WorldWideScience

Sample records for highly conserved gene

  1. Evolutionary conservation of essential and highly expressed genes in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Scharfe Maren

    2010-04-01

    Full Text Available Abstract Background The constant increase in development and spread of bacterial resistance to antibiotics poses a serious threat to human health. New sequencing technologies are now on the horizon that will yield massive increases in our capacity for DNA sequencing and will revolutionize the drug discovery process. Since essential genes are promising novel antibiotic targets, the prediction of gene essentiality based on genomic information has become a major focus. Results In this study we demonstrate that pooled sequencing is applicable for the analysis of sequence variations of strain collections with more than 10 individual isolates. Pooled sequencing of 36 clinical Pseudomonas aeruginosa isolates revealed that essential and highly expressed proteins evolve at lower rates, whereas extracellular proteins evolve at higher rates. We furthermore refined the list of experimentally essential P. aeruginosa genes, and identified 980 genes that show no sequence variation at all. Among the conserved nonessential genes we found several that are involved in regulation, motility and virulence, indicating that they represent factors of evolutionary importance for the lifestyle of a successful environmental bacterium and opportunistic pathogen. Conclusion The detailed analysis of a comprehensive set of P. aeruginosa genomes in this study clearly disclosed detailed information of the genomic makeup and revealed a large set of highly conserved genes that play an important role for the lifestyle of this microorganism. Sequencing strain collections enables for a detailed and extensive identification of sequence variations as potential bacterial adaptation processes, e.g., during the development of antibiotic resistance in the clinical setting and thus may be the basis to uncover putative targets for novel treatment strategies.

  2. The constancy of gene conservation across divergent bacterial orders

    Directory of Open Access Journals (Sweden)

    Ackermann Martin

    2009-01-01

    Full Text Available Abstract Background Orthologous genes are frequently presumed to perform similar functions. However, outside of model organisms, this is rarely tested. One means of inferring changes in function is if there are changes in the level of gene conservation and selective constraint. Here we compare levels of gene conservation across three bacterial groups to test for changes in gene functionality. Findings The level of gene conservation for different orthologous genes is highly correlated across clades, even for highly divergent groups of bacteria. These correlations do not arise from broad differences in gene functionality (e.g. informational genes vs. metabolic genes, but instead seem to result from very specific differences in gene function. Furthermore, these functional differences appear to be maintained over very long periods of time. Conclusion These results suggest that even over broad time scales, most bacterial genes are under a nearly constant level of purifying selection, and that bacterial evolution is thus dominated by selective and functional stasis.

  3. Genes involved in complex adaptive processes tend to have highly conserved upstream regions in mammalian genomes

    Directory of Open Access Journals (Sweden)

    Kohane Isaac

    2005-11-01

    Full Text Available Abstract Background Recent advances in genome sequencing suggest a remarkable conservation in gene content of mammalian organisms. The similarity in gene repertoire present in different organisms has increased interest in studying regulatory mechanisms of gene expression aimed at elucidating the differences in phenotypes. In particular, a proximal promoter region contains a large number of regulatory elements that control the expression of its downstream gene. Although many studies have focused on identification of these elements, a broader picture on the complexity of transcriptional regulation of different biological processes has not been addressed in mammals. The regulatory complexity may strongly correlate with gene function, as different evolutionary forces must act on the regulatory systems under different biological conditions. We investigate this hypothesis by comparing the conservation of promoters upstream of genes classified in different functional categories. Results By conducting a rank correlation analysis between functional annotation and upstream sequence alignment scores obtained by human-mouse and human-dog comparison, we found a significantly greater conservation of the upstream sequence of genes involved in development, cell communication, neural functions and signaling processes than those involved in more basic processes shared with unicellular organisms such as metabolism and ribosomal function. This observation persists after controlling for G+C content. Considering conservation as a functional signature, we hypothesize a higher density of cis-regulatory elements upstream of genes participating in complex and adaptive processes. Conclusion We identified a class of functions that are associated with either high or low promoter conservation in mammals. We detected a significant tendency that points to complex and adaptive processes were associated with higher promoter conservation, despite the fact that they have emerged

  4. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  5. The drug target genes show higher evolutionary conservation than non-target genes.

    Science.gov (United States)

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  6. Ubiquitin--conserved protein or selfish gene?

    Science.gov (United States)

    Catic, André; Ploegh, Hidde L

    2005-11-01

    The posttranslational modifier ubiquitin is encoded by a multigene family containing three primary members, which yield the precursor protein polyubiquitin and two ubiquitin moieties, Ub(L40) and Ub(S27), that are fused to the ribosomal proteins L40 and S27, respectively. The gene encoding polyubiquitin is highly conserved and, until now, those encoding Ub(L40) and Ub(S27) have been generally considered to be equally invariant. The evolution of the ribosomal ubiquitin moieties is, however, proving to be more dynamic. It seems that the genes encoding Ub(L40) and Ub(S27) are actively maintained by homologous recombination with the invariant polyubiquitin locus. Failure to recombine leads to deterioration of the sequence of the ribosomal ubiquitin moieties in several phyla, although this deterioration is evidently constrained by the structural requirements of the ubiquitin fold. Only a few amino acids in ubiquitin are vital for its function, and we propose that conservation of all three ubiquitin genes is driven not only by functional properties of the ubiquitin protein, but also by the propensity of the polyubiquitin locus to act as a 'selfish gene'.

  7. Gene pool conservation of teak in Myanmar

    International Nuclear Information System (INIS)

    Tin-Tun

    1995-01-01

    Myanmar with an area of 261, 228 Sq. miles is endowed with various types of forests which occupied nearly 50% of the country. Teak (Tectona grandis Linn. f.) is one of the most valuable timber species for its excellent wood quality and properties which are not observed with other timbers. Gene pool can be defined as a group of individual trees growing over a wide range of environmental conditions, and constituting different genetic complexes which can be transmitted to the offsprings. Topics such as: objectives of gene pool conservation, genetically improved seeds for large scale forest plantations, methodology of conservation, are discussed in the article. Myanmar teak dominates the world's teak market, and thus it is crucial to maintain the superiority in the conservation of gene complexes of teak. To some extent, the conservation of gene pools of teak and tree improvements are being undertaken by the Forest Research Institute of Myanmar. It is felt that the dissemination of the philosophy and concept of gene conservation to the personal involved in the forestry activities of the country are still inadequate

  8. Gene co-regulation is highly conserved in the evolution of eukaryotes and prokaryotes.

    NARCIS (Netherlands)

    Snel, B.; Noort, V. van; Huynen, M.A.

    2004-01-01

    Differences between species have been suggested to largely reside in the network of connections among the genes. Nevertheless, the rate at which these connections evolve has not been properly quantified. Here, we measure the extent to which co-regulation between pairs of genes is conserved over

  9. Gene family size conservation is a good indicator of evolutionary rates.

    Science.gov (United States)

    Chen, Feng-Chi; Chen, Chiuan-Jung; Li, Wen-Hsiung; Chuang, Trees-Juen

    2010-08-01

    The evolution of duplicate genes has been a topic of broad interest. Here, we propose that the conservation of gene family size is a good indicator of the rate of sequence evolution and some other biological properties. By comparing the human-chimpanzee-macaque orthologous gene families with and without family size conservation, we demonstrate that genes with family size conservation evolve more slowly than those without family size conservation. Our results further demonstrate that both family expansion and contraction events may accelerate gene evolution, resulting in elevated evolutionary rates in the genes without family size conservation. In addition, we show that the duplicate genes with family size conservation evolve significantly more slowly than those without family size conservation. Interestingly, the median evolutionary rate of singletons falls in between those of the above two types of duplicate gene families. Our results thus suggest that the controversy on whether duplicate genes evolve more slowly than singletons can be resolved when family size conservation is taken into consideration. Furthermore, we also observe that duplicate genes with family size conservation have the highest level of gene expression/expression breadth, the highest proportion of essential genes, and the lowest gene compactness, followed by singletons and then by duplicate genes without family size conservation. Such a trend accords well with our observations of evolutionary rates. Our results thus point to the importance of family size conservation in the evolution of duplicate genes.

  10. Effects of using coding potential, sequence conservation and mRNA structure conservation for predicting pyrroly-sine containing genes

    DEFF Research Database (Denmark)

    Have, Christian Theil; Zambach, Sine; Christiansen, Henning

    2013-01-01

    for prediction of pyrrolysine incorporating genes in genomes of bacteria and archaea leading to insights about the factors driving pyrrolysine translation and identification of new gene candidates. The method predicts known conserved genes with high recall and predicts several other promising candidates...... for experimental verification. The method is implemented as a computational pipeline which is available on request....

  11. Conserved genomic organisation of Group B Sox genes in insects.

    Directory of Open Access Journals (Sweden)

    Woerfel Gertrud

    2005-05-01

    Full Text Available Abstract Background Sox domain containing genes are important metazoan transcriptional regulators implicated in a wide rage of developmental processes. The vertebrate B subgroup contains the Sox1, Sox2 and Sox3 genes that have early functions in neural development. Previous studies show that Drosophila Group B genes have been functionally conserved since they play essential roles in early neural specification and mutations in the Drosophila Dichaete and SoxN genes can be rescued with mammalian Sox genes. Despite their importance, the extent and organisation of the Group B family in Drosophila has not been fully characterised, an important step in using Drosophila to examine conserved aspects of Group B Sox gene function. Results We have used the directed cDNA sequencing along with the output from the publicly-available genome sequencing projects to examine the structure of Group B Sox domain genes in Drosophila melanogaster, Drosophila pseudoobscura, Anopheles gambiae and Apis mellifora. All of the insect genomes contain four genes encoding Group B proteins, two of which are intronless, as is the case with vertebrate group B genes. As has been previously reported and unusually for Group B genes, two of the insect group B genes, Sox21a and Sox21b, contain introns within their DNA-binding domains. We find that the highly unusual multi-exon structure of the Sox21b gene is common to the insects. In addition, we find that three of the group B Sox genes are organised in a linked cluster in the insect genomes. By in situ hybridisation we show that the pattern of expression of each of the four group B genes during embryogenesis is conserved between D. melanogaster and D. pseudoobscura. Conclusion The DNA-binding domain sequences and genomic organisation of the group B genes have been conserved over 300 My of evolution since the last common ancestor of the Hymenoptera and the Diptera. Our analysis suggests insects have two Group B1 genes, SoxN and

  12. Conservation of transcription factor binding events predicts gene expression across species

    Science.gov (United States)

    Hemberg, Martin; Kreiman, Gabriel

    2011-01-01

    Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to function, defined as expression of the target genes. We show that (i) there is a significantly higher degree of conservation of TFBEs when the target gene is expressed in both species; (ii) there is increased conservation of binding events for groups of TFs compared to individual TFs; and (iii) conserved TFBEs have a greater impact on the expression of their target genes than non-conserved ones. These results link conservation of structural elements (TFBEs) to conservation of function (gene expression) and suggest a higher degree of functional conservation than implied by previous studies. PMID:21622661

  13. Structure of genes for dermaseptins B, antimicrobial peptides from frog skin. Exon 1-encoded prepropeptide is conserved in genes for peptides of highly different structures and activities.

    Science.gov (United States)

    Vouille, V; Amiche, M; Nicolas, P

    1997-09-01

    We cloned the genes of two members of the dermaseptin family, broad-spectrum antimicrobial peptides isolated from the skin of the arboreal frog Phyllomedusa bicolor. The dermaseptin gene Drg2 has a 2-exon coding structure interrupted by a small 137-bp intron, wherein exon 1 encoded a 22-residue hydrophobic signal peptide and the first three amino acids of the acidic propiece; exon 2 contained the 18 additional acidic residues of the propiece plus a typical prohormone processing signal Lys-Arg and a 32-residue dermaseptin progenitor sequence. The dermaseptin genes Drg2 and Drg1g2 have conserved sequences at both untranslated ends and in the first and second coding exons. In contrast, Drg1g2 comprises a third coding exon for a short version of the acidic propiece and a second dermaseptin progenitor sequence. Structural conservation between the two genes suggests that Drg1g2 arose recently from an ancestral Drg2-like gene through amplification of part of the second coding exon and 3'-untranslated region. Analysis of the cDNAs coding precursors for several frog skin peptides of highly different structures and activities demonstrates that the signal peptides and part of the acidic propieces are encoded by conserved nucleotides encompassed by the first coding exon of the dermaseptin genes. The organization of the genes that belong to this family, with the signal peptide and the progenitor sequence on separate exons, permits strikingly different peptides to be directed into the secretory pathway. The recruitment of such a homologous 'secretory' exon by otherwise non-homologous genes may have been an early event in the evolution of amphibian.

  14. Patterns of intron gain and conservation in eukaryotic genes

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2007-10-01

    Full Text Available Abstract Background: The presence of introns in protein-coding genes is a universal feature of eukaryotic genome organization, and the genes of multicellular eukaryotes, typically, contain multiple introns, a substantial fraction of which share position in distant taxa, such as plants and animals. Depending on the methods and data sets used, researchers have reached opposite conclusions on the causes of the high fraction of shared introns in orthologous genes from distant eukaryotes. Some studies conclude that shared intron positions reflect, almost entirely, a remarkable evolutionary conservation, whereas others attribute it to parallel gain of introns. To resolve these contradictions, it is crucial to analyze the evolution of introns by using a model that minimally relies on arbitrary assumptions. Results: We developed a probabilistic model of evolution that allows for variability of intron gain and loss rates over branches of the phylogenetic tree, individual genes, and individual sites. Applying this model to an extended set of conserved eukaryotic genes, we find that parallel gain, on average, accounts for only ~8% of the shared intron positions. However, the distribution of parallel gains over the phylogenetic tree of eukaryotes is highly non-uniform. There are, practically, no parallel gains in closely related lineages, whereas for distant lineages, such as animals and plants, parallel gains appear to contribute up to 20% of the shared intron positions. In accord with these findings, we estimated that ancestral introns have a high probability to be retained in extant genomes, and conversely, that a substantial fraction of extant introns have retained their positions since the early stages of eukaryotic evolution. In addition, the density of sites that are available for intron insertion is estimated to be, approximately, one in seven basepairs. Conclusion: We obtained robust estimates of the contribution of parallel gain to the observed

  15. G-NEST: a gene neighborhood scoring tool to identify co-conserved, co-expressed genes

    Directory of Open Access Journals (Sweden)

    Lemay Danielle G

    2012-09-01

    Full Text Available Abstract Background In previous studies, gene neighborhoods—spatial clusters of co-expressed genes in the genome—have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Scoring Tool (G-NEST which combines genomic location, gene expression, and evolutionary sequence conservation data to score putative gene neighborhoods across all possible window sizes simultaneously. Results Using G-NEST on atlases of mouse and human tissue expression data, we found that large neighborhoods of ten or more genes are extremely rare in mammalian genomes. When they do occur, neighborhoods are typically composed of families of related genes. Both the highest scoring and the largest neighborhoods in mammalian genomes are formed by tandem gene duplication. Mammalian gene neighborhoods contain highly and variably expressed genes. Co-localized noisy gene pairs exhibit lower evolutionary conservation of their adjacent genome locations, suggesting that their shared transcriptional background may be disadvantageous. Genes that are essential to mammalian survival and reproduction are less likely to occur in neighborhoods, although neighborhoods are enriched with genes that function in mitosis. We also found that gene orientation and protein-protein interactions are partially responsible for maintenance of gene neighborhoods. Conclusions Our experiments using G-NEST confirm that tandem gene duplication is the primary driver of non-random gene order in mammalian genomes. Non-essentiality, co-functionality, gene orientation, and protein-protein interactions are additional forces that maintain gene neighborhoods, especially those formed by tandem duplicates. We expect G-NEST to be useful for other applications such as the identification of core regulatory modules, common transcriptional backgrounds, and chromatin domains. The

  16. Highly conserved non-coding sequences are associated with vertebrate development.

    Directory of Open Access Journals (Sweden)

    Adam Woolfe

    2005-01-01

    Full Text Available In addition to protein coding sequence, the human genome contains a significant amount of regulatory DNA, the identification of which is proving somewhat recalcitrant to both in silico and functional methods. An approach that has been used with some success is comparative sequence analysis, whereby equivalent genomic regions from different organisms are compared in order to identify both similarities and differences. In general, similarities in sequence between highly divergent organisms imply functional constraint. We have used a whole-genome comparison between humans and the pufferfish, Fugu rubripes, to identify nearly 1,400 highly conserved non-coding sequences. Given the evolutionary divergence between these species, it is likely that these sequences are found in, and furthermore are essential to, all vertebrates. Most, and possibly all, of these sequences are located in and around genes that act as developmental regulators. Some of these sequences are over 90% identical across more than 500 bases, being more highly conserved than coding sequence between these two species. Despite this, we cannot find any similar sequences in invertebrate genomes. In order to begin to functionally test this set of sequences, we have used a rapid in vivo assay system using zebrafish embryos that allows tissue-specific enhancer activity to be identified. Functional data is presented for highly conserved non-coding sequences associated with four unrelated developmental regulators (SOX21, PAX6, HLXB9, and SHH, in order to demonstrate the suitability of this screen to a wide range of genes and expression patterns. Of 25 sequence elements tested around these four genes, 23 show significant enhancer activity in one or more tissues. We have identified a set of non-coding sequences that are highly conserved throughout vertebrates. They are found in clusters across the human genome, principally around genes that are implicated in the regulation of development

  17. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees.

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2016-06-01

    Full Text Available The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for

  18. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees.

    Science.gov (United States)

    Liu, Hui; Robinson, Gene E; Jakobsson, Eric

    2016-06-01

    The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization.

  19. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    Science.gov (United States)

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    The gonadal soma-derived factor (GSDF) belongs to the transforming growth factor-β superfamily and is conserved in teleostean fish species. Gsdf is specifically expressed in the gonads, and gene expression is restricted to the granulosa and Sertoli cells in trout and medaka. The gsdf gene expression is correlated to early testis differentiation in medaka and was shown to stimulate primordial germ cell and spermatogonia proliferation in trout. In the present study, we show that the gsdf gene localizes to a syntenic chromosomal fragment conserved among vertebrates although no gsdf-related gene is detected on the corresponding genomic region in tetrapods. We demonstrate using quantitative RT-PCR that most of the genes localized in the synteny are specifically expressed in medaka gonads. Gsdf is the only gene of the synteny with a much higher expression in the testis compared to the ovary. In contrast, gene expression pattern analysis of the gsdf surrounding genes (nup54, aff1, klhl8, sdad1, and ptpn13) indicates that these genes are preferentially expressed in the female gonads. The tissue distribution of these genes is highly similar in medaka and zebrafish, two teleostean species that have diverged more than 110 million years ago. The cellular localization of these genes was determined in medaka gonads using the whole-mount in situ hybridization technique. We confirm that gsdf gene expression is restricted to Sertoli and granulosa cells in contact with the premeiotic and meiotic cells. The nup54 gene is expressed in spermatocytes and previtellogenic oocytes. Transcripts corresponding to the ovary-specific genes (aff1, klhl8, and sdad1) are detected only in previtellogenic oocytes. No expression was detected in the gonocytes in 10 dpf embryos. In conclusion, we show that the gsdf gene localizes to a syntenic chromosomal fragment harboring evolutionary conserved genes in vertebrates. These genes are preferentially expressed in previtelloogenic oocytes, and thus, they

  20. Patterns of evolutionary conservation of essential genes correlate with their compensability.

    Directory of Open Access Journals (Sweden)

    Tobias Bergmiller

    2012-06-01

    Full Text Available Essential genes code for fundamental cellular functions required for the viability of an organism. For this reason, essential genes are often highly conserved across organisms. However, this is not always the case: orthologues of genes that are essential in one organism are sometimes not essential in other organisms or are absent from their genomes. This suggests that, in the course of evolution, essential genes can be rendered nonessential. How can a gene become non-essential? Here we used genetic manipulation to deplete the products of 26 different essential genes in Escherichia coli. This depletion results in a lethal phenotype, which could often be rescued by the overexpression of a non-homologous, non-essential gene, most likely through replacement of the essential function. We also show that, in a smaller number of cases, the essential genes can be fully deleted from the genome, suggesting that complete functional replacement is possible. Finally, we show that essential genes whose function can be replaced in the laboratory are more likely to be non-essential or not present in other taxa. These results are consistent with the notion that patterns of evolutionary conservation of essential genes are influenced by their compensability-that is, by how easily they can be functionally replaced, for example through increased expression of other genes.

  1. Spatially conserved regulatory elements identified within human and mouse Cd247 gene using high-throughput sequencing data from the ENCODE project

    DEFF Research Database (Denmark)

    Pundhir, Sachin; Hannibal, Tine Dahlbæk; Bang-Berthelsen, Claus Heiner

    2014-01-01

    . In this study, we have utilized the wealth of high-throughput sequencing data produced during the Encyclopedia of DNA Elements (ENCODE) project to identify spatially conserved regulatory elements within the Cd247 gene from human and mouse. We show the presence of two transcription factor binding sites...

  2. Evidence for intron length conservation in a set of mammalian genes associated with embryonic development

    LENUS (Irish Health Repository)

    2011-10-05

    Abstract Background We carried out an analysis of intron length conservation across a diverse group of nineteen mammalian species. Motivated by recent research suggesting a role for time delays associated with intron transcription in gene expression oscillations required for early embryonic patterning, we searched for examples of genes that showed the most extreme conservation of total intron content in mammals. Results Gene sets annotated as being involved in pattern specification in the early embryo or containing the homeobox DNA-binding domain, were significantly enriched among genes with highly conserved intron content. We used ancestral sequences reconstructed with probabilistic models that account for insertion and deletion mutations to distinguish insertion and deletion events on lineages leading to human and mouse from their last common ancestor. Using a randomization procedure, we show that genes containing the homeobox domain show less change in intron content than expected, given the number of insertion and deletion events within their introns. Conclusions Our results suggest selection for gene expression precision or the existence of additional development-associated genes for which transcriptional delay is functionally significant.

  3. Genes with stable DNA methylation levels show higher evolutionary conservation than genes with fluctuant DNA methylation levels.

    Science.gov (United States)

    Zhang, Ruijie; Lv, Wenhua; Luan, Meiwei; Zheng, Jiajia; Shi, Miao; Zhu, Hongjie; Li, Jin; Lv, Hongchao; Zhang, Mingming; Shang, Zhenwei; Duan, Lian; Jiang, Yongshuai

    2015-11-24

    Different human genes often exhibit different degrees of stability in their DNA methylation levels between tissues, samples or cell types. This may be related to the evolution of human genome. Thus, we compared the evolutionary conservation between two types of genes: genes with stable DNA methylation levels (SM genes) and genes with fluctuant DNA methylation levels (FM genes). For long-term evolutionary characteristics between species, we compared the percentage of the orthologous genes, evolutionary rate dn/ds and protein sequence identity. We found that the SM genes had greater percentages of the orthologous genes, lower dn/ds, and higher protein sequence identities in all the 21 species. These results indicated that the SM genes were more evolutionarily conserved than the FM genes. For short-term evolutionary characteristics among human populations, we compared the single nucleotide polymorphism (SNP) density, and the linkage disequilibrium (LD) degree in HapMap populations and 1000 genomes project populations. We observed that the SM genes had lower SNP densities, and higher degrees of LD in all the 11 HapMap populations and 13 1000 genomes project populations. These results mean that the SM genes had more stable chromosome genetic structures, and were more conserved than the FM genes.

  4. Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila

    Science.gov (United States)

    Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette

    2013-01-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules. PMID:24204314

  5. Conservation of gene linkage in dispersed vertebrate NK homeobox clusters.

    Science.gov (United States)

    Wotton, Karl R; Weierud, Frida K; Juárez-Morales, José L; Alvares, Lúcia E; Dietrich, Susanne; Lewis, Katharine E

    2009-10-01

    Nk homeobox genes are important regulators of many different developmental processes including muscle, heart, central nervous system and sensory organ development. They are thought to have arisen as part of the ANTP megacluster, which also gave rise to Hox and ParaHox genes, and at least some NK genes remain tightly linked in all animals examined so far. The protostome-deuterostome ancestor probably contained a cluster of nine Nk genes: (Msx)-(Nk4/tinman)-(Nk3/bagpipe)-(Lbx/ladybird)-(Tlx/c15)-(Nk7)-(Nk6/hgtx)-(Nk1/slouch)-(Nk5/Hmx). Of these genes, only NKX2.6-NKX3.1, LBX1-TLX1 and LBX2-TLX2 remain tightly linked in humans. However, it is currently unclear whether this is unique to the human genome as we do not know which of these Nk genes are clustered in other vertebrates. This makes it difficult to assess whether the remaining linkages are due to selective pressures or because chance rearrangements have "missed" certain genes. In this paper, we identify all of the paralogs of these ancestrally clustered NK genes in several distinct vertebrates. We demonstrate that tight linkages of Lbx1-Tlx1, Lbx2-Tlx2 and Nkx3.1-Nkx2.6 have been widely maintained in both the ray-finned and lobe-finned fish lineages. Moreover, the recently duplicated Hmx2-Hmx3 genes are also tightly linked. Finally, we show that Lbx1-Tlx1 and Hmx2-Hmx3 are flanked by highly conserved noncoding elements, suggesting that shared regulatory regions may have resulted in evolutionary pressure to maintain these linkages. Consistent with this, these pairs of genes have overlapping expression domains. In contrast, Lbx2-Tlx2 and Nkx3.1-Nkx2.6, which do not seem to be coexpressed, are also not associated with conserved noncoding sequences, suggesting that an alternative mechanism may be responsible for the continued clustering of these genes.

  6. Metazoan Remaining Genes for Essential Amino Acid Biosynthesis: Sequence Conservation and Evolutionary Analyses

    Directory of Open Access Journals (Sweden)

    Igor R. Costa

    2014-12-01

    Full Text Available Essential amino acids (EAA consist of a group of nine amino acids that animals are unable to synthesize via de novo pathways. Recently, it has been found that most metazoans lack the same set of enzymes responsible for the de novo EAA biosynthesis. Here we investigate the sequence conservation and evolution of all the metazoan remaining genes for EAA pathways. Initially, the set of all 49 enzymes responsible for the EAA de novo biosynthesis in yeast was retrieved. These enzymes were used as BLAST queries to search for similar sequences in a database containing 10 complete metazoan genomes. Eight enzymes typically attributed to EAA pathways were found to be ubiquitous in metazoan genomes, suggesting a conserved functional role. In this study, we address the question of how these genes evolved after losing their pathway partners. To do this, we compared metazoan genes with their fungal and plant orthologs. Using phylogenetic analysis with maximum likelihood, we found that acetolactate synthase (ALS and betaine-homocysteine S-methyltransferase (BHMT diverged from the expected Tree of Life (ToL relationships. High sequence conservation in the paraphyletic group Plant-Fungi was identified for these two genes using a newly developed Python algorithm. Selective pressure analysis of ALS and BHMT protein sequences showed higher non-synonymous mutation ratios in comparisons between metazoans/fungi and metazoans/plants, supporting the hypothesis that these two genes have undergone non-ToL evolution in animals.

  7. Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes.

    Science.gov (United States)

    Singh, Nagendra K; Dalal, Vivek; Batra, Kamlesh; Singh, Binay K; Chitra, G; Singh, Archana; Ghazi, Irfan A; Yadav, Mahavir; Pandit, Awadhesh; Dixit, Rekha; Singh, Pradeep K; Singh, Harvinder; Koundal, Kirpa R; Gaikwad, Kishor; Mohapatra, Trilochan; Sharma, Tilak R

    2007-01-01

    The high-quality rice genome sequence is serving as a reference for comparative genome analysis in crop plants, especially cereals. However, early comparisons with bread wheat showed complex patterns of conserved synteny (gene content) and colinearity (gene order). Here, we show the presence of ancient duplicated segments in the progenitor of wheat, which were first identified in the rice genome. We also show that single-copy (SC) rice genes, those representing unique matches with wheat expressed sequence tag (EST) unigene contigs in the whole rice genome, show more than twice the proportion of genes mapping to syntenic wheat chromosome as compared to the multicopy (MC) or duplicated rice genes. While 58.7% of the 1,244 mapped SC rice genes were located in single syntenic wheat chromosome groups, the remaining 41.3% were distributed randomly to the other six non-syntenic wheat groups. This could only be explained by a background dispersal of genes in the genome through transposition or other unknown mechanism. The breakdown of rice-wheat synteny due to such transpositions was much greater near the wheat centromeres. Furthermore, the SC rice genes revealed a conserved primordial gene order that gives clues to the origin of rice and wheat chromosomes from a common ancestor through polyploidy, aneuploidy, centromeric fusions, and translocations. Apart from the bin-mapped wheat EST contigs, we also compared 56,298 predicted rice genes with 39,813 wheat EST contigs assembled from 409,765 EST sequences and identified 7,241 SC rice gene homologs of wheat. Based on the conserved colinearity of 1,063 mapped SC rice genes across the bins of individual wheat chromosomes, we predicted the wheat bin location of 6,178 unmapped SC rice gene homologs and validated the location of 213 of these in the telomeric bins of 21 wheat chromosomes with 35.4% initial success. This opens up the possibility of directed mapping of a large number of conserved SC rice gene homologs in wheat

  8. Ancient Exaptation of a CORE-SINE Retroposon into a Highly Conserved Mammalian Neuronal Enhancer of the Proopiomelanocortin Gene

    Science.gov (United States)

    Bumaschny, Viviana F; Low, Malcolm J; Rubinstein, Marcelo

    2007-01-01

    The proopiomelanocortin gene (POMC) is expressed in the pituitary gland and the ventral hypothalamus of all jawed vertebrates, producing several bioactive peptides that function as peripheral hormones or central neuropeptides, respectively. We have recently determined that mouse and human POMC expression in the hypothalamus is conferred by the action of two 5′ distal and unrelated enhancers, nPE1 and nPE2. To investigate the evolutionary origin of the neuronal enhancer nPE2, we searched available vertebrate genome databases and determined that nPE2 is a highly conserved element in placentals, marsupials, and monotremes, whereas it is absent in nonmammalian vertebrates. Following an in silico paleogenomic strategy based on genome-wide searches for paralog sequences, we discovered that opossum and wallaby nPE2 sequences are highly similar to members of the superfamily of CORE-short interspersed nucleotide element (SINE) retroposons, in particular to MAR1 retroposons that are widely present in marsupial genomes. Thus, the neuronal enhancer nPE2 originated from the exaptation of a CORE-SINE retroposon in the lineage leading to mammals and remained under purifying selection in all mammalian orders for the last 170 million years. Expression studies performed in transgenic mice showed that two nonadjacent nPE2 subregions are essential to drive reporter gene expression into POMC hypothalamic neurons, providing the first functional example of an exapted enhancer derived from an ancient CORE-SINE retroposon. In addition, we found that this CORE-SINE family of retroposons is likely to still be active in American and Australian marsupial genomes and that several highly conserved exonic, intronic and intergenic sequences in the human genome originated from the exaptation of CORE-SINE retroposons. Together, our results provide clear evidence of the functional novelties that transposed elements contributed to their host genomes throughout evolution. PMID:17922573

  9. Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene.

    Directory of Open Access Journals (Sweden)

    Andrea M Santangelo

    2007-10-01

    Full Text Available The proopiomelanocortin gene (POMC is expressed in the pituitary gland and the ventral hypothalamus of all jawed vertebrates, producing several bioactive peptides that function as peripheral hormones or central neuropeptides, respectively. We have recently determined that mouse and human POMC expression in the hypothalamus is conferred by the action of two 5' distal and unrelated enhancers, nPE1 and nPE2. To investigate the evolutionary origin of the neuronal enhancer nPE2, we searched available vertebrate genome databases and determined that nPE2 is a highly conserved element in placentals, marsupials, and monotremes, whereas it is absent in nonmammalian vertebrates. Following an in silico paleogenomic strategy based on genome-wide searches for paralog sequences, we discovered that opossum and wallaby nPE2 sequences are highly similar to members of the superfamily of CORE-short interspersed nucleotide element (SINE retroposons, in particular to MAR1 retroposons that are widely present in marsupial genomes. Thus, the neuronal enhancer nPE2 originated from the exaptation of a CORE-SINE retroposon in the lineage leading to mammals and remained under purifying selection in all mammalian orders for the last 170 million years. Expression studies performed in transgenic mice showed that two nonadjacent nPE2 subregions are essential to drive reporter gene expression into POMC hypothalamic neurons, providing the first functional example of an exapted enhancer derived from an ancient CORE-SINE retroposon. In addition, we found that this CORE-SINE family of retroposons is likely to still be active in American and Australian marsupial genomes and that several highly conserved exonic, intronic and intergenic sequences in the human genome originated from the exaptation of CORE-SINE retroposons. Together, our results provide clear evidence of the functional novelties that transposed elements contributed to their host genomes throughout evolution.

  10. Phylogenetic analysis reveals conservation and diversification of micro RNA166 genes among diverse plant species.

    Science.gov (United States)

    Barik, Suvakanta; SarkarDas, Shabari; Singh, Archita; Gautam, Vibhav; Kumar, Pramod; Majee, Manoj; Sarkar, Ananda K

    2014-01-01

    Similar to the majority of the microRNAs, mature miR166s are derived from multiple members of MIR166 genes (precursors) and regulate various aspects of plant development by negatively regulating their target genes (Class III HD-ZIP). The evolutionary conservation or functional diversification of miRNA166 family members remains elusive. Here, we show the phylogenetic relationships among MIR166 precursor and mature sequences from three diverse model plant species. Despite strong conservation, some mature miR166 sequences, such as ppt-miR166m, have undergone sequence variation. Critical sequence variation in ppt-miR166m has led to functional diversification, as it targets non-HD-ZIPIII gene transcript (s). MIR166 precursor sequences have diverged in a lineage specific manner, and both precursors and mature osa-miR166i/j are highly conserved. Interestingly, polycistronic MIR166s were present in Physcomitrella and Oryza but not in Arabidopsis. The nature of cis-regulatory motifs on the upstream promoter sequences of MIR166 genes indicates their possible contribution to the functional variation observed among miR166 species. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Conservation of gene cassettes among diverse viruses of the human gut.

    Directory of Open Access Journals (Sweden)

    Samuel Minot

    Full Text Available Viruses are a crucial component of the human microbiome, but large population sizes, high sequence diversity, and high frequencies of novel genes have hindered genomic analysis by high-throughput sequencing. Here we investigate approaches to metagenomic assembly to probe genome structure in a sample of 5.6 Gb of gut viral DNA sequence from six individuals. Tests showed that a new pipeline based on DeBruijn graph assembly yielded longer contigs that were able to recruit more reads than the equivalent non-optimized, single-pass approach. To characterize gene content, the database of viral RefSeq proteins was compared to the assembled viral contigs, generating a bipartite graph with functional cassettes linking together viral contigs, which revealed a high degree of connectivity between diverse genomes involving multiple genes of the same functional class. In a second step, open reading frames were grouped by their co-occurrence on contigs in a database-independent manner, revealing conserved cassettes of co-oriented ORFs. These methods reveal that free-living bacteriophages, while usually dissimilar at the nucleotide level, often have significant similarity at the level of encoded amino acid motifs, gene order, and gene orientation. These findings thus connect contemporary metagenomic analysis with classical studies of bacteriophage genomic cassettes. Software is available at https://sourceforge.net/projects/optitdba/.

  12. Multi-species comparative analysis of the equine ACE gene identifies a highly conserved potential transcription factor binding site in intron 16.

    Directory of Open Access Journals (Sweden)

    Natasha A Hamilton

    Full Text Available Angiotensin converting enzyme (ACE is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism.

  13. Multi-species comparative analysis of the equine ACE gene identifies a highly conserved potential transcription factor binding site in intron 16.

    Science.gov (United States)

    Hamilton, Natasha A; Tammen, Imke; Raadsma, Herman W

    2013-01-01

    Angiotensin converting enzyme (ACE) is essential for control of blood pressure. The human ACE gene contains an intronic Alu indel (I/D) polymorphism that has been associated with variation in serum enzyme levels, although the functional mechanism has not been identified. The polymorphism has also been associated with cardiovascular disease, type II diabetes, renal disease and elite athleticism. We have characterized the ACE gene in horses of breeds selected for differing physical abilities. The equine gene has a similar structure to that of all known mammalian ACE genes. Nine common single nucleotide polymorphisms (SNPs) discovered in pooled DNA were found to be inherited in nine haplotypes. Three of these SNPs were located in intron 16, homologous to that containing the Alu polymorphism in the human. A highly conserved 18 bp sequence, also within that intron, was identified as being a potential binding site for the transcription factors Oct-1, HFH-1 and HNF-3β, and lies within a larger area of higher than normal homology. This putative regulatory element may contribute to regulation of the documented inter-individual variation in human circulating enzyme levels, for which a functional mechanism is yet to be defined. Two equine SNPs occurred within the conserved area in intron 16, although neither of them disrupted the putative binding site. We propose a possible regulatory mechanism of the ACE gene in mammalian species which was previously unknown. This advance will allow further analysis leading to a better understanding of the mechanisms underpinning the associations seen between the human Alu polymorphism and enzyme levels, cardiovascular disease states and elite athleticism.

  14. Remarkable sequence conservation of the last intron in the PKD1 gene.

    Science.gov (United States)

    Rodova, Marianna; Islam, M Rafiq; Peterson, Kenneth R; Calvet, James P

    2003-10-01

    The last intron of the PKD1 gene (intron 45) was found to have exceptionally high sequence conservation across four mammalian species: human, mouse, rat, and dog. This conservation did not extend to the comparable intron in pufferfish. Pairwise comparisons for intron 45 showed 91% identity (human vs. dog) to 100% identity (mouse vs. rat) for an average for all four species of 94% identity. In contrast, introns 43 and 44 of the PKD1 gene had average pairwise identities of 57% and 54%, and exons 43, 44, and 45 and the coding region of exon 46 had average pairwise identities of 80%, 84%, 82%, and 80%. Intron 45 is 90 to 95 bp in length, with the major region of sequence divergence being in a central 4-bp to 9-bp variable region. RNA secondary structure analysis of intron 45 predicts a branching stem-loop structure in which the central variable region lies in one loop and the putative branch point sequence lies in another loop, suggesting that the intron adopts a specific stem-loop structure that may be important for its removal. Although intron 45 appears to conform to the class of small, G-triplet-containing introns that are spliced by a mechanism utilizing intron definition, its high sequence conservation may be a reflection of constraints imposed by a unique mechanism that coordinates splicing of this last PKD1 intron with polyadenylation.

  15. Divergence and Conservative Evolution of XTNX Genes in Land Plants

    Directory of Open Access Journals (Sweden)

    Yan-Mei Zhang

    2017-10-01

    Full Text Available The Toll-interleukin-1 receptor (TIR and Nucleotide-binding site (NBS domains are two major components of the TIR-NBS-leucine-rich repeat family plant disease resistance genes. Extensive functional and evolutionary studies have been performed on these genes; however, the characterization of a small group of genes that are composed of atypical TIR and NBS domains, namely XTNX genes, is limited. The present study investigated this specific gene family by conducting genome-wide analyses of 59 green plant genomes. A total of 143 XTNX genes were identified in 51 of the 52 land plant genomes, whereas no XTNX gene was detected in any green algae genomes, which indicated that XTNX genes originated upon emergence of land plants. Phylogenetic analysis revealed that the ancestral XTNX gene underwent two rounds of ancient duplications in land plants, which resulted in the formation of clades I/II and clades IIa/IIb successively. Although clades I and IIb have evolved conservatively in angiosperms, the motif composition difference and sequence divergence at the amino acid level suggest that functional divergence may have occurred since the separation of the two clades. In contrast, several features of the clade IIa genes, including the absence in the majority of dicots, the long branches in the tree, the frequent loss of ancestral motifs, and the loss of expression in all detected tissues of Zea mays, all suggest that the genes in this lineage might have undergone pseudogenization. This study highlights that XTNX genes are a gene family originated anciently in land plants and underwent specific conservative pattern in evolution.

  16. Discovery of Conservation and Diversification of miR171 Genes by Phylogenetic Analysis based on Global Genomes

    Directory of Open Access Journals (Sweden)

    Xudong Zhu

    2015-07-01

    Full Text Available The microRNA171 (miR171 family is widely distributed and highly conserved in a range of species and plays critical roles in regulating plant growth and development through repressing expression of ( transcription factors. However, information on the evolutionary conservation and functional diversification of the miRNA171 family members remains scanty. We reconstructed the phylogenetic relationships among miR171 precursor and mature sequences so as to investigate the extent and degree of evolutionary conservation of miR171 in (L. Heynh. (ath, grape ( L. (vvi, poplar ( Torr. & A.Gray ex Hook. (ptc, and rice ( L. (osa. Despite strong conservation of over 80%, some mature miR171 sequences, such as , and and , -, and -, have undergone critical sequence variation, leading to functional diversification, since they target non gene transcript(s. Phylogenetic analyses revealed a combination of old ancestral relationships and recent lineage-specific diversification in the miR171 family within the four model plants. The -regulatory motifs on the upstream promoter sequences of genes were highly divergent and shared some similar elements, indicating their possible contribution to the functional variation observed within the miR171 family. This study will buttress our understanding of the functional differentiation of miRNAs and the relationships of miRNA–target pairs based on the evolutionary history of genes.

  17. Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements.

    Science.gov (United States)

    Meier, Daniel; Schindler, Detlev

    2011-01-01

    The Fanconi anemia (FA) gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M) that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS). In the 5' region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3' regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs), and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters.

  18. Fanconi anemia core complex gene promoters harbor conserved transcription regulatory elements.

    Directory of Open Access Journals (Sweden)

    Daniel Meier

    Full Text Available The Fanconi anemia (FA gene family is a recent addition to the complex network of proteins that respond to and repair certain types of DNA damage in the human genome. Since little is known about the regulation of this novel group of genes at the DNA level, we characterized the promoters of the eight genes (FANCA, B, C, E, F, G, L and M that compose the FA core complex. The promoters of these genes show the characteristic attributes of housekeeping genes, such as a high GC content and CpG islands, a lack of TATA boxes and a low conservation. The promoters functioned in a monodirectional way and were, in their most active regions, comparable in strength to the SV40 promoter in our reporter plasmids. They were also marked by a distinctive transcriptional start site (TSS. In the 5' region of each promoter, we identified a region that was able to negatively regulate the promoter activity in HeLa and HEK 293 cells in isolation. The central and 3' regions of the promoter sequences harbor binding sites for several common and rare transcription factors, including STAT, SMAD, E2F, AP1 and YY1, which indicates that there may be cross-connections to several established regulatory pathways. Electrophoretic mobility shift assays and siRNA experiments confirmed the shared regulatory responses between the prominent members of the TGF-β and JAK/STAT pathways and members of the FA core complex. Although the promoters are not well conserved, they share region and sequence specific regulatory motifs and transcription factor binding sites (TBFs, and we identified a bi-partite nature to these promoters. These results support a hypothesis based on the co-evolution of the FA core complex genes that was expanded to include their promoters.

  19. Identifying human disease genes through cross-species gene mapping of evolutionary conserved processes.

    Directory of Open Access Journals (Sweden)

    Martin Poot

    2011-05-01

    Full Text Available Understanding complex networks that modulate development in humans is hampered by genetic and phenotypic heterogeneity within and between populations. Here we present a method that exploits natural variation in highly diverse mouse genetic reference panels in which genetic and environmental factors can be tightly controlled. The aim of our study is to test a cross-species genetic mapping strategy, which compares data of gene mapping in human patients with functional data obtained by QTL mapping in recombinant inbred mouse strains in order to prioritize human disease candidate genes.We exploit evolutionary conservation of developmental phenotypes to discover gene variants that influence brain development in humans. We studied corpus callosum volume in a recombinant inbred mouse panel (C57BL/6J×DBA/2J, BXD strains using high-field strength MRI technology. We aligned mouse mapping results for this neuro-anatomical phenotype with genetic data from patients with abnormal corpus callosum (ACC development.From the 61 syndromes which involve an ACC, 51 human candidate genes have been identified. Through interval mapping, we identified a single significant QTL on mouse chromosome 7 for corpus callosum volume with a QTL peak located between 25.5 and 26.7 Mb. Comparing the genes in this mouse QTL region with those associated with human syndromes (involving ACC and those covered by copy number variations (CNV yielded a single overlap, namely HNRPU in humans and Hnrpul1 in mice. Further analysis of corpus callosum volume in BXD strains revealed that the corpus callosum was significantly larger in BXD mice with a B genotype at the Hnrpul1 locus than in BXD mice with a D genotype at Hnrpul1 (F = 22.48, p<9.87*10(-5.This approach that exploits highly diverse mouse strains provides an efficient and effective translational bridge to study the etiology of human developmental disorders, such as autism and schizophrenia.

  20. Mitochondrial tRNA gene translocations in highly eusocial bees

    Directory of Open Access Journals (Sweden)

    Daniela Silvestre

    2006-01-01

    Full Text Available Mitochondrial gene rearrangement events, especially involving tRNA genes, have been described more frequently as more complete mitochondrial genome sequences are becoming available. In the present work, we analyzed mitochondrial tRNA gene rearrangements between two bee species belonging to the tribes Apini and Meliponini within the "corbiculate Apidae". Eleven tRNA genes are in different genome positions or strands. The molecular events responsible for each translocation are explained. Considering the high number of rearrangements observed, the data presented here contradict the general rule of high gene order conservation among closely related organisms, and also represent a powerful molecular tool to help solve questions about phylogeny and evolution in bees.

  1. Doublesex: a conserved downstream gene controlled by diverse ...

    Indian Academy of Sciences (India)

    The Drosophila doublesex (dsx) gene at the bottom of the sex-determination cascade is the best characterized candidate so far, and is conserved from worms (mab3 of Caenorhabditis elegans) to mammals (Dmrt-1). Studies of dsx homologues from insect species belonging to different orders position them at the bottom of ...

  2. Identification of a conserved set of upregulated genes in mouse skeletal muscle hypertrophy and regrowth.

    Science.gov (United States)

    Chaillou, Thomas; Jackson, Janna R; England, Jonathan H; Kirby, Tyler J; Richards-White, Jena; Esser, Karyn A; Dupont-Versteegden, Esther E; McCarthy, John J

    2015-01-01

    The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (≥2-fold increase or ≥50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (∼90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading. Copyright © 2015 the American Physiological Society.

  3. Constraints on genes shape long-term conservation of macro-synteny in metazoan genomes

    Directory of Open Access Journals (Sweden)

    Putnam Nicholas H

    2011-10-01

    Full Text Available Abstract Background Many metazoan genomes conserve chromosome-scale gene linkage relationships (“macro-synteny” from the common ancestor of multicellular animal life 1234, but the biological explanation for this conservation is still unknown. Double cut and join (DCJ is a simple, well-studied model of neutral genome evolution amenable to both simulation and mathematical analysis 5, but as we show here, it is not sufficent to explain long-term macro-synteny conservation. Results We examine a family of simple (one-parameter extensions of DCJ to identify models and choices of parameters consistent with the levels of macro- and micro-synteny conservation observed among animal genomes. Our software implements a flexible strategy for incorporating genomic context into the DCJ model to incorporate various types of genomic context (“DCJ-[C]”, and is available as open source software from http://github.com/putnamlab/dcj-c. Conclusions A simple model of genome evolution, in which DCJ moves are allowed only if they maintain chromosomal linkage among a set of constrained genes, can simultaneously account for the level of macro-synteny conservation and for correlated conservation among multiple pairs of species. Simulations under this model indicate that a constraint on approximately 7% of metazoan genes is sufficient to constrain genome rearrangement to an average rate of 25 inversions and 1.7 translocations per million years.

  4. Gene pool conservation and tree improvement in Serbia

    Directory of Open Access Journals (Sweden)

    Isajev Vasilije

    2009-01-01

    Full Text Available This paper presents the concepts applied in the gene pool conservation and tree improvement in Serbia. Gene pool conservation of tree species in Serbia includes a series of activities aiming at the sustainability and protection of genetic and species variability. This implies the investigation of genetic resources and their identification through the research of the genetic structure and the breeding system of individual species. Paper also includes the study of intra- and inter-population variability in experiments - provenance tests, progeny tests, half- and full-sib lines, etc. The increased use of the genetic potential in tree improvement in Serbia should be intensified by the following activities: improvement of production of normal forest seed, application of the concept of new selections directed primarily to the improvement of only one character, because in that case the result would be certain, establishment and management of seed orchards as specialized plantations for long-term production of genetically good-quality forest seeds, and the shortening of the improvement process by introducing new techniques and methods (molecular markers, somaclonal variation, genetic engineering, protoplast fusion, micropropagation, etc..

  5. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Science.gov (United States)

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs

  6. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  7. Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and species-specific transcripts

    Directory of Open Access Journals (Sweden)

    Ouyang Shu

    2005-09-01

    Full Text Available Abstract Background The Solanaceae is a family of closely related species with diverse phenotypes that have been exploited for agronomic purposes. Previous studies involving a small number of genes suggested sequence conservation across the Solanaceae. The availability of large collections of Expressed Sequence Tags (ESTs for the Solanaceae now provides the opportunity to assess sequence conservation and divergence on a genomic scale. Results All available ESTs and Expressed Transcripts (ETs, 449,224 sequences for six Solanaceae species (potato, tomato, pepper, petunia, tobacco and Nicotiana benthamiana, were clustered and assembled into gene indices. Examination of gene ontologies revealed that the transcripts within the gene indices encode a similar suite of biological processes. Although the ESTs and ETs were derived from a variety of tissues, 55–81% of the sequences had significant similarity at the nucleotide level with sequences among the six species. Putative orthologs could be identified for 28–58% of the sequences. This high degree of sequence conservation was supported by expression profiling using heterologous hybridizations to potato cDNA arrays that showed similar expression patterns in mature leaves for all six solanaceous species. 16–19% of the transcripts within the six Solanaceae gene indices did not have matches among Solanaceae, Arabidopsis, rice or 21 other plant gene indices. Conclusion Results from this genome scale analysis confirmed a high level of sequence conservation at the nucleotide level of the coding sequence among Solanaceae. Additionally, the results indicated that part of the Solanaceae transcriptome is likely to be unique for each species.

  8. Eucaryotic operon genes can define highly conserved syntenies

    Czech Academy of Sciences Publication Activity Database

    Trachtulec, Zdeněk

    2004-01-01

    Roč. 50, - (2004), s. 1-6 ISSN 0015-5500 R&D Projects: GA ČR GA204/01/0997; GA MŠk LN00A079 Institutional research plan: CEZ:AV0Z5052915 Keywords : eukaryotic operon * conserved synteny Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.507, year: 2004

  9. Preferential transcription of conserved rif genes in two phenotypically distinct Plasmodium falciparum parasite lines

    DEFF Research Database (Denmark)

    Wang, Christian W; Magistrado, Pamela A; Nielsen, Morten A

    2009-01-01

    transcribed in the VAR2CSA-expressing parasite line. In addition, two rif genes were found transcribed at early and late intra-erythrocyte stages independently of var gene transcription. Rif genes are organised in groups and inter-genomic conserved gene families, suggesting that RIFIN sub-groups may have......Plasmodium falciparum variant surface antigens (VSA) are targets of protective immunity to malaria. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) and repetitive interspersed family (RIFIN) proteins are encoded by the two variable multigene families, var and rif genes, respectively...... novel rif gene groups, rifA1 and rifA2, containing inter-genomic conserved rif genes, were identified. All rifA1 genes were orientated head-to-head with a neighbouring Group A var gene whereas rifA2 was present in all parasite genomes as a single copy gene with a unique 5' untranslated region. Rif...

  10. An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice.

    Science.gov (United States)

    Chen, Jun; Gao, He; Zheng, Xiao-Ming; Jin, Mingna; Weng, Jian-Feng; Ma, Jin; Ren, Yulong; Zhou, Kunneng; Wang, Qi; Wang, Jie; Wang, Jiu-Lin; Zhang, Xin; Cheng, Zhijun; Wu, Chuanyin; Wang, Haiyang; Wan, Jian-Min

    2015-08-01

    Plant breeding relies on creation of novel allelic combinations for desired traits. Identification and utilization of beneficial alleles, rare alleles and evolutionarily conserved genes in the germplasm (referred to as 'hidden' genes) provide an effective approach to achieve this goal. Here we show that a chemically induced null mutation in an evolutionarily conserved gene, FUWA, alters multiple important agronomic traits in rice, including panicle architecture, grain shape and grain weight. FUWA encodes an NHL domain-containing protein, with preferential expression in the root meristem, shoot apical meristem and inflorescences, where it restricts excessive cell division. Sequence analysis revealed that FUWA has undergone a bottleneck effect, and become fixed in landraces and modern cultivars during domestication and breeding. We further confirm a highly conserved role of FUWA homologs in determining panicle architecture and grain development in rice, maize and sorghum through genetic transformation. Strikingly, knockdown of the FUWA transcription level by RNA interference results in an erect panicle and increased grain size in both indica and japonica genetic backgrounds. This study illustrates an approach to create new germplasm with improved agronomic traits for crop breeding by tapping into evolutionary conserved genes. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  11. RNA expression in a cartilaginous fish cell line reveals ancient 3′ noncoding regions highly conserved in vertebrates

    Science.gov (United States)

    Forest, David; Nishikawa, Ryuhei; Kobayashi, Hiroshi; Parton, Angela; Bayne, Christopher J.; Barnes, David W.

    2007-01-01

    We have established a cartilaginous fish cell line [Squalus acanthias embryo cell line (SAE)], a mesenchymal stem cell line derived from the embryo of an elasmobranch, the spiny dogfish shark S. acanthias. Elasmobranchs (sharks and rays) first appeared >400 million years ago, and existing species provide useful models for comparative vertebrate cell biology, physiology, and genomics. Comparative vertebrate genomics among evolutionarily distant organisms can provide sequence conservation information that facilitates identification of critical coding and noncoding regions. Although these genomic analyses are informative, experimental verification of functions of genomic sequences depends heavily on cell culture approaches. Using ESTs defining mRNAs derived from the SAE cell line, we identified lengthy and highly conserved gene-specific nucleotide sequences in the noncoding 3′ UTRs of eight genes involved in the regulation of cell growth and proliferation. Conserved noncoding 3′ mRNA regions detected by using the shark nucleotide sequences as a starting point were found in a range of other vertebrate orders, including bony fish, birds, amphibians, and mammals. Nucleotide identity of shark and human in these regions was remarkably well conserved. Our results indicate that highly conserved gene sequences dating from the appearance of jawed vertebrates and representing potential cis-regulatory elements can be identified through the use of cartilaginous fish as a baseline. Because the expression of genes in the SAE cell line was prerequisite for their identification, this cartilaginous fish culture system also provides a physiologically valid tool to test functional hypotheses on the role of these ancient conserved sequences in comparative cell biology. PMID:17227856

  12. Conservation of gene co-regulation in prokaryotes and eukaryotes.

    NARCIS (Netherlands)

    Snel, B.; Bork, P.; Huynen, M.A.

    2002-01-01

    We raise some issues in detecting the conservation (or absence thereof) of co-regulation using gene order; how we think the variations in the cellular network in various species can be studied; and how to determine and interpret the higher order structure in networks of functional relations.

  13. Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants.

    Science.gov (United States)

    Rawal, H C; Singh, N K; Sharma, T R

    2013-01-01

    Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL) and peroxidase A (POX A) enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula), fruits (Vitis vinifera), cereals (Sorghum bicolor, Zea mays, and Oryza sativa), trees (Populus trichocarpa), and model dicot (Arabidopsis thaliana) and monocot (Brachypodium distachyon) species. A total of 87 and 1045 genes in PAL and POX A gene families, respectively, have been identified in these species. The phylogenetic and syntenic comparison along with motif distributions shows a high degree of conservation of PAL genes, suggesting that these genes may predate monocot/eudicot divergence. The POX A family genes, present in clusters at the subtelomeric regions of chromosomes, might be evolving and expanding with higher rate than the PAL gene family. Our analysis showed that during the expansion of POX A gene family, many groups and subgroups have evolved, resulting in a high level of functional divergence among monocots and dicots. These results will act as a first step toward the understanding of monocot/eudicot evolution and functional characterization of these gene families in the future.

  14. Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants

    Directory of Open Access Journals (Sweden)

    H. C. Rawal

    2013-01-01

    Full Text Available Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL and peroxidase A (POX A enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula, fruits (Vitis vinifera, cereals (Sorghum bicolor, Zea mays, and Oryza sativa, trees (Populus trichocarpa, and model dicot (Arabidopsis thaliana and monocot (Brachypodium distachyon species. A total of 87 and 1045 genes in PAL and POX A gene families, respectively, have been identified in these species. The phylogenetic and syntenic comparison along with motif distributions shows a high degree of conservation of PAL genes, suggesting that these genes may predate monocot/eudicot divergence. The POX A family genes, present in clusters at the subtelomeric regions of chromosomes, might be evolving and expanding with higher rate than the PAL gene family. Our analysis showed that during the expansion of POX A gene family, many groups and subgroups have evolved, resulting in a high level of functional divergence among monocots and dicots. These results will act as a first step toward the understanding of monocot/eudicot evolution and functional characterization of these gene families in the future.

  15. CORECLUST: identification of the conserved CRM grammar together with prediction of gene regulation.

    Science.gov (United States)

    Nikulova, Anna A; Favorov, Alexander V; Sutormin, Roman A; Makeev, Vsevolod J; Mironov, Andrey A

    2012-07-01

    Identification of transcriptional regulatory regions and tracing their internal organization are important for understanding the eukaryotic cell machinery. Cis-regulatory modules (CRMs) of higher eukaryotes are believed to possess a regulatory 'grammar', or preferred arrangement of binding sites, that is crucial for proper regulation and thus tends to be evolutionarily conserved. Here, we present a method CORECLUST (COnservative REgulatory CLUster STructure) that predicts CRMs based on a set of positional weight matrices. Given regulatory regions of orthologous and/or co-regulated genes, CORECLUST constructs a CRM model by revealing the conserved rules that describe the relative location of binding sites. The constructed model may be consequently used for the genome-wide prediction of similar CRMs, and thus detection of co-regulated genes, and for the investigation of the regulatory grammar of the system. Compared with related methods, CORECLUST shows better performance at identification of CRMs conferring muscle-specific gene expression in vertebrates and early-developmental CRMs in Drosophila.

  16. Cytogenetics, conserved synteny and evolution of chicken fucosyltransferase genes compared to human

    NARCIS (Netherlands)

    Coullin, P.; Crooijmans, R.P.M.A.; Fillon, V.; Mollicone, R.; Groenen, M.A.M.; Adrien-Dehais, C.; Bernheim, A.; Zoorob, R.; Oriol, R.; Candelier, J.J.

    2003-01-01

    Fucosyltransferases appeared early in evolution, since they are present from bacteria to primates and the genes are well conserved. The aim of this work was to study these genes in the bird group, which is particularly attractive for the comprehension of the evolution of the vertebrate genome.

  17. [Identification of new conserved and variable regions in the 16S rRNA gene of acetic acid bacteria and acetobacteraceae family].

    Science.gov (United States)

    Chakravorty, S; Sarkar, S; Gachhui, R

    2015-01-01

    The Acetobacteraceae family of the class Alpha Proteobacteria is comprised of high sugar and acid tolerant bacteria. The Acetic Acid Bacteria are the economically most significant group of this family because of its association with food products like vinegar, wine etc. Acetobacteraceae are often hard to culture in laboratory conditions and they also maintain very low abundances in their natural habitats. Thus identification of the organisms in such environments is greatly dependent on modern tools of molecular biology which require a thorough knowledge of specific conserved gene sequences that may act as primers and or probes. Moreover unconserved domains in genes also become markers for differentiating closely related genera. In bacteria, the 16S rRNA gene is an ideal candidate for such conserved and variable domains. In order to study the conserved and variable domains of the 16S rRNA gene of Acetic Acid Bacteria and the Acetobacteraceae family, sequences from publicly available databases were aligned and compared. Near complete sequences of the gene were also obtained from Kombucha tea biofilm, a known Acetobacteraceae family habitat, in order to corroborate the domains obtained from the alignment studies. The study indicated that the degree of conservation in the gene is significantly higher among the Acetic Acid Bacteria than the whole Acetobacteraceae family. Moreover it was also observed that the previously described hypervariable regions V1, V3, V5, V6 and V7 were more or less conserved in the family and the spans of the variable regions are quite distinct as well.

  18. Gene expression in chicken reveals correlation with structural genomic features and conserved patterns of transcription in the terrestrial vertebrates.

    Directory of Open Access Journals (Sweden)

    Haisheng Nie

    Full Text Available BACKGROUND: The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates. METHODOLOGY/PRINCIPAL FINDINGS: We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates. CONCLUSIONS: The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems

  19. Evolutionary conservation and network structure characterize genes of phenotypic relevance for mitosis in human.

    Directory of Open Access Journals (Sweden)

    Marek Ostaszewski

    Full Text Available The impact of gene silencing on cellular phenotypes is difficult to establish due to the complexity of interactions in the associated biological processes and pathways. A recent genome-wide RNA knock-down study both identified and phenotypically characterized a set of important genes for the cell cycle in HeLa cells. Here, we combine a molecular interaction network analysis, based on physical and functional protein interactions, in conjunction with evolutionary information, to elucidate the common biological and topological properties of these key genes. Our results show that these genes tend to be conserved with their corresponding protein interactions across several species and are key constituents of the evolutionary conserved molecular interaction network. Moreover, a group of bistable network motifs is found to be conserved within this network, which are likely to influence the network stability and therefore the robustness of cellular functioning. They form a cluster, which displays functional homogeneity and is significantly enriched in genes phenotypically relevant for mitosis. Additional results reveal a relationship between specific cellular processes and the phenotypic outcomes induced by gene silencing. This study introduces new ideas regarding the relationship between genotype and phenotype in the context of the cell cycle. We show that the analysis of molecular interaction networks can result in the identification of genes relevant to cellular processes, which is a promising avenue for future research.

  20. TOPAZ1, a novel germ cell-specific expressed gene conserved during evolution across vertebrates.

    Directory of Open Access Journals (Sweden)

    Adrienne Baillet

    Full Text Available BACKGROUND: We had previously reported that the Suppression Subtractive Hybridization (SSH approach was relevant for the isolation of new mammalian genes involved in oogenesis and early follicle development. Some of these transcripts might be potential new oocyte and granulosa cell markers. We have now characterized one of them, named TOPAZ1 for the Testis and Ovary-specific PAZ domain gene. PRINCIPAL FINDINGS: Sheep and mouse TOPAZ1 mRNA have 4,803 bp and 4,962 bp open reading frames (20 exons, respectively, and encode putative TOPAZ1 proteins containing 1,600 and 1653 amino acids. They possess PAZ and CCCH domains. In sheep, TOPAZ1 mRNA is preferentially expressed in females during fetal life with a peak during prophase I of meiosis, and in males during adulthood. In the mouse, Topaz1 is a germ cell-specific gene. TOPAZ1 protein is highly conserved in vertebrates and specifically expressed in mouse and sheep gonads. It is localized in the cytoplasm of germ cells from the sheep fetal ovary and mouse adult testis. CONCLUSIONS: We have identified a novel PAZ-domain protein that is abundantly expressed in the gonads during germ cell meiosis. The expression pattern of TOPAZ1, and its high degree of conservation, suggests that it may play an important role in germ cell development. Further characterization of TOPAZ1 may elucidate the mechanisms involved in gametogenesis, and particularly in the RNA silencing process in the germ line.

  1. Identification of conserved drought-adaptive genes using a cross-species meta-analysis approach.

    Science.gov (United States)

    Shaar-Moshe, Lidor; Hübner, Sariel; Peleg, Zvi

    2015-05-03

    Drought is the major environmental stress threatening crop-plant productivity worldwide. Identification of new genes and metabolic pathways involved in plant adaptation to progressive drought stress at the reproductive stage is of great interest for agricultural research. We developed a novel Cross-Species meta-Analysis of progressive Drought stress at the reproductive stage (CSA:Drought) to identify key drought adaptive genes and mechanisms and to test their evolutionary conservation. Empirically defined filtering criteria were used to facilitate a robust integration of 17 deposited microarray experiments (148 arrays) of Arabidopsis, rice, wheat and barley. By prioritizing consistency over intensity, our approach was able to identify 225 differentially expressed genes shared across studies and taxa. Gene ontology enrichment and pathway analyses classified the shared genes into functional categories involved predominantly in metabolic processes (e.g. amino acid and carbohydrate metabolism), regulatory function (e.g. protein degradation and transcription) and response to stimulus. We further investigated drought related cis-acting elements in the shared gene promoters, and the evolutionary conservation of shared genes. The universal nature of the identified drought-adaptive genes was further validated in a fifth species, Brachypodium distachyon that was not included in the meta-analysis. qPCR analysis of 27, randomly selected, shared orthologs showed similar expression pattern as was found by the CSA:Drought.In accordance, morpho-physiological characterization of progressive drought stress, in B. distachyon, highlighted the key role of osmotic adjustment as evolutionary conserved drought-adaptive mechanism. Our CSA:Drought strategy highlights major drought-adaptive genes and metabolic pathways that were only partially, if at all, reported in the original studies included in the meta-analysis. These genes include a group of unclassified genes that could be involved

  2. Similarity-based gene detection: using COGs to find evolutionarily-conserved ORFs.

    Science.gov (United States)

    Powell, Bradford C; Hutchison, Clyde A

    2006-01-19

    Experimental verification of gene products has not kept pace with the rapid growth of microbial sequence information. However, existing annotations of gene locations contain sufficient information to screen for probable errors. Furthermore, comparisons among genomes become more informative as more genomes are examined. We studied all open reading frames (ORFs) of at least 30 codons from the genomes of 27 sequenced bacterial strains. We grouped the potential peptide sequences encoded from the ORFs by forming Clusters of Orthologous Groups (COGs). We used this grouping in order to find homologous relationships that would not be distinguishable from noise when using simple BLAST searches. Although COG analysis was initially developed to group annotated genes, we applied it to the task of grouping anonymous DNA sequences that may encode proteins. "Mixed COGs" of ORFs (clusters in which some sequences correspond to annotated genes and some do not) are attractive targets when seeking errors of gene prediction. Examination of mixed COGs reveals some situations in which genes appear to have been missed in current annotations and a smaller number of regions that appear to have been annotated as gene loci erroneously. This technique can also be used to detect potential pseudogenes or sequencing errors. Our method uses an adjustable parameter for degree of conservation among the studied genomes (stringency). We detail results for one level of stringency at which we found 83 potential genes which had not previously been identified, 60 potential pseudogenes, and 7 sequences with existing gene annotations that are probably incorrect. Systematic study of sequence conservation offers a way to improve existing annotations by identifying potentially homologous regions where the annotation of the presence or absence of a gene is inconsistent among genomes.

  3. Similarity-based gene detection: using COGs to find evolutionarily-conserved ORFs

    Directory of Open Access Journals (Sweden)

    Hutchison Clyde A

    2006-01-01

    Full Text Available Abstract Background Experimental verification of gene products has not kept pace with the rapid growth of microbial sequence information. However, existing annotations of gene locations contain sufficient information to screen for probable errors. Furthermore, comparisons among genomes become more informative as more genomes are examined. We studied all open reading frames (ORFs of at least 30 codons from the genomes of 27 sequenced bacterial strains. We grouped the potential peptide sequences encoded from the ORFs by forming Clusters of Orthologous Groups (COGs. We used this grouping in order to find homologous relationships that would not be distinguishable from noise when using simple BLAST searches. Although COG analysis was initially developed to group annotated genes, we applied it to the task of grouping anonymous DNA sequences that may encode proteins. Results "Mixed COGs" of ORFs (clusters in which some sequences correspond to annotated genes and some do not are attractive targets when seeking errors of gene predicion. Examination of mixed COGs reveals some situations in which genes appear to have been missed in current annotations and a smaller number of regions that appear to have been annotated as gene loci erroneously. This technique can also be used to detect potential pseudogenes or sequencing errors. Our method uses an adjustable parameter for degree of conservation among the studied genomes (stringency. We detail results for one level of stringency at which we found 83 potential genes which had not previously been identified, 60 potential pseudogenes, and 7 sequences with existing gene annotations that are probably incorrect. Conclusion Systematic study of sequence conservation offers a way to improve existing annotations by identifying potentially homologous regions where the annotation of the presence or absence of a gene is inconsistent among genomes.

