simulations are employed to analyze the energies of the species generated in the plasma and colliding with the growing surface. Polycrystalline films grown at temperatures ranging from 500 to 1000 °C clearly showed a dependence of orientation texture and surface morphology on substrate orientation (c- and a-plane sapphire) in which the (0001) GaN planes were parallel to the substrate surface. A large increase in interplanar spacing associated with the increase in both a- and c-parameters of the hexagonal lattice and a redshift of the optical bandgap were observed at substrate temperatures higher than 600 °C. The results showed that the tensile stresses produced during the film's growth in high-temperature deposition ranges were much larger than the expected compressive stresses caused by the difference in the thermal expansion coefficients of the film and substrate in the cool-down process after the film growth. The best films were deposited at 500 °C, 30 W and 600 °C, 45 W, which corresponds to conditions where the out diffusion from the film is low. Under these conditions the benefits of the temperature increase because of the decrease in defect density are greater than the problems caused by the strongly strained lattice that occurr at higher temperatures. The results are useful to the analysis of the growth conditions of GaN films by reactive sputtering.

  18. High-efficiency InP-based photocathode for hydrogen production by interface energetics design and photon management

    NARCIS (Netherlands)

    Gao, L.; Cui, Y.; Vervuurt, R.H.J.; van Dam, D.; van Veldhoven, R.; Hofmann, J.P.; Bol, A.A.; Haverkort, J.E.M.; Notten, P.H.L.; Bakkers, E.P.A.M.; Hensen, E.J.M.

    2016-01-01

    The solar energy conversion efficiency of photoelectrochemical (PEC) devices is usually limited by poor interface energetics, limiting the onset potential, and light reflection losses. Here, a three-pronged approach to obtain excellent performance of an InP-based photoelectrode for water reduction

  19. A mathematical high bar-human body model for analysing and interpreting mechanical-energetic processes on the high bar.

    Science.gov (United States)

    Arampatzis, A; Brüggemann, G P

    1998-12-01

    The aims of this study were: 1. To study the transfer of energy between the high bar and the gymnast. 2. To develop criteria from the utilisation of high bar elasticity and the utilisation of muscle capacity to assess the effectiveness of a movement solution. 3. To study the influence of varying segment movement upon release parameters. For these purposes a model of the human body attached to the high bar (high bar-human body model) was developed. The human body was modelled using a 15-segment body system. The joint-beam element method (superelement) was employed for modelling the high bar. A superelement consists of four rigid segments connected by joints (two Cardan joints and one rotational-translational joint) and springs (seven rotation springs and one tension-compression spring). The high bar was modelled using three superelements. The input data required for the high bar human body model were collected with video-kinematographic (50 Hz) and dynamometric (500 Hz) techniques. Masses and moments of inertia of the 15 segments were calculated using the data from the Zatsiorsky et al. (1984) model. There are two major phases characteristic of the giant swing prior to dismounts from the high bar. In the first phase the gymnast attempts to supply energy to the high bar-humanbody system through muscle activity and to store this energy in the high bar. The difference between the energy transferred to the high bar and the reduction in the total energy of the body could be adopted as a criterion for the utilisation of high bar elasticity. The energy previously transferred into the high bar is returned to the body during the second phase. An advantageous increase in total body energy at the end of the exercise could only be obtained through muscle energy supply. An index characterising the utilisation of muscle capacity was developed out of the difference between the increase in total body energy and the energy returned from the high bar. A delayed and initially slow but

  20. High-energy particle production in solar flares (SEP, gamma-ray and neutron emissions). [solar energetic particles

    Science.gov (United States)

    Chupp, E. L.

    1987-01-01

    Electrons and ions, over a wide range of energies, are produced in association with solar flares. Solar energetic particles (SEPs), observed in space and near earth, consist of electrons and ions that range in energy from 10 keV to about 100 MeV and from 1 MeV to 20 GeV, respectively. SEPs are directly recorded by charged particle detectors, while X-ray, gamma-ray, and neutron detectors indicate the properties of the accelerated particles (electrons and ions) which have interacted in the solar atmosphere. A major problem of solar physics is to understand the relationship between these two groups of charged particles; in particular whether they are accelerated by the same mechanism. The paper reviews the physics of gamma-rays and neutron production in the solar atmosphere and the method by which properties of the primary charged particles produced in the solar flare can be deduced. Recent observations of energetic photons and neutrons in space and at the earth are used to present a current picture of the properties of impulsively flare accelerated electrons and ions. Some important properties discussed are time scale of production, composition, energy spectra, accelerator geometry. Particular attention is given to energetic particle production in the large flare on June 3, 1982.

  1. Atomic structure of highly-charged ions. Final report

    International Nuclear Information System (INIS)

    Livingston, A. Eugene

    2002-01-01

    Atomic properties of multiply charged ions have been investigated using excitation of energetic heavy ion beams. Spectroscopy of excited atomic transitions has been applied from the visible to the extreme ultraviolet wavelength regions to provide accurate atomic structure and transition rate data in selected highly ionized atoms. High-resolution position-sensitive photon detection has been introduced for measurements in the ultraviolet region. The detailed structures of Rydberg states in highly charged beryllium-like ions have been measured as a test of long-range electron-ion interactions. The measurements are supported by multiconfiguration Dirac-Fock calculations and by many-body perturbation theory. The high-angular-momentum Rydberg transitions may be used to establish reference wavelengths and improve the accuracy of ionization energies in highly charged systems. Precision wavelength measurements in highly charged few-electron ions have been performed to test the most accurate relativistic atomic structure calculations for prominent low-lying excited states. Lifetime measurements for allowed and forbidden transitions in highly charged few-electron ions have been made to test theoretical transition matrix elements for simple atomic systems. Precision lifetime measurements in laser-excited alkali atoms have been initiated to establish the accuracy of relativistic atomic many-body theory in many-electron systems

  2. Understanding the structural and energetic basis of PD-1 and monoclonal antibodies bound to PD-L1: A molecular modeling perspective.

    Science.gov (United States)

    Shi, Danfeng; Zhou, Shuangyan; Liu, Xuewei; Zhao, Chenxi; Liu, Huanxiang; Yao, Xiaojun

    2018-03-01

    The inhibitors blocking the interaction between programmed cell death protein 1(PD-1) and programmed death-ligand 1(PD-L1) can activate the immune response of T cell and eliminate cancer cells. The crystallographic studies have provided structural insights of the interactive interfaces between PD-L1 and its protein ligands. However, the hotspot residues on PD-L1 as well as structural and energetic basis for different protein ligands still need to be further investigated. Molecular modeling methods including molecular dynamics simulation, per-residue free energy decomposition, virtual alanine scanning mutagenesis and residue-residue contact analysis were used to qualitatively and quantitatively analyze the interactions between PD-L1 and different protein ligands. The results of virtual alanine scanning mutagenesis suggest that Y56, Q66, M115, D122, Y123, R125 are the hotspot residues on PD-L1. The residue-residue contact analysis further shows that PD-1 interacts with PD-L1 mainly by F and G strands while monoclonal antibodies like avelumab and BMS-936559 mainly interact with PD-L1 by CDR2 and CDR3 loops of the heavy chain. A structurally similar β-hairpin peptide with 13 or 14 residues was extracted from each protein ligand and these β-hairpin peptides were found tightly binding to the putative hotspot residues on PD-L1. This study recognizes the hotspot residues on PD-L1 and uncovers the common structural and energetic basis of different protein ligands binding to PD-L1. These results will be valuable for the design of small molecule or peptide inhibitors targeting on PD-L1. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. High temperature structural sandwich panels

    Science.gov (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  4. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  5. High-Density Energetic Metal–Organic Frameworks Based on the 5,5′-Dinitro-2H,2′H-3,3′-bi-1,2,4-triazole

    Directory of Open Access Journals (Sweden)

    Yalu Dong

    2017-06-01

    Full Text Available High-energy metal–organic frameworks (MOFs based on nitrogen-rich ligands are an emerging class of explosives, and density is one of the positive factors that can influence the performance of energetic materials. Thus, it is important to design and synthesize high-density energetic MOFs. In the present work, hydrothermal reactions of Cu(II with the rigid polynitro heterocyclic ligands 5,5′-dinitro-2H,2′H-3,3′-bi-1,2,4-triazole (DNBT and 5,5′-dinitro-3,3′-bis-1,2,4-triazole-1-diol (DNBTO gave two high-density MOFs: [Cu(DNBT(ATRZ3]n (1 and [Cu(DNBTO(ATRZ2(H2O2]n (2, where ATRZ represents 4,4′-azo-1,2,4-triazole. The structures were characterized by infrared spectroscopy, elemental analysis, ultraviolet-visible (UV absorption spectroscopy and single-crystal X-ray diffraction. Their thermal stabilities were also determined by thermogravimetric/differential scanning calorimetry analysis (TG/DSC. The results revealed that complex 1 has a two-dimensional porous framework that possesses the most stable chair conformations (like cyclohexane, whereas complex 2 has a one-dimensional polymeric structure. Compared with previously reported MOFs based on copper ions, the complexes have higher density (ρ = 1.93 g cm−3 for complex 1 and ρ = 1.96 g cm−3 for complex 2 and high thermal stability (decomposition temperatures of 323 °C for complex 1 and 333.3 °C for complex 2, especially because of the introduction of an N–O bond in complex 2. We anticipate that these two complexes would be potential high-energy density materials.

  6. A multi-scale methodology to model damage, deformation and ignition of highly-filled energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Vivier, G. [Paris Univ., Paris (France). LMT Cachan; CEA Le Ripault, Monts (France); Trumel, H. [CEA Le Ripault, Monts (France); Hild, F. [Paris Univ., Paris (France). LMT Cachan

    2009-07-01

    The kinetic energy that occurs when energetic materials are impacted can be converted to heat through dissipative deformation processes while the macroscopic temperature remains unaffected. In this study, a thermodynamics-based approach was used to model the elasto-plastic behaviour that occurs during the deformation process of microstructures. Macroscopic material was modelled as a statistical distribution of unit cells containing a crack grain embedded in an elastic mortar-like matrix. A mesoscopic unit cell model was also developed under confined shear. The study demonstrated that stored energy is a non-negligible part of the total energy of the system, and that stored energy can be released during the unloading process. It was concluded that the mesoscopic analysis of the cracked cell demonstrates that continuum thermodynamics can be used to predict hot spots induced by friction. 7 refs., 7 figs.

  7. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    OpenAIRE

    Ruijin Hong; Jialin Ji; Chunxian Tao; Daohua Zhang; Dawei Zhang

    2017-01-01

    Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO) and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD), optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B ...

  8. Resistive interchange mode destabilized by helically trapped energetic ions and its effects on energetic ions and bulk plasmas

    International Nuclear Information System (INIS)

    Du, X.D.; Toi, K.; Osakabe, M.

    2014-10-01

    A resistive interchange mode with bursting behavior and rapid frequency chirping in the range less than 10 kHz is observed for the first time in the magnetic hill region of net current-free, low beta LHD (Large Helical Device) plasmas during high power injection of perpendicular neutral beams. The mode resonates with the precession motion of helically trapped energetic beam ions, following the resonant condition. The radial mode structure is found to be very similar to that of usual pressure-driven interchange mode, of which radial displacement eigenfunction has an even function around the rational surface. This beam driven mode is excited when the beta value of helically trapped energetic ions exceed a certain threshold. The radial transport of helically trapped energetic ions induced by the mode transiently generates significant radial electric field near the plasma peripheral region. Thus generated radial electric field clearly suppresses micro turbulence and improves bulk plasma confinement, suggesting strong flow shear generation. (author)

  9. Engineering of the energetic structure of the anode of organic photovoltaic devices utilizing hot-wire deposited transition metal oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Vasilopoulou, M., E-mail: mariva@imel.demokritos.gr [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Stathopoulos, N.A.; Savaidis, S.A. [Department of Electronics, Technological and Educational Institute (TEI) of Piraeus, Petrou Ralli & Thivon, 12244 Aegaleo (Greece); Kostis, I. [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Department of Electronics, Technological and Educational Institute (TEI) of Piraeus, Petrou Ralli & Thivon, 12244 Aegaleo (Greece); Papadimitropoulos, G. [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Davazoglou, D., E-mail: d.davazoglou@imel.demokritos.gr [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece)

    2015-09-30

    Graphical abstract: In this work we perform successful engineering of the anode of organic photovoltaics based on poly(3-hexylthiophene):[6,6]-phenyl butyric acid methyl ester blends by using metal oxide transport layers exhibiting shallow gap states which act as a barrier-free path for hole transport toward the anode. - Highlights: • Interface engineering of the anode. • Organic photovoltaics (OPVs). • Shallow gap states. • Barrier-free hole transport. • Design rules for interface engineering in OPVs. - Abstract: In this work we use hydrogen deposited molybdenum and tungsten oxides (chemically described as H:MO{sub x}x ≤ 3 where M = Mo or W) to control the energetics at the anode of bulk heterojunction (BHJ) organic photovoltaics (OPVs) based on poly(3-hexylthiophene):[6,6]-phenyl butyric acid methyl ester (P3HT:PC{sub 71}BM) blends. Significantly improved current densities and open circuit voltages were achieved as a result of improved hole transport from the P3HT highest occupied molecular orbital (HOMO) toward indium tin oxide (ITO) anode. This was attributed to the formation of shallow gap states in these oxides which are located just below the Fermi level and above the polymer HOMO and thus may act as a barrier-free path for the extraction of holes. Consequently, these states can be used for controlling the energetic structure of the anode of OPVs. By using ultraviolet photoelectron spectroscopy it was found that dependent on the deposition conditions these gap states and work function of the metal oxides may be tailored to contribute to the precise alignment of the HOMO of the organic semiconductor (OSC) with the Fermi level of the anode electrode resulting in further enhancement of the device performance.

  10. Energetic cost of communication.

    Science.gov (United States)

    Stoddard, Philip K; Salazar, Vielka L

    2011-01-15

    Communication signals may be energetically expensive or inexpensive to produce, depending on the function of the signal and the competitive nature of the communication system. Males of sexually selected species may produce high-energy advertisement signals, both to enhance detectability and to signal their size and body condition. Accordingly, the proportion of the energy budget allocated to signal production ranges from almost nothing for many signals to somewhere in excess of 50% for acoustic signals in short-lived sexually selected species. Recent data from gymnotiform electric fish reveal mechanisms that regulate energy allocated to sexual advertisement signals through dynamical remodeling of the excitable membranes in the electric organ. Further, males of the short-lived sexually selected species, Brachyhypopomus gauderio, trade off among different metabolic compartments, allocating energy to signal production while reducing energy used in other metabolic functions. Female B. gauderio, by contrast, do not trade off energy between signaling and other functions. To fuel energetically expensive signal production, we expect a continuum of strategies to be adopted by animals of different life history strategies. Future studies should explore the relation between life history and energy allocation trade-offs.

  11. Molecular dynamics simulations to examine structure, energetics, and evaporation/condensation dynamics in small charged clusters of water or methanol containing a single monatomic ion.

    Science.gov (United States)

    Daub, Christopher D; Cann, Natalie M

    2012-11-01

    We study small clusters of water or methanol containing a single Ca(2+), Na(+), or Cl(-) ion with classical molecular dynamics simulations, using models that incorporate polarizability via the Drude oscillator framework. Evaporation and condensation of solvent from these clusters is examined in two systems, (1) for isolated clusters initially prepared at different temperatures and (2) those with a surrounding inert (Ar) gas of varying temperature. We examine these clusters over a range of sizes, from almost bare ions up to 40 solvent molecules. We report data on the evaporation and condensation of solvent from the clusters and argue that the observed temperature dependence of evaporation in the smallest clusters demonstrates that the presence of heated gas alone cannot, in most cases, solely account for bare ion production in electrospray ionization (ESI), neglecting the key contribution of the electric field. We also present our findings on the structure and energetics of the clusters as a function of size. Our data agree well with the abundant literature on hydrated ion clusters and offer some novel insight into the structure of methanol and ion clusters, especially those with a Cl(-) anion, where we observe the presence of chain-like structures of methanol molecules. Finally, we provide some data on the reparameterizations necessary to simulate ions in methanol using the separately developed Drude oscillator models for methanol and for ions in water.

  12. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    Directory of Open Access Journals (Sweden)

    Ruijin Hong

    2017-01-01

    Full Text Available Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD, optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B molecules based on the Au/graphene oxide/Ag sandwich nanostructure substrate were obviously enhanced due to the bimetal layer and GO layer with tunable absorption intensity and fluorescence quenching effects.

  13. Introduction to global energetic problems

    International Nuclear Information System (INIS)

    Gicquel, R.

    1992-01-01

    This book gives a view on global energetic problems and proposes a thorough economic analysis on principle aspects taken into account: energy supply, depending energy sources and available technologic channels, relationships between macro-economy and energy demand, new size of energy problems (environmental effects, overcosts of renewable energy sources, necessity of an high technologic development...). 38 refs

  14. Energetics of dislocation transformations in hcp metals

    International Nuclear Information System (INIS)

    Wu, Zhaoxuan; Yin, Binglun; Curtin, W.A.

    2016-01-01

    Dislocation core structures of hcp metals are highly complex and differ significantly among the hcp family. Some dislocations undergo unconventional transformations that have significant effects on the material plastic flow. Here, the energetics of dislocation dissociations are analyzed in a general anisotropic linear elastic theory framework for transformations in which changes in the partial Burgers vectors are small. Quantitative analyses on various transformations are made using DFT-computed stacking fault energies and partial Burgers vectors. Specifically, possible transformations of the mixed, edge, and screw 〈c+a〉 and screw 〈a〉 dislocations in 6 hcp metals (Mg, Ti, Zr, Re, Zn, Cd) are studied. Climb dissociation of mixed or edge 〈c+a〉 dislocations to the Basal plane is energetically favorable in all 6 metals and thus only limited by thermal activation. The 〈c+a〉 screw dislocation is energetically preferable on Pyramidal I for Ti, Zr, and Re, and on Pyramidal II for Zn and Cd. In Mg, the energy difference between screw 〈c+a〉 on Pyramidal I and II planes is small, suggesting relatively easy cross-slip. For the screw 〈a〉, Basal dissociation is energetically favorable in Mg, Re, Zn and Cd, while Prism dissociation is strongly favorable in Ti and Zr. Only Ti, Zr and Re show a metastable state for dissociation on the Prism plane, and the energy difference between screw 〈a〉 on the Prism and Pyramidal I planes is relatively small in all systems, suggesting relatively easy cross-slip of 〈a〉 in Ti and Zr. The elastic analysis thus provides a single framework able to capture the controlling energetics for different dissociations and slip systems in hcp metals. When the calculated energy differences are very small, the results point to the need for detailed modeling of the atomistic core structure. Moreover, the analyses rationalize broad experimental observations on dominant slip systems and dislocation behaviours, and provide

  15. Energetic lanthanide complexes: coordination chemistry and explosives applications

    International Nuclear Information System (INIS)

    Manner, V W; Barker, B J; Sanders, V E; Laintz, K E; Scott, B L; Preston, D N; Sandstrom, M; Reardon, B L

    2014-01-01

    Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with 'tailor made' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.

  16. Structural and Energetic Impact of Non-Natural 7-Deaza-8-Azaadenine and its 7-Substituted Derivatives on H-Bonding Potential with Uracil in RNA Molecules

    KAUST Repository

    Chawla, Mohit; Credendino, Raffaele; Oliva, Romina; Cavallo, Luigi

    2015-01-01

    Non-natural (synthetic) nucleobases, including 7-ethynyl- and 7-triazolyl-8-aza-7-deazaadenosine, have been introduced in RNA molecules for targeted applications, and have been characterized experimentally. However, no theoretical characterization of the impact of these modifications on the structure and energetics of the corresponding H-bonded base pair is available. To fill this gap, we performed quantum mechanics calculations, starting with the analysis of the impact of the 8-aza-7-deaza modification of the adenosine skeleton, and we moved then to analyze the impact of the specific substituents on the modified 8-aza-7-deazaadenosine. Our analysis indicates that, despite of these severe structural modifications, the H-bonding properties of the modified base pair gratifyingly replicate those of the unmodified base pair. Similar behavior is predicted when the same skeleton modifications are applied to guanosine when paired to cytosine. To stress further the H-bonding pairing in the modified adenosine-uracil base pair, we explored the impact of strong electron donor and electron withdrawing substituents on the C7 position. Also in this case we found minimal impact on the base pair geometry and energy, confirming the validity of this modification strategy to functionalize RNAs without perturbing its stability and biological functionality.

  17. Structural and Energetic Impact of Non-Natural 7-Deaza-8-Azaadenine and its 7-Substituted Derivatives on H-Bonding Potential with Uracil in RNA Molecules

    KAUST Repository

    Chawla, Mohit

    2015-09-21

    Non-natural (synthetic) nucleobases, including 7-ethynyl- and 7-triazolyl-8-aza-7-deazaadenosine, have been introduced in RNA molecules for targeted applications, and have been characterized experimentally. However, no theoretical characterization of the impact of these modifications on the structure and energetics of the corresponding H-bonded base pair is available. To fill this gap, we performed quantum mechanics calculations, starting with the analysis of the impact of the 8-aza-7-deaza modification of the adenosine skeleton, and we moved then to analyze the impact of the specific substituents on the modified 8-aza-7-deazaadenosine. Our analysis indicates that, despite of these severe structural modifications, the H-bonding properties of the modified base pair gratifyingly replicate those of the unmodified base pair. Similar behavior is predicted when the same skeleton modifications are applied to guanosine when paired to cytosine. To stress further the H-bonding pairing in the modified adenosine-uracil base pair, we explored the impact of strong electron donor and electron withdrawing substituents on the C7 position. Also in this case we found minimal impact on the base pair geometry and energy, confirming the validity of this modification strategy to functionalize RNAs without perturbing its stability and biological functionality.

  18. Embedded high-contrast distributed grating structures

    Science.gov (United States)

    Zubrzycki, Walter J.; Vawter, Gregory A.; Allerman, Andrew A.

    2002-01-01

    A new class of fabrication methods for embedded distributed grating structures is claimed, together with optical devices which include such structures. These new methods are the only known approach to making defect-free high-dielectric contrast grating structures, which are smaller and more efficient than are conventional grating structures.

  19. Spectroscopic and calorimetric investigation of short and intermediate-range structures and energetics of amorphous SiCO, SiCN, and SiBCN polymer-derived ceramics

    Science.gov (United States)

    Widgeon, Scarlett J.

    Polymer-derived ceramics (PDCs) are a new class of amorphous ceramics in the Si-B-C-N system that are synthesized by the pyrolysis of silicon-based organic polymers. PDCs are lightweight and are resistant to creep, crystallization, and oxidation at temperatures near 1800 K making them ideal for a variety of high temperature applications. In spite of being X-ray amorphous, these materials display structural heterogeneity at the nanometer length scale. Their structure and resulting properties can be drastically altered by the utilization of preceramic polymers with differing chemistry and architectures. Fundamental understanding of the atomic structure is critical in deciphering the structure-property relationships and ultimately in controlling their properties for specific engineering applications. The short-range atomic structure has been extensively investigated using a variety of techniques, however, the structures at length scales beyond next-nearest neighbors remained highly controversial. Here we report the results of a spectroscopic and calorimetric study of short and intermediate -range structure and energetic of SiOC and SiBCN PDCs derived from a wide variety of precursors. SiOC PDCs with different carbon contents were synthesized from polysiloxane precurors and their structures were studied using high-resolution 13C and 29Si nuclear magnetic resonance (NMR) spectroscopy. The results suggest that these PDCs consists of a continuous mass fractal backbone of corner-shared SiC xO4-x tetrahedral units with "voids" occupied by sp 2-hybridized graphitic carbon. The oxygen-rich SiCxO 4-x units are located at the interior of this backbone with a mass fractal dimension of ~ 2.5, while the carbon-rich units occupy the two-dimensional interface between the backbone and the free carbon nanodomains. Such fractal topology is expected to give rise to unusual mechanical and transport properties characteristic of fractal percolation networks. For example, elastic moduli and

  20. Structural behavior of reinforced concrete structures at high temperatures

    International Nuclear Information System (INIS)

    Yamazaki, N.; Yamazaki, M.; Mochida, T.; Mutoh, A.; Miyashita, T.; Ueda, M.; Hasegawa, T.; Sugiyama, K.; Hirakawa, K.; Kikuchi, R.; Hiramoto, M.; Saito, K.

    1995-01-01

    To establish a method to predict the behavior of reinforced concrete structures subjected simultaneously to high temperatures and external loads, this paper presents the results obtained in several series of tests carried out recently in Japan. This paper reports on the material properties of concrete and steel bars under high temperatures. It also considers the heat transfer properties of thick concrete walls under transient high temperatures, and the structural behavior of reinforced concrete beams subjected to high temperatures. In the tests, data up to 800 C were obtained for use in developing a computational method to estimate the non-linear behavior of reinforced concrete structures exposed to high temperatures. (orig.)

  1. Structural and Chemical Properties of the Nitrogen-Rich Energetic Material Triaminoguanidinium 1-methyl-5-nitriminotetrazolate under Pressure

    Science.gov (United States)

    2012-08-01

    ABSTRACT 16. SECURITY CLASSIFICATION OF: The structural and chemical properties of the bi-molecular, hydrogen-bonded, nitrogen-rich ener- getic...School Apprenticeship Program (ARO-HSAP), and the Depart- ment of Energy National Nuclear Security Administration (Carnegie/DOE Alliance Center; DE-FC52...B. J. Baer, H. Cynn, W. J. Evans, V. Iota , and C. S. Yoo, Phys. Rev. B 76(1), 014113 (2007). 9T. M. Klapötke, J. Stierstorfer, and A. U. Wallek, Chem

  2. Assessment of accident energetics in LMFBR core-disruptive accidents

    International Nuclear Information System (INIS)

    Fauske, H.K.

    1977-01-01

    An assessment of accident energetics in LMFBR core-disruptive accidents is given with emphasis on the generic issues of energetic recriticality and energetic fuel-coolant interaction events. Application of a few general behavior principles to the oxide-fueled system suggests that such events are highly unlikely following a postulated core meltdown event

  3. Determination of spectral, structural and energetic properties of small lithium clusters, within the density functional theory formalism

    International Nuclear Information System (INIS)

    Gardet, G.

    1995-01-01

    A systematic study of small lithium clusters (with size less than 19), within the Density Functional Theory (DFT) formalism is presented. We examine structural properties of the so called local level of approximation. For clusters with size smaller than 8, the conformations are well known from ab initio calculations and are found here at much lower computational cost, with only small differences. For bigger clusters, two growth pattern have been used, based upon the increase of the number of pentagonal subunits in the clusters by absorption of one or two Li atoms. Several new stable structures are proposed. Then DFT gradient-corrected functionals have been used for relative stability determination of these clusters. Ionisation potentials and binding energies are also investigated in regard to clusters size and geometry. Calculations of excited states of lithium clusters (with size less than 9) have been performed within two different approaches. Using a set of Kohn-Sham orbitals to construct wave functions, oscillator strengths calculation of the electric dipole transitions is performed. Transition energies, oscillator strengths and optical absorption presented here are generally in reasonable agreement with the experimental data and the Configuration Interaction calculations. (author)

  4. The structure and energetic of AlAsn (n = 1-15) clusters: A first-principles study

    International Nuclear Information System (INIS)

    Guo Ling

    2010-01-01

    Geometric structures of AlAs n (n = 1-15) clusters are reported. The binding energy, dissociation energy, stability of these clusters are studied with the three-parameter hybrid generalized gradient approximation (GGA) due to Becke-Lee-Yang-Parr (B3LYP). Ionization potentials, electron affinities, hardness, and static polarizabilities are calculated for the ground-state structures within the same method. The growth pattern for AlAs n (n = 6-15) clusters is Al-substituted pure As n+1 clusters and it keeps the similar frameworks of the most stable As n+1 clusters (for example AlAs 6 , AlAs 7 , AlAs 9 , AlAs 14 and AlAs 15 clusters) or capping the different sides of the low-lying geometry of As n clusters (for example AlAs 8 , AlAs 10 , AlAs 11 , and AlAs 12 clusters). The Al atom prefer to occupy a peripheral position for n n (n = 1-5, 13) clusters. The odd-even oscillations from AlAs n (n = 5-15) in the dissociation energy, the second-order energy differences, the HOMO-LUMO gaps, the electron affinity, and the hardness are more pronounced. The stability analysis based on the energies clearly shows the AlAs n clusters from n = 5 with an even number of valence electrons are more stable than clusters with odd number of valence electrons.

  5. Theoretical study of the structure, energetics, and dynamics of silicon and carbon systems using tight-binding approaches

    International Nuclear Information System (INIS)

    Xu, Chunhui.

    1991-01-01

    Semiempirical interatomic potentials are developed for silicon and carbon by modeling the total energy of the system using tight-binding approaches. The parameters of the models were obtained by fitting to results from accurate first-principles Local Density Functional calculations. Applications to the computation of phonons as a function of volume for diamond-structured silicon and carbon and the thermal expansions for silicon and diamond yields results which agree well with experiment. The physical origin of the negative thermal expansion observed in silicon is explained. A tight-binding total energy model is generated capable of describing carbon systems with a variety of atomic coordinations and topologies. The model reproduces the total energy versus volume curves of various carbon polytypes as well as phonons and elastic constants of diamond and graphite. The model has also been used in the molecular-dynamics simulation of the properties of carbon clusters. The calculated ground-state geometries of small clusters (C 2 --C 10 ) correlates well with results from accurate quantum chemical calculations, and the structural trend of clusters from C 2 to C 60 are investigated. 67 refs., 19 figs

  6. Optimization of some eco-energetic systems

    International Nuclear Information System (INIS)

    Purica, I.; Pavelescu, M.; Stoica, M.

    1976-01-01

    An optimization problem of two eco-energetic systems is described. The first one is close to the actual eco-energetic system in Romania, while the second is a new one, based on nuclear energy as primary source and hydrogen energy as secondary source. The optimization problem solved is to find the optimal structure of the systems so that the objective functions adopted, namely unitary energy cost C and total pollution P, to be minimum at the same time. The problem can be modelated with a bimatrix cooperative mathematical game without side payments. We demonstrate the superiority of the new eco-energetic system. (author)

  7. The influence of energetic bombardment on the structure formation of sputtered zinc oxide films. Development of an atomistic growth model and its application to tailor thin film properties

    Energy Technology Data Exchange (ETDEWEB)

    Koehl, Dominik

    2011-02-17

    The focus of this work is the investigation of the growth of zinc oxide (ZnO) thin films. It is demonstrated that with a modified, ion beam assisted sputtering (IBAS) process, zinc oxide films can be deposited which exhibit a markedly improved crystalline order. Furthermore, it is demonstrated that intense energetic oxygen ion bombardment can be utilized to change film texture from the typical (002)-self-texture to an a-axis texture where the (002)-planes are perpendicular to the substrate surface. An understanding of the underlying mechanisms is developed which also facilitates a more detailed understanding of the action of ion bombardment during zinc oxide film growth. It is shown that zinc oxide films are susceptible to the influence of ion bombardment particularly in the nucleation regime of growth and that this finding is generally true for all observed structural changes induced by ion bombardment with various species, energies and flux densities. It is demonstrated not only that the initial growth stage plays an important role in the formation of a preferred growth orientation but also that the action of texture forming mechanisms in subsequent growth stages is comparatively weak. (orig.)

  8. The influence of energetic bombardment on the structure formation of sputtered zinc oxide films. Development of an atomistic growth model and its application to tailor thin film properties

    International Nuclear Information System (INIS)

    Koehl, Dominik

    2011-01-01

    The focus of this work is the investigation of the growth of zinc oxide (ZnO) thin films. It is demonstrated that with a modified, ion beam assisted sputtering (IBAS) process, zinc oxide films can be deposited which exhibit a markedly improved crystalline order. Furthermore, it is demonstrated that intense energetic oxygen ion bombardment can be utilized to change film texture from the typical (002)-self-texture to an a-axis texture where the (002)-planes are perpendicular to the substrate surface. An understanding of the underlying mechanisms is developed which also facilitates a more detailed understanding of the action of ion bombardment during zinc oxide film growth. It is shown that zinc oxide films are susceptible to the influence of ion bombardment particularly in the nucleation regime of growth and that this finding is generally true for all observed structural changes induced by ion bombardment with various species, energies and flux densities. It is demonstrated not only that the initial growth stage plays an important role in the formation of a preferred growth orientation but also that the action of texture forming mechanisms in subsequent growth stages is comparatively weak. (orig.)

  9. First-principles calculation of structural and energetic properties for A2Ti2O7 (A = Lu, Er, Y, Gd, Sm, Nd, La)

    International Nuclear Information System (INIS)

    Zhang, Z.L.; Xiao, H.Y.; Zu, Xiaotao T.; Gao, Fei; Weber, William J.

    2009-01-01

    A first-principles method has been employed to investigate the structural and energetic properties for A2Ti2O7 (A = Lu, Er, Y, Gd, Sm, Nd, La), including the formation energies of the cation antisite-pair, the anion Frenkel pair that defines anion-disorder, and the coupled cation antisite-pair/anion-Frenkel. It is proposed that the interaction may have more significant influence on the radiation resistance behavior of titanate pyrochlores, although the interactions are relatively much stronger than the interactions. It is found that the defect formation energies are not simple functions of the A-site cation radii. The formation energy of the cation antisite-pair increases continuously as the A-site cation varies from Lu to Gd, and then decreases continuously with the variation of the A-site cation from Gd to La, in excellent agreement with the radiation-resistance trend of the titanate pyrochlores. The band gaps in these pyrochlores were also measured, and the band gap widths changed continuously with cation radius.

  10. A 2D nickel-based energetic MOFs incorporating 3,5-diamino-1,2,4-triazole and malonic acid: Synthesis, crystal structure and thermochemical study

    International Nuclear Information System (INIS)

    Yang, Qi; Song, Xiaxia; Ge, Jing; Zhao, Guowei; Zhang, Wendou; Xie, Gang; Chen, Sanping; Gao, Shengli

    2016-01-01

    Highlights: • An energetic MOFs with dinuclear nickel unit has been synthesized and characterized. • The Arrhenius equation, derived from kinetics analysis, is ln k = 55.89 − 332.01 × 10 3 /RT. • The standard molar enthalpy of formation of the compound is determined by a thermochemical cycle. • The molar heat capacity at T = 298.15 K is determined to be 1.42 ± 0.11 J · K −1 · g −1 . - Abstract: A new energetic MOFs, {[Ni 2 (C 2 H 5 N 5 ) 2 (C 3 H 2 O 4 ) 2 (H 2 O)]·3H 2 O} n (Hdatrz (C 2 H 5 N 5 ) = 3,5-diamino-1,2,4-triazole, H 2 mal (C 3 H 4 O 4 ) = malonic acid), has been synthesized and characterized by element analysis, chemical analysis, IR spectroscopy, single-crystal X-ray diffraction and thermal analysis. X-ray diffraction analysis confirmed that the compound featured a 2D layer structure with dinuclear Ni(II) unit. Thermal analysis demonstrated that the compound after dehydration have good thermostability with decomposition temperature up to 633 K. The non-isothermal kinetics for the compound was studied by Kissinger’s and Ozawa’s methods. The Arrhenius equation of initial thermal decomposition process of compound can be expressed as ln k = 55.89 − 332.01 × 10 3 /RT. Furthermore, a reasonable thermochemical cycle was designed based on the preparation reaction of the compound, and standard molar enthalpy of dissolution of reactants and products were measured by RD496-2000 calorimeter. Finally, the standard molar enthalpy of formation of the compound was determined to be −(2766.3 ± 2.3) kJ · mol −1 in accordance with Hess’s law. In addition, the specific heat capacity of the compound at T = 298.15 K was determined to be 1.42 ± 0.11 J · K −1 · g −1 by RD496-2000 calorimeter.

  11. Investigation of the various structure parameters for predicting impact sensitivity of energetic molecules via artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz, Mohammad Hossein; Jaafari, Mohammad [Department of Chemistry, Malek-Ashtar University of Technology, Shahin-Shahr, P.O. Box 83145/115 (Iran)

    2006-06-15

    A generalized scheme is introduced for predicting impact sensitivity of any explosives by using artificial neural networks. Experimental values for the impact sensitivity for 291 compounds containing C, H, N and O have been used for training and testing sets. The input descriptors include aromatic character, heteroaromatic character, the number of N-NO{sub 2} bonds and the number of {alpha}-hydrogen atoms as well as the number of carbon, hydrogen, nitrogen, and oxygen divided by molecular weight. The reliability of the proposed model was assessed by comparing the results against measured values as well as five models of complicated quantum mechanical computed values of 14 CHNO explosives from a variety of chemical structures. The model gives root mean squares errors of 41 cm and 56 cm for training and test sets, respectively, of the H{sub 50} quantity. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  12. ATR-FTIR and density functional theory study of the structures, energetics, and vibrational spectra of phosphate adsorbed onto goethite.

    Science.gov (United States)

    Kubicki, James D; Paul, Kristian W; Kabalan, Lara; Zhu, Qing; Mrozik, Michael K; Aryanpour, Masoud; Pierre-Louis, Andro-Marc; Strongin, Daniel R

    2012-10-16

    Periodic plane-wave density functional theory (DFT) and molecular cluster hybrid molecular orbital-DFT (MO-DFT) calculations were performed on models of phosphate surface complexes on the (100), (010), (001), (101), and (210) surfaces of α-FeOOH (goethite). Binding energies of monodentate and bidentate HPO(4)(2-) surface complexes were compared to H(2)PO(4)(-) outer-sphere complexes. Both the average potential energies from DFT molecular dynamics (DFT-MD) simulations and energy minimizations were used to estimate adsorption energies for each configuration. Molecular clusters were extracted from the energy-minimized structures of the periodic systems and subjected to energy reminimization and frequency analysis with MO-DFT. The modeled P-O and P---Fe distances were consistent with EXAFS data for the arsenate oxyanion that is an analog of phosphate, and the interatomic distances predicted by the clusters were similar to those of the periodic models. Calculated vibrational frequencies from these clusters were then correlated with observed infrared bands. Configurations that resulted in favorable adsorption energies were also found to produce theoretical vibrational frequencies that correlated well with experiment. The relative stability of monodentate versus bidentate configurations was a function of the goethite surface under consideration. Overall, our results show that phosphate adsorption onto goethite occurs as a variety of surface complexes depending on the habit of the mineral (i.e., surfaces present) and solution pH. Previous IR spectroscopic studies may have been difficult to interpret because the observed spectra averaged the structural properties of three or more configurations on any given sample with multiple surfaces.

  13. Photodissociation of pyrene cations: structure and energetics from C16H10(+) to C14(+) and almost everything in between.

    Science.gov (United States)

    West, Brandi; Useli-Bacchitta, Francesca; Sabbah, Hassan; Blanchet, Valérie; Bodi, Andras; Mayer, Paul M; Joblin, Christine

    2014-09-11

    The unimolecular dissociation of the pyrene radical cation, C16H10(+•), has been explored using a combination of computational techniques and experimental approaches, such as multiple photon absorption in the cold ion trap Piège à Ions pour la Recherche et l'Etude de Nouvelles Espèces Astrochimiques (PIRENEA) and imaging photoelectron photoion coincidence spectrometry (iPEPICO). In total, 22 reactions, involving the fragmentation cascade (H, C2H2, and C4H2 loss) from the pyrene radical cation down to the C14(+•) fragment ion, have been studied using PIRENEA. Branching ratios have been measured for reactions from C16H10(+•), C16H8(+•), and C16H5(+). Density functional theory calculations of the fragmentation pathways observed experimentally and postulated theoretically lead to 17 unique structures. One important prediction is the opening of the pyrene ring system starting from the C16H4(+•) radical. In the iPEPICO experiments, only two reactions could be studied, namely, R1 C16H10(+•) → C16H9(+) + H (m/z = 201) and R2 C16H9(+) → C16H8(+•) + H (m/z = 200). The activation energies for these reactions were determined to be 5.4 ± 1.2 and 3.3 ± 1.1 eV, respectively.

  14. The location of energetic compartments affects energetic communication in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Rikke eBirkedal

    2014-09-01

    Full Text Available The heart relies on accurate regulation of mitochondrial energy supply to match energy demand. The main regulators are Ca2+ and feedback of ADP and Pi. Regulation via feedback has intrigued for decades. First, the heart exhibits a remarkable metabolic stability. Second, diffusion of ADP and other molecules is restricted specifically in heart and red muscle, where a fast feedback is needed the most. To explain the regulation by feedback, compartmentalization must be taken into account. Experiments and theoretical approaches suggest that cardiomyocyte energetic compartmentalization is elaborate with barriers obstructing diffusion in the cytosol and at the level of the mitochondrial outer membrane (MOM. A recent study suggests the barriers are organized in a lattice with dimensions in agreement with those of intracellular structures. Here, we discuss the possible location of these barriers. The more plausible scenario includes a barrier at the level of MOM. Much research has focused on how the permeability of MOM itself is regulated, and the importance of the creatine kinase system to facilitate energetic communication. We hypothesize that at least part of the diffusion restriction at the MOM level is not by MOM itself, but due to the close physical association between the sarcoplasmic reticulum (SR and mitochondria. This will explain why animals with a disabled creatine kinase system exhibit rather mild phenotype modifications. Mitochondria are hubs of energetics, but also ROS production and signaling. The close association between SR and mitochondria may form a diffusion barrier to ADP added outside a permeabilised cardiomyocyte. But in vivo, it is the structural basis for the mitochondrial-SR coupling that is crucial for the regulation of mitochondrial Ca2+-transients to regulate energetics, and for avoiding Ca2+-overload and irreversible opening of the mitochondrial permeability transition pore.

  15. Adsorption of F2C=CFCl on TiO2 nano-powder: Structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations

    International Nuclear Information System (INIS)

    Tasinato, Nicola; Moro, Daniele; Stoppa, Paolo; Pietropolli Charmet, Andrea; Toninello, Piero; Giorgianni, Santi

    2015-01-01

    Graphical abstract: - Highlights: • Adsorption of F 2 C=CFCl on TiO 2 unveiled by DRIFTS and periodic DFT. • Structural, energetic and vibrational properties of F 2 C=CFCl @ anatase (1 0 1). • Binding energies (B3LYP-D2) between −17 and −46 kJ mol −1 depending on the anchor point. • Theory and experiment converge on the CF 2 moiety as the main anchor point. - Abstract: Photodegradation over titanium dioxide (TiO 2 ) is a very appealing technology for removing environmental pollutants from the air, the adsorption interaction being the first step of the whole reaction pathway. In the present work the adsorption of F 2 C=CFCl (chlorotrifluoroethene, halon 1113), a compound used by industry and detected in the atmosphere, on a commercial TiO 2 nano-powder is investigated experimentally by in situ DRIFT spectroscopy and theoretically through periodic ab initio calculations rooted in DFT. The spectra of the adsorbed molecule suggest that the anchoring to the surface mainly takes place through F atoms. Theoretically, five adsorption configurations for the molecule interacting with the anatase (1 0 1) surface are simulated at B3LYP level and for each of them, structures, binding energies and vibrational frequencies are derived. The interplay between theory and experiments shows the coexistence of different adsorption configurations, the foremost ones featuring the interaction of one F atom with a fivefold coordinated Ti 4+ of the surface. These two adsorption models, which mostly differ for the orientation of the adsorbate with respect to the surface, feature a binding energy of −45.6 and −41.0 kJ mol −1 according to dispersion corrected DFT calculations. The favorable adsorption interaction appears as an important requirement toward the application of titanium dioxide technologies for the photocatalytic degradation of halon 1113.

  16. Energetics of hydrogen bonding in proteins: a model compound study.

    OpenAIRE

    Habermann, S. M.; Murphy, K. P.

    1996-01-01

    Differences in the energetics of amide-amide and amide-hydroxyl hydrogen bonds in proteins have been explored from the effect of hydroxyl groups on the structure and dissolution energetics of a series of crystalline cyclic dipeptides. The calorimetrically determined energetics are interpreted in light of the crystal structures of the studied compounds. Our results indicate that the amide-amide and amide-hydroxyl hydrogen bonds both provide considerable enthalpic stability, but that the amide-...

  17. High temperature turbine engine structure

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, W.D.; Boyd, G.L.

    1993-07-20

    A hybrid ceramic/metallic gas turbine is described comprising; a housing defining an inlet, an outlet, and a flow path communicating the inlet with the outlet for conveying a flow of fluid through the housing, a rotor member journaled by the housing in the flow path, the rotor member including a compressor rotor portion rotatively inducting ambient air via the inlet and delivering this air pressurized to the flow path downstream of the compressor rotor, a combustor disposed in the flow path downstream of the compressor receiving the pressurized air along with a supply of fuel to maintain combustion providing a flow of high temperature pressurized combustion products in the flow path downstream thereof, the rotor member including a turbine rotor portion disposed in the flow path downstream of the combustor and rotatively expanding the combustion products toward ambient for flow from the turbine engine via the outlet, the turbine rotor portion providing shaft power driving the compressor rotor portion and an output shaft portion of the rotor member, a disk-like metallic housing portion journaling the rotor member to define a rotational axis therefore, and a disk-like annular ceramic turbine shroud member bounding the flow path downstream of the combustor and circumscribing the turbine rotor portion to define a running clearance therewith, the disk-like ceramic turbine shroud member having a reference axis coaxial with the rotational axis and being spaced axially from the metallic housing portion in mutually parallel concentric relation therewith and a plurality of spacers disposed between ceramic disk-like shroud member and the metallic disk-like housing portion and circumferentially spaced apart, each of the spacers having a first and second end portion having an end surface adjacent the shroud member and the housing portion respectively, the end surfaces having a cylindrical curvature extending transversely relative to the shroud member and the housing portion.

  18. Energetic certification in Europe

    International Nuclear Information System (INIS)

    1998-01-01

    At community level the problem of energy quality control in a building was introduced by EEC recommendation n. 93/76 in 1993. In this item are reported some notes on energetic certification in European countries [it

  19. Energetics Laboratory Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — These energetic materials laboratories are equipped with explosion proof hoods with blow out walls for added safety, that are certified for safe handling of primary...

  20. Charmed muons in ice. Measurement of the high-energetic atmospheric energy spectrum with IceCube in the detector configuration IC86-1

    International Nuclear Information System (INIS)

    Fuchs, Tomasz

    2016-01-01

    In this thesis the flux of high-energy muons in the energy regime from 10 TeV to 1 PeV is reconstructed and analyzed using data collected with the IceCube detector in the time span 13.05.2011 to 15.05.2012. From a data set containing muon bundles only those events are selected which contain a muon that is energetically dominating the others in the bundle. For the separation a Random Forest model is applied, resulting in a data set of high-energy muons with an efficiency of (40.8±0.6) % and a purity of (93.1±0.4) %. Attributes considered in the separation are selected by the mRMR algorithm. The energy spectrum of muons is reconstructed with a regularized unfolding using the software TRUEE. The hypothesis of a prompt and a conventional component of atmospheric muons results in flux normalizations of N conv. =1.03±0.06 and N prompt =1.59±1.57. Due to the large uncertainty of the prompt component, the hypothesis of a pure conventional flux cannot be excluded. Using these normalizations, it is possible to determine if the measured high-energy neutrino flux above 60 TeV is of atmospheric origin. The p-value for this hypothesis is found to be 0.045, which indicates the need of an astrophysical component to explain the excess at high energies.

  1. VISIONS: Remote Observations of a Spatially-Structured Filamentary Source of Energetic Neutral Atoms near the Polar Cap Boundary During an Auroral Substorm

    Science.gov (United States)

    Collier, Michael R.; Chornay, D.; Clemmons, J.; Keller, J. W.; Klenzing, J.; Kujawski, J.; McLain, J.; Pfaff, R.; Rowland, D.; Zettergren, M.

    2015-01-01

    We report initial results from the VISualizing Ion Outflow via Neutral atom imaging during a Substorm (VISIONS) rocket that flew through and near several regions of enhanced auroral activity and also sensed regions of ion outflow both remotely and directly. The observed neutral atom fluxes were largest at the lower energies and generally higher in the auroral zone than in the polar cap. In this paper, we focus on data from the latter half of the VISIONS trajectory when the rocket traversed the polar cap region. During this period, many of the energetic neutral atom spectra show a peak at 100 electronvolts. Spectra with peaks around 100 electronvolts are also observed in the Electrostatic Ion Analyzer (EIA) data consistent with these ions comprising the source population for the energetic neutral atoms. The EIA observations of this low energy population extend only over a few tens of kilometers. Furthermore, the directionality of the arriving energetic neutral atoms is consistent with either this spatially localized source of energetic ions extending from as low as about 300 kilometers up to above 600 kilometers or a larger source of energetic ions to the southwest.

  2. Novel germanetellones: XYGe=Te (X, Y = H, F, Cl, Br, I and CN) - structures and energetics. Comparison with the first synthetic successes.

    Science.gov (United States)

    Jaufeerally, Naziah B; Abdallah, Hassan H; Ramasami, Ponnadurai; Schaefer, Henry F

    2014-03-14

    No stable germanetellone was described until Tbt(Dis)Ge=Te and Tbt(Tip)Ge=Te (Tbt = 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl, Dis = bis(trimethylsilyl)methyl and Tip = 2,4,6-triisopropylphenyl) were reported in 1997. Following these initial experiments, there has arisen considerable interest in Ge[double bond, length as m-dash]Te systems. An obvious question is: why have the simple XYGe=Te (X, Y = H, F, Cl, Br, I and CN) molecules not yet been isolated? In view of the present situation, theoretical information may be of great help for further advances in germanetellone chemistry. A systematic investigation of the XYGe=Te molecules is carried out using the second order Møller-Plesset perturbation theory (MP2) and density functional theory (DFT). The structures and energetics, including ionization potentials (IPad and IPad(ZPVE)), four different forms of neutral-anion separations (EAad, EAad(ZPVE), VEA and VDE) and the singlet-triplet gaps, are reported. The electronegativity (χ) reactivity descriptor for the halogens (F, Cl, Br and I) and the natural charge separations of the Ge=Te moiety are used to assess the interrelated properties of germanetellone and its derivatives. The results are analyzed, discussed and compared with analogous studies of telluroformaldehyde, silanetellone and their derivatives. The thermodynamic viabilities of some of the novel germanetellones have also been evaluated in terms of the bond dissociation enthalpies of Tbt(Dis)Ge=Te and Tbt(Tip)Ge=Te. The simple mono-substituted germanetellones appear to be slightly more thermodynamically favored than Tbt(Dis)Ge=Te and Tbt(Tip)Ge=Te, since the bond dissociation enthalpies of these kinetically stabilized germanetellones are about 28 and 51 kcal mol(-1) lower, respectively.

  3. Effect of multiple short highly energetic X-ray pulses on the synthesis of endoglucanase by a mutant strain of Trichoderma reesei-M7

    International Nuclear Information System (INIS)

    Gemishev, Orlin; Markova, Maya; Savov, Valentin; Zapryanov, Stanislav; Blagoev, Alexander

    2014-01-01

    Bioconversion of cellulose-containing substrate to glucose represents an important area of modern biotechnology. Enzymes for the degradation of the polysaccharide part of biomass have been produced, mostly by fungi belonging to genus Trichoderma. Studies were carried out with the mutant strain Trichoderma reesei-M7, a cellulase producer. Spores of the enzyme producer were irradiated with different doses of characteristic X-ray radiation from metallic tungsten (mainly the W Ka1 and Ka2 lines) with a high dose rate. The latter is a specific property of the dense plasma focus (DPF) device, which has pulsed operation and thus gives short and highly energetic pulses of multiple types of rays and particles. In this case, we focused our study on the influence of hard X-rays. The doses of X-rays absorbed by the spores varied in the range of approximately 5-11,000 mSv measured with thermoluminescent dosimeters (TLD). The influence of the applied doses in combination with exceptionally high dose rates (in the order of tens of millisieverts per microsecond) on the activity of the produced endoglucanase, amount of biomass and extra-cellular protein, was studied in batch cultivation conditions. In the dose range of 200-1200 mSv, some enhancement of endoglucanase activity was obtained: around 18%-32%, despite the drop of the biomass amount, compared with the untreated material. Keywords: endoglucanase; X-ray pulses; thermoluminescent dosimeters (TLD); dense plasma focus (DPF); Trichoderma reesei

  4. Energetic particle observations at the subsolar magnetopause

    Directory of Open Access Journals (Sweden)

    A. A. Eccles

    Full Text Available The pitch-angle distributions (PAD of energetic particles are examined as the ISEE-1 satellite crosses the Earth’s magnetopause near the subsolar point. The investigation focuses on the possible existence of a particular type of distribution that would be associated with a source of energetic particles in the high-latitude magnetosphere. PADs, demonstrating broad, persistent field-aligned fluxes filling a single hemisphere (upper/northern or lower/southern, were observed just sunward of the magnetopause current layer for an extended period of many minutes. These distributions are a direct prediction of a possible source of energetic particles located in the high altitude dayside cusp and we present five examples in detail of the three-dimensional particle distributions to demonstrate their existence. From these results, other possible causes of such PADs are examined.

    Key words. Magnetospheric physics (energetic particles, precipitating; magnetopause, cusp and boundary layers; magnetospheric configuration and dynamics

  5. Comparison of high group velocity accelerating structures

    International Nuclear Information System (INIS)

    Farkas, Z.D.; Wilson, P.B.

    1987-02-01

    It is well known that waveguides with no perturbations have phase velocities greater than the velocity of light c. If the waveguide dimensions are chosen so that the phase velocity is only moderately greater than c, only small perturbations are required to reduce the phase velocity to be synchronous with a high energy particle bunch. Such a lightly loaded accelerator structure will have smaller longitudinal and transverse wake potentials and hence will lead to lower emittance growth in an accelerated beam. Since these structures are lightly loaded, their group velocities are only slightly less than c and not in the order of 0.01c, as is the case for the standard disk-loaded structures. To ascertain that the peak and average power requirements for these structures are not prohibitive, we examine the elastance and the Q for several traveling wave structures: phase slip structures, bellows-like structures, and lightly loaded disk-loaded structures

  6. Very energetic photons at HERA

    International Nuclear Information System (INIS)

    Bawa, A.C.; Krawczyk, M.

    1991-01-01

    We show that every energetic photons in the backward direction can be produced in deep inelastic Compton scattering at HERA. Assuming a fixed energy of 9 GeV for the initial photons and 820 GeV for the protons a high rate is found for the production of final photons with a transverse momentum equal to 5 GeV/c and energy between 40 GeV and 300 GeV. These energetic photons arise mainly from the scattering of the soft gluonic constituents of the initial photon with quarks from the proton. They are produced in the backward direction in coincidence with a photon beam jet of energy ∝ 9 GeV in the forward direction. (orig.)

  7. Energetic frustrations in protein folding at residue resolution: a homologous simulation study of Im9 proteins.

    Directory of Open Access Journals (Sweden)

    Yunxiang Sun

    Full Text Available Energetic frustration is becoming an important topic for understanding the mechanisms of protein folding, which is a long-standing big biological problem usually investigated by the free energy landscape theory. Despite the significant advances in probing the effects of folding frustrations on the overall features of protein folding pathways and folding intermediates, detailed characterizations of folding frustrations at an atomic or residue level are still lacking. In addition, how and to what extent folding frustrations interact with protein topology in determining folding mechanisms remains unclear. In this paper, we tried to understand energetic frustrations in the context of protein topology structures or native-contact networks by comparing the energetic frustrations of five homologous Im9 alpha-helix proteins that share very similar topology structures but have a single hydrophilic-to-hydrophobic mutual mutation. The folding simulations were performed using a coarse-grained Gō-like model, while non-native hydrophobic interactions were introduced as energetic frustrations using a Lennard-Jones potential function. Energetic frustrations were then examined at residue level based on φ-value analyses of the transition state ensemble structures and mapped back to native-contact networks. Our calculations show that energetic frustrations have highly heterogeneous influences on the folding of the four helices of the examined structures depending on the local environment of the frustration centers. Also, the closer the introduced frustration is to the center of the native-contact network, the larger the changes in the protein folding. Our findings add a new dimension to the understanding of protein folding the topology determination in that energetic frustrations works closely with native-contact networks to affect the protein folding.

  8. Randomized, multi-center trial of two hypo-energetic diets in obese subjects: high- versus low-fat content

    DEFF Research Database (Denmark)

    Petersen, M; Taylor, M A; Saris, W H M

    2006-01-01

    :Obese (BMI >or=30 kg/m(2)) adult subjects (n = 771), from eight European centers. MEASUREMENTS: Body weight loss, dropout rates, proportion of subjects who lost more than 10% of initial body weight, blood lipid profile, insulin and glucose. RESULTS: The dietary fat energy percent was 25% in the low-fat group...... and 40% in the high-fat group (mean difference: 16 (95% confidence interval (CI) 15-17)%). Average weight loss was 6.9 kg in the low-fat group and 6.6 kg in the high-fat group (mean difference: 0.3 (95% CI -0.2 to 0.8) kg). Dropout was 13.6% (n = 53) in the low-fat group and 18.3% (n = 70) in the high......-fat group than in the high-fat group. Fasting plasma insulin and glucose were lowered equally by both diets. CONCLUSIONS: The low-fat diet produced similar mean weight loss as the high-fat diet, but resulted in more subjects losing >10% of initial body weight and fewer dropouts. Both diets produced...

  9. THE POSSIBLE ROLE OF CORONAL STREAMERS AS MAGNETICALLY CLOSED STRUCTURES IN SHOCK-INDUCED ENERGETIC ELECTRONS AND METRIC TYPE II RADIO BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Xiangliang; Chen, Yao; Feng, Shiwei; Wang, Bing; Du, Guohui [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Guo, Fan [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, Gang, E-mail: yaochen@sdu.edu.cn [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2015-01-10

    Two solar type II radio bursts, separated by ∼24 hr in time, are examined together. Both events are associated with coronal mass ejections (CMEs) erupting from the same active region (NOAA 11176) beneath a well-observed helmet streamer. We find that the type II emissions in both events ended once the CME/shock fronts passed the white-light streamer tip, which is presumably the magnetic cusp of the streamer. This leads us to conjecture that the closed magnetic arcades of the streamer may play a role in electron acceleration and type II excitation at coronal shocks. To examine such a conjecture, we conduct a test-particle simulation for electron dynamics within a large-scale partially closed streamer magnetic configuration swept by a coronal shock. We find that the closed field lines play the role of an electron trap via which the electrons are sent back to the shock front multiple times and therefore accelerated to high energies by the shock. Electrons with an initial energy of 300 eV can be accelerated to tens of keV concentrating at the loop apex close to the shock front with a counter-streaming distribution at most locations. These electrons are energetic enough to excite Langmuir waves and radio bursts. Considering the fact that most solar eruptions originate from closed field regions, we suggest that the scenario may be important for the generation of more metric type IIs. This study also provides an explanation of the general ending frequencies of metric type IIs at or above 20-30 MHz and the disconnection issue between metric and interplanetary type IIs.

  10. Toward a Modular Ionic Liquid Platform for the Custom Design of Energetic Materials: Understanding How the Dual Nature of Ionic Liquids Relates Key Physical Properties to Target Structures

    Science.gov (United States)

    2009-11-30

    Separations to Advanced Materials to Pharmaceuticals: Energetic and API Examples from the Ionic Liquid Cookbook" Presented by R. D. Rogers, before the 2nd...3322 (s), 3219 (s), 3144 (s), 1687 (m), 1571 (s), 1516 (s), 1468 (m), 1435 (m), 1380 (s), 1277 (s), 1205 (s), 1139 (s), 1104 (w), 1043 (w), 1014 (s

  11. High-Resolution Photoionization, Photoelectron and Photodissociation Studies. Determination of Accurate Energetic and Spectroscopic Database for Combustion Radicals and Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Cheuk-Yiu [Univ. of California, Davis, CA (United States)

    2016-04-25

    The main goal of this research program was to obtain accurate thermochemical and spectroscopic data, such as ionization energies (IEs), 0 K bond dissociation energies, 0 K heats of formation, and spectroscopic constants for radicals and molecules and their ions of relevance to combustion chemistry. Two unique, generally applicable vacuum ultraviolet (VUV) laser photoion-photoelectron apparatuses have been developed in our group, which have used for high-resolution photoionization, photoelectron, and photodissociation studies for many small molecules of combustion relevance.

  12. Allelic variants of melanocortin 3 receptor gene (MC3R and weight loss in obesity: a randomised trial of hypo-energetic high- versus low-fat diets.

    Directory of Open Access Journals (Sweden)

    José L Santos

    Full Text Available INTRODUCTION: The melanocortin system plays an important role in energy homeostasis. Mice genetically deficient in the melanocortin-3 receptor gene have a normal body weight with increased body fat, mild hypophagia compared to wild-type mice. In humans, Thr6Lys and Val81Ile variants of the melanocortin-3 receptor gene (MC3R have been associated with childhood obesity, higher BMI Z-score and elevated body fat percentage compared to non-carriers. The aim of this study is to assess the association in adults between allelic variants of MC3R with weight loss induced by energy-restricted diets. SUBJECTS AND METHODS: This research is based on the NUGENOB study, a trial conducted to assess weight loss during a 10-week dietary intervention involving two different hypo-energetic (high-fat and low-fat diets. A total of 760 obese patients were genotyped for 10 single nucleotide polymorphisms covering the single exon of MC3R gene and its flanking regions, including the missense variants Thr6Lys and Val81Ile. Linear mixed models and haplotype-based analysis were carried out to assess the potential association between genetic polymorphisms and differential weight loss, fat mass loss, waist change and resting energy expenditure changes. RESULTS: No differences in drop-out rate were found by MC3R genotypes. The rs6014646 polymorphism was significantly associated with weight loss using co-dominant (p = 0.04 and dominant models (p = 0.03. These p-values were not statistically significant after strict control for multiple testing. Haplotype-based multivariate analysis using permutations showed that rs3827103-rs1543873 (p = 0.06, rs6014646-rs6024730 (p = 0.05 and rs3746619-rs3827103 (p = 0.10 displayed near-statistical significant results in relation to weight loss. No other significant associations or gene*diet interactions were detected for weight loss, fat mass loss, waist change and resting energy expenditure changes. CONCLUSION: The study

  13. La2CuO4+δ: Synthesis under high oxygen pressure and study of phase relations and energetics

    International Nuclear Information System (INIS)

    Rapp, R.P.; Mehta, A.; DiCarlo, J.; Navrotsky, A.

    1994-01-01

    High oxygen pressures have been achieved in a piston-cylinder apparatus using a double capsule assembly consisting of a sealed outer Au capsule, containing an oxygen source (KMnO 4 ), and an inner, open Pt capsule containing the sample. Using this technique, La 2 CuO 4 was annealed at 800 degree C, 5--25 kbar for 2--4 h. Transposed temperature drop calorimetry at 704 degree C was used to determine the enthalpy of oxidation, and weight loss measurements characterized the oxygen nonstoichiometry, δ, in La 2 CuO 4+δ , in the high-pressure, oxygen annealed samples. For samples analyzed at room temperature, x-ray diffraction measurements show that beyond δ∼0.10--0.13, additional oxygen is accommodated in a perovskite-like LaCuO 3-α phase. An analysis of the thermochemical measurements indicates that the nature of holes in La 2 CuO 4+δ could change in the range of δ∼0.03--0.06. 16,17 It is further suggested that the observed change in the thermochemical behavior in the range of δ∼0.01--0.06 could be the driving influence behind the spinodal decomposition of La 2 CuO 4+δ at low temperatures (Dabrowski et al. 10 )

  14. Drift mobility of thermalized and highly energetic holes in thin layers of amorphous dielectric SiC

    International Nuclear Information System (INIS)

    Sielski, Jan; Jeszka, Jeremiasz K.

    2012-01-01

    The development of new technology in the electronics industry requires new dielectric materials. It is also important to understand the charge-carrier transport mechanism in these materials. We examined the hole drift mobility in amorphous SiC dielectric thin films using the time-of-flight (TOF) method. Charge carriers were generated using an electron gun. The generated holes gave a dispersive TOF signal and the mobility was low. For electric field strengths above 4 x 10 5 V cm -1 the drift mobility shows a very strong dependence on the electric field and a weak temperature dependence (transport of ''high-energy'' charge carriers). At lower electric fields and for thermalized charge carriers the mobility is practically field independent and thermally activated. The observed phenomenon was attributed to the changes in the effective energy of the generated carriers moving in the high electric fields and consequently in the density of localized states taking part in the transport. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. On the puzzling high-energy pulsations of the energetic radio-quiet γ-ray pulsar J1813–1246

    Energy Technology Data Exchange (ETDEWEB)

    Marelli, M.; Pizzocaro, D.; De Luca, A.; Caraveo, P.; Salvetti, D. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133 Milano (Italy); Harding, A. [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wood, K. S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Saz Parkinson, P. M. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Acero, F., E-mail: marelli@lambrate.inaf.it [Laboratoire AIM, CEA-IRFU/CNRS/Universit Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France)

    2014-11-10

    We have analyzed the new deep XMM-Newton and Chandra observations of the energetic, radio-quiet pulsar J1813–1246. The X-ray spectrum is nonthermal, very hard, and absorbed. Based on spectral considerations, we propose that J1813 is located at a distance further than 2.5 kpc. J1813 is highly pulsed in the X-ray domain, with a light curve characterized by two sharp, asymmetrical peaks, separated by 0.5 in phase. We detected no significant X-ray spectral changes during the pulsar phase. We extended the available Fermi ephemeris to five years. We found two glitches. The γ-ray light curve is characterized by two peaks, separated by 0.5 in phase, with a bridge in between and no off-pulse emission. The spectrum shows clear evolution in phase, being softer at the peaks and hardening toward the bridge. Surprisingly, both X-ray peaks lag behind the γ-ray ones by a quarter of phase. We found a hint of detection in the 30-500 keV band with INTEGRAL, which is consistent with the extrapolation of both the soft X-ray and γ-ray emission of J1813. The unique X-ray and γ-ray phasing suggests a singular emission geometry. We discuss some possibilities within the current pulsar emission models. Finally, we develop an alternative geometrical model where the X-ray emission comes from polar cap pair cascades.

  16. Photoactive energetic materials

    Science.gov (United States)

    Chavez, David E.; Hanson, Susan Kloek; Scharff, Robert Jason; Veauthier, Jacqueline Marie; Myers, Thomas Winfield

    2018-02-27

    Energetic materials that are photoactive or believed to be photoactive may include a conventional explosive (e.g. PETN, nitroglycerine) derivatized with an energetic UV-absorbing and/or VIS-absorbing chromophore such as 1,2,4,5-tetrazine or 1,3,5-triazine. Absorption of laser light having a suitably chosen wavelength may result in photodissociation, decomposition, and explosive release of energy. These materials may be used as ligands to form complexes. Coordination compounds include such complexes with counterions. Some having the formula M(L).sub.n.sup.2+ were synthesized, wherein M is a transition metal and L is a ligand and n is 2 or 3. These may be photoactive upon exposure to a laser light beam having an appropriate wavelength of UV light, near-IR and/or visible light. Photoactive materials also include coordination compounds bearing non-energetic ligands; in this case, the counterion may be an oxidant such as perchlorate.

  17. Safer energetic materials by a nanotechnological approach

    Science.gov (United States)

    Siegert, Benny; Comet, Marc; Spitzer, Denis

    2011-09-01

    Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity.Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity. Electronic supplementary information (ESI) available: Experimental details for the preparation of the V2O5@CNF/Al nanothermite; X-ray diffractogram of the V2O5@CNF/Al combustion residue; installation instructions and source code for the nt-timeline program. See DOI: 10.1039/c1nr10292c

  18. The Silicon Valley Eco System. High-energetic in many ways; Het Silicon Valley Eco Systeem: hoogenergetisch in vele opzichten

    Energy Technology Data Exchange (ETDEWEB)

    Van den Heuvel, J.

    2012-04-15

    The highly commended Silicon Valley Eco System is bubbling with energy with regard to the subjects that are focused upon, including sustainable energy, or the widely available expertise that is needed for the developments, good ideas, capital and optimism, fed by frequent examples of extraordinarily successful companies. The sheer endlessness of network opportunities joins all these elements frequently. This article addresses several noteworthy interactions in the field of sustainable energy over the last period. [Dutch] Het veel geroemde Silicon Valley eco systeem bruist van energie in de vorm van de onderwerpen waar men zich op richt, waaronder duurzame energie, of de ruim aanwezige expertise die nodig is voor de ontwikkelingen, goede ideeen, kapitaal, en optimisme, gevoed door regelmatige voorbeelden van buitensporig succesvolle bedrijven. De schier oneindige netwerkmogelijkheden brengen al deze elementen met grote regelmaat bij elkaar. In dit artikel volgen enkele vermeldenswaardige interacties op het vlak van duurzame energie uit de afgelopen periode.

  19. The physical chemistry of coordinated aqua-, ammine-, and mixed-ligand Co2+ complexes: DFT studies on the structure, energetics, and topological properties of the electron density.