  4. Primary structure and promoter analysis of leghemoglobin genes of the stem-nodulated tropical legume Sesbania rostrata: conserved coding sequences, cis-elements and trans-acting factors

    DEFF Research Database (Denmark)

    Metz, B A; Welters, P; Hoffmann, H J

    1988-01-01

    The primary structure of a leghemoglobin (lb) gene from the stem-nodulated, tropical legume Sesbania rostrata and two lb gene promoter regions was analysed. The S. rostrata lb gene structure and Lb amino acid composition were found to be highly conserved with previously described lb genes and Lb ...

  5. Readings in Wildlife and Fish Conservation, High School Conservation Curriculum Project.

    Science.gov (United States)

    Ensminger, Jack

    This publication is a tentative edition of readings on Wildlife and Fish Conservation in Louisiana, and as such it forms part of one of the four units of study designed for an experimental high school course, the "High School Conservation Curriculum Project." The other three units are concerned with Forest Conervation, Soil and Water…

  6. Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032.

    Directory of Open Access Journals (Sweden)

    Jason Gioia

    Full Text Available BACKGROUND: Bacillus spores are notoriously resistant to unfavorable conditions such as UV radiation, gamma-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard decontamination procedures of the Jet Propulsion Lab spacecraft assembly facility, and both spores and vegetative cells of this strain exhibit elevated resistance to UV radiation and H2O2 compared to other Bacillus species. PRINCIPAL FINDINGS: The genome of B. pumilus SAFR-032 was sequenced and annotated. Lists of genes relevant to DNA repair and the oxidative stress response were generated and compared to B. subtilis and B. licheniformis. Differences in conservation of genes, gene order, and protein sequences are highlighted because they potentially explain the extreme resistance phenotype of B. pumilus. The B. pumilus genome includes genes not found in B. subtilis or B. licheniformis and conserved genes with sequence divergence, but paradoxically lacks several genes that function in UV or H2O2 resistance in other Bacillus species. SIGNIFICANCE: This study identifies several candidate genes for further research into UV and H2O2 resistance. These findings will help explain the resistance of B. pumilus and are applicable to understanding sterilization survival strategies of microbes.

  7. Transcriptional dynamics of a conserved gene expression network associated with craniofacial divergence in Arctic charr.

    Science.gov (United States)

    Ahi, Ehsan Pashay; Kapralova, Kalina Hristova; Pálsson, Arnar; Maier, Valerie Helene; Gudbrandsson, Jóhannes; Snorrason, Sigurdur S; Jónsson, Zophonías O; Franzdóttir, Sigrídur Rut

    2014-01-01

    Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic). Four Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional

  8. Geographies of Conservation I: De-extinction and Precision Conservation

    OpenAIRE

    Adams, William Mark

    2016-01-01

    Extinction has long been a central concern in biodiversity conservation. Today, de-extinction offers interesting possibilities of restoring charismatic species and ecosystem function, but also risks and costs. Most de-extinction depends on genetic engineering and synthetic biology. These technologies are also proposed for use in ‘gene tweaking’ in wild species to enhance their chance of survival. Within conservation, the resulting debates pit an optimistic world of high-tech ‘precision con...

  9. Comparative Annotation of Viral Genomes with Non-Conserved Gene Structure

    DEFF Research Database (Denmark)

    de Groot, Saskia; Mailund, Thomas; Hein, Jotun

    2007-01-01

    Motivation: Detecting genes in viral genomes is a complex task. Due to the biological necessity of them being constrained in length, RNA viruses in particular tend to code in overlapping reading frames. Since one amino acid is encoded by a triplet of nucleic acids, up to three genes may be coded...... allows for coding in unidirectional nested and overlapping reading frames, to annotate two homologous aligned viral genomes. Our method does not insist on conserved gene structure between the two sequences, thus making it applicable for the pairwise comparison of more distantly related sequences. Results...... and HIV2, as well as of two different Hepatitis Viruses, attaining results of ~87% sensitivity and ~98.5% specificity. We subsequently incorporate prior knowledge by "knowing" the gene structure of one sequence and annotating the other conditional on it. Boosting accuracy close to perfect we demonstrate...

  10. Unusual evolutionary conservation and further species-specific adaptations of a large family of nonclassical MHC class Ib genes across different degrees of genome ploidy in the amphibian subfamily Xenopodinae.

    Science.gov (United States)

    Edholm, Eva-Stina; Goyos, Ana; Taran, Joseph; De Jesús Andino, Francisco; Ohta, Yuko; Robert, Jacques

    2014-06-01

    Nonclassical MHC class Ib (class Ib) genes are a family of highly diverse and rapidly evolving genes wherein gene numbers, organization, and expression markedly differ even among closely related species rendering class Ib phylogeny difficult to establish. Whereas among mammals there are few unambiguous class Ib gene orthologs, different amphibian species belonging to the anuran subfamily Xenopodinae exhibit an unusually high degree of conservation among multiple class Ib gene lineages. Comparative genomic analysis of class Ib gene loci of two divergent (~65 million years) Xenopodinae subfamily members Xenopus laevis (allotetraploid) and Xenopus tropicalis (diploid) shows that both species possess a large cluster of class Ib genes denoted as Xenopus/Silurana nonclassical (XNC/SNC). Our study reveals two distinct phylogenetic patterns among these genes: some gene lineages display a high degree of flexibility, as demonstrated by species-specific expansion and contractions, whereas other class Ib gene lineages have been maintained as monogenic subfamilies with very few changes in their nucleotide sequence across divergent species. In this second category, we further investigated the XNC/SNC10 gene lineage that in X. laevis is required for the development of a distinct semi-invariant T cell population. We report compelling evidence of the remarkable high degree of conservation of this gene lineage that is present in all 12 species of the Xenopodinae examined, including species with different degrees of ploidy ranging from 2, 4, 8 to 12 N. This suggests that the critical role of XNC10 during early T cell development is conserved in amphibians.

  11. An evolutionary conserved region (ECR in the human dopamine receptor D4 gene supports reporter gene expression in primary cultures derived from the rat cortex

    Directory of Open Access Journals (Sweden)

    Haddley Kate

    2011-05-01

    Full Text Available Abstract Background Detecting functional variants contributing to diversity of behaviour is crucial for dissecting genetics of complex behaviours. At a molecular level, characterisation of variation in exons has been studied as they are easily identified in the current genome annotation although the functional consequences are less well understood; however, it has been difficult to prioritise regions of non-coding DNA in which genetic variation could also have significant functional consequences. Comparison of multiple vertebrate genomes has allowed the identification of non-coding evolutionary conserved regions (ECRs, in which the degree of conservation can be comparable with exonic regions suggesting functional significance. Results We identified ECRs at the dopamine receptor D4 gene locus, an important gene for human behaviours. The most conserved non-coding ECR (D4ECR1 supported high reporter gene expression in primary cultures derived from neonate rat frontal cortex. Computer aided analysis of the sequence of the D4ECR1 indicated the potential transcription factors that could modulate its function. D4ECR1 contained multiple consensus sequences for binding the transcription factor Sp1, a factor previously implicated in DRD4 expression. Co-transfection experiments demonstrated that overexpression of Sp1 significantly decreased the activity of the D4ECR1 in vitro. Conclusion Bioinformatic analysis complemented by functional analysis of the DRD4 gene locus has identified a a strong enhancer that functions in neurons and b a transcription factor that may modulate the function of that enhancer.

  12. Comprehensive analysis of coding-lncRNA gene co-expression network uncovers conserved functional lncRNAs in zebrafish.

    Science.gov (United States)

    Chen, Wen; Zhang, Xuan; Li, Jing; Huang, Shulan; Xiang, Shuanglin; Hu, Xiang; Liu, Changning

    2018-05-09

    Zebrafish is a full-developed model system for studying development processes and human disease. Recent studies of deep sequencing had discovered a large number of long non-coding RNAs (lncRNAs) in zebrafish. However, only few of them had been functionally characterized. Therefore, how to take advantage of the mature zebrafish system to deeply investigate the lncRNAs' function and conservation is really intriguing. We systematically collected and analyzed a series of zebrafish RNA-seq data, then combined them with resources from known database and literatures. As a result, we obtained by far the most complete dataset of zebrafish lncRNAs, containing 13,604 lncRNA genes (21,128 transcripts) in total. Based on that, a co-expression network upon zebrafish coding and lncRNA genes was constructed and analyzed, and used to predict the Gene Ontology (GO) and the KEGG annotation of lncRNA. Meanwhile, we made a conservation analysis on zebrafish lncRNA, identifying 1828 conserved zebrafish lncRNA genes (1890 transcripts) that have their putative mammalian orthologs. We also found that zebrafish lncRNAs play important roles in regulation of the development and function of nervous system; these conserved lncRNAs present a significant sequential and functional conservation, with their mammalian counterparts. By integrative data analysis and construction of coding-lncRNA gene co-expression network, we gained the most comprehensive dataset of zebrafish lncRNAs up to present, as well as their systematic annotations and comprehensive analyses on function and conservation. Our study provides a reliable zebrafish-based platform to deeply explore lncRNA function and mechanism, as well as the lncRNA commonality between zebrafish and human.

  13. A zebrafish screen for craniofacial mutants identifies wdr68 as a highly conserved gene required for endothelin-1 expression

    Directory of Open Access Journals (Sweden)

    Amsterdam Adam

    2006-06-01

    identification of approximately 25% of the essential genes required for craniofacial development. The identification of zebrafish models for two human disease syndromes indicates that homologs to the other genes are likely to also be relevant for human craniofacial development. The initial characterization of wdr68 suggests an important role in craniofacial development for the highly conserved Wdr68-Dyrk1 protein complexes.

  14. Seed collection success and failure in fraxinus gene conservation efforts

    Science.gov (United States)

    Joseph D. Zeleznik; Andrew J. David

    2017-01-01

    National seed collection and gene conservation programs have expanded in recent years, especially in response to pressure from non-native pests such as the emerald ash borer (Agrilus planipennis). Since 2008, we have been working with the U.S. Department of Agriculture Agricultural Research Service (USDA ARS) and USDA Forest Service (USDA FS) leading seed collection...

  15. Conservation of the rad21 Schizosaccharomyces pombe DNA double-strand break repair gene in mammals

    International Nuclear Information System (INIS)

    McKay, Michael J.; Spek, Peter van der; Kanaar, Roland; Smit, Bep; Bootsma, Dirk; Hoeijmakers, Jan H. J.

    1996-01-01

    Purpose/Objective: Genetic factors are likely to be major determinants of human cellular ionizing radiation sensitivity. DNA double strand breaks (dsbs) are significant ionizing radiation-induced lesions; cellular DNA dsb processing is also important in a number of other contexts. To further the understanding of DNA dsb processing in mammalian cells, we cloned and sequenced mammalian homologs of the rad21 Schizosaccharomyces pombe DNA dsb repair gene. Materials and Methods: The genes were cloned by evolutionary walking, exploiting sequence homology between the yeast and mammalian genes. Results: No major motifs indicative of a particular function were present in the predicted amino acid sequences of the mammalian genes. Alignment of the Rad21 amino acid sequence with its putative homologs showed that similarity was distributed across the length of the proteins, with more highly conserved regions at both termini. The mHR21 sp (mouse homolog ofR ad21, S. pombe) and hHR21 sp (humanh omolog of Rad21, S. pombe) predicted proteins were 96% identical, whereas the human and S. pombe proteins were 25% identical and 47% similar. RNA blot analysis showed that mHR21 sp mRNA was abundant in all adult mouse tissues examined, with highest expression in testis and thymus. In addition to a 3.1kb mRNA transcript in all tissues, an additional 2.2kb transcript was present at a high level in post-meiotic spermatids, white expression of the 3.1kb mRNA in testis was confined to the meiotic compartment. hHR21 sp mRNA was cell cycle regulated in human cells, increasing in late S phase to a peak in G2 phase. The level of hHR21 sp transcripts was not altered by exposure of normal diploid fibroblasts to 10 Gy ionizing radiation. In situ hybridization showed mHR21 sp resided on chromosome 15D3, whereashHR21 sp localized to the syntenic 8q24 region. Conclusion: Cloning these novel mammalian genes and characterization of their protein products should contribute to the understanding of cellular

  16. Essentiality, conservation, evolutionary pressure and codon bias in bacterial genomes.

    Science.gov (United States)

    Dilucca, Maddalena; Cimini, Giulio; Giansanti, Andrea

    2018-07-15

    Essential genes constitute the core of genes which cannot be mutated too much nor lost along the evolutionary history of a species. Natural selection is expected to be stricter on essential genes and on conserved (highly shared) genes, than on genes that are either nonessential or peculiar to a single or a few species. In order to further assess this expectation, we study here how essentiality of a gene is connected with its degree of conservation among several unrelated bacterial species, each one characterised by its own codon usage bias. Confirming previous results on E. coli, we show the existence of a universal exponential relation between gene essentiality and conservation in bacteria. Moreover, we show that, within each bacterial genome, there are at least two groups of functionally distinct genes, characterised by different levels of conservation and codon bias: i) a core of essential genes, mainly related to cellular information processing; ii) a set of less conserved nonessential genes with prevalent functions related to metabolism. In particular, the genes in the first group are more retained among species, are subject to a stronger purifying conservative selection and display a more limited repertoire of synonymous codons. The core of essential genes is close to the minimal bacterial genome, which is in the focus of recent studies in synthetic biology, though we confirm that orthologs of genes that are essential in one species are not necessarily essential in other species. We also list a set of highly shared genes which, reasonably, could constitute a reservoir of targets for new anti-microbial drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. How conserved are the conserved 16S-rRNA regions?

    Directory of Open Access Journals (Sweden)

    Marcel Martinez-Porchas

    2017-02-01

    Full Text Available The 16S rRNA gene has been used as master key for studying prokaryotic diversity in almost every environment. Despite the claim of several researchers to have the best universal primers, the reality is that no primer has been demonstrated to be truly universal. This suggests that conserved regions of the gene may not be as conserved as expected. The aim of this study was to evaluate the conservation degree of the so-called conserved regions flanking the hypervariable regions of the 16S rRNA gene. Data contained in SILVA database (release 123 were used for the study. Primers reported as matches of each conserved region were assembled to form contigs; sequences sizing 12 nucleotides (12-mers were extracted from these contigs and searched into the entire set of SILVA sequences. Frequency analysis shown that extreme regions, 1 and 10, registered the lowest frequencies. 12-mer frequencies revealed segments of contigs that were not as conserved as expected (≤90%. Fragments corresponding to the primer contigs 3, 4, 5b and 6a were recovered from all sequences in SILVA database. Nucleotide frequency analysis in each consensus demonstrated that only a small fraction of these so-called conserved regions is truly conserved in non-redundant sequences. It could be concluded that conserved regions of the 16S rRNA gene exhibit considerable variation that has to be considered when using this gene as biomarker.

  18. Evolutionary conservation of vertebrate notochord genes in the ascidian Ciona intestinalis.

    Science.gov (United States)

    Kugler, Jamie E; Passamaneck, Yale J; Feldman, Taya G; Beh, Jeni; Regnier, Todd W; Di Gregorio, Anna

    2008-11-01

    To reconstruct a minimum complement of notochord genes evolutionarily conserved across chordates, we scanned the Ciona intestinalis genome using the sequences of 182 genes reported to be expressed in the notochord of different vertebrates and identified 139 candidate notochord genes. For 66 of these Ciona genes expression data were already available, hence we analyzed the expression of the remaining 73 genes and found notochord expression for 20. The predicted products of the newly identified notochord genes range from the transcription factors Ci-XBPa and Ci-miER1 to extracellular matrix proteins. We examined the expression of the newly identified notochord genes in embryos ectopically expressing Ciona Brachyury (Ci-Bra) and in embryos expressing a repressor form of this transcription factor in the notochord, and we found that while a subset of the genes examined are clearly responsive to Ci-Bra, other genes are not affected by alterations in its levels. We provide a first description of notochord genes that are not evidently influenced by the ectopic expression of Ci-Bra and we propose alternative regulatory mechanisms that might control their transcription. Copyright 2008 Wiley-Liss, Inc.

  19. Conserved syntenic clusters of protein coding genes are missing in birds.

    Science.gov (United States)

    Lovell, Peter V; Wirthlin, Morgan; Wilhelm, Larry; Minx, Patrick; Lazar, Nathan H; Carbone, Lucia; Warren, Wesley C; Mello, Claudio V

    2014-01-01

    Birds are one of the most highly successful and diverse groups of vertebrates, having evolved a number of distinct characteristics, including feathers and wings, a sturdy lightweight skeleton and unique respiratory and urinary/excretion systems. However, the genetic basis of these traits is poorly understood. Using comparative genomics based on extensive searches of 60 avian genomes, we have found that birds lack approximately 274 protein coding genes that are present in the genomes of most vertebrate lineages and are for the most part organized in conserved syntenic clusters in non-avian sauropsids and in humans. These genes are located in regions associated with chromosomal rearrangements, and are largely present in crocodiles, suggesting that their loss occurred subsequent to the split of dinosaurs/birds from crocodilians. Many of these genes are associated with lethality in rodents, human genetic disorders, or biological functions targeting various tissues. Functional enrichment analysis combined with orthogroup analysis and paralog searches revealed enrichments that were shared by non-avian species, present only in birds, or shared between all species. Together these results provide a clearer definition of the genetic background of extant birds, extend the findings of previous studies on missing avian genes, and provide clues about molecular events that shaped avian evolution. They also have implications for fields that largely benefit from avian studies, including development, immune system, oncogenesis, and brain function and cognition. With regards to the missing genes, birds can be considered ‘natural knockouts’ that may become invaluable model organisms for several human diseases.

  20. High qualitative and quantitative conservation of alternative splicing in Caenorhabditis elegans and Caenorhabditis briggsae

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Irimia, Manuel; Mørk, Søren

    2007-01-01

    Alternative splicing (AS) is an important contributor to proteome diversity and is regarded as an explanatory factor for the relatively low number of human genes compared with less complex animals. To assess the evolutionary conservation of AS and its developmental regulation, we have investigated...... the qualitative and quantitative expression of 21 orthologous alternative splice events through the development of 2 nematode species separated by 85-110 Myr of evolutionary time. We demonstrate that most of these alternative splice events present in Caenorhabditis elegans are conserved in Caenorhabditis briggsae....... Moreover, we find that relative isoform expression levels vary significantly during development for 78% of the AS events and that this quantitative variation is highly conserved between the 2 species. Our results suggest that AS is generally tightly regulated through development and that the regulatory...

  1. Transcriptome profiling in conifers and the PiceaGenExpress database show patterns of diversification within gene families and interspecific conservation in vascular gene expression

    Directory of Open Access Journals (Sweden)

    Raherison Elie

    2012-08-01

    Full Text Available Abstract Background Conifers have very large genomes (13 to 30 Gigabases that are mostly uncharacterized although extensive cDNA resources have recently become available. This report presents a global overview of transcriptome variation in a conifer tree and documents conservation and diversity of gene expression patterns among major vegetative tissues. Results An oligonucleotide microarray was developed from Picea glauca and P. sitchensis cDNA datasets. It represents 23,853 unique genes and was shown to be suitable for transcriptome profiling in several species. A comparison of secondary xylem and phelloderm tissues showed that preferential expression in these vascular tissues was highly conserved among Picea spp. RNA-Sequencing strongly confirmed tissue preferential expression and provided a robust validation of the microarray design. A small database of transcription profiles called PiceaGenExpress was developed from over 150 hybridizations spanning eight major tissue types. In total, transcripts were detected for 92% of the genes on the microarray, in at least one tissue. Non-annotated genes were predominantly expressed at low levels in fewer tissues than genes of known or predicted function. Diversity of expression within gene families may be rapidly assessed from PiceaGenExpress. In conifer trees, dehydrins and late embryogenesis abundant (LEA osmotic regulation proteins occur in large gene families compared to angiosperms. Strong contrasts and low diversity was observed in the dehydrin family, while diverse patterns suggested a greater degree of diversification among LEAs. Conclusion Together, the oligonucleotide microarray and the PiceaGenExpress database represent the first resource of this kind for gymnosperm plants. The spruce transcriptome analysis reported here is expected to accelerate genetic studies in the large and important group comprised of conifer trees.

  2. Homologous high-throughput expression and purification of highly conserved E coli proteins

    Directory of Open Access Journals (Sweden)

    Duchmann Rainer

    2007-06-01

    Full Text Available Abstract Background Genetic factors and a dysregulated immune response towards commensal bacteria contribute to the pathogenesis of Inflammatory Bowel Disease (IBD. Animal models demonstrated that the normal intestinal flora is crucial for the development of intestinal inflammation. However, due to the complexity of the intestinal flora, it has been difficult to design experiments for detection of proinflammatory bacterial antigen(s involved in the pathogenesis of the disease. Several studies indicated a potential association of E. coli with IBD. In addition, T cell clones of IBD patients were shown to cross react towards antigens from different enteric bacterial species and thus likely responded to conserved bacterial antigens. We therefore chose highly conserved E. coli proteins as candidate antigens for abnormal T cell responses in IBD and used high-throughput techniques for cloning, expression and purification under native conditions of a set of 271 conserved E. coli proteins for downstream immunologic studies. Results As a standardized procedure, genes were PCR amplified and cloned into the expression vector pQTEV2 in order to express proteins N-terminally fused to a seven-histidine-tag. Initial small-scale expression and purification under native conditions by metal chelate affinity chromatography indicated that the vast majority of target proteins were purified in high yields. Targets that revealed low yields after purification probably due to weak solubility were shuttled into Gateway (Invitrogen destination vectors in order to enhance solubility by N-terminal fusion of maltose binding protein (MBP, N-utilizing substance A (NusA, or glutathione S-transferase (GST to the target protein. In addition, recombinant proteins were treated with polymyxin B coated magnetic beads in order to remove lipopolysaccharide (LPS. Thus, 73% of the targeted proteins could be expressed and purified in large-scale to give soluble proteins in the range of 500

  3. Structure and expression of GSL1 and GSL2 genes encoding gibberellin stimulated-like proteins in diploid and highly heterozygous tetraploid potato reveals their highly conserved and essential status.

    Science.gov (United States)

    Meiyalaghan, Sathiyamoorthy; Thomson, Susan J; Fiers, Mark W E J; Barrell, Philippa J; Latimer, Julie M; Mohan, Sara; Jones, E Eirian; Conner, Anthony J; Jacobs, Jeanne M E

    2014-01-02

    GSL1 and GSL2, Gibberellin Stimulated-Like proteins (also known as Snakin-1 and Snakin-2), are cysteine-rich peptides from potato (Solanum tuberosum L.) with antimicrobial properties. Similar peptides in other species have been implicated in diverse biological processes and are hypothesised to play a role in several aspects of plant development, plant responses to biotic or abiotic stress through their participation in hormone crosstalk, and redox homeostasis. To help resolve the biological roles of GSL1 and GSL2 peptides we have undertaken an in depth analysis of the structure and expression of these genes in potato. We have characterised the full length genes for both GSL1 (chromosome 4) and GSL2 (chromosome 1) from diploid and tetraploid potato using the reference genome sequence of potato, coupled with further next generation sequencing of four highly heterozygous tetraploid cultivars. The frequency of SNPs in GSL1 and GSL2 were very low with only one SNP every 67 and 53 nucleotides in exon regions of GSL1 and GSL2, respectively. Analysis of comprehensive RNA-seq data substantiated the role of specific promoter motifs in transcriptional control of gene expression. Expression analysis based on the frequency of next generation sequence reads established that GSL2 was expressed at a higher level than GSL1 in 30 out of 32 tissue and treatment libraries. Furthermore, both the GSL1 and GSL2 genes exhibited constitutive expression that was not up regulated in response to biotic or abiotic stresses, hormone treatments or wounding. Potato transformation with antisense knock-down expression cassettes failed to recover viable plants. The potato GSL1 and GSL2 genes are very highly conserved suggesting they contribute to an important biological function. The known antimicrobial activity of the GSL proteins, coupled with the FPKM analysis from RNA-seq data, implies that both genes contribute to the constitutive defence barriers in potatoes. The lethality of antisense knock

  4. Dynamic Epigenetic Control of Highly Conserved Noncoding Elements

    KAUST Repository

    Seridi, Loqmane

    2014-10-07

    Background Many noncoding genomic loci have remained constant over long evolutionary periods, suggesting that they are exposed to strong selective pressures. The molecular functions of these elements have been partially elucidated, but the fundamental reason for their extreme conservation is still unknown. Results To gain new insights into the extreme selection of highly conserved noncoding elements (HCNEs), we used a systematic analysis of multi-omic data to study the epigenetic regulation of such elements during the development of Drosophila melanogaster. At the sequence level, HCNEs are GC-rich and have a characteristic oligomeric composition. They have higher levels of stable nucleosome occupancy than their flanking regions, and lower levels of mononucleosomes and H3.3, suggesting that these regions reside in compact chromatin. Furthermore, these regions showed remarkable modulations in histone modification and the expression levels of adjacent genes during development. Although HCNEs are primarily initiated late in replication, about 10% were related to early replication origins. Finally, HCNEs showed strong enrichment within lamina-associated domains. Conclusion HCNEs have distinct and protective sequence properties, undergo dynamic epigenetic regulation, and appear to be associated with the structural components of the chromatin, replication origins, and nuclear matrix. These observations indicate that such elements are likely to have essential cellular functions, and offer insights into their epigenetic properties.

  5. Dynamic Epigenetic Control of Highly Conserved Noncoding Elements

    KAUST Repository

    Seridi, Loqmane; Ryu, Tae Woo; Ravasi, Timothy

    2014-01-01

    Background Many noncoding genomic loci have remained constant over long evolutionary periods, suggesting that they are exposed to strong selective pressures. The molecular functions of these elements have been partially elucidated, but the fundamental reason for their extreme conservation is still unknown. Results To gain new insights into the extreme selection of highly conserved noncoding elements (HCNEs), we used a systematic analysis of multi-omic data to study the epigenetic regulation of such elements during the development of Drosophila melanogaster. At the sequence level, HCNEs are GC-rich and have a characteristic oligomeric composition. They have higher levels of stable nucleosome occupancy than their flanking regions, and lower levels of mononucleosomes and H3.3, suggesting that these regions reside in compact chromatin. Furthermore, these regions showed remarkable modulations in histone modification and the expression levels of adjacent genes during development. Although HCNEs are primarily initiated late in replication, about 10% were related to early replication origins. Finally, HCNEs showed strong enrichment within lamina-associated domains. Conclusion HCNEs have distinct and protective sequence properties, undergo dynamic epigenetic regulation, and appear to be associated with the structural components of the chromatin, replication origins, and nuclear matrix. These observations indicate that such elements are likely to have essential cellular functions, and offer insights into their epigenetic properties.

  6. Evolutionary growth process of highly conserved sequences in vertebrate genomes.

    Science.gov (United States)

    Ishibashi, Minaka; Noda, Akiko Ogura; Sakate, Ryuichi; Imanishi, Tadashi

    2012-08-01

    Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Loss of a highly conserved sterile alpha motif domain gene (WEEP) results in pendulous branch growth in peach trees.

    Science.gov (United States)

    Hollender, Courtney A; Pascal, Thierry; Tabb, Amy; Hadiarto, Toto; Srinivasan, Chinnathambi; Wang, Wanpeng; Liu, Zhongchi; Scorza, Ralph; Dardick, Chris

    2018-05-15

    Plant shoots typically grow upward in opposition to the pull of gravity. However, exceptions exist throughout the plant kingdom. Most conspicuous are trees with weeping or pendulous branches. While such trees have long been cultivated and appreciated for their ornamental value, the molecular basis behind the weeping habit is not known. Here, we characterized a weeping tree phenotype in Prunus persica (peach) and identified the underlying genetic mutation using a genomic sequencing approach. Weeping peach tree shoots exhibited a downward elliptical growth pattern and did not exhibit an upward bending in response to 90° reorientation. The causative allele was found to be an uncharacterized gene, Ppa013325 , having a 1.8-Kb deletion spanning the 5' end. This gene, dubbed WEEP , was predominantly expressed in phloem tissues and encodes a highly conserved 129-amino acid protein containing a sterile alpha motif (SAM) domain. Silencing WEEP in the related tree species Prunus domestica (plum) resulted in more outward, downward, and wandering shoot orientations compared to standard trees, supporting a role for WEEP in directing lateral shoot growth in trees. This previously unknown regulator of branch orientation, which may also be a regulator of gravity perception or response, provides insights into our understanding of how tree branches grow in opposition to gravity and could serve as a critical target for manipulating tree architecture for improved tree shape in agricultural and horticulture applications. Copyright © 2018 the Author(s). Published by PNAS.

  8. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype

    DEFF Research Database (Denmark)

    Martens, Geert A; Jiang, Lei; Hellemans, Karine H

    2011-01-01

    The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...... of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture...... microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators....

  9. High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs.

    Directory of Open Access Journals (Sweden)

    Germán Martínez

    Full Text Available Micro RNAS (miRNAs are a class of endogenous small non coding RNAs involved in the post-transcriptional regulation of gene expression. In plants, a great number of conserved and specific miRNAs, mainly arising from model species, have been identified to date. However less is known about the diversity of these regulatory RNAs in vegetal species with agricultural and/or horticultural importance. Here we report a combined approach of bioinformatics prediction, high-throughput sequencing data and molecular methods to analyze miRNAs populations in cucumber (Cucumis sativus plants. A set of 19 conserved and 6 known but non-conserved miRNA families were found in our cucumber small RNA dataset. We also identified 7 (3 with their miRNA* strand not previously described miRNAs, candidates to be cucumber-specific. To validate their description these new C. sativus miRNAs were detected by northern blot hybridization. Additionally, potential targets for most conserved and new miRNAs were identified in cucumber genome.In summary, in this study we have identified, by first time, conserved, known non-conserved and new miRNAs arising from an agronomically important species such as C. sativus. The detection of this complex population of regulatory small RNAs suggests that similarly to that observe in other plant species, cucumber miRNAs may possibly play an important role in diverse biological and metabolic processes.

  10. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Moreau Hervé

    2008-10-01

    Full Text Available Abstract Background The Wuschel related homeobox (WOX family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distant organisms. Hence, we first validated the limits of the WOX13 orthologous group (WOX13 OG using the occurrence of other clade specific signatures and conserved intron insertion sites. Secondly, a functional analysis using expression data and mutants was undertaken. Results The WOX13 OG contained the most conserved plant WOX proteins including the only WOX detected in the highly proliferating basal unicellular and photosynthetic organism Ostreococcus tauri. A large expansion of the WOX family was observed after the separation of mosses from other land plants and before monocots and dicots have arisen. In Arabidopsis thaliana, AtWOX13 was dynamically expressed during primary and lateral root initiation and development, in gynoecium and during embryo development. AtWOX13 appeared to affect the floral transition. An intriguing clade, represented by the functional AtWOX14 gene inside the WOX13 OG, was only found in the Brassicaceae. Compared to AtWOX13, the gene expression profile of AtWOX14 was restricted to the early stages of lateral root formation and specific to developing anthers. A mutational insertion upstream of the AtWOX14 homeodomain sequence led to abnormal root development, a delay in the floral transition and premature anther differentiation. Conclusion Our data provide evidence in favor of the WOX13 OG as the clade containing the most conserved WOX genes and established a functional link to organ initiation and development in Arabidopsis, most

  11. Comparative transcriptome analysis within the Lolium/Festuca species complex reveals high sequence conservation

    DEFF Research Database (Denmark)

    Czaban, Adrian; Sharma, Sapna; Byrne, Stephen

    2015-01-01

    species from the Lolium-Festuca complex, ranging from 52,166 to 72,133 transcripts per assembly. We have also predicted a set of proteins and validated it with a high-confidence protein database from three closely related species (H. vulgare, B. distachyon and O. sativa). We have obtained gene family...... clusters for the four species using OrthoMCL and analyzed their inferred phylogenetic relationships. Our results indicate that VRN2 is a candidate gene for differentiating vernalization and non-vernalization types in the Lolium-Festuca complex. Grouping of the gene families based on their BLAST identity...... enabled us to divide ortholog groups into those that are very conserved and those that are more evolutionarily relaxed. The ratio of the non-synonumous to synonymous substitutions enabled us to pinpoint protein sequences evolving in response to positive selection. These proteins may explain some...

  12. Pleiotropic Regulation of Virulence Genes in Streptococcus mutans by the Conserved Small Protein SprV.

    Science.gov (United States)

    Shankar, Manoharan; Hossain, Mohammad S; Biswas, Indranil

    2017-04-15

    Streptococcus mutans , an oral pathogen associated with dental caries, colonizes tooth surfaces as polymicrobial biofilms known as dental plaque. S. mutans expresses several virulence factors that allow the organism to tolerate environmental fluctuations and compete with other microorganisms. We recently identified a small hypothetical protein (90 amino acids) essential for the normal growth of the bacterium. Inactivation of the gene, SMU.2137, encoding this protein caused a significant growth defect and loss of various virulence-associated functions. An S. mutans strain lacking this gene was more sensitive to acid, temperature, osmotic, oxidative, and DNA damage-inducing stresses. In addition, we observed an altered protein profile and defects in biofilm formation, bacteriocin production, and natural competence development, possibly due to the fitness defect associated with SMU.2137 deletion. Transcriptome sequencing revealed that nearly 20% of the S. mutans genes were differentially expressed upon SMU.2137 deletion, thereby suggesting a pleiotropic effect. Therefore, we have renamed this hitherto uncharacterized gene as sprV ( s treptococcal p leiotropic r egulator of v irulence). The transcript levels of several relevant genes in the sprV mutant corroborated the phenotypes observed upon sprV deletion. Owing to its highly conserved nature, inactivation of the sprV ortholog in Streptococcus gordonii also resulted in poor growth and defective UV tolerance and competence development as in the case of S. mutans Our experiments suggest that SprV is functionally distinct from its homologs identified by structure and sequence homology. Nonetheless, our current work is aimed at understanding the importance of SprV in the S. mutans biology. IMPORTANCE Streptococcus mutans employs several virulence factors and stress resistance mechanisms to colonize tooth surfaces and cause dental caries. Bacterial pathogenesis is generally controlled by regulators of fitness that are

  13. Structural and functional analysis of mouse Msx1 gene promoter: sequence conservation with human MSX1 promoter points at potential regulatory elements.

    Science.gov (United States)

    Gonzalez, S M; Ferland, L H; Robert, B; Abdelhay, E

    1998-06-01

    Vertebrate Msx genes are related to one of the most divergent homeobox genes of Drosophila, the muscle segment homeobox (msh) gene, and are expressed in a well-defined pattern at sites of tissue interactions. This pattern of expression is conserved in vertebrates as diverse as quail, zebrafish, and mouse in a range of sites including neural crest, appendages, and craniofacial structures. In the present work, we performed structural and functional analyses in order to identify potential cis-acting elements that may be regulating Msx1 gene expression. To this end, a 4.9-kb segment of the 5'-flanking region was sequenced and analyzed for transcription-factor binding sites. Four regions showing a high concentration of these sites were identified. Transfection assays with fragments of regulatory sequences driving the expression of the bacterial lacZ reporter gene showed that a region of 4 kb upstream of the transcription start site contains positive and negative elements responsible for controlling gene expression. Interestingly, a fragment of 130 bp seems to contain the minimal elements necessary for gene expression, as its removal completely abolishes gene expression in cultured cells. These results are reinforced by comparison of this region with the human Msx1 gene promoter, which shows extensive conservation, including many consensus binding sites, suggesting a regulatory role for them.

  14. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium.

    Science.gov (United States)

    Catania, Francesco; Lynch, Michael

    2010-05-04

    In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa) remains a virtually unexplored issue. By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Our observations 1) shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2) are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3) reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  15. Divergent gene expression in the conserved dauer stage of the nematodes Pristionchus pacificus and Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Sinha Amit

    2012-06-01

    Full Text Available Abstract Background An organism can respond to changing environmental conditions by adjusting gene regulation and by forming alternative phenotypes. In nematodes, these mechanisms are coupled because many species will form dauer larvae, a stress-resistant and non-aging developmental stage, when exposed to unfavorable environmental conditions, and execute gene expression programs that have been selected for the survival of the animal in the wild. These dauer larvae represent an environmentally induced, homologous developmental stage across many nematode species, sharing conserved morphological and physiological properties. Hence it can be expected that some core components of the associated transcriptional program would be conserved across species, while others might diverge over the course of evolution. However, transcriptional and metabolic analysis of dauer development has been largely restricted to Caenorhabditis elegans. Here, we use a transcriptomic approach to compare the dauer stage in the evolutionary model system Pristionchus pacificus with the dauer stage in C. elegans. Results We have employed Agilent microarrays, which represent 20,446 P. pacificus and 20,143 C. elegans genes to show an unexpected divergence in the expression profiles of these two nematodes in dauer and dauer exit samples. P. pacificus and C. elegans differ in the dynamics and function of genes that are differentially expressed. We find that only a small number of orthologous gene pairs show similar expression pattern in the dauers of the two species, while the non-orthologous fraction of genes is a major contributor to the active transcriptome in dauers. Interestingly, many of the genes acquired by horizontal gene transfer and orphan genes in P. pacificus, are differentially expressed suggesting that these genes are of evolutionary and functional importance. Conclusion Our data set provides a catalog for future functional investigations and indicates novel insight

  16. Conservation and diversification of Msx protein in metazoan evolution.

    Science.gov (United States)

    Takahashi, Hirokazu; Kamiya, Akiko; Ishiguro, Akira; Suzuki, Atsushi C; Saitou, Naruya; Toyoda, Atsushi; Aruga, Jun

    2008-01-01

    Msx (/msh) family genes encode homeodomain (HD) proteins that control ontogeny in many animal species. We compared the structures of Msx genes from a wide range of Metazoa (Porifera, Cnidaria, Nematoda, Arthropoda, Tardigrada, Platyhelminthes, Mollusca, Brachiopoda, Annelida, Echiura, Echinodermata, Hemichordata, and Chordata) to gain an understanding of the role of these genes in phylogeny. Exon-intron boundary analysis suggested that the position of the intron located N-terminally to the HDs was widely conserved in all the genes examined, including those of cnidarians. Amino acid (aa) sequence comparison revealed 3 new evolutionarily conserved domains, as well as very strong conservation of the HDs. Two of the three domains were associated with Groucho-like protein binding in both a vertebrate and a cnidarian Msx homolog, suggesting that the interaction between Groucho-like proteins and Msx proteins was established in eumetazoan ancestors. Pairwise comparison among the collected HDs and their C-flanking aa sequences revealed that the degree of sequence conservation varied depending on the animal taxa from which the sequences were derived. Highly conserved Msx genes were identified in the Vertebrata, Cephalochordata, Hemichordata, Echinodermata, Mollusca, Brachiopoda, and Anthozoa. The wide distribution of the conserved sequences in the animal phylogenetic tree suggested that metazoan ancestors had already acquired a set of conserved domains of the current Msx family genes. Interestingly, although strongly conserved sequences were recovered from the Vertebrata, Cephalochordata, and Anthozoa, the sequences from the Urochordata and Hydrozoa showed weak conservation. Because the Vertebrata-Cephalochordata-Urochordata and Anthozoa-Hydrozoa represent sister groups in the Chordata and Cnidaria, respectively, Msx sequence diversification may have occurred differentially in the course of evolution. We speculate that selective loss of the conserved domains in Msx family

  17. A highly conserved basidiomycete peptide synthetase produces a trimeric hydroxamate siderophore.

    Science.gov (United States)

    Brandenburger, Eileen; Gressler, Markus; Leonhardt, Robin; Lackner, Gerald; Habel, Andreas; Hertweck, Christian; Brock, Matthias; Hoffmeister, Dirk

    2017-08-25

    The model white-rot basidiomycete Ceriporiopsis ( Gelatoporia ) subvermispora B encodes putative natural product biosynthesis genes. Among them is the gene for the seven-domain nonribosomal peptide synthetase CsNPS2. It is a member of the as-yet uncharacterized fungal type VI siderophore synthetase family which is highly conserved and widely distributed among the basidiomycetes. These enzymes include only one adenylation (A) domain, i.e., one complete peptide synthetase module and two thiolation/condensation (T-C) di-domain partial modules which, together, constitute an AT 1 C 1 T 2 C 2 T 3 C 3 domain setup. The full-length CsNPS2 enzyme (274.5 kDa) was heterologously produced as polyhistidine fusion in Aspergillus niger as soluble and active protein. N 5 -acetyl- N 5 -hydroxy-l-ornithine (l-AHO) and N 5 - cis -anhydromevalonyl- N 5 -hydroxy-l-ornithine (l-AMHO) were accepted as substrates, as assessed in vitro using the substrate-dependent [ 32 P]ATP-pyrophosphate radioisotope exchange assay. Full-length holo -CsNPS2 catalyzed amide bond formation between three l-AHO molecules to release the linear l-AHO trimer, called basidioferrin, as product in vitro , which was verified by LC-HRESIMS. Phylogenetic analyses suggest that type VI family siderophore synthetases are widespread in mushrooms and have evolved in a common ancestor of basidiomycetes. Importance : The basidiomycete nonribosomal peptide synthetase CsNPS2 represents a member of a widely distributed but previously uninvestigated class (type VI) of fungal siderophore synthetases. Genes orthologous to CsNPS2 are highly conserved across various phylogenetic clades of the basidiomycetes. Hence, our work serves as a broadly applicable model for siderophore biosynthesis and iron metabolism in higher fungi. Also, our results on the amino acid substrate preference of CsNPS2 supports further understanding of the substrate selectivity of fungal adenylation domains. Methodologically, this report highlights the

  18. Conservation, spillover and gene flow within a network of Northern European marine protected areas.

    Directory of Open Access Journals (Sweden)

    Mats Brockstedt Olsen Huserbråten

    Full Text Available To ensure that marine protected areas (MPAs benefit conservation and fisheries, the effectiveness of MPA designs has to be evaluated in field studies. Using an interdisciplinary approach, we empirically assessed the design of a network of northern MPAs where fishing for European lobster (Homarusgammarus is prohibited. First, we demonstrate a high level of residency and survival (50% for almost a year (363 days within MPAs, despite small MPA sizes (0.5-1 km(2. Second, we demonstrate limited export (4.7% of lobsters tagged within MPAs (N = 1810 to neighbouring fished areas, over a median distance of 1.6 km out to maximum 21 km away from MPA centres. In comparison, median movement distance of lobsters recaptured within MPAs was 164 m, and recapture rate was high (40%. Third, we demonstrate a high level of gene flow within the study region, with an estimated F ST of less than 0.0001 over a ≈ 400 km coastline. Thus, the restricted movement of older life stages, combined with a high level of gene flow suggests that connectivity is primarily driven by larval drift. Larval export from the MPAs can most likely affect areas far beyond their borders. Our findings are of high importance for the design of MPA networks for sedentary species with pelagic early life stages.

  19. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium

    Directory of Open Access Journals (Sweden)

    Lynch Michael

    2010-05-01

    Full Text Available Abstract Background In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa remains a virtually unexplored issue. Results By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Conclusions Our observations 1 shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2 are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3 reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  20. Novel cancer gene variants and gene fusions of triple-negative breast cancers (TNBCs) reveal their molecular diversity conserved in the patient-derived xenograft (PDX) model.

    Science.gov (United States)

    Jung, Jaeyun; Jang, Kiwon; Ju, Jung Min; Lee, Eunji; Lee, Jong Won; Kim, Hee Jung; Kim, Jisun; Lee, Sae Byul; Ko, Beom Seok; Son, Byung Ho; Lee, Hee Jin; Gong, Gyungyup; Ahn, Sei Yeon; Choi, Jung Kyoon; Singh, Shree Ram; Chang, Suhwan

    2018-04-20

    Despite the improved 5-year survival rate of breast cancer, triple-negative breast cancer (TNBC) remains a challenge due to lack of effective targeted therapy and higher recurrence and metastasis than other subtypes. To identify novel druggable targets and to understand its unique biology, we tried to implement 24 patient-derived xenografts (PDXs) of TNBC. The overall success rate of PDX implantation was 45%, much higher than estrogen receptor (ER)-positive cases. Immunohistochemical analysis revealed conserved ER/PR/Her2 negativity (with two exceptions) between the original and PDX tumors. Genomic analysis of 10 primary tumor-PDX pairs with Ion AmpliSeq CCP revealed high degree of variant conservation (85.0% to 96.9%) between primary and PDXs. Further analysis showed 44 rare variants with a predicted high impact in 36 genes including Trp53, Pten, Notch1, and Col1a1. Among them, we confirmed frequent Notch1 variant. Furthermore, RNA-seq analysis of 24 PDXs revealed 594 gene fusions, of which 163 were in-frame, including AZGP1-GJC3 and NF1-AARSD1. Finally, western blot analysis of oncogenic signaling proteins supporting molecular diversity of TNBC PDXs. Overall, our report provides a molecular basis for the usefulness of the TNBC PDX model in preclinical study. Copyright © 2018. Published by Elsevier B.V.

  1. Functional conservation of the Drosophila gooseberry gene and its evolutionary alleles.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available The Drosophila Pax gene gooseberry (gsb is required for development of the larval cuticle and CNS, survival to adulthood, and male fertility. These functions can be rescued in gsb mutants by two gsb evolutionary alleles, gsb-Prd and gsb-Pax3, which express the Drosophila Paired and mouse Pax3 proteins under the control of gooseberry cis-regulatory region. Therefore, both Paired and Pax3 proteins have conserved all the Gsb functions that are required for survival of embryos to fertile adults, despite the divergent primary sequences in their C-terminal halves. As gsb-Prd and gsb-Pax3 uncover a gsb function involved in male fertility, construction of evolutionary alleles may provide a powerful strategy to dissect hitherto unknown gene functions. Our results provide further evidence for the essential role of cis-regulatory regions in the functional diversification of duplicated genes during evolution.

  2. Human cytomegalovirus UL145 gene is highly conserved among ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    capable of causing infections that persist lifelong, and normally ... 1 Virus Laboratory, Affiliated ShengJing Hospital, China Medical University, Shenyang 110004, P. R. China. 2Department of .... Elmer, USA), and negative controls were included in each round of .... variability of the UL145 gene in field isolates. To answer this.

  3. A conserved gene family encodes transmembrane proteins with fibronectin, immunoglobulin and leucine-rich repeat domains (FIGLER

    Directory of Open Access Journals (Sweden)

    Haga Christopher L

    2007-09-01

    Full Text Available Abstract Background In mouse the cytokine interleukin-7 (IL-7 is required for generation of B lymphocytes, but human IL-7 does not appear to have this function. A bioinformatics approach was therefore used to identify IL-7 receptor related genes in the hope of identifying the elusive human cytokine. Results Our database search identified a family of nine gene candidates, which we have provisionally named fibronectin immunoglobulin leucine-rich repeat (FIGLER. The FIGLER 1–9 genes are predicted to encode type I transmembrane glycoproteins with 6–12 leucine-rich repeats (LRR, a C2 type Ig domain, a fibronectin type III domain, a hydrophobic transmembrane domain, and a cytoplasmic domain containing one to four tyrosine residues. Members of this multichromosomal gene family possess 20–47% overall amino acid identity and are differentially expressed in cell lines and primary hematopoietic lineage cells. Genes for FIGLER homologs were identified in macaque, orangutan, chimpanzee, mouse, rat, dog, chicken, toad, and puffer fish databases. The non-human FIGLER homologs share 38–99% overall amino acid identity with their human counterpart. Conclusion The extracellular domain structure and absence of recognizable cytoplasmic signaling motifs in members of the highly conserved FIGLER gene family suggest a trophic or cell adhesion function for these molecules.

  4. Clusters of conserved beta cell marker genes for assessment of beta cell phenotype

    DEFF Research Database (Denmark)

    Martens, Geert A; Jiang, Lei; Hellemans, Karine H

    2011-01-01

    The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those...... of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture...

  5. Curli Fibers Are Highly Conserved between Salmonella typhimurium and Escherichia coli with Respect to Operon Structure and Regulation

    Science.gov (United States)

    Römling, Ute; Bian, Zhao; Hammar, Mårten; Sierralta, Walter D.; Normark, Staffan

    1998-01-01

    Mouse-virulent Salmonella typhimurium strains SR-11 and ATCC 14028-1s express curli fibers, thin aggregative fibers, at ambient temperature on plates as judged by Western blot analysis and electron microscopy. Concomitantly with curli expression, cells develop a rough and dry colony morphology and bind the dye Congo red (called the rdar morphotype). Cloning and characterization of the two divergently transcribed operons required for curli biogenesis, csgBA(C) and csgDEFG, from S. typhimurium SR-11 revealed the same gene order and flanking genes as in Escherichia coli. The divergence of the curli region between S. typhimurium and E. coli at the nucleotide level is above average (22.4%). However, a high level of conservation at the protein level, which ranged from 86% amino acid homology for the fiber subunit CsgA to 99% homology for the lipoprotein CsgG, implies functional constraints on the gene products. Consequently, S. typhimurium genes on low-copy-number plasmids were able to complement respective E. coli mutants, although not always to wild-type levels. rpoS and ompR are required for transcriptional activation of (at least) the csgD promoter. The high degree of conservation at the protein level and the identical regulation patterns in E. coli and S. typhimurium suggest similar roles of curli fibers in the same ecological niche in the two species. PMID:9457880

  6. Conservation of lipid metabolic gene transcriptional regulatory networks in fish and mammals.

    Science.gov (United States)

    Carmona-Antoñanzas, Greta; Tocher, Douglas R; Martinez-Rubio, Laura; Leaver, Michael J

    2014-01-15

    Lipid content and composition in aquafeeds have changed rapidly as a result of the recent drive to replace ecologically limited marine ingredients, fishmeal and fish oil (FO). Terrestrial plant products are the most economic and sustainable alternative; however, plant meals and oils are devoid of physiologically important cholesterol and long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic (EPA), docosahexaenoic (DHA) and arachidonic (ARA) acids. Although replacement of dietary FO with vegetable oil (VO) has little effect on growth in Atlantic salmon (Salmo salar), several studies have shown major effects on the activity and expression of genes involved in lipid homeostasis. In vertebrates, sterols and LC-PUFA play crucial roles in lipid metabolism by direct interaction with lipid-sensing transcription factors (TFs) and consequent regulation of target genes. The primary aim of the present study was to elucidate the role of key TFs in the transcriptional regulation of lipid metabolism in fish by transfection and overexpression of TFs. The results show that the expression of genes of LC-PUFA biosynthesis (elovl and fads2) and cholesterol metabolism (abca1) are regulated by Lxr and Srebp TFs in salmon, indicating highly conserved regulatory mechanism across vertebrates. In addition, srebp1 and srebp2 mRNA respond to replacement of dietary FO with VO. Thus, Atlantic salmon adjust lipid metabolism in response to dietary lipid composition through the transcriptional regulation of gene expression. It may be possible to further increase efficient and effective use of sustainable alternatives to marine products in aquaculture by considering these important molecular interactions when formulating diets. © 2013.

  7. Chromosome-wide mapping of DNA methylation patterns in normal and malignant prostate cells reveals pervasive methylation of gene-associated and conserved intergenic sequences

    Directory of Open Access Journals (Sweden)

    De Marzo Angelo M

    2011-06-01

    Full Text Available Abstract Background DNA methylation has been linked to genome regulation and dysregulation in health and disease respectively, and methods for characterizing genomic DNA methylation patterns are rapidly emerging. We have developed/refined methods for enrichment of methylated genomic fragments using the methyl-binding domain of the human MBD2 protein (MBD2-MBD followed by analysis with high-density tiling microarrays. This MBD-chip approach was used to characterize DNA methylation patterns across all non-repetitive sequences of human chromosomes 21 and 22 at high-resolution in normal and malignant prostate cells. Results Examining this data using computational methods that were designed specifically for DNA methylation tiling array data revealed widespread methylation of both gene promoter and non-promoter regions in cancer and normal cells. In addition to identifying several novel cancer hypermethylated 5' gene upstream regions that mediated epigenetic gene silencing, we also found several hypermethylated 3' gene downstream, intragenic and intergenic regions. The hypermethylated intragenic regions were highly enriched for overlap with intron-exon boundaries, suggesting a possible role in regulation of alternative transcriptional start sites, exon usage and/or splicing. The hypermethylated intergenic regions showed significant enrichment for conservation across vertebrate species. A sampling of these newly identified promoter (ADAMTS1 and SCARF2 genes and non-promoter (downstream or within DSCR9, C21orf57 and HLCS genes hypermethylated regions were effective in distinguishing malignant from normal prostate tissues and/or cell lines. Conclusions Comparison of chromosome-wide DNA methylation patterns in normal and malignant prostate cells revealed significant methylation of gene-proximal and conserved intergenic sequences. Such analyses can be easily extended for genome-wide methylation analysis in health and disease.

  8. Cloning of the cDNA for murine von Willebrand factor and identification of orthologous genes reveals the extent of conservation among diverse species.

    Science.gov (United States)

    Chitta, Mohan S; Duhé, Roy J; Kermode, John C

    2007-05-01

    Interaction of von Willebrand factor (VWF) with circulating platelets promotes hemostasis when a blood vessel is injured. The A1 domain of VWF is responsible for the initial interaction with platelets and is well conserved among species. Knowledge of the cDNA and genomic DNA sequences for human VWF allowed us to predict the cDNA sequence for murine VWF in silico and amplify its entire coding region by RT-PCR. The murine VWF cDNA has an open reading frame of 8,442 bp, encoding a protein of 2,813 amino acid residues with 83% identity to human pre-pro-VWF. The same strategy was used to predict in silico the cDNA sequence for the ortholog of VWF in a further six species. Many of these predictions diverged substantially from the putative Reference Sequences derived by ab initio methods. Our predicted sequences indicated that the VWF gene has a conserved structure of 52 exons in all seven mammalian species examined, as well as in the chicken. There is a minor structural variation in the pufferfish Takifugu rubripes insofar as the VWF gene in this species has 53 exons. Comparison of the translated amino acid sequences also revealed a high degree of conservation. In particular, the cysteine residues are conserved precisely throughout both the pro-peptide and the mature VWF sequence in all species, with a minor exception in the pufferfish VWF ortholog where two adjacent cysteine residues are omitted. The marked conservation of cysteine residues emphasizes the importance of the intricate pattern of disulfide bonds in governing the structure of pro-VWF and regulating the function of the mature VWF protein. It should also be emphasized that many of the conserved features of the VWF gene and protein were obscured when the comparison among species was based on the putative Reference Sequences instead of our predicted cDNA sequences.

  9. Identification of distal regulatory regions in the human alpha IIb gene locus necessary for consistent, high-level megakaryocyte expression.

    Science.gov (United States)

    Thornton, Michael A; Zhang, Chunyan; Kowalska, Maria A; Poncz, Mortimer

    2002-11-15

    The alphaIIb/beta3-integrin receptor is present at high levels only in megakaryocytes and platelets. Its presence on platelets is critical for hemostasis. The tissue-specific nature of this receptor's expression is secondary to the restricted expression of alphaIIb, and studies of the alphaIIb proximal promoter have served as a model of a megakaryocyte-specific promoter. We have examined the alphaIIb gene locus for distal regulatory elements. Sequence comparison between the human (h) and murine (m) alphaIIb loci revealed high levels of conservation at intergenic regions both 5' and 3' to the alphaIIb gene. Additionally, deoxyribonuclease (DNase) I sensitivity mapping defined tissue-specific hypersensitive (HS) sites that coincide, in part, with these conserved regions. Transgenic mice containing various lengths of the h(alpha)IIb gene locus, which included or excluded the various conserved/HS regions, demonstrated that the proximal promoter was sufficient for tissue specificity, but that a region 2.5 to 7.1 kb upstream of the h(alpha)IIb gene was necessary for consistent expression. Another region 2.2 to 7.4 kb downstream of the gene enhanced expression 1000-fold and led to levels of h(alpha)IIb mRNA that were about 30% of the native m(alpha)IIb mRNA level. These constructs also resulted in detectable h(alpha)IIb/m(beta)3 on the platelet surface. This work not only confirms the importance of the proximal promoter of the alphaIIb gene for tissue specificity, but also characterizes the distal organization of the alphaIIb gene locus and provides an initial localization of 2 important regulatory regions needed for the expression of the alphaIIb gene at high levels during megakaryopoiesis.

  10. Multi-species sequence comparison reveals conservation of ghrelin gene-derived splice variants encoding a truncated ghrelin peptide.

    Science.gov (United States)

    Seim, Inge; Jeffery, Penny L; Thomas, Patrick B; Walpole, Carina M; Maugham, Michelle; Fung, Jenny N T; Yap, Pei-Yi; O'Keeffe, Angela J; Lai, John; Whiteside, Eliza J; Herington, Adrian C; Chopin, Lisa K

    2016-06-01

    The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.

  11. Integrating gene flow, crop biology, and farm management in on-farm conservation of avocado (Persea americana, Lauraceae).

    Science.gov (United States)

    Birnbaum, Kenneth; Desalle, Rob; Peters, Charles M; Benfey, Philip N

    2003-11-01

    Maintaining crop diversity on farms where cultivars can evolve is a conservation goal, but few tools are available to assess the long-term maintenance of genetic diversity on farms. One important issue for on-farm conservation is gene flow from crops with a narrow genetic base into related populations that are genetically diverse. In a case study of avocado (Persea americana var. americana) in one of its centers of diversity (San Jerónimo, Costa Rica), we used 10 DNA microsatellite markers in a parentage analysis to estimate gene flow from commercialized varieties into a traditional crop population. Five commercialized genotypes comprised nearly 40% of orchard trees, but they contributed only about 14.5% of the gametes to the youngest cohort of trees. Although commercialized varieties and the diverse population were often planted on the same farm, planting patterns appeared to keep the two types of trees separated on small scales, possibly explaining the limited gene flow. In a simulation that combined gene flow estimates, crop biology, and graft tree management, loss of allelic diversity was less than 10% over 150 yr, and selection was effective in retaining desirable alleles in the diverse subpopulation. Simulations also showed that, in addition to gene flow, managing the genetic makeup and life history traits of the invasive commercialized varieties could have a significant impact on genetic diversity in the target population. The results support the feasibility of on-farm crop conservation, but simulations also showed that higher levels of gene flow could lead to severe losses of genetic diversity even if farmers continue to plant diverse varieties.

  12. Generation of monoclonal antibodies against highly conserved antigens.

    Directory of Open Access Journals (Sweden)

    Hongzhe Zhou

    Full Text Available BACKGROUND: Therapeutic antibody development is one of the fastest growing areas of the pharmaceutical industry. Generating high-quality monoclonal antibodies against a given therapeutic target is very crucial for the success of the drug development. However, due to immune tolerance, some proteins that are highly conserved between mice and humans are not very immunogenic in mice, making it difficult to generate antibodies using a conventional approach. METHODOLOGY/PRINCIPAL FINDINGS: In this report, the impaired immune tolerance of NZB/W mice was exploited to generate monoclonal antibodies against highly conserved or self-antigens. Using two highly conserved human antigens (MIF and HMGB1 and one mouse self-antigen (TNF-alpha as examples, we demonstrate here that multiple clones of high affinity, highly specific antibodies with desired biological activities can be generated, using the NZB/W mouse as the immunization host and a T cell-specific tag fused to a recombinant antigen to stimulate the immune system. CONCLUSIONS/SIGNIFICANCE: We developed an efficient and universal method for generating surrogate or therapeutic antibodies against "difficult antigens" to facilitate the development of therapeutic antibodies.

  13. Blueprint for a minimal photoautotrophic cell: conserved and variable genes in Synechococcus elongatus PCC 7942

    Directory of Open Access Journals (Sweden)

    Peretó Juli

    2011-01-01

    Full Text Available Abstract Background Simpler biological systems should be easier to understand and to engineer towards pre-defined goals. One way to achieve biological simplicity is through genome minimization. Here we looked for genomic islands in the fresh water cyanobacteria Synechococcus elongatus PCC 7942 (genome size 2.7 Mb that could be used as targets for deletion. We also looked for conserved genes that might be essential for cell survival. Results By using a combination of methods we identified 170 xenologs, 136 ORFans and 1401 core genes in the genome of S. elongatus PCC 7942. These represent 6.5%, 5.2% and 53.6% of the annotated genes respectively. We considered that genes in genomic islands could be found if they showed a combination of: a unusual G+C content; b unusual phylogenetic similarity; and/or c a small number of the highly iterated palindrome 1 (HIP1 motif plus an unusual codon usage. The origin of the largest genomic island by horizontal gene transfer (HGT could be corroborated by lack of coverage among metagenomic sequences from a fresh water microbialite. Evidence is also presented that xenologous genes tend to cluster in operons. Interestingly, most genes coding for proteins with a diguanylate cyclase domain are predicted to be xenologs, suggesting a role for horizontal gene transfer in the evolution of Synechococcus sensory systems. Conclusions Our estimates of genomic islands in PCC 7942 are larger than those predicted by other published methods like SIGI-HMM. Our results set a guide to non-essential genes in S. elongatus PCC 7942 indicating a path towards the engineering of a model photoautotrophic bacterial cell.

  14. Patterns of genetic differentiation at MHC class I genes and microsatellites identify conservation units in the giant panda.

    Science.gov (United States)

    Zhu, Ying; Wan, Qiu-Hong; Yu, Bin; Ge, Yun-Fa; Fang, Sheng-Guo

    2013-10-22

    Evaluating patterns of genetic variation is important to identify conservation units (i.e., evolutionarily significant units [ESUs], management units [MUs], and adaptive units [AUs]) in endangered species. While neutral markers could be used to infer population history, their application in the estimation of adaptive variation is limited. The capacity to adapt to various environments is vital for the long-term survival of endangered species. Hence, analysis of adaptive loci, such as the major histocompatibility complex (MHC) genes, is critical for conservation genetics studies. Here, we investigated 4 classical MHC class I genes (Aime-C, Aime-F, Aime-I, and Aime-L) and 8 microsatellites to infer patterns of genetic variation in the giant panda (Ailuropoda melanoleuca) and to further define conservation units. Overall, we identified 24 haplotypes (9 for Aime-C, 1 for Aime-F, 7 for Aime-I, and 7 for Aime-L) from 218 individuals obtained from 6 populations of giant panda. We found that the Xiaoxiangling population had the highest genetic variation at microsatellites among the 6 giant panda populations and higher genetic variation at Aime-MHC class I genes than other larger populations (Qinling, Qionglai, and Minshan populations). Differentiation index (FST)-based phylogenetic and Bayesian clustering analyses for Aime-MHC-I and microsatellite loci both supported that most populations were highly differentiated. The Qinling population was the most genetically differentiated. The giant panda showed a relatively higher level of genetic diversity at MHC class I genes compared with endangered felids. Using all of the loci, we found that the 6 giant panda populations fell into 2 ESUs: Qinling and non-Qinling populations. We defined 3 MUs based on microsatellites: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. We also recommended 3 possible AUs based on MHC loci: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. Furthermore, we recommend

  15. Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Mundy, John; Skriver, Karen

    2002-01-01

    Arabidopsis family of 34 genes. The predicted peptides are characterized by a conserved C-terminal sequence motif and additional primary structure conservation in a core region. The majority of these genes had not previously been annotated. A subset of the predicted peptides show high overall sequence...... similarity to Rapid Alkalinization Factor (RALF), a peptide isolated from tobacco. We therefore refer to this peptide family as RALFL for RALF-Like. RT-PCR analysis confirmed that several of the Arabidopsis genes are expressed and that their expression patterns vary. The identification of a large gene family...

  16. Zebrafish IGF genes: gene duplication, conservation and divergence, and novel roles in midline and notochord development.

    Directory of Open Access Journals (Sweden)

    Shuming Zou

    Full Text Available Insulin-like growth factors (IGFs are key regulators of development, growth, and longevity. In most vertebrate species including humans, there is one IGF-1 gene and one IGF-2 gene. Here we report the identification and functional characterization of 4 distinct IGF genes (termed as igf-1a, -1b, -2a, and -2b in zebrafish. These genes encode 4 structurally distinct and functional IGF peptides. IGF-1a and IGF-2a mRNAs were detected in multiple tissues in adult fish. IGF-1b mRNA was detected only in the gonad and IGF-2b mRNA only in the liver. Functional analysis showed that all 4 IGFs caused similar developmental defects but with different potencies. Many of these embryos had fully or partially duplicated notochords, suggesting that an excess of IGF signaling causes defects in the midline formation and an expansion of the notochord. IGF-2a, the most potent IGF, was analyzed in depth. IGF-2a expression caused defects in the midline formation and expansion of the notochord but it did not alter the anterior neural patterning. These results not only provide new insights into the functional conservation and divergence of the multiple igf genes but also reveal a novel role of IGF signaling in midline formation and notochord development in a vertebrate model.

  17. Analysis of 90 Mb of the potato genome reveals conservation of gene structures and order with tomato but divergence in repetitive sequence composition

    Directory of Open Access Journals (Sweden)

    O'Brien Kimberly

    2008-06-01

    Full Text Available Abstract Background The Solanaceae family contains a number of important crop species including potato (Solanum tuberosum which is grown for its underground storage organ known as a tuber. Albeit the 4th most important food crop in the world, other than a collection of ~220,000 Expressed Sequence Tags, limited genomic sequence information is currently available for potato and advances in potato yield and nutrition content would be greatly assisted through access to a complete genome sequence. While morphologically diverse, Solanaceae species such as potato, tomato, pepper, and eggplant share not only genes but also gene order thereby permitting highly informative comparative genomic analyses. Results In this study, we report on analysis 89.9 Mb of potato genomic sequence representing 10.2% of the genome generated through end sequencing of a potato bacterial artificial chromosome (BAC clone library (87 Mb and sequencing of 22 potato BAC clones (2.9 Mb. The GC content of potato is very similar to Solanum lycopersicon (tomato and other dicotyledonous species yet distinct from the monocotyledonous grass species, Oryza sativa. Parallel analyses of repetitive sequences in potato and tomato revealed substantial differences in their abundance, 34.2% in potato versus 46.3% in tomato, which is consistent with the increased genome size per haploid genome of these two Solanum species. Specific classes and types of repetitive sequences were also differentially represented between these two species including a telomeric-related repetitive sequence, ribosomal DNA, and a number of unclassified repetitive sequences. Comparative analyses between tomato and potato at the gene level revealed a high level of conservation of gene content, genic feature, and gene order although discordances in synteny were observed. Conclusion Genomic level analyses of potato and tomato confirm that gene sequence and gene order are conserved between these solanaceous species and that

  18. Target gene expression levels and competition between transfected and endogenous microRNAs are strong confounding factors in microRNA high-throughput experiments

    Science.gov (United States)

    2012-01-01

    Background MicroRNA (miRNA) target genes tend to have relatively long and conserved 3' untranslated regions (UTRs), but to what degree these characteristics contribute to miRNA targeting is poorly understood. Different high-throughput experiments have, for example, shown that miRNAs preferentially regulate genes with both short and long 3' UTRs and that target site conservation is both important and irrelevant for miRNA targeting. Results We have analyzed several gene context-dependent features, including 3' UTR length, 3' UTR conservation, and messenger RNA (mRNA) expression levels, reported to have conflicting influence on miRNA regulation. By taking into account confounding factors such as technology-dependent experimental bias and competition between transfected and endogenous miRNAs, we show that two factors - target gene expression and competition - could explain most of the previously reported experimental differences. Moreover, we find that these and other target site-independent features explain about the same amount of variation in target gene expression as the target site-dependent features included in the TargetScan model. Conclusions Our results show that it is important to consider confounding factors when interpreting miRNA high throughput experiments and urge special caution when using microarray data to compare average regulatory effects between groups of genes that have different average gene expression levels. PMID:22325809

  19. An evolutionarily conserved gene family encodes proton-selective ion channels.

    Science.gov (United States)

    Tu, Yu-Hsiang; Cooper, Alexander J; Teng, Bochuan; Chang, Rui B; Artiga, Daniel J; Turner, Heather N; Mulhall, Eric M; Ye, Wenlei; Smith, Andrew D; Liman, Emily R

    2018-03-02

    Ion channels form the basis for cellular electrical signaling. Despite the scores of genetically identified ion channels selective for other monatomic ions, only one type of proton-selective ion channel has been found in eukaryotic cells. By comparative transcriptome analysis of mouse taste receptor cells, we identified Otopetrin1 (OTOP1), a protein required for development of gravity-sensing otoconia in the vestibular system, as forming a proton-selective ion channel. We found that murine OTOP1 is enriched in acid-detecting taste receptor cells and is required for their zinc-sensitive proton conductance. Two related murine genes, Otop2 and Otop3 , and a Drosophila ortholog also encode proton channels. Evolutionary conservation of the gene family and its widespread tissue distribution suggest a broad role for proton channels in physiology and pathophysiology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. A novel, highly conserved metallothionein family in basidiomycete fungi and characterization of two representative SlMTa and SlMTb genes in the ectomycorrhizal fungus Suillus luteus.