    Science.gov (United States)

    Varadwaj, Pradeep R; Marques, Helder M

    2010-03-07

    Spin-unrestricted DFT-X3LYP/6-311++G(d,p) calculations have been performed on a series of complexes of the form [Co(H(2)O)(6-n)(NH(3))(n)](2+) (n = 0-6) to examine their equilibrium gas-phase structures, energetics, and electronic properties in their quartet electronic ground states. In all cases Co(2+) in the energy-minimised structures is in a pseudo-octahedral environment. The calculations overestimate the Co-O and Co-N bond lengths by 0.04 and 0.08 A, respectively, compared to the crystallographically observed mean values. There is a very small Jahn-Teller distortion in the structure of [Co(H(2)O)(6)](2+) which is in contrast to the very marked distortions observed in most (but not all) structures of this cation that have been observed experimentally. The successive replacement of ligated H(2)O by NH(3) leads to an increase in complex stability by 6 +/- 1 kcal mol(-1) per additional NH(3) ligand. Calculations using UB3LYP give stabilisation energies of the complexes about 5 kcal mol(-1) smaller and metal-ligand bond lengths about 0.005 A longer than the X3LYP values since the X3LYP level accounts for the London dispersion energy contribution to the overall stabilisation energy whilst it is largely missing at the B3LYP level. From a natural population analysis (NPA) it is shown that the formation of these complexes is accompanied by ligand-to-metal charge transfer the extent of which increases with the number of NH(3) ligands in the coordination sphere of Co(2+). From an examination of the topological properties of the electron charge density using Bader's quantum theory of atoms in molecules it is shown that the electron density rho(c) at the Co-O bond critical points is generally smaller than that at the Co-N bond critical points. Hence Co-O bonds are weaker than Co-N bonds in these complexes and the stability increases as NH(3) replaces H(2)O in the metal's coordination sphere. Several indicators, including the sign and magnitude of the Laplacian of the

  20. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.

    Science.gov (United States)

    Costa, Taynan de Oliveira; Calijuri, Maria Lúcia; Avelar, Nayara Vilela; Carneiro, Angélica de Cássia de Oliveira; de Assis, Letícia Rodrigues

    2017-08-01

    In this investigation, chemical characteristics, higher, lower and net heating value, bulk and energy density, and thermogravimetric analysis were applied to study the thermal characteristics of three algal biomasses. These biomasses, grown as by-products of wastewater treatment in high-rate algal ponds (HRAPs), were: (i) biomass produced in domestic effluent and collected directly from an HRAP (PO); (ii) biomass produced in domestic effluent in a mixed pond-panel system and collected from the panels (PA); and (iii) biomass originating from the treatment effluent from the meat processing industry and collected directly from an HRAP (IN). The biomass IN was the best alternative for thermal power generation. Subsequently, a mixture of the algal biomasses and Jatropha epicarp was used to produce briquettes containing 0%, 25%, 50%, 75%, and 100% of algal biomass, and their properties were evaluated. In general, the addition of algal biomass to briquettes decreased both the hygroscopicity and fixed carbon content and increased the bulk density, ash content, and energy density. A 50% proportion of biomass IN was found to be the best raw material for producing briquettes. Therefore, the production of briquettes consisting of algal biomass and Jatropha epicarp at a laboratory scale was shown to be technically feasible.

  1. A combination of high stress-induced tense and energetic arousal compensates for impairing effects of stress on memory retrieval in men.

    Science.gov (United States)

    Boehringer, Andreas; Schwabe, Lars; Schachinger, Hartmut

    2010-09-01

    Stress can both impair and enhance memory retrieval. Glucocorticoids mediate impairing effects of stress on memory retrieval. Little is known, however, about factors that facilitate post-stress memory performance. Here, we asked whether stress-induced arousal mediates facilitative stress effects on memory retrieval. Two arousal dimensions were separated: tense arousal, which is characterized by feelings ranging from tension and anxiety to calmness and quietness, and energetic arousal, which is associated with feelings ranging from energy and vigor to states of fatigue and tiredness. Fifty-one men (mean age +/- SEM: 24.57 +/- 0.61 years) learned emotional and neutral words. Memory for these words was tested 165 min later, after participants were exposed to a psychosocial stress or a non-arousing control condition. Changes in heart rate, self-reported (energetic and tense) arousal, and saliva cortisol in response to the stress/control condition were measured. Overall, stress impaired memory retrieval. However, stressed participants with large increases in both tense and energetic arousal performed comparably to controls. Neither salivary cortisol level nor autonomic arousal predicted memory performance after controlling for changes in energetic and tense arousal. The present data indicate that stress-induced concurrent changes in tense and energetic arousal can compensate for impairing effects of stress on memory retrieval. This finding could help to explain some of the discrepancies in the literature on stress and memory.

  2. Structural analysis with high brilliance synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Hideo [Japan Atomic Energy Research Inst., Kamigori, Hyogo (Japan). Kansai Research Establishment

    1997-11-01

    The research subjects in diffraction and scattering of materials with high brilliance synchrotron radiation such as SPring-8 (Super Photon ring 8 GeV) are summarized. The SPring-8 project is going well and 10 public beamlines will be opened for all users in October, 1997. Three JAERI beamlines are also under construction for researches of heavy element science, physical and structural properties under extreme conditions such as high temperature and high pressure. (author)

  3. Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures.

    Science.gov (United States)

    Zhao, Ziguang; Fang, Ruochen; Rong, Qinfeng; Liu, Mingjie

    2017-12-01

    In the human body, many soft tissues with hierarchically ordered composite structures, such as cartilage, skeletal muscle, the corneas, and blood vessels, exhibit highly anisotropic mechanical strength and functionality to adapt to complex environments. In artificial soft materials, hydrogels are analogous to these biological soft tissues due to their "soft and wet" properties, their biocompatibility, and their elastic performance. However, conventional hydrogel materials with unordered homogeneous structures inevitably lack high mechanical properties and anisotropic functional performances; thus, their further application is limited. Inspired by biological soft tissues with well-ordered structures, researchers have increasingly investigated highly ordered nanocomposite hydrogels as functional biological engineering soft materials with unique mechanical, optical, and biological properties. These hydrogels incorporate long-range ordered nanocomposite structures within hydrogel network matrixes. Here, the critical design criteria and the state-of-the-art fabrication strategies of nanocomposite hydrogels with highly ordered structures are systemically reviewed. Then, recent progress in applications in the fields of soft actuators, tissue engineering, and sensors is highlighted. The future development and prospective application of highly ordered nanocomposite hydrogels are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Reconsideration of the Link between the Energetics of Water and of ATP Hydrolysis Energy in the Power Strokes of Molecular Motors in Protein Structures

    Directory of Open Access Journals (Sweden)

    Wilfred F. Widdas

    2008-09-01

    Full Text Available Mechanical energy from oxygen metabolism by mammalian tissues has been studied since 1837. The production of heat by mechanical work was studied by Fick in about 1860. Prior to Fick’s work, energetics were revised by Joule’s experiments which founded the First Law of Thermodynamics. Fenn in 1923/24 found that frog muscle contractions generated extra heat proportional to the amount of work done in shortening the muscle. This was fully consistent with the Joule, Helmholtz concept used for the First Law of Thermodynamics. The link between the energetics of water and ATP hydrolysis in molecular motors is recommended for reconsideration.

  5. Forecast of nuclear energetics

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1976-01-01

    The forecast concerning the development of nuclear energetics is presented. Some information on economics of nuclear power plants is given. The nuclear fuel reserves are estimated on the background of power resources of the world. The safety and environment protection problems are mentioned.

  6. High spin structures in 194Hg

    International Nuclear Information System (INIS)

    Fotiades, N.; Vlastou, R.; Serris, M.; Sharpey-Schafer, J.F.; Fallon, P.; Riley, M.A.; Clark, R.M.; Hauschild, K.; Wadsworth, R.

    1996-01-01

    High spin states in the isotope 194 Hg were populated using the 150 Nd( 48 Ca,4n) reaction at a beam energy of 213 MeV. The analysis of γ-γ coincidences has revealed two new structures at excitation energies above 6 MeV and at moderate spin. The two structures are a manifestation of the deviation of nucleus from the collective rotation which dominates its lower excitation behaviour. A comparison with similar structures in the neighbouring Hg isotopes is also attempted. (orig.)

  7. Structural alloys for high field superconducting magnets

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4 0 K and by rate effects associated with adiabatic heating during the tests. 46 refs

  8. Thermal-spectrum recriticality energetics

    International Nuclear Information System (INIS)

    Schwinkendorf, K.N.

    1993-12-01

    Large computer codes have been created in the past to predict the energy release in hypothetical core disruptive accidents (CDA), postulated to occur in liquid metal reactors (LMR). These codes, such as SIMMER, are highly specific to LMR designs. More recent attention has focused on thermal-spectrum criticality accidents, such as for fuel storage basins and waste tanks containing fissile material. This paper resents results from recent one-dimensional kinetics simulations, performed for a recriticality accident in a thermal spectrum. Reactivity insertion rates generally are smaller than in LMR CDAs, and the energetics generally are more benign. Parametric variation of input was performed, including reactivity insertion and initial temperature

  9. Active interrogation using energetic protons

    International Nuclear Information System (INIS)

    Morris, Christopher L.; Chung, Kiwhan; Greene, Steven J.; Hogan, Gary E.; Makela, Mark; Mariam, Fesseha; Milner, Edward C.; Murray, Matthew; Saunders, Alexander; Spaulding, Randy; Wang, Zhehui; Waters, Laurie; Wysocki, Frederick

    2010-01-01

    Energetic proton beams provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because they have large fission cross sections, long mean free paths and high penetration, and they can be manipulated with magnetic optics. We have measured time-dependent cross sections and neutron yields for delayed neutrons and gamma rays using 800 MeV and 4 GeV proton beams with a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Measurements of neutron energies yield suggest a signature unique to fissile material. Results are presented in this paper.

  10. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  11. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    International Nuclear Information System (INIS)

    Kozyukhin, S.; Golovchak, R.; Kovalskiy, A.; Shpotyuk, O.; Jain, H.

    2011-01-01

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As x Se 100−x , As x S 100−x , Ge x Se 100−x and Ge x S 100−x chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  12. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    Energy Technology Data Exchange (ETDEWEB)

    Kozyukhin, S., E-mail: sergkoz@igic.ras.ru [Russian Academy of Science, Institute of General and Inorganic Chemistry (Russian Federation); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Kovalskiy, A. [Lehigh University, Department of Materials Science and Engineering (United States); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Jain, H. [Lehigh University, Department of Materials Science and Engineering (United States)

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  13. Thermomechanics of composite structures under high temperatures

    CERN Document Server

    Dimitrienko, Yu I

    2016-01-01

    This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expan...

  14. High-pressure structures of methane hydrate

    International Nuclear Information System (INIS)

    Hirai, H; Uchihara, Y; Fujihisa, H; Sakashita, M; Katoh, E; Aoki, K; Yamamoto, Y; Nagashima, K; Yagi, T

    2002-01-01

    Three high-pressure structures of methane hydrate, a hexagonal structure (str. A) and two orthorhombic structures (str. B and str. C), were found by in situ x-ray diffractometry and Raman spectroscopy. The well-known structure I (str. I) decomposed into str. A and fluid at 0.8 GPa. Str. A transformed into str. B at 1.6 GPa, and str. B further transformed into str. C at 2.1 GPa which survived above 7.8 GPa. The fluid solidified as ice VI at 1.4 GPa, and the ice VI transformed to ice VII at 2.1 GPa. The bulk moduli, K 0 , for str. I, str. A, and str. C were calculated to be 7.4, 9.8, and 25.0 GPa, respectively

  15. High performance structural ceramics for nuclear industry

    International Nuclear Information System (INIS)

    Pujari, Vimal K.; Faker, Paul

    2006-01-01

    A family of Saint-Gobain structural ceramic materials and products produced by its High performance Refractory Division is described. Over the last fifty years or so, Saint-Gobain has been a leader in developing non oxide ceramic based novel materials, processes and products for application in Nuclear, Chemical, Automotive, Defense and Mining industries

  16. Physics with energetic radioactive ion beams

    International Nuclear Information System (INIS)

    Henning, W.F.

    1996-01-01

    Beams of short-lived, unstable nuclei have opened new dimensions in studies of nuclear structure and reactions. Such beams also provide key information on reactions that take place in our sun and other stars. Status and prospects of the physics with energetic radioactive beams are summarized

  17. Sawteeth stabilization by energetic trapped ions

    International Nuclear Information System (INIS)

    Samain, A.; Edery, D.; Garbet, X.; Roubin, J.P.

    1991-01-01

    The analysis of a possible stabilization of sawteeth by a population of energetic ions is performed by using the Lagrangian of the electromagnetic perturbation. It is shown that the trapped component of such a population has a small influence compared to that of the passing component. The stabilization threshold is calculated assuming a non linear regime in the q=1 resonant layer. The energetic population must create a stable tearing structure if the average curvature effect on thermal particles in the layer is small. However, this effect decreases the actual threshold

  18. High-performance ceramics. Fabrication, structure, properties

    International Nuclear Information System (INIS)

    Petzow, G.; Tobolski, J.; Telle, R.

    1996-01-01

    The program ''Ceramic High-performance Materials'' pursued the objective to understand the chaining of cause and effect in the development of high-performance ceramics. This chain of problems begins with the chemical reactions for the production of powders, comprises the characterization, processing, shaping and compacting of powders, structural optimization, heat treatment, production and finishing, and leads to issues of materials testing and of a design appropriate to the material. The program ''Ceramic High-performance Materials'' has resulted in contributions to the understanding of fundamental interrelationships in terms of materials science, which are summarized in the present volume - broken down into eight special aspects. (orig./RHM)

  19. Physics of energetic ions

    International Nuclear Information System (INIS)

    1999-01-01

    Physics knowledge (theory and experiment) in energetic particles relevant to design of a reactor scale tokamak is reviewed, and projections for ITER are provided in this Chapter of the ITER Physics Basis. The review includes single particle effects such as classical alpha particle heating and toroidal field ripple loss, as well as collective instabilities that might be generated in ITER plasmas by energetic alpha particles. The overall conclusion is that fusion alpha particles are expected to provide an efficient plasma heating for ignition and sustained burn in the next step device. The major concern is localized heat loads on the plasma facing components produced by alpha particle loss, which might affect their lifetime in a tokamak reactor. (author)

  20. Atypical energetic particle events observed prior energetic particle enhancements associated with corotating interaction regions

    Science.gov (United States)

    Khabarova, Olga; Malandraki, Olga; Zank, Gary; Jackson, Bernard; Bisi, Mario; Desai, Mihir; Li, Gang; le Roux, Jakobus; Yu, Hsiu-Shan

    2017-04-01

    Recent studies of mechanisms of particle acceleration in the heliosphere have revealed the importance of the comprehensive analysis of stream-stream interactions as well as the heliospheric current sheet (HCS) - stream interactions that often occur in the solar wind, producing huge magnetic cavities bounded by strong current sheets. Such cavities are usually filled with small-scale magnetic islands that trap and re-accelerate energetic particles (Zank et al. ApJ, 2014, 2015; le Roux et al. ApJ, 2015, 2016; Khabarova et al. ApJ, 2015, 2016). Crossings of these regions are associated with unusual variations in the energetic particle flux up to several MeV/nuc near the Earth's orbit. These energetic particle flux enhancements called "atypical energetic particle events" (AEPEs) are not associated with standard mechanisms of particle acceleration. The analysis of multi-spacecraft measurements of energetic particle flux, plasma and the interplanetary magnetic field shows that AEPEs have a local origin as they are observed by different spacecraft with a time delay corresponding to the solar wind propagation from one spacecraft to another, which is a signature of local particle acceleration in the region embedded in expanding and rotating background solar wind. AEPEs are often observed before the arrival of corotating interaction regions (CIRs) or stream interaction regions (SIRs) to the Earth's orbit. When fast solar wind streams catch up with slow solar wind, SIRs of compressed heated plasma or more regular CIRs are created at the leading edge of the high-speed stream. Since coronal holes are often long-lived structures, the same CIR re-appears often for several consecutive solar rotations. At low heliographic latitudes, such CIRs are typically bounded by forward and reverse waves on their leading and trailing edges, respectively, that steepen into shocks at heliocentric distances beyond 1 AU. Energetic ion increases have been frequently observed in association with CIR

  1. High Resolution Powder Diffraction and Structure Determination

    International Nuclear Information System (INIS)

    Cox, D. E.

    1999-01-01

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 (micro)m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  2. Segregation and redistribution of end-of-process energetic materials

    International Nuclear Information System (INIS)

    McCabe, R.A.; Cummins, B.; Gonzalez, M.A.

    1993-03-01

    A system recovering then recycling or reusing end-of-process energetic materials has been developed at the Lawrence Livermore National Laboratory (LLNL). The system promotes separating energetic materials with high potential for reuse or recycling from those that have no further value. A feature of the system is a computerized electronic bulletin board for advertising the availability of surplus and recovered energetic materials and process chemicals to LLNL researchers, and for posting energetic materials, ''want ads.'' The system was developed and implemented to promote waste minimization and pollution prevention at LLNL

  3. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  4. Multi element high resolution scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.

    1980-01-01

    A gamma camera scintillator structure, suitable for detecting high energy gamma photons which, in a single scintillator camera, would require a comparatively thick scintillator crystal, so resulting in unacceptable dispersion of light photons, comprises a collimator array of a high Z material with elongated, parallel wall channels with the scintillator material being disposed in one end of the channels so as to form an integrated collimator/scintillator structure. The collimator channel walls are preferably coated with light reflective material and further light reflective surfaces being translucent to gamma photons, may be provided in each channel. The scintillators may be single crystals or preferably comprise a phosphor dispersed in a thermosetting translucent matrix as disclosed in GB2012800A. The light detectors of the assembled camera may be photomultiplier tubes charge coupled devices or charge injection devices. (author)

  5. Metastable structure formation during high velocity grinding

    International Nuclear Information System (INIS)

    Samarin, A.N.; Klyuev, M.M.

    1984-01-01

    Metastable structures in surface layers of samples are; investigated during force high-velocity abrasive grinding. Samples of martensitic (40Kh13), austenitic (12Kh18N10T), ferritic (05Kh23Yu5) steels and some alloys, in particular KhN77TYuR (EhI437B), were grinded for one pass at treatment depth from 0.17 up to 2.6 mm. It is established that processes of homogenizing, recrystallization and coagulation are; developed during force high-velocity grinding along with polymorphic transformations in the zone of thermomechanical effect, that leads to changes of physical and mechanical properties of the surface

  6. Energetic particle physics with applications in fusion and space plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1997-01-01

    Energetic particle physics is the study of the effects of energetic particles on collective electromagnetic (EM) instabilities and energetic particle transport in plasmas. Anomalously large energetic particle transport is often caused by low frequency MHD instabilities, which are driven by these energetic particles in the presence of a much denser background of thermal particles. The theory of collective energetic particle phenomena studies complex wave-particle interactions in which particle kinetic physics involving small spatial and fast temporal scales can strongly affect the MHD structure and long-time behavior of plasmas. The difficulty of modeling kinetic-MHD multiscale coupling processes stems from the disparate scales which are traditionally analyzed separately: the macroscale MHD phenomena are studied using the fluid MHD framework, while microscale kinetic phenomena are best described by complicated kinetic theories. The authors have developed a kinetic-MHD model that properly incorporates major particle kinetic effects into the MHD fluid description. For tokamak plasmas a nonvariational kinetic-MHD stability code, the NOVA-K code, has been successfully developed and applied to study problems such as the excitation of fishbone and Toroidal Alfven Eigenmodes (TAE) and the sawtooth stabilization by energetic ions in tokamaks. In space plasmas the authors have employed the kinetic-MHD model to study the energetic particle effects on the ballooning-mirror instability which explains the multisatellite observation of the stability and field-aligned structure of compressional Pc 5 waves in the magnetospheric ring current plasma

  7. Solar energetic particles: observational studies and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Masson, S.

    2010-10-01

    Solar activity manifests itself through highly dynamical events, such as flares and coronal mass ejections, which result in energy release by magnetic reconnection. This thesis focuses on two manifestations of this energy release: solar energetic particles and dynamics of magnetic reconnection. The first part of my work consists in the detailed temporal analysis of several electromagnetic signatures, produced by energetic particles in the solar atmosphere, with respect to the energetic particle flux at Earth. Using multi-instrument observations, I highlighted that particles can be accelerated by the flare to relativistic energies during a specific episode of acceleration in the impulsive phase. This showed that particles traveled a longer path length than the theoretical length generally assumed. Using in-situ measurements of magnetic field and plasma, I identified the interplanetary magnetic field for 10 particle events, and performing a velocity dispersion analysis I obtained the interplanetary length traveled by particles. I showed that the magnetic structure of the interplanetary medium play a crucial role in the association of the particle flux at Earth and the acceleration signatures of particles at the Sun. The second part of my work focuses on the dynamics of magnetic reconnection. Observationally, the best evidence for magnetic reconnection is the appearance of brightnesses at the solar surface. Performing the first data-driven 3 dimensional magneto-hydrodynamic (MHD) simulation of an observed event, I discovered that the evolution of brightnesses can be explained by the succession of two different reconnection regimes, induced by a new topological association where null-point separatrix lines are embedded in quasi-separatrix layers. This new topological association induces a change of field line connectivity, but also a continuous reconnection process, leading to an apparent slipping motion of reconnected field lines. From a MHD simulation I showed that

  8. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  9. The effect of deposition energy of energetic atoms on the growth and structure of ultrathin amorphous carbon films studied by molecular dynamics simulations

    KAUST Repository

    Wang, N

    2014-05-16

    The growth and structure of ultrathin amorphous carbon films was investigated by molecular dynamics simulations. The second-generation reactive-empirical-bond-order potential was used to model atomic interactions. Films with different structures were simulated by varying the deposition energy of carbon atoms in the range of 1-120 eV. Intrinsic film characteristics (e.g. density and internal stress) were determined after the system reached equilibrium. Short- and intermediate-range carbon atom ordering is examined in the context of atomic hybridization and ring connectivity simulation results. It is shown that relatively high deposition energy (i.e., 80 eV) yields a multilayer film structure consisting of an intermixing layer, bulk film and surface layer, consistent with the classical subplantation model. The highest film density (3.3 g cm-3), sp3 fraction (∼43%), and intermediate-range carbon atom ordering correspond to a deposition energy of ∼80 eV, which is in good agreement with experimental findings. © 2014 IOP Publishing Ltd.

  10. High-saturated fat-sucrose feeding affects lactation energetics in control mice and mice selectively bred for high wheel-running behavior

    NARCIS (Netherlands)

    Guidotti, Stefano; Jonas, Izabella; Schubert, Kristin A.; Garland, Theodore; Meijer, Harro A. J.; Scheurink, Anton J. W.; van Dijk, Gertjan

    2013-01-01

    Feeding a diet high in fat and sucrose (HFS) during pregnancy and lactation is known to increase susceptibility to develop metabolic derangements later in life. A trait for increased behavioral activity may oppose these effects, since this would drain energy from milk produced to be made available

  11. Energetics of bacterial photosynthesis.

    Science.gov (United States)

    Lebard, David N; Matyushov, Dmitry V

    2009-09-10

    We report the results of extensive numerical simulations and theoretical calculations of electronic transitions in the reaction center of Rhodobacter sphaeroides photosynthetic bacterium. The energetics and kinetics of five electronic transitions related to the kinetic scheme of primary charge separation have been analyzed and compared to experimental observations. Nonergodic formulation of the reaction kinetics is required for the calculation of the rates due to a severe breakdown of the system ergodicity on the time scale of primary charge separation, with the consequent inapplicability of the standard canonical prescription to calculate the activation barrier. Common to all reactions studied is a significant excess of the charge-transfer reorganization energy from the width of the energy gap fluctuations over that from the Stokes shift of the transition. This property of the hydrated proteins, breaking the linear response of the thermal bath, allows the reaction center to significantly reduce the reaction free energy of near-activationless electron hops and thus raise the overall energetic efficiency of the biological charge-transfer chain. The increase of the rate of primary charge separation with cooling is explained in terms of the temperature variation of induction solvation, which dominates the average donor-acceptor energy gap for all electronic transitions in the reaction center. It is also suggested that the experimentally observed break in the Arrhenius slope of the primary recombination rate, occurring near the temperature of the dynamical transition in proteins, can be traced back to a significant drop of the solvent reorganization energy close to that temperature.

  12. Energetics Manufacturing Technology Center (EMTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Manufacturing Technology Center (EMTC), established in 1994 by the Office of Naval Research (ONR) Manufacturing Technology (ManTech) Program, is Navy...

  13. Structure, energetic and phase transition of multi shell icosahedral bimetallic nanostructures: A molecular dynamics study of NimPdn (n + m = 55 and 147)

    International Nuclear Information System (INIS)

    Hewage, Jinasena W.

    2015-01-01

    Structure, energetic and thermodynamic properties of multi shell icosahedral bimetallic nickel–palladium nanostructures with the size of 55 and 147 atoms were studied by using the molecular dynamics simulations and the microcanonical ensemble version of multiple histogram method. In 55 atoms icosahedra, two core–shell motifs, Ni 13 Pd 42 and Pd 13 Ni 42 with their isomers Pd 13 (Pd 29 Ni 13 ) and Ni 13 (Ni 29 Pd 13 ) were considered. Similarly in 147 atoms icosahedra, all mutations corresponding to the occupations of either nickel atoms or palladium atoms in the core, inner shell or outer shell and their isomers generated by interchanging thirteen core atoms with thirteen atoms of the other type in the inner and outer shells were considered. It is found that the nickel-core clusters are more stable than the palladium-core clusters and cohesive energy increases with the nickel composition. Phase transition of each cluster was studied by means of constant volume heat capacity. The trend in variation of melting temperature is opposite to the energy trend and special increase in melting points was observed for nickel-core isomers compared to the palladium-core isomers. Helmholtz free energy change with temperature for shell to core interchange of thirteen atoms revealed the thermodynamic stability of the formation of Ni core Pd shell structures and the surface segregation of palladium. - Highlights: • Nanostructures of Ni m Pd n clusters for m + n = 55 and 147 have been studied. • Structures favor the formation of nickel-core surrounded by palladium atoms. • In general, it appears the increase of cohesive energy with the nickel composition. • Calculated thermodynamic parameters confirm the energetic results. • Results show also the palladium segregation on the surface

  14. Carbon nanostructure formation driven by energetic particles

    International Nuclear Information System (INIS)

    Zhu Zhiyuan; Gong Jinlong; Zhu Dezhang

    2006-01-01

    -treatment of multiwalled CNTs. A core-sheath structure of the diamond nanorods were identified, with the inner core being diamond crystal and outer shell being amorphous carbon. The diamond nanorods grow along diamond [110] direction. A growth mechanism was proposed. Under irradiation of 60 keV N + and Si + beams at room temperatures, we found that CNTs undergo a non-equilibrium amorphization with ion-generated displacement atoms jumping ballistically from graphite phase to amorphous phase. At high temperature (800 degree C), the recombination of vacancies and interstitials would repair the CNT structure and prevent the CNTs from amorphization. Furthermore, due to vacancy-mending in the graphitic shells, hence decreased shell diameter, and due to growing concentration of carbon atoms in the interior of the tube, the pressure in the inner parts of the system increases. However, unlike interstitials in spherical onions, carbon interstitials in CNTs can easily migrate away from regions with elevated pressure. Thus, radiation generated CNT amorphization can rarely be observed. By irradiating pre-amorphized carbon nanowires at high temperatures, the formation of carbon onions was clearly evidenced by high resolution transmission electron microscope (HRTEM). Such a two-step transformation model, i.e., amorphization at room temperatures and transformation from amorphous carbon to onion-like structure at high temperatures, demonstrated the structural evolution before early nucleation of diamond under energetic particles. A congruous designed compromise between nuclear and electron stopping power makes the diamond nucleation possible in carbon onions. The interconnected CNT networks have fundamental importance in nanoelectronics, integrated circuit connection and reinforcement of composite materials. At room temperatures, the morphological and structural evolution of CNT films under Si + ion beam (60 keV) irradiation was observed by scanning electron microscope and transmission

  15. Energetic evolution of cellular Transportomes

    DEFF Research Database (Denmark)

    Darbani, Behrooz; Kell, Douglas B.; Borodina, Irina

    2018-01-01

    of the transition from prokaryotes to eukaryotes. The transportome analysis also indicated seven bacterial species, including Neorickettsia risticii and Neorickettsia sennetsu, as likely origins of the mitochondrion in eukaryotes, based on the phylogenetically restricted presence therein of clear homologues......) than in primitive eukaryotes (13%), algae and plants (10%) and in fungi and animals (5–6%). This decrease is compensated by an increased occurrence of secondary transporters and ion channels. The share of ion channels is particularly high in animals (ca. 30% of the transportome) and algae and plants...... of modern mitochondrial solute carriers. Conclusions: The results indicate that the transportomes of eukaryotes evolved strongly towards a higher energetic efficiency, as ATP-dependent transporters diminished and secondary transporters and ion channels proliferated. These changes have likely been important...

  16. Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    Directory of Open Access Journals (Sweden)

    O. E. Malandraki

    Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.

    Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields

  17. Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    Directory of Open Access Journals (Sweden)

    O. E. Malandraki

    2003-06-01

    Full Text Available Solar energetic particle fluxes (Ee > 38 keV observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields

  18. High performance repairing of reinforced concrete structures

    International Nuclear Information System (INIS)

    Iskhakov, I.; Ribakov, Y.; Holschemacher, K.; Mueller, T.

    2013-01-01

    Highlights: ► Steel fibered high strength concrete is effective for repairing concrete elements. ► Changing fibers’ content, required ductility of the repaired element is achieved. ► Experiments prove previously developed design concepts for two layer beams. -- Abstract: Steel fibered high strength concrete (SFHSC) is an effective material that can be used for repairing concrete elements. Design of normal strength concrete (NSC) elements that should be repaired using SFHSC can be based on general concepts for design of two-layer beams, consisting of SFHSC in the compressed zone and NSC without fibers in the tensile zone. It was previously reported that such elements are effective when their section carries rather large bending moments. Steel fibers, added to high strength concrete, increase its ultimate deformations due to the additional energy dissipation potential contributed by fibers. When changing the fibers’ content, a required ductility level of the repaired element can be achieved. Providing proper ductility is important for design of structures to dynamic loadings. The current study discusses experimental results that form a basis for finding optimal fiber content, yielding the highest Poisson coefficient and ductility of the repaired elements’ sections. Some technological issues as well as distribution of fibers in the cross section of two-layer bending elements are investigated. The experimental results, obtained in the frame of this study, form a basis for general technological provisions, related to repairing of NSC beams and slabs, using SFHSC.

  19. Pair creation by very high-energy photons in gamma-ray bursts a unified picture for the energetics of GRBs

    CERN Document Server

    Totani, T

    1999-01-01

    The extreme energetics of the gamma-ray burst (GRB) 990123 have revealed that some GRBs emit quite a large amount of energy, and the total energy release from GRBs seems to change from burst to burst by a factor of 10/sup 2/-10/sup $9 3/ as E/sub gamma , iso/~10/sup 52-55/ erg, where E/sub gamma , iso/ is the observed GRB energy when the radiation is isotropic. If all GRBs are triggered by similar events, such a wide dispersion in energy release seems odd. The $9 author proposes a unified picture for the energetics of GRBs, in which all GRB events release roughly the same amount of energy E/sub iso/~10 /sup 55-56/ erg relativistic motion, with the baryon load problem almost resolved. A mild $9 dispersion in the initial Lorentz factor ( Gamma ) results in a difference of E/sub gamma , iso/ by up to a factor of m/sub p//m/sub e/~10/sup 3/. Protons work as `a hidden energy reservoir' of the total GRB energy, and E/sub gamma , $9 iso/ depends on the energy transfer efficiency from protons into electrons (or posit...

  20. Spin structure in high energy processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    DePorcel, L.; Dunwoodie, C. [eds.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  1. Spin structure in high energy processes: Proceedings

    International Nuclear Information System (INIS)

    DePorcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z 0 s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ( 3 HE) and the Bjoerken sum rule; a consumer's guide to lattice QCD results; top ten models constrained by b → sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere

  2. Control structures for high speed processors

    Science.gov (United States)

    Maki, G. K.; Mankin, R.; Owsley, P. A.; Kim, G. M.

    1982-01-01

    A special processor was designed to function as a Reed Solomon decoder with throughput data rate in the Mhz range. This data rate is significantly greater than is possible with conventional digital architectures. To achieve this rate, the processor design includes sequential, pipelined, distributed, and parallel processing. The processor was designed using a high level language register transfer language. The RTL can be used to describe how the different processes are implemented by the hardware. One problem of special interest was the development of dependent processes which are analogous to software subroutines. For greater flexibility, the RTL control structure was implemented in ROM. The special purpose hardware required approximately 1000 SSI and MSI components. The data rate throughput is 2.5 megabits/second. This data rate is achieved through the use of pipelined and distributed processing. This data rate can be compared with 800 kilobits/second in a recently proposed very large scale integration design of a Reed Solomon encoder.

  3. About Russian nuclear energetic perspectives

    International Nuclear Information System (INIS)

    Laletin, N.I.

    2003-01-01

    My particular view about Russian nuclear energetics perspectives is presented. The nearest and the further perspectives are considered. The arguments are adduced that the most probable scenario of nuclear energetic development is its stabilization in the near future. Fur further development the arguments of supporters and opponents of nuclear energetics are analyzed. Three points of view are considered. The first point of view that there is not alternative for nuclear energetics. My notes are the following ones. a) I express a skeptic opinion about a statement of quick exhaustion of fossil organic fuel recourses and corresponding estimations are presented. b) It is expressed skeptic opinion about the statement that nuclear energetics can have a visual influence on ''steam effect''. c) I agree that nuclear energetics is the most ecological technology for normal work but however we can't disregard possibilities of catastrophic accidents. The second point of view that the use of nuclear energetics can't have the justification. I adduce the arguments contrary to this statement. The third point of view that nuclear energetics is a usual technology and the only criteria for discussions about what dimension and where one ought develop it is total cost of its unit. Expressed an opinion that the deceived for the choose of a way the skill of the estimate correctly and optimized so named the external parts of the unit energy costs for different energy technologies. (author)

  4. Rural energetic development: cuban experience

    International Nuclear Information System (INIS)

    Aguilera Barciela, M.

    1994-01-01

    The development of electro energetic national system in Cuba has been directed to the following objectives: to brake the rural population's exodus toward the cities, electrification of dairy farm, interconnection to the system electro energetic of all the sugar central production, these improves the rural population's conditions life

  5. Economical aspects of nuclear energetics

    International Nuclear Information System (INIS)

    Celinski, Z.

    2000-01-01

    The economical aspects of nuclear power generation in respect to costs of conventional energetics have been discussed in detail. The costs and competitiveness of nuclear power have been considered on the base of worldwide trends taking into account investment and fuel costs as well as 'social' costs being result of impact of different types of energetics on environment, human health etc

  6. Structures for handling high heat fluxes

    International Nuclear Information System (INIS)

    Watson, R.D.

    1990-01-01

    The divertor is recognized as one of the main performance limiting components for ITER. This paper reviews the critical issues for structures that are designed to withstand heat fluxes >5 MW/m 2 . High velocity, sub-cooled water with twisted tape inserts for enhanced heat transfer provides a critical heat flux limit of 40-60 MW/m 2 . Uncertainties in physics and engineering heat flux peaking factors require that the design heat flux not exceed 10 MW/m 2 to maintain an adequate burnout safety margin. Armor tiles and heat sink materials must have a well matched thermal expansion coefficient to minimize stresses. The divertor lifetime from sputtering erosion is highly uncertain. The number of disruptions specified for ITER must be reduced to achieve a credible design. In-situ plasma spray repair with thick metallic coatings may reduce the problems of erosion. Runaway electrons in ITER have the potential to melt actively cooled components in a single event. A water leak is a serious accident because of steam reactions with hot carbon, beryllium, or tungsten that can mobilize large amounts of tritium and radioactive elements. If the plasma does not shutdown immediately, the divertor can melt in 1-10 s after a loss of coolant accident. Very high reliability of carbon tile braze joints will be required to achieve adequate safety and performance goals. Most of these critical issues will be addressed in the near future by operation of the Tore Supra pump limiters and the JET pumped divertor. An accurate understanding of the power flow out of edge of a DT burning plasma is essential to successful design of high heat flux components. (orig.)

  7. Structural changes in irreversibly densified fused silica: implications for the chemical resistance of high level nuclear waste glasses

    International Nuclear Information System (INIS)

    Susman, S.; Volin, K.J.; Liebermann, R.C.; Gwanmesia, G.D.; Yanbin Wang

    1990-01-01

    Energetic photons and energetic particles create changes in the structure of nuclear waste glasses. These can be observed as changes in the average bulk physical properties. For example, exposure of fused silica to high doses of neutron bombardment leads to a maximum average compaction of 3%. However, this does not reveal the true extent of the densification that takes place at a microscopic level. Recent advances in high pressure technology have yielded large samples of fused silica which have been permanently densified under pressure and whose bulk density has been increased by 20%. These specimens have an overall structure that replicates the microstructure of a radiation damaged glass. Measurements have been made for the first time of the structural changes in this pressure densified vitreous silica using neutron diffraction and infrared absorption spectrometry. Extensive alterations in intermediate range order have been observed with consequent anticipated changes in chemical reactivity. The resistance of high level waste glasses to leaching by groundwater must be considered in light of these experimental findings. (author)

  8. Nuclear structure at high angular momentum

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1976-08-01

    There is considerable interest in high angular-momentum states of nuclei, and some recent progress in three areas is discussed. Part I considers transitional nuclei, where two types of rotational bands--decoupled and strongly coupled--are found to occur very frequently. These can be described by several collective models, but the required potential-energy surfaces seem to differ somewhat from those calculated microscopically. In Part II the processes that might cause backbending (irregularities in the rotational levels of certain nuclei) are discussed, and alignment of individual nucleons now seems to be the cause in most cases. The mixing of the ground band with this aligned band can be studied in some detail using Coulomb excitation with very heavy ions. Part III deals with the very high-spin states where effective moments of inertia have been obtained for spins up to 50h. Also structure has been seen in the spectra around these spin values which can be tentatively related to calculated shell effects. 74 references, 61 figures

  9. Nuclear structure at high and very high spin theoretical description

    International Nuclear Information System (INIS)

    Szymanski, Z.

    1983-11-01

    When the existence of nuclear shell structure is ignored and nuclear motion is assumed to be classical we may expect that the nuclear rotation resembles that of a liquid drop. Energy of the nucleus can be thus considered as a sum of three terms: surface energy, Coulomb energy and rotational energy. Nuclear moment of inertia is assumed to be that of a rigid-body. The results of a calculation of the energy surfaces in rotating nuclei by Cohen, Plasil and Swiatecki are discussed. Cranking procedure is analysed as a tool to investigate nucleonic orbits in a rotating nuclear potential. Some predictions concerning the possible onset of a superdeformed phase are given. The structure of nuclear rotation is examined in the presence of the short-range pairing forces that generate the superfluid correlations in the nucleus. Examples of the Bengtsson-Frauendorf plots (quasiparticle energies versus angular velocity of rotation) are given and discussed. The backbending phenomenon is analysed in terms of band crossing. The dependence of the crossing frequency on the pairing-force strength is discussed. Possibilities of the role of new components in the two-body force (quadrupole-pairing) are considered. Possibilities of the phase transition from superfluid to normal states in the nucleus are analysed. The role of the second (dynamic) moment of inertia I(2) in this analysis is discussed. In spherical weekly deformed nuclei (mostly oblate) angular momentum is aligned parallel to the nuclear symmetry axis. Rotation is of non collective origin in this case. Examples of the analysis of nuclear spectra in this case (exhibiting also the isomeric states called yrast (traps)) are given. Possible forms of the collective excitations superimposed on top of the high-spin states are discussed. In particular, the giant resonance excitations formed on top of the high-spin states are considered and their properties discussed

  10. The effect of deposition energy of energetic atoms on the growth and structure of ultrathin amorphous carbon films studied by molecular dynamics simulations

    KAUST Repository

    Wang, N; Komvopoulos, K

    2014-01-01

    The growth and structure of ultrathin amorphous carbon films was investigated by molecular dynamics simulations. The second-generation reactive-empirical-bond-order potential was used to model atomic interactions. Films with different structures

  11. Construct 3D porous hollow Co3O4 micro-sphere: A potential oxidizer of nano-energetic materials with superior reactivity

    Science.gov (United States)

    Wang, Jun; Zheng, Bo; Qiao, Zhiqiang; Chen, Jin; Zhang, Liyuan; Zhang, Long; Li, Zhaoqian; Zhang, Xingquan; Yang, Guangcheng

    2018-06-01

    High energy density and rapid reactivity are the future trend for nano-energetic materials. Energetic performance of nano-energetic materials depends on the interfacial diffusion and mass transfer during the reacted process. However, the development of desired structure to significantly enhance reactivity still remains challenging. Here we focused on the design and preparation of 3D porous hollow Co3O4 micro-spheres, in which gas-blowing agents (air) and maximize interfacial interactions were introduced to enhance mass transport and reduce the diffusion distance between the oxidizer and fuel (Aluminum). The 3D hierarchical Co3O4/Al based nano-energetic materials show a low-onset decomposition temperature (423 °C), and high heat output (3118 J g-1) resulting from porous and hollow nano-structure of Co3O4 micro-spheres. Furthermore, 3D hierarchical Co3O4/Al arrays were directly fabricated on the silicon substrate, which was fully compatible with silicon-based microelectromechanical systems to achieve functional nanoenergetics-on-a-chip. This approach provides a simple and efficient way to fabricate 3D ordered nano-energetic arrays with superior reactivity and the potential on the application in micro-energetic devices.

  12. Structural And Energetic Changes of Si (100 Surface With Fluorine in Presence of Water – A Density Functional Study

    Directory of Open Access Journals (Sweden)

    Takeo Ebina

    2001-05-01

    Full Text Available Abstract: We report density functional electronic structure calculations to monitor the change in the surface characteristics of the Si (100-2x1 surface after fluorination followed by interaction with water. Embedded finite silicon clusters are used to model an extended Si (100-2x1 surface. Two high symmetry pathways and subsequent adsorption sites were examined: (i adsorption of an fluorine atom directing onto a silicon dangling bond to form a monocoordinated fluorine atom (ii adsorption of a fluorine atom directing on top of silicon dimer to form a bridging dicoordinated fluorine atom. However, in the later case we find that no barrier exists for the bridging fluorine atom to slide towards silicon dimer dangling bond to form more stable mono coordinated Si-F bond. We calculated activation barriers and equilibrium surface configuration as a function of fluorine coverage upto 2.0 ML. We compared the stability of the fluorinated surface. The results were compared with existing experimental and theoretical results. The reaction of water with HF treated Si surface is monitored. It produces, as a first step, the exchange of Si-F with water to form Si-OH groups reducing the concentration of the fluorine on the surface, followed by a rapture of Si-Si bonds and finally the Si-O-Si bridge formation in the lattice.

  13. Magnetic structures of erbium under high pressure

    DEFF Research Database (Denmark)

    Kawano, S.; Lebech, B.; Achiwa, N.

    1993-01-01

    Neutron diffraction studies of the magnetic structures of erbium metal at 4.5 K and 11.5 kbar hydrostatic pressure have revealed that the transition to a conical structure at low temperatures is suppressed and that the cycloidal structure, with modulation vector Q congruent-to (2/7 2pi/c)c persists...

  14. Electrical initiation of an energetic nanolaminate film

    Science.gov (United States)

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  15. An automatic system to study sperm motility and energetics

    OpenAIRE

    Shi, LZ; Nascimento, JM; Chandsawangbhuwana, C; Botvinick, EL; Berns, MW

    2008-01-01

    An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membr...

  16. Energetic solar particles

    International Nuclear Information System (INIS)

    Biswas, M.

    1975-01-01

    In this review, some of the important aspects of energetic solar particles and their relation to solar physics are discussed. The major aspects of solar cosmic ray studies currently under investigation are identified and attention is focussed on the problems of the physical processes in the sun which may be responsible for these phenomena. The studies of the composition and energy spectra of solar cosmic ray nuclei are related to the basic problem of particle acceleration process in sun and to the composition of elements in solar atmosphere. The composition of higher energy (>20 MeV/amu) multiply charged nuclei of He, C, N, O, Ne, Mg, Si and Fe give information on the abundance of elements in the solar atmosphere. At lower energies (approximately 1-10 MeV/amu), the abundances of these elements show enhancements relative to solar abundances and these enhancements are believed to be due to particle acceleration mechanisms operative in the sun which are not fully understood at present. Studies of the relative abundances of H 2 , H 3 and He 3 isotopes and Li, Be, B nuclei in the solar cosmic rays can also be studied. The question of the relationship of the accelerated particles in the sun to the optical flare phenomena is discussed. Further studies of different aspects of these phenomena may give important clues to a wide ranging phenomena in the active sun. The observational methods employed for these studies are mentioned. (A.K.)

  17. Analysis of the energetic sector through the national energetic matrix

    International Nuclear Information System (INIS)

    Garzon Lozano, Enrique

    2007-01-01

    The author shows the results of the national energetic balance 1975-2005, through the energetic matrix of the country, giving an annual growth of 5.1% in this period of offer of primary energy, where the mineral coal participates with 9,6%, the hydraulic energy with 4,8%, natural gas with 4,2%, trash with 2,4% and petroleum with 2,2%, while the firewood fell in 0,5%

  18. Structural aspects of high temperature superconductors

    International Nuclear Information System (INIS)

    Sequeira, A.

    1991-01-01

    This paper reports that the general structure of HTSC is known to be perovskite related involving layered stacking of perovskite and rock-salt like slabs with a specific sequence for a given type of structure. The prototype structures of various type of HTSC are now well established. Their detailed structural parameters are well documented. It is clear from that the number of oxygen atoms present in many of these structures is different from, and generally much less than, the number of anionic sites available. If the number of oxygens are in excess, they could of course occupy the interstitial sites. For example, in pure oxygen La 2 CuO 4+δ , the excess oxygen has been shown to go into interstitial sites. Although the prototypic structures of all HTSC are well established, their actual structures can have significant variations from the prototypes. In fact, their real structures are not yet fully known. Being nonstoichiometric, they are essentially metastable, entropy stabilized structures which exhibit wide compositional fluctuations and oxygen disorder effects. Their superconducting properties are known to be sensitive to their oxygen content and according to some theories the mechanism of superconductivity is presumably related to the oxygen defects or defectons. Neutron diffraction happens to be the method of choice for probing detailed structural features involving oxygen defects and associated distortions which are known to play a significant role on the properties of HTSC

  19. Calculation of the energetics of chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, T.H. Jr.; Harding, L.B.; Shepard, R.L.; Harrison, R.J.

    1988-01-01

    To calculate the energetics of chemical reactions we must solve the electronic Schroedinger equation for the molecular conformations of importance for the reactive encounter. Substantial changes occur in the electronic structure of a molecular system as the reaction progresses from reactants through the transition state to products. To describe these changes, our approach includes the following three elements: the use of multiconfiguration self-consistent field wave functions to provide a consistent zero-order description of the electronic structure of the reactants, transition state, and products; the use of configuration interaction techniques to describe electron correlation effects needed to provide quantitative predictions of the reaction energetics; and the use of large, optimized basis sets to provide the flexibility needed to describe the variations in the electronic distributions. With this approach we are able to study reactions involving as many as 5--6 atoms with errors of just a few kcal/mol in the predicted reaction energetics. Predictions to chemical accuracy, i.e., to 1 kcal/mol or less, are not yet feasible, although continuing improvements in both the theoretical methodology and computer technology suggest that this will soon be possible, at least for reactions involving small polyatomic species. 4 figs.

  20. Energetics of edge oxidization of graphene nanoribbons

    Science.gov (United States)

    Yasuma, Airi; Yamanaka, Ayaka; Okada, Susumu

    2018-06-01

    On the basis of the density functional theory, we studied the geometries and energetics of O atoms adsorbed on graphene edges for simulating the initial stage of the edge oxidization of graphene. Our calculations showed that oxygen atoms are preferentially adsorbed onto the graphene edges with the zigzag portion, resulting in a large adsorption energy of about 5 eV. On the other hand, the edges with armchair shape are rarely oxidized, or the oxidization causes substantial structural reconstructions, because of the stable covalent bond at the armchair edge with the triple bond nature. Furthermore, the energetics sensitively depends on the edge angles owing to the inhomogeneity of the charge density at the edge atomic sites.

  1. STRUCTURE AND CHARACTERISTICS OF PATENTED HIGH-CARBON WIRE

    Directory of Open Access Journals (Sweden)

    A. Ju. Borisenko

    2011-01-01

    Full Text Available The influence of bainite structure on mechanical characteristics of wire of steel 80 after patenting is studied. The quantity and structure state of bainite, providing high complex of mechanical characteristics of high-carbon wire, is determined.

  2. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  3. Energetic policies 2005-2030

    International Nuclear Information System (INIS)

    2008-01-01

    This power point exhibition shows the following topics: energy analysis, production and use, supply and demand, consumption, energy sources, energetic prospective of Uruguay country, medium and long term perspectives.

  4. Multiphase Combustion of Metalized Nanocomposite Energetic Materials

    Science.gov (United States)

    2014-12-19

    on thermal conductivity and absorption coefficient for consolidated aluminum nanoparticles, International Journal of Heat and Mass Transfer, (06...28. Stacy, S.C., Zhang, X., Pantoya, M.L., Weeks, B., Effect of Density on Thermal Conductivity and Absorption Coefficient for Consolidated Aluminum...energetic powder to ESD stimuli generated from a piezo electric crystal ( PZT ). Results show that a high PZT dielectric strength leads to faster

  5. Structures, energetics, vibrational spectra of NH4+ (H2O)(n=4,6) clusters: Ab initio calculations and first principles molecular dynamics simulations.

    Science.gov (United States)

    Karthikeyan, S; Singh, Jiten N; Park, Mina; Kumar, Rajesh; Kim, Kwang S

    2008-06-28

    Important structural isomers of NH(4) (+)(H(2)O)(n=4,6) have been studied by using density functional theory, Moller-Plesset second order perturbation theory, and coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The zero-point energy (ZPE) correction to the complete basis set limit of the CCSD(T) binding energies and free energies is necessary to identify the low energy structures for NH(4) (+)(H(2)O)(n=4,6) because otherwise wrong structures could be assigned for the most probable structures. For NH(4) (+)(H(2)O)(6), the cage-type structure, which is more stable than the previously reported open structure before the ZPE correction, turns out to be less stable after the ZPE correction. In first principles Car-Parrinello molecular dynamics simulations around 100 K, the combined power spectrum of three lowest energy isomers of NH(4) (+)(H(2)O)(4) and two lowest energy isomers of NH(4) (+)(H(2)O)(6) explains each experimental IR spectrum.

  6. High resolution interface nanochemistry and structure

    International Nuclear Information System (INIS)

    1993-01-01

    A summary is given of results on nanospectroscopy etc. during the previous three years, divided into the following subsections: development of methods and instrumentation for interface/boundary chemical analysis, interface and boundary structure in ceramic matrix composites, quantitative composition measurements of thin films and inclusions, theoretical calculations for electron energy loss near edge fine structure and grain boundary structure, and small probe radiation effects in ceramics. Materials studied include SiC whisker-reinforced Si3N4, SiC, Si oxides, Si, Si oxynitride, other ceramics. Methods mentioned include field emission, EELS (electron energy loss spectroscopy), nanospectroscopy, electron nanoprobe, etc

  7. Studies of fast-ion transport induced by energetic particle modes using fast-particle diagnostics with high time resolution in CHS

    International Nuclear Information System (INIS)

    Isobe, M.; Toi, K.; Suzuki, C.; Nagaoka, K.; Matsushita, H.; Goto, K.

    2006-01-01

    The purpose of this work is to reveal the effects of the energetic particle mode (EPM) on fast-ion transport and consequent fast-ion loss in the Compact Helical System (CHS). For this purpose, fast particle diagnostics capable of following fast events originating from the EPM (f -5 Tesla at the magnetic probe position. The lost fast-ion probe (LIP) located at the outboard side of the torus indicates that bursting EPMs lead to periodically enhanced losses of co-going fast ions having smaller pitch angles in addition to losses of marginally co-passing fast ions. Coinciding with EPM bursts, the H- light detector viewing the peripheral region at the outboard side also shows large pulsed increases similar to that of the LIP whereas the detector viewing the peripheral region at the inboard side does not. This is also evidence that fast ions are expelled to the outboard side due to the EPM. The charge-exchange neutral particle analyzer indicates that only fast ions whose energy is close to the beam injection energy E b are strongly affected by EPM, suggesting in turn that observed EPMs are excited by fast ions having energy close to E b . (author)

  8. Excitation of high-frequency electromagnetic waves by energetic electrons with a loss cone distribution in a field-aligned potential drop

    Science.gov (United States)

    Fung, Shing F.; Vinas, Adolfo F.

    1994-01-01

    The electron cyclotron maser instability (CMI) driven by momentum space anisotropy (df/dp (sub perpendicular) greater than 0) has been invoked to explain many aspects, such as the modes of propagation, harmonic emissions, and the source characteristics of the auroral kilometric radiation (AKR). Recent satellite observations of AKR sources indicate that the source regions are often imbedded within the auroral acceleration region characterized by the presence of a field-aligned potential drop. In this paper we investigate the excitation of the fundamental extraordinary mode radiation due to the accelerated electrons. The momentum space distribution of these energetic electrons is modeled by a realistic upward loss cone as modified by the presence of a parallel potential drop below the observation point. On the basis of linear growth rate calculations we present the emission characteristics, such as the frequency spectrum and the emission angular distribution as functions of the plasma parameters. We will discuss the implication of our results on the generation of the AKR from the edges of the auroral density cavities.

  9. Mapping the nanoscale energetic landscape in conductive polymer films with spatially super-resolved exciton dynamics

    Science.gov (United States)

    Ginsberg, Naomi

    2015-03-01

    The migration of Frenkel excitons, tightly-bound electron-hole pairs, in polymeric organic semiconducting films is critical to the efficiency of bulk heterojunction solar cells. While these materials exhibit a high degree of structural heterogeneity on the nanoscale, traditional measurements of exciton diffusion lengths are performed on bulk samples. Since both the characteristic length scales of structural heterogeneity and the reported bulk diffusion lengths are smaller than the optical diffraction limit, we adapt far-field super-resolution fluorescence imaging to uncover the correlations between the structural and energetic landscapes that the excitons explore.

  10. High frequency single mode traveling wave structure for particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Ivanyan, M.I.; Danielyan, V.A.; Grigoryan, B.A.; Grigoryan, A.H. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Tsakanian, A.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Technische Universität Darmstadt, Institut TEMF, 64289 Darmstadt (Germany); Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Vardanyan, A.S.; Zakaryan, S.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia)

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM{sub 01} mode in a metallic tube with internally coated low conductive thin layer are examined.

  11. Energetic particles at venus: galileo results.

    Science.gov (United States)

    Williams, D J; McEntire, R W; Krimigis, S M; Roelof, E C; Jaskulek, S; Tossman, B; Wilken, B; Stüdemann, W; Armstrong, T P; Fritz, T A; Lanzerotti, L J; Roederer, J G

    1991-09-27

    At Venus the Energetic Particles Detector (EPD) on the Galileo spacecraft measured the differential energy spectra and angular distributions of ions >22 kiloelectron volts (keV) and electrons > 15 keV in energy. The only time particles were observed by EPD was in a series of episodic events [0546 to 0638 universal time (UT)] near closest approach (0559:03 UT). Angular distributions were highly anisotropic, ordered by the magnetic field, and showed ions arriving from the hemisphere containing Venus and its bow shock. The spectra showed a power law form with intensities observed into the 120- to 280-keV range. Comparisons with model bow shock calculations show that these energetic ions are associated with the venusian foreshock-bow shock region. Shock-drift acceleration in the venusian bow shock seems the most likely process responsible for the observed ions.

  12. The composition of corotating energetic particle streams

    International Nuclear Information System (INIS)

    McGuire, R.E.; von Rosenvinge, T.T.; McDonald, F.B.

    1978-01-01

    The relative abundances of 1.5--23 MeV per nucleon ions in corotating nucleon streams are compared with ion abundances in particle events associated with solar flares and with solar and solar wind abundances. He/O and C/O ratios are found to be a factor of the order 2--3 greater in corotating streams than in flare-associated events. The distribution of H/He ratios in corotating streams is found to be much narrower and of lower average value than in flare-associated events. H/He in corotating energetic particle streams compares favorably in both lack of variability and numerical value with H/He in high-speed solar wind plasma streams. The lack of variability suggests that the source population for the corotating energetic particles is the solar wind, a suggestion consistent with acceleration of the corotating particles in interplanetary space

  13. High pressure orthorhombic structure of CuInSe2

    International Nuclear Information System (INIS)

    Bovornratanaraks, T; Saengsuwan, V; Yoodee, K; McMahon, M I; Hejny, C; Ruffolo, D

    2010-01-01

    The structural behaviour of CuInSe 2 under high pressure has been studied up to 53 GPa using angle-dispersive x-ray powder diffraction techniques. The previously reported structural phase transition from its ambient pressure tetragonal structure to a high pressure phase with a NaCl-like cubic structure at 7.6 GPa has been confirmed. On further compression, another structural phase transition is observed at 39 GPa. A full structural study of this high pressure phase has been carried out and the high pressure structure has been identified as orthorhombic with space group Cmcm and lattice parameters a = 4.867(8) A, b = 5.023(8) A and c = 4.980(3) A at 53.2(2) GPa. This phase transition behaviour is similar to those of analogous binary and trinary semiconductors, where the orthorhombic Cmcm structure can also be viewed as a distortion of the cubic NaCl-type structure.

  14. Musical Tasks and Energetic Arousal.

    Science.gov (United States)

    Lim, Hayoung A; Watson, Angela L

    2018-03-08

    Music is widely recognized as a motivating stimulus. Investigators have examined the use of music to improve a variety of motivation-related outcomes; however, these studies have focused primarily on passive music listening rather than active participation in musical activities. To examine the influence of participation in musical tasks and unique participant characteristics on energetic arousal. We used a one-way Welch's ANOVA to examine the influence of musical participation (i.e., a non-musical control and four different musical task conditions) upon energetic arousal. In addition, ancillary analyses of participant characteristics including personality, age, gender, sleep, musical training, caffeine, nicotine, and alcohol revealed their possible influence upon pretest and posttest energetic arousal scores. Musical participation yielded a significant relationship with energetic arousal, F(4, 55.62) = 44.38, p = .000, estimated ω2 = 0.60. Games-Howell post hoc pairwise comparisons revealed statistically significant differences between five conditions. Descriptive statistics revealed expected differences between introverts' and extraverts' energetic arousal scores at the pretest, F(1, 115) = 6.80, p = .010, partial η2= .06; however, mean differences failed to reach significance at the posttest following musical task participation. No other measured participant characteristics yielded meaningful results. Passive tasks (i.e., listening to a story or song) were related to decreased energetic arousal, while active musical tasks (i.e., singing, rhythm tapping, and keyboard playing) were related to increased energetic arousal. Musical task participation appeared to have a differential effect for individuals with certain personality traits (i.e., extroverts and introverts).

  15. Nuclear structure at high excitation energies

    Indian Academy of Sciences (India)

    Average nuclear shape; giant dipole resonance; static path approximation; linear re- ... On the other hand if the nucleus is already spherical in the ground state ... this approach to study the structural properties as well as level densities of some ... (1) is modeled by a harmonic vibration along the three principal axes and then.

  16. Contact resistance measurement structures for high frequencies

    NARCIS (Netherlands)

    Roy, Deepu; Pijper, Ralf M.T.; Tiemeijer, Luuk F.; Wolters, Robertus A.M.

    2011-01-01

    Knowledge of the interfacial contact impedance offered by the device at its operating frequency range is crucial for accurate modelling and understanding of the device. In this article, a novel modified TLM test-structure has been devised to extract interfacial contact parameters at frequencies upto

  17. High-energy band structure of gold

    DEFF Research Database (Denmark)

    Christensen, N. Egede

    1976-01-01

    The band structure of gold for energies far above the Fermi level has been calculated using the relativistic augmented-plane-wave method. The calculated f-band edge (Γ6-) lies 15.6 eV above the Fermi level is agreement with recent photoemission work. The band model is applied to interpret...

  18. Intermolecular interactions involving C-H bonds, 3, Structure and energetics of the interaction between CH{sub 4} and CN{sup {minus}}

    Energy Technology Data Exchange (ETDEWEB)

    Novoa, J.J.; Whangbo, Myung-Hwan [North Carolina State Univ., Raleigh, NC (United States). Dept. of Chemistry; Williams, J.M. [Argonne National Lab., IL (United States)

    1991-12-31

    On the basis of SCF and single reference MP2 calculations, the full potential energy surface of the interaction between CH{sub 4} and CN{sup {minus}} was studied using extended basis sets of up to near Hartree-Fock limit quality. Colinear arrangements C-N{sup {minus}}{hor_ellipsis}H-CH{sub 3} and N-C{sup {minus}}{hor_ellipsis}H-CH{sub 3} are found to be the only two energy minima. The binding energies of these two structures are calculated to be 2.5 and 2.1 kcal/mol, respectively, at the MP2 level. The full vibrational analyses of two structures show a red shift of about 30 cm{sup {minus}1} for the v{sub s} C-H stretching.

  19. High Frequency Traders and Market Structure

    NARCIS (Netherlands)

    Menkveld, A.J.

    2014-01-01

    The arrival of high-frequency traders (HFTs) coincided with the entry of new markets and, subsequently, strong fragmentation of the order flow. These trends might be related as new markets serve HFTs who seek low fees and high speed. New markets only thrive on competitive price quotes that

  20. High-field permanent-magnet structures

    International Nuclear Information System (INIS)

    Leupoid, H.A.

    1989-01-01

    This patent describes a permanent magnet structure. It comprises an azimuthally circumscribed section of a hollow hemispherical magnetic flux source, the magnetic orientation in the section with respect to the polar axis being substantially equal to twice the polar angle, a superconducting planar sheet abutting one flat face of the section along a longitudinal meridian, and at least one other planar sheet of selected material abutting another flat face of the section and perpendicular to the first-mentioned sheet

  1. Energetics of the rearrangement of neutral and ionized perfluorocyclopropane to perfluoropropylene. Use of infrared multiphoton dissociation spectra to identify structural isomers of molecular ions

    International Nuclear Information System (INIS)

    Bomse, D.S.; Berman, D.W.; Beauchamp, J.L.

    1981-01-01

    Infrared photodissociation spectroscopy is used to compare the structure of gas-phase C 3 F 6 + ions obtained by electron-impact ionization of two isomeric precursors: perfluoropropylene and perfluorocyclopropane. Photodissociation spectra are obtained by observing the extent of multiphoton dissociation as the CO 2 laser is tuned across the 925 to 1080 cm -1 wavelength range. Ions are formed, stored, and detected with the use of techniques of ion cyclotron resonance spectroscopy. Infrared multiphoton excitation is effected by using low-power, continuous-wave laser radiation. The fingerprint spectrum of the molecular ion of perfluorocyclopropane is identical with that obtained from perfluoropropylene, indicating rearrangement of the former to the latter. Photodissociation kinetics indicate that the entire perfluorocyclopropane molecular ion population isomerizes to the more stable perfluoropropylene structure. Thermochemistry of C 3 F 6 and C 3 F 6 + isomers is discussed. Comparisons are made with the analogous C 3 H 6 system. Photoionization mass spectroscopy results yield ΔH/sub f/(c-C 3 F 6 ) = -233.8 kcal/mol. 4 figures

  2. Effects of energetic coherent motions on the power and wake of an axial-flow turbine

    Science.gov (United States)

    Chamorro, L. P.; Hill, C.; Neary, V. S.; Gunawan, B.; Arndt, R. E. A.; Sotiropoulos, F.

    2015-05-01

    A laboratory experiment examined the effects of energetic coherent motions on the structure of the wake and power fluctuations generated by a model axial-flow hydrokinetic turbine. The model turbine was placed in an open-channel flow and operated under subcritical conditions. The incoming flow was locally perturbed with vertically oriented cylinders of various diameters. An array of three acoustic Doppler velocimeters aligned in the cross-stream direction and a torque transducer were used to collect high-resolution and synchronous measurements of the three-velocity components of the incoming and wake flow as well as the turbine power. A strong scale-to-scale interaction between the large-scale and broadband turbulence shed by the cylinders and the turbine power revealed how the turbulence structure modulates the turbine behavior. In particular, the response of the turbine to the distinctive von Kármán-type vortices shed from the cylinders highlighted this phenomenon. The mean and fluctuating characteristics of the turbine wake are shown to be very sensitive to the energetic motions present in the flow. Tip vortices were substantially dampened and the near-field mean wake recovery accelerated in the presence of energetic motions in the flow. Strong coherent motions are shown to be more effective than turbulence levels for triggering the break-up of the spiral structure of the tip-vortices.

  3. Energetic Particles Dynamics in Mercury's Magnetosphere

    Science.gov (United States)

    Walsh, Brian M.; Ryou, A.S.; Sibeck, D. G.; Alexeev, I. I.

    2013-01-01

    We investigate the drift paths of energetic particles in Mercury's magnetosphere by tracing their motion through a model magnetic field. Test particle simulations solving the full Lorentz force show a quasi-trapped energetic particle population that gradient and curvature drift around the planet via "Shabansky" orbits, passing though high latitudes in the compressed dayside by equatorial latitudes on the nightside. Due to their large gyroradii, energetic H+ and Na+ ions will typically collide with the planet or the magnetopause and will not be able to complete a full drift orbit. These simulations provide direct comparison for recent spacecraft measurements from MESSENGER. Mercury's offset dipole results in an asymmetric loss cone and therefore an asymmetry in particle precipitation with more particles precipitating in the southern hemisphere. Since the planet lacks an atmosphere, precipitating particles will collide directly with the surface of the planet. The incident charged particles can kick up neutrals from the surface and have implications for the formation of the exosphere and weathering of the surface

  4. Second School of Nuclear Energetics

    International Nuclear Information System (INIS)

    2009-01-01

    At 3-5 Nov 2009 Institute of Nuclear Energy POLATOM, Association of Polish Electrical Engineers (SEP) and Polish Nuclear Society have organized Second School of Nuclear Energetics. 165 participants have arrived from all Poland and represented both different central institutions (e.g. ministries) and local institutions (e.g. Office of Technical Inspection, The Voivodship Presidential Offices, several societies, consulting firms or energetic enterprises). Students from the Warsaw Technical University and Gdansk Technical University, as well as the PhD students from the Institute of Nuclear Chemistry and Technology (Warsaw) attended the School. 20 invited lectures presented by eminent Polish specialists concerned basic problems of nuclear energetics, nuclear fuel cycle and different problems of the NPP construction in Poland. [pl

  5. Flexible energetic materials and related methods

    Energy Technology Data Exchange (ETDEWEB)

    Heaps, Ronald J.

    2018-03-06

    Energetic compositions and methods of forming components from the compositions are provided. In one embodiment, a composition includes aluminum, molybdenum trioxide, potassium perchlorate, and a binder. In one embodiment, the binder may include a silicone material. The materials may be mixed with a solvent, such as xylene, de-aired, shaped and cured to provide a self-supporting structure. In one embodiment, one or more reinforcement members may be added to provide additional strength to the structure. For example, a weave or mat of carbon fiber material may be added to the mixture prior to curing. In one embodiment, blade casting techniques may be used to form a structure. In another embodiment, a structure may be formed using 3-dimensional printing techniques.

  6. Structural features that optimize high temperature superconductivity

    International Nuclear Information System (INIS)

    Jorgensen, J.D.; Argonne Nat. Lab., IL; Hinks, D.G.; Argonne Nat. Lab., IL; Chmaissem, O.; Argonne Nat. Lab., IL; Argyriou, D.N.; Argonne Nat. Lab., IL; Mitchell, J.F.; Argonne Nat. Lab., IL; Dabrowski, B.

    1996-01-01

    Studies of a large number of compounds have provided a consistent picture of what structural features give rise to the highest T c 's in copper-oxide superconductors. For example, various defects can be introduced into the blocking layer to provide the optimum carrier concentration, but defects that form in or adjacent to the CuO 2 layers will lower T c and eventually destroy superconductivity. After these requirements are satisfied, the highest T c 's are observed for compounds (such as the HgBa 2 Ca n-1 Cu n O 2n+2+x family) that have flat and square CuO 2 planes and long apical Cu-O bonds. This conclusion is confirmed by the study of materials in which the flatness of the CuO 2 plane can be varied in a systematic way. In more recent work, attention has focused on how the structure can be modified, for example, by chemical substitution, to improve flux pinning properties. Two strategies are being investigated: (1) Increasing the coupling of pancake vortices to form vortex lines by shortening or ''metallizing'' the blocking layer; and (2) the formation of defects that pin flux. (orig.)

  7. The Principle of Energetic Consistency

    Science.gov (United States)

    Cohn, Stephen E.

    2009-01-01

    A basic result in estimation theory is that the minimum variance estimate of the dynamical state, given the observations, is the conditional mean estimate. This result holds independently of the specifics of any dynamical or observation nonlinearity or stochasticity, requiring only that the probability density function of the state, conditioned on the observations, has two moments. For nonlinear dynamics that conserve a total energy, this general result implies the principle of energetic consistency: if the dynamical variables are taken to be the natural energy variables, then the sum of the total energy of the conditional mean and the trace of the conditional covariance matrix (the total variance) is constant between observations. Ensemble Kalman filtering methods are designed to approximate the evolution of the conditional mean and covariance matrix. For them the principle of energetic consistency holds independently of ensemble size, even with covariance localization. However, full Kalman filter experiments with advection dynamics have shown that a small amount of numerical dissipation can cause a large, state-dependent loss of total variance, to the detriment of filter performance. The principle of energetic consistency offers a simple way to test whether this spurious loss of variance limits ensemble filter performance in full-blown applications. The classical second-moment closure (third-moment discard) equations also satisfy the principle of energetic consistency, independently of the rank of the conditional covariance matrix. Low-rank approximation of these equations offers an energetically consistent, computationally viable alternative to ensemble filtering. Current formulations of long-window, weak-constraint, four-dimensional variational methods are designed to approximate the conditional mode rather than the conditional mean. Thus they neglect the nonlinear bias term in the second-moment closure equation for the conditional mean. The principle of

  8. Structural relationships in high temperature superconductors

    International Nuclear Information System (INIS)

    Schuller, I.K.; Segre, C.U.; Hinks, D.G.; Jorgensen, J.D.; Soderholm, L.; Beno, M.; Zhang, K.