    Science.gov (United States)

    Nguyen, Hoai; Rineau, François; Vangronsveld, Jaco; Cuypers, Ann; Colpaert, Jan V; Ruytinx, Joske

    2017-07-01

    The basidiomycete Suillus luteus is an important member of the ectomycorrhizal community that thrives in heavy metal polluted soils covered with pioneer pine forests. This study aimed to identify potential heavy metal chelators in S. luteus. Two metallothionein (MT) coding genes, SlMTa and SlMTb, were identified. When heterologously expressed in yeast, both SlMTa and SlMTb can rescue the Cu sensitive mutant from Cu toxicity. In S. luteus, transcription of both SlMTa and SlMTb is induced by Cu but not Cd or Zn. Several putative Cu-sensing and metal-response elements are present in the promoter sequences. These results indicate that SlMTa and SlMTb function as Cu-thioneins. Homologs of the S. luteus MTs are present in 49 species belonging to 10 different orders of the subphylum Agaricomycotina and are remarkably conserved. The length of the proteins, number and distribution of cysteine residues indicate a novel family of fungal MTs. The ubiquitous and highly conserved features of these MTs suggest that they are important for basic cellular functions in species in the subphylum Agaricomycotina. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants.

    Science.gov (United States)

    Li, Xinguo; Wu, Harry X; Southerton, Simon G

    2010-06-21

    Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution.

  2. Unusual conservation of mitochondrial gene order in Crassostrea oysters: evidence for recent speciation in Asia

    Science.gov (United States)

    2010-01-01

    Background Oysters are morphologically plastic and hence difficult subjects for taxonomic and evolutionary studies. It is long been suspected, based on the extraordinary species diversity observed, that Asia Pacific is the epicenter of oyster speciation. To understand the species diversity and its evolutionary history, we collected five Crassostrea species from Asia and sequenced their complete mitochondrial (mt) genomes in addition to two newly released Asian oysters (C. iredalei and Saccostrea mordax) for a comprehensive analysis. Results The six Asian Crassostrea mt genomes ranged from 18,226 to 22,446 bp in size, and all coded for 39 genes (12 proteins, 2 rRNAs and 25 tRNAs) on the same strand. Their genomes contained a split of the rrnL gene and duplication of trnM, trnK and trnQ genes. They shared the same gene order that differed from an Atlantic sister species by as many as nine tRNA changes (6 transpositions and 3 duplications) and even differed significantly from S. mordax in protein-coding genes. Phylogenetic analysis indicates that the six Asian Crassostrea species emerged between 3 and 43 Myr ago, while the Atlantic species evolved 83 Myr ago. Conclusions The complete conservation of gene order in the six Asian Crassostrea species over 43 Myr is highly unusual given the remarkable rate of rearrangements in their sister species and other bivalves. It provides strong evidence for the recent speciation of the six Crassostrea species in Asia. It further indicates that changes in mt gene order may not be strictly a function of time but subject to other constraints that are presently not well understood. PMID:21189147

  3. Conservation and gene banking

    Science.gov (United States)

    Plant conservation has several objectives the main ones include safeguarding our food supply, preserving crop wild relatives for breeding and selection of new cultivars, providing material for industrial and pharmaceutical uses and preserving the beauty and diversity of our flora for generations to ...

  4. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function.

    Science.gov (United States)

    Di, Chao; Xu, Wenying; Su, Zhen; Yuan, Joshua S

    2010-10-07

    PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms. The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function. PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out

  5. EST analysis in Ginkgo biloba: an assessment of conserved developmental regulators and gymnosperm specific genes

    Directory of Open Access Journals (Sweden)

    Runko Suzan J

    2005-10-01

    Full Text Available Abstract Background Ginkgo biloba L. is the only surviving member of one of the oldest living seed plant groups with medicinal, spiritual and horticultural importance worldwide. As an evolutionary relic, it displays many characters found in the early, extinct seed plants and extant cycads. To establish a molecular base to understand the evolution of seeds and pollen, we created a cDNA library and EST dataset from the reproductive structures of male (microsporangiate, female (megasporangiate, and vegetative organs (leaves of Ginkgo biloba. Results RNA from newly emerged male and female reproductive organs and immature leaves was used to create three distinct cDNA libraries from which 6,434 ESTs were generated. These 6,434 ESTs from Ginkgo biloba were clustered into 3,830 unigenes. A comparison of our Ginkgo unigene set against the fully annotated genomes of rice and Arabidopsis, and all available ESTs in Genbank revealed that 256 Ginkgo unigenes match only genes among the gymnosperms and non-seed plants – many with multiple matches to genes in non-angiosperm plants. Conversely, another group of unigenes in Gingko had highly significant homology to transcription factors in angiosperms involved in development, including MADS box genes as well as post-transcriptional regulators. Several of the conserved developmental genes found in Ginkgo had top BLAST homology to cycad genes. We also note here the presence of ESTs in G. biloba similar to genes that to date have only been found in gymnosperms and an additional 22 Ginkgo genes common only to genes from cycads. Conclusion Our analysis of an EST dataset from G. biloba revealed genes potentially unique to gymnosperms. Many of these genes showed homology to fully sequenced clones from our cycad EST dataset found in common only with gymnosperms. Other Ginkgo ESTs are similar to developmental regulators in higher plants. This work sets the stage for future studies on Ginkgo to better understand seed and

  6. Conserved-peptide upstream open reading frames (CPuORFs are associated with regulatory genes in angiosperms

    Directory of Open Access Journals (Sweden)

    Richard A Jorgensen

    2012-08-01

    Full Text Available Upstream open reading frames (uORFs are common in eukaryotic transcripts, but those that encode conserved peptides (CPuORFs occur in less than 1% of transcripts. The peptides encoded by three plant CPuORF families are known to control translation of the downstream ORF in response to a small signal molecule (sucrose, polyamines and phosphocholine. In flowering plants, transcription factors are statistically over-represented among genes that possess CPuORFs, and in general it appeared that many CPuORF genes also had other regulatory functions, though the significance of this suggestion was uncertain (Hayden and Jorgensen, 2007. Five years later the literature provides much more information on the functions of many CPuORF genes. Here we reassess the functions of 27 known CPuORF gene families and find that 22 of these families play a variety of different regulatory roles, from transcriptional control to protein turnover, and from small signal molecules to signal transduction kinases. Clearly then, there is indeed a strong association of CPuORFs with regulatory genes. In addition, 16 of these families play key roles in a variety of different biological processes. Most strikingly, the core sucrose response network includes three different CPuORFs, creating the potential for sophisticated balancing of the network in response to three different molecular inputs. We propose that the function of most CPuORFs is to modulate translation of a downstream major ORF (mORF in response to a signal molecule recognized by the conserved peptide and that because the mORFs of CPuORF genes generally encode regulatory proteins, many of them centrally important in the biology of plants, CPuORFs play key roles in balancing such regulatory networks.

  7. Comparative anatomy of the human APRT gene and enzyme: nucleotide sequence divergence and conservation of a nonrandom CpG dinucleotide arrangement

    International Nuclear Information System (INIS)

    Broderick, T.P.; Schaff, D.A.; Bertino, A.M.; Dush, M.K.; Tischfield, J.A.; Stambrook, P.J.

    1987-01-01

    The functional human adenine phosphoribosyltransferase (APRT) gene is <2.6 kilobases in length and contains five exons. The amino acid sequences of APRTs have been highly conserved throughout evolution. The human enzyme is 82%, 90%, and 40% identical to the mouse, hamster, and Escherichia coli enzymes, respectively. The promoter region of the human APRT gene, like that of several other housekeeping genes, lacks TATA and CCAAT boxes but contains five GC boxes that are potential binding sites for the Sp1 transcription factor. The distal three, however, are dispensable for gene expression. Comparison between human and mouse APRT gene nucleotide sequences reveals a high degree of homology within protein coding regions but an absence of significant homology in 5' flanking, 3' untranslated, and intron sequences, except for similarly positioned GC boxes in the promoter region and a 26-base-pair region in intron 3. This 26-base-pair sequence is 92% identical with a similarly positioned sequence in the mouse gene and is also found in intron 3 of the hamster gene, suggesting that its retention may be a consequence of stringent selection. The positions of all introns have been precisely retained in the human and both rodent genes. Retention of an elevated CpG dinucleotide content, despite loss of sequence homology, suggests that there may be selection for CpG dinucleotides in these regions and that their maintenance may be important for APRT gene function

  8. Comparative analysis of codon usage patterns and identification of predicted highly expressed genes in five Salmonella genomes

    Directory of Open Access Journals (Sweden)

    Mondal U

    2008-01-01

    Full Text Available Purpose: To anlyse codon usage patterns of five complete genomes of Salmonella , predict highly expressed genes, examine horizontally transferred pathogenicity-related genes to detect their presence in the strains, and scrutinize the nature of highly expressed genes to infer upon their lifestyle. Methods: Protein coding genes, ribosomal protein genes, and pathogenicity-related genes were analysed with Codon W and CAI (codon adaptation index Calculator. Results: Translational efficiency plays a role in codon usage variation in Salmonella genes. Low bias was noticed in most of the genes. GC3 (guanine cytosine at third position composition does not influence codon usage variation in the genes of these Salmonella strains. Among the cluster of orthologous groups (COGs, translation, ribosomal structure biogenesis [J], and energy production and conversion [C] contained the highest number of potentially highly expressed (PHX genes. Correspondence analysis reveals the conserved nature of the genes. Highly expressed genes were detected. Conclusions: Selection for translational efficiency is the major source of variation of codon usage in the genes of Salmonella . Evolution of pathogenicity-related genes as a unit suggests their ability to infect and exist as a pathogen. Presence of a lot of PHX genes in the information and storage-processing category of COGs indicated their lifestyle and revealed that they were not subjected to genome reduction.

  9. Sequence conservation and combinatorial complexity of Drosophila neural precursor cell enhancers

    Directory of Open Access Journals (Sweden)

    Kuzin Alexander

    2008-08-01

    Full Text Available Abstract Background The presence of highly conserved sequences within cis-regulatory regions can serve as a valuable starting point for elucidating the basis of enhancer function. This study focuses on regulation of gene expression during the early events of Drosophila neural development. We describe the use of EvoPrinter and cis-Decoder, a suite of interrelated phylogenetic footprinting and alignment programs, to characterize highly conserved sequences that are shared among co-regulating enhancers. Results Analysis of in vivo characterized enhancers that drive neural precursor gene expression has revealed that they contain clusters of highly conserved sequence blocks (CSBs made up of shorter shared sequence elements which are present in different combinations and orientations within the different co-regulating enhancers; these elements contain either known consensus transcription factor binding sites or consist of novel sequences that have not been functionally characterized. The CSBs of co-regulated enhancers share a large number of sequence elements, suggesting that a diverse repertoire of transcription factors may interact in a highly combinatorial fashion to coordinately regulate gene expression. We have used information gained from our comparative analysis to discover an enhancer that directs expression of the nervy gene in neural precursor cells of the CNS and PNS. Conclusion The combined use EvoPrinter and cis-Decoder has yielded important insights into the combinatorial appearance of fundamental sequence elements required for neural enhancer function. Each of the 30 enhancers examined conformed to a pattern of highly conserved blocks of sequences containing shared constituent elements. These data establish a basis for further analysis and understanding of neural enhancer function.

  10. Landscape genetics as a tool for conservation planning: predicting the effects of landscape change on gene flow.

    Science.gov (United States)

    van Strien, Maarten J; Keller, Daniela; Holderegger, Rolf; Ghazoul, Jaboury; Kienast, Felix; Bolliger, Janine

    2014-03-01

    For conservation managers, it is important to know whether landscape changes lead to increasing or decreasing gene flow. Although the discipline of landscape genetics assesses the influence of landscape elements on gene flow, no studies have yet used landscape-genetic models to predict gene flow resulting from landscape change. A species that has already been severely affected by landscape change is the large marsh grasshopper (Stethophyma grossum), which inhabits moist areas in fragmented agricultural landscapes in Switzerland. From transects drawn between all population pairs within maximum dispersal distance (landscape composition as well as some measures of habitat configuration. Additionally, a complete sampling of all populations in our study area allowed incorporating measures of population topology. These measures together with the landscape metrics formed the predictor variables in linear models with gene flow as response variable (F(ST) and mean pairwise assignment probability). With a modified leave-one-out cross-validation approach, we selected the model with the highest predictive accuracy. With this model, we predicted gene flow under several landscape-change scenarios, which simulated construction, rezoning or restoration projects, and the establishment of a new population. For some landscape-change scenarios, significant increase or decrease in gene flow was predicted, while for others little change was forecast. Furthermore, we found that the measures of population topology strongly increase model fit in landscape genetic analysis. This study demonstrates the use of predictive landscape-genetic models in conservation and landscape planning.

  11. Influence of high-frequency electromagnetic fields on different modes of cell death and gene expression.

    Science.gov (United States)

    Port, M; Abend, M; Römer, B; Van Beuningen, D

    2003-09-01

    International thresholds for exposure to non-ionizing radiation leading to non-thermal effects were conservatively set by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The aim of this study was to examine whether biological effects such as different modes of cell death and gene expression modifications related to tumorgenesis are detectable above the threshold defined. Human leukaemia cells (HL-60) grown in vitro were exposed to electromagnetic fields (EMF; t 1/2(r) about 1 ns; field strength about 25 times higher than the ICNIRP reference levels for occupational exposure) leading to non-thermal effects using a high-voltage-improved GTEM cell 5302 (EMCO) connected to a pulse generator NP20 (C = 1 nF, U(Load) = 20kV). HL-60 cells were harvested at 0, 24, 48 and 72 h after radiation exposure. Micronuclei, apoptosis and abnormal cells (e.g. necrosis) were determined using morphological criteria. In parallel, the expression of 1176 genes was measured using Atlas Human 1.2. Array. Based on high data reproducibility calculated from two independent experiments (> 99%), array analysis was performed. No significant change in apoptosis, micronucleation, abnormal cells and differential gene expression was found. Exposure of HL-60 cells to EMFs 25 times higher than the ICNIRP reference levels for occupational exposure failed to induce any changes in apoptosis, micronucleation, abnormal morphologies and gene expression. Further experiments using EMFs above the conservatively defined reference level set by the ICNIRP may be desirable.

  12. Prediction and characterisation of a highly conserved, remote and cAMP responsive enhancer that regulates Msx1 gene expression in cardiac neural crest and outflow tract.

    Science.gov (United States)

    Miller, Kerry Ann; Davidson, Scott; Liaros, Angela; Barrow, John; Lear, Marissa; Heine, Danielle; Hoppler, Stefan; MacKenzie, Alasdair

    2008-05-15

    Double knockouts of the Msx1 and Msx2 genes in the mouse result in severe cardiac outflow tract malformations similar to those frequently found in newborn infants. Despite the known role of the Msx genes in cardiac formation little is known of the regulatory systems (ligand receptor, signal transduction and protein-DNA interactions) that regulate the tissue-specific expression of the Msx genes in mammals during the formation of the outflow tract. In the present study we have used a combination of multi-species comparative genomics, mouse transgenic analysis and in-situ hybridisation to predict and validate the existence of a remote ultra-conserved enhancer that supports the expression of the Msx1 gene in migrating mouse cardiac neural crest and the outflow tract primordia. Furthermore, culturing of embryonic explants derived from transgenic lines with agonists of the PKC and PKA signal transduction systems demonstrates that this remote enhancer is influenced by PKA but not PKC dependent gene regulatory systems. These studies demonstrate the efficacy of combining comparative genomics and transgenic analyses and provide a platform for the study of the possible roles of Msx gene mis-regulation in the aetiology of congenital heart malformation.

  13. Conservation and Sex-Specific Splicing of the transformer Gene in the Calliphorids Cochliomyia hominivorax, Cochliomyia macellaria and Lucilia sericata

    Science.gov (United States)

    Li, Fang; Vensko, Steven P.; Belikoff, Esther J.; Scott, Maxwell J.

    2013-01-01

    Transformer (TRA) promotes female development in several dipteran species including the Australian sheep blowfly Lucilia cuprina, the Mediterranean fruit fly, housefly and Drosophila melanogaster. tra transcripts are sex-specifically spliced such that only the female form encodes full length functional protein. The presence of six predicted TRA/TRA2 binding sites in the sex-specific female intron of the L. cuprina gene suggested that tra splicing is auto-regulated as in medfly and housefly. With the aim of identifying conserved motifs that may play a role in tra sex-specific splicing, here we have isolated and characterized the tra gene from three additional blowfly species, L. sericata, Cochliomyia hominivorax and C. macellaria. The blowfly adult male and female transcripts differ in the choice of splice donor site in the first intron, with males using a site downstream of the site used in females. The tra genes all contain a single TRA/TRA2 site in the male exon and a cluster of four to five sites in the male intron. However, overall the sex-specific intron sequences are poorly conserved in closely related blowflies. The most conserved regions are around the exon/intron junctions, the 3′ end of the intron and near the cluster of TRA/TRA2 sites. We propose a model for sex specific regulation of tra splicing that incorporates the conserved features identified in this study. In L. sericata embryos, the male tra transcript was first detected at around the time of cellular blastoderm formation. RNAi experiments showed that tra is required for female development in L. sericata and C. macellaria. The isolation of the tra gene from the New World screwworm fly C. hominivorax, a major livestock pest, will facilitate the development of a “male-only” strain for genetic control programs. PMID:23409170

  14. Differential conservation and divergence of fertility genes boule and dazl in the rainbow trout.

    Directory of Open Access Journals (Sweden)

    Mingyou Li

    Full Text Available BACKGROUND: The genes boule and dazl are members of the DAZ (Deleted in Azoospermia family encoding RNA binding proteins essential for germ cell development. Although dazl exhibits bisexual expression in mitotic and meiotic germ cells in diverse animals, boule shows unisexual meiotic expression in invertebrates and mammals but a bisexual mitotic and meiotic expression in medaka. How boule and dazl have evolved different expression patterns in diverse organisms has remained unknown. METHODOLOGY AND PRINCIPAL FINDINGS: Here we chose the fish rainbow trout (Oncorhynchus mykiss as a second lower vertebrate model to investigate the expression of boule and dazl. By molecular cloning and sequence comparison, we identified cDNAs encoding the trout Boule and Dazl proteins, which have a conserved RNA-recognition motif and a maximal similarity to their homologs. By RT-PCR analysis, adult RNA expression of trout boule and dazl is restricted to the gonads of both sexes. By chromogenic and two-color fluorescence in situ hybridization, we revealed bisexual and germline-specific expression of boule and dazl. We found that dazl displays conserved expression throughout gametogenesis and concentrates in the Balbinani's body of early oocytes and the chromatoid body of sperm. Surprisingly, boule exhibits mitotic and meiotic expression in the male but meiosis-specific expression in the female. CONCLUSIONS: Our data underscores differential conservation and divergence of DAZ family genes during vertebrate evolution. We propose a model in which the diversity of boule expression in sex and stage specificity might have resulted from selective loss or gain of its expression in one sex and mitotic germ cells.

  15. Conservation of AtTZF1, AtTZF2 and AtTZF3 homolog gene regulation by salt stress in evolutionarily distant plant species

    Directory of Open Access Journals (Sweden)

    Fabio eD'Orso

    2015-06-01

    Full Text Available Arginine-rich tandem zinc-finger proteins (RR-TZF participate in a wide range of plant developmental processes and adaptive responses to abiotic stress, such as cold, salt and drought. This study investigates the conservation of the genes AtTZF1-5 at the level of their sequences and expression across plant species. The genomic sequences of the two RR-TZF genes TdTZF1-A and TdTZF1-B were isolated in durum wheat and assigned to chromosomes 3A and 3B, respectively. Sequence comparisons revealed that they encode proteins that are highly homologous to AtTZF1, AtTZF2 and AtTZF3. The expression profiles of these RR-TZF durum wheat and Arabidopsis proteins support a common function in the regulation of seed germination and responses to abiotic stress. In particular, analysis of plants with attenuated and overexpressed AtTZF3 indicate that AtTZF3 is a negative regulator of seed germination under conditions of salt stress. Finally, comparative sequence analyses establish that the RR-TZF genes are encoded by lower plants, including the bryophyte Physcomitrella patens and the alga Chlamydomonas reinhardtii. The regulation of the Physcomitrella AtTZF1-2-3-like genes by salt stress strongly suggests that a subgroup of the RR-TZF proteins has a function that has been conserved throughout evolution.

  16. Conserved Transcriptional Regulatory Programs Underlying Rice and Barley Germination

    Science.gov (United States)

    Lin, Li; Tian, Shulan; Kaeppler, Shawn; Liu, Zongrang; An, Yong-Qiang (Charles)

    2014-01-01

    Germination is a biological process important to plant development and agricultural production. Barley and rice diverged 50 million years ago, but share a similar germination process. To gain insight into the conservation of their underlying gene regulatory programs, we compared transcriptomes of barley and rice at start, middle and end points of germination, and revealed that germination regulated barley and rice genes (BRs) diverged significantly in expression patterns and/or protein sequences. However, BRs with higher protein sequence similarity tended to have more conserved expression patterns. We identified and characterized 316 sets of conserved barley and rice genes (cBRs) with high similarity in both protein sequences and expression patterns, and provided a comprehensive depiction of the transcriptional regulatory program conserved in barley and rice germination at gene, pathway and systems levels. The cBRs encoded proteins involved in a variety of biological pathways and had a wide range of expression patterns. The cBRs encoding key regulatory components in signaling pathways often had diverse expression patterns. Early germination up-regulation of cell wall metabolic pathway and peroxidases, and late germination up-regulation of chromatin structure and remodeling pathways were conserved in both barley and rice. Protein sequence and expression pattern of a gene change quickly if it is not subjected to a functional constraint. Preserving germination-regulated expression patterns and protein sequences of those cBRs for 50 million years strongly suggests that the cBRs are functionally significant and equivalent in germination, and contribute to the ancient characteristics of germination preserved in barley and rice. The functional significance and equivalence of the cBR genes predicted here can serve as a foundation to further characterize their biological functions and facilitate bridging rice and barley germination research with greater confidence. PMID

  17. Duplication of the IGFBP-2 gene in teleost fish: protein structure and functionality conservation and gene expression divergence.

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhou

    Full Text Available BACKGROUND: Insulin-like growth factor binding protein-2 (IGFBP-2 is a secreted protein that binds and regulates IGF actions in controlling growth, development, reproduction, and aging. Elevated expression of IGFBP-2 is often associated with progression of many types of cancers. METHODOLOGY/PRINCIPAL FINDINGS: We report the identification and characterization of two IGFBP-2 genes in zebrafish and four other teleost fish. Comparative genomics and structural analyses suggest that they are co-orthologs of the human IGFBP-2 gene. Biochemical assays show that both zebrafish igfbp-2a and -2b encode secreted proteins that bind IGFs. These two genes exhibit distinct spatiotemporal expression patterns. During embryogenesis, IGFBP-2a mRNA is initially detected in the lens, then in the brain boundary vasculature, and subsequently becomes highly expressed in the liver. In the adult stage, liver has the highest levels of IGFBP-2a mRNA, followed by the brain. Low levels of IGFBP-2a mRNA were detected in muscle and in the gonad in male adults only. IGFBP-2b mRNA is detected initially in all tissues at low levels, but later becomes abundant in the liver. In adult males, IGFBP-2b mRNA is only detected in the liver. In adult females, it is also found in the gut, kidney, ovary, and muscle. To gain insights into how the IGFBP-2 genes may have evolved through partitioning of ancestral functions, functional and mechanistic studies were carried out. Expression of zebrafish IGFBP-2a and -2b caused significant decreases in the growth and developmental rates and their effects are comparable to that of human IGFBP-2. IGFBP-2 mutants with altered IGF binding-, RGD-, and heparin-binding sites were generated and their actions examined. While mutating the RGD and heparin binding sites had little effect, altering the IGF binding site abolished its biological activity. CONCLUSIONS/SIGNIFICANCE: These results suggest that IGFBP-2 is a conserved regulatory protein and it inhibits

  18. The human homolog of S. cerevisiae CDC27, CDC27 Hs, is encoded by a highly conserved intronless gene present in multiple copies in the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Devor, E.J.; Dill-Devor, R.M. [Univ. of Iowa College of Medicine, Iowa City (United States)

    1994-09-01

    We have obtained a number of unique sequences via PCR amplification of human genomic DNA using degenerate primers under low stringency (42{degrees}C). One of these, an 853 bp product, has been identified as a partial genomic sequence of the human homolog of the S. cerevisiae CDC27 gene, CDC27Hs (GenBank No. U00001). This gene, reported by Turgendreich et al. is also designated EST00556 from Adams et al. We have undertaken a more detailed examination of our sequence, MCP34N, and have found that: 1. the genomic sequence is nearly identical to CDC27Hs over its entire 853 bp length; 2. an MCP34N-specific PCR assay of several non-human primate species reveals amplification products in chimpanzee and gorilla genomes having greater than 90% sequence identity with CDC27Hs; and 3. an MCP34N-specific PCR assay of the BIOS hybrid cell line panel gives a discordancy pattern suggesting multiple loci. Based upon these data, we present the following initial characterization: 1. the complete MCP34N sequence identity with CDC27Hs indicates that the latter is encoded by an intronless gene; 2. CDC27Hs is highly conserved among higher primates; and 3. CDC27Hs is present in multiple copies in the human genome. These characteristics, taken together with those initially reported for CDC27Hs, suggest that this is an old gene that carries out an important but, as yet, unknown function in the human brain.

  19. Identification of gene pools used in restoration and conservation by chloroplast microsatellite markers in Iberian pine species

    Directory of Open Access Journals (Sweden)

    Enrique Hernández-Tecles

    2017-10-01

    Full Text Available Aim of study: To contribute to the characterization of the origin of material used in afforestation, restoration or conservation activities by using Cp-SSR markers. Area of study: We used information from the natural range of Iberian pines, from Spain. Materials and methods: We used Iberian pines as an example to undertook gene pool characterization based on a wide Iberian sample of 97 populations from five Pinus species (Pinus halepensis, Pinus pinaster, Pinus nigra, Pinus sylvestris and Pinus uncinata. Haplotypes from each analyzed tree (derived from nine chloroplast microsatellites markers in P. halepensis and six in the rest of the species were obtained. Based on this information we subdivided each species in regions (considering both genetic structure and its application in afforestation, restoration and conservation programs and tested the assignation of populations to the different groups based on the genetic distance among samples. Main results: The rate of successful identification of populations among the different species was very high (> 94 % for P. nigra, P. sylvestris and P. uncinata, high (81 % for P. pinaster, and low (< 65 % for P. halepensis. Research highlights: Chloroplast DNA markers from extensive population datasets can be used to assign the origin of the forest reproductive material in some pine species.

  20. Identification of gene pools used in restoration and conservation by chloroplast microsatellite markers in Iberian pine species

    International Nuclear Information System (INIS)

    Hernández-Tecles, Enrique; De las Heras, Jorge; Lorenzo, Zaida; Navascués, Miguel; Alia, Ricardo

    2017-01-01

    Aim of study: To contribute to the characterization of the origin of material used in afforestation, restoration or conservation activities by using Cp-SSR markers. Area of study: We used information from the natural range of Iberian pines, from Spain. Materials and methods: We used Iberian pines as an example to undertook gene pool characterization based on a wide Iberian sample of 97 populations from five Pinus species (Pinus halepensis, Pinus pinaster, Pinus nigra, Pinus sylvestris and Pinus uncinata). Haplotypes from each analyzed tree (derived from nine chloroplast microsatellites markers in P. halepensis and six in the rest of the species) were obtained. Based on this information we subdivided each species in regions (considering both genetic structure and its application in afforestation, restoration and conservation programs) and tested the assignation of populations to the different groups based on the genetic distance among samples. Main results: The rate of successful identification of populations among the different species was very high (> 94 %) for P. nigra, P. sylvestris and P. uncinata, high (81 %) for P. pinaster, and low (< 65 %) for P. halepensis. Research highlights: Chloroplast DNA markers from extensive population datasets can be used to assign the origin of the forest reproductive material in some pine species.

  1. Identification of gene pools used in restoration and conservation by chloroplast microsatellite markers in Iberian pine species

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Tecles, Enrique; De las Heras, Jorge; Lorenzo, Zaida; Navascués, Miguel; Alia, Ricardo

    2017-11-01

    Aim of study: To contribute to the characterization of the origin of material used in afforestation, restoration or conservation activities by using Cp-SSR markers. Area of study: We used information from the natural range of Iberian pines, from Spain. Materials and methods: We used Iberian pines as an example to undertook gene pool characterization based on a wide Iberian sample of 97 populations from five Pinus species (Pinus halepensis, Pinus pinaster, Pinus nigra, Pinus sylvestris and Pinus uncinata). Haplotypes from each analyzed tree (derived from nine chloroplast microsatellites markers in P. halepensis and six in the rest of the species) were obtained. Based on this information we subdivided each species in regions (considering both genetic structure and its application in afforestation, restoration and conservation programs) and tested the assignation of populations to the different groups based on the genetic distance among samples. Main results: The rate of successful identification of populations among the different species was very high (> 94 %) for P. nigra, P. sylvestris and P. uncinata, high (81 %) for P. pinaster, and low (< 65 %) for P. halepensis. Research highlights: Chloroplast DNA markers from extensive population datasets can be used to assign the origin of the forest reproductive material in some pine species.

  2. The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima

    Science.gov (United States)

    Chipman, Ariel D.; Ferrier, David E. K.; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S. T.; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C.; Alonso, Claudio R.; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C. J.; Blankenburg, Kerstin P.; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K.; Du Pasquier, Louis; Duncan, Elizabeth J.; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D.; Extavour, Cassandra G.; Francisco, Liezl; Gabaldón, Toni; Gillis, William J.; Goodwin-Horn, Elizabeth A.; Green, Jack E.; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J. P.; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H. L.; Hunn, Julia P.; Hunnekuhl, Vera S.; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N.; Jiggins, Francis M.; Jones, Tamsin E.; Kaiser, Tobias S.; Kalra, Divya; Kenny, Nathan J.; Korchina, Viktoriya; Kovar, Christie L.; Kraus, F. Bernhard; Lapraz, François; Lee, Sandra L.; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N.; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J.; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H.; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C.; Robertson, Helen E.; Robertson, Hugh M.; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E.; Schurko, Andrew M.; Siggens, Kenneth W.; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J.; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M.; Willis, Judith H.; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M.; Worley, Kim C.; Gibbs, Richard A.; Akam, Michael; Richards, Stephen

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific

  3. Analysis of the highly diverse gene borders in Ebola virus reveals a distinct mechanism of transcriptional regulation.

    Science.gov (United States)

    Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi; Hoenen, Thomas; Olejnik, Judith; Schümann, Michael; Ebihara, Hideki; Mühlberger, Elke

    2014-11-01

    Ebola virus (EBOV) belongs to the group of nonsegmented negative-sense RNA viruses. The seven EBOV genes are separated by variable gene borders, including short (4- or 5-nucleotide) intergenic regions (IRs), a single long (144-nucleotide) IR, and gene overlaps, where the neighboring gene end and start signals share five conserved nucleotides. The unique structure of the gene overlaps and the presence of a single long IR are conserved among all filoviruses. Here, we sought to determine the impact of the EBOV gene borders during viral transcription. We show that readthrough mRNA synthesis occurs in EBOV-infected cells irrespective of the structure of the gene border, indicating that the gene overlaps do not promote recognition of the gene end signal. However, two consecutive gene end signals at the VP24 gene might improve termination at the VP24-L gene border, ensuring efficient L gene expression. We further demonstrate that the long IR is not essential for but regulates transcription reinitiation in a length-dependent but sequence-independent manner. Mutational analysis of bicistronic minigenomes and recombinant EBOVs showed no direct correlation between IR length and reinitiation rates but demonstrated that specific IR lengths not found naturally in filoviruses profoundly inhibit downstream gene expression. Intriguingly, although truncation of the 144-nucleotide-long IR to 5 nucleotides did not substantially affect EBOV transcription, it led to a significant reduction of viral growth. Our current understanding of EBOV transcription regulation is limited due to the requirement for high-containment conditions to study this highly pathogenic virus. EBOV is thought to share many mechanistic features with well-analyzed prototype nonsegmented negative-sense RNA viruses. A single polymerase entry site at the 3' end of the genome determines that transcription of the genes is mainly controlled by gene order and cis-acting signals found at the gene borders. Here, we examined

  4. Genomic Imprinting Was Evolutionarily Conserved during Wheat Polyploidization.

    Science.gov (United States)

    Yang, Guanghui; Liu, Zhenshan; Gao, Lulu; Yu, Kuohai; Feng, Man; Yao, Yingyin; Peng, Huiru; Hu, Zhaorong; Sun, Qixin; Ni, Zhongfu; Xin, Mingming

    2018-01-01

    Genomic imprinting is an epigenetic phenomenon that causes genes to be differentially expressed depending on their parent of origin. To evaluate the evolutionary conservation of genomic imprinting and the effects of ploidy on this process, we investigated parent-of-origin-specific gene expression patterns in the endosperm of diploid ( Aegilops spp), tetraploid, and hexaploid wheat ( Triticum spp) at various stages of development via high-throughput transcriptome sequencing. We identified 91, 135, and 146 maternally or paternally expressed genes (MEGs or PEGs, respectively) in diploid, tetraploid, and hexaploid wheat, respectively, 52.7% of which exhibited dynamic expression patterns at different developmental stages. Gene Ontology enrichment analysis suggested that MEGs and PEGs were involved in metabolic processes and DNA-dependent transcription, respectively. Nearly half of the imprinted genes exhibited conserved expression patterns during wheat hexaploidization. In addition, 40% of the homoeolog pairs originating from whole-genome duplication were consistently maternally or paternally biased in the different subgenomes of hexaploid wheat. Furthermore, imprinted expression was found for 41.2% and 50.0% of homolog pairs that evolved by tandem duplication after genome duplication in tetraploid and hexaploid wheat, respectively. These results suggest that genomic imprinting was evolutionarily conserved between closely related Triticum and Aegilops species and in the face of polyploid hybridization between species in these genera. © 2018 American Society of Plant Biologists. All rights reserved.

  5. Next generation sequencing and analysis of a conserved transcriptome of New Zealand's kiwi.

    Science.gov (United States)

    Subramanian, Sankar; Huynen, Leon; Millar, Craig D; Lambert, David M

    2010-12-15

    Kiwi is a highly distinctive, flightless and endangered ratite bird endemic to New Zealand. To understand the patterns of molecular evolution of the nuclear protein-coding genes in brown kiwi (Apteryx australis mantelli) and to determine the timescale of avian history we sequenced a transcriptome obtained from a kiwi embryo using next generation sequencing methods. We then assembled the conserved protein-coding regions using the chicken proteome as a scaffold. Using 1,543 conserved protein coding genes we estimated the neutral evolutionary divergence between the kiwi and chicken to be ~45%, which is approximately equal to the divergence computed for the human-mouse pair using the same set of genes. A large fraction of genes was found to be under high selective constraint, as most of the expressed genes appeared to be involved in developmental gene regulation. Our study suggests a significant relationship between gene expression levels and protein evolution. Using sequences from over 700 nuclear genes we estimated the divergence between the two basal avian groups, Palaeognathae and Neognathae to be 132 million years, which is consistent with previous studies using mitochondrial genes. The results of this investigation revealed patterns of mutation and purifying selection in conserved protein coding regions in birds. Furthermore this study suggests a relatively cost-effective way of obtaining a glimpse into the fundamental molecular evolutionary attributes of a genome, particularly when no closely related genomic sequence is available.

  6. Next generation sequencing and analysis of a conserved transcriptome of New Zealand's kiwi

    Directory of Open Access Journals (Sweden)

    Huynen Leon

    2010-12-01

    Full Text Available Abstract Background Kiwi is a highly distinctive, flightless and endangered ratite bird endemic to New Zealand. To understand the patterns of molecular evolution of the nuclear protein-coding genes in brown kiwi (Apteryx australis mantelli and to determine the timescale of avian history we sequenced a transcriptome obtained from a kiwi embryo using next generation sequencing methods. We then assembled the conserved protein-coding regions using the chicken proteome as a scaffold. Results Using 1,543 conserved protein coding genes we estimated the neutral evolutionary divergence between the kiwi and chicken to be ~45%, which is approximately equal to the divergence computed for the human-mouse pair using the same set of genes. A large fraction of genes was found to be under high selective constraint, as most of the expressed genes appeared to be involved in developmental gene regulation. Our study suggests a significant relationship between gene expression levels and protein evolution. Using sequences from over 700 nuclear genes we estimated the divergence between the two basal avian groups, Palaeognathae and Neognathae to be 132 million years, which is consistent with previous studies using mitochondrial genes. Conclusions The results of this investigation revealed patterns of mutation and purifying selection in conserved protein coding regions in birds. Furthermore this study suggests a relatively cost-effective way of obtaining a glimpse into the fundamental molecular evolutionary attributes of a genome, particularly when no closely related genomic sequence is available.

  7. Telomeric expression sites are highly conserved in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Christiane Hertz-Fowler

    Full Text Available Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs. The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.

  8. Tilapia and human CLIC2 structures are highly conserved.

    Science.gov (United States)

    Zeng, Jiao; Li, Zhengjun; Lui, Eei Yin; Lam, Siew Hong; Swaminathan, Kunchithapadam

    2018-01-08

    Chloride intracellular channels (CLICs) exist in soluble and membrane bound forms. We have determined the crystal structure of soluble Clic2 from the euryhaline teleost fish Oreochromis mossambicus. Structural comparison of tilapia and human CLIC2 with other CLICs shows that these proteins are highly conserved. We have also compared the expression levels of clic2 in selected osmoregulatory organs of tilapia, acclimated to freshwater, seawater and hypersaline water. Structural conservation of vertebrate CLICs implies that they might play conserved roles. Also, tissue-specific responsiveness of clic2 suggests that it might be involved in iono-osmoregulation under extreme conditions in tilapia. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Hayashi

    Full Text Available Coenzyme Q (CoQ is an essential factor for aerobic growth and oxidative phosphorylation in the electron transport system. The biosynthetic pathway for CoQ has been proposed mainly from biochemical and genetic analyses of Escherichia coli and Saccharomyces cerevisiae; however, the biosynthetic pathway in higher eukaryotes has been explored in only a limited number of studies. We previously reported the roles of several genes involved in CoQ synthesis in the fission yeast Schizosaccharomyces pombe. Here, we expand these findings by identifying ten genes (dps1, dlp1, ppt1, and coq3-9 that are required for CoQ synthesis. CoQ10-deficient S. pombe coq deletion strains were generated and characterized. All mutant fission yeast strains were sensitive to oxidative stress, produced a large amount of sulfide, required an antioxidant to grow on minimal medium, and did not survive at the stationary phase. To compare the biosynthetic pathway of CoQ in fission yeast with that in higher eukaryotes, the ability of CoQ biosynthetic genes from humans and plants (Arabidopsis thaliana to functionally complement the S. pombe coq deletion strains was determined. With the exception of COQ9, expression of all other human and plant COQ genes recovered CoQ10 production by the fission yeast coq deletion strains, although the addition of a mitochondrial targeting sequence was required for human COQ3 and COQ7, as well as A. thaliana COQ6. In summary, this study describes the functional conservation of CoQ biosynthetic genes between yeasts, humans, and plants.

  10. The albinism of the feral Asinara white donkeys (Equus asinus) is determined by a missense mutation in a highly conserved position of the tyrosinase (TYR) gene deduced protein.

    Science.gov (United States)

    Utzeri, V J; Bertolini, F; Ribani, A; Schiavo, G; Dall'Olio, S; Fontanesi, L

    2016-02-01

    A feral donkey population (Equus asinus), living in the Asinara National Park (an island north-west of Sardinia, Italy), includes a unique white albino donkey subpopulation or colour morph that is a major attraction of this park. Disrupting mutations in the tyrosinase (TYR) gene are known to cause recessive albinisms in humans (oculocutaneous albinism Type 1; OCA1) and other species. In this study, we analysed the donkey TYR gene as a strong candidate to identify the causative mutation of the albinism of these donkeys. The TYR gene was sequenced from 13 donkeys (seven Asinara white albino and six coloured animals). Seven single nucleotide polymorphisms were identified. A missense mutation (c.604C>G; p.His202Asp) in a highly conserved amino acid position (even across kingdoms), which disrupts the first copper-binding site (CuA) of functional protein, was identified in the homozygous condition (G/G or D/D) in all Asinara white albino donkeys and in the albino son of a trio (the grey parents had genotype C/G or H/D), supporting the recessive mode of inheritance of this mutation. Genotyping 82 donkeys confirmed that Asinara albino donkeys had genotype G/G whereas all other coloured donkeys had genotype C/C or C/G. Across-population association between the c.604C>G genotypes and the albino coat colour was highly significant (P = 6.17E-18). The identification of the causative mutation of the albinism in the Asinara white donkeys might open new perspectives to study the dynamics of this putative deleterious allele in a feral population and to manage this interesting animal genetic resource. © 2015 Stichting International Foundation for Animal Genetics.

  11. Differential evolution of members of the rhomboid gene family with conservative and divergent patterns.

    Science.gov (United States)

    Li, Qi; Zhang, Ning; Zhang, Liangsheng; Ma, Hong

    2015-04-01

    Rhomboid proteins are intramembrane serine proteases that are involved in a plethora of biological functions, but the evolutionary history of the rhomboid gene family is not clear. We performed a comprehensive molecular evolutionary analysis of the rhomboid gene family and also investigated the organization and sequence features of plant rhomboids in different subfamilies. Our results showed that eukaryotic rhomboids could be divided into five subfamilies (RhoA-RhoD and PARL). Most orthology groups appeared to be conserved only as single or low-copy genes in all lineages in RhoB-RhoD and PARL, whereas RhoA genes underwent several duplication events, resulting in multiple gene copies. These duplication events were due to whole genome duplications in plants and animals and the duplicates might have experienced functional divergence. We also identified a novel group of plant rhomboid (RhoB1) that might have lost their enzymatic activity; their existence suggests that they might have evolved new mechanisms. Plant and animal rhomboids have similar evolutionary patterns. In addition, there are mutations affecting key active sites in RBL8, RBL9 and one of the Brassicaceae PARL duplicates. This study delineates a possible evolutionary scheme for intramembrane proteins and illustrates distinct fates and a mechanism of evolution of gene duplicates. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  12. Usherin expression is highly conserved in mouse and human tissues.

    Science.gov (United States)

    Pearsall, Nicole; Bhattacharya, Gautam; Wisecarver, Jim; Adams, Joe; Cosgrove, Dominic; Kimberling, William

    2002-12-01

    Usher syndrome is an autosomal recessive disease that results in varying degrees of hearing loss and retinitis pigmentosa. Three types of Usher syndrome (I, II, and III) have been identified clinically with Usher type II being the most common of the three types. Usher type II has been localized to three different chromosomes 1q41, 3p, and 5q, corresponding to Usher type 2A, 2B, and 2C respectively. Usherin is a basement membrane protein encoded by the USH2A gene. Expression of usherin has been localized in the basement membrane of several tissues, however it is not ubiquitous. Immunohistochemistry detected usherin in the following human tissues: retina, cochlea, small and large intestine, pancreas, bladder, prostate, esophagus, trachea, thymus, salivary glands, placenta, ovary, fallopian tube, uterus, and testis. Usherin was absent in many other tissues such as heart, lung, liver, kidney, and brain. This distribution is consistent with the usherin distribution seen in the mouse. Conservation of usherin is also seen at the nucleotide and amino acid level when comparing the mouse and human gene sequences. Evolutionary conservation of usherin expression at the molecular level and in tissues unaffected by Usher 2a supports the important structural and functional role this protein plays in the human. In addition, we believe that these results could lead to a diagnostic procedure for the detection of Usher syndrome and those who carry an USH2A mutation.

  13. Conserved intron positions in FGFR genes reflect the modular structure of FGFR and reveal stepwise addition of domains to an already complex ancestral FGFR.

    Science.gov (United States)

    Rebscher, Nicole; Deichmann, Christina; Sudhop, Stefanie; Fritzenwanker, Jens Holger; Green, Stephen; Hassel, Monika

    2009-10-01

    We have analyzed the evolution of fibroblast growth factor receptor (FGFR) tyrosine kinase genes throughout a wide range of animal phyla. No evidence for an FGFR gene was found in Porifera, but we tentatively identified an FGFR gene in the placozoan Trichoplax adhaerens. The gene encodes a protein with three immunoglobulin-like domains, a single-pass transmembrane, and a split tyrosine kinase domain. By superimposing intron positions of 20 FGFR genes from Placozoa, Cnidaria, Protostomia, and Deuterostomia over the respective protein domain structure, we identified ten ancestral introns and three conserved intron groups. Our analysis shows (1) that the position of ancestral introns correlates to the modular structure of FGFRs, (2) that the acidic domain very likely evolved in the last common ancestor of triploblasts, (3) that splicing of IgIII was enabled by a triploblast-specific insertion, and (4) that IgI is subject to substantial loss or duplication particularly in quickly evolving genomes. Moreover, intron positions in the catalytic domain of FGFRs map to the borders of protein subdomains highly conserved in other serine/threonine kinases. Nevertheless, these introns were introduced in metazoan receptor tyrosine kinases exclusively. Our data support the view that protein evolution dating back to the Cambrian explosion took place in such a short time window that only subtle changes in the domain structure are detectable in extant representatives of animal phyla. We propose that the first multidomain FGFR originated in the last common ancestor of Placozoa, Cnidaria, and Bilateria. Additional domains were introduced mainly in the ancestor of triploblasts and in the Ecdysozoa.

  14. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes

    Science.gov (United States)

    Matus, José Tomás; Aquea, Felipe; Arce-Johnson, Patricio

    2008-01-01

    Background The MYB superfamily constitutes the most abundant group of transcription factors described in plants. Members control processes such as epidermal cell differentiation, stomatal aperture, flavonoid synthesis, cold and drought tolerance and pathogen resistance. No genome-wide characterization of this family has been conducted in a woody species such as grapevine. In addition, previous analysis of the recently released grape genome sequence suggested expansion events of several gene families involved in wine quality. Results We describe and classify 108 members of the grape R2R3 MYB gene subfamily in terms of their genomic gene structures and similarity to their putative Arabidopsis thaliana orthologues. Seven gene models were derived and analyzed in terms of gene expression and their DNA binding domain structures. Despite low overall sequence homology in the C-terminus of all proteins, even in those with similar functions across Arabidopsis and Vitis, highly conserved motif sequences and exon lengths were found. The grape epidermal cell fate clade is expanded when compared with the Arabidopsis and rice MYB subfamilies. Two anthocyanin MYBA related clusters were identified in chromosomes 2 and 14, one of which includes the previously described grape colour locus. Tannin related loci were also detected with eight candidate homologues in chromosomes 4, 9 and 11. Conclusion This genome wide transcription factor analysis in Vitis suggests that clade-specific grape R2R3 MYB genes are expanded while other MYB genes could be well conserved compared to Arabidopsis. MYB gene abundance, homology and orientation within particular loci also suggests that expanded MYB clades conferring quality attributes of grapes and wines, such as colour and astringency, could possess redundant, overlapping and cooperative functions. PMID:18647406

  15. Positive selection in the SLC11A1 gene in the family Equidae

    DEFF Research Database (Denmark)

    Bayerova, Zuzana; Janova, Eva; Matiasovic, Jan

    2016-01-01

    Immunity-related genes are a suitable model for studying effects of selection at the genomic level. Some of them are highly conserved due to functional constraints and purifying selection, while others are variable and change quickly to cope with the variation of pathogens. The SLC11A1 gene encodes...... a transporter protein mediating antimicrobial activity of macrophages. Little is known about the patterns of selection shaping this gene during evolution. Although it is a typical evolutionarily conserved gene, functionally important polymorphisms associated with various diseases were identified in humans...... and other species. We analyzed the genomic organization, genetic variation, and evolution of the SLC11A1 gene in the family Equidae to identify patterns of selection within this important gene. Nucleotide SLC11A1 sequences were shown to be highly conserved in ten equid species, with more than 97 % sequence...

  16. Comparative genomics of Mycoplasma: analysis of conserved essential genes and diversity of the pan-genome.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available Mycoplasma, the smallest self-replicating organism with a minimal metabolism and little genomic redundancy, is expected to be a close approximation to the minimal set of genes needed to sustain bacterial life. This study employs comparative evolutionary analysis of twenty Mycoplasma genomes to gain an improved understanding of essential genes. By analyzing the core genome of mycoplasmas, we finally revealed the conserved essential genes set for mycoplasma survival. Further analysis showed that the core genome set has many characteristics in common with experimentally identified essential genes. Several key genes, which are related to DNA replication and repair and can be disrupted in transposon mutagenesis studies, may be critical for bacteria survival especially over long period natural selection. Phylogenomic reconstructions based on 3,355 homologous groups allowed robust estimation of phylogenetic relatedness among mycoplasma strains. To obtain deeper insight into the relative roles of molecular evolution in pathogen adaptation to their hosts, we also analyzed the positive selection pressures on particular sites and lineages. There appears to be an approximate correlation between the divergence of species and the level of positive selection detected in corresponding lineages.

  17. Conserved gene regulatory module specifies lateral neural borders across bilaterians.

    Science.gov (United States)

    Li, Yongbin; Zhao, Di; Horie, Takeo; Chen, Geng; Bao, Hongcun; Chen, Siyu; Liu, Weihong; Horie, Ryoko; Liang, Tao; Dong, Biyu; Feng, Qianqian; Tao, Qinghua; Liu, Xiao

    2017-08-01

    The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans Second, orthologs of the vertebrate NPB specification module ( Msx/vab-15 , Pax3/7/pax-3 , and Zic/ref-2 ) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref- 2 in C. elegans Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans , Drosophila melanogaster , and Ciona intestinalis We also identify a novel lateral neural border specifier, ZNF703/tlp-1 , which functions synergistically with Msx/vab- 15 in both C. elegans and Xenopus laevis These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians.

  18. Properties of Sequence Conservation in Upstream Regulatory and Protein Coding Sequences among Paralogs in Arabidopsis thaliana

    Science.gov (United States)

    Richardson, Dale N.; Wiehe, Thomas

    Whole genome duplication (WGD) has catalyzed the formation of new species, genes with novel functions, altered expression patterns, complexified signaling pathways and has provided organisms a level of genetic robustness. We studied the long-term evolution and interrelationships of 5’ upstream regulatory sequences (URSs), protein coding sequences (CDSs) and expression correlations (EC) of duplicated gene pairs in Arabidopsis. Three distinct methods revealed significant evolutionary conservation between paralogous URSs and were highly correlated with microarray-based expression correlation of the respective gene pairs. Positional information on exact matches between sequences unveiled the contribution of micro-chromosomal rearrangements on expression divergence. A three-way rank analysis of URS similarity, CDS divergence and EC uncovered specific gene functional biases. Transcription factor activity was associated with gene pairs exhibiting conserved URSs and divergent CDSs, whereas a broad array of metabolic enzymes was found to be associated with gene pairs showing diverged URSs but conserved CDSs.

  19. Phylogenetic analysis and protein structure modelling identifies distinct Ca(2+)/Cation antiporters and conservation of gene family structure within Arabidopsis and rice species.

    Science.gov (United States)

    Pittman, Jon K; Hirschi, Kendal D

    2016-12-01

    The Ca(2+)/Cation Antiporter (CaCA) superfamily is an ancient and widespread family of ion-coupled cation transporters found in nearly all kingdoms of life. In animals, K(+)-dependent and K(+)-indendent Na(+)/Ca(2+) exchangers (NCKX and NCX) are important CaCA members. Recently it was proposed that all rice and Arabidopsis CaCA proteins should be classified as NCX proteins. Here we performed phylogenetic analysis of CaCA genes and protein structure homology modelling to further characterise members of this transporter superfamily. Phylogenetic analysis of rice and Arabidopsis CaCAs in comparison with selected CaCA members from non-plant species demonstrated that these genes form clearly distinct families, with the H(+)/Cation exchanger (CAX) and cation/Ca(2+) exchanger (CCX) families dominant in higher plants but the NCKX and NCX families absent. NCX-related Mg(2+)/H(+) exchanger (MHX) and CAX-related Na(+)/Ca(2+) exchanger-like (NCL) proteins are instead present. Analysis of genomes of ten closely-related rice species and four Arabidopsis-related species found that CaCA gene family structures are highly conserved within related plants, apart from minor variation. Protein structures were modelled for OsCAX1a and OsMHX1. Despite exhibiting broad structural conservation, there are clear structural differences observed between the different CaCA types. Members of the CaCA superfamily form clearly distinct families with different phylogenetic, structural and functional characteristics, and therefore should not be simply classified as NCX proteins, which should remain as a separate gene family.

  20. Evaluation of highly conserved hsp65-specific nested PCR primers for diagnosing Mycobacterium tuberculosis.

    Science.gov (United States)

    Priyadarshini, P; Tiwari, K; Das, A; Kumar, D; Mishra, M N; Desikan, P; Nath, G

    2017-02-01

    To evaluate the sensitivity and specificity of a new nested set of primers designed for the detection of Mycobacterium tuberculosis complex targeting a highly conserved heat shock protein gene (hsp65). The nested primers were designed using multiple sequence alignment assuming the nucleotide sequence of the M. tuberculosis H37Rv hsp65 genome as base. Multidrug-resistant Mycobacterium species along with other non-mycobacterial and fungal species were included to evaluate the specificity of M. tuberculosis hsp65 gene-specific primers. The sensitivity of the primers was determined using serial 10-fold dilutions, and was 100% as shown by the bands in the case of M. tuberculosis complex. None of the other non M. tuberculosis complex bacterial and fungal species yielded any band on nested polymerase chain reaction (PCR). The first round of amplification could amplify 0.3 ng of the template DNA, while nested PCR could detect 0.3 pg. The present hsp65-specific primers have been observed to be sensitive, specific and cost-effective, without requiring interpretation of biochemical tests, real-time PCR, sequencing or high-performance liquid chromatography. These primer sets do not have the drawbacks associated with those protocols that target insertion sequence 6110, 16S rDNA, rpoB, recA and MPT 64.

  1. IL26 gene inactivation in Equidae.

    Science.gov (United States)

    Shakhsi-Niaei, M; Drögemüller, M; Jagannathan, V; Gerber, V; Leeb, T

    2013-12-01

    Interleukin-26 (IL26) is a member of the IL10 cytokine family. The IL26 gene is located between two other well-known cytokines genes of this family encoding interferon-gamma (IFNG) and IL22 in an evolutionary conserved gene cluster. In contrast to humans and most other mammals, mice lack a functional Il26 gene. We analyzed the genome sequences of other vertebrates for the presence or absence of functional IL26 orthologs and found that the IL26 gene has also become inactivated in several equid species. We detected a one-base pair frameshift deletion in exon 2 of the IL26 gene in the domestic horse (Equus caballus), Przewalski horse (Equus przewalskii) and donkey (Equus asinus). The remnant IL26 gene in the horse is still transcribed and gives rise to at least five alternative transcripts. None of these transcripts share a conserved open reading frame with the human IL26 gene. A comparative analysis across diverse vertebrates revealed that the IL26 gene has also independently been inactivated in a few other mammals, including the African elephant and the European hedgehog. The IL26 gene thus appears to be highly variable, and the conserved open reading frame has been lost several times during mammalian evolution. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  2. CpG methylation differences between neurons and glia are highly conserved from mouse to human.

    Science.gov (United States)

    Kessler, Noah J; Van Baak, Timothy E; Baker, Maria S; Laritsky, Eleonora; Coarfa, Cristian; Waterland, Robert A

    2016-01-15

    Understanding epigenetic differences that distinguish neurons and glia is of fundamental importance to the nascent field of neuroepigenetics. A recent study used genome-wide bisulfite sequencing to survey differences in DNA methylation between these two cell types, in both humans and mice. That study minimized the importance of cell type-specific differences in CpG methylation, claiming these are restricted to localized genomic regions, and instead emphasized that widespread and highly conserved differences in non-CpG methylation distinguish neurons and glia. We reanalyzed the data from that study and came to markedly different conclusions. In particular, we found widespread cell type-specific differences in CpG methylation, with a genome-wide tendency for neuronal CpG-hypermethylation punctuated by regions of glia-specific hypermethylation. Alarmingly, our analysis indicated that the majority of genes identified by the primary study as exhibiting cell type-specific CpG methylation differences were misclassified. To verify the accuracy of our analysis, we isolated neuronal and glial DNA from mouse cortex and performed quantitative bisulfite pyrosequencing at nine loci. The pyrosequencing results corroborated our analysis, without exception. Most interestingly, we found that gene-associated neuron vs. glia CpG methylation differences are highly conserved across human and mouse, and are very likely to be functional. In addition to underscoring the importance of independent verification to confirm the conclusions of genome-wide epigenetic analyses, our data indicate that CpG methylation plays a major role in neuroepigenetics, and that the mouse is likely an excellent model in which to study the role of DNA methylation in human neurodevelopment and disease. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Roles of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene- and 1,2-dibromoethane-degradative pathways

    NARCIS (Netherlands)

    Poelarends, GJ; Kulakov, LA; Larkin, MJ; van Hylckama Vlieg, Johan E.T.; Janssen, DB

    The haloalkane-degrading bacteria Rhodococcus rhodochrous NCIMB13064, Pseudomonas pavonaceae 170, and Mycobacterium sp. strain GP1 share a highly conserved haloalkane dehalogenase gene (dhaA). Here, we describe the extent of the conserved dhaA segments in these three phylogenetically distinct

  4. Ferritin gene organization: differences between plants and animals suggest possible kingdom-specific selective constraints.

    Science.gov (United States)

    Proudhon, D; Wei, J; Briat, J; Theil, E C

    1996-03-01

    Ferritin, a protein widespread in nature, concentrates iron approximately 10(11)-10(12)-fold above the solubility within a spherical shell of 24 subunits; it derives in plants and animals from a common ancestor (based on sequence) but displays a cytoplasmic location in animals compared to the plastid in contemporary plants. Ferritin gene regulation in plants and animals is altered by development, hormones, and excess iron; iron signals target DNA in plants but mRNA in animals. Evolution has thus conserved the two end points of ferritin gene expression, the physiological signals and the protein structure, while allowing some divergence of the genetic mechanisms. Comparison of ferritin gene organization in plants and animals, made possible by the cloning of a dicot (soybean) ferritin gene presented here and the recent cloning of two monocot (maize) ferritin genes, shows evolutionary divergence in ferritin gene organization between plants and animals but conservation among plants or among animals; divergence in the genetic mechanism for iron regulation is reflected by the absence in all three plant genes of the IRE, a highly conserved, noncoding sequence in vertebrate animal ferritin mRNA. In plant ferritin genes, the number of introns (n = 7) is higher than in animals (n = 3). Second, no intron positions are conserved when ferritin genes of plants and animals are compared, although all ferritin gene introns are in the coding region; within kingdoms, the intron positions in ferritin genes are conserved. Finally, secondary protein structure has no apparent relationship to intron/exon boundaries in plant ferritin genes, whereas in animal ferritin genes the correspondence is high. The structural differences in introns/exons among phylogenetically related ferritin coding sequences and the high conservation of the gene structure within plant or animal kingdoms of the gene structure within plant or animal kingdoms suggest that kingdom-specific functional constraints may

  5. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes

    Directory of Open Access Journals (Sweden)

    Arce-Johnson Patricio

    2008-07-01

    Full Text Available Abstract Background The MYB superfamily constitutes the most abundant group of transcription factors described in plants. Members control processes such as epidermal cell differentiation, stomatal aperture, flavonoid synthesis, cold and drought tolerance and pathogen resistance. No genome-wide characterization of this family has been conducted in a woody species such as grapevine. In addition, previous analysis of the recently released grape genome sequence suggested expansion events of several gene families involved in wine quality. Results We describe and classify 108 members of the grape R2R3 MYB gene subfamily in terms of their genomic gene structures and similarity to their putative Arabidopsis thaliana orthologues. Seven gene models were derived and analyzed in terms of gene expression and their DNA binding domain structures. Despite low overall sequence homology in the C-terminus of all proteins, even in those with similar functions across Arabidopsis and Vitis, highly conserved motif sequences and exon lengths were found. The grape epidermal cell fate clade is expanded when compared with the Arabidopsis and rice MYB subfamilies. Two anthocyanin MYBA related clusters were identified in chromosomes 2 and 14, one of which includes the previously described grape colour locus. Tannin related loci were also detected with eight candidate homologues in chromosomes 4, 9 and 11. Conclusion This genome wide transcription factor analysis in Vitis suggests that clade-specific grape R2R3 MYB genes are expanded while other MYB genes could be well conserved compared to Arabidopsis. MYB gene abundance, homology and orientation within particular loci also suggests that expanded MYB clades conferring quality attributes of grapes and wines, such as colour and astringency, could possess redundant, overlapping and cooperative functions.

  6. Approaches to gene pool conservation of medicinal plant Oxytropis lanata (Pall. DC. (Fabaceae

    Directory of Open Access Journals (Sweden)

    A. B. Kholina

    2015-05-01

    Full Text Available In order to preserve the gene pool of medicinal plant Oxytropis lanata (Pall. DC. we analyzed allozyme polymorphism and identified reliable and informative marker enzyme systems of this species; also we studied the response of seeds to deep freezing in liquid nitrogen (–196 ºС. Population has an average level of polymorphism (P95 = 41,2 %, P99 = 52,9 %, A = 1,58, Ho = 0,158, He = 0,171 in general typical for herbaceous legumes, and can serve as a source of material for gene pool conservation of the species. Deep freezing has not led to the death of the seeds; it was marked stimulatory effect of ultralow temperatures, expressed as an acceleration of germination and sharp increase of germinability (98,6 ± 2,3 % compared to the control (12,0 ± 3,5 % that is associated with overcoming physical dormancy. There were no abnormalities in the development of seedlings from seeds passed cryopreservation.

  7. Compendium of Immune Signatures Identifies Conserved and Species-Specific Biology in Response to Inflammation.

    Science.gov (United States)

    Godec, Jernej; Tan, Yan; Liberzon, Arthur; Tamayo, Pablo; Bhattacharya, Sanchita; Butte, Atul J; Mesirov, Jill P; Haining, W Nicholas

    2016-01-19

    Gene-expression profiling has become a mainstay in immunology, but subtle changes in gene networks related to biological processes are hard to discern when comparing various datasets. For instance, conservation of the transcriptional response to sepsis in mouse models and human disease remains controversial. To improve transcriptional analysis in immunology, we created ImmuneSigDB: a manually annotated compendium of ∼5,000 gene-sets from diverse cell states, experimental manipulations, and genetic perturbations in immunology. Analysis using ImmuneSigDB identified signatures induced in activated myeloid cells and differentiating lymphocytes that were highly conserved between humans and mice. Sepsis triggered conserved patterns of gene expression in humans and mouse models. However, we also identified species-specific biological processes in the sepsis transcriptional response: although both species upregulated phagocytosis-related genes, a mitosis signature was specific to humans. ImmuneSigDB enables granular analysis of transcriptomic data to improve biological understanding of immune processes of the human and mouse immune systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Functional conservation and divergence of four ginger AP1/AGL9 MADS-box genes revealed by analysis of their expression and protein-protein interaction, and ectopic expression of AhFUL gene in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiumei Li

    Full Text Available Alpinia genus are known generally as ginger-lilies for showy flowers in the ginger family, Zingiberaceae, and their floral morphology diverges from typical monocotyledon flowers. However, little is known about the functions of ginger MADS-box genes in floral identity. In this study, four AP1/AGL9 MADS-box genes were cloned from Alpinia hainanensis, and protein-protein interactions (PPIs and roles of the four genes in floral homeotic conversion and in floral evolution are surveyed for the first time. AhFUL is clustered to the AP1 lineage, AhSEP4 and AhSEP3b to the SEP lineage, and AhAGL6-like to the AGL6 lineage. The four genes showed conserved and divergent expression patterns, and their encoded proteins were localized in the nucleus. Seven combinations of PPI (AhFUL-AhSEP4, AhFUL-AhAGL6-like, AhFUL-AhSEP3b, AhSEP4-AhAGL6-like, AhSEP4-AhSEP3b, AhAGL6-like-AhSEP3b, and AhSEP3b-AhSEP3b were detected, and the PPI patterns in the AP1/AGL9 lineage revealed that five of the 10 possible combinations are conserved and three are variable, while conclusions cannot yet be made regarding the other two. Ectopic expression of AhFUL in Arabidopsis thaliana led to early flowering and floral organ homeotic conversion to sepal-like or leaf-like. Therefore, we conclude that the four A. hainanensis AP1/AGL9 genes show functional conservation and divergence in the floral identity from other MADS-box genes.

  9. Nuclear cGMP-dependent kinase regulates gene expression via activity-dependent recruitment of a conserved histone deacetylase complex.

    Directory of Open Access Journals (Sweden)

    Yan Hao

    2011-05-01

    Full Text Available Elevation of the second messenger cGMP by nitric oxide (NO activates the cGMP-dependent protein kinase PKG, which is key in regulating cardiovascular, intestinal, and neuronal functions in mammals. The NO-cGMP-PKG signaling pathway is also a major therapeutic target for cardiovascular and male reproductive diseases. Despite widespread effects of PKG activation, few molecular targets of PKG are known. We study how EGL-4, the Caenorhabditis elegans PKG ortholog, modulates foraging behavior and egg-laying and seeks the downstream effectors of EGL-4 activity. Using a combination of unbiased forward genetic screen and proteomic analysis, we have identified a conserved SAEG-1/SAEG-2/HDA-2 histone deacetylase complex that is specifically recruited by activated nuclear EGL-4. Gene expression profiling by microarrays revealed >40 genes that are sensitive to EGL-4 activity in a SAEG-1-dependent manner. We present evidence that EGL-4 controls egg laying via one of these genes, Y45F10C.2, which encodes a novel protein that is expressed exclusively in the uterine epithelium. Our results indicate that, in addition to cytoplasmic functions, active EGL-4/PKG acts in the nucleus via a conserved Class I histone deacetylase complex to regulate gene expression pertinent to behavioral and physiological responses to cGMP. We also identify transcriptional targets of EGL-4 that carry out discrete components of the physiological response.

  10. High-resolution satellite imagery is an important yet underutilized resource in conservation biology.

    Science.gov (United States)

    Boyle, Sarah A; Kennedy, Christina M; Torres, Julio; Colman, Karen; Pérez-Estigarribia, Pastor E; de la Sancha, Noé U

    2014-01-01

    Technological advances and increasing availability of high-resolution satellite imagery offer the potential for more accurate land cover classifications and pattern analyses, which could greatly improve the detection and quantification of land cover change for conservation. Such remotely-sensed products, however, are often expensive and difficult to acquire, which prohibits or reduces their use. We tested whether imagery of high spatial resolution (≤5 m) differs from lower-resolution imagery (≥30 m) in performance and extent of use for conservation applications. To assess performance, we classified land cover in a heterogeneous region of Interior Atlantic Forest in Paraguay, which has undergone recent and dramatic human-induced habitat loss and fragmentation. We used 4 m multispectral IKONOS and 30 m multispectral Landsat imagery and determined the extent to which resolution influenced the delineation of land cover classes and patch-level metrics. Higher-resolution imagery more accurately delineated cover classes, identified smaller patches, retained patch shape, and detected narrower, linear patches. To assess extent of use, we surveyed three conservation journals (Biological Conservation, Biotropica, Conservation Biology) and found limited application of high-resolution imagery in research, with only 26.8% of land cover studies analyzing satellite imagery, and of these studies only 10.4% used imagery ≤5 m resolution. Our results suggest that high-resolution imagery is warranted yet under-utilized in conservation research, but is needed to adequately monitor and evaluate forest loss and conversion, and to delineate potentially important stepping-stone fragments that may serve as corridors in a human-modified landscape. Greater access to low-cost, multiband, high-resolution satellite imagery would therefore greatly facilitate conservation management and decision-making.