    1987-09-01

    The recent discovery of two types of metallic copper oxide compounds which are superconducting to above 90 0 K has renewed interest in the search for new high temperature superconducting materials. It is significant that both classes of compounds, La/sub 2-x/Sr/sub x/CuO/sub 4-y/ and YBa 2 Cu 3 O/sub 7-δ/ are intimately related to the extensively studied perovskite family. Both compounds contain highly oxidized, covalently bonded Cu-O sublattices, however, they differ in geometry. In this paper we discuss the relationship of these features to the superconducting properties. 30 refs., 6 figs

  9. High energy physics and nuclear structure

    International Nuclear Information System (INIS)

    Measday, D.F.; Thomas, A.W.

    1980-01-01

    These proceedings contain the papers presented at the named conference. These concern eletromagnetic interactions, weak interactions, strong interactions at intermediate energy, pion reactions, proton reactions, strong interactions at high energy, as well as new facilities and applications. See hints under the relevant topics. (HSI)

  10. Electronic structure and optical properties of AIN under high pressure

    International Nuclear Information System (INIS)

    Li Zetao; Dang Suihu; Li Chunxia

    2011-01-01

    We have calculated the electronic structure and optical properties of Wurtzite structure AIN under different high pressure with generalized gradient approximation (GGA) in this paper. The total energy, density of state, energy band structure and optical absorption and reflection properties under high pressure are calculated. By comparing the changes of the energy band structure, we obtained AIN phase transition pressure for 16.7 GPa, which is a direct band structure transforming to an indirect band structure. Meanwhile, according to the density of states distribution and energy band structure, we analyzed the optical properties of AIN under high-pressure, the results showed that the absorption spectra moved from low-energy to high-energy. (authors)

  11. A typical wave wake from high-speed vessels: its group structure and run-up

    Directory of Open Access Journals (Sweden)

    I. Didenkulova

    2013-02-01

    Full Text Available High-amplitude water waves induced by high-speed vessels are regularly observed in Tallinn Bay, the Baltic Sea, causing intense beach erosion and disturbing marine habitants in the coastal zone. Such a strong impact on the coast may be a result of a certain group structure of the wave wake. In order to understand it, here we present an experimental study of the group structure of these wakes at Pikakari beach, Tallinn Bay. The most energetic vessel waves at this location (100 m from the coast at the water depth 2.7 m have amplitudes of about 1 m and periods of 8–10 s and cause maximum run-up heights on a beach up to 1.4 m. These waves represent frequency modulated packets where the largest and longest waves propagate ahead of other smaller amplitude and period waves. Sometimes the groups of different heights and periods can be separated even within one wave wake event. The wave heights within a wake are well described by the Weibull distribution, which has different parameters for wakes from different vessels. Wave run-up heights can also be described by Weibull distribution and its parameters can be connected to the parameters of the distribution of wave heights 100 m from the coast. Finally, the run-up of individual waves within a packet is studied. It is shown that the specific structure of frequency modulated wave packets, induced by high-speed vessels, leads to a sequence of high wave run-ups at the coast, even when the original wave heights are rather moderate. This feature can be a key to understanding the significant impact on coasts caused by fast vessels.

  12. High spin structure in 130Ba

    International Nuclear Information System (INIS)

    Singh, Amandeep; Kaur, Navneet; Kumar, A.; Singh, Varinderjit; Sandal, Rohit; Kaur, Rajbir; Behera, B.R.; Singh, K.P.; Singh, G.; Shukla, Aaradhya; Sharma, H.P.; Kumar, Suresh; Kumar Raja, M.; Madhusudan Rao, P.V.; Muralithar, S.; Singh, R.P.; Kumar, Rakesh; Madhvan, M.; Bhowmik, R.K.

    2009-01-01

    Nuclei with mass A ∼130 has been of great interest to experimental studies on high spin states. This is particularly so for the nuclei in the A∼130 region which exhibit a softness to γ. Evidence for characteristics such as shape coexistence and γ-softness has been gathered during the last two decades for many nuclei from Xe to Nd. Another interesting feature of this mass region is the existence of a regular M1 band which has been considered to be a promising candidate for magnetic rotation. In several nuclei of the A ∼130 mass region M1 bands like those observed in the A < 200 mass region are known. One signature of magnetic rotation is the decrease of the B (M1) values with increasing spin. The aim of the work is to study the high spin states and lifetime measurements using the DSAM technique

  13. High precision and stable structures for particle detectors

    CERN Document Server

    Da Mota Silva, S; Hauviller, Claude

    1999-01-01

    The central detectors used in High Energy Physics Experiments require the use of light and stable structures capable of supporting delicate and precise radiation detection elements. These structures need to be highly stable under environmental conditions where external vibrations, high radiation levels, temperature and humidity gradients should be taken into account. Their main design drivers are high dimension and dynamic stability, high stiffness to mass ratio and large radiation length. For most applications, these constraints lead us to choose Carbon Fiber Reinforced Plastics ( CFRP) as structural element. The construction of light and stable structures with CFRP for these applications can be achieved by careful design engineering and further confirmation at the prototyping phase. However, the experimental environment can influence their characteristics and behavior. In this case, theuse of adaptive structures could become a solution for this problem. We are studying structures in CFRP with bonded piezoel...

  14. Energetic Sustainability and the Environment: A Transdisciplinary, Economic–Ecological Approach

    Directory of Open Access Journals (Sweden)

    Ioan G. Pop

    2017-05-01

    Full Text Available The paper combines original concepts about eco-energetic systems, in a transdisciplinary sustainable context. Firstly, it introduces the concept of M.E.N. (Mega-Eco-Nega-Watt, the eco-energetic paradigm based on three different but complementary ecological economic spaces: the Megawatt as needed energy, the Ecowatt as ecological energy, and the Negawatt as preserved energy. The paper also deals with the renewable energies and technologies in the context of electrical energy production. Secondly, in the context of the M.E.N. eco-energetic paradigm, comprehensive definitions are given about eco-energetic systems and for pollution. Thirdly, the paper introduces a new formula for the eco-energetic efficiency which correlates the energetic efficiency of the system and the necessary newly defined ecological coefficient. The proposed formula for eco-energetic efficiency enables an interesting form of relating to different situations in which the input energy, output energy, lost energy, and externalities involved in an energetic process, interact to produce energy in a specific energetic system, in connection with the circular resilient economy model. Finally, the paper presents an original energetic diagram to explain different channels to produce electricity in a resilience regime, with high eco-energetic efficiency from primary external energetic sources (gravitation and solar sources, fuels (classical and radioactive, internal energetic sources (geothermal, volcanoes and other kind of sources. Regardless the kind of energetic sources used to obtain electricity, the entire process should be sustainable in what concerns the transdisciplinary integration of the different representative spheres as energy, socio-economy, and ecology (environment.

  15. Structural features that optimize high temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, J.D.; Hinks, D.G. Chmaissem, O.; Argyriou, D.N.; Mitchell, J.F. [Argonne National Lab., IL (United States); Dabrowski, B. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Physics

    1996-01-01

    For example, various defects can be introduced into the blocking layer to provide the optimum carrier concentration, but defects that form in or adjacent to the CuO{sub 2} layers will lower T{sub c} and eventually destroy superconductivity. After these requirements are satisfied, the highest T{sub c}`s are observed for compounds (such as the HgBa{sub 2}Ca{sub n-1}CuO{sub 2n{plus}2{plus}x} family) that have flat and square CuO{sub 2} planes and long apical Cu-O bonds. This conclusion is confirmed by the study of materials in which the flatness of the CuO{sub 2} plane can be varied in a systematic way. In more recent work, attention has focused on how the structure can be modified, for example, by chemical substitution, to improve flux pinning properties. Two strategies are being investigated: (1) Increasing the coupling of pancake vortices to form vortex-lines by shortening or ``metallizing`` the blocking layer; and (2) the formation of defects that pin flux.

  16. Structural features that optimize high temperature superconductivity

    International Nuclear Information System (INIS)

    Jorgensen, J.D.; Hinks, D.G. Chmaissem, O.; Argyriou, D.N.; Mitchell, J.F.; Dabrowski, B.

    1996-01-01

    For example, various defects can be introduced into the blocking layer to provide the optimum carrier concentration, but defects that form in or adjacent to the CuO 2 layers will lower T c and eventually destroy superconductivity. After these requirements are satisfied, the highest T c 's are observed for compounds (such as the HgBa 2 Ca n-1 CuO 2n+2+x family) that have flat and square CuO 2 planes and long apical Cu-O bonds. This conclusion is confirmed by the study of materials in which the flatness of the CuO 2 plane can be varied in a systematic way. In more recent work, attention has focused on how the structure can be modified, for example, by chemical substitution, to improve flux pinning properties. Two strategies are being investigated: (1) Increasing the coupling of pancake vortices to form vortex-lines by shortening or ''metallizing'' the blocking layer; and (2) the formation of defects that pin flux

  17. Shell structure in superdeformed nuclei at high rotational frequencies

    International Nuclear Information System (INIS)

    Ploszajczak, M.

    1980-01-01

    Properties of the shell structure in superdeformed nuclei at high rotational frequencies are discussed. Moreover, stability of the high spin compound nucleus with respect to the fission and the emission of light particles is investigated. (author)

  18. Structure Sense in High School Algebra: The Effect of Brackets

    Science.gov (United States)

    Hoch, Maureen; Dreyfus, Tommy

    2005-01-01

    This paper presents an initial attempt to define structure sense for high school algebra and to test part of this definition. A questionnaire was distributed to 92 eleventh grade students in order to identify those who use structure sense. Presence and absence of brackets was examined to see how they affect use of structure sense. The overall use…

  19. Structural response of steel high rise buildings to fire

    DEFF Research Database (Denmark)

    Gentili, Filippo; Giuliani, Luisa; Bontempi, Franco

    2013-01-01

    Due to the significant vertical elevation and complexity of the structural system, high rise buildings may suffer from the effects of fire more than other structures. For this reason, in addition to evacuation strategies and active fire protection, a careful consideration of structural response t...

  20. High performance hybrid magnetic structure for biotechnology applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  1. Heliospheric Observations of Energetic Particles

    Science.gov (United States)

    Summerlin, Errol J.

    2011-01-01

    Heliospheric observations of energetic particles have shown that, on long time averages, a consistent v^-5 power-law index arises even in the absence of transient events. This implies an ubiquitous acceleration process present in the solar wind that is required to generate these power-law tails and maintain them against adiabatic losses and coulomb-collisions which will cool and thermalize the plasma respectively. Though the details of this acceleration process are being debated within the community, most agree that the energy required for these tails comes from fluctuations in the magnetic field which are damped as the energy is transferred to particles. Given this source for the tail, is it then reasonable to assume that the turbulent LISM should give rise to such a power-law tail as well? IBEX observations clearly show a power-law tail of index approximately -5 in energetic neutral atoms. The simplest explanation for the origins of these ENAs are that they are energetic ions which have charge-exchanged with a neutral atom. However, this would imply that energetic ions possess a v^-5 power-law distribution at keV energies at the source of these ENAs. If the source is presumed to be the LISM, it provides additional options for explaining the, so called, IBEX ribbon. This presentation will discuss some of these options as well as potential mechanisms for the generation of a power-law spectrum in the LISM.

  2. About the wind energetics development

    International Nuclear Information System (INIS)

    Strebkov, D.S.; Kharitonov, V.P.; Murugov, V.P.; Sokol'skij, A.K.

    1996-01-01

    The review of wind power energetics state in USA, Europe, Russia is given. The data of EC on wind power plants production in different periods are presented. The directions of scientific-research works with the purpose of increasing the level of wind power industry of Russia corresponding to economics demands were elaborated. (author). 8 refs., 3 tabs

  3. Probability based high temperature engineering creep and structural fire resistance

    CERN Document Server

    Razdolsky, Leo

    2017-01-01

    This volume on structural fire resistance is for aerospace, structural, and fire prevention engineers; architects, and educators. It bridges the gap between prescriptive- and performance-based methods and simplifies very complex and comprehensive computer analyses to the point that the structural fire resistance and high temperature creep deformations will have a simple, approximate analytical expression that can be used in structural analysis and design. The book emphasizes methods of the theory of engineering creep (stress-strain diagrams) and mathematical operations quite distinct from those of solid mechanics absent high-temperature creep deformations, in particular the classical theory of elasticity and structural engineering. Dr. Razdolsky’s previous books focused on methods of computing the ultimate structural design load to the different fire scenarios. The current work is devoted to the computing of the estimated ultimate resistance of the structure taking into account the effect of high temperatur...

  4. Solar Energetic Particle Spectra

    Science.gov (United States)

    Ryan, J. M.; Boezio, M.; Bravar, U.; Bruno, A.; Christian, E. R.; de Nolfo, G. A.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Sparvoli, R.; Stochaj, S.

    2017-12-01

    We report updated event-integrated spectra from several SEP events measured with PAMELA. The measurements were made from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high latitudes. Spectra have been assembled from these high-latitude measurements. The field of view of PAMELA is small and during the high-latitude passes it scans a wide range of asymptotic directions as the spacecraft orbits. Correcting for data gaps, solid angle effects and improved background corrections, we have compiled event-integrated intensity spectra for twenty-eight SEP events. Where statistics permit, the spectra exhibit power law shapes in energy with a high-energy exponential roll over. The events analyzed include two genuine ground level enhancements (GLE). In those cases the roll-over energy lies above the neutron monitor threshold ( 1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events, i.e., all roll over in an exponential fashion with rapidly decreasing intensity at high energies.

  5. Multi-body forces and the energetics of transition metals, alloys, and semiconductors

    International Nuclear Information System (INIS)

    Carlsson, A.E.

    1992-01-01

    Progress over the past year is divided into 3 areas: potential-energy functions for transition-metal aluminides; electronic structure and energetics of complex structures and quasicrystals; and ceramic materials (PdO, PtO)

  6. Energetic consumption levels and human development indexes

    International Nuclear Information System (INIS)

    Boa Nova, Antonio Carlos

    1999-01-01

    The article overviews the energetic consumption levels and human development indexes. The human development indexes are described based on the United Nations Development Programme. A comparison between the energetic consumption levels and human development indexes is also presented

  7. Solar Energetic Particle Studies with PAMELA

    Science.gov (United States)

    Bravar, U.; Christian, E. R.; deNolfo, Georgia; Ryan, J. M.; Stochaj, S.

    2011-01-01

    The origin of the high-energy solar energetic particles (SEPs) may conceivably be found in composition signatures that reflect the elemental abundances of the low corona and chromosphere vs. the high corona and solar wind. The presence of secondaries, such as neutrons and positrons, could indicate a low coronal origin of these particles. Velocity dispersion of different species and over a wide energy range can be used to determine energetic particle release times at the Sun. Together with multi-wavelength imaging, in- situ observations of a variety of species, and coverage over a wide energy range provide a critical tool in identifying the origin of SEPs, understanding the evolution of these events within the context of solar active regions, and constraining the acceleration mechanisms at play. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA)instrument, successfully launched in 2006 and expected to remain operational until at least the beginning of 2012, measures energetic particles in the same energy range as ground-based neutron monitors, and lower energies as well. It thus bridges the gap between low energy in-situ observations and ground-based Ground Level Enhancements (GLE) observations. It can measure the charge (up to Z=6) and atomic number of the detected particles, and it can identify and measure positrons and detect neutrons-an unprecedented array of data channels that we can bring to bear on the origin of high-energy SEPs. We present prelimiary results on the for the 2006 December 13 solar flare and GLE and the 2011 March 21 solar flare, both registering proton and helium enhancements in PAMELA. Together with multi- spacecraft contextual data and modeling, we discuss the PAMELA results in the context of the different acceleration mechanisms at play.

  8. The JCSG high-throughput structural biology pipeline

    International Nuclear Information System (INIS)

    Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wooley, John; Wüthrich, Kurt; Wilson, Ian A.

    2010-01-01

    The Joint Center for Structural Genomics high-throughput structural biology pipeline has delivered more than 1000 structures to the community over the past ten years and has made a significant contribution to the overall goal of the NIH Protein Structure Initiative (PSI) of expanding structural coverage of the protein universe. The Joint Center for Structural Genomics high-throughput structural biology pipeline has delivered more than 1000 structures to the community over the past ten years. The JCSG has made a significant contribution to the overall goal of the NIH Protein Structure Initiative (PSI) of expanding structural coverage of the protein universe, as well as making substantial inroads into structural coverage of an entire organism. Targets are processed through an extensive combination of bioinformatics and biophysical analyses to efficiently characterize and optimize each target prior to selection for structure determination. The pipeline uses parallel processing methods at almost every step in the process and can adapt to a wide range of protein targets from bacterial to human. The construction, expansion and optimization of the JCSG gene-to-structure pipeline over the years have resulted in many technological and methodological advances and developments. The vast number of targets and the enormous amounts of associated data processed through the multiple stages of the experimental pipeline required the development of variety of valuable resources that, wherever feasible, have been converted to free-access web-based tools and applications

  9. The structural and energetic aspects of substrate binding and the mechanism of action of the DapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) investigated using a hybrid QM/MM method.

    Science.gov (United States)

    Dutta, Debodyuti; Mishra, Sabyashachi

    2014-12-21

    With increasing cases of fatal bacterial infections and growing antibiotic resistance, unrelenting efforts are necessary for identification of novel antibiotic targets and new drug molecules. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is a di-nuclear Zn containing enzyme in the lysine biosynthetic pathway which is indispensable for bacterial survival and absent in the human host, thus a potential antibiotic target. The DapE enzyme catalyzes the hydrolysis of N-succinyl-L,L-diaminopimelic acid (SDAP) to give rise to succinic acid and L,L-diaminopimelic acid. The mechanism of action of the DapE catalyzed SDAP hydrolysis is investigated employing a hybrid QM/MM computational method. The DapE side chains, such as, Arg178, Thr325, Asn345, are found to play a role in substrate identification and stabilization of the enzyme active site. Furthermore, a glycine rich loop (Gly322-Ser326) is found to facilitate tight binding of the substrate in the enzyme active site. The catalytic reaction progresses via a general acid-base hydrolysis mechanism where Glu134 first acts as a Lewis base by activating the catalytic water molecule in the active site, followed by guiding the resulting hydroxyl ion for a nucleophilic attack on the substrate, and finally acts as a Lewis acid by donating a proton to the substrate. The intermediates and transition states along the reaction pathway have been structurally and energetically characterized. A conformational change in the side chain of Asp100, which bridges the two Zn centers of the enzyme, is observed which facilitates the enzymatic action by lowering the activation energy and leads to the formation of a new intermediate during the catalytic reaction. The nucleophilic attack is found to be the rate determining step.

  10. SIMULATION OF ENERGETIC NEUTRAL ATOMS FROM SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Linghua [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Li, Gang [Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Shih, Albert Y. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20770 (United States); Lin, Robert P. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Wimmer-Schweingruber, Robert F., E-mail: wanglhwang@gmail.com [Institut fuer Experimentelle und Angewandte Physik, University of Kiel, Leibnizstrasse 11, D-24118 Kiel (Germany)

    2014-10-01

    Energetic neutral atoms (ENAs) provide the only way to observe the acceleration site of coronal-mass-ejection-driven (CME-driven) shock-accelerated solar energetic particles (SEPs). In gradual SEP events, energetic protons can charge exchange with the ambient solar wind or interstellar neutrals to become ENAs. Assuming a CME-driven shock with a constant speed of 1800 km s{sup –1} and compression ratio of 3.5, propagating from 1.5 to 40 R{sub S} , we calculate the accelerated SEPs at 5-5000 keV and the resulting ENAs via various charge-exchange interactions. Taking into account the ENA losses in the interplanetary medium, we obtain the flux-time profiles of these solar ENAs reaching 1 AU. We find that the arriving ENAs at energies above ∼100 keV show a sharply peaked flux-time profile, mainly originating from the shock source below 5 R{sub S} , whereas the ENAs below ∼20 keV have a flat-top time profile, mostly originating from the source beyond 10 R{sub S} . Assuming the accelerated protons are effectively trapped downstream of the shock, we can reproduce the STEREO ENA fluence observations at ∼2-5 MeV/nucleon. We also estimate the flux of ENAs coming from the charge exchange of energetic storm protons, accelerated by the fast CME-driven shock near 1 AU, with interstellar hydrogen and helium. Our results suggest that appropriate instrumentation would be able to detect ENAs from SEPs and to even make ENA images of SEPs at energies above ∼10-20 keV.

  11. Structure and Properties of Energetic Materials

    Science.gov (United States)

    1992-12-02

    ielting (free/ing) as a function of pressure and temperature may be accomplished bw adiusting these parameters sot that both solid and liquid phases...Eq.(19) has the general time-lag form given by Eq.(1). By comparison of these two equations, one may write hA =Dkc2 + I h2R (20) 2n AL kc 2 h 2 . c0

  12. Effect of Trapped Energetic Ions on MHD Activity in Spherical Tori

    International Nuclear Information System (INIS)

    White, R.B.; Kolesnichenko, Ya.I.; Lutsenko, V.V.; Marchenko, V.S.

    2002-01-01

    It is shown that the increase of beta (the ratio of plasma pressure to the magnetic field pressure) may change the character of the influence of trapped energetic ions on MHD stability in spherical tori. Namely, the energetic ions, which stabilize MHD modes (such as the ideal-kink mode, collisionless tearing mode, and semi-collisional tearing mode) at low beta, have a destabilizing influence at high beta unless the radial distribution of the energetic ions is very peaked

  13. Synthesis, crystal structure and catalytic effect on thermal decomposition of RDX and AP: An energetic coordination polymer [Pb{sub 2}(C{sub 5}H{sub 3}N{sub 5}O{sub 5}){sub 2}(NMP)·NMP]{sub n}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jin-jian [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yancheng Teachers College, Yancheng 224002 (China); Liu, Zu-Liang, E-mail: liuzl@mail.njust.edu.cn [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Cheng, Jian [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yancheng Teachers College, Yancheng 224002 (China); Fang, Dong, E-mail: fangdong106@163.com [Yancheng Teachers College, Yancheng 224002 (China)

    2013-04-15

    An energetic lead(II) coordination polymer based on the ligand ANPyO has been synthesized and its crystal structure has been got. The polymer was characterized by FT-IR spectroscopy, elemental analysis, DSC and TG-DTG technologies. Thermal analysis shows that there are one endothermic process and two exothermic decomposition stages in the temperature range of 50–600 °C with final residues 57.09%. The non-isothermal kinetic has also been studied on the main exothermic decomposition using the Kissinger's and Ozawa–Doyle's methods, the apparent activation energy is calculated as 195.2 KJ/mol. Furthermore, DSC measurements show that the polymer has significant catalytic effect on the thermal decomposition of ammonium perchlorate. - Graphical abstract: An energetic lead(II) coordination polymer of ANPyO has been synthesized, structurally characterized and properties tested. Highlights: ► We have synthesized and characterized an energetic lead(II) coordination polymer. ► We have measured its molecular structure and thermal decomposition. ► It has significant catalytic effect on thermal decomposition of AP.

  14. Unraveling Crystalline Structure of High-Pressure Phase of Silicon Carbonate

    Directory of Open Access Journals (Sweden)

    Rulong Zhou

    2014-03-01

    Full Text Available Although CO_{2} and SiO_{2} both belong to group-IV oxides, they exhibit remarkably different bonding characteristics and phase behavior at ambient conditions. At room temperature, CO_{2} is a gas, whereas SiO_{2} is a covalent solid with rich polymorphs. A recent successful synthesis of the silicon-carbonate solid from the reaction between CO_{2} and SiO_{2} under high pressure [M. Santoro et al., Proc. Natl. Acad. Sci. U.S.A. 108, 7689 (2011] has resolved a long-standing puzzle regarding whether a Si_{x}C_{1−x}O_{2} compound between CO_{2} and SiO_{2} exists in nature. Nevertheless, the detailed atomic structure of the Si_{x}C_{1−x}O_{2} crystal is still unknown. Here, we report an extensive search for the high-pressure crystalline structures of the Si_{x}C_{1−x}O_{2} compound with various stoichiometric ratios (SiO_{2}:CO_{2} using an evolutionary algorithm. Based on the low-enthalpy structures obtained for each given stoichiometric ratio, several generic structural features and bonding characteristics of Si and C in the high-pressure phases are identified. The computed formation enthalpies show that the SiC_{2}O_{6} compound with a multislab three-dimensional (3D structure is energetically the most favorable at 20 GPa. Hence, a stable crystalline structure of the elusive Si_{x}C_{1−x}O_{2} compound under high pressure is predicted and awaiting future experimental confirmation. The SiC_{2}O_{6} crystal is an insulator with elastic constants comparable to typical hard solids, and it possesses nearly isotropic tensile strength as well as extremely low shear strength in the 2D plane, suggesting that the multislab 3D crystal is a promising solid lubricant. These valuable mechanical and electronic properties endow the SiC_{2}O_{6} crystal for potential applications in tribology and nanoelectronic devices, or as a stable solid-state form for CO_{2} sequestration.

  15. Preliminary Guideline for the High Temperature Structure Integrity Assessment Procedure Part II. High Temperature Structural Integrity Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Kim, J. B.; Lee, H. Y.; Park, C. G.; Joo, Y. S.; Koo, G. H.; Kim, S. H

    2007-02-15

    A high temperature structural integrity assessment belongs to the Part II of a whole preliminary guideline for the high temperature structure. The main contents of this guideline are the evaluation procedures of the creep-fatigue crack initiation and growth in high temperature condition, the high temperature LBB evaluation procedure, and the inelastic evaluations of the welded joints in SFR structures. The methodologies for the proper inelastic analysis of an SFR structures in high temperatures are explained and the guidelines of inelastic analysis options using ANSYS and ABAQUS are suggested. In addition, user guidelines for the developed NONSTA code are included. This guidelines need to be continuously revised to improve the applicability to the design and analysis of the SFR structures.

  16. An energetically consistent vertical mixing parameterization in CCSM4

    DEFF Research Database (Denmark)

    Nielsen, Søren Borg; Jochum, Markus; Eden, Carsten

    2018-01-01

    An energetically consistent stratification-dependent vertical mixing parameterization is implemented in the Community Climate System Model 4 and forced with energy conversion from the barotropic tides to internal waves. The structures of the resulting dissipation and diffusivity fields are compared......, however, depends greatly on the details of the vertical mixing parameterizations, where the new energetically consistent parameterization results in low thermocline diffusivities and a sharper and shallower thermocline. It is also investigated if the ocean state is more sensitive to a change in forcing...

  17. Three-dimensional simulations of void collapse in energetic materials

    Science.gov (United States)

    Rai, Nirmal Kumar; Udaykumar, H. S.

    2018-03-01

    The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.

  18. Of the crystal chemistry of Ruddlesden-Porter type structures in high Tc ceramic superconductors

    International Nuclear Information System (INIS)

    Dwivedi, A.; Cormack, A.N.

    1990-01-01

    This paper reports on atomistic computer simulation employed to examine the energetics and crystal chemistry of some Ruddlesden-Popper type oxide superconductors. Similar structural patterns have been noticed in the superconducting oxides. The formation of Ruddlesden-Popper type layers (alternating slabs of rocksalt and perovskite structures) is similar in many respects to that seen in the system Sr-Ti-O. However, there are some significant differences, for example, the rocksalt and perovskite blocks in the new superconducting compounds are not necessarily electrically neutral unlike in the Sr-Ti-O system and this may well lead to significant differences in their structural chemistry

  19. Efficient conversion of sand to nano-silicon and its energetic Si-C composite anode design for high volumetric capacity lithium-ion battery

    Science.gov (United States)

    Furquan, Mohammad; Raj Khatribail, Anish; Vijayalakshmi, Savithri; Mitra, Sagar

    2018-04-01

    Silicon is an attractive anode material for Li-ion cells, which can provide energy density 30% higher than any of the today's commercial Li-ion cells. In the current study, environmentally benign, high abundant, and low cost sand (SiO2) source has been used to prepare nano-silicon via scalable metallothermic reduction method using micro wave heating. In this research, we have developed and optimized a method to synthesis high purity nano silicon powder that takes only 5 min microwave heating of sand and magnesium mixture at 800 °C. Carbon coated nano-silicon electrode material is prepared by a unique method of coating, polymerization and finally in-situ carbonization of furfuryl alcohol on to the high purity nano-silicon. The electrochemical performance of a half cell using the carbon coated high purity Si is showed a stable capacity of 1500 mAh g-1 at 6 A g-1 for over 200 cycles. A full cell is fabricated using lithium cobalt oxide having thickness ≈56 μm as cathode and carbon coated silicon thin anode of thickness ≈9 μm. The fabricated full cell of compact size exhibits excellent volumetric capacity retention of 1649 mAh cm-3 at 0.5 C rate (C = 4200 mAh g-1) and extended cycle life (600 cycles). The full cell is demonstrated on an LED lantern and LED display board.

  20. The effect of high-altitude on human skeletal muscle energetics: P-MRS results from the Caudwell Xtreme Everest expedition

    NARCIS (Netherlands)

    Edwards, Lindsay M.; Murray, Andrew J.; Tyler, Damian J.; Kemp, Graham J.; Holloway, Cameron J.; Robbins, Peter A.; Neubauer, Stefan; Levett, Denny; Montgomery, Hugh E.; Grocott, Mike P.; Clarke, Kieran; Ahuja, V.; Aref-Adib, G.; Burnham, R.; Chisholm, A.; Clarke, K.; Coates, D.; Coates, M.; Cook, D.; Cox, M.; Dhillon, S.; Dougall, C.; Doyle, P.; Duncan, P.; Edsell, M.; Edwards, L.; Evans, L.; Gardiner, P.; Grocott, M.; Gunning, P.; Hart, N.; Harrington, J.; Harvey, J.; Holloway, C.; Howard, D.; Hurlbut, D.; Imray, C.; Ince, C.; Jonas, M.; van der Kaaij, J.; Khosravi, M.; Kolfschoten, N.; Levett, D.; Luery, H.; Luks, A.; Martin, D.; McMorrow, R.; Meale, P.; Mitchell, K.; Montgomery, H.

    2010-01-01

    Many disease states are associated with regional or systemic hypoxia. The study of healthy individuals exposed to high-altitude hypoxia offers a way to explore hypoxic adaptation without the confounding effects of disease and therapeutic interventions. Using (31)P magnetic resonance spectroscopy and

  1. The energetic significance of cooking.

    Science.gov (United States)

    Carmody, Rachel N; Wrangham, Richard W

    2009-10-01

    While cooking has long been argued to improve the diet, the nature of the improvement has not been well defined. As a result, the evolutionary significance of cooking has variously been proposed as being substantial or relatively trivial. In this paper, we evaluate the hypothesis that an important and consistent effect of cooking food is a rise in its net energy value. The pathways by which cooking influences net energy value differ for starch, protein, and lipid, and we therefore consider plant and animal foods separately. Evidence of compromised physiological performance among individuals on raw diets supports the hypothesis that cooked diets tend to provide energy. Mechanisms contributing to energy being gained from cooking include increased digestibility of starch and protein, reduced costs of digestion for cooked versus raw meat, and reduced energetic costs of detoxification and defence against pathogens. If cooking consistently improves the energetic value of foods through such mechanisms, its evolutionary impact depends partly on the relative energetic benefits of non-thermal processing methods used prior to cooking. We suggest that if non-thermal processing methods such as pounding were used by Lower Palaeolithic Homo, they likely provided an important increase in energy gain over unprocessed raw diets. However, cooking has critical effects not easily achievable by non-thermal processing, including the relatively complete gelatinisation of starch, efficient denaturing of proteins, and killing of food borne pathogens. This means that however sophisticated the non-thermal processing methods were, cooking would have conferred incremental energetic benefits. While much remains to be discovered, we conclude that the adoption of cooking would have led to an important rise in energy availability. For this reason, we predict that cooking had substantial evolutionary significance.

  2. Crystal structure of actinide metals at high compression

    International Nuclear Information System (INIS)

    Fast, L.; Soederlind, P.

    1995-08-01

    The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure

  3. Life cycles of energetic systems

    International Nuclear Information System (INIS)

    Adnot, Jerome; Marchio, Dominique; Riviere, Philippe; Duplessis, B.; Rabl, A.; Glachant, M.; Aggeri, F.; Benoist, A.; Teulon, H.; Daude, J.

    2012-01-01

    This collective publication aims at being a course for students in engineering of energetic systems, i.e. at learning how to decide to accept or discard a project, to select the most efficient system, to select the optimal system, to select the optimal combination of systems, and to classify independent systems. Thus, it presents methods to analyse system life cycle from an energetic, economic and environmental point of view, describes how to develop an approach to the eco-design of an energy consuming product, how to understand the importance of hypotheses behind abundant and often contradicting publicised results, and to be able to criticise or to put in perspective one's own analysis. The first chapters thus recall some aspects of economic calculation, introduce the assessment of investment and exploitation costs of energetic systems, describe how to assess and internalise environmental costs, present the territorial carbon assessment, discuss the use of the life cycle assessment, and address the issue of environmental management at a product scale. The second part proposes various case studies: an optimal fleet of thermal production of electric power, the eco-design of a refrigerator, the economic and environmental assessment of wind farms

  4. Energetic charged particles above thunderclouds

    International Nuclear Information System (INIS)

    Fullekrug, Martin; Diver, Declan; Pincon, Jean-Louis; Renard, Jean-Baptiste; Phelps, Alan D.R.; Bourdon, Anne; Helling, Christiane; Blanc, Elisabeth; Honary, Farideh; Kosch, Mike; Harrison, Giles; Sauvaud, Jean-Andre; Lester, Mark; Rycroft, Michael; Kosch, Mike; Horne, Richard B.; Soula, Serge; Gaffet, Stephane

    2013-01-01

    The French government has committed to launch the satellite TARANIS to study transient coupling processes between the Earth's atmosphere and near-Earth space. The prime objective of TARANIS is to detect energetic charged particles and hard radiation emanating from thunderclouds. The British Nobel prize winner C. T. R. Wilson predicted lightning discharges from the top of thunderclouds into space almost a century ago. However, new experiments have only recently confirmed energetic discharge processes which transfer energy from the top of thunderclouds into the upper atmosphere and near-Earth space; they are now denoted as transient luminous events, terrestrial gamma-ray flashes and relativistic electron beams. This meeting report builds on the current state of scientific knowledge on the physics of plasmas in the laboratory and naturally occurring plasmas in the Earth's atmosphere to propose areas of future research. The report specifically reflects presentations delivered by the members of a novel Franco-British collaboration during a meeting at the French Embassy in London held in November 2011. The scientific subjects of the report tackle ionization processes leading to electrical discharge processes, observations of transient luminous events, electromagnetic emissions, energetic charged particles and their impact on the Earth's atmosphere. The importance of future research in this area for science and society, and towards spacecraft protection, is emphasized. (authors)

  5. High rate resistive plate chambers: An inexpensive, fast, large area detector of energetic charged particles for accelerator and non-accelerator applications

    International Nuclear Information System (INIS)

    Wuest, C.R.; Ables, E.; Bionta, R.M.; Clamp, O.; Haro, M.; Mauger, G.J.; Miller, K.; Olson, H.; Ramsey, P.