  11. Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Colin R Lickwar

    2017-08-01

    Full Text Available The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature. We also identified transcriptional start sites and other putative regulatory regions that are differentially accessible in IECs in all 4 species. Although these sites rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly conserved IEC expression in a zebrafish reporter assay. Common putative transcription factor binding sites (TFBS found at these sites in multiple species indicate that sequence conservation alone is insufficient to identify much of the functionally conserved IEC regulatory information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions, we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct population of Notch-positive cells in the intestinal epithelium. Together, these results show how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo reporter assays can reveal tissue-specific regulatory information conserved across 420 million years of vertebrate evolution. We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development

  12. The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants

    Directory of Open Access Journals (Sweden)

    Colasanti Joseph

    2006-06-01

    Full Text Available Abstract Background The maize INDETERMINATE1 gene, ID1, is a key regulator of the transition to flowering and the founding member of a transcription factor gene family that encodes a protein with a distinct arrangement of zinc finger motifs. The zinc fingers and surrounding sequence make up the signature ID domain (IDD, which appears to be found in all higher plant genomes. The presence of zinc finger domains and previous biochemical studies showing that ID1 binds to DNA suggests that members of this gene family are involved in transcriptional regulation. Results Comparison of IDD genes identified in Arabidopsis and rice genomes, and all IDD genes discovered in maize EST and genomic databases, suggest that ID1 is a unique member of this gene family. High levels of sequence similarity amongst all IDD genes from maize, rice and Arabidopsis suggest that they are derived from a common ancestor. Several unique features of ID1 suggest that it is a divergent member of the maize IDD family. Although no clear ID1 ortholog was identified in the Arabidopsis genome, highly similar genes that encode proteins with identity extending beyond the ID domain were isolated from rice and sorghum. Phylogenetic comparisons show that these putative orthologs, along with maize ID1, form a group separate from other IDD genes. In contrast to ID1 mRNA, which is detected exclusively in immature leaves, several maize IDD genes showed a broad range of expression in various tissues. Further, Western analysis with an antibody that cross-reacts with ID1 protein and potential orthologs from rice and sorghum shows that all three proteins are detected in immature leaves only. Conclusion Comparative genomic analysis shows that the IDD zinc finger family is highly conserved among both monocots and dicots. The leaf-specific ID1 expression pattern distinguishes it from other maize IDD genes examined. A similar leaf-specific localization pattern was observed for the putative ID1 protein

  13. High-throughput identification of ionizing radiation-sensitive plant genes and development of radiation indicator plant and radiation sensing Genechip

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Kim, Jinbaek; Ha, Bokeun; Kim, Sang Hoon; Kim, Sunhee

    2013-05-01

    Physiological analysis of monocot model plant (rice) in response to ionizing radiation (cosmic-ray, gamma-ray, Ion beam). - Identification of antioxidant characters through cytochemical analysis. - Comparison of antioxidant activities in response to ionizing irradiation. - Evaluation of anthocyanin quantity in response to ionizing irradiation. Ionization energy response gene family analysis via bioinformatic validation. - Expression analysis of monocot and dicot gene families. - In silico and bioinformatic approach to elucidate gene function. Characterization and functional analysis of genes specifically expressed in response to ionizing irradiation (cosmic-ray, gamma-ray, Ion beam). - High throughput trancriptomic analysis of plants under ionizing radiation using microarray. - Promotor and cis-element analysis of genes specifically expressed in response to ionizing radiation. - Validation and function analysis of candidate genes. - Elucidation of plant mechanism of sensing and response to ionization energy. Development of bioindicator plants detecting ionization energy. - Cloning and identification of 'Radio marker genes (RMG)'. - Development of Over-expression (O/E) or Knock-out (K/O) plant using RMG. Development of Genechip as an ionization energy detector. - Expression profiling analysis of genes specifically expression in response to ionization energy. - Prepare high-conserved gene specific oligomer. - Development of ionization energy monitoring Genechip and application

  14. High-throughput identification of ionizing radiation-sensitive plant genes and development of radiation indicator plant and radiation sensing Genechip

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Kim, Jinbaek; Ha, Bokeun; Kim, Sang Hoon; Kim, Sunhee

    2013-05-15

    Physiological analysis of monocot model plant (rice) in response to ionizing radiation (cosmic-ray, gamma-ray, Ion beam). - Identification of antioxidant characters through cytochemical analysis. - Comparison of antioxidant activities in response to ionizing irradiation. - Evaluation of anthocyanin quantity in response to ionizing irradiation. Ionization energy response gene family analysis via bioinformatic validation. - Expression analysis of monocot and dicot gene families. - In silico and bioinformatic approach to elucidate gene function. Characterization and functional analysis of genes specifically expressed in response to ionizing irradiation (cosmic-ray, gamma-ray, Ion beam). - High throughput trancriptomic analysis of plants under ionizing radiation using microarray. - Promotor and cis-element analysis of genes specifically expressed in response to ionizing radiation. - Validation and function analysis of candidate genes. - Elucidation of plant mechanism of sensing and response to ionization energy. Development of bioindicator plants detecting ionization energy. - Cloning and identification of 'Radio marker genes (RMG)'. - Development of Over-expression (O/E) or Knock-out (K/O) plant using RMG. Development of Genechip as an ionization energy detector. - Expression profiling analysis of genes specifically expression in response to ionization energy. - Prepare high-conserved gene specific oligomer. - Development of ionization energy monitoring Genechip and application.

  15. Characterization of Conserved and Non-conserved Imprinted Genes in Swine

    Science.gov (United States)

    In order to increase our understanding of the role of imprinted genes in swine reproduction we used two complementary approaches, analysis of imprinting by pyrosequencing, and expression profiling of parthenogenetic fetuses, to carry out a comprehensive analysis of this gene family in swine. Using A...

  16. Discovery of cis-elements between sorghum and rice using co-expression and evolutionary conservation

    Directory of Open Access Journals (Sweden)

    Haberer Georg

    2009-06-01

    Full Text Available Abstract Background The spatiotemporal regulation of gene expression largely depends on the presence and absence of cis-regulatory sites in the promoter. In the economically highly important grass family, our knowledge of transcription factor binding sites and transcriptional networks is still very limited. With the completion of the sorghum genome and the available rice genome sequence, comparative promoter analyses now allow genome-scale detection of conserved cis-elements. Results In this study, we identified thousands of phylogenetic footprints conserved between orthologous rice and sorghum upstream regions that are supported by co-expression information derived from three different rice expression data sets. In a complementary approach, cis-motifs were discovered by their highly conserved co-occurrence in syntenic promoter pairs. Sequence conservation and matches to known plant motifs support our findings. Expression similarities of gene pairs positively correlate with the number of motifs that are shared by gene pairs and corroborate the importance of similar promoter architectures for concerted regulation. This strongly suggests that these motifs function in the regulation of transcript levels in rice and, presumably also in sorghum. Conclusion Our work provides the first large-scale collection of cis-elements for rice and sorghum and can serve as a paradigm for cis-element analysis through comparative genomics in grasses in general.

  17. High incidence of interchromosomal transpositions in the evolutionary history of a subset of or genes in Drosophila.

    Science.gov (United States)

    Conceição, Inês C; Aguadé, Montserrat

    2008-04-01

    In insects, the odorant receptor (Or) multigene family is an intermediate-sized family with genes present in all chromosomes, indicating that duplication followed by interchromosomal transposition played an important role in the early stages of the family evolution. Here, we have explored the occurrence of interchromosomal transpositions in more recent stages through the comparative analysis of a subset of Or genes in Drosophila, where the gene content of chromosomal arms is highly conserved. The studied subset consisted of 11 Or genes located on the left arm of chromosome 3 (Muller's D element) in D. melanogaster. Our study focused on the number and chromosomal arm location of these members of the family across the 12 Drosophila species with complete genome sequences. In contrast to previous results from in situ hybridization comparative mapping that were mainly based on single-copy genes, our study, based on members of a multigene family of moderate size, revealed repeated interchromosomal transposition events and a complex history of some of the studied genes.

  18. Combining Human Epigenetics and Sleep Studies in Caenorhabditis elegans: A Cross-Species Approach for Finding Conserved Genes Regulating Sleep.

    Science.gov (United States)

    Huang, Huiyan; Zhu, Yong; Eliot, Melissa N; Knopik, Valerie S; McGeary, John E; Carskadon, Mary A; Hart, Anne C

    2017-06-01

    We aimed to test a combined approach to identify conserved genes regulating sleep and to explore the association between DNA methylation and sleep length. We identified candidate genes associated with shorter versus longer sleep duration in college students based on DNA methylation using Illumina Infinium HumanMethylation450 BeadChip arrays. Orthologous genes in Caenorhabditis elegans were identified, and we examined whether their loss of function affected C. elegans sleep. For genes whose perturbation affected C. elegans sleep, we subsequently undertook a small pilot study to re-examine DNA methylation in an independent set of human participants with shorter versus longer sleep durations. Eighty-seven out of 485,577 CpG sites had significant differential methylation in young adults with shorter versus longer sleep duration, corresponding to 52 candidate genes. We identified 34 C. elegans orthologs, including NPY/flp-18 and flp-21, which are known to affect sleep. Loss of five additional genes alters developmentally timed C. elegans sleep (B4GALT6/bre-4, DOCK180/ced-5, GNB2L1/rack-1, PTPRN2/ida-1, ZFYVE28/lst-2). For one of these genes, ZFYVE28 (also known as hLst2), the pilot replication study again found decreased DNA methylation associated with shorter sleep duration at the same two CpG sites in the first intron of ZFYVE28. Using an approach that combines human epigenetics and C. elegans sleep studies, we identified five genes that play previously unidentified roles in C. elegans sleep. We suggest sleep duration in humans may be associated with differential DNA methylation at specific sites and that the conserved genes identified here likely play roles in C. elegans sleep and in other species. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  19. A highly conserved amino acid in VP1 regulates maturation of enterovirus 71.

    Directory of Open Access Journals (Sweden)

    Yong-Xin Zhang

    2017-09-01

    Full Text Available Enterovirus 71 (EV71 is the major causative agent of hand, foot and mouth disease (HFMD in children, causing severe clinical outcomes and even death. Here, we report an important role of the highly conserved alanine residue at position 107 in the capsid protein VP1 (VP1A107 in the efficient replication of EV71. Substitutional mutations of VP1A107 significantly diminish viral growth kinetics without significant effect on viral entry, expression of viral genes and viral production. The results of mechanistic studies reveal that VP1A107 regulates the efficient cleavage of the VP0 precursor during EV71 assembly, which is required, in the next round of infection, for the transformation of the mature virion (160S into an intermediate or A-particle (135S, a key step of virus uncoating. Furthermore, the results of molecular dynamic simulations and hydrogen-bond networks analysis of VP1A107 suggest that flexibility of the VP1 BC loop or the region surrounding the VP1107 residue directly correlates with viral infectivity. It is possible that sufficient flexibility of the region surrounding the VP1107 residue favors VP0 conformational change that is required for the efficient cleavage of VP0 as well as subsequent viral uncoating and viral replication. Taken together, our data reveal the structural role of the highly conserved VP1A107 in regulating EV71 maturation. Characterization of this novel determinant of EV71 virulence would promote the study on pathogenesis of Enteroviruses.

  20. In Vivo Characterization of a Vertebrate Ultra-conserved Enhancer

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Francis; Nobrega, Marcelo A.; Plajzer-Frick, Ingrid; Holt, Amy; Afzal, Veena; Rubin, Edward M.; Pennacchio, Len

    2004-10-01

    Genomic sequence comparisons between human, mouse and pufferfish (Takifugu rubripes (Fugu))have revealed a set of extremely conserved noncoding sequences. While this high degree of sequence conservation suggests severe evolutionary constraint and predicts a lack of tolerance to change in order to retain in vivo functionality, such elements have been minimally explored experimentally. In this study, we describe the in-depth characterization of an ancient conserved enhancer, Dc2 located near the dachshund gene, which displays a human-Fugu identity of 84 percent over 424 basepairs (bp). In addition to this large overall conservation, we find that Dc2 is characterized by the presence of a large block of sequence (144 bp) that is completely identical between human, mouse, chicken, zebrafish and Fugu. Through the testing of reporter vector constructs in transgenic mice, we observed that the 424 bp Dc2 conserved element is necessary and sufficient for brain tissue enhancer activity. In vivo analyses also revealed that the 144 bp 100 percent conserved sequence is necessary, but not sufficient, to replicate Dc2 enhancer function. However, the introduction of two separate 16 bp insertions into the highly conserved enhancer core did not cause any detectable modification of its in vivo activity. Our observations indicate that the 144 bp 100 percent conserved element is tolerant of change at least at the resolution of this transgenic mouse assay and suggest that purifying selection on Dc2 sequence might not be as strong as we predicted or that some unknown property also constrains this highly conserved enhancer sequence.

  1. Determining the drivers of population structure in a highly urbanized landscape to inform conservation planning.

    Science.gov (United States)

    Thomassen, Henri A; Harrigan, Ryan J; Semple Delaney, Kathleen; Riley, Seth P D; Serieys, Laurel E K; Pease, Katherine; Wayne, Robert K; Smith, Thomas B

    2018-02-01

    Understanding the environmental contributors to population structure is of paramount importance for conservation in urbanized environments. We used spatially explicit models to determine genetic population structure under current and future environmental conditions across a highly fragmented, human-dominated environment in Southern California to assess the effects of natural ecological variation and urbanization. We focused on 7 common species with diverse habitat requirements, home-range sizes, and dispersal abilities. We quantified the relative roles of potential barriers, including natural environmental characteristics and an anthropogenic barrier created by a major highway, in shaping genetic variation. The ability to predict genetic variation in our models differed among species: 11-81% of intraspecific genetic variation was explained by environmental variables. Although an anthropogenically induced barrier (a major highway) severely restricted gene flow and movement at broad scales for some species, genetic variation seemed to be primarily driven by natural environmental heterogeneity at a local level. Our results show how assessing environmentally associated variation for multiple species under current and future climate conditions can help identify priority regions for maximizing population persistence under environmental change in urbanized regions. © 2017 Society for Conservation Biology.

  2. Isolation of BAC Clones Containing Conserved Genes from Libraries of Three Distantly Related Moths: A Useful Resource for Comparative Genomics of Lepidoptera

    Directory of Open Access Journals (Sweden)

    Yuji Yasukochi

    2011-01-01

    Full Text Available Lepidoptera, butterflies and moths, is the second largest animal order and includes numerous agricultural pests. To facilitate comparative genomics in Lepidoptera, we isolated BAC clones containing conserved and putative single-copy genes from libraries of three pests, Heliothis virescens, Ostrinia nubilalis, and Plutella xylostella, harboring the haploid chromosome number, =31, which are not closely related with each other or with the silkworm, Bombyx mori, (=28, the sequenced model lepidopteran. A total of 108–184 clones representing 101–182 conserved genes were isolated for each species. For 79 genes, clones were isolated from more than two species, which will be useful as common markers for analysis using fluorescence in situ hybridization (FISH, as well as for comparison of genome sequence among multiple species. The PCR-based clone isolation method presented here is applicable to species which lack a sequenced genome but have a significant collection of cDNA or EST sequences.

  3. Two fundamentally different classes of microbial genes.

    Science.gov (United States)

    Wolf, Yuri I; Makarova, Kira S; Lobkovsky, Alexander E; Koonin, Eugene V

    2016-11-07

    The evolution of bacterial and archaeal genomes is highly dynamic and involves extensive horizontal gene transfer and gene loss 1-4 . Furthermore, many microbial species appear to have open pangenomes, where each newly sequenced genome contains more than 10% ORFans, that is, genes without detectable homologues in other species 5,6 . Here, we report a quantitative analysis of microbial genome evolution by fitting the parameters of a simple, steady-state evolutionary model to the comparative genomic data on the gene content and gene order similarity between archaeal genomes. The results reveal two sharply distinct classes of microbial genes, one of which is characterized by effectively instantaneous gene replacement, and the other consists of genes with finite, distributed replacement rates. These findings imply a conservative estimate of the size of the prokaryotic genomic universe, which appears to consist of at least a billion distinct genes. Furthermore, the same distribution of constraints is shown to govern the evolution of gene complement and gene order, without the need to invoke long-range conservation or the selfish operon concept 7 .

  4. Partial characterization of nif genes from the bacterium Azospirillum amazonense

    Directory of Open Access Journals (Sweden)

    D.P. Potrich

    2001-09-01

    Full Text Available Azospirillum amazonense revealed genomic organization patterns of the nitrogen fixation genes similar to those of the distantly related species A. brasilense. Our work suggests that A. brasilense nifHDK, nifENX, fixABC operons and nifA and glnB genes may be structurally homologous to the counterpart genes of A. amazonense. This is the first analysis revealing homology between A. brasilense nif genes and the A. amazonense genome. Sequence analysis of PCR amplification products revealed similarities between the amino acid sequences of the highly conserved nifD and glnB genes of A. amazonense and related genes of A. brasilense and other bacteria. However, the A. amazonense non-coding regions (the upstream activator sequence region and the region between the nifH and nifD genes differed from related regions of A. brasilense even in nitrogenase structural genes which are highly conserved among diazotrophic bacteria. The feasibility of the 16S ribosomal RNA gene-based PCR system for specific detection of A. amazonense was shown. Our results indicate that the PCR primers for 16S rDNA defined in this article are highly specific to A. amazonense and can distinguish this species from A. brasilense.

  5. High-Throughput Sequencing Reveals Diverse Sets of Conserved, Nonconserved, and Species-Specific miRNAs in Jute

    Directory of Open Access Journals (Sweden)

    Md. Tariqul Islam

    2015-01-01

    Full Text Available MicroRNAs play a pivotal role in regulating a broad range of biological processes, acting by cleaving mRNAs or by translational repression. A group of plant microRNAs are evolutionarily conserved; however, others are expressed in a species-specific manner. Jute is an agroeconomically important fibre crop; nonetheless, no practical information is available for microRNAs in jute to date. In this study, Illumina sequencing revealed a total of 227 known microRNAs and 17 potential novel microRNA candidates in jute, of which 164 belong to 23 conserved families and the remaining 63 belong to 58 nonconserved families. Among a total of 81 identified microRNA families, 116 potential target genes were predicted for 39 families and 11 targets were predicted for 4 among the 17 identified novel microRNAs. For understanding better the functions of microRNAs, target genes were analyzed by Gene Ontology and their pathways illustrated by KEGG pathway analyses. The presence of microRNAs identified in jute was validated by stem-loop RT-PCR followed by end point PCR and qPCR for randomly selected 20 known and novel microRNAs. This study exhaustively identifies microRNAs and their target genes in jute which will ultimately pave the way for understanding their role in this crop and other crops.

  6. Comparisons of Copy Number, Genomic Structure, and Conserved Motifs for α-Amylase Genes from Barley, Rice, and Wheat

    Directory of Open Access Journals (Sweden)

    Qisen Zhang

    2017-10-01

    Full Text Available Barley is an important crop for the production of malt and beer. However, crops such as rice and wheat are rarely used for malting. α-amylase is the key enzyme that degrades starch during malting. In this study, we compared the genomic properties, gene copies, and conserved promoter motifs of α-amylase genes in barley, rice, and wheat. In all three crops, α-amylase consists of four subfamilies designated amy1, amy2, amy3, and amy4. In wheat and barley, members of amy1 and amy2 genes are localized on chromosomes 6 and 7, respectively. In rice, members of amy1 genes are found on chromosomes 1 and 2, and amy2 genes on chromosome 6. The barley genome has six amy1 members and three amy2 members. The wheat B genome contains four amy1 members and three amy2 members, while the rice genome has three amy1 members and one amy2 member. The B genome has mostly amy1 and amy2 members among the three wheat genomes. Amy1 promoters from all three crop genomes contain a GA-responsive complex consisting of a GA-responsive element (CAATAAA, pyrimidine box (CCTTTT and TATCCAT/C box. This study has shown that amy1 and amy2 from both wheat and barley have similar genomic properties, including exon/intron structures and GA-responsive elements on promoters, but these differ in rice. Like barley, wheat should have sufficient amy activity to degrade starch completely during malting. Other factors, such as high protein with haze issues and the lack of husk causing Lauting difficulty, may limit the use of wheat for brewing.

  7. Highly conserved small subunit residues influence rubisco large subunit catalysis.

    Science.gov (United States)

    Genkov, Todor; Spreitzer, Robert J

    2009-10-30

    The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.

  8. Comparative Bioinformatics Analysis of Transcription Factor Genes Indicates Conservation of Key Regulatory Domains among Babesia bovis, Babesia microti, and Theileria equi.

    Science.gov (United States)

    Alzan, Heba F; Knowles, Donald P; Suarez, Carlos E

    2016-11-01

    Apicomplexa tick-borne hemoparasites, including Babesia bovis, Babesia microti, and Theileria equi are responsible for bovine and human babesiosis and equine theileriosis, respectively. These parasites of vast medical, epidemiological, and economic impact have complex life cycles in their vertebrate and tick hosts. Large gaps in knowledge concerning the mechanisms used by these parasites for gene regulation remain. Regulatory genes coding for DNA binding proteins such as members of the Api-AP2, HMG, and Myb families are known to play crucial roles as transcription factors. Although the repertoire of Api-AP2 has been defined and a HMG gene was previously identified in the B. bovis genome, these regulatory genes have not been described in detail in B. microti and T. equi. In this study, comparative bioinformatics was used to: (i) identify and map genes encoding for these transcription factors among three parasites' genomes; (ii) identify a previously unreported HMG gene in B. microti; (iii) define a repertoire of eight conserved Myb genes; and (iv) identify AP2 correlates among B. bovis and the better-studied Plasmodium parasites. Searching the available transcriptome of B. bovis defined patterns of transcription of these three gene families in B. bovis erythrocyte stage parasites. Sequence comparisons show conservation of functional domains and general architecture in the AP2, Myb, and HMG proteins, which may be significant for the regulation of common critical parasite life cycle transitions in B. bovis, B. microti, and T. equi. A detailed understanding of the role of gene families encoding DNA binding proteins will provide new tools for unraveling regulatory mechanisms involved in B. bovis, B. microti, and T. equi life cycles and environmental adaptive responses and potentially contributes to the development of novel convergent strategies for improved control of babesiosis and equine piroplasmosis.

  9. Comparative Bioinformatics Analysis of Transcription Factor Genes Indicates Conservation of Key Regulatory Domains among Babesia bovis, Babesia microti, and Theileria equi.

    Directory of Open Access Journals (Sweden)

    Heba F Alzan

    2016-11-01

    Full Text Available Apicomplexa tick-borne hemoparasites, including Babesia bovis, Babesia microti, and Theileria equi are responsible for bovine and human babesiosis and equine theileriosis, respectively. These parasites of vast medical, epidemiological, and economic impact have complex life cycles in their vertebrate and tick hosts. Large gaps in knowledge concerning the mechanisms used by these parasites for gene regulation remain. Regulatory genes coding for DNA binding proteins such as members of the Api-AP2, HMG, and Myb families are known to play crucial roles as transcription factors. Although the repertoire of Api-AP2 has been defined and a HMG gene was previously identified in the B. bovis genome, these regulatory genes have not been described in detail in B. microti and T. equi. In this study, comparative bioinformatics was used to: (i identify and map genes encoding for these transcription factors among three parasites' genomes; (ii identify a previously unreported HMG gene in B. microti; (iii define a repertoire of eight conserved Myb genes; and (iv identify AP2 correlates among B. bovis and the better-studied Plasmodium parasites. Searching the available transcriptome of B. bovis defined patterns of transcription of these three gene families in B. bovis erythrocyte stage parasites. Sequence comparisons show conservation of functional domains and general architecture in the AP2, Myb, and HMG proteins, which may be significant for the regulation of common critical parasite life cycle transitions in B. bovis, B. microti, and T. equi. A detailed understanding of the role of gene families encoding DNA binding proteins will provide new tools for unraveling regulatory mechanisms involved in B. bovis, B. microti, and T. equi life cycles and environmental adaptive responses and potentially contributes to the development of novel convergent strategies for improved control of babesiosis and equine piroplasmosis.

  10. Identification of Conserved and Novel MicroRNAs in Blueberry

    Directory of Open Access Journals (Sweden)

    Junyang Yue

    2017-06-01

    Full Text Available MicroRNAs (miRNAs are a class of small endogenous RNAs that play important regulatory roles in cells by negatively affecting gene expression at both transcriptional and post-transcriptional levels. There have been extensive studies aiming to identify miRNAs and to elucidate their functions in various plant species. In the present study, we employed the high-throughput sequencing technology to profile miRNAs in blueberry fruits. A total of 9,992,446 small RNA tags with sizes ranged from 18 to 30 nt were obtained, indicating that blueberry fruits have a large and diverse small RNA population. Bioinformatic analysis identified 412 conserved miRNAs belonging to 29 families, and 35 predicted novel miRNAs that are likely to be unique to blueberries. Among them, expression profiles of five conserved miRNAs were validated by stem loop qRT-PCR. Furthermore, the potential target genes of conserved and novel miRNAs were predicted and subjected to Gene Ontology (GO annotation. Enrichment analysis of the GO-represented biological processes and molecular functions revealed that these target genes were potentially involved in a wide range of metabolic pathways and developmental processes. Particularly, anthocyanin biosynthesis has been predicted to be directly or indirectly regulated by diverse miRNA families. This study is the first report on genome-wide miRNA profile analysis in blueberry and it provides a useful resource for further elucidation of the functional roles of miRNAs during fruit development and ripening.

  11. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs.

    Science.gov (United States)

    Campoli, Chiara; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2012-06-21

    The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1), HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in Triticeae species.

  12. Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity.

    Science.gov (United States)

    Alteri, Christopher J; Himpsl, Stephanie D; Zhu, Kevin; Hershey, Haley L; Musili, Ninette; Miller, Jessa E; Mobley, Harry L T

    2017-11-01

    Type VI secretion systems (T6SS) function to deliver lethal payloads into target cells. Many studies have shown that protection against a single, lethal T6SS effector protein requires a cognate antidote immunity protein, both of which are often encoded together in a two-gene operon. The T6SS and an effector-immunity pair is sufficient for both killing and immunity. HereIn this paper we describe a T6SS effector operon that differs from conventional effector-immunity pairs in that eight genes are necessary for lethal effector function, yet can be countered by a single immunity protein. In this study, we investigated the role that the PefE T6SS immunity protein plays in recognition between two strains harboring nearly identical effector operons. Interestingly, despite containing seven of eight identical effector proteins, the less conserved immunity proteins only provided protection against their native effectors, suggesting that specificity and recognition could be dependent on variation within an immunity protein and one effector gene product. The variable effector gene product, PefD, is encoded upstream from pefE, and displays toxic activity that can be countered by PefE independent of T6SS-activity. Interestingly, while the entire pef operon was necessary to exert toxic activity via the T6SS in P. mirabilis, production of PefD and PefE alone was unable to exert this effector activity. Chimeric PefE proteins constructed from two P. mirabilis strains were used to localize immunity function to three amino acids. A promiscuous immunity protein was created using site-directed mutagenesis to change these residues from one variant to another. These findings support the notion that subtle differences between conserved effectors are sufficient for T6SS-mediated kin discrimination and that PefD requires additional factors to function as a T6SS-dependent effector.

  13. Conservation of Salmonella infection mechanisms in plants and animals.

    Directory of Open Access Journals (Sweden)

    Adam Schikora

    Full Text Available Salmonella virulence in animals depends on effectors injected by Type III Secretion Systems (T3SSs. In this report we demonstrate that Salmonella mutants that are unable to deliver effectors are also compromised in infection of Arabidopsis thaliana plants. Transcriptome analysis revealed that in contrast to wild type bacteria, T3SS mutants of Salmonella are compromised in suppressing highly conserved Arabidopsis genes that play a prominent role during Salmonella infection of animals. We also found that Salmonella originating from infected plants are equally virulent for human cells and mice. These results indicate a high degree of conservation in the defense and infection mechanism of animal and plant hosts during Salmonella infection.

  14. Mouse transgenesis identifies conserved functional enhancers and cis-regulatory motif in the vertebrate LIM homeobox gene Lhx2 locus.

    Directory of Open Access Journals (Sweden)

    Alison P Lee

    Full Text Available The vertebrate Lhx2 is a member of the LIM homeobox family of transcription factors. It is essential for the normal development of the forebrain, eye, olfactory system and liver as well for the differentiation of lymphoid cells. However, despite the highly restricted spatio-temporal expression pattern of Lhx2, nothing is known about its transcriptional regulation. In mammals and chicken, Crb2, Dennd1a and Lhx2 constitute a conserved linkage block, while the intervening Dennd1a is lost in the fugu Lhx2 locus. To identify functional enhancers of Lhx2, we predicted conserved noncoding elements (CNEs in the human, mouse and fugu Crb2-Lhx2 loci and assayed their function in transgenic mouse at E11.5. Four of the eight CNE constructs tested functioned as tissue-specific enhancers in specific regions of the central nervous system and the dorsal root ganglia (DRG, recapitulating partial and overlapping expression patterns of Lhx2 and Crb2 genes. There was considerable overlap in the expression domains of the CNEs, which suggests that the CNEs are either redundant enhancers or regulating different genes in the locus. Using a large set of CNEs (810 CNEs associated with transcription factor-encoding genes that express predominantly in the central nervous system, we predicted four over-represented 8-mer motifs that are likely to be associated with expression in the central nervous system. Mutation of one of them in a CNE that drove reporter expression in the neural tube and DRG abolished expression in both domains indicating that this motif is essential for expression in these domains. The failure of the four functional enhancers to recapitulate the complete expression pattern of Lhx2 at E11.5 indicates that there must be other Lhx2 enhancers that are either located outside the region investigated or divergent in mammals and fishes. Other approaches such as sequence comparison between multiple mammals are required to identify and characterize such enhancers.

  15. Forest gene conservation from the perspective of the international community

    Science.gov (United States)

    M. Hosny El-Lakany

    2017-01-01

    conservation of forest genetic resources (FGR). After presenting internationally adopted definitions of some terms related to FGR, the characteristics of the current state of FGR conservation from a global perspective are summarized. Many international and regional organizations and institutions are engaged in the conservation of FGR at degrees ranging from...

  16. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression

    Science.gov (United States)

    McDonald, Bradon R.; Takasuka, Taichi E.; Wendt-Pienkowski, Evelyn; Doering, Drew T.; Raffa, Kenneth F.; Fox, Brian G.; Currie, Cameron R.

    2016-01-01

    The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology. PMID:27276034

  17. Runx family genes in a cartilaginous fish, the elephant shark (Callorhinchus milii.

    Directory of Open Access Journals (Sweden)

    Giselle Sek Suan Nah

    Full Text Available The Runx family genes encode transcription factors that play key roles in hematopoiesis, skeletogenesis and neurogenesis and are often implicated in diseases. We describe here the cloning and characterization of Runx1, Runx2, Runx3 and Runxb genes in the elephant shark (Callorhinchus milii, a member of Chondrichthyes, the oldest living group of jawed vertebrates. Through the use of alternative promoters and/or alternative splicing, each of the elephant shark Runx genes expresses multiple isoforms similar to their orthologs in human and other bony vertebrates. The expression profiles of elephant shark Runx genes are similar to those of mammalian Runx genes. The syntenic blocks of genes at the elephant shark Runx gene loci are highly conserved in human, but represented by shorter conserved blocks in zebrafish indicating a higher degree of rearrangements in this teleost fish. Analysis of promoter regions revealed conservation of binding sites for transcription factors, including two tandem binding sites for Runx that are totally conserved in the distal promoter regions of elephant shark Runx1-3. Several conserved noncoding elements (CNEs, which are putative cis-regulatory elements, and miRNA binding sites were identified in the elephant shark and human Runx gene loci. Some of these CNEs and miRNA binding sites are absent in teleost fishes such as zebrafish and fugu. In summary, our analysis reveals that the genomic organization and expression profiles of Runx genes were already complex in the common ancestor of jawed vertebrates.

  18. The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains

    Directory of Open Access Journals (Sweden)

    Wang Yiguo

    2008-10-01

    Full Text Available Abstract Background Many well-represented domains recognize primary sequences usually less than 10 amino acids in length, called Short Linear Motifs (SLiMs. Accurate prediction of SLiMs has been difficult because they are short (often Results Our combined approach revealed that SLiMs are highly conserved in proteins from functional classes that are known to interact with a specific domain, but that they are not conserved in most other protein groups. We found that SLiMs recognized by SH2 domains were highly conserved in receptor kinases/phosphatases, adaptor molecules, and tyrosine kinases/phosphatases, that SLiMs recognized by SH3 domains were highly conserved in cytoskeletal and cytoskeletal-associated proteins, that SLiMs recognized by PDZ domains were highly conserved in membrane proteins such as channels and receptors, and that SLiMs recognized by S/T kinase domains were highly conserved in adaptor molecules, S/T kinases/phosphatases, and proteins involved in transcription or cell cycle control. We studied Tyr-SLiMs recognized by SH2 domains in more detail, and found that SH2-recognized Tyr-SLiMs on the cytoplasmic side of membrane proteins are more highly conserved than those on the extra-cellular side. Also, we found that SH2-recognized Tyr-SLiMs that are associated with SH3 motifs and a tyrosine kinase phosphorylation motif are more highly conserved. Conclusion The interactome of protein domains is reflected by the evolutionary conservation of SLiMs recognized by these domains. Combining scoring matrixes derived from peptide libraries and conservation analysis, we would be able to find those protein groups that are more likely to interact with specific domains.

  19. Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata

    Directory of Open Access Journals (Sweden)

    Yu Huaping

    2010-07-01

    Full Text Available Abstract Background MicroRNAs (miRNAs play a critical role in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. There have been extensive studies to discover miRNAs and analyze their functions in model plant species, such as Arabidopsis and rice. Deep sequencing technologies have facilitated identification of species-specific or lowly expressed as well as conserved or highly expressed miRNAs in plants. Results In this research, we used Solexa sequencing to discover new microRNAs in trifoliate orange (Citrus trifoliata which is an important rootstock of citrus. A total of 13,106,753 reads representing 4,876,395 distinct sequences were obtained from a short RNA library generated from small RNA extracted from C. trifoliata flower and fruit tissues. Based on sequence similarity and hairpin structure prediction, we found that 156,639 reads representing 63 sequences from 42 highly conserved miRNA families, have perfect matches to known miRNAs. We also identified 10 novel miRNA candidates whose precursors were all potentially generated from citrus ESTs. In addition, five miRNA* sequences were also sequenced. These sequences had not been earlier described in other plant species and accumulation of the 10 novel miRNAs were confirmed by qRT-PCR analysis. Potential target genes were predicted for most conserved and novel miRNAs. Moreover, four target genes including one encoding IRX12 copper ion binding/oxidoreductase and three genes encoding NB-LRR disease resistance protein have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in C. trifoliata. Conclusion Deep sequencing of short RNAs from C. trifoliata flowers and fruits identified 10 new potential miRNAs and 42 highly conserved miRNA families, indicating that specific miRNAs exist in C. trifoliata. These results show that regulatory miRNAs exist in agronomically important trifoliate orange

  20. MADS-box gene evolution - structure and transcription patterns

    DEFF Research Database (Denmark)

    Johansen, Bo; Pedersen, Louise Buchholt; Skipper, Martin

    2002-01-01

    Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs......Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs...

  1. Actin gene identification from selected medicinal plants for their use as internal controls for gene expression studies

    International Nuclear Information System (INIS)

    Mufti, F.U.D.; Banaras, S.

    2015-01-01

    Internal control genes are the constitutive genes which maintain the basic cellular functions and regularly express in both normal and stressed conditions in living organisms. They are used in normalization of gene expression studies in comparative analysis of target genes, as their expression remains comparatively unchanged in all varied conditions. Among internal control genes, actin is considered as a candidate gene for expression studies due to its vital role in shaping cytoskeleton and plant physiology. Unfortunately most of such knowledge is limited to only model plants or crops, not much is known about important medicinal plants. Therefore, we selected seven important medicinal wild plants for molecular identification of actin gene. We used gene specific primers designed from the conserved regions of several known orthologues or homologues of actin genes from other plants. The amplified products of 370-380 bp were sequenced and submitted to GeneBank after their confirmation using different bioinformatics tools. All the novel partial sequences of putative actin genes were submitted to GeneBank (Parthenium hysterophorus (KJ774023), Fagonia indica (KJ774024), Rhazya stricta (KJ774025), Whithania coagulans (KJ774026), Capparis decidua (KJ774027), Verbena officinalis (KJ774028) and Aerva javanica (KJ774029)). The comparisons of these partial sequences by Basic Local Alignment Search Tool (BLAST) and phylogenetic trees demonstrated high similarity with known actin genes of other plants. Our findings illustrated highly conserved nature of actin gene among these selected plants. These novel partial fragments of actin genes from these wild medicinal plants can be used as internal controls for future gene expression studies of these important plants after precise validations of their stable expression in such plants. (author)

  2. Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific gram-positive bacteria

    Directory of Open Access Journals (Sweden)

    Muscariello Lidia

    2006-05-01

    Full Text Available Abstract Background Genomes of gram-positive bacteria encode many putative cell-surface proteins, of which the majority has no known function. From the rapidly increasing number of available genome sequences it has become apparent that many cell-surface proteins are conserved, and frequently encoded in gene clusters or operons, suggesting common functions, and interactions of multiple components. Results A novel gene cluster encoding exclusively cell-surface proteins was identified, which is conserved in a subgroup of gram-positive bacteria. Each gene cluster generally has one copy of four new gene families called cscA, cscB, cscC and cscD. Clusters encoding these cell-surface proteins were found only in complete genomes of Lactobacillus plantarum, Lactobacillus sakei, Enterococcus faecalis, Listeria innocua, Listeria monocytogenes, Lactococcus lactis ssp lactis and Bacillus cereus and in incomplete genomes of L. lactis ssp cremoris, Lactobacillus casei, Enterococcus faecium, Pediococcus pentosaceus, Lactobacillius brevis, Oenococcus oeni, Leuconostoc mesenteroides, and Bacillus thuringiensis. These genes are neither present in the genomes of streptococci, staphylococci and clostridia, nor in the Lactobacillus acidophilus group, suggesting a niche-specific distribution, possibly relating to association with plants. All encoded proteins have a signal peptide for secretion by the Sec-dependent pathway, while some have cell-surface anchors, novel WxL domains, and putative domains for sugar binding and degradation. Transcriptome analysis in L. plantarum shows that the cscA-D genes are co-expressed, supporting their operon organization. Many gene clusters are significantly up-regulated in a glucose-grown, ccpA-mutant derivative of L. plantarum, suggesting catabolite control. This is supported by the presence of predicted CRE-sites upstream or inside the up-regulated cscA-D gene clusters. Conclusion We propose that the CscA, CscB, CscC and Csc

  3. Crystal structure of AFV3-109, a highly conserved protein from crenarchaeal viruses

    Directory of Open Access Journals (Sweden)

    Quevillon-Cheruel Sophie

    2007-01-01

    Full Text Available Abstract The extraordinary morphologies of viruses infecting hyperthermophilic archaea clearly distinguish them from bacterial and eukaryotic viruses. Moreover, their genomes code for proteins that to a large extend have no related sequences in the extent databases. However, a small pool of genes is shared by overlapping subsets of these viruses, and the most conserved gene, exemplified by the ORF109 of the Acidianus Filamentous Virus 3, AFV3, is present on genomes of members of three viral familes, the Lipothrixviridae, Rudiviridae, and "Bicaudaviridae", as well as of the unclassified Sulfolobus Turreted Icosahedral Virus, STIV. We present here the crystal structure of the protein (Mr = 13.1 kD, 109 residues encoded by the AFV3 ORF 109 in two different crystal forms at 1.5 and 1.3 Å resolution. The structure of AFV3-109 is a five stranded β-sheet with loops on one side and three helices on the other. It forms a dimer adopting the shape of a cradle that encompasses the best conserved regions of the sequence. No protein with a related fold could be identified except for the ortholog from STIV1, whose structure was deposited at the Protein Data Bank. We could clearly identify a well bound glycerol inside the cradle, contacting exclusively totally conserved residues. This interaction was confirmed in solution by fluorescence titration. Although the function of AFV3-109 cannot be deduced directly from its structure, structural homology with the STIV1 protein, and the size and charge distribution of the cavity suggested it could interact with nucleic acids. Fluorescence quenching titrations also showed that AFV3-109 interacts with dsDNA. Genomic sequence analysis revealed bacterial homologs of AFV3-109 as a part of a putative previously unidentified prophage sequences in some Firmicutes.

  4. Strategies for measuring evolutionary conservation of RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Hofacker Ivo L

    2008-02-01

    Full Text Available Abstract Background Evolutionary conservation of RNA secondary structure is a typical feature of many functional non-coding RNAs. Since almost all of the available methods used for prediction and annotation of non-coding RNA genes rely on this evolutionary signature, accurate measures for structural conservation are essential. Results We systematically assessed the ability of various measures to detect conserved RNA structures in multiple sequence alignments. We tested three existing and eight novel strategies that are based on metrics of folding energies, metrics of single optimal structure predictions, and metrics of structure ensembles. We find that the folding energy based SCI score used in the RNAz program and a simple base-pair distance metric are by far the most accurate. The use of more complex metrics like for example tree editing does not improve performance. A variant of the SCI performed particularly well on highly conserved alignments and is thus a viable alternative when only little evolutionary information is available. Surprisingly, ensemble based methods that, in principle, could benefit from the additional information contained in sub-optimal structures, perform particularly poorly. As a general trend, we observed that methods that include a consensus structure prediction outperformed equivalent methods that only consider pairwise comparisons. Conclusion Structural conservation can be measured accurately with relatively simple and intuitive metrics. They have the potential to form the basis of future RNA gene finders, that face new challenges like finding lineage specific structures or detecting mis-aligned sequences.

  5. Inferring the conservative causal core of gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Emmert-Streib Frank

    2010-09-01

    Full Text Available Abstract Background Inferring gene regulatory networks from large-scale expression data is an important problem that received much attention in recent years. These networks have the potential to gain insights into causal molecular interactions of biological processes. Hence, from a methodological point of view, reliable estimation methods based on observational data are needed to approach this problem practically. Results In this paper, we introduce a novel gene regulatory network inference (GRNI algorithm, called C3NET. We compare C3NET with four well known methods, ARACNE, CLR, MRNET and RN, conducting in-depth numerical ensemble simulations and demonstrate also for biological expression data from E. coli that C3NET performs consistently better than the best known GRNI methods in the literature. In addition, it has also a low computational complexity. Since C3NET is based on estimates of mutual information values in conjunction with a maximization step, our numerical investigations demonstrate that our inference algorithm exploits causal structural information in the data efficiently. Conclusions For systems biology to succeed in the long run, it is of crucial importance to establish methods that extract large-scale gene networks from high-throughput data that reflect the underlying causal interactions among genes or gene products. Our method can contribute to this endeavor by demonstrating that an inference algorithm with a neat design permits not only a more intuitive and possibly biological interpretation of its working mechanism but can also result in superior results.

  6. Inferring the conservative causal core of gene regulatory networks.

    Science.gov (United States)

    Altay, Gökmen; Emmert-Streib, Frank

    2010-09-28

    Inferring gene regulatory networks from large-scale expression data is an important problem that received much attention in recent years. These networks have the potential to gain insights into causal molecular interactions of biological processes. Hence, from a methodological point of view, reliable estimation methods based on observational data are needed to approach this problem practically. In this paper, we introduce a novel gene regulatory network inference (GRNI) algorithm, called C3NET. We compare C3NET with four well known methods, ARACNE, CLR, MRNET and RN, conducting in-depth numerical ensemble simulations and demonstrate also for biological expression data from E. coli that C3NET performs consistently better than the best known GRNI methods in the literature. In addition, it has also a low computational complexity. Since C3NET is based on estimates of mutual information values in conjunction with a maximization step, our numerical investigations demonstrate that our inference algorithm exploits causal structural information in the data efficiently. For systems biology to succeed in the long run, it is of crucial importance to establish methods that extract large-scale gene networks from high-throughput data that reflect the underlying causal interactions among genes or gene products. Our method can contribute to this endeavor by demonstrating that an inference algorithm with a neat design permits not only a more intuitive and possibly biological interpretation of its working mechanism but can also result in superior results.

  7. Identification of putative regulatory upstream ORFs in the yeast genome using heuristics and evolutionary conservation

    Directory of Open Access Journals (Sweden)

    Bilsland Elizabeth

    2007-08-01

    Full Text Available Abstract Background The translational efficiency of an mRNA can be modulated by upstream open reading frames (uORFs present in certain genes. A uORF can attenuate translation of the main ORF by interfering with translational reinitiation at the main start codon. uORFs also occur by chance in the genome, in which case they do not have a regulatory role. Since the sequence determinants for functional uORFs are not understood, it is difficult to discriminate functional from spurious uORFs by sequence analysis. Results We have used comparative genomics to identify novel uORFs in yeast with a high likelihood of having a translational regulatory role. We examined uORFs, previously shown to play a role in regulation of translation in Saccharomyces cerevisiae, for evolutionary conservation within seven Saccharomyces species. Inspection of the set of conserved uORFs yielded the following three characteristics useful for discrimination of functional from spurious uORFs: a length between 4 and 6 codons, a distance from the start of the main ORF between 50 and 150 nucleotides, and finally a lack of overlap with, and clear separation from, neighbouring uORFs. These derived rules are inherently associated with uORFs with properties similar to the GCN4 locus, and may not detect most uORFs of other types. uORFs with high scores based on these rules showed a much higher evolutionary conservation than randomly selected uORFs. In a genome-wide scan in S. cerevisiae, we found 34 conserved uORFs from 32 genes that we predict to be functional; subsequent analysis showed the majority of these to be located within transcripts. A total of 252 genes were found containing conserved uORFs with properties indicative of a functional role; all but 7 are novel. Functional content analysis of this set identified an overrepresentation of genes involved in transcriptional control and development. Conclusion Evolutionary conservation of uORFs in yeasts can be traced up to 100

  8. Characterization of STIP, a multi-domain nuclear protein, highly conserved in metazoans, and essential for embryogenesis in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Ji Qiongmei; Huang, C.-H.; Peng Jianbin; Hashmi, Sarwar; Ye Tianzhang; Chen Ying

    2007-01-01

    We report here the identification and characterization of STIP, a multi-domain nuclear protein that contains a G-patch, a coiled-coil, and several short tryptophan-tryptophan repeats highly conserved in metazoan species. To analyze their functional role in vivo, we cloned nematode stip-1 genes and determined the spatiotemporal pattern of Caenorhabditis elegans STIP-1 protein. RNA analyses and Western blots revealed that stip-1 mRNA was produced via trans-splicing and translated as a 95-kDa protein. Using reporter constructs, we found STIP-1 to be expressed at all developmental stages and in many tissue/cell types including worm oocyte nuclei. We found that STIP-1 is targeted to the nucleus and forms large polymers with a rod-like shape when expressed in mammalian cells. Using deletion mutants, we mapped the regions of STIP-1 involved in nuclear import and polymer assembly. We further showed that knockdown of C. elegans stip-1 by RNA interference arrested development and resulted in morphologic abnormalities around the 16-cell stage followed by 100% lethality, suggesting its essential role in worm embryogenesis. Importantly, the embryonic lethal phenotype could be faithfully rescued with Drosophila and human genes via transgenic expression. Our data provide the first direct evidence that STIP have a conserved essential nuclear function across metazoans from worms to humans

  9. ABCE1 is a highly conserved RNA silencing suppressor.

    Directory of Open Access Journals (Sweden)

    Kairi Kärblane

    Full Text Available ATP-binding cassette sub-family E member 1 (ABCE1 is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference.

  10. Conservation and co-option in developmental programmes: the importance of homology relationships

    Directory of Open Access Journals (Sweden)

    Becker May-Britt

    2005-10-01

    Full Text Available Abstract One of the surprising insights gained from research in evolutionary developmental biology (evo-devo is that increasing diversity in body plans and morphology in organisms across animal phyla are not reflected in similarly dramatic changes at the level of gene composition of their genomes. For instance, simplicity at the tissue level of organization often contrasts with a high degree of genetic complexity. Also intriguing is the observation that the coding regions of several genes of invertebrates show high sequence similarity to those in humans. This lack of change (conservation indicates that evolutionary novelties may arise more frequently through combinatorial processes, such as changes in gene regulation and the recruitment of novel genes into existing regulatory gene networks (co-option, and less often through adaptive evolutionary processes in the coding portions of a gene. As a consequence, it is of great interest to examine whether the widespread conservation of the genetic machinery implies the same developmental function in a last common ancestor, or whether homologous genes acquired new developmental roles in structures of independent phylogenetic origin. To distinguish between these two possibilities one must refer to current concepts of phylogeny reconstruction and carefully investigate homology relationships. Particularly problematic in terms of homology decisions is the use of gene expression patterns of a given structure. In the future, research on more organisms other than the typical model systems will be required since these can provide insights that are not easily obtained from comparisons among only a few distantly related model species.

  11. Gene2Function: An Integrated Online Resource for Gene Function Discovery

    Directory of Open Access Journals (Sweden)

    Yanhui Hu

    2017-08-01

    Full Text Available One of the most powerful ways to develop hypotheses regarding the biological functions of conserved genes in a given species, such as humans, is to first look at what is known about their function in another species. Model organism databases and other resources are rich with functional information but difficult to mine. Gene2Function addresses a broad need by integrating information about conserved genes in a single online resource.

  12. Conservation of forest genetic resources in the United States.

    Science.gov (United States)

    B. St. Clair; S. Lipow; K. Vance-Borland; R. Johnson

    2007-01-01

    Conservation of genetic diversity is recognized as an important requirement of sustainable forest management. Gene conservation activities include in situ conservation of native stands in reserves and ex situ conservation in seed banks, genetic tests, seed and breeding orchards, and other plantations of known identity. We present an example from Oregon and Washington...

  13. Visualizing conserved gene location across microbe genomes

    Science.gov (United States)

    Shaw, Chris D.

    2009-01-01

    This paper introduces an analysis-based zoomable visualization technique for displaying the location of genes across many related species of microbes. The purpose of this visualizatiuon is to enable a biologist to examine the layout of genes in the organism of interest with respect to the gene organization of related organisms. During the genomic annotation process, the ability to observe gene organization in common with previously annotated genomes can help a biologist better confirm the structure and function of newly analyzed microbe DNA sequences. We have developed a visualization and analysis tool that enables the biologist to observe and examine gene organization among genomes, in the context of the primary sequence of interest. This paper describes the visualization and analysis steps, and presents a case study using a number of Rickettsia genomes.

  14. Analysis of tomato plasma membrane H(+)-ATPase gene family suggests a mycorrhiza-mediated regulatory mechanism conserved in diverse plant species.

    Science.gov (United States)

    Liu, Junli; Liu, Jianjian; Chen, Aiqun; Ji, Minjie; Chen, Jiadong; Yang, Xiaofeng; Gu, Mian; Qu, Hongye; Xu, Guohua

    2016-10-01

    In plants, the plasma membrane H(+)-ATPase (HA) is considered to play a crucial role in regulating plant growth and respoding to environment stresses. Multiple paralogous genes encoding different isozymes of HA have been identified and characterized in several model plants, while limited information of the HA gene family is available to date for tomato. Here, we describe the molecular and expression features of eight HA-encoding genes (SlHA1-8) from tomato. All these genes are interrupted by multiple introns with conserved positions. SlHA1, 2, and 4 were widely expressed in all tissues, while SlHA5, 6, and 7 were almost only expressed in flowers. SlHA8, the transcripts of which were barely detectable under normal or nutrient-/salt-stress growth conditions, was strongly activated in arbuscular mycorrhizal (AM) fungal-colonized roots. Extreme lack of SlHA8 expression in M161, a mutant defective to AM fungal colonization, provided genetic evidence towards the dependence of its expression on AM symbiosis. A 1521-bp SlHA8 promoter could direct the GUS reporter expression specifically in colonized cells of transgenic tobacco, soybean, and rice mycorrhizal roots. Promoter deletion assay revealed a 223-bp promoter fragment of SlHA8 containing a variant of AM-specific cis-element MYCS (vMYCS) sufficient to confer the AM-induced activity. Targeted deletion of this motif in the corresponding promoter region causes complete abolishment of GUS staining in mycorrhizal roots. Together, these results lend cogent evidence towards the evolutionary conservation of a potential regulatory mechanism mediating the activation of AM-responsive HA genes in diverse mycorrhizal plant species.

  15. Genome-wide identification of coding and non-coding conserved sequence tags in human and mouse genomes

    Directory of Open Access Journals (Sweden)

    Maggi Giorgio P

    2008-06-01

    Full Text Available Abstract Background The accurate detection of genes and the identification of functional regions is still an open issue in the annotation of genomic sequences. This problem affects new genomes but also those of very well studied organisms such as human and mouse where, despite the great efforts, the inventory of genes and regulatory regions is far from complete. Comparative genomics is an effective approach to address this problem. Unfortunately it is limited by the computational requirements needed to perform genome-wide comparisons and by the problem of discriminating between conserved coding and non-coding sequences. This discrimination is often based (thus dependent on the availability of annotated proteins. Results In this paper we present the results of a comprehensive comparison of human and mouse genomes performed with a new high throughput grid-based system which allows the rapid detection of conserved sequences and accurate assessment of their coding potential. By detecting clusters of coding conserved sequences the system is also suitable to accurately identify potential gene loci. Following this analysis we created a collection of human-mouse conserved sequence tags and carefully compared our results to reliable annotations in order to benchmark the reliability of our classifications. Strikingly we were able to detect several potential gene loci supported by EST sequences but not corresponding to as yet annotated genes. Conclusion Here we present a new system which allows comprehensive comparison of genomes to detect conserved coding and non-coding sequences and the identification of potential gene loci. Our system does not require the availability of any annotated sequence thus is suitable for the analysis of new or poorly annotated genomes.

  16. Expression and genomic analysis of midasin, a novel and highly conserved AAA protein distantly related to dynein

    Directory of Open Access Journals (Sweden)

    Gibbons I R

    2002-07-01

    Full Text Available Abstract Background The largest open reading frame in the Saccharomyces genome encodes midasin (MDN1p, YLR106p, an AAA ATPase of 560 kDa that is essential for cell viability. Orthologs of midasin have been identified in the genome projects for Drosophila, Arabidopsis, and Schizosaccharomyces pombe. Results Midasin is present as a single-copy gene encoding a well-conserved protein of ~600 kDa in all eukaryotes for which data are available. In humans, the gene maps to 6q15 and encodes a predicted protein of 5596 residues (632 kDa. Sequence alignments of midasin from humans, yeast, Giardia and Encephalitozoon indicate that its domain structure comprises an N-terminal domain (35 kDa, followed by an AAA domain containing six tandem AAA protomers (~30 kDa each, a linker domain (260 kDa, an acidic domain (~70 kDa containing 35–40% aspartate and glutamate, and a carboxy-terminal M-domain (30 kDa that possesses MIDAS sequence motifs and is homologous to the I-domain of integrins. Expression of hemagglutamin-tagged midasin in yeast demonstrates a polypeptide of the anticipated size that is localized principally in the nucleus. Conclusions The highly conserved structure of midasin in eukaryotes, taken in conjunction with its nuclear localization in yeast, suggests that midasin may function as a nuclear chaperone and be involved in the assembly/disassembly of macromolecular complexes in the nucleus. The AAA domain of midasin is evolutionarily related to that of dynein, but it appears to lack a microtubule-binding site.

  17. High amino acid diversity and positive selection at a putative coral immunity gene (tachylectin-2

    Directory of Open Access Journals (Sweden)

    Hellberg Michael E

    2010-05-01

    Full Text Available Abstract Background Genes involved in immune functions, including pathogen recognition and the activation of innate defense pathways, are among the most genetically variable known, and the proteins that they encode are often characterized by high rates of amino acid substitutions, a hallmark of positive selection. The high levels of variation characteristic of immunity genes make them useful tools for conservation genetics. To date, highly variable immunity genes have yet to be found in corals, keystone organisms of the world's most diverse marine ecosystem, the coral reef. Here, we examine variation in and selection on a putative innate immunity gene from Oculina, a coral genus previously used as a model for studies of coral disease and bleaching. Results In a survey of 244 Oculina alleles, we find high nonsynonymous variation and a signature of positive selection, consistent with a putative role in immunity. Using computational protein structure prediction, we generate a structural model of the Oculina protein that closely matches the known structure of tachylectin-2 from the Japanese horseshoe crab (Tachypleus tridentatus, a protein with demonstrated function in microbial recognition and agglutination. We also demonstrate that at least three other genera of anthozoan cnidarians (Acropora, Montastrea and Nematostella possess proteins structurally similar to tachylectin-2. Conclusions Taken together, the evidence of high amino acid diversity, positive selection and structural correspondence to the horseshoe crab tachylectin-2 suggests that this protein is 1 part of Oculina's innate immunity repertoire, and 2 evolving adaptively, possibly under selective pressure from coral-associated microorganisms. Tachylectin-2 may serve as a candidate locus to screen coral populations for their capacity to respond adaptively to future environmental change.

  18. RNA-seq of the aging brain in the short-lived fish N. furzeri - conserved pathways and novel genes associated with neurogenesis.

    Science.gov (United States)

    Baumgart, Mario; Groth, Marco; Priebe, Steffen; Savino, Aurora; Testa, Giovanna; Dix, Andreas; Ripa, Roberto; Spallotta, Francesco; Gaetano, Carlo; Ori, Michela; Terzibasi Tozzini, Eva; Guthke, Reinhard; Platzer, Matthias; Cellerino, Alessandro

    2014-12-01

    The brains of teleost fish show extensive adult neurogenesis and neuronal regeneration. The patterns of gene regulation during fish brain aging are unknown. The short-lived teleost fish Nothobranchius furzeri shows markers of brain aging including reduced learning performances, gliosis, and reduced adult neurogenesis. We used RNA-seq to quantify genome-wide transcript regulation and sampled five different time points to characterize whole-genome transcript regulation during brain aging of N. furzeri. Comparison with human datasets revealed conserved up-regulation of ribosome, lysosome, and complement activation and conserved down-regulation of synapse, mitochondrion, proteasome, and spliceosome. Down-regulated genes differ in their temporal profiles: neurogenesis and extracellular matrix genes showed rapid decay, synaptic and axonal genes a progressive decay. A substantial proportion of differentially expressed genes (~40%) showed inversion of their temporal profiles in the last time point: spliceosome and proteasome showed initial down-regulation and stress-response genes initial up-regulation. Extensive regulation was detected for chromatin remodelers of the DNMT and CBX families as well as members of the polycomb complex and was mirrored by an up-regulation of the H3K27me3 epigenetic mark. Network analysis showed extensive coregulation of cell cycle/DNA synthesis genes with the uncharacterized zinc-finger protein ZNF367 as central hub. In situ hybridization showed that ZNF367 is expressed in neuronal stem cell niches of both embryonic zebrafish and adult N. furzeri. Other genes down-regulated with age, not previously associated with adult neurogenesis and with similar patterns of expression are AGR2, DNMT3A, KRCP, MEX3A, SCML4, and CBX1. CBX7, on the other hand, was up-regulated with age. © 2014 The Authors. Aging cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. In Vitro Propagation and Conservation of Bacopa monnieri L.

    Science.gov (United States)

    Sharma, Neelam; Singh, Rakesh; Pandey, Ruchira

    2016-01-01

    Bacopa monnieri L. (common name brahmi) is a traditional and renowned Indian medicinal plant with high commercial value for its memory revitalizer potential. Demand for this herb has further escalated due to popularization of various brahmi-based drugs coupled with reported anticancer property. Insufficient seed availability and problems associated with seed propagation including short seed viability are the major constraints of seed conservation in the gene banks. In vitro clonal propagation, a prerequisite for in vitro conservation by enhanced axillary branching was standardized. We have developed a simple, single step protocol for in vitro establishment, propagation and medium-term conservation of B. monnieri. Single node explants, cultured on Murashige and Skoog's medium supplemented with BA (0.2 mg/L), exhibited shoot proliferation without callus formation. Rooting was achieved on the same medium. The in vitro raised plants were successfully transferred to soil with ~80 % survival. On the same medium, shoots could also be conserved for 12 months with high survival and genetic stability was maintained as revealed by molecular markers. The protocol optimized in the present study has been applied for culture establishment, shoot multiplication and medium-term conservation of several Bacopa germplasm, procured from different agro-ecological regions of India.

  20. Conserved repertoire of orthologous vomeronasal type 1 receptor genes in ruminant species

    Directory of Open Access Journals (Sweden)

    Okamura Hiroaki

    2009-09-01

    Full Text Available Abstract Background In mammals, pheromones play an important role in social and innate reproductive behavior within species. In rodents, vomeronasal receptor type 1 (V1R, which is specifically expressed in the vomeronasal organ, is thought to detect pheromones. The V1R gene repertoire differs dramatically between mammalian species, and the presence of species-specific V1R subfamilies in mouse and rat suggests that V1R plays a profound role in species-specific recognition of pheromones. In ruminants, however, the molecular mechanism(s for pheromone perception is not well understood. Interestingly, goat male pheromone, which can induce out-of-season ovulation in anestrous females, causes the same pheromone response in sheep, and vice versa, suggesting that there may be mechanisms for detecting "inter-species" pheromones among ruminant species. Results We isolated 23 goat and 21 sheep intact V1R genes based on sequence similarity with 32 cow V1R genes in the cow genome database. We found that all of the goat and sheep V1R genes have orthologs in their cross-species counterparts among these three ruminant species and that the sequence identity of V1R orthologous pairs among these ruminants is much higher than that of mouse-rat V1R orthologous pairs. Furthermore, all goat V1Rs examined thus far are expressed not only in the vomeronasal organ but also in the main olfactory epithelium. Conclusion Our results suggest that, compared with rodents, the repertoire of orthologous V1R genes is remarkably conserved among the ruminants cow, sheep and goat. We predict that these orthologous V1Rs can detect the same or closely related chemical compound(s within each orthologous set/pair. Furthermore, all identified goat V1Rs are expressed in the vomeronasal organ and the main olfactory epithelium, suggesting that V1R-mediated ligand information can be detected and processed by both the main and accessory olfactory systems. The fact that ruminant and rodent V1Rs

  1. The qacC gene has recently spread between rolling circle plasmids of Staphylococcus, indicative of a novel gene transfer mechanism

    Directory of Open Access Journals (Sweden)

    Trudy M. Wassenaar

    2016-09-01

    Full Text Available Resistance of Staphylococcus species to quaternary ammonium compounds, frequently used as disinfectants and biocides, can be attributed to qac genes. These qac gene products belong to the Small Multidrug Resistant (SMR protein family, and are often encoded by rolling-circle (RC replicating plasmids. Four classes of SMR-type qac gene families have been described in Staphylococcus species: qacC, qacG, qacJ and qacH. Within their class, these genes are highly conserved, but qacC genes are extremely conserved, although they are found in variable plasmid backgrounds. The lower degree of sequence identity of these plasmids compared to the strict nucleotide conservation of their qacC means that this gene has recently spread. In the absence of insertion sequences or other genetic elements explaining the mobility, we sought for an explanation of mobilization by sequence comparison. Publically available sequences of qac genes, their flanking genes and the replication gene that is invariably present in RC-plasmids were compared to reconstruct the evolutionary history of these plasmids and to explain the recent spread of qacC. Here we propose a new model that explains how qacC is mobilized and transferred to acceptor RC-plasmids without assistance of other genes, by means of its location in between the Double Strand replication Origin (DSO and the Single-Strand replication Origin (SSO. The proposed mobilization model of this DSO-qacC-SSO element represents a novel mechanism of gene mobilization in RC-plasmids, which has also been employed by other genes, such as lnuA (conferring lincomycin resistance. The proposed gene mobility has aided to the wide spread of clinically relevant resistance genes in Staphylococcus populations.

  2. Sequence conservation between porcine and human LRRK2

    DEFF Research Database (Denmark)

    Larsen, Knud; Madsen, Lone Bruhn

    2009-01-01

     Leucine-rich repeat kinase 2 (LRRK2) is a member of the ROCO protein superfamily (Ras of complex proteins (Roc) with a C-terminal Roc domain). Mutations in the LRRK2 gene lead to autosomal dominant Parkinsonism. We have cloned the porcine LRRK2 cDNA in an attempt to characterize conserved...... and expression patterns are conserved across species. The porcine LRRK2 gene was mapped to chromosome 5q25. The results obtained suggest that the LRRK2 gene might be of particular interest in our attempt to generate a transgenic porcine model for Parkinson's disease...

  3. Divergent evolutionary rates in vertebrate and mammalian specific conserved non-coding elements (CNEs) in echolocating mammals.

    Science.gov (United States)

    Davies, Kalina T J; Tsagkogeorga, Georgia; Rossiter, Stephen J

    2014-12-19

    The majority of DNA contained within vertebrate genomes is non-coding, with a certain proportion of this thought to play regulatory roles during development. Conserved Non-coding Elements (CNEs) are an abundant group of putative regulatory sequences that are highly conserved across divergent groups and thus assumed to be under strong selective constraint. Many CNEs may contain regulatory factor binding sites, and their frequent spatial association with key developmental genes - such as those regulating sensory system development - suggests crucial roles in regulating gene expression and cellular patterning. Yet surprisingly little is known about the molecular evolution of CNEs across diverse mammalian taxa or their role in specific phenotypic adaptations. We examined 3,110 vertebrate-specific and ~82,000 mammalian-specific CNEs across 19 and 9 mammalian orders respectively, and tested for changes in the rate of evolution of CNEs located in the proximity of genes underlying the development or functioning of auditory systems. As we focused on CNEs putatively associated with genes underlying the development/functioning of auditory systems, we incorporated echolocating taxa in our dataset because of their highly specialised and derived auditory systems. Phylogenetic reconstructions of concatenated CNEs broadly recovered accepted mammal relationships despite high levels of sequence conservation. We found that CNE substitution rates were highest in rodents and lowest in primates, consistent with previous findings. Comparisons of CNE substitution rates from several genomic regions containing genes linked to auditory system development and hearing revealed differences between echolocating and non-echolocating taxa. Wider taxonomic sampling of four CNEs associated with the homeobox genes Hmx2 and Hmx3 - which are required for inner ear development - revealed family-wise variation across diverse bat species. Specifically within one family of echolocating bats that utilise

  4. Enhancing Conservation with High Resolution Productivity Datasets for the Conterminous United States

    Science.gov (United States)

    Robinson, Nathaniel Paul

    Human driven alteration of the earth's terrestrial surface is accelerating through land use changes, intensification of human activity, climate change, and other anthropogenic pressures. These changes occur at broad spatio-temporal scales, challenging our ability to effectively monitor and assess the impacts and subsequent conservation strategies. While satellite remote sensing (SRS) products enable monitoring of the earth's terrestrial surface continuously across space and time, the practical applications for conservation and management of these products are limited. Often the processes driving ecological change occur at fine spatial resolutions and are undetectable given the resolution of available datasets. Additionally, the links between SRS data and ecologically meaningful metrics are weak. Recent advances in cloud computing technology along with the growing record of high resolution SRS data enable the development of SRS products that quantify ecologically meaningful variables at relevant scales applicable for conservation and management. The focus of my dissertation is to improve the applicability of terrestrial gross and net primary productivity (GPP/NPP) datasets for the conterminous United States (CONUS). In chapter one, I develop a framework for creating high resolution datasets of vegetation dynamics. I use the entire archive of Landsat 5, 7, and 8 surface reflectance data and a novel gap filling approach to create spatially continuous 30 m, 16-day composites of the normalized difference vegetation index (NDVI) from 1986 to 2016. In chapter two, I integrate this with other high resolution datasets and the MOD17 algorithm to create the first high resolution GPP and NPP datasets for CONUS. I demonstrate the applicability of these products for conservation and management, showing the improvements beyond currently available products. In chapter three, I utilize this dataset to evaluate the relationships between land ownership and terrestrial production

  5. Cross-species conservation of endocrine pathways provides a basis for reevaluation of EDSP tiered testing paradigm

    Science.gov (United States)

    Many structural and functional aspects of the vertebrate hypothalamic-pituitary-gonadal (HPG) axis are known to be highly conserved, but the relative significance of this from a regulatory toxicology perspective has received comparatively little attention. High-quality data gene...

  6. The glycoprotein genes and gene junctions of the fish rhabdoviruses spring viremia of carp virus and hirame rhabdovirus: Analysis of relationships with other rhabdoviruses

    Science.gov (United States)

    Bjorklund, H.V.; Higman, K.H.; Kurath, G.

    1996-01-01

    The nucleotide sequences of the glycoprotein genes and all of the internal gene junctions of the fish pathogenic rhabdoviruses spring viremia of carp virus (SVCV) and hirame rhabdovirus (HIRRV) have been determined from cDNA clones generated from viral genomic RNA. The SVCV glycoprotein gene sequence is 1588 nucleotides (nt) long and encodes a 509 amino acid (aa) protein. The HIRRV glycoprotein gene sequence comprises 1612 nt, coding for a 508 aa protein. In sequence comparisons of 15 rhabdovirus glycoproteins, the SVCV glycoprotein gene showed the highest amino acid sequence identity (31.2–33.2%) with vesicular stomatitis New Jersey virus (VSNJV), Chandipura virus (CHPV) and vesicular stomatitis Indiana virus (VSIV). The HIRRV glycoprotein gene showed a very high amino acid sequence identity (74.3%) with the glycoprotein gene of another fish pathogenic rhabdovirus, infectious hematopoietic necrosis virus (IHNV), but no significant similarity with glycoproteins of VSIV or rabies virus (RABV). In phylogenetic analyses SVCV was grouped consistently with VSIV, VSNJV and CHPV in the Vesiculovirus genus of Rhabdoviridae. The fish rhabdoviruses HIRRV, IHNV and viral hemorrhagic septicemia virus (VHSV) showed close relationships with each other, but only very distant relationships with mammalian rhabdoviruses. The gene junctions are highly conserved between SVCV and VSIV, well conserved between IHNV and HIRRV, but not conserved between HIRRV/IHNV and RABV. Based on the combined results we suggest that the fish lyssa-type rhabdoviruses HIRRV, IHNV and VHSV may be grouped in their own genus within the family Rhabdoviridae. Aquarhabdovirus has been proposed for the name of this new genus.

  7. The mitochondrial genome of the stingless bee Melipona bicolor (Hymenoptera, Apidae, Meliponini: sequence, gene organization and a unique tRNA translocation event conserved across the tribe Meliponini

    Directory of Open Access Journals (Sweden)

    Daniela Silvestre

    2008-01-01

    Full Text Available At present a complete mtDNA sequence has been reported for only two hymenopterans, the Old World honey bee, Apis mellifera and the sawfly Perga condei. Among the bee group, the tribe Meliponini (stingless bees has some distinction due to its Pantropical distribution, great number of species and large importance as main pollinators in several ecosystems, including the Brazilian rain forest. However few molecular studies have been conducted on this group of bees and few sequence data from mitochondrial genomes have been described. In this project, we PCR amplified and sequenced 78% of the mitochondrial genome of the stingless bee Melipona bicolor (Apidae, Meliponini. The sequenced region contains all of the 13 mitochondrial protein-coding genes, 18 of 22 tRNA genes, and both rRNA genes (one of them was partially sequenced. We also report the genome organization (gene content and order, gene translation, genetic code, and other molecular features, such as base frequencies, codon usage, gene initiation and termination. We compare these characteristics of M. bicolor to those of the mitochondrial genome of A. mellifera and other insects. A highly biased A+T content is a typical characteristic of the A. mellifera mitochondrial genome and it was even more extreme in that of M. bicolor. Length and compositional differences between M. bicolor and A. mellifera genes were detected and the gene order was compared. Eleven tRNA gene translocations were observed between these two species. This latter finding was surprising, considering the taxonomic proximity of these two bee tribes. The tRNA Lys gene translocation was investigated within Meliponini and showed high conservation across the Pantropical range of the tribe.

  8. Conservation of Tcrg-V5 and limited allelic sequence polymorphism of the other Tcrg-V genes used by mouse tissue-specific gd-T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Roger, T.; Morisset, J.; Seman, M. [Universite Denis Diderot, Paris (France)

    1996-12-31

    The mouse Tcrg locus comprises seven Tcrg-V, four Tcrg-J, and four Tcrg-C segments which generate only six major types of functional g chains, Vg7-, Vg4-, Vg6-, or Vg5-Jg1-Cg1, Vg2-Jg2-Cg2, and Vg1-Jg4-Cg4. A complete analysis of restriction fragment length polymorphism (RFLP) of the Tcrg locus in wild and inbred mice suggested its relative conservation compared to other loci of the immunoglobulin (Ig) gene family. Three haplotypes have been characterized in laboratory mice: gA, gB, and gC, represented by BALB/c, DBA/2, and AKR prototypes. Tcr-gA and -gC haplotypes are highly related. By contrast, Tcr-gB, likely inherited from Asian mouse subspecies, appeared very different by RFLP analysis. Yet only partial sequence data have been reported on gA and gB Tcrg-V genes. Here, the complete sequence of all Tcrg-V genes of the two haplotypes is described. 16 refs., 1 fig.

  9. Integrating conservation costs into sea level rise adaptive conservation prioritization

    Directory of Open Access Journals (Sweden)

    Mingjian Zhu

    2015-07-01

    Full Text Available Biodiversity conservation requires strategic investment as resources for conservation are often limited. As sea level rises, it is important and necessary to consider both sea level rise and costs in conservation decision making. In this study, we consider costs of conservation in an integrated modeling process that incorporates a geomorphological model (SLAMM, species habitat models, and conservation prioritization (Zonation to identify conservation priorities in the face of landscape dynamics due to sea level rise in the Matanzas River basin of northeast Florida. Compared to conservation priorities that do not consider land costs in the analysis process, conservation priorities that consider costs in the planning process change significantly. The comparison demonstrates that some areas with high conservation values might be identified as lower priorities when integrating economic costs in the planning process and some areas with low conservation values might be identified as high priorities when considering costs in the planning process. This research could help coastal resources managers make informed decisions about where and how to allocate conservation resources more wisely to facilitate biodiversity adaptation to sea level rise.

  10. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation

    DEFF Research Database (Denmark)

    Weinert, Brian T; Wagner, Sebastian A; Horn, Heiko

    2011-01-01

    Posttranslational modification of proteins by acetylation and phosphorylation regulates most cellular processes in living organisms. Surprisingly, the evolutionary conservation of phosphorylated serine and threonine residues is only marginally higher than that of unmodified serines and threonines....... With high-resolution mass spectrometry, we identified 1981 lysine acetylation sites in the proteome of Drosophila melanogaster. We used data sets of experimentally identified acetylation and phosphorylation sites in Drosophila and humans to analyze the evolutionary conservation of these modification sites...... between flies and humans. Site-level conservation analysis revealed that acetylation sites are highly conserved, significantly more so than phosphorylation sites. Furthermore, comparison of lysine conservation in Drosophila and humans with that in nematodes and zebrafish revealed that acetylated lysines...

  11. High-resolution finite-difference algorithms for conservation laws

    International Nuclear Information System (INIS)

    Towers, J.D.

    1987-01-01

    A new class of Total Variation Decreasing (TVD) schemes for 2-dimensional scalar conservation laws is constructed using either flux-limited or slope-limited numerical fluxes. The schemes are proven to have formal second-order accuracy in regions where neither u/sub x/ nor y/sub y/ vanishes. A new class of high-resolution large-time-step TVD schemes is constructed by adding flux-limited correction terms to the first-order accurate large-time-step version of the Engquist-Osher scheme. The use of the transport-collapse operator in place of the exact solution operator for the construction of difference schemes is studied. The production of spurious extrema by difference schemes is studied. A simple condition guaranteeing the nonproduction of spurious extrema is derived. A sufficient class of entropy inequalities for a conservation law with a flux having a single inflection point is presented. Finite-difference schemes satisfying a discrete version of each entropy inequality are only first-order accurate

  12. The Orphan G Protein-Coupled Receptor Gene GPR178 Is Evolutionary Conserved and Altered in Response to Acute Changes in Food Intake.

    Directory of Open Access Journals (Sweden)

    Vanni Caruso

    Full Text Available G protein-coupled receptors (GPCRs are a class of integral membrane proteins mediating physiological functions fundamental for survival, including energy homeostasis. A few years ago, an amino acid sequence of a novel GPCR gene was identified and named GPR178. In this study, we provide new insights regarding the biological significance of Gpr178 protein, investigating its evolutionary history and tissue distribution as well as examining the relationship between its expression level and feeding status. Our phylogenetic analysis indicated that GPR178 is highly conserved among all animal species investigated, and that GPR178 is not a member of a protein family. Real-time PCR and in situ hybridization revealed wide expression of Gpr178 mRNA in both the brain and periphery, with high expression density in the hypothalamus and brainstem, areas involved in the regulation of food intake. Hence, changes in receptor expression were assessed following several feeding paradigms including starvation and overfeeding. Short-term starvation (12-48h or food restriction resulted in upregulation of Gpr178 mRNA expression in the brainstem, hypothalamus and prefrontal cortex. Conversely, short-term (48h exposure to sucrose or Intralipid solutions downregulated Gpr178 mRNA in the brainstem; long-term exposure (10 days to a palatable high-fat and high-sugar diet resulted in a downregulation of Gpr178 in the amygdala but not in the hypothalamus. Our results indicate that hypothalamic Gpr178 gene expression is altered during acute exposure to starvation or acute exposure to palatable food. Changes in gene expression following palatable diet consumption suggest a possible involvement of Gpr178 in the complex mechanisms of feeding reward.

  13. An interspecific fungal hybrid reveals cross-kingdom rules for allopolyploid gene expression patterns.

    Directory of Open Access Journals (Sweden)

    Murray P Cox

    2014-03-01

    Full Text Available Polyploidy, a state in which the chromosome complement has undergone an increase, is a major force in evolution. Understanding the consequences of polyploidy has received much attention, and allopolyploids, which result from the union of two different parental genomes, are of particular interest because they must overcome a suite of biological responses to this merger, known as "genome shock." A key question is what happens to gene expression of the two gene copies following allopolyploidization, but until recently the tools to answer this question on a genome-wide basis were lacking. Here we utilize high throughput transcriptome sequencing to produce the first genome-wide picture of gene expression response to allopolyploidy in fungi. A novel pipeline for assigning sequence reads to the gene copies was used to quantify their expression in a fungal allopolyploid. We find that the transcriptional response to allopolyploidy is predominantly conservative: both copies of most genes are retained; over half the genes inherit parental gene expression patterns; and parental differential expression is often lost in the allopolyploid. Strikingly, the patterns of gene expression change are highly concordant with the genome-wide expression results of a cotton allopolyploid. The very different nature of these two allopolyploids implies a conserved, eukaryote-wide transcriptional response to genome merger. We provide evidence that the transcriptional responses we observe are mostly driven by intrinsic differences between the regulatory systems in the parent species, and from this propose a mechanistic model in which the cross-kingdom conservation in transcriptional response reflects conservation of the mutational processes underlying eukaryotic gene regulatory evolution. This work provides a platform to develop a universal understanding of gene expression response to allopolyploidy and suggests that allopolyploids are an exceptional system to investigate gene

  14. Alkylation sensitivity screens reveal a conserved cross-species functionome

    Science.gov (United States)

    Svilar, David; Dyavaiah, Madhu; Brown, Ashley R.; Tang, Jiang-bo; Li, Jianfeng; McDonald, Peter R.; Shun, Tong Ying; Braganza, Andrea; Wang, Xiao-hong; Maniar, Salony; St Croix, Claudette M.; Lazo, John S.; Pollack, Ian F.; Begley, Thomas J.; Sobol, Robert W.

    2013-01-01

    To identify genes that contribute to chemotherapy resistance in glioblastoma, we conducted a synthetic lethal screen in a chemotherapy-resistant glioblastoma derived cell line with the clinical alkylator temozolomide (TMZ) and an siRNA library tailored towards “druggable” targets. Select DNA repair genes in the screen were validated independently, confirming the DNA glycosylases UNG and MYH as well as MPG to be involved in the response to high dose TMZ. The involvement of UNG and MYH is likely the result of a TMZ-induced burst of reactive oxygen species. We then compared the human TMZ sensitizing genes identified in our screen with those previously identified from alkylator screens conducted in E. coli and S. cerevisiae. The conserved biological processes across all three species composes an Alkylation Functionome that includes many novel proteins not previously thought to impact alkylator resistance. This high-throughput screen, validation and cross-species analysis was then followed by a mechanistic analysis of two essential nodes: base excision repair (BER) DNA glycosylases (UNG, human and mag1, S. cerevisiae) and protein modification systems, including UBE3B and ICMT in human cells or pby1, lip22, stp22 and aim22 in S. cerevisiae. The conserved processes of BER and protein modification were dual targeted and yielded additive sensitization to alkylators in S. cerevisiae. In contrast, dual targeting of BER and protein modification genes in human cells did not increase sensitivity, suggesting an epistatic relationship. Importantly, these studies provide potential new targets to overcome alkylating agent resistance. PMID:23038810

  15. Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait

    Directory of Open Access Journals (Sweden)

    Shirai Leila T

    2012-02-01

    Full Text Available Abstract Background The origin and modification of novel traits are important aspects of biological diversification. Studies combining concepts and approaches of developmental genetics and evolutionary biology have uncovered many examples of the recruitment, or co-option, of genes conserved across lineages for the formation of novel, lineage-restricted traits. However, little is known about the evolutionary history of the recruitment of those genes, and of the relationship between them -for example, whether the co-option involves whole or parts of existing networks, or whether it occurs by redeployment of individual genes with de novo rewiring. We use a model novel trait, color pattern elements on butterfly wings called eyespots, to explore these questions. Eyespots have greatly diversified under natural and sexual selection, and their formation involves genetic circuitries shared across insects. Results We investigated the evolutionary history of the recruitment and co-recruitment of four conserved transcription regulators to the larval wing disc region where circular pattern elements develop. The co-localization of Antennapedia, Notch, Distal-less, and Spalt with presumptive (eyespot organizers was examined in 13 butterfly species, providing the largest comparative dataset available for the system. We found variation between families, between subfamilies, and between tribes. Phylogenetic reconstructions by parsimony and maximum likelihood methods revealed an unambiguous evolutionary history only for Antennapedia, with a resolved single origin of eyespot-associated expression, and many homoplastic events for Notch, Distal-less, and Spalt. The flexibility in the (co-recruitment of the targeted genes includes cases where different gene combinations are associated with morphologically similar eyespots, as well as cases where identical protein combinations are associated with very different phenotypes. Conclusions The evolutionary history of gene

  16. Conservative Management for Stable High Ankle Injuries in Professional Football Players.

    Science.gov (United States)

    Knapik, Derrick M; Trem, Anthony; Sheehan, Joseph; Salata, Michael J; Voos, James E

    High ankle "syndesmosis" injuries are common in American football players relative to the general population. At the professional level, syndesmotic sprains represent a challenging and unique injury lacking a standardized rehabilitation protocol during conservative management. PubMed, Biosis Preview, SPORTDiscus, PEDro, and EMBASE databases were searched using the terms syndesmotic injuries, American football, conservative management, and rehabilitation. Clinical review. Level 3. When compared with lateral ankle sprains, syndesmosis injuries result in significantly prolonged recovery times and games lost. For stable syndesmotic injuries, conservative management features a brief period of immobilization and protected weightbearing followed by progressive strengthening exercises and running, and athletes can expect to return to competition in 2 to 6 weeks. Further research investigating the efficacy of dry needling and blood flow restriction therapy is necessary to evaluate the benefit of these techniques in the rehabilitation process. Successful conservative management of stable syndesmotic injuries in professional American football athletes requires a thorough understanding of the anatomy, injury mechanisms, diagnosis, and rehabilitation strategies utilized in elite athletes.

  17. Ex Situ gene conservation in high elevation white pine species in the United States-a beginning

    Science.gov (United States)

    Richard A. Sniezko; Anna Schoettle; Joan Dunlap; Detlev Vogler; David Conklin; Andrew Bower; Chris Jensen; Rob Mangold; Doug Daoust; Gary Man

    2011-01-01

    The eight white pine species native to the western United States face an array of biotic and abiotic challenges that impact the viability of populations or the species themselves. Well-established programs are already in place to conserve and restore Pinus monticola Dougl. ex D. Don and P. lambertiana Dougl. throughout significant portions of their geographic ranges....

  18. Models of gene gain and gene loss for probabilistic reconstruction of gene content in the last universal common ancestor of life.

    Science.gov (United States)

    Kannan, Lavanya; Li, Hua; Rubinstein, Boris; Mushegian, Arcady

    2013-12-19

    The problem of probabilistic inference of gene content in the last common ancestor of several extant species with completely sequenced genomes is: for each gene that is conserved in all or some of the genomes, assign the probability that its ancestral gene was present in the genome of their last common ancestor. We have developed a family of models of gene gain and gene loss in evolution, and applied the maximum-likelihood approach that uses phylogenetic tree of prokaryotes and the record of orthologous relationships between their genes to infer the gene content of LUCA, the Last Universal Common Ancestor of all currently living cellular organisms. The crucial parameter, the ratio of gene losses and gene gains, was estimated from the data and was higher in models that take account of the number of in-paralogs in genomes than in models that treat gene presences and absences as a binary trait. While the numbers of genes that are placed confidently into LUCA are similar in the ML methods and in previously published methods that use various parsimony-based approaches, the identities of genes themselves are different. Most of the models of either kind treat the genes found in many existing genomes in a similar way, assigning to them high probabilities of being ancestral ("high ancestrality"). The ML models are more likely than others to assign high ancestrality to the genes that are relatively rare in the present-day genomes.

  19. Unravelling the complexity of microRNA-mediated gene regulation in black pepper (Piper nigrum L.) using high-throughput small RNA profiling.

    Science.gov (United States)

    Asha, Srinivasan; Sreekumar, Sweda; Soniya, E V

    2016-01-01

    Analysis of high-throughput small RNA deep sequencing data, in combination with black pepper transcriptome sequences revealed microRNA-mediated gene regulation in black pepper ( Piper nigrum L.). Black pepper is an important spice crop and its berries are used worldwide as a natural food additive that contributes unique flavour to foods. In the present study to characterize microRNAs from black pepper, we generated a small RNA library from black pepper leaf and sequenced it by Illumina high-throughput sequencing technology. MicroRNAs belonging to a total of 303 conserved miRNA families were identified from the sRNAome data. Subsequent analysis from recently sequenced black pepper transcriptome confirmed precursor sequences of 50 conserved miRNAs and four potential novel miRNA candidates. Stem-loop qRT-PCR experiments demonstrated differential expression of eight conserved miRNAs in black pepper. Computational analysis of targets of the miRNAs showed 223 potential black pepper unigene targets that encode diverse transcription factors and enzymes involved in plant development, disease resistance, metabolic and signalling pathways. RLM-RACE experiments further mapped miRNA-mediated cleavage at five of the mRNA targets. In addition, miRNA isoforms corresponding to 18 miRNA families were also identified from black pepper. This study presents the first large-scale identification of microRNAs from black pepper and provides the foundation for the future studies of miRNA-mediated gene regulation of stress responses and diverse metabolic processes in black pepper.

  20. The importance of immune gene variability (MHC in evolutionary ecology and conservation

    Directory of Open Access Journals (Sweden)

    Sommer Simone

    2005-10-01

    Full Text Available Abstract Genetic studies have typically inferred the effects of human impact by documenting patterns of genetic differentiation and levels of genetic diversity among potentially isolated populations using selective neutral markers such as mitochondrial control region sequences, microsatellites or single nucleotide polymorphism (SNPs. However, evolutionary relevant and adaptive processes within and between populations can only be reflected by coding genes. In vertebrates, growing evidence suggests that genetic diversity is particularly important at the level of the major histocompatibility complex (MHC. MHC variants influence many important biological traits, including immune recognition, susceptibility to infectious and autoimmune diseases, individual odours, mating preferences, kin recognition, cooperation and pregnancy outcome. These diverse functions and characteristics place genes of the MHC among the best candidates for studies of mechanisms and significance of molecular adaptation in vertebrates. MHC variability is believed to be maintained by pathogen-driven selection, mediated either through heterozygote advantage or frequency-dependent selection. Up to now, most of our knowledge has derived from studies in humans or from model organisms under experimental, laboratory conditions. Empirical support for selective mechanisms in free-ranging animal populations in their natural environment is rare. In this review, I first introduce general information about the structure and function of MHC genes, as well as current hypotheses and concepts concerning the role of selection in the maintenance of MHC polymorphism. The evolutionary forces acting on the genetic diversity in coding and non-coding markers are compared. Then, I summarise empirical support for the functional importance of MHC variability in parasite resistance with emphasis on the evidence derived from free-ranging animal populations investigated in their natural habitat. Finally, I

  1. Spatial overlap between environmental policy instruments and areas of high conservation value in forest.

    Science.gov (United States)

    Sverdrup-Thygeson, Anne; Søgaard, Gunnhild; Rusch, Graciela M; Barton, David N

    2014-01-01

    In order to safeguard biodiversity in forest we need to know how forest policy instruments work. Here we use a nationwide network of 9400 plots in productive forest to analyze to what extent large-scale policy instruments, individually and together, target forest of high conservation value in Norway. We studied both instruments working through direct regulation; Strict Protection and Landscape Protection, and instruments working through management planning and voluntary schemes of forest certification; Wilderness Area and Mountain Forest. As forest of high conservation value (HCV-forest) we considered the extent of 12 Biodiversity Habitats and the extent of Old-Age Forest. We found that 22% of productive forest area contained Biodiversity Habitats. More than 70% of this area was not covered by any large-scale instruments. Mountain Forest covered 23%, while Strict Protection and Wilderness both covered 5% of the Biodiversity Habitat area. A total of 9% of productive forest area contained Old-Age Forest, and the relative coverage of the four instruments was similar as for Biodiversity Habitats. For all instruments, except Landscape Protection, the targeted areas contained significantly higher proportions of HCV-forest than areas not targeted by these instruments. Areas targeted by Strict Protection had higher proportions of HCV-forest than areas targeted by other instruments, except for areas targeted by Wilderness Area which showed similar proportions of Biodiversity Habitats. There was a substantial amount of spatial overlap between the policy tools, but no incremental conservation effect of overlapping instruments in terms of contributing to higher percentages of targeted HCV-forest. Our results reveal that although the current policy mix has an above average representation of forest of high conservation value, the targeting efficiency in terms of area overlap is limited. There is a need to improve forest conservation and a potential to cover this need by better

  2. MicroRNA genes preferentially expressed in dendritic cells contain sites for conserved transcription factor binding motifs in their promoters

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2011-06-01

    Full Text Available Abstract Background MicroRNAs (miRNAs play a fundamental role in the regulation of gene expression by translational repression or target mRNA degradation. Regulatory elements in miRNA promoters are less well studied, but may reveal a link between their expression and a specific cell type. Results To explore this link in myeloid cells, miRNA expression profiles were generated from monocytes and dendritic cells (DCs. Differences in miRNA expression among monocytes, DCs and their stimulated progeny were observed. Furthermore, putative promoter regions of miRNAs that are significantly up-regulated in DCs were screened for Transcription Factor Binding Sites (TFBSs based on TFBS motif matching score, the degree to which those TFBSs are over-represented in the promoters of the up-regulated miRNAs, and the extent of conservation of the TFBSs in mammals. Conclusions Analysis of evolutionarily conserved TFBSs in DC promoters revealed preferential clustering of sites within 500 bp upstream of the precursor miRNAs and that many mRNAs of cognate TFs of the conserved TFBSs were indeed expressed in the DCs. Taken together, our data provide evidence that selected miRNAs expressed in DCs have evolutionarily conserved TFBSs relevant to DC biology in their promoters.

  3. A novel lens epithelium gene, LEP503, is highly conserved in different vertebrate species and is developmentally regulated in postnatal rat lens.

    Science.gov (United States)

    Wen, Y; Sachs, G; Athmann, C

    2000-02-01

    The development of the lens is dependent on the proliferation of lens epithelial cells and their differentiation into fiber cells near the lens bow/equator. Identification of genes specifically expressed in the lens epithelial cells and their functions may provide insight into molecular events that regulate the processes of lens epithelial cell differentiation. In this study, a novel lens epithelium gene product, LEP503, identified from rat by a subtractive cDNA cloning strategy was investigated in the genome organization, mRNA expression and protein localization. The genomic sequences for LEP503 isolated from rat, mouse and human span 1754 bp, 1694 bp and 1895 bp regions encompassing the 5'-flanking region, two exons, one intron and 3'-flanking region. All exon-intron junction sequences conform to the GT/AG rule. Both mouse and human LEP503 genes show very high identity (93% for mouse and 79% for human) to rat LEP503 gene in the exon 1 that contains an open reading frame coding for a protein of 61 amino acid residues with a leucine-rich domain. The deduced protein sequences also show high identity (91% between mouse and rat and 77% between human and rat). Western blot shows that LEP503 is present as a specific approximately 6.9 kDa band in the water-insoluble-urea-soluble fraction of lens cortex where lens epithelium is included. Immuno-staining shows that LEP503 is localized in the epithelial cells along the entire anterior surface of rat lens. Developmentally, LEP503 is expressed at a low level at newborn, and then the expression level increases by about ten-fold around postnatal day 14 and remains at this high level for about 25 days before it drops back to the low level by postnatal day 84. These data suggest that the LEP503 may be an important lens epithelial cell gene involving the processes of epithelial cell differentiation. Copyright 2000 Academic Press.

  4. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    Science.gov (United States)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  5. Human developmental enhancers conserved between deuterostomes and protostomes.

    Directory of Open Access Journals (Sweden)

    Shoa L Clarke

    Full Text Available The identification of homologies, whether morphological, molecular, or genetic, is fundamental to our understanding of common biological principles. Homologies bridging the great divide between deuterostomes and protostomes have served as the basis for current models of animal evolution and development. It is now appreciated that these two clades share a common developmental toolkit consisting of conserved transcription factors and signaling pathways. These patterning genes sometimes show common expression patterns and genetic interactions, suggesting the existence of similar or even conserved regulatory apparatus. However, previous studies have found no regulatory sequence conserved between deuterostomes and protostomes. Here we describe the first such enhancers, which we call bilaterian conserved regulatory elements (Bicores. Bicores show conservation of sequence and gene synteny. Sequence conservation of Bicores reflects conserved patterns of transcription factor binding sites. We predict that Bicores act as response elements to signaling pathways, and we show that Bicores are developmental enhancers that drive expression of transcriptional repressors in the vertebrate central nervous system. Although the small number of identified Bicores suggests extensive rewiring of cis-regulation between the protostome and deuterostome clades, additional Bicores may be revealed as our understanding of cis-regulatory logic and sample of bilaterian genomes continue to grow.

  6. DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis

    Directory of Open Access Journals (Sweden)

    Baseler Michael W

    2007-11-01

    Full Text Available Abstract Background Due to the complex and distributed nature of biological research, our current biological knowledge is spread over many redundant annotation databases maintained by many independent groups. Analysts usually need to visit many of these bioinformatics databases in order to integrate comprehensive annotation information for their genes, which becomes one of the bottlenecks, particularly for the analytic task associated with a large gene list. Thus, a highly centralized and ready-to-use gene-annotation knowledgebase is in demand for high throughput gene functional analysis. Description The DAVID Knowledgebase is built around the DAVID Gene Concept, a single-linkage method to agglomerate tens of millions of gene/protein identifiers from a variety of public genomic resources into DAVID gene clusters. The grouping of such identifiers improves the cross-reference capability, particularly across NCBI and UniProt systems, enabling more than 40 publicly available functional annotation sources to be comprehensively integrated and centralized by the DAVID gene clusters. The simple, pair-wise, text format files which make up the DAVID Knowledgebase are freely downloadable for various data analysis uses. In addition, a well organized web interface allows users to query different types of heterogeneous annotations in a high-throughput manner. Conclusion The DAVID Knowledgebase is designed to facilitate high throughput gene functional analysis. For a given gene list, it not only provides the quick accessibility to a wide range of heterogeneous annotation data in a centralized location, but also enriches the level of biological information for an individual gene. Moreover, the entire DAVID Knowledgebase is freely downloadable or searchable at http://david.abcc.ncifcrf.gov/knowledgebase/.

  7. In Silico Identification, Phylogenetic and Bioinformatic Analysis of Argonaute Genes in Plants

    Directory of Open Access Journals (Sweden)

    Khaled Mirzaei

    2014-01-01

    Full Text Available Argonaute protein family is the key players in pathways of gene silencing and small regulatory RNAs in different organisms. Argonaute proteins can bind small noncoding RNAs and control protein synthesis, affect messenger RNA stability, and even participate in the production of new forms of small RNAs. The aim of this study was to characterize and perform bioinformatic analysis of Argonaute proteins in 32 plant species that their genome was sequenced. A total of 437 Argonaute genes were identified and were analyzed based on lengths, gene structure, and protein structure. Results showed that Argonaute proteins were highly conserved across plant kingdom. Phylogenic analysis divided plant Argonautes into three classes. Argonaute proteins have three conserved domains PAZ, MID and PIWI. In addition to three conserved domains namely, PAZ, MID, and PIWI, we identified few more domains in AGO of some plant species. Expression profile analysis of Argonaute proteins showed that expression of these genes varies in most of tissues, which means that these proteins are involved in regulation of most pathways of the plant system. Numbers of alternative transcripts of Argonaute genes were highly variable among the plants. A thorough analysis of large number of putative Argonaute genes revealed several interesting aspects associated with this protein and brought novel information with promising usefulness for both basic and biotechnological applications.

  8. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy.

    Science.gov (United States)

    Blakely, Collin M; Stoddard, Alexander J; Belka, George K; Dugan, Katherine D; Notarfrancesco, Kathleen L; Moody, Susan E; D'Cruz, Celina M; Chodosh, Lewis A

    2006-06-15

    Women who have their first child early in life have a substantially lower lifetime risk of breast cancer. The mechanism for this is unknown. Similar to humans, rats exhibit parity-induced protection against mammary tumorigenesis. To explore the basis for this phenomenon, we identified persistent pregnancy-induced changes in mammary gene expression that are tightly associated with protection against tumorigenesis in multiple inbred rat strains. Four inbred rat strains that exhibit marked differences in their intrinsic susceptibilities to carcinogen-induced mammary tumorigenesis were each shown to display significant protection against methylnitrosourea-induced mammary tumorigenesis following treatment with pregnancy levels of estradiol and progesterone. Microarray expression profiling of parous and nulliparous mammary tissue from these four strains yielded a common 70-gene signature. Examination of the genes constituting this signature implicated alterations in transforming growth factor-beta signaling, the extracellular matrix, amphiregulin expression, and the growth hormone/insulin-like growth factor I axis in pregnancy-induced alterations in breast cancer risk. Notably, related molecular changes have been associated with decreased mammographic density, which itself is strongly associated with decreased breast cancer risk. Our findings show that hormone-induced protection against mammary tumorigenesis is widely conserved among divergent rat strains and define a gene expression signature that is tightly correlated with reduced mammary tumor susceptibility as a consequence of a normal developmental event. Given the conservation of this signature, these pathways may contribute to pregnancy-induced protection against breast cancer.

  9. High throughput sequencing of small RNA component of leaves and inflorescence revealed conserved and novel miRNAs as well as phasiRNA loci in chickpea.

    Science.gov (United States)

    Srivastava, Sangeeta; Zheng, Yun; Kudapa, Himabindu; Jagadeeswaran, Guru; Hivrale, Vandana; Varshney, Rajeev K; Sunkar, Ramanjulu

    2015-06-01

    Among legumes, chickpea (Cicer arietinum L.) is the second most important crop after soybean. MicroRNAs (miRNAs) play important roles by regulating target gene expression important for plant development and tolerance to stress conditions. Additionally, recently discovered phased siRNAs (phasiRNAs), a new class of small RNAs, are abundantly produced in legumes. Nevertheless, little is known about these regulatory molecules in chickpea. The small RNA population was sequenced from leaves and flowers of chickpea to identify conserved and novel miRNAs as well as phasiRNAs/phasiRNA loci. Bioinformatics analysis revealed 157 miRNA loci for the 96 highly conserved and known miRNA homologs belonging to 38 miRNA families in chickpea. Furthermore, 20 novel miRNAs belonging to 17 miRNA families were identified. Sequence analysis revealed approximately 60 phasiRNA loci. Potential target genes likely to be regulated by these miRNAs were predicted and some were confirmed by modified 5' RACE assay. Predicted targets are mostly transcription factors that might be important for developmental processes, and others include superoxide dismutases, plantacyanin, laccases and F-box proteins that could participate in stress responses and protein degradation. Overall, this study provides an inventory of miRNA-target gene interactions for chickpea, useful for the comparative analysis of small RNAs among legumes. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Models of gene gain and gene loss for probabilistic reconstruction of gene content in the last universal common ancestor of life

    Science.gov (United States)

    2013-01-01

    Background The problem of probabilistic inference of gene content in the last common ancestor of several extant species with completely sequenced genomes is: for each gene that is conserved in all or some of the genomes, assign the probability that its ancestral gene was present in the genome of their last common ancestor. Results We have developed a family of models of gene gain and gene loss in evolution, and applied the maximum-likelihood approach that uses phylogenetic tree of prokaryotes and the record of orthologous relationships between their genes to infer the gene content of LUCA, the Last Universal Common Ancestor of all currently living cellular organisms. The crucial parameter, the ratio of gene losses and gene gains, was estimated from the data and was higher in models that take account of the number of in-paralogs in genomes than in models that treat gene presences and absences as a binary trait. Conclusion While the numbers of genes that are placed confidently into LUCA are similar in the ML methods and in previously published methods that use various parsimony-based approaches, the identities of genes themselves are different. Most of the models of either kind treat the genes found in many existing genomes in a similar way, assigning to them high probabilities of being ancestral (“high ancestrality”). The ML models are more likely than others to assign high ancestrality to the genes that are relatively rare in the present-day genomes. Reviewers This article was reviewed by Martijn A Huynen, Toni Gabaldón and Fyodor Kondrashov. PMID:24354654

  11. Constrained dansyl derivatives reveal bacterial specificity of highly conserved thymidylate synthases.

    Science.gov (United States)

    Calò, Sanuele; Tondi, Donatella; Ferrari, Stefania; Venturelli, Alberto; Ghelli, Stefano; Costi, Maria Paola

    2008-03-25

    The elucidation of the structural/functional specificities of highly conserved enzymes remains a challenging area of investigation, and enzymes involved in cellular replication are important targets for functional studies and drug discovery. Thymidylate synthase (TS, ThyA) governs the synthesis of thymidylate for use in DNA synthesis. The present study focused on Lactobacillus casei TS (LcTS) and Escherichia coli TS (EcTS), which exhibit 50 % sequence identity and strong folding similarity. We have successfully designed and validated a chemical model in which linear, but not constrained, dansyl derivatives specifically complement the LcTS active site. Conversely, chemically constrained dansyl derivatives showed up to 1000-fold improved affinity for EcTS relative to the inhibitory activity of linear derivatives. This study demonstrates that the accurate design of small ligands can uncover functional features of highly conserved enzymes.

  12. Conserved Epigenetic Mechanisms Could Play a Key Role in Regulation of Photosynthesis and Development-Related Genes during Needle Development of Pinus radiata.

    Science.gov (United States)

    Valledor, Luis; Pascual, Jesús; Meijón, Mónica; Escandón, Mónica; Cañal, María Jesús

    2015-01-01

    Needle maturation is a complex process that involves cell growth, differentiation and tissue remodelling towards the acquisition of full physiological competence. Leaf induction mechanisms are well known; however, those underlying the acquisition of physiological competence are still poorly understood, especially in conifers. We studied the specific epigenetic regulation of genes defining organ function (PrRBCS and PrRBCA) and competence and stress response (PrCSDP2 and PrSHMT4) during three stages of needle development and one de-differentiated control. Gene-specific changes in DNA methylation and histone were analysed by bisulfite sequencing and chromatin immunoprecipitation (ChIP). The expression of PrRBCA and PrRBCS increased during needle maturation and was associated with the progressive loss of H3K9me3, H3K27me3 and the increase in AcH4. The maturation-related silencing of PrSHMT4 was correlated with increased H3K9me3 levels, and the repression of PrCSDP2, to the interplay between AcH4, H3K27me3, H3K9me3 and specific DNA methylation. The employ of HAT and HDAC inhibitors led to a further determination of the role of histone acetylation in the regulation of our target genes. The integration of these results with high-throughput analyses in Arabidopsis thaliana and Populus trichocarpa suggests that the specific epigenetic mechanisms that regulate photosynthetic genes are conserved between the analysed species.

  13. Conserved Epigenetic Mechanisms Could Play a Key Role in Regulation of Photosynthesis and Development-Related Genes during Needle Development of Pinus radiata.

    Directory of Open Access Journals (Sweden)

    Luis Valledor

    Full Text Available Needle maturation is a complex process that involves cell growth, differentiation and tissue remodelling towards the acquisition of full physiological competence. Leaf induction mechanisms are well known; however, those underlying the acquisition of physiological competence are still poorly understood, especially in conifers. We studied the specific epigenetic regulation of genes defining organ function (PrRBCS and PrRBCA and competence and stress response (PrCSDP2 and PrSHMT4 during three stages of needle development and one de-differentiated control. Gene-specific changes in DNA methylation and histone were analysed by bisulfite sequencing and chromatin immunoprecipitation (ChIP. The expression of PrRBCA and PrRBCS increased during needle maturation and was associated with the progressive loss of H3K9me3, H3K27me3 and the increase in AcH4. The maturation-related silencing of PrSHMT4 was correlated with increased H3K9me3 levels, and the repression of PrCSDP2, to the interplay between AcH4, H3K27me3, H3K9me3 and specific DNA methylation. The employ of HAT and HDAC inhibitors led to a further determination of the role of histone acetylation in the regulation of our target genes. The integration of these results with high-throughput analyses in Arabidopsis thaliana and Populus trichocarpa suggests that the specific epigenetic mechanisms that regulate photosynthetic genes are conserved between the analysed species.

  14. Organization and post-transcriptional processing of focal adhesion kinase gene

    Directory of Open Access Journals (Sweden)

    Enslen Hervé

    2006-08-01

    Full Text Available Abstract Background Focal adhesion kinase (FAK is a non-receptor tyrosine kinase critical for processes ranging from embryo development to cancer progression. Although isoforms with specific molecular and functional properties have been characterized in rodents and chicken, the organization of FAK gene throughout phylogeny and its potential to generate multiple isoforms are not well understood. Here, we study the phylogeny of FAK, the organization of its gene, and its post-transcriptional processing in rodents and human. Results A single orthologue of FAK and the related PYK2 was found in non-vertebrate species. Gene duplication probably occurred in deuterostomes after the echinoderma embranchment, leading to the evolution of PYK2 with distinct properties. The amino acid sequence of FAK and PYK2 is conserved in their functional domains but not in their linker regions, with the absence of autophosphorylation site in C. elegans. Comparison of mouse and human FAK genes revealed the existence of multiple combinations of conserved and non-conserved 5'-untranslated exons in FAK transcripts suggesting a complex regulation of their expression. Four alternatively spliced coding exons (13, 14, 16, and 31, previously described in rodents, are highly conserved in vertebrates. Cis-regulatory elements known to regulate alternative splicing were found in conserved alternative exons of FAK or in the flanking introns. In contrast, other reported human variant exons were restricted to Homo sapiens, and, in some cases, other primates. Several of these non-conserved exons may correspond to transposable elements. The inclusion of conserved alternative exons was examined by RT-PCR in mouse and human brain during development. Inclusion of exons 14 and 16 peaked at the end of embryonic life, whereas inclusion of exon 13 increased steadily until adulthood. Study of various tissues showed that inclusion of these exons also occurred, independently from each other, in a

  15. Analysis of the conservation of synteny between Fugu and human chromosome 12

    Directory of Open Access Journals (Sweden)

    Koop Ben F

    2003-07-01

    Full Text Available Abstract Background The pufferfish Fugu rubripes (Fugu with its compact genome is increasingly recognized as an important vertebrate model for comparative genomic studies. In particular, large regions of conserved synteny between human and Fugu genomes indicate its utility to identify disease-causing genes. The human chromosome 12p12 is frequently deleted in various hematological malignancies and solid tumors, but the actual tumor suppressor gene remains unidentified. Results We investigated approximately 200 kb of the genomic region surrounding the ETV6 locus in Fugu (fETV6 in order to find conserved functional features, such as genes or regulatory regions, that could give insight into the nature of the genes targeted by deletions in human cancer cells. Seven genes were identified near the fETV6 locus. We found that the synteny with human chromosome 12 was conserved, but extensive genomic rearrangements occurred between the Fugu and human ETV6 loci. Conclusion This comparative analysis led to the identification of previously uncharacterized genes in the human genome and some potentially important regulatory sequences as well. This is a good indication that the analysis of the compact Fugu genome will be valuable to identify functional features that have been conserved throughout the evolution of vertebrates.

  16. Conservation of the LexA repressor binding site in Deinococcus radiodurans

    Directory of Open Access Journals (Sweden)

    Khan Feroz

    2008-03-01

    Full Text Available The LexA protein is a transcriptional repressor of the bacterial SOS DNA repair system, which comprises a set of DNA repair and cellular survival genes that are induced in response to DNA damage. Its varied DNA binding motifs have been characterized and reported in the Escherichia coli, Bacillus subtilis, rhizobia family members, marine magnetotactic bacterium, Salmonella typhimurium and recently in Mycobacterium tuberculosis and this motifs information has been used in our theoretical analysis to detect its novel regulated genes in radio-resistant Deinococcus radiodurans genome. This bacterium showed presence of SOS-box like consensus sequence in the upstream sequences of 3166 genes with >60% motif score similarity percentage (MSSP on both strands. Attempts to identify LexA-binding sites and the composition of the putative SOS regulon in D. radiodurans have been unsuccessful so far. To resolve the problem we performed theoretical analysis with modifications on reported data set of genes related to DNA repair (61 genes, stress response (145 genes and some unusual predicted operons (21 clusters. Expression of some of the predicted SOS-box regulated operon members then was examined through the previously reported microarray data which confirm the expression of only single predicted operon i.e. DRB0143 (AAA superfamily NTPase related to 5-methylcytosine specific restriction enzyme subunit McrB and DRB0144 (homolog of the McrC subunit of the McrBC restriction modification system. The methodology involved weight matrix construction through CONSENSUS algorithm using information of conserved upstream sequences of eight known genes including dinB, tagC, lexA, recA, uvrB, yneA of B. subtilis while lexA and recA of D. radiodurans through phylogenetic footprinting method and later detection of similar conserved SOS-box like LexA binding motifs through both RSAT & PoSSuMsearch programs. The resultant DNA consensus sequence had highly conserved 14 bp SOS

  17. The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes.

    Science.gov (United States)

    Gupta, Deepak K; Rühl, Martin; Mishra, Bagdevi; Kleofas, Vanessa; Hofrichter, Martin; Herzog, Robert; Pecyna, Marek J; Sharma, Rahul; Kellner, Harald; Hennicke, Florian; Thines, Marco

    2018-01-15

    Agrocybe aegerita is an agaricomycete fungus with typical mushroom features, which is commercially cultivated for its culinary use. In nature, it is a saprotrophic or facultative pathogenic fungus causing a white-rot of hardwood in forests of warm and mild climate. The ease of cultivation and fructification on solidified media as well as its archetypal mushroom fruit body morphology render A. aegerita a well-suited model for investigating mushroom developmental biology. Here, the genome of the species is reported and analysed with respect to carbohydrate active genes and genes known to play a role during fruit body formation. In terms of fruit body development, our analyses revealed a conserved repertoire of fruiting-related genes, which corresponds well to the archetypal fruit body morphology of this mushroom. For some genes involved in fruit body formation, paralogisation was observed, but not all fruit body maturation-associated genes known from other agaricomycetes seem to be conserved in the genome sequence of A. aegerita. In terms of lytic enzymes, our analyses suggest a versatile arsenal of biopolymer-degrading enzymes that likely account for the flexible life style of this species. Regarding the amount of genes encoding CAZymes relevant for lignin degradation, A. aegerita shows more similarity to white-rot fungi than to litter decomposers, including 18 genes coding for unspecific peroxygenases and three dye-decolourising peroxidase genes expanding its lignocellulolytic machinery. The genome resource will be useful for developing strategies towards genetic manipulation of A. aegerita, which will subsequently allow functional genetics approaches to elucidate fundamentals of fruiting and vegetative growth including lignocellulolysis.

  18. Neuropeptide Y receptor genes on human chromosome 4q31-q32 map to conserved linkage groups on mouse chromosomes 3 and 8

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, C.M.; Frankel, W.N. [Jackson Lab., Bar Harbor, ME (United States); Richards, J.E. [Univ. of Michigan Medical School, Ann Arbor, MI (United States)] [and others

    1997-05-01

    Npy1r and Npy2r, the genes encoding mouse type 1 and type 2 neuropeptide Y receptors, have been mapped by interspecific backcross analysis. Previous studies have localized the human genes encoding these receptors to chromosome 4q31-q32. We have now assigned Npy1r and Npy2r to conserved linkage groups on mouse Chr 8 and Chr 3, respectively, which correspond to the distal region of human chromosome 4q. Using yeast artificial chromosomes, we have estimated the distance between the human genes to be approximately 6 cM. Although ancient tandem duplication events may account for some closely spaced G-protein-coupled receptor genes, the large genetic distance between the human type 1 and type 2 neuropeptide Y receptor genes raises questions about whether this mechanism accounts for their proximity. 20 refs., 1 fig.

  19. A gene-based radiation hybrid map of the gilthead sea bream Sparus aurata refines and exploits conserved synteny with Tetraodon nigroviridis

    Directory of Open Access Journals (Sweden)

    Tsalavouta Matina

    2007-02-01

    Full Text Available Abstract Background Comparative teleost studies are of great interest since they are important in aquaculture and in evolutionary issues. Comparing genomes of fully sequenced model fish species with those of farmed fish species through comparative mapping offers shortcuts for quantitative trait loci (QTL detections and for studying genome evolution through the identification of regions of conserved synteny in teleosts. Here a comparative mapping study is presented by radiation hybrid (RH mapping genes of the gilthead sea bream Sparus aurata, a non-model teleost fish of commercial and evolutionary interest, as it represents the worldwide distributed species-rich family of Sparidae. Results An additional 74 microsatellite markers and 428 gene-based markers appropriate for comparative mapping studies were mapped on the existing RH map of Sparus aurata. The anchoring of the RH map to the genetic linkage map resulted in 24 groups matching the karyotype of Sparus aurata. Homologous sequences to Tetraodon were identified for 301 of the gene-based markers positioned on the RH map of Sparus aurata. Comparison between Sparus aurata RH groups and Tetraodon chromosomes (karyotype of Tetraodon consists of 21 chromosomes in this study reveals an unambiguous one-to-one relationship suggesting that three Tetraodon chromosomes correspond to six Sparus aurata radiation hybrid groups. The exploitation of this conserved synteny relationship is furthermore demonstrated by in silico mapping of gilthead sea bream expressed sequence tags (EST that give a significant similarity hit to Tetraodon. Conclusion The addition of primarily gene-based markers increased substantially the density of the existing RH map and facilitated comparative analysis. The anchoring of this gene-based radiation hybrid map to the genome maps of model species broadened the pool of candidate genes that mainly control growth, disease resistance, sex determination and reversal, reproduction as well

  20. Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes

    Science.gov (United States)

    Shemi, Adva; Ben-Dor, Shifra; Vardi, Assaf

    2015-01-01

    Aquatic photosynthetic eukaryotes represent highly diverse groups (green, red, and chromalveolate algae) derived from multiple endosymbiosis events, covering a wide spectrum of the tree of life. They are responsible for about 50% of the global photosynthesis and serve as the foundation for oceanic and fresh water food webs. Although the ecophysiology and molecular ecology of some algal species are extensively studied, some basic aspects of algal cell biology are still underexplored. The recent wealth of genomic resources from algae has opened new frontiers to decipher the role of cell signaling pathways and their function in an ecological and biotechnological context. Here, we took a bioinformatic approach to explore the distribution and conservation of TOR and autophagy-related (ATG) proteins (Atg in yeast) in diverse algal groups. Our genomic analysis demonstrates conservation of TOR and ATG proteins in green algae. In contrast, in all 5 available red algal genomes, we could not detect the sequences that encode for any of the 17 core ATG proteins examined, albeit TOR and its interacting proteins are conserved. This intriguing data suggests that the autophagy pathway is not conserved in red algae as it is in the entire eukaryote domain. In contrast, chromalveolates, despite being derived from the red-plastid lineage, retain and express ATG genes, which raises a fundamental question regarding the acquisition of ATG genes during algal evolution. Among chromalveolates, Emiliania huxleyi (Haptophyta), a bloom-forming coccolithophore, possesses the most complete set of ATG genes, and may serve as a model organism to study autophagy in marine protists with great ecological significance. PMID:25915714

  1. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Science.gov (United States)

    Tian, Feng-Xia; Zang, Jian-Lei; Wang, Tan; Xie, Yu-Li; Zhang, Jin; Hu, Jian-Jun

    2015-01-01

    Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  2. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  3. Amphibian molecular ecology and how it has informed conservation.

    Science.gov (United States)

    McCartney-Melstad, Evan; Shaffer, H Bradley

    2015-10-01

    Molecular ecology has become one of the key tools in the modern conservationist's kit. Here we review three areas where molecular ecology has been applied to amphibian conservation: genes on landscapes, within-population processes, and genes that matter. We summarize relevant analytical methods, recent important studies from the amphibian literature, and conservation implications for each section. Finally, we include five in-depth examples of how molecular ecology has been successfully applied to specific amphibian systems. © 2015 John Wiley & Sons Ltd.

  4. Conserved loci of leaf and stem rust fungi of wheat share synteny interrupted by lineage-specific influx of repeat elements

    Directory of Open Access Journals (Sweden)

    Fellers John P

    2013-01-01

    Full Text Available Abstract Background Wheat leaf rust (Puccinia triticina Eriks; Pt and stem rust fungi (P. graminis f.sp. tritici; Pgt are significant economic pathogens having similar host ranges and life cycles, but different alternate hosts. The Pt genome, currently estimated at 135 Mb, is significantly larger than Pgt, at 88 Mb, but the reason for the expansion is unknown. Three genomic loci of Pt conserved proteins were characterized to gain insight into gene content, genome complexity and expansion. Results A bacterial artificial chromosome (BAC library was made from P. triticina race 1, BBBD and probed with Pt homologs of genes encoding two predicted Pgt secreted effectors and a DNA marker mapping to a region of avirulence. Three BACs, 103 Kb, 112 Kb, and 166 Kb, were sequenced, assembled, and open reading frames were identified. Orthologous genes were identified in Pgt and local conservation of gene order (microsynteny was observed. Pairwise protein identities ranged from 26 to 99%. One Pt BAC, containing a RAD18 ortholog, shares syntenic regions with two Pgt scaffolds, which could represent both haplotypes of Pgt. Gene sequence is diverged between the species as well as within the two haplotypes. In all three BAC clones, gene order is locally conserved, however, gene shuffling has occurred relative to Pgt. These regions are further diverged by differing insertion loci of LTR-retrotransposon, Gypsy, Copia, Mutator, and Harbinger mobile elements. Uncharacterized Pt open reading frames were also found; these proteins are high in lysine and similar to multiple proteins in Pgt. Conclusions The three Pt loci are conserved in gene order, with a range of gene sequence divergence. Conservation of predicted haustoria expressed secreted protein genes between Pt and Pgt is extended to the more distant poplar rust, Melampsora larici-populina. The loci also reveal that genome expansion in Pt is in part due to higher occurrence of repeat-elements in this species.

  5. Crop-to-wild gene flow and its fitness consequences for a wild fruit tree: Towards a comprehensive conservation strategy of the wild apple in Europe.

    Science.gov (United States)

    Feurtey, Alice; Cornille, Amandine; Shykoff, Jacqui A; Snirc, Alodie; Giraud, Tatiana

    2017-02-01

    Crop-to-wild gene flow can reduce the fitness and genetic integrity of wild species. Malus sylvestris , the European crab-apple fruit tree in particular, is threatened by the disappearance of its habitat and by gene flow from its domesticated relative , Malus domestica . With the aims of evaluating threats for M. sylvestris and of formulating recommendations for its conservation, we studied here, using microsatellite markers and growth experiments: (i) hybridization rates in seeds and trees from a French forest and in seeds used for replanting crab apples in agrosystems and in forests, (ii) the impact of the level of M. domestica ancestry on individual tree fitness and (iii) pollen dispersal abilities in relation to crop-to-wild gene flow. We found substantial contemporary crop-to-wild gene flow in crab-apple tree populations and superior fitness of hybrids compared to wild seeds and seedlings. Using paternity analyses, we showed that pollen dispersal could occur up to 4 km and decreased with tree density. The seed network furnishing the wild apple reintroduction agroforestry programmes was found to suffer from poor genetic diversity, introgressions and species misidentification. Overall, our findings indicate supported threats for the European wild apple steering us to provide precise recommendations for its conservation.

  6. 5S rRNA gene arrangements in protists: a case of nonadaptive evolution.

    Science.gov (United States)

    Drouin, Guy; Tsang, Corey

    2012-06-01

    Given their high copy number and high level of expression, one might expect that both the sequence and organization of eukaryotic ribosomal RNA genes would be conserved during evolution. Although the organization of 18S, 5.8S and 28S ribosomal RNA genes is indeed relatively well conserved, that of 5S rRNA genes is much more variable. Here, we review the different types of 5S rRNA gene arrangements which have been observed in protists. This includes linkages to the other ribosomal RNA genes as well as linkages to ubiquitin, splice-leader, snRNA and tRNA genes. Mapping these linkages to independently derived phylogenies shows that these diverse linkages have repeatedly been gained and lost during evolution. This argues against such linkages being the primitive condition not only in protists but also in other eukaryote species. Because the only characteristic the diverse genes with which 5S rRNA genes are found linked with is that they are tandemly repeated, these arrangements are unlikely to provide any selective advantage. Rather, the observed high variability in 5S rRNA genes arrangements is likely the result of the fact that 5S rRNA genes contain internal promoters, that these genes are often transposed by diverse recombination mechanisms and that these new gene arrangements are rapidly homogenized by unequal crossingovers and/or by gene conversions events in species with short generation times and frequent founder events.

  7. Conservation and divergence of ADAM family proteins in the Xenopus genome

    Directory of Open Access Journals (Sweden)

    Shah Anoop

    2010-07-01

    Full Text Available Abstract Background Members of the disintegrin metalloproteinase (ADAM family play important roles in cellular and developmental processes through their functions as proteases and/or binding partners for other proteins. The amphibian Xenopus has long been used as a model for early vertebrate development, but genome-wide analyses for large gene families were not possible until the recent completion of the X. tropicalis genome sequence and the availability of large scale expression sequence tag (EST databases. In this study we carried out a systematic analysis of the X. tropicalis genome and uncovered several interesting features of ADAM genes in this species. Results Based on the X. tropicalis genome sequence and EST databases, we identified Xenopus orthologues of mammalian ADAMs and obtained full-length cDNA clones for these genes. The deduced protein sequences, synteny and exon-intron boundaries are conserved between most human and X. tropicalis orthologues. The alternative splicing patterns of certain Xenopus ADAM genes, such as adams 22 and 28, are similar to those of their mammalian orthologues. However, we were unable to identify an orthologue for ADAM7 or 8. The Xenopus orthologue of ADAM15, an active metalloproteinase in mammals, does not contain the conserved zinc-binding motif and is hence considered proteolytically inactive. We also found evidence for gain of ADAM genes in Xenopus as compared to other species. There is a homologue of ADAM10 in Xenopus that is missing in most mammals. Furthermore, a single scaffold of X. tropicalis genome contains four genes encoding ADAM28 homologues, suggesting genome duplication in this region. Conclusions Our genome-wide analysis of ADAM genes in X. tropicalis revealed both conservation and evolutionary divergence of these genes in this amphibian species. On the one hand, all ADAMs implicated in normal development and health in other species are conserved in X. tropicalis. On the other hand, some

  8. Annotation Of Novel And Conserved MicroRNA Genes In The Build 10 Sus scrofa Reference Genome And Determination Of Their Expression Levels In Ten Different Tissues

    DEFF Research Database (Denmark)

    Thomsen, Bo; Nielsen, Mathilde; Hedegaard, Jakob

    The DNA template used in the pig genome sequencing project was provided by a Duroc pig named TJ Tabasco. In an effort to annotate microRNA (miRNA) genes in the reference genome we have conducted deep sequencing to determine the miRNA transcriptomes in ten different tissues isolated from Pinky......, a genetically identical clone of TJ Tabasco. The purpose was to generate miRNA sequences that are highly homologous to the reference genome sequence, which along with computational prediction will improve confidence in the genomic annotation of miRNA genes. Based on homology searches of the sequence data...... against miRBase, we identified more than 600 conserved known miRNA/miRNA*, which is a significant increase relative to the 211 porcine miRNA/miRNA* deposited in the current version of miRBase. Furthermore, the genome-wide transcript profiles provided important information on the relative abundance...

  9. Dynamic Gene-Resource Landscape Management of Norway Spruce: Combining Utilization and Conservation

    Directory of Open Access Journals (Sweden)

    Milan Lstibůrek

    2017-10-01

    Full Text Available Traditional gene-resource management programs for forest trees are long-term endeavors requiring sustained organizational commitment covering extensive landscapes. While successful in maintaining adaptation, genetic diversity and capturing traditional growth attributes gains, these programs are dependent on rigid methods requiring elaborate mating schemes, thus making them slow in coping with climate change challenges. Here, we review the significance of Norway spruce in the boreal region and its current management practices. Next, we discuss opportunities offered by novel technologies and, with the use of computer simulations, we propose and evaluate a dynamic landscape gene-resource management in Norway. Our suggested long-term management approach capitalizes on: (1 existing afforestation activities, natural crosses, and DNA-based pedigree assembly to create structured pedigree for evaluation, thus traditional laborious control crosses are avoided and (2 landscape level genetic evaluation, rather than localized traditional progeny trials, allowing for screening of adapted individuals across multiple environmental gradients under changing climate. These advantages lead to greater genetic response to selection in adaptive traits without the traditional breeding and testing scheme, facilitating conservation of genetic resources within the breeding population of the most important forest tree species in Norway. The use of in situ selection from proven material exposed to realistic conditions over vast territories has not been conducted in forestry before. Our proposed approach is in contrast to worldwide current programs, where genetic evaluation is constrained by the range of environments where testing is conducted, which may be insufficient to capture the broad environmental variation necessary to tackle adaptation under changing climate.

  10. Identification and analysis of Eimeria nieschulzi gametocyte genes reveal splicing events of gam genes and conserved motifs in the wall-forming proteins within the genus Eimeria (Coccidia, Apicomplexa

    Directory of Open Access Journals (Sweden)

    Wiedmer Stefanie

    2017-01-01

    Full Text Available The genus Eimeria (Apicomplexa, Coccidia provides a wide range of different species with different hosts to study common and variable features within the genus and its species. A common characteristic of all known Eimeria species is the oocyst, the infectious stage where its life cycle starts and ends. In our study, we utilized Eimeria nieschulzi as a model organism. This rat-specific parasite has complex oocyst morphology and can be transfected and even cultivated in vitro up to the oocyst stage. We wanted to elucidate how the known oocyst wall-forming proteins are preserved in this rodent Eimeria species compared to other Eimeria. In newly obtained genomics data, we were able to identify different gametocyte genes that are orthologous to already known gam genes involved in the oocyst wall formation of avian Eimeria species. These genes appeared putatively as single exon genes, but cDNA analysis showed alternative splicing events in the transcripts. The analysis of the translated sequence revealed different conserved motifs but also dissimilar regions in GAM proteins, as well as polymorphic regions. The occurrence of an underrepresented gam56 gene version suggests the existence of a second distinct E. nieschulzi genotype within the E. nieschulzi Landers isolate that we maintain.

  11. Identification and analysis of Eimeria nieschulzi gametocyte genes reveal splicing events of gam genes and conserved motifs in the wall-forming proteins within the genus Eimeria (Coccidia, Apicomplexa)

    Science.gov (United States)

    Wiedmer, Stefanie; Erdbeer, Alexander; Volke, Beate; Randel, Stephanie; Kapplusch, Franz; Hanig, Sacha; Kurth, Michael

    2017-01-01

    The genus Eimeria (Apicomplexa, Coccidia) provides a wide range of different species with different hosts to study common and variable features within the genus and its species. A common characteristic of all known Eimeria species is the oocyst, the infectious stage where its life cycle starts and ends. In our study, we utilized Eimeria nieschulzi as a model organism. This rat-specific parasite has complex oocyst morphology and can be transfected and even cultivated in vitro up to the oocyst stage. We wanted to elucidate how the known oocyst wall-forming proteins are preserved in this rodent Eimeria species compared to other Eimeria. In newly obtained genomics data, we were able to identify different gametocyte genes that are orthologous to already known gam genes involved in the oocyst wall formation of avian Eimeria species. These genes appeared putatively as single exon genes, but cDNA analysis showed alternative splicing events in the transcripts. The analysis of the translated sequence revealed different conserved motifs but also dissimilar regions in GAM proteins, as well as polymorphic regions. The occurrence of an underrepresented gam56 gene version suggests the existence of a second distinct E. nieschulzi genotype within the E. nieschulzi Landers isolate that we maintain. PMID:29210668

  12. Anxa4 Genes are Expressed in Distinct Organ Systems in Xenopus laevis and tropicalis But are Functionally Conserved

    Science.gov (United States)

    Massé, Karine L; Collins, Robert J; Bhamra, Surinder; Seville, Rachel A

    2007-01-01

    Anxa4 belongs to the multigenic annexin family of proteins which are characterized by their ability to interact with membranes in a calcium-dependent manner. Defined as a marker for polarized epithelial cells, Anxa4 is believed to be involved in many cellular processes but its functions in vivo are still poorly understood. Previously, we cloned Xanx4 in Xenopus laevis (now referred to as anxa4a) and demonstrated its role during organogenesis of the pronephros, providing the first evidence of a specific function for this protein during the development of a vertebrate. Here, we describe the strict conservation of protein sequence and functional domains of anxa4 during vertebrate evolution. We also identify the paralog of anxa4a, anxa4b and show its specific temporal and spatial expression pattern is different from anxa4a. We show that anxa4 orthologs in X. laevis and tropicalis display expression domains in different organ systems. Whilst the anxa4a gene is mainly expressed in the kidney, Xt anxa4 is expressed in the liver. Finally, we demonstrate Xt anxa4 and anxa4a can display conserved function during kidney organogenesis, despite the fact that Xt anxa4 transcripts are not expressed in this domain. This study highlights the divergence of expression of homologous genes during Xenopus evolution and raises the potential problems of using X. tropicalis promoters in X. laevis. PMID:19279706

  13. What is a gene? From molecules to metaphysics.

    Science.gov (United States)

    Rolston, Holmes

    2006-01-01

    Mendelian genes have become molecular genes, with increasing puzzlement about locating them, due to increasing complexity in genomic webworks. Genome science finds modular and conserved units of inheritance, identified as homologous genes. Such genes are cybernetic, transmitting information over generations; this too requires multi-leveled analysis, from DNA transcription to development and reproduction of the whole organism. Genes are conserved; genes are also dynamic and creative in evolutionary speciation-most remarkably producing humans capable of wondering about what genes are.

  14. [Genome-wide identification and expression analysis of the WRKY gene family in peach].

    Science.gov (United States)

    Gu, Yan-bing; Ji, Zhi-rui; Chi, Fu-mei; Qiao, Zhuang; Xu, Cheng-nan; Zhang, Jun-xiang; Zhou, Zong-shan; Dong, Qing-long

    2016-03-01

    The WRKY transcription factors are one of the largest families of transcriptional regulators and play diverse regulatory roles in biotic and abiotic stresses, plant growth and development processes. In this study, the WRKY DNA-binding domain (Pfam Database number: PF03106) downloaded from Pfam protein families database was exploited to identify WRKY genes from the peach (Prunus persica 'Lovell') genome using HMMER 3.0. The obtained amino acid sequences were analyzed with DNAMAN 5.0, WebLogo 3, MEGA 5.1, MapInspect and MEME bioinformatics softwares. Totally 61 peach WRKY genes were found in the peach genome. Our phylogenetic analysis revealed that peach WRKY genes were classified into three Groups: Ⅰ, Ⅱ and Ⅲ. The WRKY N-terminal and C-terminal domains of Group Ⅰ (group I-N and group I-C) were monophyletic. The Group Ⅱ was sub-divided into five distinct clades (groupⅡ-a, Ⅱ-b, Ⅱ-c, Ⅱ-d and Ⅱ-e). Our domain analysis indicated that the WRKY regions contained a highly conserved heptapeptide stretch WRKYGQK at its N-terminus followed by a zinc-finger motif. The chromosome mapping analysis showed that peach WRKY genes were distributed with different densities over 8 chromosomes. The intron-exon structure analysis revealed that structures of the WRKY gene were highly conserved in the peach. The conserved motif analysis showed that the conserved motifs 1, 2 and 3, which specify the WRKY domain, were observed in all peach WRKY proteins, motif 5 as the unknown domain was observed in group Ⅱ-d, two WRKY domains were assigned to GroupⅠ. SqRT-PCR and qRT-PCR results indicated that 16 PpWRKY genes were expressed in roots, stems, leaves, flowers and fruits at various expression levels. Our analysis thus identified the PpWRKY gene families, and future functional studies are needed to reveal its specific roles.

  15. Cloning and characterization of a mouse gene with homology to the human von Hippel-Lindau disease tumor suppressor gene: implications for the potential organization of the human von Hippel-Lindau disease gene.

    Science.gov (United States)

    Gao, J; Naglich, J G; Laidlaw, J; Whaley, J M; Seizinger, B R; Kley, N

    1995-02-15

    The human von Hippel-Lindau disease (VHL) gene has recently been identified and, based on the nucleotide sequence of a partial cDNA clone, has been predicted to encode a novel protein with as yet unknown functions [F. Latif et al., Science (Washington DC), 260: 1317-1320, 1993]. The length of the encoded protein and the characteristics of the cellular expressed protein are as yet unclear. Here we report the cloning and characterization of a mouse gene (mVHLh1) that is widely expressed in different mouse tissues and shares high homology with the human VHL gene. It predicts a protein 181 residues long (and/or 162 amino acids, considering a potential alternative start codon), which across a core region of approximately 140 residues displays a high degree of sequence identity (98%) to the predicted human VHL protein. High stringency DNA and RNA hybridization experiments and protein expression analyses indicate that this gene is the most highly VHL-related mouse gene, suggesting that it represents the mouse VHL gene homologue rather than a related gene sharing a conserved functional domain. These findings provide new insights into the potential organization of the VHL gene and nature of its encoded protein.

  16. Genome-Wide Analysis of the Aquaporin Gene Family in Chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Deokar, Amit A; Tar'an, Bunyamin

    2016-01-01

    Aquaporins (AQPs) are essential membrane proteins that play critical role in the transport of water and many other solutes across cell membranes. In this study, a comprehensive genome-wide analysis identified 40 AQP genes in chickpea ( Cicer arietinum L.). A complete overview of the chickpea AQP (CaAQP) gene family is presented, including their chromosomal locations, gene structure, phylogeny, gene duplication, conserved functional motifs, gene expression, and conserved promoter motifs. To understand AQP's evolution, a comparative analysis of chickpea AQPs with AQP orthologs from soybean, Medicago, common bean, and Arabidopsis was performed. The chickpea AQP genes were found on all of the chickpea chromosomes, except chromosome 7, with a maximum of six genes on chromosome 6, and a minimum of one gene on chromosome 5. Gene duplication analysis indicated that the expansion of chickpea AQP gene family might have been due to segmental and tandem duplications. CaAQPs were grouped into four subfamilies including 15 NOD26-like intrinsic proteins (NIPs), 13 tonoplast intrinsic proteins (TIPs), eight plasma membrane intrinsic proteins (PIPs), and four small basic intrinsic proteins (SIPs) based on sequence similarities and phylogenetic position. Gene structure analysis revealed a highly conserved exon-intron pattern within CaAQP subfamilies supporting the CaAQP family classification. Functional prediction based on conserved Ar/R selectivity filters, Froger's residues, and specificity-determining positions suggested wide differences in substrate specificity among the subfamilies of CaAQPs. Expression analysis of the AQP genes indicated that some of the genes are tissue-specific, whereas few other AQP genes showed differential expression in response to biotic and abiotic stresses. Promoter profiling of CaAQP genes for conserved cis -acting regulatory elements revealed enrichment of cis -elements involved in circadian control, light response, defense and stress responsiveness

  17. Identification and isolation of stimulator of interferon genes (STING): an innate immune sensory and adaptor gene from camelids.