    1993-05-01

    Resistive Plate Chambers, or RPCs, have been used until recently as large detectors of cosmic ray muons. They are now finding use as fast large-area trigger and muon detection systems for different high energy physics detectors such the L3 Detector at LEP and future detectors to be built at the Superconducting Super Collider (SSC) and at the Large Hadron Collider (LHC) at CERN. RPC systems at these accelerators must operate with high efficiency, providing nanosecond timing resolution in particle fluences up to a few tens of kHz/cm 2 -- with thousands of square meters of active area. RPCs are simple and cheap to construct. The authors report here recent work on RPCs using new materials that exhibit a combination of desirable RPC features such as low bulk resistivity, high dielectric strength, low mass, and low cost. These new materials were originally developed for use in electronics assembly areas and other applications, where static electric charge buildup can damage sensitive electrical systems

  6. The source of multi spectral energy of solar energetic electron

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani [Astronomy Division and Bosscha Observatory, Faculty Mathematics and Natural Sciences, Intitute Technology of Bandung, Ganesha 10, Bandung, Indonesia 40132 dhani@as.itb.ac.id (Indonesia)

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  7. Adsorption of F{sub 2}C=CFCl on TiO{sub 2} nano-powder: Structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tasinato, Nicola, E-mail: tasinato@unive.it; Moro, Daniele; Stoppa, Paolo; Pietropolli Charmet, Andrea; Toninello, Piero; Giorgianni, Santi

    2015-10-30

    Graphical abstract: - Highlights: • Adsorption of F{sub 2}C=CFCl on TiO{sub 2} unveiled by DRIFTS and periodic DFT. • Structural, energetic and vibrational properties of F{sub 2}C=CFCl @ anatase (1 0 1). • Binding energies (B3LYP-D2) between −17 and −46 kJ mol{sup −1} depending on the anchor point. • Theory and experiment converge on the CF{sub 2} moiety as the main anchor point. - Abstract: Photodegradation over titanium dioxide (TiO{sub 2}) is a very appealing technology for removing environmental pollutants from the air, the adsorption interaction being the first step of the whole reaction pathway. In the present work the adsorption of F{sub 2}C=CFCl (chlorotrifluoroethene, halon 1113), a compound used by industry and detected in the atmosphere, on a commercial TiO{sub 2} nano-powder is investigated experimentally by in situ DRIFT spectroscopy and theoretically through periodic ab initio calculations rooted in DFT. The spectra of the adsorbed molecule suggest that the anchoring to the surface mainly takes place through F atoms. Theoretically, five adsorption configurations for the molecule interacting with the anatase (1 0 1) surface are simulated at B3LYP level and for each of them, structures, binding energies and vibrational frequencies are derived. The interplay between theory and experiments shows the coexistence of different adsorption configurations, the foremost ones featuring the interaction of one F atom with a fivefold coordinated Ti{sup 4+} of the surface. These two adsorption models, which mostly differ for the orientation of the adsorbate with respect to the surface, feature a binding energy of −45.6 and −41.0 kJ mol{sup −1} according to dispersion corrected DFT calculations. The favorable adsorption interaction appears as an important requirement toward the application of titanium dioxide technologies for the photocatalytic degradation of halon 1113.

  8. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  9. Efficiency criteria for high reliability measured system structures

    International Nuclear Information System (INIS)

    Sal'nikov, N.L.

    2012-01-01

    The procedures of structural redundancy are usually used to develop high reliability measured systems. To estimate efficiency of such structures the criteria to compare different systems has been developed. So it is possible to develop more exact system by inspection of redundant system data unit stochastic characteristics in accordance with the developed criteria [ru

  10. High energy structures in heavy ion collisions: a multiphonon description

    International Nuclear Information System (INIS)

    Chomaz, P.; Blumenfeld, Y.; Frascaria, N.

    1984-01-01

    Energy spectra of fragments from the 36 Ar + 208 Pb reaction at 11 MeV/n exhibit structures at high excitation energies. These structures are interpreted in terms of target multi-phonon excitations built from giant resonances. The importance of such processes for the kinetic energy dissipation in heavy ion collisions is emphasized

  11. High temperature structure design for FBRs and analysis technology

    International Nuclear Information System (INIS)

    Iwata, Koji

    1986-01-01

    In the case of FBRs, the operation temperature exceeds 500 deg C, therefore, the design taking the inelastic characteristics of structural materials, such as plasticity and creep, into account is required, and the high grade and detailed evaluation of design is demanded. This new high temperature structure design technology has been advanced in respective countries taking up experimental, prototype and demonstration reactors as the targets. The development of FBRs in Japan was begun with the experimental reactor 'Joyo' which has been operated since 1977, and now, the prototype FBR 'Monju' of 280 MWe is under construction, which is expected to attain the criticality in 1992. In order to realize FBRs which can compete with LWRs through the construction of a demonstration FBR, the construction of large scale plants and the heightening of the economy and reliability are necessary. The features and the role of FBR structural design, the method of high temperature structure design and the trend of its standardization, the trend of the structural analysis technology for FBRs such as inelastic analysis, buckling analysis and fluid and structure coupled vibration analysis, the present status of structural analysis programs, and the subjects for the future of high temperature structure design are explained. (Kako, I.)

  12. High throughput screening of starch structures using carbohydrate microarrays

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated...

  13. Toward an Ideal Senior High School Governance Structure.

    Science.gov (United States)

    Treslan, D. L.

    1979-01-01

    This paper delineates six attributes of an ideal high school governance structure: respect, freedom, rationality, flexibility, equality, and involvement of staff and students in the decision-making process. (Author/SJL)

  14. Synthesis and evaluation of energetic materials

    Science.gov (United States)

    Santhosh, G.

    Over the years new generations of propellants and explosives are being developed. High performance and pollution prevention issues have become the subject of interest in recent years. Desired properties of these materials are a halogen-free, nitrogen and oxygen rich molecular composition with high density and a positive heat of formation. The dinitramide anion is a new oxy anion of nitrogen and forms salts with variety of metal, organic and inorganic cations. Particular interest is in ammonium dinitramide (ADN, NH4N(NO 2)2) which is a potentially useful energetic oxidizer. ADN is considered as one of the most promising substitutes for ammonium perchlorate (AP, NH4ClO4) in currently used composite propellants. It is unique among energetic materials in that it has no carbon or chlorine; its combustion products are not detrimental to the atmosphere. Unquestionable advantage of ADN over AP is the significant improvement in the performance of solid rocket motors by 5-15%. The present thesis is centered on the experimental results along with discussion of some of the most pertinent aspects related to the synthesis and characterization of few dinitramide salts. The chemistry, mechanism and kinetics of the formation of dinitramide salts by nitration of deactivated amines are investigated. The evaluation of the thermal and spectral properties along with the adsorption and thermal decomposition characteristics of the dinitramide salts are also explored in this thesis.

  15. Energetic matrix of Rio de Janeiro State, Brazil - 1994/2004

    International Nuclear Information System (INIS)

    1996-01-01

    This book has been structured into three parts and three appendices. In the first part, named Energetic matrix of Rio de Janeiro State, the most important economic and social aspects of the State and the methodology for elaboration of economic and energetic scenarios has been detailed. In the second part, an analysis of seven consumption sectors components of the energetic matrix structure ( industrial, transports, residential, commercial, energetic, agriculture and cattle-breeding, non energetic) has been performed, with the objective of providing information on the present status and future prospects of energy consumption by sectors up to 2004. Finally, in the third part, the energy supply of Rio de Janeiro State for the consumption sectors has been discussed

  16. Energetically resolved multiple-fluid equilibria of tokamak plasmas

    International Nuclear Information System (INIS)

    Hole, M J; Dennis, G

    2009-01-01

    In many magnetically confined fusion experiments, a significant fraction of the stored energy of the plasma resides in energetic, or non-thermal, particle populations. Despite this, most equilibrium treatments are based on MHD: a single fluid treatment which assumes a Maxwell-Boltzmann distribution function. Detailed magnetic reconstruction based on this treatment ignore the energetic complexity of the plasma and can result in model-data inconsistencies, such as thermal pressure profiles which are inconsistent with the total stored kinetic energy of the plasma. Alternatively, ad hoc corrections to the pressure profile, such as summing the energetic and thermal pressures, have poor theoretical justification. Motivated by this omission, we generalize ideal MHD one step further: we consider multiple quasi-neutral fluids, each in thermal equilibrium and each thermally insulated from each other-no population mixing occurs. Kinetically, such a model may be able to describe the ion or electron distribution function in regions of velocity phase space with a large number of particles, at the expense of more weakly populated phase space, which may have uncharacteristically high temperature and hence pressure. As magnetic equilibrium effects increase with the increase in pressure, our work constitutes an upper limit to the effect of energetic particles. When implemented into an existing solver, FLOW (Guazzotto et al 2004 Phys. Plasmas 11, 604-14), it becomes possible to qualitatively explore the impact of resolving the energetic populations on plasma equilibrium configurations in realistic geometry. Deploying the modified code, FLOW-M, on a high performance spherical torus configuration, we find that the effect of variations of the pressure, poloidal flow and toroidal flow of the energetic populations is qualitatively similar to variations in the background plasma. We also study the robustness of the equilibrium to uncertainties in the current profile and the energetic

  17. Experimental Study on Reaction Characteristics of PTFE/Ti/W Energetic Materials under Explosive Loading

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-11-01

    Full Text Available Metal/fluoropolymer composites represent a new category of energetic structural materials that release energy through exothermic chemical reactions initiated under shock loading conditions. This paper describes an experiment designed to study the reaction characteristics of energetic materials with low porosity under explosive loading. Three PTFE (polytetrafluoroethylene/Ti/W mixtures with different W contents are processed through pressing and sintering. An inert PTFE/W mixture without reactive Ti particles is also prepared to serve as a reference. Shock-induced chemical reactions are recorded by high-speed video through a narrow observation window. Related shock parameters are calculated based on experimental data, and differences in energy release are discussed. The results show that the reaction propagation of PTFE/Ti/W energetic materials with low porosity under explosive loading is not self-sustained. As propagation distance increases, the energy release gradually decreases. In addition, reaction failure distance in PTFE/Ti/W composites is inversely proportional to the W content. Porosity increased the failure distance due to higher shock temperature.

  18. Measurements and improvements of the response of the $\\overline{P}ANDA$-EMC prototype PROTO 60 to high energetic particles and photons in accelerator experiments

    CERN Document Server

    Moritz, Markus

    The PANDA experiment at FAIR will provide an opportunity to achieve a better understanding of complex hadronic systems. Measurements will be performed with antiprotons using a fixed-target setup. In order to reconstruct most of the reactions, a precise measurement of electromagnetic probes and their energies are crucial. An important and major component of the detector is therefore the electromagnetic calorimeter. Due to the lack of commercial availability of such ambitious, complex and highly specialized detector systems, detailed research and development are nec essary, including prototype development, testing and optimization. The investigation of the response of a homogeneous electromagnetic calorimeter prototype is the main scope of the present thesis. This prototype, called PROTO 60, is composed out of 60 truncated pyramidal shaped PWO-II crystals, cooled down to -25 C and read out with one Large Area Avalanche Photodiode (LAAPDs). The PROTO 60 represents a small section of the central barrel part of th...

  19. High dynamic range emission measurements of shocked energetic materials: Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)

    Science.gov (United States)

    Bassett, Will P.; Dlott, Dana D.

    2016-06-01

    A new emission apparatus with high time resolution and high dynamic range was used to study shock-induced ignition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in the form of ultrafine powder (4 ± 3 μm particle size), over a range of impact velocities (0.8-4.3 km s-1) and impact durations (2.5-16 ns). A graybody model was used to extract graybody emissivities and time-dependent temperatures from a few ns to 100 μs. The emission transients consisted of three parts: a 6700 K nanosecond burst during the shocks, a 4000-4500 K temperature spike near 0.3 μs followed by a ˜3300 K tail extending out to ˜100 μs. These temperatures varied remarkably little with impact velocity and duration, while the emission intensities and emissivities changed by over an order of magnitude. The emissivity changes were interpreted with a hot spot model, where hot spot temperatures reached a maximum of 6700 K and the hot spot volume fractions increased from 5% to 100% as impact velocity increased from 1 to 3 km s-1. Changing shock durations in the 2.5-16 ns range had noticeable effects on the microsecond emission. The 0.3 μs temperature spike was much smaller or absent with 2.5 ns shocks, but prominent with longer durations. An explanation for these effects was put forth that invoked the formation of carbon-rich clusters during the shock. In this view, cluster formation was minimal with 2.5 ns shocks, but longer-duration shocks produced increasingly larger clusters, and the 0.3 μs temperature spikes represented cluster ignition.

  20. High Field Studies for CLIC Accelerating Structures Development

    CERN Document Server

    Profatilova, I

    2017-01-01

    Compact Linear Collider RF structures need to be able to achieve the very high average accelerating gradient of 100 MV/m. One of the main challenges in reaching such high accelerating gradients is to avoid vacuum electrical breakdown within CLIC accelerating structures. Accelerating structure tests are carried out in the klystron-based test stands known as the XBoxes. In order to investigate vacuum breakdown phenomena and its statistical characteristics in a simpler system and get results in a faster way, pulsed dc systems have been developed at CERN. To acquire sufficient breakdown data in a reasonable period of time, high repetition rate pulse generators are used in the systems for breakdown studies, so-called pulsed dc system. This paper describes the pulsed dc systems and the two high repetition rate circuits, which produce high-voltage pulses for it, available at CERN.

  1. Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration

    Science.gov (United States)

    Lazarian, A.; Vlahos, L.; Kowal, G.; Yan, H.; Beresnyak, A.; de Gouveia Dal Pino, E. M.

    2012-11-01

    Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700-718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.

  2. Cutting and machining energetic materials with a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Roeske, Frank; Benterou, Jerry; Lee, Ronald; Roos, Edward [Energetic Materials Center, Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94550 (United States)

    2003-04-01

    A femtosecond (fs) laser has been used as a tool for solving many problems involving access, machining, disassembly, inspection and avoidance of undesirable hazardous waste streams in systems containing energetic materials. Because of the unique properties of the interaction of ultrashort laser pulses with matter, the femtosecond laser can be used to safely cut these energetic materials in a precise manner without creating an unacceptable waste stream. Many types of secondary high explosives (HE) and propellants have been cut with the laser for a variety of applications ranging from disassembly of aging conventional weapons (demilitarization), inspection of energetic components of aging systems to creating unique shapes of HE for purposes of initiation and detonation physics studies. Hundreds of samples of energetic materials have been cut with the fs laser without ignition and, in most cases, without changing the surface morphology of the cut surfaces. The laser has also been useful in cutting nonenergetic components in close proximity to energetic materials. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  3. Development of microstructured large area magnetic calorimeters with Au:Er- and Ag:Er-sensors for the detection of x-ray quanta and high energetic particles

    International Nuclear Information System (INIS)

    Burck, Andreas

    2008-01-01

    This thesis describes the development of large-area magnetic calorimeters which could for example be used for the investigation of the dissociative recombination or the measurement of the Lamb-shift for hydrogenlike heavy ions. The detectors consist of two meandershaped niobium thin film pickup coils and a paramagnetic sensor. The deposition of energy in the sensor results in a temperature change and therefore in a change of magnetisation of the sensor, which can be measured by a SQUID-magnetometer with high precision. As sensormaterials a dilute alloy of gold-erbium (Au:Er) as well as silver-erbium (Ag:Er) were used. Whereas the Ag:Er-sensor was glued on the pickup coil the Au:Er-sensor was for the first time microstructured by a novel microstructuring process established in this thesis. For the characterisation of the detectors and the sensormaterials a fluorescence source and a 55 Fe source were used. The thermodynamic properties of the Au:Er-sensors thereby show promising results, as the magnetisation shows bulk properties down to 20 mK. The measurements of the signalize and the magnetisation with the detector which was equipped with a Ag:Er-sensor showed that the thermodynamic properties of the Ag:Eralloy could be fully described. Furthermore the shape of the pulses, the noise and the energy resolution of both detectors will be discussed. (orig.)

  4. High-resolution energetic particle measurements at 6.6R/sub E/ 3. Low-energy electron anisotropies and short-term substorm predictions

    International Nuclear Information System (INIS)

    Baker, D.N.; Higbie, P.R.; Hones, E.W. Jr.; Belian, R.D.

    1978-01-01

    Multiple detectors giving nearly complete 4π coverage of particle pitch angle distributions have provided high resolution measurements (in energy and time) of 30- to 300-keV electrons. Data from a spacecraft (1976-059A) in geostationary orbit show a remarkably consistent sequence of variations of the electron anisotropy before and during magnetospheric substorms. For periods typically 1--2 hours prior to the onset of substorms, electron distributions, peaked along the direction of the local magnetic field, are observed in the premidnight sector. These cigarlike anisotropies are accompanied by a local taillike magnetic field which may develop further during the event. At substorm onset an abrupt transition usually occurs from the cigar-shaped distributions to pancake-shaped distributions. This anisotropy sequence may be due to the buildup and subsequent release of stresses in the magnetotail; the cigar phase may also be due to associated processes at the dayside magnetopause causing a loss of 90 0 pitch angle particles. The present observations, based on approx.100 events, appear to provide a predictive tool for assessing the probability of occurrence of a substorm

  5. Techniques for the design of highly damped structures

    International Nuclear Information System (INIS)

    Nelson, F.C.

    1975-01-01

    This paper discusses several techniques for the design of highly damped structures, techniques which have proven successful for large scale, low frequency steel and concrete structures which are typical of nuclear power reactors and their components. The ability to augment structural damping can be useful in increasing the seismic withstandability of structures. Seismic excitation is broadband in its frequency content and will excite many strutural resonances. Broadband damping will limit these resonant responses and thereby reduce the seismic load on structures and their components. This paper discusses three techniques: the design of structural joints and interfaces to promote damping; the use of layers of viscoelastic material; and the employment of damping links. The emphasis is on explaining the ways in which these techniques work and in describing the ways in which they have been used. (Auth.)

  6. On the electronic structure of high Tc superconductors

    International Nuclear Information System (INIS)

    Fink, J.; Nuecker, N.; Romberg, H.; Alexander, M.; Knupfer, M.; Mante, J.; Claessen, R.; Buslaps, T.; Harm, S.; Manzke, R.; Skibowski, M.

    1992-01-01

    Studies of the electronic structure of high-T c superconductors and related compounds by high-energy spectroscopies are reviewed. In particular, we report on investigations by electron energy-loss, angle-resolved photoemission, and inverse angle-resolved photoemission spectroscopy. Information on the symmetry and the character of states close to the Fermi level has been obtained. 25 refs., 8 figs

  7. Measurements and improvements of the response of the anti PANDA-EMC prototype PROTO 60 to high energetic particles and photons in accelerator experiments

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, Markus

    2013-07-01

    The anti PANDA experiment at FAIR will provide an opportunity to achieve a better understanding of complex hadronic systems. Measurements will be performed with antiprotons using a fi xed-target setup. In order to reconstruct most of the reactions, a precise measurement of electromagnetic probes and their energies are crucial. An important and major component of the detector is therefore the electromagnetic calorimeter. Due to the lack of commercial availability of such ambitious, complex and highly specialized detector systems, detailed research and development are necessary, including prototype development, testing and optimization. The investigation of the response of a homogeneous electromagnetic calorimeter prototype is the main scope of the present thesis. This prototype, called PROTO 60, is composed out of 60 truncated pyramidal shaped PWO-II crystals, cooled down to -25 C and read out with one Large Area Avalanche Photodiode (LAAPDs). The PROTO 60 represents a small section of the central barrel part of the anti PANDA calorimeter. Its response is being investigated for the first time over an extensive energy range from 52.34 MeV up to 15 GeV within several experiments measuring the response to energy marked photons or positrons at the highest energy, respectively. The study verified the principle detector concept. A linear response was observed. The achieved overall resolution can be parameterized as: (σ)/(E)=√(((1.86%)/(√ E/GeV )){sup 2} + ((0.25%)/(E/GeV)){sup 2} + 1.46%{sup 2}). Due to the use of only one single LAAPD per crystal with the effective surface of 1 cm{sup 2} and a not linearized light collection within the crystals, these parameters represent an upper performance limit of the final anti PANDA calorimeter. A detailed GEANT based model of the prototype was developed in order to investigate the calibration based on cosmic radiation or a 150 GeV muon beam and to understand the impact of the detailed geometry and light collection on the

  8. Measurements and improvements of the response of the anti PANDA-EMC prototype PROTO 60 to high energetic particles and photons in accelerator experiments

    International Nuclear Information System (INIS)

    Moritz, Markus

    2013-01-01

    The anti PANDA experiment at FAIR will provide an opportunity to achieve a better understanding of complex hadronic systems. Measurements will be performed with antiprotons using a fi xed-target setup. In order to reconstruct most of the reactions, a precise measurement of electromagnetic probes and their energies are crucial. An important and major component of the detector is therefore the electromagnetic calorimeter. Due to the lack of commercial availability of such ambitious, complex and highly specialized detector systems, detailed research and development are necessary, including prototype development, testing and optimization. The investigation of the response of a homogeneous electromagnetic calorimeter prototype is the main scope of the present thesis. This prototype, called PROTO 60, is composed out of 60 truncated pyramidal shaped PWO-II crystals, cooled down to -25 C and read out with one Large Area Avalanche Photodiode (LAAPDs). The PROTO 60 represents a small section of the central barrel part of the anti PANDA calorimeter. Its response is being investigated for the first time over an extensive energy range from 52.34 MeV up to 15 GeV within several experiments measuring the response to energy marked photons or positrons at the highest energy, respectively. The study verified the principle detector concept. A linear response was observed. The achieved overall resolution can be parameterized as: (σ)/(E)=√(((1.86%)/(√ E/GeV )) 2 + ((0.25%)/(E/GeV)) 2 + 1.46% 2 ). Due to the use of only one single LAAPD per crystal with the effective surface of 1 cm 2 and a not linearized light collection within the crystals, these parameters represent an upper performance limit of the final anti PANDA calorimeter. A detailed GEANT based model of the prototype was developed in order to investigate the calibration based on cosmic radiation or a 150 GeV muon beam and to understand the impact of the detailed geometry and light collection on the achieved performance

  9. Towards an energetic theory of brittle fracture

    International Nuclear Information System (INIS)

    Francfort, G.; Marigo, J.J.

    2002-01-01

    The drawbacks of the classical theory of brittle fracture, based on Griffith's criterion, - a notion of critical energy release rate -, and a fracture toughness k, are numerous (think for instance the issue of crack initiation) and penalize its validity as a good model. Are all attempts at building a macroscopic theory of fracture doomed? The variety and complexity of micro-mechanical phenomena would suggest that this is indeed the case. We believe however that structural effects still preside over fracture and consequently propose to modify slightly Griffith theory without altering its fundamental components so that it becomes amenable to the widest range of situations. The examples presented here will demonstrate that a revisited energetic framework is a sound basis for a theory which can be used at the engineering level and which reconciles seemingly contradictory viewpoints. (authors)

  10. Forces and energetics of intermittent swimming

    Science.gov (United States)

    Floryan, Daniel; Van Buren, Tyler; Smits, Alexander J.

    2017-08-01

    Experiments are reported on intermittent swimming motions. Water tunnel experiments on a nominally two-dimensional pitching foil show that the mean thrust and power scale linearly with the duty cycle, from a value of 0.2 all the way up to continuous motions, indicating that individual bursts of activity in intermittent motions are independent of each other. This conclusion is corroborated by particle image velocimetry (PIV) flow visualizations, which show that the main vortical structures in the wake do not change with duty cycle. The experimental data also demonstrate that intermittent motions are generally energetically advantageous over continuous motions. When metabolic energy losses are taken into account, this conclusion is maintained for metabolic power fractions less than 1.

  11. Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake

    KAUST Repository

    Xue, Dongxu

    2013-05-22

    A series of fcu-MOFs based on rare-earth (RE) metals and linear fluorinated/nonfluorinated, homo/heterofunctional ligands were targeted and synthesized. This particular fcu-MOF platform was selected because of its unique structural characteristics combined with the ability/potential to dictate and regulate its chemical properties (e.g., tuning of the electron-rich RE metal ions and high localized charge density, a property arising from the proximal positioning of polarizing tetrazolate moieties and fluoro-groups that decorate the exposed inner surfaces of the confined conical cavities). These features permitted a systematic gas sorption study to evaluate/elucidate the effects of distinctive parameters on CO2-MOF sorption energetics. Our study supports the importance of the synergistic effect of exposed open metal sites and proximal highly localized charge density toward materials with enhanced CO2 sorption energetics. © 2013 American Chemical Society.

  12. Probing the Dynamics of Ultra-Fast Condensed State Reactions in Energetic Materials

    Science.gov (United States)

    Piekiel, Nicholas William

    2012-01-01

    Energetic materials (EMs) are substances with a high amount of stored energy and the ability to release that energy at a rapid rate. Nanothermites and green organic energetics are two classes of EMs which have gained significant interest as they each have desirable properties over traditional explosives. These systems also possess downfalls, which…

  13. Investigation of energetic particle induced geodesic acoustic mode

    Science.gov (United States)

    Schneller, Mirjam; Fu, Guoyong; Chavdarovski, Ilija; Wang, Weixing; Lauber, Philipp; Lu, Zhixin

    2017-10-01

    Energetic particles are ubiquitous in present and future tokamaks due to heating systems and fusion reactions. Anisotropy in the distribution function of the energetic particle population is able to excite oscillations from the continuous spectrum of geodesic acoustic modes (GAMs), which cannot be driven by plasma pressure gradients due to their toroidally and nearly poloidally symmetric structures. These oscillations are known as energetic particle-induced geodesic acoustic modes (EGAMs) [G.Y. Fu'08] and have been observed in recent experiments [R. Nazikian'08]. EGAMs are particularly attractive in the framework of turbulence regulation, since they lead to an oscillatory radial electric shear which can potentially saturate the turbulence. For the presented work, the nonlinear gyrokinetic, electrostatic, particle-in-cell code GTS [W.X. Wang'06] has been extended to include an energetic particle population following either bump-on-tail Maxwellian or slowing-down [Stix'76] distribution function. With this new tool, we study growth rate, frequency and mode structure of the EGAM in an ASDEX Upgrade-like scenario. A detailed understanding of EGAM excitation reveals essential for future studies of EGAM interaction with micro-turbulence. Funded by the Max Planck Princeton Research Center. Computational resources of MPCDF and NERSC are greatefully acknowledged.

  14. Human enamel structure studied by high resolution electron microscopy

    International Nuclear Information System (INIS)

    Wen, S.L.

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references

  15. Energetics of the built environment

    Energy Technology Data Exchange (ETDEWEB)

    Yeang, K

    1974-07-01

    Energetics, the study of energy transformations within ecosystems, provide a useful framework for examining the relationships between the built environment (a manmade ecosystem) and the natural environment. Values are provided for using energy indices in modeling, comparing design alternatives, improving designed systems, conserving nonrenewable resources, comparing impacts, and studying energy utilization patterns as a whole. The accounting of the energy cost of a proposed project would provide additional criteria for evaluating the impact of human developments on the natural environment. (3 diagrams, 12 tables)

  16. Energetic particles in the heliosphere

    CERN Document Server

    Simnett, George M

    2017-01-01

    This monograph traces the development of our understanding of how and where energetic particles are accelerated in the heliosphere and how they may reach the Earth. Detailed data sets are presented which address these topics. The bulk of the observations are from spacecraft in or near the ecliptic plane. It is timely to present this subject now that Voyager-1 has entered the true interstellar medium. Since it seems unlikely that there will be a follow-on to the Voyager programme any time soon, the data we already have regarding the outer heliosphere are not going to be enhanced for at least 40 years.

  17. High-performance computing in accelerating structure design and analysis

    International Nuclear Information System (INIS)

    Li Zenghai; Folwell, Nathan; Ge Lixin; Guetz, Adam; Ivanov, Valentin; Kowalski, Marc; Lee, Lie-Quan; Ng, Cho-Kuen; Schussman, Greg; Stingelin, Lukas; Uplenchwar, Ravindra; Wolf, Michael; Xiao, Liling; Ko, Kwok

    2006-01-01

    Future high-energy accelerators such as the Next Linear Collider (NLC) will accelerate multi-bunch beams of high current and low emittance to obtain high luminosity, which put stringent requirements on the accelerating structures for efficiency and beam stability. While numerical modeling has been quite standard in accelerator R and D, designing the NLC accelerating structure required a new simulation capability because of the geometric complexity and level of accuracy involved. Under the US DOE Advanced Computing initiatives (first the Grand Challenge and now SciDAC), SLAC has developed a suite of electromagnetic codes based on unstructured grids and utilizing high-performance computing to provide an advanced tool for modeling structures at accuracies and scales previously not possible. This paper will discuss the code development and computational science research (e.g. domain decomposition, scalable eigensolvers, adaptive mesh refinement) that have enabled the large-scale simulations needed for meeting the computational challenges posed by the NLC as well as projects such as the PEP-II and RIA. Numerical results will be presented to show how high-performance computing has made a qualitative improvement in accelerator structure modeling for these accelerators, either at the component level (single cell optimization), or on the scale of an entire structure (beam heating and long-range wakefields)

  18. High duty factor structures for e+e- storage rings

    International Nuclear Information System (INIS)

    Allen, M.A.; Karvonen, L.G.

    1976-01-01

    The next generation e + e - storage rings will need rf systems similar to those required for a continuous-duty linac of over 50 MeV. For the PEP Storage Ring at 18 GeV, it is presently planned to provide a peak accelerating voltage of 77 MV in 18 aluminum accelerating structures, each structure consisting of five slot-coupled cells operating in the π mode. Operating experience with the SPEAR five-cell structure is discussed. Power to each structure is provided by a 125-kW high-efficiency four-cavity klystron. No isolation has been used and the resulting interaction between the accelerating structures, klystrons and the stored beams is discussed

  19. High-throughput determination of RNA structure by proximity ligation.

    Science.gov (United States)

    Ramani, Vijay; Qiu, Ruolan; Shendure, Jay

    2015-09-01

    We present an unbiased method to globally resolve RNA structures through pairwise contact measurements between interacting regions. RNA proximity ligation (RPL) uses proximity ligation of native RNA followed by deep sequencing to yield chimeric reads with ligation junctions in the vicinity of structurally proximate bases. We apply RPL in both baker's yeast (Saccharomyces cerevisiae) and human cells and generate contact probability maps for ribosomal and other abundant RNAs, including yeast snoRNAs, the RNA subunit of the signal recognition particle and the yeast U2 spliceosomal RNA homolog. RPL measurements correlate with established secondary structures for these RNA molecules, including stem-loop structures and long-range pseudoknots. We anticipate that RPL will complement the current repertoire of computational and experimental approaches in enabling the high-throughput determination of secondary and tertiary RNA structures.

  20. Effect of high temperature on integrity of concrete containment structures

    International Nuclear Information System (INIS)

    Bhat, P.D.

    1986-01-01

    The effect of high temperature on concrete material properties and structural behavior are studied in order to relate these effects to the performance of concrete containment structures. Salient data obtained from a test program undertaken to study the behavior of a restrained concrete structure under thermal gradient loads up to its ultimate limit are described. The preliminary results indicate that concrete material properties can be considered to remain unaltered up to temperatures of 100 0 C. The presence of thermal gradients did not significantly affect the structures ultimate mechanical load capacity. Relaxation of restraint forces due to creep was found to be an important factor. The test findings are compared with the observations made in available literature. The effect of test findings on the integrity analysis of a containment structure are discussed. The problem is studied from the viewpoint of a CANDU heavy water reactor containment

  1. Copper alloys for high heat flux structure applications

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Fabritsiev, S.A.

    1994-01-01

    The mechanical and physical properties of copper alloys are reviewed and compared with the requirements for high heat flux structural applications in fusion reactors. High heat flux structural materials must possess a combination of high thermal conductivity and high mechanical strength. The three most promising copper alloys at the present time are oxide dispersion-strengthened copper (Cu-Al 2 O 3 ) and two precipitation-hardened copper alloys (Cu-Cr-Zr and Cu-Ni-Be). These three alloys are capable of room temperature yield strengths >400 MPa and thermal conductivities up to 350 W/m-K. All of these alloys require extensive cold working to achieve their optimum strength. Precipitation-hardened copper alloys such Cu-Cr-Zr are susceptible to softening due to precipitate overaging and recrystallization during brazing, whereas the dislocation structure in Cu-Al 2 O 3 remains stabilized during typical high temperature brazing cycles. All three alloys exhibit good resistance to irradiation-induced softening and void swelling at temperatures below 300 degrees C. The precipitation-strengthened allows typically soften during neutron irradiation at temperatures above about 300 degrees C and therefore should only be considered for applications operating at temperatures 2 O 3 ) is considered to be the best candidate for high heat flux structural applications

  2. Avoiding vacuum arcs in high gradient normal conducting RF structures

    CERN Document Server

    Sjøbæk, Kyrre Ness; Adli, Erik; Grudiev, Alexej; Wuensch, Walter

    In order to build the Compact LInear Collider (CLIC), accelerating structures reaching extremely high accelerating gradients are needed. Such structures have been built and tested using normal-conducting copper, powered by X-band RF power and reaching gradients of 100 MV/m and above. One phenomenon that must be avoided in order to reliably reach such gradients, is vacuum arcs or “breakdowns”. This can be accomplished by carefully designing the structure geometry such that high surface fields and large local power flows are avoided. The research presented in this thesis presents a method for optimizing the geometry of accelerating structures so that these breakdowns are made less likely, allowing the structure to operate reliably at high gradients. This was done primarily based on a phenomenological scaling model, which predicted the maximum gradient as a function of the break down rate, pulse length, and field distribution in the structure. The model is written in such a way that it allows direct comparis...

  3. Structural bursts produced by high energy muons in the rock

    International Nuclear Information System (INIS)

    Honda, K.; Takahashi, T.; Teramoto, Y.; Higashi, S.; Ozaki, S.

    1975-01-01

    Lateral structures of bursts produced by high energy muons in the rock have been observed at a depth 30 mw. e. underground by use of two layers of proportional counters. The running times were 7940 hr. The number of structural bursts observed, which have two cores in the both layers ( 1 >= 200, N 2 >= 20 particles) is 110, 1.6% of total events. These structural bursts have two types; 1) incident directions of two cores are parallel, 2) two cores intersect in the rock within 2 m above the roof of the tunnel. The events of this 2) type have large transverse momentum. (orig.) [de

  4. A Highly Concurrent Replicated Data Structure EAI Endorsed Transactions

    Directory of Open Access Journals (Sweden)

    Mumtaz Ahmad

    2015-12-01

    Full Text Available Well defined concurrent replicated data structure is very important to design collaborative editing system, particularly, certain properties like out-of-order execution of concurrent operations and data convergence. In this paper, we introduce novel linear data structure based on unique identifier scheme required for indexed communication. These identifiers are real numbers holding specific pattern of precision. Based on the uniqueness and the total order of these identifiers, here, we present two concurrency control techniques to achieve high degree of concurrency according to strong and lazy happened-before relations. Our data structure preserves data convergence, yields better performance and avoids overheads as compared to existing approaches.