    Science.gov (United States)

    Premraj, A; Aleyas, A G; Nautiyal, B; Rasool, T J

    2013-10-01

    The mechanism by which type I interferon-mediated antiviral response is mounted by hosts against invading pathogen is an intriguing one. Of late, an endoplasmic reticulum transmembrane protein encoded by a gene called stimulator of interferon genes (STING) is implicated in the innate signalling pathways and has been identified and cloned in few mammalian species including human, mouse and pig. In this article, we report the identification of STING from three different species of a highly conserved family of mammals - the camelids. cDNAs encoding the STING of Old World camels - dromedary camel (Camelus dromedarius) and bactrian camel (Camelus bactrianus) and a New World camel - llama (Llama glama) were amplified using conserved primers and RACE. The complete STING cDNA of dromedary camel is 2171 bp long with a 706-bp 5' untranslated regions (UTR), an 1137-bp open reading frame (ORF) and a 328-bp 3' UTR. Sequence and phylogenetic analysis of the ORF of STING from these three camelids indicate high level of similarity among camelids and conservation of critical amino acid residues across different species. Quantitative real-time PCR analysis revealed high levels of STING mRNA expression in blood, spleen, lymph node and lung. The identification of camelid STING will help in better understanding of the role of this molecule in the innate immunity of the camelids and other mammals. © 2013 John Wiley & Sons Ltd.

  18. Prognostic value of biologic subtype and the 21-gene recurrence score relative to local recurrence after breast conservation treatment with radiation for early stage breast carcinoma: results from the Eastern Cooperative Oncology Group E2197 study.

    Science.gov (United States)

    Solin, Lawrence J; Gray, Robert; Goldstein, Lori J; Recht, Abram; Baehner, Frederick L; Shak, Steven; Badve, Sunil; Perez, Edith A; Shulman, Lawrence N; Martino, Silvana; Davidson, Nancy E; Sledge, George W; Sparano, Joseph A

    2012-07-01

    The present study was performed to evaluate the significance of biologic subtype and 21-gene recurrence score relative to local recurrence and local-regional recurrence after breast conservation treatment with radiation. Eastern Cooperative Oncology Group E2197 was a prospective randomized clinical trial that compared two adjuvant systemic chemotherapy regimens for patients with operable breast carcinoma with 1-3 positive lymph nodes or negative lymph nodes with tumor size >1.0 cm. The study population was a subset of 388 patients with known 21-gene recurrence score and treated with breast conservation surgery, systemic chemotherapy, and definitive radiation treatment. Median follow-up was 9.7 years (range = 3.7-11.6 years). The 10-year rates of local recurrence and local-regional recurrence were 5.4 % and 6.6 %, respectively. Neither biologic subtype nor 21-gene Recurrence Score was associated with local recurrence or local-regional recurrence on univariate or multivariate analyses (all P ≥ 0.12). The 10-year rates of local recurrence were 4.9 % for hormone receptor positive, HER2-negative tumors, 6.0 % for triple negative tumors, and 6.4 % for HER2-positive tumors (P = 0.76), and the 10-year rates of local-regional recurrence were 6.3, 6.9, and 7.2 %, respectively (P = 0.79). For hormone receptor-positive tumors, the 10-year rates of local recurrence were 3.2, 2.9, and 10.1 % for low, intermediate, and high 21-gene recurrence score, respectively (P = 0.17), and the 10-year rates of local-regional recurrence were 3.8, 5.1, and 12.0 %, respectively (P = 0.12). For hormone receptor-positive tumors, the 21-gene recurrence score evaluated as a continuous variable was significant for local-regional recurrence (hazard ratio 2.66; P = 0.03). The 10-year rates of local recurrence and local-regional recurrence were reasonably low in all subsets of patients. Neither biologic subtype nor 21-gene recurrence score should preclude breast conservation treatment with radiation.

  19. G-NEST: A gene neighborhood scoring tool to identify co-conserved, co-expressed genes

    Science.gov (United States)

    In previous studies, gene neighborhoods--spatial clusters of co-expressed genes in the genome--have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Sc...

  20. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments

    KAUST Repository

    Wang, Yong; Yang, Jiang Ke; Lee, On On; Li, Tie Gang; Al-Suwailem, Abdulaziz M.; Danchin, Antoine; Qian, Pei-Yuan

    2011-01-01

    The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers) of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed. © 2011 Wang et al.

  1. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments

    KAUST Repository

    Wang, Yong

    2011-12-21

    The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers) of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed. © 2011 Wang et al.

  2. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed.

  3. Expression of interest: transcriptomics and the designation of conservation units.

    Science.gov (United States)

    Hansen, Michael M

    2010-05-01

    An important task within conservation genetics consists in defining intraspecific conservation units. Most conceptual frameworks involve two steps: (i) identifying demographically independent units, and (ii) evaluating their degree of adaptive divergence. Whereas a plethora of methods are available for delineating genetic population structure, assessment of functional genetic divergence remains a challenge. In this issue, Tymchuk et al. (2010) study Atlantic salmon (Salmo salar) populations using both microsatellite markers and analysis of global gene expression. They show that important gene expression differences exist that can be interpreted in the context of different ecological conditions experienced by the populations, along with the populations' histories. This demonstrates an important potential role of transcriptomics for designating conservation units.

  4. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes.

    Science.gov (United States)

    Scriber, Jon Mark

    2013-12-24

    Comprising 50%-75% of the world's fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including "invasive species" in various ecosystems as they may become disrupted in different ways by rapid climate change. "Invasive genes" (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. "Genetic rescue" via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced "reshuffling" (recombinations) of species composition, genotypes, and genomes may become

  5. The ACBP gene family in Rhodnius prolixus

    DEFF Research Database (Denmark)

    Majerowicz, David; Hannibal-Bach, Hans K; Castro, Rodolfo S C

    2016-01-01

    The acyl-CoA-binding proteins (ACBP) constitute a family of conserved proteins that bind acyl-CoA with high affinity and protect it from hydrolysis. Thus, ACBPs may have essential roles in basal cellular lipid metabolism. The genome of the insect Rhodnius prolixus encodes five ACBP genes similar...

  6. Analysis of C. elegans NR2E nuclear receptors defines three conserved clades and ligand-independent functions

    Directory of Open Access Journals (Sweden)

    Weber Katherine P

    2012-06-01

    Full Text Available Abstract Background The nuclear receptors (NRs are an important class of transcription factors that are conserved across animal phyla. Canonical NRs consist of a DNA-binding domain (DBD and ligand-binding domain (LBD. While most animals have 20–40 NRs, nematodes of the genus Caenorhabditis have experienced a spectacular proliferation and divergence of NR genes. The LBDs of evolutionarily-conserved Caenorhabditis NRs have diverged sharply from their Drosophila and vertebrate orthologs, while the DBDs have been strongly conserved. The NR2E family of NRs play critical roles in development, especially in the nervous system. In this study, we explore the phylogenetics and function of the NR2E family of Caenorhabditis elegans, using an in vivo assay to test LBD function. Results Phylogenetic analysis reveals that the NR2E family of NRs consists of three broadly-conserved clades of orthologous NRs. In C. elegans, these clades are defined by nhr-67, fax-1 and nhr-239. The vertebrate orthologs of nhr-67 and fax-1 are Tlx and PNR, respectively. While the nhr-239 clade includes orthologs in insects (Hr83, an echinoderm, and a hemichordate, the gene appears to have been lost from vertebrate lineages. The C. elegans and C. briggsae nhr-239 genes have an apparently-truncated and highly-diverged LBD region. An additional C. elegans NR2E gene, nhr-111, appears to be a recently-evolved paralog of fax-1; it is present in C. elegans, but not C. briggsae or other animals with completely-sequenced genomes. Analysis of the relatively unstudied nhr-111 and nhr-239 genes demonstrates that they are both expressed—nhr-111 very broadly and nhr-239 in a small subset of neurons. Analysis of the FAX-1 LBD in an in vivo assay revealed that it is not required for at least some developmental functions. Conclusions Our analysis supports three conserved clades of NR2E receptors, only two of which are represented in vertebrates, indicating three ancestral NR2E genes in the

  7. Stochastic fluctuations and distributed control of gene expression impact cellular memory.

    Directory of Open Access Journals (Sweden)

    Guillaume Corre

    Full Text Available Despite the stochastic noise that characterizes all cellular processes the cells are able to maintain and transmit to their daughter cells the stable level of gene expression. In order to better understand this phenomenon, we investigated the temporal dynamics of gene expression variation using a double reporter gene model. We compared cell clones with transgenes coding for highly stable mRNA and fluorescent proteins with clones expressing destabilized mRNA-s and proteins. Both types of clones displayed strong heterogeneity of reporter gene expression levels. However, cells expressing stable gene products produced daughter cells with similar level of reporter proteins, while in cell clones with short mRNA and protein half-lives the epigenetic memory of the gene expression level was completely suppressed. Computer simulations also confirmed the role of mRNA and protein stability in the conservation of constant gene expression levels over several cell generations. These data indicate that the conservation of a stable phenotype in a cellular lineage may largely depend on the slow turnover of mRNA-s and proteins.

  8. KBERG: KnowledgeBase for Estrogen Responsive Genes

    DEFF Research Database (Denmark)

    Tang, Suisheng; Zhang, Zhuo; Tan, Sin Lam

    2007-01-01

    Estrogen has a profound impact on human physiology affecting transcription of numerous genes. To decipher functional characteristics of estrogen responsive genes, we developed KnowledgeBase for Estrogen Responsive Genes (KBERG). Genes in KBERG were derived from Estrogen Responsive Gene Database...... (ERGDB) and were analyzed from multiple aspects. We explored the possible transcription regulation mechanism by capturing highly conserved promoter motifs across orthologous genes, using promoter regions that cover the range of [-1200, +500] relative to the transcription start sites. The motif detection...... is based on ab initio discovery of common cis-elements from the orthologous gene cluster from human, mouse and rat, thus reflecting a degree of promoter sequence preservation during evolution. The identified motifs are linked to transcription factor binding sites based on the TRANSFAC database. In addition...

  9. Positive selection in the SLC11A1 gene in the family Equidae.

    Science.gov (United States)

    Bayerova, Zuzana; Janova, Eva; Matiasovic, Jan; Orlando, Ludovic; Horin, Petr

    2016-05-01

    Immunity-related genes are a suitable model for studying effects of selection at the genomic level. Some of them are highly conserved due to functional constraints and purifying selection, while others are variable and change quickly to cope with the variation of pathogens. The SLC11A1 gene encodes a transporter protein mediating antimicrobial activity of macrophages. Little is known about the patterns of selection shaping this gene during evolution. Although it is a typical evolutionarily conserved gene, functionally important polymorphisms associated with various diseases were identified in humans and other species. We analyzed the genomic organization, genetic variation, and evolution of the SLC11A1 gene in the family Equidae to identify patterns of selection within this important gene. Nucleotide SLC11A1 sequences were shown to be highly conserved in ten equid species, with more than 97 % sequence identity across the family. Single nucleotide polymorphisms (SNPs) were found in the coding and noncoding regions of the gene. Seven codon sites were identified to be under strong purifying selection. Codons located in three regions, including the glycosylated extracellular loop, were shown to be under diversifying selection. A 3-bp indel resulting in a deletion of the amino acid 321 in the predicted protein was observed in all horses, while it has been maintained in all other equid species. This codon comprised in an N-glycosylation site was found to be under positive selection. Interspecific variation in the presence of predicted N-glycosylation sites was observed.

  10. Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India.

    Science.gov (United States)

    Sharma, Sandeep; Dutta, Trishna; Maldonado, Jesús E; Wood, Thomas C; Panwar, Hemendra Singh; Seidensticker, John

    2013-09-22

    Understanding the patterns of gene flow of an endangered species metapopulation occupying a fragmented habitat is crucial for landscape-level conservation planning and devising effective conservation strategies. Tigers (Panthera tigris) are globally endangered and their populations are highly fragmented and exist in a few isolated metapopulations across their range. We used multi-locus genotypic data from 273 individual tigers (Panthera tigris tigris) from four tiger populations of the Satpura-Maikal landscape of central India to determine whether the corridors in this landscape are functional. This 45 000 km(2) landscape contains 17% of India's tiger population and 12% of its tiger habitat. We applied Bayesian and coalescent-based analyses to estimate contemporary and historical gene flow among these populations and to infer their evolutionary history. We found that the tiger metapopulation in central India has high rates of historical and contemporary gene flow. The tests for population history reveal that tigers populated central India about 10 000 years ago. Their population subdivision began about 1000 years ago and accelerated about 200 years ago owing to habitat fragmentation, leading to four spatially separated populations. These four populations have been in migration-drift equilibrium maintained by high gene flow. We found the highest rates of contemporary gene flow in populations that are connected by forest corridors. This information is highly relevant to conservation practitioners and policy makers, because deforestation, road widening and mining are imminent threats to these corridors.

  11. Technical evaluation on high aging, and performance conditions on long-term conservation program

    International Nuclear Information System (INIS)

    Yamashita, Atsushi

    2001-01-01

    In order to secure safety and safe operation of power plants, in every nuclear power plants, conservation actions based on preventive conservation are performed. They contain operative condition monitoring, patrolling inspection, and periodical tests on important systems and apparatus by operators under plant operation and condition monitoring by maintenance workers, and so on, and when finding out their abnormal conditions, their detailed survey is performed to adopt adequate countermeasures such as recovery, exchange, and so on. And, to equipments for nuclear power generation periodical conditions were obliged by legal examinations and by independent inspections. As a result of these conservation actions, even on a plant elapsed about 30 years since beginning of its operation it was thought that the plant was aged with elapsing time even if not recognizing any indication on its aged deterioration at that time. Therefore, for its concrete countermeasure, by supposing long-term operation of a plant with longer operation history, some technical evaluation on aged phenomena were carried out, to investigate on reflection of the obtained results to present conservation actions. Here were described on efforts on the high aging countermeasures, and performing conditions of long-term conservation in the Tsuruga Unit No. 1 Nuclear Power Station. (G.K.)

  12. New Genome Similarity Measures based on Conserved Gene Adjacencies.

    Science.gov (United States)

    Doerr, Daniel; Kowada, Luis Antonio B; Araujo, Eloi; Deshpande, Shachi; Dantas, Simone; Moret, Bernard M E; Stoye, Jens

    2017-06-01

    Many important questions in molecular biology, evolution, and biomedicine can be addressed by comparative genomic approaches. One of the basic tasks when comparing genomes is the definition of measures of similarity (or dissimilarity) between two genomes, for example, to elucidate the phylogenetic relationships between species. The power of different genome comparison methods varies with the underlying formal model of a genome. The simplest models impose the strong restriction that each genome under study must contain the same genes, each in exactly one copy. More realistic models allow several copies of a gene in a genome. One speaks of gene families, and comparative genomic methods that allow this kind of input are called gene family-based. The most powerful-but also most complex-models avoid this preprocessing of the input data and instead integrate the family assignment within the comparative analysis. Such methods are called gene family-free. In this article, we study an intermediate approach between family-based and family-free genomic similarity measures. Introducing this simpler model, called gene connections, we focus on the combinatorial aspects of gene family-free genome comparison. While in most cases, the computational costs to the general family-free case are the same, we also find an instance where the gene connections model has lower complexity. Within the gene connections model, we define three variants of genomic similarity measures that have different expression powers. We give polynomial-time algorithms for two of them, while we show NP-hardness for the third, most powerful one. We also generalize the measures and algorithms to make them more robust against recent local disruptions in gene order. Our theoretical findings are supported by experimental results, proving the applicability and performance of our newly defined similarity measures.

  13. Molecular Characterization of the Skate Peripherin/rds Gene: Relationship to Its Orthologues and Paralogues

    Science.gov (United States)

    Li, Chibo; Ding, Xi-Qin; O’Brien, John; Al-Ubaidi, Muayyad R.

    2010-01-01

    PURPOSE A great deal of information about functionally significant domains of a protein may be obtained by comparison of primary sequences of gene homologues over a broad phylogenetic base. This study was designed to identify evolutionarily conserved domains of the photoreceptor disc membrane protein peripherin/rds by analysis of the homologue in a primitive vertebrate, the skate. METHODS A skate retinal cDNA library was screened using a mouse peripherin/rds clone. The 5′ and 3′ untranslated regions of the skate peripherin/rds (srds) cDNA were isolated by the rapid amplification of cDNA ends (RACE) approach. The gene structure was characterized by PCR amplification and sequencing of genomic fragments. Northern and Western blot analyses were used to identify srds transcript and protein, respectively. RESULTS A new homologue of peripherin/rds was identified from the skate retinal cDNA library. SRDS is a glycoprotein with a predicted molecular mass of 40.2 kDa. The srds gene consists of two exons and one small intron and transcribes into a single 6-kb message. Phylogenetic analysis places SRDS at the base of peripherin/rds family and near the division of that group and the branch leading to rds-like and rom-1 genes. SRDS protein is 54.5% identical with peripherin/rds across species. Identity is significantly higher (73%) in the intradiscal domains. Sequence comparison revealed the conservation of all residues that have been shown, on mutation, to associate with retinitis pigmentosa and showed conservation of most residues associated with macular dystrophies. Comparison with ROM-1 and other rds-like proteins revealed the presence of a highly conserved domain in the large intradiscal loop. CONCLUSIONS Srds represents the skate orthologue of mammalian peripherin/rds genes. Conservation of most of the residues associated with human retinal diseases indicates that these residues serve important functional roles. The high degree of conservation of a short stretch within

  14. Allele frequencies of variants in ultra conserved elements identify selective pressure on transcription factor binding.

    Directory of Open Access Journals (Sweden)

    Toomas Silla

    Full Text Available Ultra-conserved genes or elements (UCGs/UCEs in the human genome are extreme examples of conservation. We characterized natural variations in 2884 UCEs and UCGs in two distinct populations; Singaporean Chinese (n = 280 and Italian (n = 501 by using a pooled sample, targeted capture, sequencing approach. We identify, with high confidence, in these regions the abundance of rare SNVs (MAF5% are more often found in relatively less-conserved nucleotides within UCEs, compared to rare variants. Moreover, prevalent variants are less likely to overlap transcription factor binding site. Using SNPfold we found no significant influence of RNA secondary structure on UCE conservation. All together, these results suggest UCEs are not under selective pressure as a stretch of DNA but are under differential evolutionary pressure on the single nucleotide level.

  15. Prospects for Parity Non-conservation Experiments with Highly Charged Heavy Ions

    OpenAIRE

    Maul, M.; Schäfer, A.; Greiner, W.; Indelicato, P.

    1996-01-01

    We discuss the prospects for parity non-conservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with two to five electrons are calculated. We investigate two-photon-transitions and the possibility to observe interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  16. Computational identification of developmental enhancers:conservation and function of transcription factor binding-site clustersin drosophila melanogaster and drosophila psedoobscura

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.; Salzberg, Steven L.; Rubin, Gerald M.; Eisen, Michael B.; Celniker, SusanE.

    2004-08-06

    The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene, and assayed embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Measuring conservation of sequence features closely linked to function--such as binding-site clustering--makes better use of comparative sequence data than commonly used methods that examine only sequence identity.

  17. Conservation of Animal Genetic Resources in the Danubian Valley

    Directory of Open Access Journals (Sweden)

    Pal Hajas

    2011-05-01

    Full Text Available The overall aim of gene conservation is the preservation of animal genetic resources (AnGR. Since the well balanced, diverse and healthy supply of food is a major element of the national food sovereignty, hence successful animal production is not possible without preservation of AnGR. Moreover, local breeds are considered as part of national treasures, cultural values, and pre-requisit for a landscape-friendly, biologically diverse and ecologically sensitive agriculture. In thematic gene conservation, our primary concerns are economically important traits, adaptability and biological diversity of breeds. Beside these, aesthetic and ethical issues to be considered as well.

  18. language as a culture and biodiversity conservation

    African Journals Online (AJOL)

    Guest

    biodiversity conservation because life in a particular human environment is ... communication ,by language, by word expression as cultural genes, stories, legends and ..... for expressing individual identity, preserve culture, understanding the ...

  19. Enrichment of conserved synaptic activity-responsive element in neuronal genes predicts a coordinated response of MEF2, CREB and SRF.

    Directory of Open Access Journals (Sweden)

    Fernanda M Rodríguez-Tornos

    Full Text Available A unique synaptic activity-responsive element (SARE sequence, composed of the consensus binding sites for SRF, MEF2 and CREB, is necessary for control of transcriptional upregulation of the Arc gene in response to synaptic activity. We hypothesize that this sequence is a broad mechanism that regulates gene expression in response to synaptic activation and during plasticity; and that analysis of SARE-containing genes could identify molecular mechanisms involved in brain disorders. To search for conserved SARE sequences in the mammalian genome, we used the SynoR in silico tool, and found the SARE cluster predominantly in the regulatory regions of genes expressed specifically in the nervous system; most were related to neural development and homeostatic maintenance. Two of these SARE sequences were tested in luciferase assays and proved to promote transcription in response to neuronal activation. Supporting the predictive capacity of our candidate list, up-regulation of several SARE containing genes in response to neuronal activity was validated using external data and also experimentally using primary cortical neurons and quantitative real time RT-PCR. The list of SARE-containing genes includes several linked to mental retardation and cognitive disorders, and is significantly enriched in genes that encode mRNA targeted by FMRP (fragile X mental retardation protein. Our study thus supports the idea that SARE sequences are relevant transcriptional regulatory elements that participate in plasticity. In addition, it offers a comprehensive view of how activity-responsive transcription factors coordinate their actions and increase the selectivity of their targets. Our data suggest that analysis of SARE-containing genes will reveal yet-undescribed pathways of synaptic plasticity and additional candidate genes disrupted in mental disease.

  20. WeederH: an algorithm for finding conserved regulatory motifs and regions in homologous sequences

    Directory of Open Access Journals (Sweden)

    Pesole Graziano

    2007-02-01

    Full Text Available Abstract Background This work addresses the problem of detecting conserved transcription factor binding sites and in general regulatory regions through the analysis of sequences from homologous genes, an approach that is becoming more and more widely used given the ever increasing amount of genomic data available. Results We present an algorithm that identifies conserved transcription factor binding sites in a given sequence by comparing it to one or more homologs, adapting a framework we previously introduced for the discovery of sites in sequences from co-regulated genes. Differently from the most commonly used methods, the approach we present does not need or compute an alignment of the sequences investigated, nor resorts to descriptors of the binding specificity of known transcription factors. The main novel idea we introduce is a relative measure of conservation, assuming that true functional elements should present a higher level of conservation with respect to the rest of the sequence surrounding them. We present tests where we applied the algorithm to the identification of conserved annotated sites in homologous promoters, as well as in distal regions like enhancers. Conclusion Results of the tests show how the algorithm can provide fast and reliable predictions of conserved transcription factor binding sites regulating the transcription of a gene, with better performances than other available methods for the same task. We also show examples on how the algorithm can be successfully employed when promoter annotations of the genes investigated are missing, or when regulatory sites and regions are located far away from the genes.

  1. [Sequence analysis of LEAFY homologous gene from Dendrobium moniliforme and application for identification of medicinal Dendrobium].

    Science.gov (United States)

    Xing, Wen-Rui; Hou, Bei-Wei; Guan, Jing-Jiao; Luo, Jing; Ding, Xiao-Yu

    2013-04-01

    The LEAFY (LFY) homologous gene of Dendrobium moniliforme (L.) Sw. was cloned by new primers which were designed based on the conservative region of known sequences of orchid LEAFY gene. Partial LFY homologous gene was cloned by common PCR, then we got the complete LFY homologous gene Den LFY by Tail-PCR. The complete sequence of DenLFY gene was 3 575 bp which contained three exons and two introns. Using BLAST method, comparison analysis among the exon of LFY homologous gene indicted that the DenLFY gene had high identity with orchids LFY homologous, including the related fragment of PhalLFY (84%) in Phalaenopsis hybrid cultivar, LFY homologous gene in Oncidium (90%) and in other orchid (over 80%). Using MP analysis, Dendrobium is found to be the sister to Oncidium and Phalaenopsis. Homologous analysis demonstrated that the C-terminal amino acids were highly conserved. When the exons and introns were separately considered, exons and the sequence of amino acid were good markers for the function research of DenLFY gene. The second intron can be used in authentication research of Dendrobium based on the length polymorphism between Dendrobium moniliforme and Dendrobium officinale.

  2. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer

    Science.gov (United States)

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip

    2016-01-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  3. Conservation genetics and genomics of amphibians and reptiles.

    Science.gov (United States)

    Shaffer, H Bradley; Gidiş, Müge; McCartney-Melstad, Evan; Neal, Kevin M; Oyamaguchi, Hilton M; Tellez, Marisa; Toffelmier, Erin M

    2015-01-01

    Amphibians and reptiles as a group are often secretive, reach their greatest diversity often in remote tropical regions, and contain some of the most endangered groups of organisms on earth. Particularly in the past decade, genetics and genomics have been instrumental in the conservation biology of these cryptic vertebrates, enabling work ranging from the identification of populations subject to trade and exploitation, to the identification of cryptic lineages harboring critical genetic variation, to the analysis of genes controlling key life history traits. In this review, we highlight some of the most important ways that genetic analyses have brought new insights to the conservation of amphibians and reptiles. Although genomics has only recently emerged as part of this conservation tool kit, several large-scale data sources, including full genomes, expressed sequence tags, and transcriptomes, are providing new opportunities to identify key genes, quantify landscape effects, and manage captive breeding stocks of at-risk species.

  4. Comprehensive search for intra- and inter-specific sequence polymorphisms among coding envelope genes of retroviral origin found in the human genome: genes and pseudogenes

    Directory of Open Access Journals (Sweden)

    Vasilescu Alexandre

    2005-09-01

    Full Text Available Abstract Background The human genome carries a high load of proviral-like sequences, called Human Endogenous Retroviruses (HERVs, which are the genomic traces of ancient infections by active retroviruses. These elements are in most cases defective, but open reading frames can still be found for the retroviral envelope gene, with sixteen such genes identified so far. Several of them are conserved during primate evolution, having possibly been co-opted by their host for a physiological role. Results To characterize further their status, we presently sequenced 12 of these genes from a panel of 91 Caucasian individuals. Genomic analyses reveal strong sequence conservation (only two non synonymous Single Nucleotide Polymorphisms [SNPs] for the two HERV-W and HERV-FRD envelope genes, i.e. for the two genes specifically expressed in the placenta and possibly involved in syncytiotrophoblast formation. We further show – using an ex vivo fusion assay for each allelic form – that none of these SNPs impairs the fusogenic function. The other envelope proteins disclose variable polymorphisms, with the occurrence of a stop codon and/or frameshift for most – but not all – of them. Moreover, the sequence conservation analysis of the orthologous genes that can be found in primates shows that three env genes have been maintained in a fully coding state throughout evolution including envW and envFRD. Conclusion Altogether, the present study strongly suggests that some but not all envelope encoding sequences are bona fide genes. It also provides new tools to elucidate the possible role of endogenous envelope proteins as susceptibility factors in a number of pathologies where HERVs have been suspected to be involved.

  5. Heterologous gene expression driven by carbonic anhydrase gene promoter in Dunaliella salina

    Science.gov (United States)

    Yurong, Chai; Yumin, Lu; Tianyun, Wang; Weihong, Hou; Lexun, Xue

    2006-12-01

    Dunaliella salina, a halotolerant unicellular green alga without a rigid cell wall, can live in salinities ranging from 0.05 to 5 mol/L NaCl. These features of D. salina make it an ideal host for the production of antibodies, oral vaccine, and commercially valuable polypeptides. To produce high level of heterologous proteins from D. salina, highly efficient promoters are required to drive expression of target genes under controlled condition. In the present study, we cloned a 5' franking region of 1.4 kb from the carbonic anhydrase ( CAH) gene of D. salina by genomic walking and PCR. The fragment was ligated to the pMD18-T vector and characterized. Sequence analysis indicated that this region contained conserved motifs, including a TATA- like box and CAAT-box. Tandem (GT)n repeats that had a potential role of transcriptional control, were also found in this region. The transcription start site (TSS) of the CAH gene was determined by 5' RACE and nested PCR method. Transformation assays showed that the 1.4 kb fragment was able to drive expression of the selectable bar (bialaphos resistance) gene when the fusion was transformed into D. salina by biolistics. Northern blotting hybridizations showed that the bar transcript was most abundant in cells grown in 2 mol/L NaCl, and less abundant in 0.5 mol/L NaCl, indicating that expression of the bar gene was induced at high salinity. These results suggest the potential use of the CAH gene promoter to induce the expression of heterologous genes in D. salina under varied salt condition.

  6. Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies

    Science.gov (United States)

    Fritzsch, B.; Beisel, K. W.; Bermingham, N. A.

    2000-01-01

    This brief overview shows that a start has been made to molecularly dissect vertebrate ear development and its evolutionary conservation to the development of the insect hearing organ. However, neither the patterning process of the ear nor the patterning process of insect sensory organs is sufficiently known at the moment to provide more than a first glimpse. Moreover, hardly anything is known about otocyst development of the cephalopod molluscs, another triploblast lineage that evolved complex 'ears'. We hope that the apparent conserved functional and cellular components present in the ciliated sensory neurons/hair cells will also be found in the genes required for vertebrate ear and insect sensory organ morphogenesis (Fig. 3). Likewise, we expect that homologous pre-patterning genes will soon be identified for the non-sensory cell development, which is more than a blocking of neuronal development through the Delta/Notch signaling system. Generation of the apparently unique ear could thus represent a multiplication of non-sensory cells by asymmetric and symmetric divisions as well as modification of existing patterning process by implementing novel developmental modules. In the final analysis, the vertebrate ear may come about by increasing the level of gene interactions in an already existing and highly conserved interactive cascade of bHLH genes. Since this was apparently achieved in all three lineages of triploblasts independently (Fig. 3), we now need to understand how much of the morphogenetic cascades are equally conserved across phyla to generate complex ears. The existing mutations in humans and mice may be able to point the direction of future research to understand the development of specific cell types and morphologies in the formation of complex arthropod, cephalopod, and vertebrate 'ears'.

  7. Molecular characterisation of the nucleocapsid protein gene, glycoprotein gene and gene junctions of rhabdovirus 903/87, a novel fish pathogenic rhabdovirus

    DEFF Research Database (Denmark)

    Johansson, Tove; Nylund, S.; Olesen, Niels Jørgen

    2001-01-01

    , M, G and L genes it was determined that transcription start and stop codons were conserved between virus 903/87 and the vesiculo viruses. Virus 903/87 has no open reading frame coding for a non-virion gene between the glycoprotein and the polymerase gene. Phylogenetic studies based on rhabdovirus...

  8. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2010-09-01

    Full Text Available Abstract Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS" but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq not to be biological transcription factor binding sites ("empirical TFBS". We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation.

  9. Identifying the genes of unconventional high temperature superconductors.

    Science.gov (United States)

    Hu, Jiangping

    We elucidate a recently emergent framework in unifying the two families of high temperature (high [Formula: see text]) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the counterpart of the former to realize robust extended s-wave pairing symmetries in a square lattice. The unification identifies that the key ingredients (gene) of high [Formula: see text] superconductors is a quasi two dimensional electronic environment in which the d -orbitals of cations that participate in strong in-plane couplings to the p -orbitals of anions are isolated near Fermi energy. With this gene, the superexchange magnetic interactions mediated by anions could maximize their contributions to superconductivity. Creating the gene requires special arrangements between local electronic structures and crystal lattice structures. The speciality explains why high [Formula: see text] superconductors are so rare. An explicit prediction is made to realize high [Formula: see text] superconductivity in Co/Ni-based materials with a quasi two dimensional hexagonal lattice structure formed by trigonal bipyramidal complexes.

  10. An evolutionarily conserved sexual signature in the primate brain.

    Directory of Open Access Journals (Sweden)

    Björn Reinius

    2008-06-01

    Full Text Available The question of a potential biological sexual signature in the human brain is a heavily disputed subject. In order to provide further insight into this issue, we used an evolutionary approach to identify genes with sex differences in brain expression level among primates. We reasoned that expression patterns important to uphold key male and female characteristics may be conserved during evolution. We selected cortex for our studies because this specific brain region is responsible for many higher behavioral functions. We compared gene expression profiles in the occipital cortex of male and female humans (Homo sapiens, a great ape and cynomolgus macaques (Macaca fascicularis, an old world monkey, two catarrhine species that show abundant morphological sexual dimorphism, as well as in common marmosets (Callithrix Jacchus, a new world monkey which are relatively sexually monomorphic. We identified hundreds of genes with sex-biased expression patterns in humans and macaques, while fewer than ten were differentially expressed between the sexes in marmosets. In primates, a general rule is that many of the morphological and behavioral sexual dimorphisms seen in polygamous species, such as macaques, are typically less pronounced in monogamous species such as the marmosets. Our observations suggest that this correlation may also be reflected in the extent of sex-biased gene expression in the brain. We identified 85 genes with common sex-biased expression, in both human and macaque and 2 genes, X inactivation-specific transcript (XIST and Heat shock factor binding protein 1 (HSBP1, that were consistently sex-biased in the female direction in human, macaque, and marmoset. These observations imply a conserved signature of sexual gene expression dimorphism in cortex of primates. Further, we found that the coding region of female-biased genes is more evolutionarily constrained compared to the coding region of both male-biased and non sex-biased brain

  11. Pervasive Effects of Aging on Gene Expression in Wild Wolves

    Science.gov (United States)

    Charruau, Pauline; Johnston, Rachel A.; Stahler, Daniel R.; Lea, Amanda; Snyder-Mackler, Noah; Smith, Douglas W.; vonHoldt, Bridgett M.; Cole, Steven W.; Tung, Jenny; Wayne, Robert K.

    2016-01-01

    Abstract Gene expression levels change as an individual ages and responds to environmental conditions. With the exception of humans, such patterns have principally been studied under controlled conditions, overlooking the array of developmental and environmental influences that organisms encounter under conditions in which natural selection operates. We used high-throughput RNA sequencing (RNA-Seq) of whole blood to assess the relative impacts of social status, age, disease, and sex on gene expression levels in a natural population of gray wolves (Canis lupus). Our findings suggest that age is broadly associated with gene expression levels, whereas other examined factors have minimal effects on gene expression patterns. Further, our results reveal evolutionarily conserved signatures of senescence, such as immunosenescence and metabolic aging, between wolves and humans despite major differences in life history and environment. The effects of aging on gene expression levels in wolves exhibit conservation with humans, but the more rapid expression differences observed in aging wolves is evolutionarily appropriate given the species’ high level of extrinsic mortality due to intraspecific aggression. Some expression changes that occur with age can facilitate physical age-related changes that may enhance fitness in older wolves. However, the expression of these ancestral patterns of aging in descendant modern dogs living in highly modified domestic environments may be maladaptive and cause disease. This work provides evolutionary insight into aging patterns observed in domestic dogs and demonstrates the applicability of studying natural populations to investigate the mechanisms of aging. PMID:27189566

  12. Conservation of transcription factor binding events predicts gene expression across species

    OpenAIRE

    Hemberg, Martin; Kreiman, Gabriel

    2011-01-01

    Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to funct...

  13. Transcriptional Regulation in Ebola Virus: Effects of Gene Border Structure and Regulatory Elements on Gene Expression and Polymerase Scanning Behavior.

    Science.gov (United States)

    Brauburger, Kristina; Boehmann, Yannik; Krähling, Verena; Mühlberger, Elke

    2016-02-15

    The highly pathogenic Ebola virus (EBOV) has a nonsegmented negative-strand (NNS) RNA genome containing seven genes. The viral genes either are separated by intergenic regions (IRs) of variable length or overlap. The structure of the EBOV gene overlaps is conserved throughout all filovirus genomes and is distinct from that of the overlaps found in other NNS RNA viruses. Here, we analyzed how diverse gene borders and noncoding regions surrounding the gene borders influence transcript levels and govern polymerase behavior during viral transcription. Transcription of overlapping genes in EBOV bicistronic minigenomes followed the stop-start mechanism, similar to that followed by IR-containing gene borders. When the gene overlaps were extended, the EBOV polymerase was able to scan the template in an upstream direction. This polymerase feature seems to be generally conserved among NNS RNA virus polymerases. Analysis of IR-containing gene borders showed that the IR sequence plays only a minor role in transcription regulation. Changes in IR length were generally well tolerated, but specific IR lengths led to a strong decrease in downstream gene expression. Correlation analysis revealed that these effects were largely independent of the surrounding gene borders. Each EBOV gene contains exceptionally long untranslated regions (UTRs) flanking the open reading frame. Our data suggest that the UTRs adjacent to the gene borders are the main regulators of transcript levels. A highly complex interplay between the different cis-acting elements to modulate transcription was revealed for specific combinations of IRs and UTRs, emphasizing the importance of the noncoding regions in EBOV gene expression control. Our data extend those from previous analyses investigating the implication of noncoding regions at the EBOV gene borders for gene expression control. We show that EBOV transcription is regulated in a highly complex yet not easily predictable manner by a set of interacting cis

  14. Swertia chirayta, a Threatened High-Value Medicinal Herb: Microhabitats and Conservation Challenges in Sikkim Himalaya, India

    Directory of Open Access Journals (Sweden)

    Bharat Kumar Pradhan

    2015-11-01

    Full Text Available Assessing the impact of threats, identifying favorable growing conditions, and predicting future population scenarios are vital for the conservation and management of threatened species. This study investigated the availability, microhabitat characteristics, threat status, and community associations of Swertia chirayta, a highly threatened Himalayan medicinal herb, in 22 populations in Sikkim, India, using the vertical belt transect method. Of the 14 microhabitats identified, open grassy slope emerged as the most favorable and wet grassy slope as the least favorable for S. chirayta. The species was dominant in 8 of the 10 major plant communities identified. Among 9 major types of disturbance identified, human movement and collection of non-timber forest products appeared as the biggest threats to S. chirayta. Disturbances significantly affected the availability of the species. S. chirayta, though under high anthropogenic threat, maintains high microhabitat pliability, which is vital for its conservation and management, provided immediate conservation measures are taken.

  15. A highly conserved tyrosine of Tim-3 is phosphorylated upon stimulation by its ligand galectin-9

    International Nuclear Information System (INIS)

    Weyer, Philipp S. van de; Muehlfeit, Michael; Klose, Christoph; Bonventre, Joseph V.; Walz, Gerd; Kuehn, E. Wolfgang

    2006-01-01

    Tim-3 is a member of the TIM family of proteins (T-cell immunoglobulin mucin) involved in the regulation of CD4+ T-cells. Tim-3 is a T H 1-specific type 1 membrane protein and regulates T H 1 proliferation and the development of tolerance. Binding of galectin-9 to the extracellular domain of Tim-3 results in apoptosis of T H 1 cells, but the intracellular pathways involved in the regulatory function of Tim-3 are unknown. Unlike Tim-1, which is expressed in renal epithelia and cancer, Tim-3 has not been described in cells other than neuronal or T-cells. Using RT-PCR we demonstrate that Tim-3 is expressed in malignant and non-malignant epithelial tissues. We have cloned Tim-3 from an immortalized liver cell carcinoma line and identified a highly conserved tyrosine in the intracellular tail of Tim-3 (Y265). We demonstrate that Y265 is specifically phosphorylated in vivo by the interleukin inducible T cell kinase (ITK), a kinase which is located in close proximity of the TIM genes on the allergy susceptibility locus 5q33.3. Stimulation of Tim-3 by its ligand galectin-9 results in increased phosphorylation of Y265, suggesting that this tyrosine residue plays an important role in downstream signalling events regulating T-cell fate. Given the role of TIM proteins in autoimmunity and cancer, the conserved SH2 binding domain surrounding Y265 could represent a possible target site for pharmacological intervention

  16. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families

    DEFF Research Database (Denmark)

    Hamel, Louis-Philippe; Nicole, Marie-Claude; Sritubtim, Somrudee

    2006-01-01

    MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, and their components are encoded by highly conserved genes. The recent availability of genome sequences for rice and poplar now makes it possible to examine how well the previously described...... Arabidopsis MAPK and MAPKK gene family structures represent the broader evolutionary situation in plants, and analysis of gene expression data for MPK and MKK genes in all three species allows further refinement of those families, based on functionality. The Arabidopsis MAPK nomenclature appears sufficiently...

  17. Genome Wide Identification, Phylogeny, and Expression of Aquaporin Genes in Common Carp (Cyprinus carpio.

    Directory of Open Access Journals (Sweden)

    Chuanju Dong

    Full Text Available Aquaporins (Aqps are integral membrane proteins that facilitate the transport of water and small solutes across cell membranes. Among vertebrate species, Aqps are highly conserved in both gene structure and amino acid sequence. These proteins are vital for maintaining water homeostasis in living organisms, especially for aquatic animals such as teleost fish. Studies on teleost Aqps are mainly limited to several model species with diploid genomes. Common carp, which has a tetraploidized genome, is one of the most common aquaculture species being adapted to a wide range of aquatic environments. The complete common carp genome has recently been released, providing us the possibility for gene evolution of aqp gene family after whole genome duplication.In this study, we identified a total of 37 aqp genes from common carp genome. Phylogenetic analysis revealed that most of aqps are highly conserved. Comparative analysis was performed across five typical vertebrate genomes. We found that almost all of the aqp genes in common carp were duplicated in the evolution of the gene family. We postulated that the expansion of the aqp gene family in common carp was the result of an additional whole genome duplication event and that the aqp gene family in other teleosts has been lost in their evolution history with the reason that the functions of genes are redundant and conservation. Expression patterns were assessed in various tissues, including brain, heart, spleen, liver, intestine, gill, muscle, and skin, which demonstrated the comprehensive expression profiles of aqp genes in the tetraploidized genome. Significant gene expression divergences have been observed, revealing substantial expression divergences or functional divergences in those duplicated aqp genes post the latest WGD event.To some extent, the gene families are also considered as a unique source for evolutionary studies. Moreover, the whole set of common carp aqp gene family provides an

  18. High-performance web services for querying gene and variant annotation.

    Science.gov (United States)

    Xin, Jiwen; Mark, Adam; Afrasiabi, Cyrus; Tsueng, Ginger; Juchler, Moritz; Gopal, Nikhil; Stupp, Gregory S; Putman, Timothy E; Ainscough, Benjamin J; Griffith, Obi L; Torkamani, Ali; Whetzel, Patricia L; Mungall, Christopher J; Mooney, Sean D; Su, Andrew I; Wu, Chunlei

    2016-05-06

    Efficient tools for data management and integration are essential for many aspects of high-throughput biology. In particular, annotations of genes and human genetic variants are commonly used but highly fragmented across many resources. Here, we describe MyGene.info and MyVariant.info, high-performance web services for querying gene and variant annotation information. These web services are currently accessed more than three million times permonth. They also demonstrate a generalizable cloud-based model for organizing and querying biological annotation information. MyGene.info and MyVariant.info are provided as high-performance web services, accessible at http://mygene.info and http://myvariant.info . Both are offered free of charge to the research community.

  19. Complex organisation and structure of the ghrelin antisense strand gene GHRLOS, a candidate non-coding RNA gene

    Directory of Open Access Journals (Sweden)

    Herington Adrian C

    2008-10-01

    Full Text Available Abstract Background The peptide hormone ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH release, appetite regulation, gut motility and proliferation of cancer cells. We previously identified a gene on the opposite strand of the ghrelin gene, ghrelinOS (GHRLOS, which spans the promoter and untranslated regions of the ghrelin gene (GHRL. Here we further characterise GHRLOS. Results We have described GHRLOS mRNA isoforms that extend over 1.4 kb of the promoter region and 106 nucleotides of exon 4 of the ghrelin gene, GHRL. These GHRLOS transcripts initiate 4.8 kb downstream of the terminal exon 4 of GHRL and are present in the 3' untranslated exon of the adjacent gene TATDN2 (TatD DNase domain containing 2. Interestingly, we have also identified a putative non-coding TATDN2-GHRLOS chimaeric transcript, indicating that GHRLOS RNA biogenesis is extremely complex. Moreover, we have discovered that the 3' region of GHRLOS is also antisense, in a tail-to-tail fashion to a novel terminal exon of the neighbouring SEC13 gene, which is important in protein transport. Sequence analyses revealed that GHRLOS is riddled with stop codons, and that there is little nucleotide and amino-acid sequence conservation of the GHRLOS gene between vertebrates. The gene spans 44 kb on 3p25.3, is extensively spliced and harbours multiple variable exons. We have also investigated the expression of GHRLOS and found evidence of differential tissue expression. It is highly expressed in tissues which are emerging as major sites of non-coding RNA expression (the thymus, brain, and testis, as well as in the ovary and uterus. In contrast, very low levels were found in the stomach where sense, GHRL derived RNAs are highly expressed. Conclusion GHRLOS RNA transcripts display several distinctive features of non-coding (ncRNA genes, including 5' capping, polyadenylation, extensive splicing and short open reading

  20. Gene number determination and genetic polymorphism of the gamma delta T cell co-receptor WC1 genes

    Directory of Open Access Journals (Sweden)

    Chen Chuang

    2012-10-01

    Full Text Available Abstract Background WC1 co-receptors belong to the scavenger receptor cysteine-rich (SRCR superfamily and are encoded by a multi-gene family. Expression of particular WC1 genes defines functional subpopulations of WC1+ γδ T cells. We have previously identified partial or complete genomic sequences for thirteen different WC1 genes through annotation of the bovine genome Btau_3.1 build. We also identified two WC1 cDNA sequences from other cattle that did not correspond to sequences in the Btau_3.1 build. Their absence in the Btau_3.1 build may have reflected gaps in the genome assembly or polymorphisms among animals. Since the response of γδ T cells to bacterial challenge is determined by WC1 gene expression, it was critical to understand whether individual cattle or breeds differ in the number of WC1 genes or display polymorphisms. Results Real-time quantitative PCR using DNA from the animal whose genome was sequenced (“Dominette” and sixteen other animals representing ten breeds of cattle, showed that the number of genes coding for WC1 co-receptors is thirteen. The complete coding sequences of those thirteen WC1 genes is presented, including the correction of an error in the WC1-2 gene due to mis-assembly in the Btau_3.1 build. All other cDNA sequences were found to agree with the previous annotation of complete or partial WC1 genes. PCR amplification and sequencing of the most variable N-terminal SRCR domain (domain 1 which has the SRCR “a” pattern of each of the thirteen WC1 genes showed that the sequences are highly conserved among individuals and breeds. Of 160 sequences of domain 1 from three breeds of cattle, no additional sequences beyond the thirteen described WC1 genes were found. Analysis of the complete WC1 cDNA sequences indicated that the thirteen WC1 genes code for three distinct WC1 molecular forms. Conclusion The bovine WC1 multi-gene family is composed of thirteen genes coding for three structural forms whose

  1. High pressure-sensitive gene expression in Lactobacillus sanfranciscensis

    Directory of Open Access Journals (Sweden)

    R.F. Vogel

    2005-08-01

    Full Text Available Lactobacillus sanfranciscensis is a Gram-positive lactic acid bacterium used in food biotechnology. It is necessary to investigate many aspects of a model organism to elucidate mechanisms of stress response, to facilitate preparation, application and performance in food fermentation, to understand mechanisms of inactivation, and to identify novel tools for high pressure biotechnology. To investigate the mechanisms of the complex bacterial response to high pressure we have analyzed changes in the proteome and transcriptome by 2-D electrophoresis, and by microarrays and real time PCR, respectively. More than 16 proteins were found to be differentially expressed upon high pressure stress and were compared to those sensitive to other stresses. Except for one apparently high pressure-specific stress protein, no pressure-specific stress proteins were found, and the proteome response to pressure was found to differ from that induced by other stresses. Selected pressure-sensitive proteins were partially sequenced and their genes were identified by reverse genetics. In a transcriptome analysis of a redundancy cleared shot gun library, about 7% of the genes investigated were found to be affected. Most of them appeared to be up-regulated 2- to 4-fold and these results were confirmed by real time PCR. Gene induction was shown for some genes up-regulated at the proteome level (clpL/groEL/rbsK, while the response of others to high hydrostatic pressure at the transcriptome level seemed to differ from that observed at the proteome level. The up-regulation of selected genes supports the view that the cell tries to compensate for pressure-induced impairment of translation and membrane transport.

  2. Entropy Viscosity Method for High-Order Approximations of Conservation Laws

    KAUST Repository

    Guermond, J. L.

    2010-09-17

    A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.

  3. Entropy Viscosity Method for High-Order Approximations of Conservation Laws

    KAUST Repository

    Guermond, J. L.; Pasquetti, R.

    2010-01-01

    A stabilization technique for conservation laws is presented. It introduces in the governing equations a nonlinear dissipation function of the residual of the associated entropy equation and bounded from above by a first order viscous term. Different two-dimensional test cases are simulated - a 2D Burgers problem, the "KPP rotating wave" and the Euler system - using high order methods: spectral elements or Fourier expansions. Details on the tuning of the parameters controlling the entropy viscosity are given. © 2011 Springer.

  4. Identification and characterization of NF-YB family genes in tung tree.

    Science.gov (United States)

    Yang, Susu; Wang, Yangdong; Yin, Hengfu; Guo, Haobo; Gao, Ming; Zhu, Huiping; Chen, Yicun

    2015-12-01

    The NF-YB transcription factor gene family encodes a subunit of the CCAAT box-binding factor (CBF), a highly conserved trimeric activator that strongly binds to the CCAAT box promoter element. Studies on model plants have shown that NF-YB proteins participate in important developmental and physiological processes, but little is known about NF-YB proteins in trees. Here, we identified seven NF-YB transcription factor-encoding genes in Vernicia fordii, an important oilseed tree in China. A phylogenetic analysis separated the genes into two groups; non-LEC1 type (VfNF-YB1, 5, 7, 9, 11, 13) and LEC1-type (VfNF-YB 14). A gene structure analysis showed that VfNF-YB 5 has three introns and the other genes have no introns. The seven VfNF-YB sequences contain highly conserved domains, a disordered region at the N terminus, and two long helix structures at the C terminus. Phylogenetic analyses showed that VfNF-YB family genes are highly homologous to GmNF-YB genes, and many of them are closely related to functionally characterized NF-YBs. In expression analyses of various tissues (root, stem, leaf, and kernel) and the root during pathogen infection, VfNF-YB1, 5, and 11 were dominantly expressed in kernels, and VfNF-YB7 and 9 were expressed only in the root. Different VfNF-YB family genes showed different responses to pathogen infection, suggesting that they play different roles in the pathogen response. Together, these findings represent the first extensive evaluation of the NF-YB family in tung tree and provide a foundation for dissecting the functions of VfNF-YB genes in seed development, stress adaption, fatty acid synthesis, and pathogen response.

  5. Conserved upstream open reading frames in higher plants

    Directory of Open Access Journals (Sweden)

    Schultz Carolyn J

    2008-07-01

    Full Text Available Abstract Background Upstream open reading frames (uORFs can down-regulate the translation of the main open reading frame (mORF through two broad mechanisms: ribosomal stalling and reducing reinitiation efficiency. In distantly related plants, such as rice and Arabidopsis, it has been found that conserved uORFs are rare in these transcriptomes with approximately 100 loci. It is unclear how prevalent conserved uORFs are in closely related plants. Results We used a homology-based approach to identify conserved uORFs in five cereals (monocots that could potentially regulate translation. Our approach used a modified reciprocal best hit method to identify putative orthologous sequences that were then analysed by a comparative R-nomics program called uORFSCAN to find conserved uORFs. Conclusion This research identified new genes that may be controlled at the level of translation by conserved uORFs. We report that conserved uORFs are rare (

  6. Functional and genetic evidence that nucleoside transport is highly conserved in Leishmania species: Implications for pyrimidine-based chemotherapy.

    Science.gov (United States)

    Alzahrani, Khalid J H; Ali, Juma A M; Eze, Anthonius A; Looi, Wan Limm; Tagoe, Daniel N A; Creek, Darren J; Barrett, Michael P; de Koning, Harry P

    2017-08-01

    Leishmania pyrimidine salvage is replete with opportunities for therapeutic intervention with enzyme inhibitors or antimetabolites. Their uptake into cells depends upon specific transporters; therefore it is essential to establish whether various Leishmania species possess similar pyrimidine transporters capable of drug uptake. Here, we report a comprehensive characterization of pyrimidine transport in L. major and L. mexicana. In both species, two transporters for uridine/adenosine were detected, one of which also transported uracil and the antimetabolites 5-fluoruracil (5-FU) and 5F,2'deoxyuridine (5F,2'dUrd), and was designated uridine-uracil transporter 1 (UUT1); the other transporter mediated uptake of adenosine, uridine, 5F,2'dUrd and thymidine and was designated Nucleoside Transporter 1 (NT1). To verify the reported L. donovani model of two NT1-like genes encoding uridine/adenosine transporters, and an NT2 gene encoding an inosine transporter, we cloned the corresponding L. major and L. mexicana genes, expressing each in T. brucei. Consistent with the L. donovani reports, the NT1-like genes of either species mediated the adenosine-sensitive uptake of [ 3 H]-uridine but not of [ 3 H]-inosine. Conversely, the NT2-like genes mediated uptake of [ 3 H]-inosine but not [ 3 H]-uridine. Among pyrimidine antimetabolites tested, 5-FU and 5F,2'dUrd were the most effective antileishmanials; resistance to both analogs was induced in L. major and L. mexicana. In each case it was found that the resistant cells had lost the transport capacity for the inducing drug. Metabolomics analysis found that the mechanism of action of 5-FU and 5F-2'dUrd was similar in both Leishmania species, with major changes in deoxynucleotide metabolism. We conclude that the pyrimidine salvage system is highly conserved in Leishmania species - essential information for the development of pyrimidine-based chemotherapy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights

  7. Functional and genetic evidence that nucleoside transport is highly conserved in Leishmania species: Implications for pyrimidine-based chemotherapy

    Directory of Open Access Journals (Sweden)

    Khalid J.H. Alzahrani

    2017-08-01

    Full Text Available Leishmania pyrimidine salvage is replete with opportunities for therapeutic intervention with enzyme inhibitors or antimetabolites. Their uptake into cells depends upon specific transporters; therefore it is essential to establish whether various Leishmania species possess similar pyrimidine transporters capable of drug uptake. Here, we report a comprehensive characterization of pyrimidine transport in L. major and L. mexicana. In both species, two transporters for uridine/adenosine were detected, one of which also transported uracil and the antimetabolites 5-fluoruracil (5-FU and 5F,2′deoxyuridine (5F,2′dUrd, and was designated uridine-uracil transporter 1 (UUT1; the other transporter mediated uptake of adenosine, uridine, 5F,2′dUrd and thymidine and was designated Nucleoside Transporter 1 (NT1. To verify the reported L. donovani model of two NT1-like genes encoding uridine/adenosine transporters, and an NT2 gene encoding an inosine transporter, we cloned the corresponding L. major and L. mexicana genes, expressing each in T. brucei. Consistent with the L. donovani reports, the NT1-like genes of either species mediated the adenosine-sensitive uptake of [3H]-uridine but not of [3H]-inosine. Conversely, the NT2-like genes mediated uptake of [3H]-inosine but not [3H]-uridine. Among pyrimidine antimetabolites tested, 5-FU and 5F,2′dUrd were the most effective antileishmanials; resistance to both analogs was induced in L. major and L. mexicana. In each case it was found that the resistant cells had lost the transport capacity for the inducing drug. Metabolomics analysis found that the mechanism of action of 5-FU and 5F-2′dUrd was similar in both Leishmania species, with major changes in deoxynucleotide metabolism. We conclude that the pyrimidine salvage system is highly conserved in Leishmania species - essential information for the development of pyrimidine-based chemotherapy. Keywords: Leishmania, Pyrimidine metabolism, Uracil

  8. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  9. An online conserved SSR discovery through cross-species comparison

    Directory of Open Access Journals (Sweden)

    Tun-Wen Pai

    2009-02-01

    Full Text Available Tun-Wen Pai1, Chien-Ming Chen1, Meng-Chang Hsiao1, Ronshan Cheng2, Wen-Shyong Tzou3, Chin-Hua Hu31Department of Computer Science and Engineering; 2Department of Aquaculture, 3Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, Republic of ChinaAbstract: Simple sequence repeats (SSRs play important roles in gene regulation and genome evolution. Although there exist several online resources for SSR mining, most of them only extract general SSR patterns without providing functional information. Here, an online search tool, CG-SSR (Comparative Genomics SSR discovery, has been developed for discovering potential functional SSRs from vertebrate genomes through cross-species comparison. In addition to revealing SSR candidates in conserved regions among various species, it also combines accurate coordinate and functional genomics information. CG-SSR is the first comprehensive and efficient online tool for conserved SSR discovery.Keywords: microsatellites, genome, comparative genomics, functional SSR, gene ontology, conserved region

  10. Late replication domains are evolutionary conserved in the Drosophila genome.

    Science.gov (United States)

    Andreyenkova, Natalya G; Kolesnikova, Tatyana D; Makunin, Igor V; Pokholkova, Galina V; Boldyreva, Lidiya V; Zykova, Tatyana Yu; Zhimulev, Igor F; Belyaeva, Elena S

    2013-01-01

    Drosophila chromosomes are organized into distinct domains differing in their predominant chromatin composition, replication timing and evolutionary conservation. We show on a genome-wide level that genes whose order has remained unaltered across 9 Drosophila species display late replication timing and frequently map to the regions of repressive chromatin. This observation is consistent with the existence of extensive domains of repressive chromatin that replicate extremely late and have conserved gene order in the Drosophila genome. We suggest that such repressive chromatin domains correspond to a handful of regions that complete replication at the very end of S phase. We further demonstrate that the order of genes in these regions is rarely altered in evolution. Substantial proportion of such regions significantly coincide with large synteny blocks. This indicates that there are evolutionary mechanisms maintaining the integrity of these late-replicating chromatin domains. The synteny blocks corresponding to the extremely late-replicating regions in the D. melanogaster genome consistently display two-fold lower gene density across different Drosophila species.

  11. Conservation in gene encoding Mycobacterium tuberculosis antigen Rv2660 and a high predicted population coverage of H56 multistage vaccine in South Africa.

    Science.gov (United States)

    Perez-Martinez, Angy P; Ong, Edison; Zhang, Lixin; Marrs, Carl F; He, Yongqun; Yang, Zhenhua

    2017-11-01

    H56/AERAS-456+IC31 (H56), composed of two early secretion proteins, Ag85B and ESAT-6, and a latency associated protein, Rv2660, and the IC31 Intercell adjuvant, is a new fusion subunit vaccine candidate designed to induce immunity against both new infection and reactivation of latent tuberculosis infection. Efficacy of subunit vaccines may be affected by the diversity of vaccine antigens among clinical strains and the extent of recognition by the diverse HLA molecules in the recipient population. Although a previous study showed the conservative nature of Ag85B- and ESAT-6-encoding genes, genetic diversity of Rv2660c that encodes RV2660 is largely unknown. The population coverage of H56 as a whole yet remains to be assessed. The present study was conducted to address these important knowledge gaps. DNA sequence analysis of Rv2660c found no variation among 83 of the 84 investigated clinical strains belonging to four genetic lineages. H56 was predicted to have as high as 99.6% population coverage in the South Africa population using the Immune Epitope Database (IEDB) Population Coverage Tool. Further comparison of H56 population coverage between South African Blacks and Caucasians based on the phenotypic frequencies of binding MHC Class I and Class II supertype alleles found that all of the nine MHC-I and six of eight MHC-II human leukocyte antigen (HLA) supertype alleles analyzed were significantly differentially expressed between the two subpopulations. This finding suggests the presence of race-specific functional binding motifs of MHC-I and MHC-II HLA alleles, which, in turn, highlights the importance of including diverse populations in vaccine clinical evaluation. In conclusion, H56 vaccine is predicted to have a promising population coverage in South Africa; this study demonstrates the utility of integrating comparative genomics and bioinformatics in bridging animal and clinical studies of novel TB vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evolutionary genomics of plant genes encoding N-terminal-TM-C2 domain proteins and the similar FAM62 genes and synaptotagmin genes of metazoans

    Directory of Open Access Journals (Sweden)

    Craxton Molly

    2007-07-01

    Full Text Available Abstract Background Synaptotagmin genes are found in animal genomes and are known to function in the nervous system. Genes with a similar domain architecture as well as sequence similarity to synaptotagmin C2 domains have also been found in plant genomes. The plant genes share an additional region of sequence similarity with a group of animal genes named FAM62. FAM62 genes also have a similar domain architecture. Little is known about the functions of the plant genes and animal FAM62 genes. Indeed, many members of the large and diverse Syt gene family await functional characterization. Understanding the evolutionary relationships among these genes will help to realize the full implications of functional studies and lead to improved genome annotation. Results I collected and compared plant Syt-like sequences from the primary nucleotide sequence databases at NCBI. The collection comprises six groups of plant genes conserved in embryophytes: NTMC2Type1 to NTMC2Type6. I collected and compared metazoan FAM62 sequences and identified some similar sequences from other eukaryotic lineages. I found evidence of RNA editing and alternative splicing. I compared the intron patterns of Syt genes. I also compared Rabphilin and Doc2 genes. Conclusion Genes encoding proteins with N-terminal-transmembrane-C2 domain architectures resembling synaptotagmins, are widespread in eukaryotes. A collection of these genes is presented here. The collection provides a resource for studies of intron evolution. I have classified the collection into homologous gene families according to distinctive patterns of sequence conservation and intron position. The evolutionary histories of these gene families are traceable through the appearance of family members in different eukaryotic lineages. Assuming an intron-rich eukaryotic ancestor, the conserved intron patterns distinctive of individual gene families, indicate independent origins of Syt, FAM62 and NTMC2 genes. Resemblances

  13. Conserved genetic pathways associated with microphthalmia, anophthalmia, and coloboma.

    Science.gov (United States)

    Reis, Linda M; Semina, Elena V

    2015-06-01

    The human eye is a complex organ whose development requires extraordinary coordination of developmental processes. The conservation of ocular developmental steps in vertebrates suggests possible common genetic mechanisms. Genetic diseases involving the eye represent a leading cause of blindness in children and adults. During the last decades, there has been an exponential increase in genetic studies of ocular disorders. In this review, we summarize current success in identification of genes responsible for microphthalmia, anophthalmia, and coloboma (MAC) phenotypes, which are associated with early defects in embryonic eye development. Studies in animal models for the orthologous genes identified overlapping phenotypes for most factors, confirming the conservation of their function in vertebrate development. These animal models allow for further investigation of the mechanisms of MAC, integration of various identified genes into common developmental pathways and finally, provide an avenue for the development and testing of therapeutic interventions. © 2015 Wiley Periodicals, Inc.

  14. Habitat Re-Creation (Ecological Restoration) as a Strategy for Conserving Insect Communities in Highly Fragmented Landscapes.

    Science.gov (United States)

    Shuey, John A

    2013-12-05

    Because of their vast diversity, measured by both numbers of species as well as life history traits, insects defy comprehensive conservation planning. Thus, almost all insect conservation efforts target individual species. However, serious insect conservation requires goals that are set at the faunal level and conservation success requires strategies that conserve intact communities. This task is complicated in agricultural landscapes by high levels of habitat fragmentation and isolation. In many regions, once widespread insect communities are now functionally trapped on islands of ecosystem remnants and subject to a variety of stressors associated with isolation, small population sizes and artificial population fragmentation. In fragmented landscapes ecological restoration can be an effective strategy for reducing localized insect extinction rates, but insects are seldom included in restoration design criteria. It is possible to incorporate a few simple conservation criteria into restoration designs that enhance impacts to entire insect communities. Restoration can be used as a strategy to address fragmentation threats to isolated insect communities if insect communities are incorporated at the onset of restoration planning. Fully incorporating insect communities into restoration designs may increase the cost of restoration two- to three-fold, but the benefits to biodiversity conservation and the ecological services provided by intact insect communities justify the cost.

  15. smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni

    Science.gov (United States)

    2012-01-01

    Background MicroRNAs (miRNAs) constitute a family of small RNA (sRNA) population that regulates the gene expression and plays an important role in plant development, metabolism, signal transduction and stress response. Extensive studies on miRNAs have been performed in different plants such as Arabidopsis thaliana, Oryza sativa etc. and volume of the miRNA database, mirBASE, has been increasing on day to day basis. Stevia rebaudiana Bertoni is an important perennial herb which accumulates high concentrations of diterpene steviol glycosides which contributes to its high indexed sweetening property with no calorific value. Several studies have been carried out for understanding molecular mechanism involved in biosynthesis of these glycosides, however, information about miRNAs has been lacking in S. rebaudiana. Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs irrespective of availability of genome sequence data. Results To identify miRNAs in S. rebaudiana, sRNA library was constructed and sequenced using Illumina genome analyzer II. A total of 30,472,534 reads representing 2,509,190 distinct sequences were obtained from sRNA library. Based on sequence similarity, we identified 100 miRNAs belonging to 34 highly conserved families. Also, we identified 12 novel miRNAs whose precursors were potentially generated from stevia EST and nucleotide sequences. All novel sequences have not been earlier described in other plant species. Putative target genes were predicted for most conserved and novel miRNAs. The predicted targets are mainly mRNA encoding enzymes regulating essential plant metabolic and signaling pathways. Conclusions This study led to the identification of 34 highly conserved miRNA families and 12 novel potential miRNAs indicating that specific miRNAs exist in stevia species. Our results provided information on stevia miRNAs and their targets building a foundation for future studies to

  16. Characterization of differentially expressed genes using high-dimensional co-expression networks

    DEFF Research Database (Denmark)

    Coelho Goncalves de Abreu, Gabriel; Labouriau, Rodrigo S.

    2010-01-01

    We present a technique to characterize differentially expressed genes in terms of their position in a high-dimensional co-expression network. The set-up of Gaussian graphical models is used to construct representations of the co-expression network in such a way that redundancy and the propagation...... that allow to make effective inference in problems with high degree of complexity (e.g. several thousands of genes) and small number of observations (e.g. 10-100) as typically occurs in high throughput gene expression studies. Taking advantage of the internal structure of decomposable graphical models, we...... construct a compact representation of the co-expression network that allows to identify the regions with high concentration of differentially expressed genes. It is argued that differentially expressed genes located in highly interconnected regions of the co-expression network are less informative than...

  17. Autism Spectrum Disorder and High Confidence Gene Factors

    OpenAIRE

    Mai, MOCHIZUKI

    2017-01-01

    Autism spectrum disorder (ASD) is a neurological developmental disorder whose mechanism isyet unclear. However, recent ASD studies, which employ exome- and genome-wide sequencing,have identified some high-confidence ASD genes. Those ASD studies have revealed that CHD8is likely associated with ASD. In this article, we highlight that CHD8 may regulate othercandidate ASD risk genes. Current research indicates that there exist some thousand autismsusceptibility candidate genes. Moreover, we sugge...

  18. Segment polarity gene expression in a myriapod reveals conserved and diverged aspects of early head patterning in arthropods.