  5. Tilapia and human CLIC2 structures are highly conserved.

    Science.gov (United States)

    Zeng, Jiao; Li, Zhengjun; Lui, Eei Yin; Lam, Siew Hong; Swaminathan, Kunchithapadam

    2018-01-08

    Chloride intracellular channels (CLICs) exist in soluble and membrane bound forms. We have determined the crystal structure of soluble Clic2 from the euryhaline teleost fish Oreochromis mossambicus. Structural comparison of tilapia and human CLIC2 with other CLICs shows that these proteins are highly conserved. We have also compared the expression levels of clic2 in selected osmoregulatory organs of tilapia, acclimated to freshwater, seawater and hypersaline water. Structural conservation of vertebrate CLICs implies that they might play conserved roles. Also, tissue-specific responsiveness of clic2 suggests that it might be involved in iono-osmoregulation under extreme conditions in tilapia. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Comparison study of inelastic analysis codes for high temperature structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Lee, H. Y.; Park, C. K.; Geon, G. P.; Lee, J. H

    2004-02-01

    LMR high temperature structures subjected to operating and transient loadings may exhibit very complex deformation behaviors due to the use of ductile material such as 316SS and the systematic analysis technology of high temperature structure for reliable safety assessment is essential. In this project, comparative study with developed inelastic analysis program NONSTA and the existing analysis codes was performed applying various types of loading including non-proportional loading. The performance of NONSTA was confirmed and the effect of inelastic constants on the analysis result was analyzed. Also, the applicability of the inelastic analysis was enlarged as a result of applying both the developed program and the existing codes to the analyses of the enhanced creep behavior and the elastic follow-up behavior of high temperature structures and the necessary items for improvements were deduced. Further studies on the improvement of NONSTA program and the decision of the proper values of inelastic constants are necessary.

  7. Energetic Techniques For Planetary Defense

    Science.gov (United States)

    Barbee, B.; Bambacus, M.; Bruck Syal, M.; Greenaugh, K. C.; Leung, R. Y.; Plesko, C. S.

    2017-12-01

    Near-Earth Objects (NEOs) are asteroids and comets whose heliocentric orbits tend to approach or cross Earth's heliocentric orbit. NEOs of various sizes periodically collide with Earth, and efforts are currently underway to discover, track, and characterize NEOs so that those on Earth-impacting trajectories are discovered far enough in advance that we would have opportunities to deflect or destroy them prior to Earth impact, if warranted. We will describe current efforts by the National Aeronautics and Space Administration (NASA) and the National Nuclear Security Administration (NNSA) to assess options for energetic methods of deflecting or destroying hazardous NEOs. These methods include kinetic impactors, which are spacecraft designed to collide with an NEO and thereby alter the NEO's trajectory, and nuclear engineering devices, which are used to rapidly vaporize a layer of NEO surface material. Depending on the amount of energy imparted, this can result in either deflection of the NEO via alteration of its trajectory, or robust disruption of the NEO and dispersal of the remaining fragments. We have studied the efficacies and limitations of these techniques in simulations, and have combined the techniques with corresponding spacecraft designs and mission designs. From those results we have generalized planetary defense mission design strategies and drawn conclusions that are applicable to a range of plausible scenarios. We will present and summarize our research efforts to date, and describe approaches to carrying out planetary defense missions with energetic NEO deflection or disruption techniques.

  8. Modeling high temperature materials behavior for structural analysis

    CERN Document Server

    Naumenko, Konstantin

    2016-01-01

    This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.

  9. Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liu [Univ. of California, Irvine, CA (United States)

    2017-12-20

    This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novel findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.

  10. Computer-aided design and modeling of nickel dithiolene near-infrared dyes. 1998 summer research program for high school juniors at the University of Rochester's Laboratory for Laser Energetics. Student research reports

    International Nuclear Information System (INIS)

    Corsello, S.

    1999-03-01

    Recent advances in computational chemistry have made it feasible to design many types of molecules and predict their properties theoretically. The author applied these techniques to the design of organometallic transition-metal dyes absorbing in the near-infrared region of the spectrum which possess the combination of a large molar extinction coefficient, good chemical and thermal stability, and a high solubility in liquid crystal (LC) hosts. These properties are required for the dye to function as a near-infrared (IR) attenuator in a liquid crystal point diffraction interferometer (LCPDI) device that will be used as a beam diagnostic on the 60-beam OMEGA solid-state Nd:glass laser system at the University of Rochester's Laboratory for Laser Energetics. Using commercially available software, both the absorption spectra and solubility characteristics of bis[1,2-di-(p-n alkoxyphenyl)ethane-1,2-dithione] nickel dye complexes were modeled in an isotropic host (cyclohexane) and, in most cases, excellent agreement was found with experimental data. Two additional compounds utilizing the same nickel dithiolene core but with alkylthio and phenylalkylthio terminal groups have been designed and show excellent potential to produce dramatic improvements in both solubility and optical density (absorbance) in liquid crystalline hosts. Based upon my work, a new dye not previously reported, 2(C 4 S)2(C 4 SPh)DTNi, has been proposed to satisfy the LCPDI device requirements. The nickel dithiolene dyes may also find important applications in other technology areas such as near-IR photography and laser-based near-IR communications

  11. Nonlinear system identification of smart structures under high impact loads

    Science.gov (United States)

    Sarp Arsava, Kemal; Kim, Yeesock; El-Korchi, Tahar; Park, Hyo Seon

    2013-05-01

    The main purpose of this paper is to develop numerical models for the prediction and analysis of the highly nonlinear behavior of integrated structure control systems subjected to high impact loading. A time-delayed adaptive neuro-fuzzy inference system (TANFIS) is proposed for modeling of the complex nonlinear behavior of smart structures equipped with magnetorheological (MR) dampers under high impact forces. Experimental studies are performed to generate sets of input and output data for training and validation of the TANFIS models. The high impact load and current signals are used as the input disturbance and control signals while the displacement and acceleration responses from the structure-MR damper system are used as the output signals. The benchmark adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. Comparisons of the trained TANFIS models with experimental results demonstrate that the TANFIS modeling framework is an effective way to capture nonlinear behavior of integrated structure-MR damper systems under high impact loading. In addition, the performance of the TANFIS model is much better than that of ANFIS in both the training and the validation processes.

  12. Adrenaline and reactive oxygen species elicit proteome and energetic metabolism modifications in freshly isolated rat cardiomyocytes

    International Nuclear Information System (INIS)

    Costa, Vera Marisa; Silva, Renata; Tavares, Ludgero Canario; Vitorino, Rui; Amado, Francisco; Carvalho, Felix; Bastos, Maria de Lourdes; Carvalho, Marcia; Carvalho, Rui Albuquerque; Remiao, Fernando

    2009-01-01

    The sustained elevation of plasma and interstitial catecholamine levels, namely adrenaline (ADR), and the generation of reactive oxygen species (ROS) are well recognized hallmarks of several cardiopathologic conditions, like cardiac ischemia/reperfusion (I/R) and heart failure (HF). The present work aimed to investigate the proteomics and energetic metabolism of cardiomyocytes incubated with ADR and/or ROS. To mimic pathologic conditions, freshly isolated calcium-tolerant cardiomyocytes from adult rat were incubated with ADR alone or in the presence of a system capable of generating ROS [(xanthine with xanthine oxidase) (XXO)]. Two-dimensional electrophoresis with matrix-assisted laser desorption/ionization and time-of-flight mass spectrometer analysis were used to define protein spot alterations in the cardiomyocytes incubated with ADR and/or ROS. Moreover, the energetic metabolism and the activity of mitochondrial complexes were evaluated by nuclear magnetic resonance and spectrophotometric determinations, respectively. The protein extract was mainly constituted by cardiac mitochondrial proteins and the alterations found were included in five functional classes: (i) structural proteins, notably myosin light chain-2; (ii) redox regulation proteins, in particular superoxide dismutase (SOD); (iii) energetic metabolism proteins, encompassing ATP synthase alpha chain and dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex; (iv) stress response proteins, like the heat shock proteins; and (v) regulatory proteins, like cytochrome c and voltage-dependent anion channel 1. The XXO system elicited alterations in cardiac contractile proteins, as they showed high levels of cleavage, and also altered energetic metabolism, through increased lactate and alanine levels. The cardiomyocytes incubation with ADR resulted in an accentuated increase in mitochondrial complexes activity and the decrease in alanine/lactate ratio, thus reflecting a high

  13. Prototyping high-gradient mm-wave accelerating structures

    International Nuclear Information System (INIS)

    Nanni, Emilio A.; Dolgashev, Valery A.; Haase, Andrew; Neilson, Jeffrey; Tantawi, Sami

    2017-01-01

    We present single-cell accelerating structures designed for high-gradient testing at 110 GHz. The purpose of this work is to study the basic physics of ultrahigh vacuum RF breakdown in high-gradient RF accelerators. The accelerating structures are π-mode standing-wave cavities fed with a TM 01 circular waveguide. The structures are fabricated using precision milling out of two metal blocks, and the blocks are joined with diffusion bonding and brazing. The impact of fabrication and joining techniques on the cell geometry and RF performance will be discussed. First prototypes had a measured Q 0 of 2800, approaching the theoretical design value of 3300. The geometry of these accelerating structures are as close as practical to singlecell standing-wave X-band accelerating structures more than 40 of which were tested at SLAC. This wealth of X-band data will serve as a baseline for these 110 GHz tests. Furthermore, the structures will be powered with short pulses from a MW gyrotron oscillator. RF power of 1 MW may allow an accelerating gradient of 400 MeV/m to be reached.

  14. Energetic materials and methods of tailoring electrostatic discharge sensitivity of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, Michael A.; Heaps, Ronald J.; Wallace, Ronald S.; Pantoya, Michelle L.; Collins, Eric S.

    2016-11-01

    An energetic material comprising an elemental fuel, an oxidizer or other element, and a carbon nanofiller or carbon fiber rods, where the carbon nanofiller or carbon fiber rods are substantially homogeneously dispersed in the energetic material. Methods of tailoring the electrostatic discharge sensitivity of an energetic material are also disclosed.

  15. Structure of Greyhound hemoglobin: origin of high oxygen affinity.

    Science.gov (United States)

    Bhatt, Veer S; Zaldívar-López, Sara; Harris, David R; Couto, C Guillermo; Wang, Peng G; Palmer, Andre F

    2011-05-01

    This study presents the crystal structure of Greyhound hemoglobin (GrHb) determined to 1.9 Å resolution. GrHb was found to crystallize with an α₁β₁ dimer in the asymmetric unit and belongs to the R2 state. Oxygen-affinity measurements combined with the fact that GrHb crystallizes in the R2 state despite the high-salt conditions used for crystallization strongly indicate that GrHb can serve as a model high-oxygen-affinity hemoglobin (Hb) for higher mammals, especially humans. Structural analysis of GrHb and its comparison with the R2-state of human Hb revealed several regions that can potentially contribute to the high oxygen affinity of GrHb and serve to rationalize the additional stability of the R2-state of GrHb. A previously well studied hydrophobic cluster of bar-headed goose Hb near α119 was also incorporated in the comparison between GrHb and human Hb. Finally, a structural comparison with generic dog Hb and maned wolf Hb was conducted, revealing that in contrast to GrHb these structures belong to the R state of Hb and raising the intriguing possibility of an additional allosteric factor co-purifying with GrHb that can modulate its quaternary structure.

  16. High frequency flow-structural interaction in dense subsonic fluids

    Science.gov (United States)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  17. Model of Structural Fragmentation Induced by High Pressure Torsion

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, J.; Kružík, Martin; Sedláček, R.

    2010-01-01

    Roč. 25, č. 1 (2010), s. 88-98 ISSN 1606-5131 Institutional research plan: CEZ:AV0Z10750506 Keywords : High-pressure torsion * intergranular glide * homogeneous deformation mode Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.649, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/kruzik-model of structural fragmentation induced by high pressure torsion.pdf

  18. Structure Learning of Linear Bayesian Networks in High-Dimensions

    OpenAIRE

    Aragam, Nikhyl Bryon

    2015-01-01

    Research into graphical models is a rapidly developing enterprise, garnering significant interest from both the statistics and machine learning communities. A parallel thread in both communities has been the study of low-dimensional structures in high-dimensional models where $p\\gg n$. Recently, there has been a surge of interest in connecting these threads in order to understand the behaviour of graphical models in high-dimensions. Due to their relative simplicity, undirected models such as ...

  19. Effective charge of energetic ions in metals

    International Nuclear Information System (INIS)

    Kitagawa, M.; Brandt, W.

    1983-01-01

    The effective charge of energetic ion, as derived from stopping power of metals, is calculated by use of a dielectronic-response function method. The electronic distribution in the ion is described through the variational principle in a statistical approximation. The dependences of effective charge on the ion velocity, atomic number and r/sub s/-value of metal are derived at the low-velocity region. The effective charge becomes larger than the real charge of ion due to the close collisions. We obtain the quasi-universal equation of the fractional effective electron number of ion as a function of the ratio between the ionic size and the minimum distance approach. The comparsion between theoretical and experimental results of the effective charge is performed for the cases of N ion into Au, C and Al. We also discuss the equipartition rule of partially ionized ion at the high-velocity region

  20. Energetically Modified Cement (EMC) - Performance Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ronin, Vladimir; Elfgren, Lennart [Luleaa Univ. of Technology (Sweden). Centre for High Performance Cement

    2003-03-01

    Energetically Modified Cements, EMC, made of intensively milled cement (50%) and fillers (50%) of quartz or fly ash have been compared to blends of Ordinary Portland Cement, OPC, and fillers. The EMCs have better properties than other blends and are comparable to unblended OPC. This remarkable fact can probably be explained as follows. The grinding process reduces the size of both cement grains and fillers. This combined with the creation of micro defects gives the ground cement a very high degree of hydration. The increased early hydration and a better distribution of hydration products results in an extensive pore size refinement of the hardened binder. This pore size refinement leads to a favorably reduced permeability and diffusivity and very good mechanical properties.

  1. Baseline composition of solar energetic particles

    International Nuclear Information System (INIS)

    Meyer, J.

    1985-01-01

    We analyze all existing spacecraft observations of the highly variable heavy element composition of solar energetic particles (SEP) during non- 3 He-rich events. All data show the imprint of an ever-present basic composition pattern (dubbed ''mass-unbiased baseline'' SEP composition) that differs from the photospheric composition by a simple bias related to first ionization potential (FIP). In each particular observation, this mass-unbiased baseline composition is being distorted by an additional bias, which is always a monotonic function of mass (or Z). This latter bias varies in amplitude and even sign from observation to observation. To first order, it seems related to differences in the A/Z* ratio between elements (Z* = mean effective charge)

  2. Development of a remote inspection robot for high pressure structures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae C.; Kim, Jae H.; Choi, Yu R.; Moon, Soon S

    1999-10-01

    The high pressure structures in industrial plants must be periodically inspected for ensure their safety. Currently, the examination of them is manually performed by human inspectors, and there are many restrictions to examine the large containers which enclose dangerous chemicals or radioactive materials. We developed a remotely operated robot to examine these structures using recent mobile robot and computer technologies. Our robot has two magnetic caterpillars that make the robot can adhere to the structures made of steel like materials. The robot moves to the position for examination, and scans that position using ultrasonic probes equipped on it's arm, and transmits the result to the inspector according to his/her commands. Without building any auxiliary structures the robot can inspect the places where manual inspection can't reach. Therefore the robot can make shortening the inspection time as well as preventing the inspector from an accident. (author)

  3. Development of a remote inspection robot for high pressure structures

    International Nuclear Information System (INIS)

    Lee, Jae C.; Kim, Jae H.; Choi, Yu R.; Moon, Soon S.

    1999-10-01

    The high pressure structures in industrial plants must be periodically inspected for ensure their safety. Currently, the examination of them is manually performed by human inspectors, and there are many restrictions to examine the large containers which enclose dangerous chemicals or radioactive materials. We developed a remotely operated robot to examine these structures using recent mobile robot and computer technologies. Our robot has two magnetic caterpillars that make the robot can adhere to the structures made of steel like materials. The robot moves to the position for examination, and scans that position using ultrasonic probes equipped on it's arm, and transmits the result to the inspector according to his/her commands. Without building any auxiliary structures the robot can inspect the places where manual inspection can't reach. Therefore the robot can make shortening the inspection time as well as preventing the inspector from an accident. (author)

  4. Structure and high-piezoelectricity in lead oxide solid solutions

    NARCIS (Netherlands)

    Noheda, B.

    2002-01-01

    A review of the recent advances in the understanding of piezoelectricity in lead oxide solid solutions is presented, giving special attention to the structural aspects. It has now become clear that the very high electromechanical response in these materials is directly related to the existence of

  5. Concurrent Probabilistic Simulation of High Temperature Composite Structural Response

    Science.gov (United States)

    Abdi, Frank

    1996-01-01

    A computational structural/material analysis and design tool which would meet industry's future demand for expedience and reduced cost is presented. This unique software 'GENOA' is dedicated to parallel and high speed analysis to perform probabilistic evaluation of high temperature composite response of aerospace systems. The development is based on detailed integration and modification of diverse fields of specialized analysis techniques and mathematical models to combine their latest innovative capabilities into a commercially viable software package. The technique is specifically designed to exploit the availability of processors to perform computationally intense probabilistic analysis assessing uncertainties in structural reliability analysis and composite micromechanics. The primary objectives which were achieved in performing the development were: (1) Utilization of the power of parallel processing and static/dynamic load balancing optimization to make the complex simulation of structure, material and processing of high temperature composite affordable; (2) Computational integration and synchronization of probabilistic mathematics, structural/material mechanics and parallel computing; (3) Implementation of an innovative multi-level domain decomposition technique to identify the inherent parallelism, and increasing convergence rates through high- and low-level processor assignment; (4) Creating the framework for Portable Paralleled architecture for the machine independent Multi Instruction Multi Data, (MIMD), Single Instruction Multi Data (SIMD), hybrid and distributed workstation type of computers; and (5) Market evaluation. The results of Phase-2 effort provides a good basis for continuation and warrants Phase-3 government, and industry partnership.

  6. Studies on the structure of industrial high methoxyl pectins

    NARCIS (Netherlands)

    Kravtchenko, T.P.

    1992-01-01

    The chemical structure of three industrial high methoxyl pectins (one extracted from apple pomace and two from lemon peels) has been extensively investigated. The apple pectin differs from the lemon ones by having a higher apparent molecular size, a higher neutral-sugar content, present

  7. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, Dalaver H.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured

  8. Dielectric-Lined High-Gradient Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-04-24

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field ({approx}2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 {micro}s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10{sup 5} RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS

  9. Dielectric-Lined High-Gradient Accelerator Structure

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2012-01-01

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field (∼2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 (micro)s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10 5 RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS operating at 30

  10. Cosmic Ray Energetics and Mass

    CERN Multimedia

    Baylon cardiel, J L; Wallace, K C; Anderson, T B; Copley, M

    The cosmic-ray energetics and mass (CREAM) investigation is designed to measure cosmic-ray composition to the supernova energy scale of 10$^{15}$ eV in a series of ultra long duration balloon (ULDB) flights. The first flight is planned to be launched from Antarctica in December 2004. The goal is to observe cosmic-ray spectral features and/or abundance changes that might signify a limit to supernova acceleration. The particle ($\\{Z}$) measurements will be made with a timing-based charge detector and a pixelated silicon charge detector to minimize the effect of backscatter from the calorimeter. The particle energy measurements will be made with a transition radiation detector (TRD) for $\\{Z}$ > 3 and a sampling tungsten/scintillator calorimeter for $\\{Z}$ $\\geq$1 particles, allowing inflight cross calibration of the two detectors. The status of the payload construction and flight preparation are reported in this paper.

  11. Energetic model of metal hardening

    Directory of Open Access Journals (Sweden)

    Ignatova O.N.

    2011-01-01

    Full Text Available Based on Bailey hypothesis on the link between strain hardening and elastic lattice defect energy this paper suggests a shear strength energetic model that takes into consideration plastic strain intensity and rate as well as softening related to temperature annealing and dislocation annihilation. Metal strain hardening was demonstrated to be determined only by elastic strain energy related to the energy of accumulated defects. It is anticipated that accumulation of the elastic energy of defects is governed by plastic work. The suggested model has a reasonable agreement with the available experimental data for copper up to P = 70 GPa , for aluminum up to P = 10 GPa and for tantalum up to P = 20 GPa.

  12. Reinforced concrete containment structures in high seismic zones

    International Nuclear Information System (INIS)

    Aziz, T.S.

    1977-01-01

    A new structural concept for reinforced concrete containment structures at sites where earthquake ground motions in terms of the Safe Shutdown Earthquake (SSE) exceeds 0.3 g is presented. The structural concept is based on: (1) an inner steel-lined concrete shell which houses the reactor and provides shielding and containment in the event of loss of coolant accident; (2) an outer annular concrete shell structure which houses auxilary reactor equipment and safeguards systems. These shell structures are supported on a common foundation mat which is embeded in the subgrade. Under stipulated earthquake conditions the two shell structures interact to resist lateral inertia forces. Thus the annular structure which is not a pressure boundary acts as a lateral support for the inner containment shell. The concept is practical, economically feasible and new to practice. An integrated configuration which includes the interior shell, the annular structure and the subgrade is analyzed for several static and dynamic loading conditions. The analysis is done using a finite difference solution scheme for the static loading conditions. A semi-analytical three-dimensional finite element scheme combined with a Fast Fourier Transform (FFT) algorithm is used for the dynamic loading conditions. The effects of cracking of the containment structure due to pressurization in conjunction with earthquake loading are discussed. Analytical results for both the finite difference and the finite element schemes are presented and the sensitivity of the results to changes in the input parameters is studied. General recommendations are given for plant configurations where high seismic loading is a major design consideration

  13. Ecological problems of thermonuclear energetics. Review

    Energy Technology Data Exchange (ETDEWEB)

    Sivintsev, Yu V

    1980-01-01

    A review of preliminary quantitative estimates of radiation hazard of thermonuclear reactors is presented. Main attention is given to three aspects: nonradiation effect on environment, radionuclide blow-ups at normal operation and emergency situations with their consequences. The given data testify to great radiological advantages of thermonuclear energetics as compared with the modern nuclear energetics with thermal and prospective fast reactors.

  14. Energetic ions and electrons and their acceleration processes in the magnetotail

    International Nuclear Information System (INIS)

    Scholer, M.

    1984-01-01

    Observations of energetic particle fluxes in the geomagnetic tail show that these particles exhibit a bursty appearance on all time scales. Often, however, the bursty appearance is merely due to multiple entries and exits of the spacecraft into and out of the plasma sheet which always contains varying fluxes of energetic particles. Observations of the suprathermal and high-energy component of the plasma sheet are discussed, and observations are presented of energetic particle bursts in the plasma sheet proper, which may be due to a locally ongoing acceleration process. Also discussed are energetic particle phenomena occurring near the edge of the plasma sheet, either during thinning or during recovery. Some recent results from the ISEE 3 deep tail mission bearing on energetic particle acceleration are presented, and the present status of the theory of particle acceleration within the magnetotail is briefly reviewed. 40 references

  15. Streaming reversal of energetic particles in the magnetotail during a substorm

    Science.gov (United States)

    Lui, A. T. Y.; Williams, D. J.; Eastman, T. E.; Frank, L. A.; Akasofu, S.-I.

    1984-01-01

    A case of reversal in the streaming anisotropy of energetic ions and in the plasma flow observed from the IMP 8 spacecraft during a substorm on February 8, 1978 is studied in detail using measurements of energetic particles, plasma, and magnetic field. Four new features emerge when high time resolution data are examined in detail. The times of streaming reversal of energetic particles in different energy ranges do not coincide with the time of plasma flow reversal. Qualitatively different velocity distributions are observed in earthward and tailward plasma flows during the observed flow reversal intervals. Strong tailward streaming of energetic particles can be detected during northward magnetic field environments and, conversely, earthward streaming in southward field environments. During the period of tailward streaming of energetic particles, earthward streaming fluxes are occasionally detected.

  16. Final Report: ''Energetics of Nanomaterials''

    International Nuclear Information System (INIS)

    Navrotsky, Alexandra; Ross, Nancy; Woodfield, Brian F

    2016-01-01

    Nanomaterials, solids with very small particle size, form the basis of new technologies that are revolutionizing fields such as energy, lighting, electronics, medical diagnostics, and drug delivery. These nanoparticles are different from conventional bulk materials in many ways we do not yet fully understand. This project focused on their structure and thermodynamics and emphasized the role of water in nanoparticle surfaces. Using a unique and synergistic combination of high-tech techniques-namely oxide melt solution calorimetry, cryogenic heat capacity measurements, and inelastic neutron scattering-this work has identified differences in structure, thermodynamic stability, and water behavior on nanoparticles as a function of composition and particle size. The systematics obtained increase the fundamental understanding needed to synthesize, retain, and apply these technologically important nanomaterials and to predict and tailor new materials for enhanced functionality, eventually leading to a more sustainable way of life. Highlights are reported on the following topics: surface energies, thermochemistry of nanoparticles, and changes in stability at the nanoscale; heat capacity models and the gapped phonon spectrum; control of pore structure, acid sites, and thermal stability in synthetic γ-aluminas; the lattice contribution is the same for bulk and nanomaterials; and inelastic neutron scattering studies of water on nanoparticle surfaces.

  17. Predicted crystal structures of molybdenum under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing; Zhang, Guang Biao [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Wang, Yuan Xu, E-mail: wangyx@henu.edu.cn [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Normal College, Guiyang 550018 (China)

    2013-04-15

    Highlights: ► A double-hexagonal close-packed (dhcp) structure of molybdenum is predicted. ► Calculated acoustic velocity confirms the bcc–dhcp phase transition at 660 GPa. ► The valence electrons of dhcp Mo are mostly localized in the interstitial sites. -- Abstract: The high-pressure structures of molybdenum (Mo) at zero temperature have been extensively explored through the newly developed particle swarm optimization (PSO) algorithm on crystal structural prediction. All the experimental and earlier theoretical structures were successfully reproduced in certain pressure ranges, validating our methodology in application to Mo. A double-hexagonal close-packed (dhcp) structure found by Mikhaylushkin et al. (2008) [12] is confirmed by the present PSO calculations. The lattice parameters and physical properties of the dhcp phase were investigated based on first principles calculations. The phase transition occurs only from bcc phase to dhcp phase at 660 GPa and at zero temperature. The calculated acoustic velocities also indicate a transition from the bcc to dhcp phases for Mo. More intriguingly, the calculated density of states (DOS) shows that the dhcp structure remains metallic. The calculated electron density difference (EDD) reveals that its valence electrons are localized in the interstitial regions.

  18. High pressure structural studies on nanophase praseodymium oxide

    International Nuclear Information System (INIS)

    Saranya, L.; Chandra Shekar, N.V.; Amirthapandian, S.; Hussain, Shamima; Arulraj, A.; Sahu, P. Ch.

    2014-01-01

    The phase stability of nanocrystalline Pr 2 O 3 has been investigated under pressure by in-situ high pressure X-ray diffraction using Mao-Bell type diamond anvil cell. The ambient structure and phase of the praseodymium oxide have been resolved unambiguously using x-ray diffraction, SEM and TEM techniques. Under the action of pressure the cubic phase of the system is retained up to 15 GPa. This is unusual as other isostructural rare earth oxides show structural transformations even at lower pressures. From the best fit to the P–V data with the Murnaghan equation of state yields a bulk modulus of 171 GPa

  19. Ground-State Structures of Ice at High-Pressures

    OpenAIRE

    McMahon, Jeffrey M.

    2011-01-01

    \\textit{Ab initio} random structure searching based on density functional theory is used to determine the ground-state structures of ice at high pressures. Including estimates of lattice zero-point energies, ice is found to adopt three novel crystal phases. The underlying sub-lattice of O atoms remains similar among them, and the transitions can be characterized by reorganizations of the hydrogen bonds. The symmetric hydrogen bonds of ice X and $Pbcm$ are initially lost as ice transforms to s...

  20. High throughput platforms for structural genomics of integral membrane proteins.

    Science.gov (United States)

    Mancia, Filippo; Love, James

    2011-08-01

    Structural genomics approaches on integral membrane proteins have been postulated for over a decade, yet specific efforts are lagging years behind their soluble counterparts. Indeed, high throughput methodologies for production and characterization of prokaryotic integral membrane proteins are only now emerging, while large-scale efforts for eukaryotic ones are still in their infancy. Presented here is a review of recent literature on actively ongoing structural genomics of membrane protein initiatives, with a focus on those aimed at implementing interesting techniques aimed at increasing our rate of success for this class of macromolecules. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. High-pressure structural behaviour of nanocrystalline Ge

    International Nuclear Information System (INIS)

    Wang, H; Liu, J F; He, Y; Wang, Y; Chen, W; Jiang, J Z; Olsen, J Staun; Gerward, L

    2007-01-01

    The equation of state and the pressure of the I-II transition have been studied for nanocrystalline Ge using synchrotron x-ray diffraction. The bulk modulus and the transition pressure increase with decreasing particle size for both Ge-I and Ge-II, but the percentage volume collapse at the transition remains constant. Simplified models for the high-pressure structural behaviour are presented, based on the assumption that a large fraction of the atoms reside in grain boundary regions of the nanocrystalline material. The interface structure plays a significant role in affecting the transition pressure and the bulk modulus

  2. Fundamental understanding and rational design of high energy structural microbatteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel; Li, Huidong; Mendoza, Sarah; Zhang, Ji-Guang; Deng, Zhiqun Daniel; Xiao, Jie

    2018-01-01

    Microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices and medical applications, etc. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Multiple design features adopted to accommodate large mechanical stress during the rolling process are discussed providing new insights in designing the structural microbatteries for emerging technologies.

  3. High-performance insulator structures for accelerator applications

    International Nuclear Information System (INIS)

    Sampayan, S.E.; Caporaso, G.J.; Sanders, D.M.; Stoddard, R.D.; Trimble, D.O.; Elizondo, J.; Krogh, M.L.; Wieskamp, T.F.

    1997-05-01

    A new, high gradient insulator technology has been developed for accelerator systems. The concept involves the use of alternating layers of conductors and insulators with periods of order 1 mm or less. These structures perform many times better (about 1.5 to 4 times higher breakdown electric field) than conventional insulators in long pulse, short pulse, and alternating polarity applications. We describe our ongoing studies investigating the degradation of the breakdown electric field resulting from alternate fabrication techniques, the effect of gas pressure, the effect of the insulator-to-electrode interface gap spacing, and the performance of the insulator structure under bi-polar stress

  4. High temperature structural and magnetic properties of cobalt nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Ait Atmane, Kahina [Univ. Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baief, 75205 Paris Cedex 13 (France); Zighem, Fatih [Laboratoire Leon Brillouin, CEA CNRS UMR 12, IRAMIS, CEA-Saclay, 91191 Gif sur Yvette (France); Soumare, Yaghoub [Univ. Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baief, 75205 Paris Cedex 13 (France); Ibrahim, Mona; Boubekri, Rym [Universite de Toulouse, LPCNO, INSA CNRS UMR 5215, 135 av. de Rangueil, 31077 Toulouse Cedex 4 (France); Maurer, Thomas [Laboratoire Leon Brillouin, CEA CNRS UMR 12, IRAMIS, CEA-Saclay, 91191 Gif sur Yvette (France); Margueritat, Jeremie [Univ. Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baief, 75205 Paris Cedex 13 (France); Piquemal, Jean-Yves, E-mail: jean-yves.piquemal@univ-paris-diderot.fr [Univ. Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baief, 75205 Paris Cedex 13 (France); Ott, Frederic; Chaboussant, Gregory [Laboratoire Leon Brillouin, CEA CNRS UMR 12, IRAMIS, CEA-Saclay, 91191 Gif sur Yvette (France); Schoenstein, Frederic; Jouini, Noureddine [LSPM, CNRS UPR 9001, Universite Paris XIII, Institut Galilee, 99 av. J.-B. Clement, 93430 Villetaneuse (France); Viau, Guillaume, E-mail: gviau@insa-toulouse.fr [Universite de Toulouse, LPCNO, INSA CNRS UMR 5215, 135 av. de Rangueil, 31077 Toulouse Cedex 4 (France)

    2013-01-15

    We present in this paper the structural and magnetic properties of high aspect ratio Co nanoparticles ({approx}10) at high temperatures (up to 623 K) using in-situ X ray diffraction (XRD) and SQUID characterizations. We show that the anisotropic shapes, the structural and texture properties are preserved up to 500 K. The coercivity can be modelled by {mu}{sub 0}H{sub C}=2(K{sub MC}+K{sub shape})/M{sub S} with K{sub MC} the magnetocrystalline anisotropy constant, K{sub shape} the shape anisotropy constant and M{sub S} the saturation magnetization. H{sub C} decreases linearly when the temperature is increased due to the loss of the Co magnetocrystalline anisotropy contribution. At 500 K, 50% of the room temperature coercivity is preserved corresponding to the shape anisotropy contribution only. We show that the coercivity drop is reversible in the range 300-500 K in good agreement with the absence of particle alteration. Above 525 K, the magnetic properties are irreversibly altered either by sintering or by oxidation. - Graphical abstract: We present in this paper the structural and magnetic properties of high aspect ratio Co nanorods ({approx}10) at high temperatures (up to 623 K) using in-situ X-ray diffraction and SQUID characterizations. We show that the anisotropic shapes, the structural and texture properties are preserved up to 500 K. Above 525 K, the magnetic properties are irreversibly altered either by sintering or by oxidation. Highlights: Black-Right-Pointing-Pointer Ferromagnetic Co nanorods are prepared using the polyol process. Black-Right-Pointing-Pointer The structural and texture properties of the Co nanorods are preserved up to 500 K. Black-Right-Pointing-Pointer The magnetic properties of the Co nanorods are irreversibly altered above 525 K.

  5. High duty factor structures for e+e- storage rings

    International Nuclear Information System (INIS)

    Allen, M.A.; Karvonen, L.G.

    1976-01-01

    The next generation of e + e - storage rings will need rf systems similar to those required for a continuous-duty linac of over 50 MeV. For the PEP Storage Ring at 18 GeV, it is presently planned to provide a peak accelerating voltage of 77 MV in 18 aluminum accelerating structures, each structure consisting of five slot-coupled cells operating in the π mode. The power dissipation will be 100 kW per cell for a total of 500 kW per five-cell structure at 353 MHz. A two-cell model was designed and built to dissipate 100 kW per cell or a total of 200 kW. This structure was powered (cw) to over 100 kW per cell, and detailed calorimetric data were taken and compared with the original heat transfer calculations. The power level achieved corresponds to a peak accelerating field (transit-time factor included) in the two-cell model of 0.8 MV per cell or 1.9 MV/meter. Operating experience with the SPEAR five-cell structure is discussed. The four SPEAR structures are each designed to operate with wall losses of 75 kW and up to 50 kW into the stored beam. Power to each structure is provided by a 125-kW high-efficiency four-cavity klystron. No isolation has been used and the resulting interaction between the accelerating structures, klystrons, and the stored beams is discussed

  6. Friction Stir Additive Manufacturing: Route to High Structural Performance

    Science.gov (United States)

    Palanivel, S.; Sidhar, H.; Mishra, R. S.

    2015-03-01

    Aerospace and automotive industries provide the next big opportunities for additive manufacturing. Currently, the additive industry is confronted with four major challenges that have been identified in this article. These challenges need to be addressed for the additive technologies to march into new frontiers and create additional markets. Specific potential success in the transportation sectors is dependent on the ability to manufacture complicated structures with high performance. Most of the techniques used for metal-based additive manufacturing are fusion based because of their ability to fulfill the computer-aided design to component vision. Although these techniques aid in fabrication of complex shapes, achieving high structural performance is a key problem due to the liquid-solid phase transformation. In this article, friction stir additive manufacturing (FSAM) is shown as a potential solid-state process for attaining high-performance lightweight alloys for simpler geometrical applications. To illustrate FSAM as a high-performance route, manufactured builds of Mg-4Y-3Nd and AA5083 are shown as examples. In the Mg-based alloy, an average hardness of 120 HV was achieved in the built structure and was significantly higher than that of the base material (97 HV). Similarly for the Al-based alloy, compared with the base hardness of 88 HV, the average built hardness was 104 HV. A potential application of FSAM is illustrated by taking an example of a simple stiffener assembly.

  7. Inferring repeat-protein energetics from evolutionary information.

    Directory of Open Access Journals (Sweden)

    Rocío Espada

    2017-06-01

    Full Text Available Natural protein sequences contain a record of their history. A common constraint in a given protein family is the ability to fold to specific structures, and it has been shown possible to infer the main native ensemble by analyzing covariations in extant sequences. Still, many natural proteins that fold into the same structural topology show different stabilization energies, and these are often related to their physiological behavior. We propose a description for the energetic variation given by sequence modifications in repeat proteins, systems for which the overall problem is simplified by their inherent symmetry. We explicitly account for single amino acid and pair-wise interactions and treat higher order correlations with a single term. We show that the resulting evolutionary field can be interpreted with structural detail. We trace the variations in the energetic scores of natural proteins and relate them to their experimental characterization. The resulting energetic evolutionary field allows the prediction of the folding free energy change for several mutants, and can be used to generate synthetic sequences that are statistically indistinguishable from the natural counterparts.

  8. Reactive thermal waves in energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Larry G [Los Alamos National Laboratory

    2009-01-01

    Reactive thermal waves (RTWs) arise in several energetic material applications, including self-propagating high-temperature synthesis (SHS), high explosive cookoff, and the detonation of heterogeneous explosives. In this paper I exmaine ideal RTWs, by which I mean that (1) material motion is neglected, (2) the state dependence of reaction is Arrhenius in the temperature, and (3) the reaction rate is modulated by an arbitrary mass-fraction-based reaction progress function. Numerical simulations demonstrate that one's natural intuition, which is based mainly upon experience with inert materials and which leads one to expect diffusion processes to become relatively slow after a short time period, is invalid for high energy, state-sensitive reactive systems. Instead, theory predicts that RTWs can propagate at very high speeds. This result agrees with estimates for detonating heterogeneous explosives, which indicate that RTWs must spread from hot-spot nucleation sites at rates comparable to the detonation speed in order to produce experimentally-observed reaction zone thicknesses. Using dimensionless scaling and further invoking the high activation energy approximation, I obtain an analytic formula for the steady plane RTW speed from numerical calculations. I then compute the RTW speed for real explosives, and discuss aspects of their behavior.

  9. High gradient tests of SLAC Linear Collider Accelerator Structures

    International Nuclear Information System (INIS)

    Wang, J.W.; Deruyter, H.; Eichner, J.; Fant, K.H.; Hoag, H.A.; Koontz, R.F.; Lavine, T.; Loew, G.A.; Loewen, R.; Menegat, L.

    1994-08-01

    This paper describes the current SLAC R ampersand D program to develop room temperature accelerator structures for the Next Linear Collider (NLC). The structures are designed to operate at 11.4 GHz at an accelerating gradient in the range of 50 to 100 MV/m. In the past year a 26 cm constant-impedance traveling-wave section, a 75 cm constant-impedance traveling-wave section, and a 1.8 m traveling-wave section with detuned deflecting modes have been high-power tested. The paper presents a brief description of the RF test setup, the design and manufacturing details of the structures, and a discussion of test results including field emission, RF processing, dark current spectrum and RF breakdown

  10. Applications of Asymptotic Sampling on High Dimensional Structural Dynamic Problems

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Bucher, Christian

    2011-01-01

    The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has consid...... dimensional reliability problems in structural dynamics.......The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has...... is minimized. Next, the method is applied on different cases of linear and nonlinear systems with a large number of random variables representing the dynamic excitation. The results show that asymptotic sampling is capable of providing good approximations of low failure probability events for very high...

  11. An application of impediography to the high sensitivity and high resolution identification of structural damage

    International Nuclear Information System (INIS)

    Zhao, L; Yang, J; Semperlotti, F; Wang, K W

    2015-01-01

    In this study we explore the use of impediographic techniques to perform damage detection in plate-like metal structures. Impediography relies on the piezo-resistive coupling of the host structure to reconstruct high sensitivity and high resolution maps of the internal electrical conductivity. By exploiting localized strain perturbations generated via focused acoustic waves, the piezo-resistive coupling allows extracting a set of linearly independent boundary voltage data that drastically reduces the ill-conditioning of the inverse problem, therefore increasing the performance. The localized perturbation is achieved by leveraging the concept of frequency selective structure (FSS), that is a dynamically tailored structural element enabling the required acoustic focusing via vibration localization. Based on the FSS approach, the impediographic technique is numerically tested to investigate the performance of the combined approach for structural damage detection. The effects of practical implementation issues, such as limited perturbations and limited boundary data, are also explored. (paper)

  12. ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS

    International Nuclear Information System (INIS)

    Urata, Yuji; Tsai, Patrick P.; Huang, Kuiyun; Yamaoka, Kazutaka; Tashiro, Makoto S.

    2012-01-01

    This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E src peak of 1458.7 +132.6 –106.6 keV and E iso of 34.5 +2.0 –1.8 × 10 52 erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of α = –2.6 ± 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 ± 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5. 0 8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E src peak -E iso and E src peak -E γ correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

  13. GLOBAL ENERGETICS OF SOLAR FLARES. IV. CORONAL MASS EJECTION ENERGETICS

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.

    2016-01-01

    This study entails the fourth part of a global flare energetics project, in which the mass m cme , kinetic energy E kin , and the gravitational potential energy E grav of coronal mass ejections (CMEs) is measured in 399 M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission, using a new method based on the EUV dimming effect. EUV dimming is modeled in terms of a radial adiabatic expansion process, which is fitted to the observed evolution of the total emission measure of the CME source region. The model derives the evolution of the mean electron density, the emission measure, the bulk plasma expansion velocity, the mass, and the energy in the CME source region. The EUV dimming method is truly complementary to the Thomson scattering method in white light, which probes the CME evolution in the heliosphere at r ≳ 2 R ⊙ , while the EUV dimming method tracks the CME launch in the corona. We compare the CME parameters obtained in white light with the LASCO/C2 coronagraph with those obtained from EUV dimming with the Atmospheric Imaging Assembly onboard the SDO for all identical events in both data sets. We investigate correlations between CME parameters, the relative timing with flare parameters, frequency occurrence distributions, and the energy partition between magnetic, thermal, nonthermal, and CME energies. CME energies are found to be systematically lower than the dissipated magnetic energies, which is consistent with a magnetic origin of CMEs.

  14. The structure of high-quality aluminium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-01-01

    Full Text Available In this study presents the analyse of aluminium iron cast structure (as-cast condition which are used in high temperature. While producing the casts of aluminium iron major influence has been preserve the structure of technological process parameters. The addition to Fe-C-Al alloy V, Ti, Cr leads to the improvement of functional and mechanical cast qualities. In this study, a method was investigated to eliminate the presence of undesirable Al4C3 phases in a aluminium cast iron structure and thus improve the production process. V and Ti additions in aluminium cast iron allows to development of FeAl - VC or TiC alloys. In particular, V or Ti contents above 5 wt.% were found to totally eliminate the presence of Al4C3. In addition, preliminary work indicates that the alloy with the FeAl - VC or TiC structure reveals high oxidation resistance. The introduction of 5 wt.% chromium to aluminium cast iron strengthened Al4C3 precipitate. Thus, the resultant alloy can be considered an intermetallic FeAl matrix strengthened by VC and TiC or modified Al4C3 reinforcements.

  15. Structured Cable for High-Current Coils of Tokamaks

    Science.gov (United States)

    Benson, Christopher; McIntyre, Peter; Sattarov, Akhdiyor; Mann, Thomas

    2011-10-01

    The 45 kA superconducting cable for the ITER central solenoid coil has yielded questionable results in two recent tests. In both cases the cable Tc increased after cycling only a fraction of the design life, indicating degradation due to fatigue and fracture among the superconducting strands. The Accelerator Research Lab at Texas A&M University is developing a design for a Nb3Sn structured cable suitable for such tokamak coils. The superconductor is configured in 6 sub-cables, and each subcable is supported within a channel of a central support structure within a high-strength armor sheath. The structured cable addresses two issues that are thought to compromise opposition at high current. The strands are supported without cross-overs (which produce stress concentration); and armor sheath and core structure bypass stress through the coil and among subcables so that the stress within each subcable is only what is produced directly upon it. Details of the design and plans for development will be presented.

  16. Structural analysis technology for high-temperature design

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1977-01-01

    Results from an ongoing program devoted to the development of verified high-temperature structural design technology applicable to nuclear reactor systems are described. The major aspects addressed by the program are (1) deformation behavior; (2) failure associated with creep rupture, brittle fracture, fatigue, creep-fatigue interactions, and crack propagation; and (3) the establishment of appropriate design criteria. This paper discusses information developed in the deformation behavior category. The material considered is type 304 stainless steel, and the temperatures range to 1100 0 F (593 0 C). In essence, the paper considers the ingredients necessary for predicting relatively high-temperature inelastic deformation behavior of engineering structures under time-varying temperature and load conditions and gives some examples. These examples illustrate the utility and acceptability of the computational methods identified and developed for prediting essential features of complex inelastic behaviors. Conditions and responses that can be encountered under nuclear reactor service conditions and invoked in the examples. (Auth.)

  17. A hydronitrogen solid: high pressure ab initio evolutionary structure searches

    International Nuclear Information System (INIS)

    Hu Anguang; Zhang Fan

    2011-01-01

    High pressure ab initio evolutionary structure searches resulted in a hydronitrogen solid with a composition of (NH) 4 . The structure searches also provided two molecular isomers, ammonium azide (AA) and trans-tetrazene (TTZ) which were previously discovered experimentally and can be taken as molecular precursors for high pressure synthesis of the hydronitrogen solid. The computed pressure versus enthalpy diagram showed that the transformation pressure to the hydronitrogen solid is 36 GPa from AA and 75 GPa from TTZ. Its metastability was analyzed by the phonon dispersion spectrum and room-temperature vibrational density of state together with the transformation energy barrier back to molecular phases at 298 K. The predicted energy barrier of 0.21 eV/atom means that the proposed hydronitrogen solid should be very stable at ambient conditions. (fast track communication)

  18. High Gradient Accelerating Structures for Carbon Therapy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey; Agustsson, R.; Faillace, L.; Goel, A.; Mustapha, B.; Nassiri, A.; Ostroumov, P.; Plastun, A.; Savin, E.

    2016-05-01

    Carbon therapy is the most promising among techniques for cancer treatment, as it has demonstrated significant improvements in clinical efficiency and reduced toxicity profiles in multiple types of cancer through much better localization of dose to the tumor volume. RadiaBeam, in collaboration with Argonne National Laboratory, are developing an ultra-high gradient linear accelerator, Advanced Compact Carbon Ion Linac (ACCIL), for the delivery of ion-beams with end-energies up to 450 MeV/u for 12C6+ ions and 250 MeV for protons. In this paper, we present a thorough comparison of standing and travelling wave designs for high gradient S-Band accelerating structures operating with ions at varying velocities, relative to the speed of light, in the range 0.3-0.7. In this paper we will compare these types of accelerating structures in terms of RF, beam dynamics and thermo-mechanical performance.

  19. High temperature structural ceramic materials manufactured by the CNTD process

    International Nuclear Information System (INIS)

    Stiglich, J.J. Jr.; Bhat, D.G.; Holzl, R.A.

    1980-01-01

    Controlled Nucleation Thermochemical Deposition (CNTD) has emerged from classical chemical deposition (CVD) technology. This paper describes the techniques of thermochemical grain refinement. The effects of such refinement on mechanical properties of materials at room temperature and at elevated temperatures are outlined. Emphasis is given to high temperature structural ceramic materials such as SiC, Si 3 N 4 , AlN, and TiB 2 and ZrB 2 . An example of grain refinement accompanied by improvements in mechanical properties is SiC. Grain sizes of 500 to 1000 A have been observed in CNTD SiC with room temperature MOR of 1380 to 2070 MPa (4 pt bending) and MOR of 3450 to 4140 MPa (4 pt bending) at 1350 0 C. Various applications of these materials to the solution of high temperature structural problems are described. (author)

  20. Soil-structure interaction effects on high level waste tanks

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.; Heymsfeld, E.

    1991-01-01

    High Level Waste Tanks consist of steel tanks located in concrete vaults which are usually completely embedded in the soil. Many of these tanks are old and were designed to seismic standards which are not compatible with current requirements. The objective if this paper is to develop simple methods of modeling SSI effects for such structures and to obtain solutions for a range of parameters that can be used to identify significant aspects of the problem

  1. High energy physics. Ultimate structure of matter and energy

    International Nuclear Information System (INIS)

    1979-04-01

    Some of the principle discoveries and insights and their development up to today are sketched. It is shown how one layer after another was discovered by penetrating farther into the structure of matter. Covered are the mounting energy scale, discoveries at high energy frontier, the families of quarks and leptons, the four forces of nature, some achievements of the past few years, particle accelerators and experimental apparatus. A glossary of terms is included

  2. Detecting highly overlapping community structure by greedy clique expansion

    OpenAIRE

    Lee, Conrad; Reid, Fergal; McDaid, Aaron; Hurley, Neil

    2010-01-01

    In complex networks it is common for each node to belong to several communities, implying a highly overlapping community structure. Recent advances in benchmarking indicate that existing community assignment algorithms that are capable of detecting overlapping communities perform well only when the extent of community overlap is kept to modest levels. To overcome this limitation, we introduce a new community assignment algorithm called Greedy Clique Expansion (GCE). The algorithm identifies d...

  3. Band structure of CdTe under high pressure

    International Nuclear Information System (INIS)

    Jayam, Sr. Gerardin; Nirmala Louis, C.; Amalraj, A.

    2005-01-01

    The band structures and density of states of cadmium telluride (CdTe) under various pressures ranging from normal to 4.5 Mbar are obtained. The electronic band structure at normal pressure of CdTe (ZnS structure) is analyzed and the direct band gap value is found to be 1.654 eV. CdTe becomes metal and superconductor under high pressure but before that it undergoes structural phase transition from ZnS phase to NaCl phase. The equilibrium lattice constant, bulk modulus and the phase transition pressure at which the compounds undergo structural phase transition from ZnS to NaCl are predicted from the total energy calculations. The density of states at the Fermi level (N(E F )) gets enhanced after metallization, which leads to the superconductivity in CdTe. In our calculation, the metallization pressure (P M = 1.935 Mbar) and the corresponding reduced volume ((V/V 0 ) M = 0.458) are estimated. Metallization occurs via direct closing of band gap at Γ point. (author)

  4. Free radicals. High-resolution spectroscopy and molecular structure

    International Nuclear Information System (INIS)

    Hirota, E.

    1983-01-01

    High-resolution, high-sensitivity spectroscopy using CW laser and microwave sources has been applied to free radicals and transient molecules to establish their existence and to explore their properties in detail. The radicals studied were mainly generated by discharge-induced reactions. A few molecules are used as typical examples to illustrate the results so far obtained. The molecular and electronic structures of free radicals, intramolecular motions of large amplitudes in some labile molecules, and metastable electronic states of carbenes are given special emphasis. The significance of the present spectroscopic results in other related fields such as astronomy and atmospheric chemistry is stressed. 4 figures, 3 tables

  5. Nonlinear system identification of smart structures under high impact loads

    International Nuclear Information System (INIS)

    Sarp Arsava, Kemal; Kim, Yeesock; El-Korchi, Tahar; Park, Hyo Seon

    2013-01-01

    The main purpose of this paper is to develop numerical models for the prediction and analysis of the highly nonlinear behavior of integrated structure control systems subjected to high impact loading. A time-delayed adaptive neuro-fuzzy inference system (TANFIS) is proposed for modeling of the complex nonlinear behavior of smart structures equipped with magnetorheological (MR) dampers under high impact forces. Experimental studies are performed to generate sets of input and output data for training and validation of the TANFIS models. The high impact load and current signals are used as the input disturbance and control signals while the displacement and acceleration responses from the structure–MR damper system are used as the output signals. The benchmark adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. Comparisons of the trained TANFIS models with experimental results demonstrate that the TANFIS modeling framework is an effective way to capture nonlinear behavior of integrated structure–MR damper systems under high impact loading. In addition, the performance of the TANFIS model is much better than that of ANFIS in both the training and the validation processes. (paper)

  6. Mechanical properties of LMR structural materials at high temperature

    International Nuclear Information System (INIS)

    Kim, D. W.; Kuk, I. H.; Ryu, W. S. and others

    1999-03-01

    Austenitic stainless is used for the structural material of liquid metal reactor (LMR) because of good mechanical properties at high temperature. Stainless steel having more resistant to temperature by adding minor element has been developing for operating the LMR at higher temperature. Of many elements, nitrogen is a prospective element to modify type 316L(N) stainless steel because nitrogen is the most effective element for solid solution and because nitrogen retards the precipitation of carbide at grain boundary. Ti, Nb, and V are added to improve creep properties by stabilizing the carbides through forming MC carbide. Testing techniques of tensile, fatigue, creep, and creep-fatigue at high temperature are difficult. Moreover, testing times for creep and creep-fatigue tests are very long up to several tens of thousands hours because creep and creep-fatigue phenomena are time-dependent damage mechanism. So, it is hard to acquire the material data for designing LMR systems during a limited time. In addition, the integrity of LMR structural materials at the end of LMR life has to be predicted from the laboratory data tested during the short term because there is no data tested during 40 years. Therefore, the effect of elements on mechanical properties at high temperature was reviewed in this study and many methods to predict the long-term behaviors of structural materials by simulated modelling equation is shown in this report. (author). 32 refs., 9 tabs., 38 figs

  7. Mode structure and continuum damping of high-n toroidal Alfven eigenmodes

    International Nuclear Information System (INIS)

    Rosenbluth, M.N.; Berk, H.L.; Van Dam, J.W.; Lindberg, D.M.

    1992-02-01

    An asymptotic theory is described for calculating the mode structure and continuum damping of short wave-length toroidal Alfven eigenmodes (TAE). The formalism somewhat resembles the treatment used for describing low-frequency toroidal modes with singular structure at a rational surface, where an inner solution, which for the TAE mode has toroidal coupling, is matched to an outer toroidally uncoupled solution. A three-term recursion relation among coupled poloidal harmonic amplitudes is obtained, whose solution gives the structure of the global wavefunction and the complex eigenfrequency, including continuum damping. Both analytic and numerical solutions are presented. The magnitude of the damping is essential for determining the thresholds for instability driven by the spatial gradients of energetic particles (e.g., neutral beam-injected ions or fusion-product alpha particles) contained in a tokamak plasma

  8. Evidence for Alfvén Waves in Source Flares of Impulsive Solar Energetic Particle Events

    Science.gov (United States)

    Bucik, R.; Innes, D.; Mason, G. M.; Wiedenbeck, M. E.; Gomez-Herrero, R.; Nitta, N.

    2017-12-01

    Impulsive solar energetic particle events, characterised by a peculiar elemental composition with the rare elements like 3He and ultra-heavy ions enhanced by factors up to ten thousand above their thermal abundance, have been puzzling for almost 50 years. The solar sources of these events have been commonly associated with coronal jets, believed to be a signature of magnetic reconnection involving field lines open to interplanetary space. Here we present some of the most intense events, highly enriched in both 3He and heavier ions. The corresponding high-resolution, extreme-ultraviolet imaging observations have revealed for the first time a helical structure in the source flare with a jet-like shape. A mini-filament at the base of the jet appears to trigger these events. The events were observed with the two Solar Terrestrial Relations Observatories on the backside of the Sun, during the period of increased solar activity in 2014. During the last decade, it has been established that the helical motions in coronal jets represent propagating Alfvén waves. Revealing such magnetic-untwisting waves in the solar sources of highly enriched events in this study is consistent with a stochastic acceleration mechanism. An examination of jets in previously reported impulsive solar energetic particle events indicates that they tend to be large-scale blowout jets, sometimes cleanly showing a twisted configuration.The work of R. Bucik is supported by the Deutsche Forschungsgemeinschaft grant BU 3115/2-1.

  9. Magnetosphere energetics during substorm events IMP 8 and Geotail observations

    CERN Document Server

    Belehaki, A

    2001-01-01

    Magnetospheric energetics during substorm events is studied in this paper. Three events were selected, a weak substorm, a large isolated one and finally a prolonged period of substorm activity with multiple intensifications. It is assumed that the energy, that entered the magnetosphere due to electromagnetic coupling with the solar wind, is described by the epsilon parameter, proposed by Perreault and Akasofu (1978). High resolution, magnetic field and plasma data from the MGF and LEP experiments on board Geotail were analyzed to determine the timing of plasmoid release, its dimensions, its convection velocity and finally the energy carried by each plasmoid. Plasmoids were defined as structures with rotating magnetic fields and enhanced total pressure. Tailward plasmoid bulk speed in the distant tail varied from 350 to 750 km/s. Their dimensions in the X/sub GSM/ direction was found to be from 4.5 to 28 R/sub E/, and their duration did not exceed 5 min. The average energy carried by each plasmoid in the dista...

  10. Structural and energetical studies of the adsorption of para and meta-isomers of xylene on pre-hydrated zeolite BaX. Characterization by neutron diffraction and temperature programmed desorption; Etude structurale et energetique de l'adsorption des isomeres para- et meta- du xylene dans la zeolithe BaX prehydratee. Caracterisation par diffraction des neutrons et thermodesorption programmee

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, Ch.

    1999-10-19

    The separation of p-xylene from C{sub 8} aromatics is performed industrially by selective adsorption on zeolitic materials. FAU-type zeolites are currently used for this separation and especially the partially hydrated BaX. The aim of this work is to characterize from a structural (by low temperature neutron powder diffraction) and an energetical (by temperature programmed desorption) point of view, the adsorption of para- and meta- isomers of xylene, for different fillings, as pure substances as well as mixtures, on pre-hydrated zeolite BaX. The influence of the water pre-adsorption on xylene adsorption selectivity is carefully discussed. The crystalline structure of the zeolite BaX (framework and compensation of charge cations) and of the adsorbed phase (water, p- and m-xylene molecules) are completely characterized by neutron diffraction. The location and the distribution of water and xylene molecules on their adsorption sites is especially followed as a function of the filling of the zeolite and of the composition of the adsorbed phase. Microscopic measurements were correlated to the energetical analysis (at a macroscopic level) in order to obtain a consistent description of adsorption phenomenon and to propose a possible origin for adsorption selectivity.

  11. Energetic aspects of skeletal muscle contraction: implications of fiber types.

    Science.gov (United States)

    Rall, J A

    1985-01-01

    In this chapter fundamental energetic properties of skeletal muscles as elucidated from isolated muscle preparations are described. Implications of these intrinsic properties for the energetic characterization of different fiber types and for the understanding of locomotion have been considered. Emphasis was placed on the myriad of physical and chemical techniques that can be employed to understand muscle energetics and on the interrelationship of results from different techniques. The anaerobic initial processes which liberate energy during contraction and relaxation are discussed in detail. The high-energy phosphate (approximately P) utilized during contraction and relaxation can be distributed between actomyosin ATPase or cross-bridge cycling (70%) and the Ca2+ ATPase of the sacroplasmic reticulum (30%). Muscle shortening increases the rate of approximately P hydrolysis, and stretching a muscle during contraction suppresses the rate of approximately P hydrolysis. The economy of an isometric contraction is defined as the ratio of isometric mechanical response to energetic cost and is shown to be a fundamental intrinsic parameter describing muscle energetics. Economy of contraction varies across the animal kingdom by over three orders of magnitude and is different in different mammalian fiber types. In mammalian skeletal muscles differences in economy of contraction can be attributed mainly to differences in the specific actomyosin and Ca2+ ATPase of muscles. Furthermore, there is an inverse relationship between economy of contraction and maximum velocity of muscle shortening (Vmax) and maximum power output. This is a fundamental relationship. Muscles cannot be economical at developing and maintaining force and also exhibit rapid shortening. Interestingly, there appears to be a subtle system of unknown nature that modulates the Vmax and economy of contraction. Efficiency of a work-producing contraction is defined and contrasted to the economy of contraction

  12. Type II solar radio bursts, interplanetary shocks, and energetic particle events

    International Nuclear Information System (INIS)

    Cane, H.V.; Stone, R.G.

    1984-01-01

    Using the ISEE 3 radio astronomy experiment data we have identified 37 interplanetary type II bursts in the period 1978 September to 1981 December. We lists these events and the associated phenomena. The events are preceded by intense, soft X-ray events with long decay times and type II or type IV bursts, or both, at meter wavelengths. The meter wavelength type II bursts are usually intense and exhibit herringbone structure. The extension of the herringbone structure into the kilometer wavelength range appears as a fast drift radio feature which we refer to as a shock associated radio event. The shock associated event is an important diagnostic for the presence of a strong shock and particle acceleration. The majority of the interplanetary type II bursts are associated with energetic particle events. Our results support other studies which indicate that energetic soalr particles detected at 1 A.U. are generatd by shock acceleration. From a preliminary analysis of the available data there appears to be a high correlation with white light coronal transients. The transients are fast: i.e., velocities greater than 500 km s -1

  13. The Energetic Neutral Atoms of the "Croissant" Heliosphere with Jets

    Science.gov (United States)

    Kornbleuth, M. Z.; Opher, M.; Michael, A.

    2017-12-01

    Opher et al. (2015) suggests the heliosphere may have two jets in the tail-ward direction driven to the north and south. This new model, the "Croissant Heliosphere", is in contrast to the classically accepted view of a comet-like tail. We investigate the effect of the heliosphere with jets model on energetic neutral atom (ENA) maps. Regardless of the existence of a split tail, other models show heliosheath plasma confined by the toroidal magnetic field in a "slinky" structure, similar to astrophysical jets bent by the interstellar medium. Therefore, the confinement of the plasma should appear in the ENA maps. ENA maps from the Interstellar Boundary Explorer (IBEX) have recently shown two high latitude lobes with excess ENA flux at higher energies in the tail of the heliosphere. These lobes could be a signature of the two jet structure of the heliosphere, while some have argued they are cause by the fast/slow solar wind profile. Here we present the ENA maps of the "Croissant Heliosphere" using initially a uniform solar wind. We incorporate pick-up ions (PUIs) into our model based on the kinetic modeling of Malama et al. (2006). We include the extinction of PUIs in the heliosheath and describe a locally created PUI population resulting from this extinction process. Additionally, we include the angular dependence of the PUIs based on the work of Vasyliunas & Siscoe (1976). With our model, we find that, in the presence of a uniform solar wind, the "heliosphere with jets" model is able to qualitatively reproduce the lobe structure of the tail seen in IBEX measurements. Turbulence also manifests itself within the lobes of the simulated ENA maps on the order of years. Finally we will present ENA maps using a time-dependent model of the heliosphere with the inclusion of solar cycle.

  14. High-Q microwave resonators with a photonic crystal structure

    International Nuclear Information System (INIS)

    Schuster, M.

    2001-08-01

    The localisation of electromagnetic energy at a defect in a photonic crystal is similar to a well known effect employed to construct high-Q microwave resonators: In a whispering gallery (WHG-) mode resonator the high Q-factor is achieved by localisation of the electromagnetic field energy by total reflection inside a disk made of dielectric material. The topic of this work is to demonstrate, that WHG-like modes can exist in an air defect in a photonic crystal that extends over several lattice periods; and that a high-Q microwave resonator can be made, utilizing these resonant modes. In numerical simulations, the transmission properties of a photonic crystal structure with hexagonal lattice symmetry have been investigated with a transfer-matrix-method. The eigenmodes of a defect structure in a photonic crystal have been calculated with a quasi-3d finite element integration technique. Experimental results confirm the simulated transmission properties and show the existence of modes inside the band gap, when a defect is introduced in the crystal. Resonator measurements show that a microwave resonator can be operated with those defect modes. It was found out that the main losses of the resonator were caused by bad microwave properties of the used dielectric material and by metal losses on the top and bottom resonator walls. Furthermore, it turned out that the detection of the photonic crystal defect mode was difficult because of a lack of simulation possibilities and high housing mode density in the resonator. (orig.)

  15. ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Yuji; Tsai, Patrick P. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Huang, Kuiyun [Academia Sinica Institute of Astronomy and Astrophysics, Taipei 106, Taiwan (China); Yamaoka, Kazutaka [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1, Fuchinobe, Sayamihara 229-8558 (Japan); Tashiro, Makoto S., E-mail: urata@astro.ncu.edu.tw [Department of Physics, Saitama University, Shimo-Okubo, Saitama 338-8570 (Japan)

    2012-03-20

    This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E{sup src}{sub peak} of 1458.7{sup +132.6}{sub -106.6} keV and E{sub iso} of 34.5{sup +2.0}{sub -1.8} Multiplication-Sign 10{sup 52} erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of {alpha} = -2.6 {+-} 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 {+-} 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5.{sup 0}8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E{sup src}{sub peak}-E{sub iso} and E{sup src}{sub peak}-E{sub {gamma}} correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

  16. Observations of interplanetary energetic ion enhancements near magnetic sector boundaries

    International Nuclear Information System (INIS)

    Briggs, P.R.; Armstrong, T.P.

    1984-01-01

    We have examined all energetic medium nuclei (carbon, nitrogen, and oxygen) flux increases observed all the satellites IMP 7 and IMP 8 at 1 AU during Bartels rotations 1906-1974. After removing flare-related increases, the remaining 14 ''events'' were compared to interplanetary magnetic field and solar wind parameters. We have discovered a class of flux enhancements in which the ion increases occur close to the onset of magnetic sector boundary crossings. We interpret this observation as a facilitated access to 1 AU of energetic ions from the corona or chromopshere via the magnetic sector structure. It appears that this access is more significant for medium than for lighter nuclei, ''suggesting a possible charge- or rigidity-dependent transport mechanism

  17. Collective phenomena with energetic particles in fusion plasmas

    International Nuclear Information System (INIS)

    Breizman, B.N.; Berk, H.L.; Candy, J.

    2001-01-01

    Recent progress in the theory of collective modes driven by energetic particles, as well as interpretations of fast particle effects observed in fusion-related experiments, are described. New developments in linear theory include: (a) Alfven-mode frequency gap widening due to energetic trapped ions, (b) interpretation of JET results for plasma pressure effect on TAE modes, and (c) ''counter'' propagation of TAE modes due to trapped fast ion anisotropy. The new nonlinear results are: (a) theoretical explanation for the pitchfork splitting effect observed in TAE experiments on JET, (b) existence of coherent structures with strong frequency chirping due to kinetic instability, (c) self-consistent nonlinear theory for fishbone instabilities, and (d) intermittent quasilinear diffusion model for anomalous fast particle losses. (author)

  18. Collective phenomena with energetic particles in fusion plasmas

    International Nuclear Information System (INIS)

    Breizman, B.N.; Berk, H.L.; Candy, J.

    1999-01-01

    Recent progress in the theory of collective modes driven by energetic particles, as well as interpretations of fast particle effects observed in fusion-related experiments, are described. New developments in linear theory include: (a) Alfven-mode frequency gap widening due to energetic trapped ions, (b) interpretation of JET results for plasma pressure effect on TAE modes, and (c) 'counter' propagation of TAE modes due to trapped fast ion anisotropy. The new nonlinear results are: (a) theoretical explanation for the pitchfork splitting effect observed in TAE experiments on JET, (b) existence of coherent structures with strong frequency chirping due to kinetic instability, (c) self-consistent nonlinear theory for fishbone instabilities, and (d) intermittent quasilinear diffusion model for anomalous fast particle losses. (author)

  19. High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structures

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, Bo

    2014-01-01

    With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile......-deformed copper, individual, almost dislocation-free subgrains are identified from high-intensity peaks and distinguished by their unique combination of orientation and elastic strain; dislocation walls manifest themselves as a smooth cloud of lower intensity. The elastic strain shows only minor variations within...... dynamics is followed in situ during varying loading conditions by reciprocal space mapping: during uninterrupted tensile deformation, formation of subgrains is observed concurrently with broadening of Bragg reflections shortly after the onset of plastic deformation. When the traction is terminated, stress...

  20. A new support structure for high field magnets

    International Nuclear Information System (INIS)

    Bish, P.S.; Caspi, S.; Dietderich, D.R.; Gourlay, S.A.; Hafalia, R.R.; Hannaford, R.; Lietzke, A.F.; Liggins, N.; McInturff, A.D.; Sabbi, G.L.; Scanlan, R.M.; O'Neill, J.; Swanson, J.H

    2001-01-01

    Pre-stress of superconducting magnets can be applied directly through the magnet yoke structure. We have replaced the collar functionality in our 14 Tesla R and D Nb 3 Sn dipole magnets with an assembly procedure based on an aluminum shell and bladders. Bladders, placed between the coil pack and surrounding yoke inside the shell, are pressurized up to 10 ksi [70 MPa] to create an interference gap. Keys placed into the interference gap replace the bladder functionality. Following the assembly, the bladders are deflated and removed. Strain gauges mounted directly on the shell are used to monitor the stress of the entire magnet structure, thereby providing a high degree of pre-stress control without the need for high tolerances. During assembly, a force of 8.2 x 10 5 lbs/ft [12 MN/m] is generated by the bladders and the stress in the 1.57 inch [40mm] aluminum shell reaches 20.3 ksi [140 MPa]. During cool-down the thermal expansion difference between shell and yoke generates an additional compressive force of 6.85 x 10 5 lbs/ft [10 MN/m], corresponding to a final stress in the shell of 39.2 ksi [270 MPa]. Pre-stress conditions are sufficient for 16 T before the coils separate at the bore. Bladders have now been used in the assembly and disassembly of two 14 T magnets. This paper describes the magnet structure, assembly procedure and test results