    Science.gov (United States)

    Janssen, Ralf

    2012-09-01

    Arthropods show two kinds of developmental mode. In the so-called long germ developmental mode (as exemplified by the fly Drosophila), all segments are formed almost simultaneously from a preexisting field of cells. In contrast, in the so-called short germ developmental mode (as exemplified by the vast majority of arthropods), only the anterior segments are patterned similarly as in Drosophila, and posterior segments are added in a single or double segmental periodicity from a posterior segment addition zone (SAZ). The addition of segments from the SAZ is controlled by dynamic waves of gene activity. Recent studies on a spider have revealed that a similar dynamic process, involving expression of the segment polarity gene (SPG) hedgehog (hh), is involved in the formation of the anterior head segments. The present study shows that in the myriapod Glomeris marginata the early expression of hh is also in a broad anterior domain, but this domain corresponds only to the ocular and antennal segment. It does not, like in spiders, represent expression in the posterior adjacent segment. In contrast, the anterior hh pattern is conserved in Glomeris and insects. All investigated myriapod SPGs and associated factors are expressed with delay in the premandibular (tritocerebral) segment. This delay is exclusively found in insects and myriapods, but not in chelicerates, crustaceans and onychophorans. Therefore, it may represent a synapomorphy uniting insects and myriapods (Atelocerata hypothesis), contradicting the leading opinion that suggests a sister relationship of crustaceans and insects (Pancrustacea hypothesis). In Glomeris embryos, the SPG engrailed is first expressed in the mandibular segment. This feature is conserved in representatives of all arthropod classes suggesting that the mandibular segment may have a special function in anterior patterning.

  19. Physical mapping of the Period gene on meiotic chromosomes of South American grasshoppers (Acridomorpha, Orthoptera).

    Science.gov (United States)

    Souza, T E; Oliveira, D L; Santos, J F; Rieger, T T

    2014-12-19

    The single-copy gene Period was located in five grasshopper species belonging to the Acridomorpha group through permanent in situ hybridization (PISH). The mapping revealed one copy of this gene in the L1 chromosome pair in Ommexecha virens, Xyleus discoideus angulatus, Tropidacris collaris, Schistocerca pallens, and Stiphra robusta. A possible second copy was mapped on the L2 chromosome pair in S. robusta, which should be confirmed by further studies. Except for the latter case, the chromosomal position of the Period gene was highly conserved among the four families studied. The S. robusta karyotype also differs from the others both in chromosome number and morphology. The position conservation of the single-copy gene Period contrasts with the location diversification of multigene families in these species. The localization of single-copy genes by PISH can provide new insights about the genomic content and chromosomal evolution of grasshoppers and others insects.

  20. Impact of local empowerment on conservation practices in a highly developed country

    OpenAIRE

    Engen, Sigrid; Hausner, Vera Helene

    2017-01-01

    Source at http://dx.doi.org/10.1111/conl.12369 Community-based conservation, where local decision makers are responsible for balancing conservation and development, is often preferred to exclusion- ary conservation that prioritizes use-limitation through strict regulation. Un- raveling the evidence for conservation impact of different governance regimes is challenging. Focusing on conservation practices before and after a reform can provide an early indication of behaviora...

  1. Adaptations to High Salt in a Halophilic Protist: Differential Expression and Gene Acquisitions through Duplications and Gene Transfers

    Science.gov (United States)

    Harding, Tommy; Roger, Andrew J.; Simpson, Alastair G. B.

    2017-01-01

    The capacity of halophiles to thrive in extreme hypersaline habitats derives partly from the tight regulation of ion homeostasis, the salt-dependent adjustment of plasma membrane fluidity, and the increased capability to manage oxidative stress. Halophilic bacteria, and archaea have been intensively studied, and substantial research has been conducted on halophilic fungi, and the green alga Dunaliella. By contrast, there have been very few investigations of halophiles that are phagotrophic protists, i.e., protozoa. To gather fundamental knowledge about salt adaptation in these organisms, we studied the transcriptome-level response of Halocafeteria seosinensis (Stramenopiles) grown under contrasting salinities. We provided further evolutionary context to our analysis by identifying genes that underwent recent duplications. Genes that were highly responsive to salinity variations were involved in stress response (e.g., chaperones), ion homeostasis (e.g., Na+/H+ transporter), metabolism and transport of lipids (e.g., sterol biosynthetic genes), carbohydrate metabolism (e.g., glycosidases), and signal transduction pathways (e.g., transcription factors). A significantly high proportion (43%) of duplicated genes were also differentially expressed, accentuating the importance of gene expansion in adaptation by H. seosinensis to high salt environments. Furthermore, we found two genes that were lateral acquisitions from bacteria, and were also highly up-regulated and highly expressed at high salt, suggesting that this evolutionary mechanism could also have facilitated adaptation to high salt. We propose that a transition toward high-salt adaptation in the ancestors of H. seosinensis required the acquisition of new genes via duplication, and some lateral gene transfers (LGTs), as well as the alteration of transcriptional programs, leading to increased stress resistance, proper establishment of ion gradients, and modification of cell structure properties like membrane

  2. Adaptations to High Salt in a Halophilic Protist: Differential Expression and Gene Acquisitions through Duplications and Gene Transfers

    Directory of Open Access Journals (Sweden)

    Tommy Harding

    2017-05-01

    Full Text Available The capacity of halophiles to thrive in extreme hypersaline habitats derives partly from the tight regulation of ion homeostasis, the salt-dependent adjustment of plasma membrane fluidity, and the increased capability to manage oxidative stress. Halophilic bacteria, and archaea have been intensively studied, and substantial research has been conducted on halophilic fungi, and the green alga Dunaliella. By contrast, there have been very few investigations of halophiles that are phagotrophic protists, i.e., protozoa. To gather fundamental knowledge about salt adaptation in these organisms, we studied the transcriptome-level response of Halocafeteria seosinensis (Stramenopiles grown under contrasting salinities. We provided further evolutionary context to our analysis by identifying genes that underwent recent duplications. Genes that were highly responsive to salinity variations were involved in stress response (e.g., chaperones, ion homeostasis (e.g., Na+/H+ transporter, metabolism and transport of lipids (e.g., sterol biosynthetic genes, carbohydrate metabolism (e.g., glycosidases, and signal transduction pathways (e.g., transcription factors. A significantly high proportion (43% of duplicated genes were also differentially expressed, accentuating the importance of gene expansion in adaptation by H. seosinensis to high salt environments. Furthermore, we found two genes that were lateral acquisitions from bacteria, and were also highly up-regulated and highly expressed at high salt, suggesting that this evolutionary mechanism could also have facilitated adaptation to high salt. We propose that a transition toward high-salt adaptation in the ancestors of H. seosinensis required the acquisition of new genes via duplication, and some lateral gene transfers (LGTs, as well as the alteration of transcriptional programs, leading to increased stress resistance, proper establishment of ion gradients, and modification of cell structure properties like

  3. Identification of conserved drought stress responsive gene-network across tissues and developmental stages in rice.

    Science.gov (United States)

    Smita, Shuchi; Katiyar, Amit; Pandey, Dev Mani; Chinnusamy, Viswanathan; Archak, Sunil; Bansal, Kailash Chander

    2013-01-01

    Identification of genes that are coexpressed across various tissues and environmental stresses is biologically interesting, since they may play coordinated role in similar biological processes. Genes with correlated expression patterns can be best identified by using coexpression network analysis of transcriptome data. In the present study, we analyzed the temporal-spatial coordination of gene expression in root, leaf and panicle of rice under drought stress and constructed network using WGCNA and Cytoscape. Total of 2199 differentially expressed genes (DEGs) were identified in at least three or more tissues, wherein 88 genes have coordinated expression profile among all the six tissues under drought stress. These 88 highly coordinated genes were further subjected to module identification in the coexpression network. Based on chief topological properties we identified 18 hub genes such as ABC transporter, ATP-binding protein, dehydrin, protein phosphatase 2C, LTPL153 - Protease inhibitor, phosphatidylethanolaminebinding protein, lactose permease-related, NADP-dependent malic enzyme, etc. Motif enrichment analysis showed the presence of ABRE cis-elements in the promoters of > 62% of the coordinately expressed genes. Our results suggest that drought stress mediated upregulated gene expression was coordinated through an ABA-dependent signaling pathway across tissues, at least for the subset of genes identified in this study, while down regulation appears to be regulated by tissue specific pathways in rice.

  4. 78 FR 51463 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures

    Science.gov (United States)

    2013-08-20

    ... merging the metal halide lamp fixture and the high-intensity discharge (HID) lamp rulemakings. This NOPR... Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures; Proposed Rule #0;#0;Federal...: Energy Conservation Standards for Metal Halide Lamp Fixtures AGENCY: Office of Energy Efficiency and...

  5. Catchment-scale conservation units identified for the threatened Yarra pygmy perch (Nannoperca obscura) in highly modified river systems.

    Science.gov (United States)

    Brauer, Chris J; Unmack, Peter J; Hammer, Michael P; Adams, Mark; Beheregaray, Luciano B

    2013-01-01

    Habitat fragmentation caused by human activities alters metapopulation dynamics and decreases biological connectivity through reduced migration and gene flow, leading to lowered levels of population genetic diversity and to local extinctions. The threatened Yarra pygmy perch, Nannoperca obscura, is a poor disperser found in small, isolated populations in wetlands and streams of southeastern Australia. Modifications to natural flow regimes in anthropogenically-impacted river systems have recently reduced the amount of habitat for this species and likely further limited its opportunity to disperse. We employed highly resolving microsatellite DNA markers to assess genetic variation, population structure and the spatial scale that dispersal takes place across the distribution of this freshwater fish and used this information to identify conservation units for management. The levels of genetic variation found for N. obscura are amongst the lowest reported for a fish species (mean heterozygosity of 0.318 and mean allelic richness of 1.92). We identified very strong population genetic structure, nil to little evidence of recent migration among demes and a minimum of 11 units for conservation management, hierarchically nested within four major genetic lineages. A combination of spatial analytical methods revealed hierarchical genetic structure corresponding with catchment boundaries and also demonstrated significant isolation by riverine distance. Our findings have implications for the national recovery plan of this species by demonstrating that N. obscura populations should be managed at a catchment level and highlighting the need to restore habitat and avoid further alteration of the natural hydrology.

  6. Models of gene gain and gene loss for probabilistic reconstruction of gene content in the last universal common ancestor of life

    OpenAIRE

    Kannan, Lavanya; Li, Hua; Rubinstein, Boris; Mushegian, Arcady

    2013-01-01

    Background The problem of probabilistic inference of gene content in the last common ancestor of several extant species with completely sequenced genomes is: for each gene that is conserved in all or some of the genomes, assign the probability that its ancestral gene was present in the genome of their last common ancestor. Results We have developed a family of models of gene gain and gene loss in evolution, and applied the maximum-likelihood approach that uses phylogenetic tree of prokaryotes...

  7. Evaluation of the conserve flavin reductase gene from three ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... means of PCR technique. The nucleic acid sequences of the PCR primers were designed using conserved nucleic acid sequences of the flavin reductase enzyme from. Rhodococcus sp. strain IGTS8. The oligonucleotide primers were as follows: 5'-GAA TTC ATG TCT GAC. AAG CCG AAT GCC-3' (forward) ...

  8. The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module

    Directory of Open Access Journals (Sweden)

    Rogers Crystal D

    2011-12-01

    Full Text Available Abstract Background The molecular mechanism that initiates the formation of the vertebrate central nervous system has long been debated. Studies in Xenopus and mouse demonstrate that inhibition of BMP signaling is sufficient to induce neural tissue in explants or ES cells respectively, whereas studies in chick argue that instructive FGF signaling is also required for the expression of neural genes. Although additional signals may be involved in neural induction and patterning, here we focus on the roles of BMP inhibition and FGF8a. Results To address the question of necessity and sufficiency of BMP inhibition and FGF signaling, we compared the temporal expression of the five earliest genes expressed in the neuroectoderm and determined their requirements for induction at the onset of neural plate formation in Xenopus. Our results demonstrate that the onset and peak of expression of the genes vary and that they have different regulatory requirements and are therefore unlikely to share a conserved neural induction regulatory module. Even though all require inhibition of BMP for expression, some also require FGF signaling; expression of the early-onset pan-neural genes sox2 and foxd5α requires FGF signaling while other early genes, sox3, geminin and zicr1 are induced by BMP inhibition alone. Conclusions We demonstrate that BMP inhibition and FGF signaling induce neural genes independently of each other. Together our data indicate that although the spatiotemporal expression patterns of early neural genes are similar, the mechanisms involved in their expression are distinct and there are different signaling requirements for the expression of each gene.

  9. Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis.

    Science.gov (United States)

    Asamizu, Erika; Nakamura, Yasukazu; Sato, Shusei; Tabata, Satoshi

    2004-02-01

    To perform a comprehensive analysis of genes expressed in a model legume, Lotus japonicus, a total of 74472 3'-end expressed sequence tags (EST) were generated from cDNA libraries produced from six different organs. Clustering of sequences was performed with an identity criterion of 95% for 50 bases, and a total of 20457 non-redundant sequences, 8503 contigs and 11954 singletons were generated. EST sequence coverage was analyzed by using the annotated L. japonicus genomic sequence and 1093 of the 1889 predicted protein-encoding genes (57.9%) were hit by the EST sequence(s). Gene content was compared to several plant species. Among the 8503 contigs, 471 were identified as sequences conserved only in leguminous species and these included several disease resistance-related genes. This suggested that in legumes, these genes may have evolved specifically to resist pathogen attack. The rate of gene sequence divergence was assessed by comparing similarity level and functional category based on the Gene Ontology (GO) annotation of Arabidopsis genes. This revealed that genes encoding ribosomal proteins, as well as those related to translation, photosynthesis, and cellular structure were more abundantly represented in the highly conserved class, and that genes encoding transcription factors and receptor protein kinases were abundantly represented in the less conserved class. To make the sequence information and the cDNA clones available to the research community, a Web database with useful services was created at http://www.kazusa.or.jp/en/plant/lotus/EST/.

  10. Chromosomal mapping of H3 histone and 5S rRNA genes in eight species of Astyanax (Pisces, Characiformes) with different diploid numbers: syntenic conservation of repetitive genes.

    Science.gov (United States)

    Piscor, Diovani; Parise-Maltempi, Patricia Pasquali

    2016-03-01

    The genus Astyanax is widely distributed from the southern United States to northern Patagonia, Argentina. While cytogenetic studies have been performed for this genus, little is known about the histone gene families. The aim of this study was to examine the chromosomal relationships among the different species of Astyanax. The chromosomal locations of the 5S rRNA and H3 histone genes were determined in A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, A. mexicanus (all 2n = 50), A. fasciatus (2n = 46), and A. schubarti (2n = 36). All eight species exhibited H3 histone clusters on two chromosome pairs. In six species (A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, and A. fasciatus), syntenic clusters of H3 histone and 5S rDNA were observed on metacentric (m) or submetacentric (sm) chromosomes. In seven species, clusters of 5S rDNA sequences were located on one or two chromosome pairs. In A. mexicanus, 5S rDNA clusters were located on four chromosome pairs. This study demonstrates that H3 histone clusters are conserved on two chromosome pairs in the genus Astyanax, and specific chromosomal features may contribute to the genomic organization of the H3 histone and 5S rRNA genes.

  11. The pyrH gene of Lactococcus lactis subsp. cremoris encoding UMP kinase is transcribed as part of an operon including the frr1 gene encoding ribosomal recycling factor

    DEFF Research Database (Denmark)

    Wadskov-Hansen, Steen Lüders; Martinussen, Jan; Hammer, Karin

    2000-01-01

    establishing the ability of the encoded protein to synthesize UDP. The pyrH gene in L. lactis is flanked downstream by frr1 encoding ribosomal recycling factor 1 and upstream by an open reading frame, orfA, of unknown function. The three genes were shown to constitute an operon transcribed in the direction orf......A-pyrH-frr1 from a promoter immediately in front of orfA. This operon belongs to an evolutionary highly conserved gene cluster, since the organization of pyrH on the chromosomal level in L. lactis shows a high resemblance to that found in Bacillus subtilis as well as in Escherichia coli and several other...

  12. Genome-Wide Identification of the Alba Gene Family in Plants and Stress-Responsive Expression of the Rice Alba Genes.

    Science.gov (United States)

    Verma, Jitendra Kumar; Wardhan, Vijay; Singh, Deepali; Chakraborty, Subhra; Chakraborty, Niranjan

    2018-03-28

    Architectural proteins play key roles in genome construction and regulate the expression of many genes, albeit the modulation of genome plasticity by these proteins is largely unknown. A critical screening of the architectural proteins in five crop species, viz., Oryza sativa , Zea mays , Sorghum bicolor , Cicer arietinum , and Vitis vinifera , and in the model plant Arabidopsis thaliana along with evolutionary relevant species such as Chlamydomonas reinhardtii , Physcomitrella patens , and Amborella trichopoda , revealed 9, 20, 10, 7, 7, 6, 1, 4, and 4 Alba (acetylation lowers binding affinity) genes, respectively. A phylogenetic analysis of the genes and of their counterparts in other plant species indicated evolutionary conservation and diversification. In each group, the structural components of the genes and motifs showed significant conservation. The chromosomal location of the Alba genes of rice ( OsAlba ), showed an unequal distribution on 8 of its 12 chromosomes. The expression profiles of the OsAlba genes indicated a distinct tissue-specific expression in the seedling, vegetative, and reproductive stages. The quantitative real-time PCR (qRT-PCR) analysis of the OsAlba genes confirmed their stress-inducible expression under multivariate environmental conditions and phytohormone treatments. The evaluation of the regulatory elements in 68 Alba genes from the 9 species studied led to the identification of conserved motifs and overlapping microRNA (miRNA) target sites, suggesting the conservation of their function in related proteins and a divergence in their biological roles across species. The 3D structure and the prediction of putative ligands and their binding sites for OsAlba proteins offered a key insight into the structure-function relationship. These results provide a comprehensive overview of the subtle genetic diversification of the OsAlba genes, which will help in elucidating their functional role in plants.

  13. Conservation and divergence of gene expression plasticity following c. 140 million years of evolution in lodgepole pine (Pinus contorta) and interior spruce (Picea glauca×Picea engelmannii).

    Science.gov (United States)

    Yeaman, Sam; Hodgins, Kathryn A; Suren, Haktan; Nurkowski, Kristin A; Rieseberg, Loren H; Holliday, Jason A; Aitken, Sally N

    2014-07-01

    Species respond to environmental stress through a combination of genetic adaptation and phenotypic plasticity, both of which may be important for survival in the face of climatic change. By characterizing the molecular basis of plastic responses and comparing patterns among species, it is possible to identify how such traits evolve. Here, we used de novo transcriptome assembly and RNAseq to explore how patterns of gene expression differ in response to temperature, moisture, and light regime treatments in lodgepole pine (Pinus contorta) and interior spruce (a natural hybrid population of Picea glauca and Picea engelmannii). We found wide evidence for an effect of treatment on expression within each species, with 6413 and 11,658 differentially expressed genes identified in spruce and pine, respectively. Comparing patterns of expression among these species, we found that 74% of all orthologs with differential expression had a pattern that was conserved in both species, despite 140 million yr of evolution. We also found that the specific treatments driving expression patterns differed between genes with conserved versus diverged patterns of expression. We conclude that natural selection has probably played a role in shaping plastic responses to environment in these species. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  14. Vertebrate sex-determining genes play musical chairs.

    Science.gov (United States)

    Pan, Qiaowei; Anderson, Jennifer; Bertho, Sylvain; Herpin, Amaury; Wilson, Catherine; Postlethwait, John H; Schartl, Manfred; Guiguen, Yann

    2016-01-01

    Sexual reproduction is one of the most highly conserved processes in evolution. However, the genetic and cellular mechanisms making the decision of whether the undifferentiated gonad of animal embryos develops either towards male or female are manifold and quite diverse. In vertebrates, sex-determining mechanisms range from environmental to simple or complex genetic mechanisms and different mechanisms have evolved repeatedly and independently. In species with simple genetic sex-determination, master sex-determining genes lying on sex chromosomes drive the gonadal differentiation process by switching on a developmental program, which ultimately leads to testicular or ovarian differentiation. So far, very few sex-determining genes have been identified in vertebrates and apart from mammals and birds, these genes are apparently not conserved over a larger number of related orders, families, genera, or even species. To fill this knowledge gap and to better explore genetic sex-determination, we propose a strategy (RAD-Sex) that makes use of next-generation sequencing technology to identify genetic markers that define sex-specific segments of the male or female genome. Copyright © 2016 Académie des sciences. All rights reserved.

  15. Sponge non-metastatic Group I Nme gene/protein - structure and function is conserved from sponges to humans

    Science.gov (United States)

    2011-01-01

    Background Nucleoside diphosphate kinases NDPK are evolutionarily conserved enzymes present in Bacteria, Archaea and Eukarya, with human Nme1 the most studied representative of the family and the first identified metastasis suppressor. Sponges (Porifera) are simple metazoans without tissues, closest to the common ancestor of all animals. They changed little during evolution and probably provide the best insight into the metazoan ancestor's genomic features. Recent studies show that sponges have a wide repertoire of genes many of which are involved in diseases in more complex metazoans. The original function of those genes and the way it has evolved in the animal lineage is largely unknown. Here we report new results on the metastasis suppressor gene/protein homolog from the marine sponge Suberites domuncula, NmeGp1Sd. The purpose of this study was to investigate the properties of the sponge Group I Nme gene and protein, and compare it to its human homolog in order to elucidate the evolution of the structure and function of Nme. Results We found that sponge genes coding for Group I Nme protein are intron-rich. Furthermore, we discovered that the sponge NmeGp1Sd protein has a similar level of kinase activity as its human homolog Nme1, does not cleave negatively supercoiled DNA and shows nonspecific DNA-binding activity. The sponge NmeGp1Sd forms a hexamer, like human Nme1, and all other eukaryotic Nme proteins. NmeGp1Sd interacts with human Nme1 in human cells and exhibits the same subcellular localization. Stable clones expressing sponge NmeGp1Sd inhibited the migratory potential of CAL 27 cells, as already reported for human Nme1, which suggests that Nme's function in migratory processes was engaged long before the composition of true tissues. Conclusions This study suggests that the ancestor of all animals possessed a NmeGp1 protein with properties and functions similar to evolutionarily recent versions of the protein, even before the appearance of true tissues

  16. Network evolution: rewiring and signatures of conservation in signaling.

    Directory of Open Access Journals (Sweden)

    Mark G F Sun

    Full Text Available The analysis of network evolution has been hampered by limited availability of protein interaction data for different organisms. In this study, we investigate evolutionary mechanisms in Src Homology 3 (SH3 domain and kinase interaction networks using high-resolution specificity profiles. We constructed and examined networks for 23 fungal species ranging from Saccharomyces cerevisiae to Schizosaccharomyces pombe. We quantify rates of different rewiring mechanisms and show that interaction change through binding site evolution is faster than through gene gain or loss. We found that SH3 interactions evolve swiftly, at rates similar to those found in phosphoregulation evolution. Importantly, we show that interaction changes are sufficiently rapid to exhibit saturation phenomena at the observed timescales. Finally, focusing on the SH3 interaction network, we observe extensive clustering of binding sites on target proteins by SH3 domains and a strong correlation between the number of domains that bind a target protein (target in-degree and interaction conservation. The relationship between in-degree and interaction conservation is driven by two different effects, namely the number of clusters that correspond to interaction interfaces and the number of domains that bind to each cluster leads to sequence specific conservation, which in turn results in interaction conservation. In summary, we uncover several network evolution mechanisms likely to generalize across peptide recognition modules.

  17. An original SERPINA3 gene cluster: Elucidation of genomic organization and gene expression in the Bos taurus 21q24 region

    Directory of Open Access Journals (Sweden)

    Ouali Ahmed

    2008-04-01

    Full Text Available Abstract Background The superfamily of serine proteinase inhibitors (serpins is involved in numerous fundamental biological processes as inflammation, blood coagulation and apoptosis. Our interest is focused on the SERPINA3 sub-family. The major human plasma protease inhibitor, α1-antichymotrypsin, encoded by the SERPINA3 gene, is homologous to genes organized in clusters in several mammalian species. However, although there is a similar genic organization with a high degree of sequence conservation, the reactive-centre-loop domains, which are responsible for the protease specificity, show significant divergences. Results We provide additional information by analyzing the situation of SERPINA3 in the bovine genome. A cluster of eight genes and one pseudogene sharing a high degree of identity and the same structural organization was characterized. Bovine SERPINA3 genes were localized by radiation hybrid mapping on 21q24 and only spanned over 235 Kilobases. For all these genes, we propose a new nomenclature from SERPINA3-1 to SERPINA3-8. They share approximately 70% of identity with the human SERPINA3 homologue. In the cluster, we described an original sub-group of six members with an unexpected high degree of conservation for the reactive-centre-loop domain, suggesting a similar peptidase inhibitory pattern. Preliminary expression analyses of these bovSERPINA3s showed different tissue-specific patterns and diverse states of glycosylation and phosphorylation. Finally, in the context of phylogenetic analyses, we improved our knowledge on mammalian SERPINAs evolution. Conclusion Our experimental results update data of the bovine genome sequencing, substantially increase the bovSERPINA3 sub-family and enrich the phylogenetic tree of serpins. We provide new opportunities for future investigations to approach the biological functions of this unusual subset of serine proteinase inhibitors.

  18. High spatial resolution mapping of the Cerrado's land cover and land use types in the priority area for conservation Chapada da Contagem, Brazil.

    Science.gov (United States)

    Ribeiro, F.; Roberts, D. A.; Davis, F. W.; Antunes Daldegan, G.; Nackoney, J.; Hess, L. L.

    2016-12-01

    The Brazilian savanna, Cerrado, is the second largest biome over South America and the most floristically diverse savanna in the world. This biome is considered a conservation hotspot in respect to its biodiversity importance and rapid transformation of its landscape. The Cerrado's natural vegetation has been severely transformed by agriculture and pasture activities. Currently it is the main agricultural frontier in Brazil and one of the most threatened Brazilian biomes. This scenario results in environmental impacts such as ecosystems fragmentation as well as losses in connectivity, biodiversity and gene flow, changes in the microclimate and energy, carbon and nutrients cycles, among others. The Priority Areas for Conservation is a governmental program from Brazil that identifies areas with high conservation priority. One of this program's recommendation is a natural vegetation map including their major ecosystem classes. This study aims to generate more precise information for the Cerrado's vegetation. The main objective of this study is to identify which ecosystems are being prioritized and/or threatened by land use, refining information for further protection. In order to test methods, the priority area for conservation Chapada da Contagem was selected as the study site. This area is ranked as "extremely high priority" by the government and is located in the Federal District and Goias State, Brazil. Satellites with finer spatial resolution may improve the classification of the Cerrado's vegetation. Remote sensing methods and two criteria were tested using RapidEye 3A imagery (5m spatial resolution) collected in 2014 in order to classify the Cerrado's major land cover types of this area, as well as its land use. One criterion considers the Cerrado's major terrestrial ecosystems, which are divided into forest, savanna and grassland. The other involves scaling it down to the major physiognomic groups of each ecosystem. Other sources of environmental dataset such

  19. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence

    Science.gov (United States)

    Gordon, Kacy L.; Arthur, Robert K.; Ruvinsky, Ilya

    2015-01-01

    Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. PMID:26020930

  20. Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence.

    Directory of Open Access Journals (Sweden)

    Kacy L Gordon

    2015-05-01

    Full Text Available Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2 from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements.

  1. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  2. Genomic assessment of the evolution of the prion protein gene family in vertebrates.

    Science.gov (United States)

    Harrison, Paul M; Khachane, Amit; Kumar, Manish

    2010-05-01

    Prion diseases are devastating neurological disorders caused by the propagation of particles containing an alternative beta-sheet-rich form of the prion protein (PrP). Genes paralogous to PrP, called Doppel and Shadoo, have been identified, that also have neuropathological relevance. To aid in the further functional characterization of PrP and its relatives, we annotated completely the PrP gene family (PrP-GF), in the genomes of 42 vertebrates, through combined strategic application of gene prediction programs and advanced remote homology detection techniques (such as HMMs, PSI-TBLASTN and pGenThreader). We have uncovered several previously undescribed paralogous genes and pseudogenes. We find that current high-quality genomic evidence indicates that the PrP relative Doppel, was likely present in the last common ancestor of present-day Tetrapoda, but was lost in the bird lineage, since its divergence from reptiles. Using the new gene annotations, we have defined the consensus of structural features that are characteristic of the PrP and Doppel structures, across diverse Tetrapoda clades. Furthermore, we describe in detail a transcribed pseudogene derived from Shadoo that is conserved across primates, and that overlaps the meiosis gene, SYCE1, thus possibly regulating its expression. In addition, we analysed the locus of PRNP/PRND for significant conservation across the genomic DNA of eleven mammals, and determined the phylogenetic penetration of non-coding exons. The genomic evidence indicates that the second PRNP non-coding exon found in even-toed ungulates and rodents, is conserved in all high-coverage genome assemblies of primates (human, chimp, orang utan and macaque), and is, at least, likely to have fallen out of use during primate speciation. Furthermore, we have demonstrated that the PRNT gene (at the PRNP human locus) is conserved across at least sixteen mammals, and evolves like a long non-coding RNA, fashioned from fragments of ancient, long

  3. Evolutionarily conserved regions of the human c-myc protein can be uncoupled from transforming activity

    International Nuclear Information System (INIS)

    Sarid, J.; Halazonetis, T.D.; Murphy, W.; Leder, P.

    1987-01-01

    The myc family of oncogenes contains coding sequences that have been preserved in different species for over 400 million years. This conservation (which implies functional selection) is broadly represented throughout the C-terminal portion of the human c-myc protein but is largely restricted to three cluster of amino acid sequences in the N-terminal region. The authors have examined the role that the latter three regions of the c-myc protein might play in the transforming function of the c-myc gene. Several mutations, deletions and frameshifts, were introduced into the c-myc gene, and these mutant genes were tested for their ability to collaborate with the EJ-ras oncogene to transform rat embryo fibroblasts. Complete elimination of the first two N-terminal conserved segments abolished transforming activity. In contrast, genes altered in a portion of the second or the entire third conserved segment retained their transforming activity. Thus, the latter two segments are not required for the transformation process, suggesting that they serve another function related only to the normal expression of the c-myc gene

  4. [Genome-wide identification and bioinformatic analysis of PPR gene family in tomato].

    Science.gov (United States)

    Ding, Anming; Li, Ling; Qu, Xu; Sun, Tingting; Chen, Yaqiong; Zong, Peng; Li, Zunqiang; Gong, Daping; Sun, Yuhe

    2014-01-01

    Pentatricopeptide repeats (PPRs) genes constitute one of the largest gene families in plants, which play a broad and essential role in plant growth and development. In this study, the protein sequences annotated by the tomato (S. lycopersicum L.) genome project were screened with the Pfam PPR sequences. A total of 471 putative PPR-encoding genes were identified. Based on the motifs defined in A. thaliana L., protein structure and conserved sequences for each tomato motif were analyzed. We also analyzed phylogenetic relationship, subcellular localization, expression and GO analysis of the identified gene sequences. Our results demonstrate that tomato PPR gene family contains two subfamilies, P and PLS, each accounting for half of the family. PLS subfamily can be divided into four subclasses i.e., PLS, E, E+ and DYW. Each subclass of sequences forms a clade in the phylogenetic tree. The PPR motifs were found highly conserved among plants. The tomato PPR genes were distributed over 12 chromosomes and most of them lack introns. The majority of PPR proteins harbor mitochondrial or chloroplast localization sequences, whereas GO analysis showed that most PPR proteins participate in RNA-related biological processes.

  5. From genes to landscapes: conserving biodiversity at multiple scales.

    Science.gov (United States)

    Sally. Duncan

    2000-01-01

    Biodiversity has at last become a familiar term outside of scientific circles. Ways of measuring it and mapping it are advancing and becoming more complex, but ways of deciding how to conserve it remain mixed at best, and the resources available to manage dimishing biodiversity are themselves scarce. One significant problem is that policy decisions are frequently at...

  6. Conservation implications of the genetic diversity of Gymnospermium microrrhynchum in Korea.

    Science.gov (United States)

    Lee, S H; Yeon, M H; Shim, J K

    2016-10-24

    Gymnospermium microrrhynchum (Berberidaceae) is an ephemeral perennial herb with a limited distributional range in the Baekdudaegan mountain areas of the Korean Peninsula, and is designated a rare plant by the Korean Forest Service. Information about its genetic variation and structure is important for developing successful conservation strategies. To investigate the genetic variation within and among seven G. microrrhynchum populations, random amplified polymorphic DNA data were obtained for 207 individuals. The populations exhibited relatively low genetic diversity: the percentage of polymorphic bands (PPB) ranged from 32.1 to 66.7% (mean = 51.4%) and Nei's gene diversity (H E ) ranged from 0.116 to 0.248 (mean = 0.188). However, genetic diversity at the species level was relatively high (PPB = 98.7%, H E = 0.349). An analysis of molecular variance revealed high differentiation among populations (Φ ST = 0.6818), but the low gene flow value (N m = 0.117) suggests a low level of gene exchange occurs among populations. Principal coordinates analysis revealed that individuals were separated according to population. The high level of genetic differentiation and restricted gene flow among G. microrrhynchum populations, which resulted from their isolation in alpine areas after the Ice Age, indicates that it is essential to protect and manage all populations, rather than focus on specific populations, in order to maintain the genetic diversity of this species.

  7. Tibrogargan and Coastal Plains rhabdoviruses: genomic characterization, evolution of novel genes and seroprevalence in Australian livestock.

    Science.gov (United States)

    Gubala, Aneta; Davis, Steven; Weir, Richard; Melville, Lorna; Cowled, Chris; Boyle, David

    2011-09-01

    Tibrogargan virus (TIBV) and Coastal Plains virus (CPV) were isolated from cattle in Australia and TIBV has also been isolated from the biting midge Culicoides brevitarsis. Complete genomic sequencing revealed that the viruses share a novel genome structure within the family Rhabdoviridae, each virus containing two additional putative genes between the matrix protein (M) and glycoprotein (G) genes and one between the G and viral RNA polymerase (L) genes. The predicted novel protein products are highly diverged at the sequence level but demonstrate clear conservation of secondary structure elements, suggesting conservation of biological functions. Phylogenetic analyses showed that TIBV and CPV form an independent group within the 'dimarhabdovirus supergroup'. Although no disease has been observed in association with these viruses, antibodies were detected at high prevalence in cattle and buffalo in northern Australia, indicating the need for disease monitoring and further study of this distinctive group of viruses.

  8. Allele frequencies of variants in ultra conserved elements identify selective pressure on transcription factor binding.

    Science.gov (United States)

    Silla, Toomas; Kepp, Katrin; Tai, E Shyong; Goh, Liang; Davila, Sonia; Catela Ivkovic, Tina; Calin, George A; Voorhoeve, P Mathijs

    2014-01-01

    Ultra-conserved genes or elements (UCGs/UCEs) in the human genome are extreme examples of conservation. We characterized natural variations in 2884 UCEs and UCGs in two distinct populations; Singaporean Chinese (n = 280) and Italian (n = 501) by using a pooled sample, targeted capture, sequencing approach. We identify, with high confidence, in these regions the abundance of rare SNVs (MAFpower for association studies. By combining our data with 1000 Genome Project data, we show in three independent datasets that prevalent UCE variants (MAF>5%) are more often found in relatively less-conserved nucleotides within UCEs, compared to rare variants. Moreover, prevalent variants are less likely to overlap transcription factor binding site. Using SNPfold we found no significant influence of RNA secondary structure on UCE conservation. All together, these results suggest UCEs are not under selective pressure as a stretch of DNA but are under differential evolutionary pressure on the single nucleotide level.

  9. Genetic approaches refine ex situ lowland tapir (Tapirus terrestris) conservation.

    Science.gov (United States)

    Gonçalves da Silva, Anders; Lalonde, Danielle R; Quse, Viviana; Shoemaker, Alan; Russello, Michael A

    2010-01-01

    Ex situ conservation management remains an important tool in the face of continued habitat loss and global environmental change. Here, we use microsatellite marker variation to evaluate conventional assumptions of pedigree-based ex situ population management and directly inform a captive lowland tapir breeding program within a range country. We found relatively high levels of genetic variation (N(total) = 41; mean H(E) = 0.67 across 10 variable loci) and little evidence for relatedness among founder individuals (N(founders) = 10; mean relatedness = -0.05). Seven of 29 putative parent-offspring relationships were excluded by parentage analysis based on allele sharing, and we identified 2 individuals of high genetic value to the population (mk highly related led to overestimates of mean kinship and inbreeding, and underestimates of gene diversity, when compared with values found when genetic markers were used to inform kinship. We discuss our results within the context of recent studies that have assessed the utility of neutral molecular markers for ex situ conservation.

  10. The most conserved genome segments for life detection on Earth and other planets.

    Science.gov (United States)

    Isenbarger, Thomas A; Carr, Christopher E; Johnson, Sarah Stewart; Finney, Michael; Church, George M; Gilbert, Walter; Zuber, Maria T; Ruvkun, Gary

    2008-12-01

    On Earth, very simple but powerful methods to detect and classify broad taxa of life by the polymerase chain reaction (PCR) are now standard practice. Using DNA primers corresponding to the 16S ribosomal RNA gene, one can survey a sample from any environment for its microbial inhabitants. Due to massive meteoritic exchange between Earth and Mars (as well as other planets), a reasonable case can be made for life on Mars or other planets to be related to life on Earth. In this case, the supremely sensitive technologies used to study life on Earth, including in extreme environments, can be applied to the search for life on other planets. Though the 16S gene has become the standard for life detection on Earth, no genome comparisons have established that the ribosomal genes are, in fact, the most conserved DNA segments across the kingdoms of life. We present here a computational comparison of full genomes from 13 diverse organisms from the Archaea, Bacteria, and Eucarya to identify genetic sequences conserved across the widest divisions of life. Our results identify the 16S and 23S ribosomal RNA genes as well as other universally conserved nucleotide sequences in genes encoding particular classes of transfer RNAs and within the nucleotide binding domains of ABC transporters as the most conserved DNA sequence segments across phylogeny. This set of sequences defines a core set of DNA regions that have changed the least over billions of years of evolution and provides a means to identify and classify divergent life, including ancestrally related life on other planets.

  11. Conservation and diversification of the miR166 family in soybean and potential roles of newly identified miR166s.

    Science.gov (United States)

    Li, Xuyan; Xie, Xin; Li, Ji; Cui, Yuhai; Hou, Yanming; Zhai, Lulu; Wang, Xiao; Fu, Yanli; Liu, Ranran; Bian, Shaomin

    2017-02-01

    microRNA166 (miR166) is a highly conserved family of miRNAs implicated in a wide range of cellular and physiological processes in plants. miR166 family generally comprises multiple miR166 members in plants, which might exhibit functional redundancy and specificity. The soybean miR166 family consists of 21 members according to the miRBase database. However, the evolutionary conservation and functional diversification of miR166 family members in soybean remain poorly understood. We identified five novel miR166s in soybean by data mining approach, thus enlarging the size of miR166 family from 21 to 26 members. Phylogenetic analyses of the 26 miR166s and their precursors indicated that soybean miR166 family exhibited both evolutionary conservation and diversification, and ten pairs of miR166 precursors with high sequence identity were individually grouped into a discrete clade in the phylogenetic tree. The analysis of genomic organization and evolution of MIR166 gene family revealed that eight segmental duplications and four tandem duplications might occur during evolution of the miR166 family in soybean. The cis-elements in promoters of MIR166 family genes and their putative targets pointed to their possible contributions to the functional conservation and diversification. The targets of soybean miR166s were predicted, and the cleavage of ATHB14-LIKE transcript was experimentally validated by RACE PCR. Further, the expression patterns of the five newly identified MIR166s and 12 target genes were examined during seed development and in response to abiotic stresses, which provided important clues for dissecting their functions and isoform specificity. This study enlarged the size of soybean miR166 family from 21 to 26 members, and the 26 soybean miR166s exhibited evolutionary conservation and diversification. These findings have laid a foundation for elucidating functional conservation and diversification of miR166 family members, especially during seed development or

  12. Comparative studies of vertebrate scavenger receptor class B type 1: a high-density lipoprotein binding protein

    Directory of Open Access Journals (Sweden)

    Holmes RS

    2012-06-01

    Full Text Available Roger S Holmes,1,2 Laura A Cox11Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA; 2School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland, AustraliaAbstract: Scavenger receptor class B type 1 protein (SCARB1 plays an essential role in cholesterol homeostasis and functions in binding high density lipoprotein cholesterol (HDL in liver and other tissues of the body. SCARB1 also functions in lymphocyte homeostasis and in the uptake of hepatitis C virus (HCV by the liver. A genetic deficiency of this protein results in autoimmune disorders and significant changes in blood cholesterol phenotype. Comparative SCARB1 amino acid sequences and structures and SCARB1 gene locations were examined using data from several vertebrate genome projects. Vertebrate SCARB1 sequences shared 50%–99% identity as compared with 28%–31% sequence identities with other CD36-like superfamily members, ie, SCARB2 and SCARB3 (also called CD36. At least eight N-glycosylation sites were conserved among most of the vertebrate SCARB1 proteins examined. Sequence alignments, key amino acid residues, and conserved predicted secondary structures were also studied, including: cytoplasmic, transmembrane, and exoplasmic sequences; conserved N-terminal and C-terminal transmembrane glycines which participate in oligomer formation; conserved cystine disulfides and a free SH residue which participates in lipid transport; carboxyl terminal PDZ-binding domain sequences (Ala507-Arg/Lys508-Leu509; and 30 conserved proline and 18 conserved glycine residues, which may contribute to short loop formation within the exoplasmic HDL-binding sequence. Vertebrate SCARB1 genes usually contained 12 coding exons. The human SCARB1 gene contained CpG islands, micro RNA binding sites, and several transcription factor binding sites (including PPARG which may contribute to the high level (13.7 times

  13. Developmental expression of the alpha-skeletal actin gene

    Directory of Open Access Journals (Sweden)

    Vonk Freek J

    2008-06-01

    Full Text Available Abstract Background Actin is a cytoskeletal protein which exerts a broad range of functions in almost all eukaryotic cells. In higher vertebrates, six primary actin isoforms can be distinguished: alpha-skeletal, alpha-cardiac, alpha-smooth muscle, gamma-smooth muscle, beta-cytoplasmic and gamma-cytoplasmic isoactin. Expression of these actin isoforms during vertebrate development is highly regulated in a temporal and tissue-specific manner, but the mechanisms and the specific differences are currently not well understood. All members of the actin multigene family are highly conserved, suggesting that there is a high selective pressure on these proteins. Results We present here a model for the evolution of the genomic organization of alpha-skeletal actin and by molecular modeling, illustrate the structural differences of actin proteins of different phyla. We further describe and compare alpha-skeletal actin expression in two developmental stages of five vertebrate species (mouse, chicken, snake, salamander and fish. Our findings confirm that alpha-skeletal actin is expressed in skeletal muscle and in the heart of all five species. In addition, we identify many novel non-muscular expression domains including several in the central nervous system. Conclusion Our results show that the high sequence homology of alpha-skeletal actins is reflected by similarities of their 3 dimensional protein structures, as well as by conserved gene expression patterns during vertebrate development. Nonetheless, we find here important differences in 3D structures, in gene architectures and identify novel expression domains for this structural and functional important gene.

  14. Conservation of Repeats at the Mammalian KCNQ1OT1-CDKN1C Region Suggests a Role in Genomic Imprinting

    Directory of Open Access Journals (Sweden)

    Marcos De Donato

    2017-06-01

    Full Text Available KCNQ1OT1 is located in the region with the highest number of genes showing genomic imprinting, but the mechanisms controlling the genes under its influence have not been fully elucidated. Therefore, we conducted a comparative analysis of the KCNQ1/KCNQ1OT1-CDKN1C region to study its conservation across the best assembled eutherian mammalian genomes sequenced to date and analyzed potential elements that may be implicated in the control of genomic imprinting in this region. The genomic features in these regions from human, mouse, cattle, and dog show a higher number of genes and CpG islands (detected using cpgplot from EMBOSS, but lower number of repetitive elements (including short interspersed nuclear elements and long interspersed nuclear elements, compared with their whole chromosomes (detected by RepeatMasker. The KCNQ1OT1-CDKN1C region contains the highest number of conserved noncoding sequences (CNS among mammals, where we found 16 regions containing about 38 different highly conserved repetitive elements (using mVista, such as LINE1 elements: L1M4, L1MB7, HAL1, L1M4a, L1Med, and an LTR element: MLT1H. From these elements, we found 74 CNS showing high sequence identity (>70% between human, cattle, and mouse, from which we identified 13 motifs (using Multiple Em for Motif Elicitation/Motif Alignment and Search Tool with a significant probability of occurrence, 3 of which were the most frequent and were used to find transcription factor–binding sites. We detected several transcription factors (using JASPAR suite from the families SOX, FOX, and GATA. A phylogenetic analysis of these CNS from human, marmoset, mouse, rat, cattle, dog, horse, and elephant shows branches with high levels of support and very similar phylogenetic relationships among these groups, confirming previous reports. Our results suggest that functional DNA elements identified by comparative genomics in a region densely populated with imprinted mammalian genes may be

  15. Genome-wide identification and characterization of the SBP-box gene family in Petunia.

    Science.gov (United States)

    Zhou, Qin; Zhang, Sisi; Chen, Feng; Liu, Baojun; Wu, Lan; Li, Fei; Zhang, Jiaqi; Bao, Manzhu; Liu, Guofeng

    2018-03-12

    SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box genes encode a family of plant-specific transcription factors (TFs) that play important roles in many growth and development processes including phase transition, leaf initiation, shoot and inflorescence branching, fruit development and ripening etc. The SBP-box gene family has been identified and characterized in many species, but has not been well studied in Petunia, an important ornamental genus. We identified 21 putative SPL genes of Petunia axillaris and P. inflata from the reference genome of P. axillaris N and P. inflata S6, respectively, which were supported by the transcriptome data. For further confirmation, all the 21 genes were also cloned from P. hybrida line W115 (Mitchel diploid). Phylogenetic analysis based on the highly conserved SBP domains arranged PhSPLs in eight groups, analogous to those from Arabidopsis and tomato. Furthermore, the Petunia SPL genes had similar exon-intron structure and the deduced proteins contained very similar conserved motifs within the same subgroup. Out of 21 PhSPL genes, fourteen were predicted to be potential targets of PhmiR156/157, and the putative miR156/157 response elements (MREs) were located in the coding region of group IV, V, VII and VIII genes, but in the 3'-UTR regions of group VI genes. SPL genes were also identified from another two wild Petunia species, P. integrifolia and P. exserta, based on their transcriptome databases to investigate the origin of PhSPLs. Phylogenetic analysis and multiple alignments of the coding sequences of PhSPLs and their orthologs from wild species indicated that PhSPLs were originated mainly from P. axillaris. qRT-PCR analysis demonstrated differential spatiotemperal expression patterns of PhSPL genes in petunia and many were expressed predominantly in the axillary buds and/or inflorescences. In addition, overexpression of PhSPL9a and PhSPL9b in Arabidopsis suggested that these genes play a conserved role in promoting the vegetative

  16. Balancing forest-regeneration probabilities and maintenance costs in dry grasslands of high conservation priority

    Science.gov (United States)

    Bolliger, Janine; Edwards, Thomas C.; Eggenberg, Stefan; Ismail, Sascha; Seidl, Irmi; Kienast, Felix

    2011-01-01

    Abandonment of agricultural land has resulted in forest regeneration in species-rich dry grasslands across European mountain regions and threatens conservation efforts in this vegetation type. To support national conservation strategies, we used a site-selection algorithm (MARXAN) to find optimum sets of floristic regions (reporting units) that contain grasslands of high conservation priority. We sought optimum sets that would accommodate 136 important dry-grassland species and that would minimize forest regeneration and costs of management needed to forestall predicted forest regeneration. We did not consider other conservation elements of dry grasslands, such as animal species richness, cultural heritage, and changes due to climate change. Optimal sets that included 95–100% of the dry grassland species encompassed an average of 56–59 floristic regions (standard deviation, SD 5). This is about 15% of approximately 400 floristic regions that contain dry-grassland sites and translates to 4800–5300 ha of dry grassland out of a total of approximately 23,000 ha for the entire study area. Projected costs to manage the grasslands in these optimum sets ranged from CHF (Swiss francs) 5.2 to 6.0 million/year. This is only 15–20% of the current total estimated cost of approximately CHF30–45 million/year required if all dry grasslands were to be protected. The grasslands of the optimal sets may be viewed as core sites in a national conservation strategy.

  17. Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.).

    Science.gov (United States)

    Xiong, Wangdan; Xu, Xueqin; Zhang, Lin; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2013-07-25

    The WRKY proteins, which contain highly conserved WRKYGQK amino acid sequences and zinc-finger-like motifs, constitute a large family of transcription factors in plants. They participate in diverse physiological and developmental processes. WRKY genes have been identified and characterized in a number of plant species. We identified a total of 58 WRKY genes (JcWRKY) in the genome of the physic nut (Jatropha curcas L.). On the basis of their conserved WRKY domain sequences, all of the JcWRKY proteins could be assigned to one of the previously defined groups, I-III. Phylogenetic analysis of JcWRKY genes with Arabidopsis and rice WRKY genes, and separately with castor bean WRKY genes, revealed no evidence of recent gene duplication in JcWRKY gene family. Analysis of transcript abundance of JcWRKY gene products were tested in different tissues under normal growth condition. In addition, 47 WRKY genes responded to at least one abiotic stress (drought, salinity, phosphate starvation and nitrogen starvation) in individual tissues (leaf, root and/or shoot cortex). Our study provides a useful reference data set as the basis for cloning and functional analysis of physic nut WRKY genes. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Conservation and divergence of chemical defense system in the tunicate Oikopleura dioica revealed by genome wide response to two xenobiotics

    Directory of Open Access Journals (Sweden)

    Yadetie Fekadu

    2012-02-01

    Full Text Available Abstract Background Animals have developed extensive mechanisms of response to xenobiotic chemical attacks. Although recent genome surveys have suggested a broad conservation of the chemical defensome across metazoans, global gene expression responses to xenobiotics have not been well investigated in most invertebrates. Here, we performed genome survey for key defensome genes in Oikopleura dioica genome, and explored genome-wide gene expression using high density tiling arrays with over 2 million probes, in response to two model xenobiotic chemicals - the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP the pharmaceutical compound Clofibrate (Clo. Results Oikopleura genome surveys for key genes of the chemical defensome suggested a reduced repertoire. Not more than 23 cytochrome P450 (CYP genes could be identified, and neither CYP1 family genes nor their transcriptional activator AhR was detected. These two genes were present in deuterostome ancestors. As in vertebrates, the genotoxic compound BaP induced xenobiotic biotransformation and oxidative stress responsive genes. Notable exceptions were genes of the aryl hydrocarbon receptor (AhR signaling pathway. Clo also affected the expression of many biotransformation genes and markedly repressed genes involved in energy metabolism and muscle contraction pathways. Conclusions Oikopleura has the smallest number of CYP genes among sequenced animal genomes and lacks the AhR signaling pathway. However it appears to have basic xenobiotic inducible biotransformation genes such as a conserved genotoxic stress response gene set. Our genome survey and expression study does not support a role of AhR signaling pathway in the chemical defense of metazoans prior to the emergence of vertebrates.

  19. Functional dissection of the promoter of the pollen-specific gene NTP303 reveals a novel pollen-specific, and conserved cis-regulatory element.

    Science.gov (United States)

    Weterings, K; Schrauwen, J; Wullems, G; Twell, D

    1995-07-01

    Regulatory elements within the promoter of the pollen-specific NTP303 gene from tobacco were analysed by transient and stable expression analyses. Analysis of precisely targeted mutations showed that the NTP303 promoter is not regulated by any of the previously described pollen-specific cis-regulatory elements. However, two adjacent regions from -103 to -86 bp and from -86 to -59 bp were shown to contain sequences which positively regulated the NTP303 promoter. Both of these regions were capable of driving pollen-specific expression from a heterologous promoter, independent of orientation and in an additive manner. The boundaries of the minimal, functional NTP303 promoter were determined to lie within the region -86 to -51 bp. The sequence AAATGA localized from -94 to -89 bp was identified as a novel cis-acting element, of which the TGA triplet was shown to comprise an active part. This element was shown to be completely conserved in the similarly regulated promoter of the Bp 10 gene from Brassica napus encoding a homologue of the NTP303 gene.

  20. Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins.

    Science.gov (United States)

    Wang, Ying; Ding, Jun; Daniell, Henry; Hu, Haiyan; Li, Xiaoman

    2012-09-01

    Chloroplasts play critical roles in land plant cells. Despite their importance and the availability of at least 200 sequenced chloroplast genomes, the number of known DNA regulatory sequences in chloroplast genomes are limited. In this paper, we designed computational methods to systematically study putative DNA regulatory sequences in intergenic regions near chloroplast genes in seven plant species and in promoter sequences of nuclear genes in Arabidopsis and rice. We found that -35/-10 elements alone cannot explain the transcriptional regulation of chloroplast genes. We also concluded that there are unlikely motifs shared by intergenic sequences of most of chloroplast genes, indicating that these genes are regulated differently. Finally and surprisingly, we found five conserved motifs, each of which occurs in no more than six chloroplast intergenic sequences, are significantly shared by promoters of nuclear-genes encoding chloroplast proteins. By integrating information from gene function annotation, protein subcellular localization analyses, protein-protein interaction data, and gene expression data, we further showed support of the functionality of these conserved motifs. Our study implies the existence of unknown nuclear-encoded transcription factors that regulate both chloroplast genes and nuclear genes encoding chloroplast protein, which sheds light on the understanding of the transcriptional regulation of chloroplast genes.

  1. Comparative and evolutionary studies of vertebrate ALDH1A-like genes and proteins.

    Science.gov (United States)

    Holmes, Roger S

    2015-06-05

    Vertebrate ALDH1A-like genes encode cytosolic enzymes capable of metabolizing all-trans-retinaldehyde to retinoic acid which is a molecular 'signal' guiding vertebrate development and adipogenesis. Bioinformatic analyses of vertebrate and invertebrate genomes were undertaken using known ALDH1A1, ALDH1A2 and ALDH1A3 amino acid sequences. Comparative analyses of the corresponding human genes provided evidence for distinct modes of gene regulation and expression with putative transcription factor binding sites (TFBS), CpG islands and micro-RNA binding sites identified for the human genes. ALDH1A-like sequences were identified for all mammalian, bird, lizard and frog genomes examined, whereas fish genomes displayed a more restricted distribution pattern for ALDH1A1 and ALDH1A3 genes. The ALDH1A1 gene was absent in many bony fish genomes examined, with the ALDH1A3 gene also absent in the medaka and tilapia genomes. Multiple ALDH1A1-like genes were identified in mouse, rat and marsupial genomes. Vertebrate ALDH1A1, ALDH1A2 and ALDH1A3 subunit sequences were highly conserved throughout vertebrate evolution. Comparative amino acid substitution rates showed that mammalian ALDH1A2 sequences were more highly conserved than for the ALDH1A1 and ALDH1A3 sequences. Phylogenetic studies supported an hypothesis for ALDH1A2 as a likely primordial gene originating in invertebrate genomes and undergoing sequential gene duplication to generate two additional genes, ALDH1A1 and ALDH1A3, in most vertebrate genomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Fused Regression for Multi-source Gene Regulatory Network Inference.

    Directory of Open Access Journals (Sweden)

    Kari Y Lam

    2016-12-01

    Full Text Available Understanding gene regulatory networks is critical to understanding cellular differentiation and response to external stimuli. Methods for global network inference have been developed and applied to a variety of species. Most approaches consider the problem of network inference independently in each species, despite evidence that gene regulation can be conserved even in distantly related species. Further, network inference is often confined to single data-types (single platforms and single cell types. We introduce a method for multi-source network inference that allows simultaneous estimation of gene regulatory networks in multiple species or biological processes through the introduction of priors based on known gene relationships such as orthology incorporated using fused regression. This approach improves network inference performance even when orthology mapping and conservation are incomplete. We refine this method by presenting an algorithm that extracts the true conserved subnetwork from a larger set of potentially conserved interactions and demonstrate the utility of our method in cross species network inference. Last, we demonstrate our method's utility in learning from data collected on different experimental platforms.

  3. Of mice and men: divergence of gene expression patterns in kidney.

    Directory of Open Access Journals (Sweden)

    Lydie Cheval

    Full Text Available Since the development of methods for homologous gene recombination, mouse models have played a central role in research in renal pathophysiology. However, many published and unpublished results show that mice with genetic changes mimicking human pathogenic mutations do not display the human phenotype. These functional differences may stem from differences in gene expression between mouse and human kidneys. However, large scale comparison of gene expression networks revealed conservation of gene expression among a large panel of human and mouse tissues including kidneys. Because renal functions result from the spatial integration of elementary processes originating in the glomerulus and the successive segments constituting the nephron, we hypothesized that differences in gene expression profiles along the human and mouse nephron might account for different behaviors. Analysis of SAGE libraries generated from the glomerulus and seven anatomically defined nephron segments from human and mouse kidneys allowed us to identify 4644 pairs of gene orthologs expressed in either one or both species. Quantitative analysis shows that many transcripts are present at different levels in the two species. It also shows poor conservation of gene expression profiles, with less than 10% of the 4644 gene orthologs displaying a higher conservation of expression profiles than the neutral expectation (p<0.05. Accordingly, hierarchical clustering reveals a higher degree of conservation of gene expression patterns between functionally unrelated kidney structures within a given species than between cognate structures from the two species. Similar findings were obtained for sub-groups of genes with either kidney-specific or housekeeping functions. Conservation of gene expression at the scale of the whole organ and divergence at the level of its constituting sub-structures likely account for the fact that although kidneys assume the same global function in the two species

  4. Comparative gene expression analysis of Dtg, a novel target gene of Dpp signaling pathway in the early Drosophila melanogaster embryo.

    Science.gov (United States)

    Hodar, Christian; Zuñiga, Alejandro; Pulgar, Rodrigo; Travisany, Dante; Chacon, Carlos; Pino, Michael; Maass, Alejandro; Cambiazo, Verónica

    2014-02-10

    In the early Drosophila melanogaster embryo, Dpp, a secreted molecule that belongs to the TGF-β superfamily of growth factors, activates a set of downstream genes to subdivide the dorsal region into amnioserosa and dorsal epidermis. Here, we examined the expression pattern and transcriptional regulation of Dtg, a new target gene of Dpp signaling pathway that is required for proper amnioserosa differentiation. We showed that the expression of Dtg was controlled by Dpp and characterized a 524-bp enhancer that mediated expression in the dorsal midline, as well as, in the differentiated amnioserosa in transgenic reporter embryos. This enhancer contained a highly conserved region of 48-bp in which bioinformatic predictions and in vitro assays identified three Mad binding motifs. Mutational analysis revealed that these three motifs were necessary for proper expression of a reporter gene in transgenic embryos, suggesting that short and highly conserved genomic sequences may be indicative of functional regulatory regions in D. melanogaster genes. Dtg orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa, nevertheless Dtg orthologs were identified in the transcriptome of Musca domestica, in which dorsal ectoderm patterning leads to the formation of a single extra-embryonic membrane. These results suggest that Dtg was recruited as a new component of the network that controls dorsal ectoderm patterning in the lineage leading to higher Cyclorrhaphan flies, such as D. melanogaster and M. domestica. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. [High gene conversion frequency between genes encoding 2-deoxyglucose-6-phosphate phosphatase in 3 Saccharomyces species].

    Science.gov (United States)

    Piscopo, Sara-Pier; Drouin, Guy

    2014-05-01

    Gene conversions are nonreciprocal sequence exchanges between genes. They are relatively common in Saccharomyces cerevisiae, but few studies have investigated the evolutionary fate of gene conversions or their functional impacts. Here, we analyze the evolution and impact of gene conversions between the two genes encoding 2-deoxyglucose-6-phosphate phosphatase in S. cerevisiae, Saccharomyces paradoxus and Saccharomyces mikatae. Our results demonstrate that the last half of these genes are subject to gene conversions among these three species. The greater similarity and the greater percentage of GC nucleotides in the converted regions, as well as the absence of long regions of adjacent common converted sites, suggest that these gene conversions are frequent and occur independently in all three species. The high frequency of these conversions probably result from the fact that they have little impact on the protein sequences encoded by these genes.

  6. Identification and molecular characterization of nitric oxide synthase (NOS) gene in the intertidal copepod Tigriopus japonicus.

    Science.gov (United States)

    Jeong, Chang-Bum; Kang, Hye-Min; Seo, Jung Soo; Park, Heum Gi; Rhee, Jae-Sung; Lee, Jae-Seong

    2016-02-10

    In copepods, no information has been reported on the structure or molecular characterization of the nitric oxide synthase (NOS) gene. In the intertidal copepod Tigriopus japonicus, we identified a NOS gene that is involved in immune responses of vertebrates and invertebrates. In silico analyses revealed that nitric oxide (NO) synthase domains, such as the oxygenase and reductase domains, are highly conserved in the T. japonicus NOS gene. The T. japonicus NOS gene was highly transcribed in the nauplii stages, implying that it plays a role in protecting the host during the early developmental stages. To examine the involvement of the T. japonicus NOS gene in the innate immune response, the copepods were exposed to lipopolysaccharide (LPS) and two Vibrio sp. After exposure to different concentrations of LPS and Vibrio sp., T. japonicus NOS transcription was significantly increased over time in a dose-dependent manner, and the NO/nitrite concentration increased as well. Taken together, our findings suggest that T. japonicus NOS transcription is induced in response to an immune challenge as part of the conserved innate immunity. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Genomic sequence around butterfly wing development genes: annotation and comparative analysis.

    Directory of Open Access Journals (Sweden)

    Inês C Conceição

    Full Text Available BACKGROUND: Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. METHODOLOGY/PRINCIPAL FINDINGS: We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes. CONCLUSIONS: The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1 the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2 the high

  8. Characterization of 17 chaperone-usher fimbriae encoded by Proteus mirabilis reveals strong conservation

    Science.gov (United States)

    Kuan, Lisa; Schaffer, Jessica N.; Zouzias, Christos D.

    2014-01-01

    Proteus mirabilis is a Gram-negative enteric bacterium that causes complicated urinary tract infections, particularly in patients with indwelling catheters. Sequencing of clinical isolate P. mirabilis HI4320 revealed the presence of 17 predicted chaperone-usher fimbrial operons. We classified these fimbriae into three groups by their genetic relationship to other chaperone-usher fimbriae. Sixteen of these fimbriae are encoded by all seven currently sequenced P. mirabilis genomes. The predicted protein sequence of the major structural subunit for 14 of these fimbriae was highly conserved (≥95 % identity), whereas three other structural subunits (Fim3A, UcaA and Fim6A) were variable. Further examination of 58 clinical isolates showed that 14 of the 17 predicted major structural subunit genes of the fimbriae were present in most strains (>85 %). Transcription of the predicted major structural subunit genes for all 17 fimbriae was measured under different culture conditions designed to mimic conditions in the urinary tract. The majority of the fimbrial genes were induced during stationary phase, static culture or colony growth when compared to exponential-phase aerated culture. Major structural subunit proteins for six of these fimbriae were detected using MS of proteins sheared from the surface of broth-cultured P. mirabilis, demonstrating that this organism may produce multiple fimbriae within a single culture. The high degree of conservation of P. mirabilis fimbriae stands in contrast to uropathogenic Escherichia coli and Salmonella enterica, which exhibit greater variability in their fimbrial repertoires. These findings suggest there may be evolutionary pressure for P. mirabilis to maintain a large fimbrial arsenal. PMID:24809384

  9. Tay-Sachs disease: high gene frequency in a non-Jewish population.

    Science.gov (United States)

    Kelly, T E; Chase, G A; Kaback, M M; Kumor, K; McKusick, V A

    1975-01-01

    A non-Amish "Pennsylvania Dutch" semi-isolate was found to have a high frequency of Tay-Sachs gene. This high frequency could be ascribed to founder effect and may represent, in microcosm, how this mechanism could have produced the high gene frequency among Ashkenazi Jews. PMID:803011

  10. Isolation and expression analysis of EcbZIP17 from different finger millet genotypes shows conserved nature of the gene.

    Science.gov (United States)

    Chopperla, Ramakrishna; Singh, Sonam; Mohanty, Sasmita; Reddy, Nanja; Padaria, Jasdeep C; Solanke, Amolkumar U

    2017-10-01

    Basic leucine zipper (bZIP) transcription factors comprise one of the largest gene families in plants. They play a key role in almost every aspect of plant growth and development and also in biotic and abiotic stress tolerance. In this study, we report isolation and characterization of EcbZIP17 , a group B bZIP transcription factor from a climate smart cereal, finger millet ( Eleusine coracana L.). The genomic sequence of EcbZIP17 is 2662 bp long encompassing two exons and one intron with ORF of 1722 bp and peptide length of 573 aa. This gene is homologous to AtbZIP17 ( Arabidopsis ), ZmbZIP17 (maize) and OsbZIP60 (rice) which play a key role in endoplasmic reticulum (ER) stress pathway. In silico analysis confirmed the presence of basic leucine zipper (bZIP) and transmembrane (TM) domains in the EcbZIP17 protein. Allele mining of this gene in 16 different genotypes by Sanger sequencing revealed no variation in nucleotide sequence, including the 618 bp long intron. Expression analysis of EcbZIP17 under heat stress exhibited similar pattern of expression in all the genotypes across time intervals with highest upregulation after 4 h. The present study established the conserved nature of EcbZIP17 at nucleotide and expression level.

  11. High level of microsynteny and purifying selection affect the evolution of WRKY family in Gramineae.

    Science.gov (United States)

    Jin, Jing; Kong, Jingjing; Qiu, Jianle; Zhu, Huasheng; Peng, Yuancheng; Jiang, Haiyang

    2016-01-01

    The WRKY gene family, which encodes proteins in the regulation processes of diverse developmental stages, is one of the largest families of transcription factors in higher plants. In this study, by searching for interspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found 35 chromosomal segments of subgroup I genes of WRKY family (WRKY I) in four Gramineae species (Brachypodium, rice, sorghum, and maize) formed eight orthologous groups. After a stepwise gene-by-gene reciprocal comparison of all the protein sequences in the WRKY I gene flanking areas, highly conserved regions of microsynteny were found in the four Gramineae species. Most gene pairs showed conserved orientation within syntenic genome regions. Furthermore, tandem duplication events played the leading role in gene expansion. Eventually, environmental selection pressure analysis indicated strong purifying selection for the WRKY I genes in Gramineae, which may have been followed by gene loss and rearrangement. The results presented in this study provide basic information of Gramineae WRKY I genes and form the foundation for future functional studies of these genes. High level of microsynteny in the four grass species provides further evidence that a large-scale genome duplication event predated speciation.

  12. Cloning and bioinformatics analysis of an ubiquitin gene of the rice ...

    African Journals Online (AJOL)

    Subcellular localization analysis showed that CsUB protein of cytoplasm, cell nucleus, mitochondrion, cell skeleton and plasma membrane occupied about 47.80, 26.10, 17.40, 4.30 and 4.30%, respectively. Sequence, homology and structural analysis confirmed that CsUB gene was highly conserved during evolution and ...

  13. Comparative analyses reveal high levels of conserved colinearity between the finger millet and rice genomes.

    Science.gov (United States)

    Srinivasachary; Dida, Mathews M; Gale, Mike D; Devos, Katrien M

    2007-08-01

    Finger millet is an allotetraploid (2n = 4x = 36) grass that belongs to the Chloridoideae subfamily. A comparative analysis has been carried out to determine the relationship of the finger millet genome with that of rice. Six of the nine finger millet homoeologous groups corresponded to a single rice chromosome each. Each of the remaining three finger millet groups were orthologous to two rice chromosomes, and in all the three cases one rice chromosome was inserted into the centromeric region of a second rice chromosome to give the finger millet chromosomal configuration. All observed rearrangements were, among the grasses, unique to finger millet and, possibly, the Chloridoideae subfamily. Gene orders between rice and finger millet were highly conserved, with rearrangements being limited largely to single marker transpositions and small putative inversions encompassing at most three markers. Only some 10% of markers mapped to non-syntenic positions in rice and finger millet and the majority of these were located in the distal 14% of chromosome arms, supporting a possible correlation between recombination and sequence evolution as has previously been observed in wheat. A comparison of the organization of finger millet, Panicoideae and Pooideae genomes relative to rice allowed us to infer putative ancestral chromosome configurations in the grasses.

  14. Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains

    Science.gov (United States)

    Przedborski, Michelle; Anco, Stephen C.

    2017-09-01

    A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.

  15. High-Throughput Screening Using iPSC-Derived Neuronal Progenitors to Identify Compounds Counteracting Epigenetic Gene Silencing in Fragile X Syndrome.

    Science.gov (United States)

    Kaufmann, Markus; Schuffenhauer, Ansgar; Fruh, Isabelle; Klein, Jessica; Thiemeyer, Anke; Rigo, Pierre; Gomez-Mancilla, Baltazar; Heidinger-Millot, Valerie; Bouwmeester, Tewis; Schopfer, Ulrich; Mueller, Matthias; Fodor, Barna D; Cobos-Correa, Amanda

    2015-10-01

    Fragile X syndrome (FXS) is the most common form of inherited mental retardation, and it is caused in most of cases by epigenetic silencing of the Fmr1 gene. Today, no specific therapy exists for FXS, and current treatments are only directed to improve behavioral symptoms. Neuronal progenitors derived from FXS patient induced pluripotent stem cells (iPSCs) represent a unique model to study the disease and develop assays for large-scale drug discovery screens since they conserve the Fmr1 gene silenced within the disease context. We have established a high-content imaging assay to run a large-scale phenotypic screen aimed to identify compounds that reactivate the silenced Fmr1 gene. A set of 50,000 compounds was tested, including modulators of several epigenetic targets. We describe an integrated drug discovery model comprising iPSC generation, culture scale-up, and quality control and screening with a very sensitive high-content imaging assay assisted by single-cell image analysis and multiparametric data analysis based on machine learning algorithms. The screening identified several compounds that induced a weak expression of fragile X mental retardation protein (FMRP) and thus sets the basis for further large-scale screens to find candidate drugs or targets tackling the underlying mechanism of FXS with potential for therapeutic intervention. © 2015 Society for Laboratory Automation and Screening.

  16. Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening

    Directory of Open Access Journals (Sweden)

    Santos Carla S

    2012-11-01

    Full Text Available Abstract Background Pine wilt disease (PWD, caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus, damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant’s molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN and Pinus pinea (less susceptible to PWN. Results Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species

  17. Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening

    Science.gov (United States)

    2012-01-01

    Background Pine wilt disease (PWD), caused by the pinewood nematode (PWN; Bursaphelenchus xylophilus), damages and kills pine trees and is causing serious economic damage worldwide. Although the ecological mechanism of infestation is well described, the plant’s molecular response to the pathogen is not well known. This is due mainly to the lack of genomic information and the complexity of the disease. High throughput sequencing is now an efficient approach for detecting the expression of genes in non-model organisms, thus providing valuable information in spite of the lack of the genome sequence. In an attempt to unravel genes potentially involved in the pine defense against the pathogen, we hereby report the high throughput comparative sequence analysis of infested and non-infested stems of Pinus pinaster (very susceptible to PWN) and Pinus pinea (less susceptible to PWN). Results Four cDNA libraries from infested and non-infested stems of P. pinaster and P. pinea were sequenced in a full 454 GS FLX run, producing a total of 2,083,698 reads. The putative amino acid sequences encoded by the assembled transcripts were annotated according to Gene Ontology, to assign Pinus contigs into Biological Processes, Cellular Components and Molecular Functions categories. Most of the annotated transcripts corresponded to Picea genes-25.4-39.7%, whereas a smaller percentage, matched Pinus genes, 1.8-12.8%, probably a consequence of more public genomic information available for Picea than for Pinus. The comparative transcriptome analysis showed that when P. pinaster was infested with PWN, the genes malate dehydrogenase, ABA, water deficit stress related genes and PAR1 were highly expressed, while in PWN-infested P. pinea, the highly expressed genes were ricin B-related lectin, and genes belonging to the SNARE and high mobility group families. Quantitative PCR experiments confirmed the differential gene expression between the two pine species. Conclusions Defense-related genes

  18. A Comparative Transcriptomic Analysis Reveals Conserved Features of Stem Cell Pluripotency in Planarians and Mammals

    Science.gov (United States)

    Labbé, Roselyne M.; Irimia, Manuel; Currie, Ko W.; Lin, Alexander; Zhu, Shu Jun; Brown, David D.R.; Ross, Eric J.; Voisin, Veronique; Bader, Gary D.; Blencowe, Benjamin J.; Pearson, Bret J.

    2014-01-01

    Many long-lived species of animals require the function of adult stem cells throughout their lives. However, the transcriptomes of stem cells in invertebrates and vertebrates have not been compared, and consequently, ancestral regulatory circuits that control stem cell populations remain poorly defined. In this study, we have used data from high-throughput RNA sequencing to compare the transcriptomes of pluripotent adult stem cells from planarians with the transcriptomes of human and mouse pluripotent embryonic stem cells. From a stringently defined set of 4,432 orthologs shared between planarians, mice and humans, we identified 123 conserved genes that are ≥5-fold differentially expressed in stem cells from all three species. Guided by this gene set, we used RNAi screening in adult planarians to discover novel stem cell regulators, which we found to affect the stem cell-associated functions of tissue homeostasis, regeneration, and stem cell maintenance. Examples of genes that disrupted these processes included the orthologs of TBL3, PSD12, TTC27, and RACK1. From these analyses, we concluded that by comparing stem cell transcriptomes from diverse species, it is possible to uncover conserved factors that function in stem cell biology. These results provide insights into which genes comprised the ancestral circuitry underlying the control of stem cell self-renewal and pluripotency. PMID:22696458

  19. Functional evolution of cis-regulatory modules at a homeotic gene in Drosophila.

    Directory of Open Access Journals (Sweden)

    Margaret C W Ho

    2009-11-01

    Full Text Available It is a long-held belief in evolutionary biology that the rate of molecular evolution for a given DNA sequence is inversely related to the level of functional constraint. This belief holds true for the protein-coding homeotic (Hox genes originally discovered in Drosophila melanogaster. Expression of the Hox genes in Drosophila embryos is essential for body patterning and is controlled by an extensive array of cis-regulatory modules (CRMs. How the regulatory modules functionally evolve in different species is not clear. A comparison of the CRMs for the Abdominal-B gene from different Drosophila species reveals relatively low levels of overall sequence conservation. However, embryonic enhancer CRMs from other Drosophila species direct transgenic reporter gene expression in the same spatial and temporal patterns during development as their D. melanogaster orthologs. Bioinformatic analysis reveals the presence of short conserved sequences within defined CRMs, representing gap and pair-rule transcription factor binding sites. One predicted binding site for the gap transcription factor KRUPPEL in the IAB5 CRM was found to be altered in Superabdominal (Sab mutations. In Sab mutant flies, the third abdominal segment is transformed into a copy of the fifth abdominal segment. A model for KRUPPEL-mediated repression at this binding site is presented. These findings challenge our current understanding of the relationship between sequence evolution at the molecular level and functional activity of a CRM. While the overall sequence conservation at Drosophila CRMs is not distinctive from neighboring genomic regions, functionally critical transcription factor binding sites within embryonic enhancer CRMs are highly conserved. These results have implications for understanding mechanisms of gene expression during embryonic development, enhancer function, and the molecular evolution of eukaryotic regulatory modules.

  20. Identification and characterization of the cytosine-5 DNA methyltransferase gene family in Salvia miltiorrhiza

    OpenAIRE

    Jiang Li; Caili Li; Shanfa Lu

    2018-01-01

    Cytosine DNA methylation is highly conserved epigenetic modification involved in a wide range of biological processes in eukaryotes. It was established and maintained by cytosine-5 DNA methyltransferases (C5-MTases) in plants. Through genome-wide identification, eight putative SmC5-MTase genes were identified from the genome of Salvia miltiorrhiza, a well-known traditional Chinese medicine material and an emerging model medicinal plant. Based on conserved domains and phylogenetic analysis, ei...

  1. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species

    DEFF Research Database (Denmark)

    Wassenaar, Trudy M; Ussery, David; Nielsen, Lene Nørby

    2015-01-01

    The qac genes of Staphylococcus species encode multidrug efflux pumps: membrane proteins that export toxic molecules and thus increase tolerance to a variety of compounds such as disinfecting agents, including quaternary ammonium compounds (for which they are named), intercalating dyes and some...... described in the literature for qac detection may miss particular qac genes due to lack of DNA conservation. Despite their resemblance in substrate specificity, the Qac proteins belonging to the two protein families have little in common. QacA and QacB are highly conserved in Staphylococcus species, while...... qacA was also detected in Enterococcus faecalis, suggesting that these plasmid-born genes have spread across bacterial genera. Nevertheless, these qacA and qacB genes are quite dissimilar to their closest homologues in other organisms. In contrast, SMR-type Qac proteins display considerable sequence...

  2. Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 Regulates Xylem Development and Growth by a Conserved Mechanism That Modulates Hormone Signaling1[W][OPEN

    Science.gov (United States)

    Grienenberger, Etienne; Douglas, Carl J.

    2014-01-01

    Despite a strict conservation of the vascular tissues in vascular plants (tracheophytes), our understanding of the genetic basis underlying the differentiation of secondary cell wall-containing cells in the xylem of tracheophytes is still far from complete. Using coexpression analysis and phylogenetic conservation across sequenced tracheophyte genomes, we identified a number of Arabidopsis (Arabidopsis thaliana) genes of unknown function whose expression is correlated with secondary cell wall deposition. Among these, the Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 (VUP1) gene encodes a predicted protein of 24 kD with no annotated functional domains but containing domains that are highly conserved in tracheophytes. Here, we show that the VUP1 expression pattern, determined by promoter-β-glucuronidase reporter gene expression, is associated with vascular tissues, while vup1 loss-of-function mutants exhibit collapsed morphology of xylem vessel cells. Constitutive overexpression of VUP1 caused dramatic and pleiotropic developmental defects, including severe dwarfism, dark green leaves, reduced apical dominance, and altered photomorphogenesis, resembling brassinosteroid-deficient mutants. Constitutive overexpression of VUP homologs from multiple tracheophyte species induced similar defects. Whole-genome transcriptome analysis revealed that overexpression of VUP1 represses the expression of many brassinosteroid- and auxin-responsive genes. Additionally, deletion constructs and site-directed mutagenesis were used to identify critical domains and amino acids required for VUP1 function. Altogether, our data suggest a conserved role for VUP1 in regulating secondary wall formation during vascular development by tissue- or cell-specific modulation of hormone signaling pathways. PMID:24567189

  3. Structure, tissue distribution, and chromosomal localization of the prepronociceptin gene.

    Science.gov (United States)

    Mollereau, C; Simons, M J; Soularue, P; Liners, F; Vassart, G; Meunier, J C; Parmentier, M

    1996-08-06

    Nociceptin (orphanin FQ), the newly discovered natural agonist of opioid receptor-like (ORL1) receptor, is a neuropeptide that is endowed with pronociceptive activity in vivo. Nociceptin is derived from a larger precursor, prepronociceptin (PPNOC), whose human, mouse, and rat genes we have now isolated. The PPNOC gene is highly conserved in the three species and displays organizational features that are strikingly similar to those of the genes of preproenkephalin, preprodynorphin, and preproopiomelanocortin, the precursors to endogenous opioid peptides, suggesting the four genes belong to the same family-i.e., have a common evolutionary origin. The PPNOC gene encodes a single copy of nociceptin as well as of other peptides whose sequence is strictly conserved across murine and human species; hence it is likely to be neurophysiologically significant. Northern blot analysis shows that the PPNOC gene is predominantly transcribed in the central nervous system (brain and spinal cord) and, albeit weakly, in the ovary, the sole peripheral organ expressing the gene. By using a radiation hybrid cell line panel, the PPNOC gene was mapped to the short arm of human chromosome 8 (8p21), between sequence-tagged site markers WI-5833 and WI-1172, in close proximity of the locus encoding the neurofilament light chain NEFL. Analysis of yeast artificial chromosome clones belonging to the WC8.4 contig covering the 8p21 region did not allow to detect the presence of the gene on these yeast artificial chromosomes, suggesting a gap in the coverage within this contig.

  4. Molecular conservation of estrogen-response associated with cell cycle regulation, hormonal carcinogenesis and cancer in zebrafish and human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Govindarajan Kunde R

    2011-05-01

    Full Text Available Abstract Background The zebrafish is recognized as a versatile cancer and drug screening model. However, it is not known whether the estrogen-responsive genes and signaling pathways that are involved in estrogen-dependent carcinogenesis and human cancer are operating in zebrafish. In order to determine the potential of zebrafish model for estrogen-related cancer research, we investigated the molecular conservation of estrogen responses operating in both zebrafish and human cancer cell lines. Methods Microarray experiment was performed on zebrafish exposed to estrogen (17β-estradiol; a classified carcinogen and an anti-estrogen (ICI 182,780. Zebrafish estrogen-responsive genes sensitive to both estrogen and anti-estrogen were identified and validated using real-time PCR. Human homolog mapping and knowledge-based data mining were performed on zebrafish estrogen responsive genes followed by estrogen receptor binding site analysis and comparative transcriptome analysis with estrogen-responsive human cancer cell lines (MCF7, T47D and Ishikawa. Results Our transcriptome analysis captured multiple estrogen-responsive genes and signaling pathways that increased cell proliferation, promoted DNA damage and genome instability, and decreased tumor suppressing effects, suggesting a common mechanism for estrogen-induced carcinogenesis. Comparative analysis revealed a core set of conserved estrogen-responsive genes that demonstrate enrichment of estrogen receptor binding sites and cell cycle signaling pathways. Knowledge-based and network analysis led us to propose that the mechanism involving estrogen-activated estrogen receptor mediated down-regulation of human homolog HES1 followed by up-regulation cell cycle-related genes (human homologs E2F4, CDK2, CCNA, CCNB, CCNE, is highly conserved, and this mechanism may involve novel crosstalk with basal AHR. We also identified mitotic roles of polo-like kinase as a conserved signaling pathway with multiple entry

  5. High throughput 16S rRNA gene amplicon sequencing

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Larsen, Poul; Jørgensen, Mads Koustrup

    S rRNA gene amplicon sequencing has been developed over the past few years and is now ready to use for more comprehensive studies related to plant operation and optimization thanks to short analysis time, low cost, high throughput, and high taxonomic resolution. In this study we show how 16S r......RNA gene amplicon sequencing can be used to reveal factors of importance for the operation of full-scale nutrient removal plants related to settling problems and floc properties. Using optimized DNA extraction protocols, indexed primers and our in-house Illumina platform, we prepared multiple samples...... be correlated to the presence of the species that are regarded as “strong” and “weak” floc formers. In conclusion, 16S rRNA gene amplicon sequencing provides a high throughput approach for a rapid and cheap community profiling of activated sludge that in combination with multivariate statistics can be used...

  6. Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila

    Science.gov (United States)

    Cattenoz, Pierre B.; Popkova, Anna; Southall, Tony D.; Aiello, Giuseppe; Brand, Andrea H.; Giangrande, Angela

    2016-01-01

    High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain–containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades. PMID:26567182

  7. Evaluation the COL9A2 gene with high myopia

    Science.gov (United States)

    Zhang, Dingding; Huang, Maomin

    2017-11-01

    This paper investigates the association of the COL9A2 gene between high myopia and normal controls in the Han Chinese population. It shows that the frameshift mutation (D281fs) in the COL9A2 gene is not associated with high myopia in the Han Chinese population, and the two novel variants(c.143G>C and c.884G>A) may contribute to the development of high myopia.

  8. Genome-wide Identification and Expression Analysis of the CDPK Gene Family in Grape, Vitis spp.

    Science.gov (United States)

    Zhang, Kai; Han, Yong-Tao; Zhao, Feng-Li; Hu, Yang; Gao, Yu-Rong; Ma, Yan-Fei; Zheng, Yi; Wang, Yue-Jin; Wen, Ying-Qiang

    2015-06-30

    Calcium-dependent protein kinases (CDPKs) play vital roles in plant growth and development, biotic and abiotic stress responses, and hormone signaling. Little is known about the CDPK gene family in grapevine. In this study, we performed a genome-wide analysis of the 12X grape genome (Vitis vinifera) and identified nineteen CDPK genes. Comparison of the structures of grape CDPK genes allowed us to examine their functional conservation and differentiation. Segmentally duplicated grape CDPK genes showed high structural conservation and contributed to gene family expansion. Additional comparisons between grape and Arabidopsis thaliana demonstrated that several grape CDPK genes occured in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of grapevine and Arabidopsis. Phylogenetic analysis divided the grape CDPK genes into four groups. Furthermore, we examined the expression of the corresponding nineteen homologous CDPK genes in the Chinese wild grape (Vitis pseudoreticulata) under various conditions, including biotic stress, abiotic stress, and hormone treatments. The expression profiles derived from reverse transcription and quantitative PCR suggested that a large number of VpCDPKs responded to various stimuli on the transcriptional level, indicating their versatile roles in the responses to biotic and abiotic stresses. Moreover, we examined the subcellular localization of VpCDPKs by transiently expressing six VpCDPK-GFP fusion proteins in Arabidopsis mesophyll protoplasts; this revealed high variability consistent with potential functional differences. Taken as a whole, our data provide significant insights into the evolution and function of grape CDPKs and a framework for future investigation of grape CDPK genes.

  9. The amyloid precursor-like protein (APLP) gene maps to the long arm of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Wasco, W.; Tanzi, R.E. (Harvard Medical School, Boston, MA (United States)); Brook, J.D. (Center for Medical Genetics, Nottingham (United Kingdom))

    1993-01-01

    We have recently isolated a cDNA from a mouse brain library that encodes a protein whose predicted amino acid sequence is 42% identical and 64% similar to that of the amyloid [beta] protein precursor (APP; 16). This 653-amino-acid amyloid precursor-like protein (APLP) is similar to APP in overall structure as well as amino acid sequence. The amino acid homologies are particularly strong in three distinct regions of the proteins where the identities are 47, 54, and 56% (16). All three of these regions are also conserved in the Drosophila APP-like gene, APPL (11). Notably, 12 cysteine residues and a N -glyco-sylation site are conserved in the extracellular portion of APLP and APP, and a clathrin-binding domain is conserved in the cytoplasmic domain. The cytoplasmic domain is also conserved in a partial CDNA reported to encode an APP-like gene in rat testes (17), These data suggest that APLP and APP are members of a highly conserved gene family. A panel of DNAs from 31 human-rodent somatic cell lines of known karyotype was digested with EcoR1. These DNAs were then probed with the human APLP cDNA clone and the hybridization pattern was consistent with the assignment of the APLP locus to chromosome 19. 17 refs., 1 fig.

  10. Planning for land use and conservation: Assessing GIS-based conservation software for land use planning

    Science.gov (United States)

    Rob Baldwin; Ryan Scherzinger; Don Lipscomb; Miranda Mockrin; Susan Stein

    2014-01-01

    Recent advances in planning and ecological software make it possible to conduct highly technical analyses to prioritize conservation investments and inform local land use planning. We review these tools, termed conservation planning tools, and assess the knowledge of a key set of potential users: the land use planning community. We grouped several conservation software...

  11. Comparative genome sequencing of drosophila pseudoobscura: Chromosomal, gene and cis-element evolution

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Todd, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catherine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenee; Verduzco, Daniel; Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2004-04-01

    The genome sequence of a second fruit fly, D. pseudoobscura, presents an opportunity for comparative analysis of a primary model organism D. melanogaster. The vast majority of Drosophila genes have remained on the same arm, but within each arm gene order has been extensively reshuffled leading to the identification of approximately 1300 syntenic blocks. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 35 My since divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome wide average consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than control sequences between the species but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a picture of repeat mediated chromosomal rearrangement, and high co-adaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.

  12. Detection of a Usp-like gene in Calotropis procera plant from the de novo assembled genome contigs of the high-throughput sequencing dataset

    KAUST Repository

    Shokry, Ahmed M.

    2014-02-01

    The wild plant species Calotropis procera (C. procera) has many potential applications and beneficial uses in medicine, industry and ornamental field. It also represents an excellent source of genes for drought and salt tolerance. Genes encoding proteins that contain the conserved universal stress protein (USP) domain are known to provide organisms like bacteria, archaea, fungi, protozoa and plants with the ability to respond to a plethora of environmental stresses. However, information on the possible occurrence of Usp in C. procera is not available. In this study, we uncovered and characterized a one-class A Usp-like (UspA-like, NCBI accession No. KC954274) gene in this medicinal plant from the de novo assembled genome contigs of the high-throughput sequencing dataset. A number of GenBank accessions for Usp sequences were blasted with the recovered de novo assembled contigs. Homology modelling of the deduced amino acids (NCBI accession No. AGT02387) was further carried out using Swiss-Model, accessible via the EXPASY. Superimposition of C. procera USPA-like full sequence model on Thermus thermophilus USP UniProt protein (PDB accession No. Q5SJV7) was constructed using RasMol and Deep-View programs. The functional domains of the novel USPA-like amino acids sequence were identified from the NCBI conserved domain database (CDD) that provide insights into sequence structure/function relationships, as well as domain models imported from a number of external source databases (Pfam, SMART, COG, PRK, TIGRFAM). © 2014 Académie des sciences.

  13. Regulatory Mechanisms of a Highly Pectinolytic Mutant of Penicillium occitanis and Functional Analysis of a Candidate Gene in the Plant Pathogen Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Gustavo Bravo-Ruiz

    2017-09-01

    Full Text Available Penicillium occitanis is a model system for enzymatic regulation. A mutant strain exhibiting constitutive overproduction of different pectinolytic enzymes both under inducing (pectin or repressing conditions (glucose was previously isolated after chemical mutagenesis. In order to identify the molecular basis of this regulatory mechanism, the genomes of the wild type and the derived mutant strain were sequenced and compared, providing the first reference genome for this species. We used a phylogenomic approach to compare P. occitanis with other pectinolytic fungi and to trace expansions of gene families involved in carbohydrate degradation. Genome comparison between wild type and mutant identified seven mutations associated with predicted proteins. The most likely candidate was a mutation in a highly conserved serine residue of a conserved fungal protein containing a GAL4-like Zn2Cys6 binuclear cluster DNA-binding domain and a fungus-specific transcription factor regulatory middle homology region. To functionally characterize the role of this candidate gene, the mutation was recapitulated in the predicted orthologue Fusarium oxysporum, a vascular wilt pathogen which secretes a wide array of plant cell wall degrading enzymes, including polygalacturonases, pectate lyases, xylanases and proteases, all of which contribute to infection. However, neither the null mutant nor a mutant carrying the analogous point mutation exhibited a deregulation of pectinolytic enzymes. The availability, annotation and phylogenomic analysis of the P. occitanis genome sequence represents an important resource for understanding the evolution and biology of this species, and sets the basis for the discovery of new genes of biotechnological interest for the degradation of complex polysaccharides.

  14. Genome-wide identification of conserved microRNA and their response to drought stress in Dongxiang wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Zhang, Fantao; Luo, Xiangdong; Zhou, Yi; Xie, Jiankun

    2016-04-01

    To identify drought stress-responsive conserved microRNA (miRNA) from Dongxiang wild rice (Oryza rufipogon Griff., DXWR) on a genome-wide scale, high-throughput sequencing technology was used to sequence libraries of DXWR samples, treated with and without drought stress. 505 conserved miRNAs corresponding to 215 families were identified. 17 were significantly down-regulated and 16 were up-regulated under drought stress. Stem-loop qRT-PCR revealed the same expression patterns as high-throughput sequencing, suggesting the accuracy of the sequencing result was high. Potential target genes of the drought-responsive miRNA were predicted to be involved in diverse biological processes. Furthermore, 16 miRNA families were first identified to be involved in drought stress response from plants. These results present a comprehensive view of the conserved miRNA and their expression patterns under drought stress for DXWR, which will provide valuable information and sequence resources for future basis studies.

  15. 78 FR 72533 - Energy Conservation Program: Energy Conservation Standards for Certain Consumer Products

    Science.gov (United States)

    2013-12-03

    ... published on October 23, 2013. That final rule adopted changes to definitions and energy conservation... revised definition and revised energy conservation standards for small duct high velocity central air... Congress has provided in the AEMTCA for the Secretary of Energy to revise definitions and energy...

  16. It's not too late for the harpy eagle (Harpia harpyja: high levels of genetic diversity and differentiation can fuel conservation programs.

    Directory of Open Access Journals (Sweden)

    Heather R L Lerner

    2009-10-01

    Full Text Available The harpy eagle (Harpia harpyja is the largest Neotropical bird of prey and is threatened by human persecution and habitat loss and fragmentation. Current conservation strategies include local education, captive rearing and reintroduction, and protection or creation of trans-national habitat blocks and corridors. Baseline genetic data prior to reintroduction of captive-bred stock is essential for guiding such efforts but has not been gathered previously.We assessed levels of genetic diversity, population structure and demographic history for harpy eagles using samples collected throughout a large portion of their geographic distribution in Central America (n = 32 and South America (n = 31. Based on 417 bp of mitochondrial control region sequence data, relatively high levels of haplotype and nucleotide diversity were estimated for both Central and South America, although haplotype diversity was significantly higher for South America. Historical restriction of gene flow across the Andes (i.e. between our Central and South American subgroups is supported by coalescent analyses, the haplotype network and significant F(ST values, however reciprocally monophyletic lineages do not correspond to geographical locations in maximum likelihood analyses. A sudden population expansion for South America is indicated by a mismatch distribution analysis, and further supported by significant (p<0.05 negative values of Fu and Li's D(F and F, and Fu's F(S. This expansion, estimated at approximately 60 000 years BP (99 000-36 000 years BP 95% CI, encompasses a transition from a warm and dry time period prior to 50 000 years BP to an interval of maximum precipitation (50 000-36 000 years BP. Notably, this time period precedes the climatic and habitat changes associated with the last glacial maximum. In contrast, a multimodal distribution of haplotypes was observed for Central America suggesting either population equilibrium or a recent decline.High levels of

  17. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    Directory of Open Access Journals (Sweden)

    Jan Futas

    Full Text Available Natural killer (NK cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for

  18. Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49

    Science.gov (United States)

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  19. The invasive MED/Q Bemisia tabaci genome: a tale of gene loss and gene gain

    Science.gov (United States)

    Whiteflies are a group of invasive crop pests that impact global agriculture. An analysis was conducted to compare draft genomes of two whitefly strains, which demonstrated the relative conserved gene order, but a number of genes were either novel (added) or omitted (deleted) between genomes. This...

  20. Evolutionary Conservation in Genes Underlying Human Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Lisa Michelle Ogawa

    2014-05-01

    Full Text Available Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of genes associated with these and other psychiatric disorders are compared among species. Genes associated with psychiatric disorders are drawn from the literature and orthologous sequences are collected from eleven primate species (human, chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, baboon, marmoset, squirrel monkey, and galago and thirty one non-primate mammalian species. Evolutionary parameters, including dN/dS, are calculated for each gene and compared between disease classes and among species, focusing on humans and primates compared to other mammals and on large-brained taxa (cetaceans, rhinoceros, walrus, bear, and elephant compared to their small-brained sister species. Evidence of differential selection in primates supports the hypothesis that schizophrenia and autism are a cost of higher brain function. Through this work a better understanding of the molecular evolution of the human brain, the pathophysiology of disease, and the genetic basis of human psychiatric disease is gained.

  1. Genome-wide identification of SAUR genes in watermelon (Citrullus lanatus).

    Science.gov (United States)

    Zhang, Na; Huang, Xing; Bao, Yaning; Wang, Bo; Zeng, Hongxia; Cheng, Weishun; Tang, Mi; Li, Yuhua; Ren, Jian; Sun, Yuhong

    2017-07-01

    The early auxin responsive SAUR family is an important gene family in auxin signal transduction. We here present the first report of a genome-wide identification of SAUR genes in watermelon genome. We successfully identified 65 ClaSAURs and provide a genomic framework for future study on these genes. Phylogenetic result revealed a Cucurbitaceae-specific SAUR subfamily and contribute to understanding of the evolutionary pattern of SAUR genes in plants. Quantitative RT-PCR analysis demonstrates the existed expression of 11 randomly selected SAUR genes in watermelon tissues. ClaSAUR36 was highly expressed in fruit, for which further study might bring a new prospective for watermelon fruit development. Moreover, correlation analysis revealed the similar expression profiles of SAUR genes between watermelon and Arabidopsis during shoot organogenesis. This work gives us a new support for the conserved auxin machinery in plants.

  2. Predicting cellular growth from gene expression signatures.

    Directory of Open Access Journals (Sweden)

    Edoardo M Airoldi

    2009-01-01

    Full Text Available Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes. More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://function.princeton.edu/growthrate.

  3. The Drosophila Translational Control Element (TCE is required for high-level transcription of many genes that are specifically expressed in testes.

    Directory of Open Access Journals (Sweden)

    Rebeccah J Katzenberger

    Full Text Available To investigate the importance of core promoter elements for tissue-specific transcription of RNA polymerase II genes, we examined testis-specific transcription in Drosophila melanogaster. Bioinformatic analyses of core promoter sequences from 190 genes that are specifically expressed in testes identified a 10 bp A/T-rich motif that is identical to the translational control element (TCE. The TCE functions in the 5' untranslated region of Mst(3CGP mRNAs to repress translation, and it also functions in a heterologous gene to regulate transcription. We found that among genes with focused initiation patterns, the TCE is significantly enriched in core promoters of genes that are specifically expressed in testes but not in core promoters of genes that are specifically expressed in other tissues. The TCE is variably located in core promoters and is conserved in melanogaster subgroup species, but conservation dramatically drops in more distant species. In transgenic flies, short (300-400 bp genomic regions containing a TCE directed testis-specific transcription of a reporter gene. Mutation of the TCE significantly reduced but did not abolish reporter gene transcription indicating that the TCE is important but not essential for transcription activation. Finally, mutation of testis-specific TFIID (tTFIID subunits significantly reduced the transcription of a subset of endogenous TCE-containing but not TCE-lacking genes, suggesting that tTFIID activity is limited to TCE-containing genes but that tTFIID is not an obligatory regulator of TCE-containing genes. Thus, the TCE is a core promoter element in a subset of genes that are specifically expressed in testes. Furthermore, the TCE regulates transcription in the context of short genomic regions, from variable locations in the core promoter, and both dependently and independently of tTFIID. These findings set the stage for determining the mechanism by which the TCE regulates testis-specific transcription and

  4. The Drosophila Translational Control Element (TCE) is required for high-level transcription of many genes that are specifically expressed in testes.

    Science.gov (United States)

    Katzenberger, Rebeccah J; Rach, Elizabeth A; Anderson, Ashley K; Ohler, Uwe; Wassarman, David A

    2012-01-01

    To investigate the importance of core promoter elements for tissue-specific transcription of RNA polymerase II genes, we examined testis-specific transcription in Drosophila melanogaster. Bioinformatic analyses of core promoter sequences from 190 genes that are specifically expressed in testes identified a 10 bp A/T-rich motif that is identical to the translational control element (TCE). The TCE functions in the 5' untranslated region of Mst(3)CGP mRNAs to repress translation, and it also functions in a heterologous gene to regulate transcription. We found that among genes with focused initiation patterns, the TCE is significantly enriched in core promoters of genes that are specifically expressed in testes but not in core promoters of genes that are specifically expressed in other tissues. The TCE is variably located in core promoters and is conserved in melanogaster subgroup species, but conservation dramatically drops in more distant species. In transgenic flies, short (300-400 bp) genomic regions containing a TCE directed testis-specific transcription of a reporter gene. Mutation of the TCE significantly reduced but did not abolish reporter gene transcription indicating that the TCE is important but not essential for transcription activation. Finally, mutation of testis-specific TFIID (tTFIID) subunits significantly reduced the transcription of a subset of endogenous TCE-containing but not TCE-lacking genes, suggesting that tTFIID activity is limited to TCE-containing genes but that tTFIID is not an obligatory regulator of TCE-containing genes. Thus, the TCE is a core promoter element in a subset of genes that are specifically expressed in testes. Furthermore, the TCE regulates transcription in the context of short genomic regions, from variable locations in the core promoter, and both dependently and independently of tTFIID. These findings set the stage for determining the mechanism by which the TCE regulates testis-specific transcription and understanding the

  5. Structure and expression of the Xenopus retinoblastoma gene.

    Science.gov (United States)

    Destrée, O H; Lam, K T; Peterson-Maduro, L J; Eizema, K; Diller, L; Gryka, M A; Frebourg, T; Shibuya, E; Friend, S H

    1992-09-01

    We have cloned a Xenopus homology (XRb1) of the human retinoblastoma susceptibility gene. DNA sequence analysis shows that the XRb1 gene product is highly conserved in many regions. The leucine repeat motif and many of the potential cdc2 phosphorylation sites, as well as potential sites for other kinases, are retained. The region of the protein homologous to the SV40 T antigen binding site and the basic region directly C-terminal to the E1A binding site are all conserved. XRb1 gene expression at the RNA level was studied by Northern blot analysis. Transcripts of 4.2 and 10-kb are present as maternal RNA stores in the oocyte. While the 4.2-kb product is stable until at least the mid-blastula stage, the 10-kb transcript is selectively degraded. Between stages 11 and 13 the 10-kb transcript reappears and also a minor product of approximately 11 kb becomes apparent. Both the 4.2- and the 10-kb transcripts remain present until later stages of development and are also present in all adult tissues examined, although at differing levels. Antibodies raised against human p105Rb which recognize the protein product of the XRb1 gene, pXRb1, detect the Xenopus 99-kDa protein prior to the mid-blastula stage, but at lower levels than at later stages in development.

  6. Comparative mtDNA analyses of three sympatric macropodids from a conservation area on the Huon Peninsula, Papua New Guinea.

    Science.gov (United States)

    McGreevy, Thomas J; Dabek, Lisa; Husband, Thomas P

    2016-07-01

    Matschie's tree kangaroo (Dendrolagus matschiei), New Guinea pademelon (Thylogale browni), and small dorcopsis (Dorcopsulus vanheurni) are sympatric macropodid taxa, of conservation concern, that inhabit the Yopno-Urawa-Som (YUS) Conservation Area on the Huon Peninsula, Papua New Guinea. We sequenced three partial mitochondrial DNA (mtDNA) genes from the three taxa to (i) investigate network structure; and (ii) identify conservation units within the YUS Conservation Area. All three taxa displayed a similar pattern in the spatial distribution of their mtDNA haplotypes and the Urawa and Som rivers on the Huon may have acted as a barrier to maternal gene flow. Matschie's tree kangaroo and New Guinea pademelon within the YUS Conservation Area should be managed as single conservation units because mtDNA nucleotides were not fixed for a given geographic area. However, two distinct conservation units were identified for small dorcopsis from the two different mountain ranges within the YUS Conservation Area.

  7. Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro-costo-mandibular syndrome.

    Science.gov (United States)

    Lynch, Danielle C; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J; Innes, A Micheil; Lamont, Ryan E; Lemire, Edmond G; Chodirker, Bernard N; Taylor, Juliet P; Zackai, Elaine H; McLeod, D Ross; Kirk, Edwin P; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Majewski, Jacek; Jerome-Majewska, Loydie A; Parboosingh, Jillian S; Bernier, Francois P

    2014-07-22

    Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro-costo-mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development.

  8. Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro–costo–mandibular syndrome

    Science.gov (United States)

    Lynch, Danielle C.; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J.; Innes, A. Micheil; Lamont, Ryan E.; Lemire, Edmond G.; Chodirker, Bernard N.; Taylor, Juliet P.; Zackai, Elaine H.; McLeod, D. Ross; Kirk, Edwin P.; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Boycott, Kym; MacKenzie, Alex; Brudno, Michael; Bulman, Dennis; Dyment, David; Majewski, Jacek; Jerome-Majewska, Loydie A.; Parboosingh, Jillian S.; Bernier, Francois P.

    2014-01-01

    Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro–costo–mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development. PMID:25047197

  9. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites

    Directory of Open Access Journals (Sweden)

    Kristopher J. L. Irizarry

    2016-01-01

    Full Text Available Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1 that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus. Our results provide insight into pigment phenotypes in pythons.

  10. Adiponectin gene therapy ameliorates high-fat, high-sucrose diet-induced metabolic perturbations in mice.

    Science.gov (United States)

    Kandasamy, A D; Sung, M M; Boisvenue, J J; Barr, A J; Dyck, J R B

    2012-09-10

    Adiponectin is an adipokine secreted primarily from adipose tissue that can influence circulating plasma glucose and lipid levels through multiple mechanisms involving a variety of organs. In humans, reduced plasma adiponectin levels induced by obesity are associated with insulin resistance and type 2 diabetes, suggesting that low adiponectin levels may contribute the pathogenesis of obesity-related insulin resistance. The objective of the present study was to investigate whether gene therapy designed to elevate circulating adiponectin levels is a viable strategy for ameliorating insulin resistance in mice fed a high-fat, high-sucrose (HFHS) diet. Electroporation-mediated gene transfer of mouse adiponectin plasmid DNA into gastrocnemius muscle resulted in elevated serum levels of globular and high-molecular weight adiponectin compared with control mice treated with empty plasmid. In comparison to HFHS-fed mice receiving empty plasmid, mice receiving adiponectin gene therapy displayed significantly decreased weight gain following 13 weeks of HFHS diet associated with reduced fat accumulation, and exhibited increased oxygen consumption and locomotor activity as measured by indirect calorimetry, suggesting increased energy expenditure in these mice. Consistent with improved whole-body metabolism, mice receiving adiponectin gene therapy also had lower blood glucose and insulin levels, improved glucose tolerance and reduced hepatic gluconeogenesis compared with control mice. Furthermore, immunoblot analysis of livers from mice receiving adiponectin gene therapy showed an increase in insulin-stimulated phosphorylation of insulin signaling proteins. Based on these data, we conclude that adiponectin gene therapy ameliorates the metabolic abnormalities caused by feeding mice a HFHS diet and may be a potential therapeutic strategy to improve obesity-mediated impairments in insulin sensitivity.

  11. GxGrare: gene-gene interaction analysis method for rare variants from high-throughput sequencing data.

    Science.gov (United States)

    Kwon, Minseok; Leem, Sangseob; Yoon, Joon; Park, Taesung

    2018-03-19

    With the rapid advancement of array-based genotyping techniques, genome-wide association studies (GWAS) have successfully identified common genetic variants associated with common complex diseases. However, it has been shown that only a small proportion of the genetic etiology of complex diseases could be explained by the genetic factors identified from GWAS. This missing heritability could possibly be explained by gene-gene interaction (epistasis) and rare variants. There has been an exponential growth of gene-gene interaction analysis for common variants in terms of methodological developments and practical applications. Also, the recent advancement of high-throughput sequencing technologies makes it possible to conduct rare variant analysis. However, little progress has been made in gene-gene interaction analysis for rare variants. Here, we propose GxGrare which is a new gene-gene interaction method for the rare variants in the framework of the multifactor dimensionality reduction (MDR) analysis. The proposed method consists of three steps; 1) collapsing the rare variants, 2) MDR analysis for the collapsed rare variants, and 3) detect top candidate interaction pairs. GxGrare can be used for the detection of not only gene-gene interactions, but also interactions within a single gene. The proposed method is illustrated with 1080 whole exome sequencing data of the Korean population in order to identify causal gene-gene interaction for rare variants for type 2 diabetes. The proposed GxGrare performs well for gene-gene interaction detection with collapsing of rare variants. GxGrare is available at http://bibs.snu.ac.kr/software/gxgrare which contains simulation data and documentation. Supported operating systems include Linux and OS X.

  12. Isolation and expression analysis of four HD-ZIP III family genes targeted by microRNA166 in peach.

    Science.gov (United States)

    Zhang, C H; Zhang, B B; Ma, R J; Yu, M L; Guo, S L; Guo, L

    2015-10-30

    MicroRNA166 (miR166) is known to have highly conserved targets that encode proteins of the class III homeodomain-leucine zipper (HD-ZIP III) family, in a broad range of plant species. To further understand the relationship between HD-ZIP III genes and miR166, four HD-ZIP III family genes (PpHB14, PpHB15, PpHB8, and PpREV) were isolated from peach (Prunus persica) tissue and characterized. Spatio-temporal expression profiles of the genes were analyzed. Genes of the peach HD-ZIP III family were predicted to encode five conserved domains. Deduced amino acid sequences and tertiary structures of the four peach HD-ZIP III genes were highly conserved, with corresponding genes in Arabidopsis thaliana. The expression level of four targets displayed the opposite trend to that of miR166 throughout fruit development, with the exception of PpHB14 from 35 to 55 days after full bloom (DAFB). This finding indicates that miR166 may negatively regulate its four targets throughout fruit development. As for leaf and phloem, the same trend in expression level was observed between four targets and miR166 from 75 to 105 DAFB. However, the opposite trend was observed for the transcript level between four targets and miR166 from 35 to 55 DAFB. miRNA166 may negatively regulate four targets in some but not all developmental stages for a given tissue. The four genes studied were observed to have, exactly or generally, the same change tendency as individual tissue development, a finding that suggests genes of the HD-ZIP III family in peach may have complementary or cooperative functions in various tissues.

  13. Preparation, crystallization and preliminary X-ray characterization of a conserved hypothetical protein XC1692 from Xanthomonas campestris

    International Nuclear Information System (INIS)

    Chin, Ko-Hsin; Huang, Zhao-Wei; Wei, Kun-Chou; Chou, Chia-Cheng; Lee, Cheng-Chung; Shr, Hui-Lin; Gao, Fei Philip; Lyu, Ping-Chiang; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-01-01

    A conserved hypothetical protein XC1692 from X. campestris pv. campestris has been overexpressed in E. coli. The purified recombinant protein crystallized in a variety of forms and diffracted to a resolution of at least 1.45 Å. Xanthomonas campestris pv. campestris strain 17 is a Gram-negative yellow-pigmented pathogenic bacterium that causes black rot, one of the major worldwide diseases of cruciferous crops. Its genome contains approximately 4500 genes, one third of which have no known structure and/or function yet are highly conserved among several different bacterial genuses. One of these gene products is XC1692 protein, containing 141 amino acids. It was overexpressed in Escherichia coli, purified and crystallized in a variety of forms using the hanging-drop vapour-diffusion method. The crystals diffract to at least 1.45 Å resolution. They are hexagonal and belong to space group P6 3 , with unit-cell parameters a = b = 56.9, c = 71.0 Å. They contain one molecule per asymmetric unit

  14. Ancient conservation of trinucleotide microsatellite loci in polistine wasps

    DEFF Research Database (Denmark)

    Ezenwa, V O; Peters, J M; Zhu, Y

    1998-01-01

    Microsatellites have proven to be very useful genetic markers for studies of kinship, parentage, and gene mapping. If microsatellites are conserved among species, then those developed for one species can be used on related species, which would save the time and effort of developing new loci. We...... evaluated conservation of 27 trinucleotide loci that were derived from 2 species of Polistes wasps in cross-species applications on 27 species chosen from the major lineages of the Vespidae, which diverged as much as 144 million years ago. We further investigated cross-species polymorphism levels for 18...... of the loci. There was a clear relationship between cladistic distance and both conservation of the priming sites and heterozygosity. However the loci derived from P. bellicosus were much more widely conserved and polymorphic than were those derived from P. annularis. The disparity in cross-species utility...

  15. The evolution of milk casein genes from tooth genes before the origin of mammals.

    Science.gov (United States)

    Kawasaki, Kazuhiko; Lafont, Anne-Gaelle; Sire, Jean-Yves

    2011-07-01

    Caseins are among cardinal proteins that evolved in the lineage leading to mammals. In milk, caseins and calcium phosphate (CaP) form a huge complex called casein micelle. By forming the micelle, milk maintains high CaP concentrations, which help altricial mammalian neonates to grow bone and teeth. Two types of caseins are known. Ca-sensitive caseins (α(s)- and β-caseins) bind Ca but precipitate at high Ca concentrations, whereas Ca-insensitive casein (κ-casein) does not usually interact with Ca but instead stabilizes the micelle. Thus, it is thought that these two types of caseins are both necessary for stable micelle formation. Both types of caseins show high substitution rates, which make it difficult to elucidate the evolution of caseins. Yet, recent studies have revealed that all casein genes belong to the secretory calcium-binding phosphoprotein (SCPP) gene family that arose by gene duplication. In the present study, we investigated exon-intron structures and phylogenetic distributions of casein and other SCPP genes, particularly the odontogenic ameloblast-associated (ODAM) gene, the SCPP-Pro-Gln-rich 1 (SCPPPQ1) gene, and the follicular dendritic cell secreted peptide (FDCSP) gene. The results suggest that contemporary Ca-sensitive casein genes arose from a putative common ancestor, which we refer to as CSN1/2. The six putative exons comprising CSN1/2 are all found in SCPPPQ1, although ODAM also shares four of these exons. By contrast, the five exons of the Ca-insensitive casein gene are all reminiscent of FDCSP. The phylogenetic distribution of these genes suggests that both SCPPPQ1 and FDCSP arose from ODAM. We thus argue that all casein genes evolved from ODAM via two different pathways; Ca-sensitive casein genes likely originated directly from SCPPPQ1, whereas the Ca-insensitive casein genes directly differentiated from FDCSP. Further, expression of ODAM, SCPPPQ1, and FDCSP was detected in dental tissues, supporting the idea that both types of caseins

  16. Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua

    Directory of Open Access Journals (Sweden)

    Mittelholzer Christian

    2009-12-01

    Full Text Available Abstract Background Marine fishes have been shown to display low levels of genetic structuring and associated high levels of gene flow, suggesting shallow evolutionary trajectories and, possibly, limited or lacking adaptive divergence among local populations. We investigated variation in 98 gene-associated single nucleotide polymorphisms (SNPs for evidence of selection in local populations of Atlantic cod (Gadus morhua L. across the species distribution. Results Our global genome scan analysis identified eight outlier gene loci with very high statistical support, likely to be subject to directional selection in local demes, or closely linked to loci under selection. Likewise, on a regional south/north transect of central and eastern Atlantic populations, seven loci displayed strongly elevated levels of genetic differentiation. Selection patterns among populations appeared to be relatively widespread and complex, i.e. outlier loci were generally not only associated with one of a few divergent local populations. Even on a limited geographical scale between the proximate North Sea and Baltic Sea populations four loci displayed evidence of adaptive evolution. Temporal genome scan analysis applied to DNA from archived otoliths from a Faeroese population demonstrated stability of the intra-population variation over 24 years. An exploratory landscape genetic analysis was used to elucidate potential effects of the most likely environmental factors responsible for the signatures of local adaptation. We found that genetic variation at several of the outlier loci was better correlated with temperature and/or salinity conditions at spawning grounds at spawning time than with geographic distance per se. Conclusion These findings illustrate that adaptive population divergence may indeed be prevalent despite seemingly high levels of gene flow, as found in most marine fishes. Thus, results have important implications for our understanding of the interplay of

  17. The mechanism for primordial germ-cell migration is conserved between Japanese eel and zebrafish.

    Directory of Open Access Journals (Sweden)

    Taiju Saito

    Full Text Available Primordial germ cells (PGCs are segregated and specified from somatic cells during early development. These cells arise elsewhere and have to migrate across the embryo to reach developing gonadal precursors. Several molecules associated with PGC migration (i.e. dead-end, nanos1, and cxcr4 are highly conserved across phylum boundaries. However, since cell migration is a complicated process that is regulated spatially and temporally by multiple adaptors and signal effectors, the process is unlikely to be explained by these known genes only. Indeed, it has been shown that there are variations in PGC migration pattern during development among teleost species. However, it is still unclear whether the actual mechanism of PGC migration is conserved among species. In this study, we studied the migration of PGCs in Japanese eel (Anguilla japonica embryos and tested the migration mechanism between Japanese eel and zebrafish (Danio rerio for conservation, by transplanting eel PGCs into zebrafish embryos. The experiments showed that eel PGCs can migrate toward the gonadal region of zebrafish embryos along with endogenous PGCs, even though the migration patterns, behaviors, and settlements of PGCs are somewhat different between these species. Our results demonstrate that the migration mechanism of PGCs during embryonic development is highly conserved between these two distantly related species (belonging to different teleost orders.

  18. Assessing the genetic diversity of Cu resistance in mine tailings through high-throughput recovery of full-length copA genes

    Science.gov (United States)

    Li, Xiaofang; Zhu, Yong-Guan; Shaban, Babak; Bruxner, Timothy J. C.; Bond, Philip L.; Huang, Longbin

    2015-01-01

    Characterizing the genetic diversity of microbial copper (Cu) resistance at the community level remains challenging, mainly due to the polymorphism of the core functional gene copA. In this study, a local BLASTN method using a copA database built in this study was developed to recover full-length putative copA sequences from an assembled tailings metagenome; these sequences were then screened for potentially functioning CopA using conserved metal-binding motifs, inferred by evolutionary trace analysis of CopA sequences from known Cu resistant microorganisms. In total, 99 putative copA sequences were recovered from the tailings metagenome, out of which 70 were found with high potential to be functioning in Cu resistance. Phylogenetic analysis of selected copA sequences detected in the tailings metagenome showed that topology of the copA phylogeny is largely congruent with that of the 16S-based phylogeny of the tailings microbial community obtained in our previous study, indicating that the development of copA diversity in the tailings might be mainly through vertical descent with few lateral gene transfer events. The method established here can be used to explore copA (and potentially other metal resistance genes) diversity in any metagenome and has the potential to exhaust the full-length gene sequences for downstream analyses. PMID:26286020

  19. Concerted evolution of sea anemone neurotoxin genes is revealed through analysis of the Nematostella vectensis genome.

    Science.gov (United States)

    Moran, Yehu; Weinberger, Hagar; Sullivan, James C; Reitzel, Adam M; Finnerty, John R; Gurevitz, Michael

    2008-04-01

    Gene families, which encode toxins, are found in many poisonous animals, yet there is limited understanding of their evolution at the nucleotide level. The release of the genome draft sequence for the sea anemone Nematostella vectensis enabled a comprehensive study of a gene family whose neurotoxin products affect voltage-gated sodium channels. All gene family members are clustered in a highly repetitive approximately 30-kb genomic region and encode a single toxin, Nv1. These genes exhibit extreme conservation at the nucleotide level which cannot be explained by purifying selection. This conservation greatly differs from the toxin gene families of other animals (e.g., snakes, scorpions, and cone snails), whose evolution was driven by diversifying selection, thereby generating a high degree of genetic diversity. The low nucleotide diversity at the Nv1 genes is reminiscent of that reported for DNA encoding ribosomal RNA (rDNA) and 2 hsp70 genes from Drosophila, which have evolved via concerted evolution. This evolutionary pattern was experimentally demonstrated in yeast rDNA and was shown to involve unequal crossing-over. Through sequence analysis of toxin genes from multiple N. vectensis populations and 2 other anemone species, Anemonia viridis and Actinia equina, we observed that the toxin genes for each sea anemone species are more similar to one another than to those of other species, suggesting they evolved by manner of concerted evolution. Furthermore, in 2 of the species (A. viridis and A. equina) we found genes that evolved under diversifying selection, suggesting that concerted evolution and accelerated evolution may occur simultaneously.

  20. Molecular evidence for increased regulatory conservation during metamorphosis, and against deleterious cascading effects of hybrid breakdown in Drosophila

    Directory of Open Access Journals (Sweden)

    Artieri Carlo G

    2010-03-01

    circuits during morphogenesis may lead to it being more refractory to divergence of underlying gene regulatory mechanisms - more than that suggested by the conservation of gene expression levels between species during earlier stages. This provides support for a 'developmental hourglass' model of divergence of gene expression in Drosophila resulting in a highly conserved pupal stage.

  1. The role of landscape connectivity in planning and implementing conservation and restoration priorities

    Science.gov (United States)

    Deborah A. Rudnick; Sadie J. Ryan; Paul Beier; Samuel A. Cushman; Fred Dieffenbach; Clinton W. Epps; Leah R. Gerber; Joel Hartter; Jeff S. Jenness; Julia Kintsch; Adina M. Merenlender; Ryan M. Perkl; Damian V. Preziosi; Stephen C. Trombulak

    2012-01-01

    Landscape connectivity, the extent to which a landscape facilitates the movements of organisms and their genes, faces critical threats from both fragmentation and habitat loss. Many conservation efforts focus on protecting and enhancing connectivity to offset the impacts of habitat loss and fragmentation on biodiversity conservation, and to increase the resilience of...

  2. Production, Purification, and Gene Cloning of a β-Fructofuranosidase with a High Inulin-hydrolyzing Activity Produced by a Novel Yeast Aureobasidium sp. P6 Isolated from a Mangrove Ecosystem.

    Science.gov (United States)

    Jiang, Hong; Ma, Yan; Chi, Zhe; Liu, Guang-Lei; Chi, Zhen-Ming

    2016-08-01

    After screening of over 300 yeast strains isolated from the mangrove ecosystems, it was found that Aureobasidium sp. P6 strain had the highest inulin-hydrolyzing activity. Under the optimal conditions, this yeast strain produced an inulin-hydrolyzing activity of 30.98 ± 0.8 U/ml after 108 h of a 10-l fermentation. After the purification, a molecular weight of the enzyme which had the inulin-hydrolyzing activity was estimated to be 47.6 kDa, and the purified enzyme could actively hydrolyze both sucrose and inulin and exhibit a transfructosylating activity at 30.0 % sucrose, converting sucrose into fructooligosaccharides (FOS), indicating that the purified enzyme was a β-D-fructofuranosidase. After the full length of a β-D-fructofuranosidase gene (accession number KU308553) was cloned from Aureobasidium sp. P6 strain, a protein deduced from the cloned gene contained the conserved sequences MNDPNGL, RDP, ECP, FS, and Q of a glycosidehydrolase GH32 family, respectively, but did not contain a conserved sequence SVEVF, and the amino acid sequence of the protein from Aureobasidium sp. P6 strain had a high similarity to that of the β-fructofuranosidase from any other fungal strains. After deletion of the β-D-fructofuranosidase gene, the disruptant still had low inulin hydrolyzing and invertase activities and a trace amount of the transfructosylating activity, indicating that the gene encoding an inulinase may exist in the Aureobasidium sp. P6 strain.

  3. Cloning and Sequencing of Gene Encoding Outer Membrane Lipoprotein LipL41 of Leptospira Interrogans Serovar Grippotyphosa

    Directory of Open Access Journals (Sweden)

    M.S. Soltani

    2014-12-01

    Full Text Available Background: Leptospirosis is an infectious bacterial disease caused by pathogenic serovars of Leptospira. Development of reliable and applicable diagnostic test and also recombinant vaccine for this disease require specific antigens that are highly conserved among diverse pathogenic leptospiral serovars. Outer membrane proteins(OMPs of leptospira are effective antigens which can stimulate remarkable immune responses during infection, among them LipL41 is an immunogenic lipoprotein which is present only in pathogenic serovars so it could be regarded as a good candidate for vaccine development and diagnostic method. In order to identify genetic conservation of the lipL41 gene, we cloned and sequenced this gen from Leptospira interrogans serovar vaccinal and field of Grippotyphosa. Materials and Methods: Leptospira interrogans serovar vaccinal Grippotyphosa (RTCC2808 and serovar field Grippotyphosa (RTCC2825were used to inoculate into the selective culture medium(EMJH. The genomic DNA was extracted by standard phenol-chloroform method. The lipL41 gene were amplified by specific primers and cloned into pTZ57R/T vector and transformed into the competent E. coli (Top10 cells. the extracted recombinant plasmid were sequenced. And the related sequences were subjected to homology analysis by comparing them to sequences in the Genbank database. Results: PCR amplification of the lipL41 gene resulted in the 1065 bp PCR product. DNA sequence analysis revealed that lipL41 gene between serovar vaccinal Grippotyphosa (RTCC2808and serovar field Grippotyphosa (RTCC2825 in Iran was 100%. It was also showed that the lipL41 gene had high identity (96%-100% with other pathogenic serovars submitted in Genbank database. Conclusion: The results of this study showed that the lipL41 gene was highly conserved among various pathogenic Leptospira serovars( >95.9 % identity. Hence the cloned gene could be further used for expression of recombinant protein for serodiagnosis

  4. Identification and nucleotide sequence of the thymidine kinase gene of Shope fibroma virus

    International Nuclear Information System (INIS)

    Upton, C.; McFadden, G.

    1986-01-01

    The thymidine kinase (TK) gene of Shope fibroma virus (SFV), a tumorigenic leporipoxvirus, was localized within the viral genome with degenerate oligonucleotide probes. These probes were constructed to two regions of high sequence conservation between the vaccinia virus TK gene and those of several known eucaryotic cellular TK genes, including human, mouse, hamster, and chicken TK genes. The oligonucleotide probes initially localized the SFV TK gene 50 kilobases (kb) from the right terminus of the 160-kb SFV genome within the 9.5-kb BamHI-HindIII fragment E. Fine-mapping analysis indicated that the TK Gene was within a 1.2-kb AvaI-HaeIII fragment, and DNA sequencing of this region revealed an open reading frame capable of encoding a polypeptide of 187 amino acids possessing considerable homology to the TK genes of the vaccinia, variola, and monkeypox orthopoxviruses and also to a variety of cellular TK genes. Homology matrix analysis and homology scores suggest that the SFV TK gene has diverged significantly from its counterpart members in the orthopoxvirus genus. Nevertheless, the presence of conserved upstream open reading frames on the 5' side of all of the poxvirus TK genes indicates a similarity of functional organization between the orthopoxviruses and leporipoxviruses. These data suggest a common ancestral origin for at least some of the unique internal regions of the leporipoxviruses and orthopoxviruses as exemplified by SFV and vaccinia virus, respectively

  5. Unusual Gene Order and Organization of the Sea Urchin HoxCluster

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Paul M.; Lucas, Susan; Cameron, R. Andrew; Rowen,Lee; Nesbitt, Ryan; Bloom, Scott; Rast, Jonathan P.; Berney, Kevin; Arenas-Mena, Cesar; Martinez, Pedro; Davidson, Eric H.; Peterson, KevinJ.; Hood, Leroy

    2005-05-10

    The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is : 5'-Hox1,2, 3, 11/13c, 11/13b, '11/13a, 9/10, 8, 7, 6, 5 - 3)'. The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.

  6. Mistaken identity: activating conservative political identities induces "conservative" financial decisions.

    Science.gov (United States)

    Morris, Michael W; Carranza, Erica; Fox, Craig R

    2008-11-01

    Four studies investigated whether activating a social identity can lead group members to choose options that are labeled in words associated with that identity. When political identities were made salient, Republicans (but not Democrats) became more likely to choose the gamble or investment option labeled "conservative." This shift did not occur in a condition in which the same options were unlabeled. Thus, the mechanism underlying the effect appears to be not activated identity-related values prioritizing low risk, but rather activated identity-related language (the group label "conservative"). Indeed, when political identities were salient, Republicans favored options labeled "conservative" regardless of whether the options were low or high risk. Finally, requiring participants to explain the label "conservative" before making their choice did not diminish the effect, which suggests that it does not merely reflect inattention to content or construct accessibility. We discuss the implications of these results for the literatures on identity, priming, choice, politics, and marketing.

  7. Mutations in conserved amino acids in the KCNQ1 channel and risk of cardiac events in type-1 long-QT syndrome

    DEFF Research Database (Denmark)

    Jons, Christian; Moss, Arthur J; Lopes, Coeli M

    2009-01-01

    BACKGROUND: Type-1 long-QT syndrome (LQT1) is caused by mutations in the KCNQ1 gene. The purpose of this study was to investigate whether KCNQ1 mutations in highly conserved amino acid residues within the voltage-gated potassium channel family are associated with an increased risk of cardiac even...

  8. Supplementing High-Density SNP Microarrays for Additional Coverage of Disease-Related Genes: Addiction as a Paradigm

    Energy Technology Data Exchange (ETDEWEB)

    SacconePhD, Scott F [Washington University, St. Louis; Chesler, Elissa J [ORNL; Bierut, Laura J [Washington University, St. Louis; Kalivas, Peter J [Medical College of South Carolina, Charleston; Lerman, Caryn [University of Pennsylvania; Saccone, Nancy L [Washington University, St. Louis; Uhl, George R [Johns Hopkins University; Li, Chuan-Yun [Peking University; Philip, Vivek M [ORNL; Edenberg, Howard [Indiana University; Sherry, Steven [National Center for Biotechnology Information; Feolo, Michael [National Center for Biotechnology Information; Moyzis, Robert K [Johns Hopkins University; Rutter, Joni L [National Institute of Drug Abuse

    2009-01-01

    Commercial SNP microarrays now provide comprehensive and affordable coverage of the human genome. However, some diseases have biologically relevant genomic regions that may require additional coverage. Addiction, for example, is thought to be influenced by complex interactions among many relevant genes and pathways. We have assembled a list of 486 biologically relevant genes nominated by a panel of experts on addiction. We then added 424 genes that showed evidence of association with addiction phenotypes through mouse QTL mappings and gene co-expression analysis. We demonstrate that there are a substantial number of SNPs in these genes that are not well represented by commercial SNP platforms. We address this problem by introducing a publicly available SNP database for addiction. The database is annotated using numeric prioritization scores indicating the extent of biological relevance. The scores incorporate a number of factors such as SNP/gene functional properties (including synonymy and promoter regions), data from mouse systems genetics and measures of human/mouse evolutionary conservation. We then used HapMap genotyping data to determine if a SNP is tagged by a commercial microarray through linkage disequilibrium. This combination of biological prioritization scores and LD tagging annotation will enable addiction researchers to supplement commercial SNP microarrays to ensure comprehensive coverage of biologically relevant regions.

  9. Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions.

    Science.gov (United States)

    Zinkgraf, Matthew; Liu, Lijun; Groover, Andrew; Filkov, Vladimir

    2017-06-01

    Trees modify wood formation through integration of environmental and developmental signals in complex but poorly defined transcriptional networks, allowing trees to produce woody tissues appropriate to diverse environmental conditions. In order to identify relationships among genes expressed during wood formation, we integrated data from new and publically available datasets in Populus. These datasets were generated from woody tissue and include transcriptome profiling, transcription factor binding, DNA accessibility and genome-wide association mapping experiments. Coexpression modules were calculated, each of which contains genes showing similar expression patterns across experimental conditions, genotypes and treatments. Conserved gene coexpression modules (four modules totaling 8398 genes) were identified that were highly preserved across diverse environmental conditions and genetic backgrounds. Functional annotations as well as correlations with specific experimental treatments associated individual conserved modules with distinct biological processes underlying wood formation, such as cell-wall biosynthesis, meristem development and epigenetic pathways. Module genes were also enriched for DNase I hypersensitivity footprints and binding from four transcription factors associated with wood formation. The conserved modules are excellent candidates for modeling core developmental pathways common to wood formation in diverse environments and genotypes, and serve as testbeds for hypothesis generation and testing for future studies. No claim to original US government works. New Phytologist © 2017 New Phytologist Trust.

  10. Evolutionary conservation and expression of miR-10a-3p in olive flounder and rock bream.

    Science.gov (United States)

    Jo, Ara; Im, Jennifer; Lee, Hee-Eun; Jang, Dongmin; Nam, Gyu-Hwi; Mishra, Anshuman; Kim, Woo-Jin; Kim, Won; Cha, Hee-Jae; Kim, Heui-Soo

    2017-09-10

    MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that mainly bind to the seed sequences located within the 3' untranslated region (3' UTR) of target genes. They perform an important biological function as regulators of gene expression. Different genes can be regulated by the same miRNA, whilst different miRNAs can be regulated by the same genes. Here, the evolutionary conservation and expression pattern of miR-10a-3p in olive flounder and rock bream was examined. Binding sites (AAAUUC) to seed region of the 3' UTR of target genes were highly conserved in various species. The expression pattern of miR-10a-3p was ubiquitous in the examined tissues, whilst its expression level was decreased in gill tissues infected by viral hemorrhagic septicemia virus (VHSV) compared to the normal control. In the case of rock bream, the spleen, kidney, and liver tissues showed dominant expression levels of miR-10a-3p. Only the liver tissues in the rock bream samples infected by the iridovirus indicated a dominant miR-10a-3p expression. The gene ontology (GO) analysis of predicted target genes for miR-10a-3p revealed that multiple genes are related to binding activity, catalytic activity, cell components as well as cellular and metabolic process. Overall the results imply that the miR-10a-3p could be used as a biomarker to detect VHSV infection in olive flounder and iridovirus infection in rock bream. In addition, the data provides fundamental information for further study of the complex interaction between miR-10a-3p and gene expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Conservation of Charge and Conservation of Current

    OpenAIRE

    Eisenberg, Bob

    2016-01-01

    Conservation of current and conservation of charge are nearly the same thing: when enough is known about charge movement, conservation of current can be derived from conservation of charge, in ideal dielectrics, for example. Conservation of current is enforced implicitly in ideal dielectrics by theories that conserve charge. But charge movement in real materials like semiconductors or ionic solutions is never ideal. We present an apparently universal derivation of conservation of current and ...

  12. Mutations that alter a conserved element upstream of the potato virus X triple block and coat protein genes affect subgenomic RNA accumulation.

    Science.gov (United States)

    Kim, K H; Hemenway, C

    1997-05-26

    The putative subgenomic RNA (sgRNA) promoter regions upstream of the potato virus X (PVX) triple block and coat protein (CP) genes contain sequences common to other potexviruses. The importance of these sequences to PVX sgRNA accumulation was determined by inoculation of Nicotiana tabacum NT1 cell suspension protoplasts with transcripts derived from wild-type and modified PVX cDNA clones. Analyses of RNA accumulation by S1 nuclease digestion and primer extension indicated that a conserved octanucleotide sequence element and the spacing between this element and the start-site for sgRNA synthesis are critical for accumulation of the two major sgRNA species. The impact of mutations on CP sgRNA levels was also reflected in the accumulation of CP. In contrast, genomic minus- and plus-strand RNA accumulation were not significantly affected by mutations in these regions. Studies involving inoculation of tobacco plants with the modified transcripts suggested that the conserved octanucleotide element functions in sgRNA accumulation and some other aspect of the infection process.

  13. Genetic control of eosinophilia in mice: gene(s) expressed in bone marrow-derived cells control high responsiveness

    International Nuclear Information System (INIS)

    Vadas, M.A.

    1982-01-01

    A heterogeneity in the capacity of strains of mice to mount eosinophilia is described. BALB/c and C3H are eosinophil high responder strains (EO-HR) and CBA and A/J are eosinophil low responder strains (EO-LR), judged by the response of blood eosinophils to Ascaris suum, and the response of blood, bone marrow, and spleen eosinophils to keyhole limpet hemocyanin given 2 days after 150 mg/kg cyclophosphamide. Some of the gene(s) for high responsiveness appear to be dominant because (EO-HR x EO-LR)F 1 mice were intermediate to high responders. This gene is expressed in bone marrow-derived cells because radiation chimeras of the type EO-HR→F 1 were high responders and EO-LR→F 1 were low responders. This description of a genetic control of eosinophilia in mice may be useful in understanding the role of this cell in parasite immunity and allergy

  14. Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum): Characterization of flax miRNA genes.

    Science.gov (United States)

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Qiu, Shuqing; Rollins, Meaghen; Datla, Raju; Gupta, Vidya S; Kadoo, Narendra Y

    2013-04-01

    MicroRNAs (miRNAs) are small (20-24 nucleotide long) endogenous regulatory RNAs that play important roles in plant growth and development. They regulate gene expression at the post-transcriptional level by translational repression or target degradation and gene silencing. In this study, we identified 116 conserved miRNAs belonging to 23 families from the flax (Linum usitatissimum L.) genome using a computational approach. The precursor miRNAs varied in length; while most of the mature miRNAs were 21 nucleotide long, intergenic and showed conserved signatures of RNA polymerase II transcripts in their upstream regions. Promoter region analysis of the flax miRNA genes indicated prevalence of MYB transcription factor binding sites. Four miRNA gene clusters containing members of three phylogenetic groups were identified. Further, 142 target genes were predicted for these miRNAs and most of these represent transcriptional regulators. The miRNA encoding genes were expressed in diverse tissues as determined by digital expression analysis as well as real-time PCR. The expression of fourteen miRNAs and nine target genes was independently validated using the quantitative reverse transcription PCR (qRT-PCR). This study suggests that a large number of conserved plant miRNAs are also found in flax and these may play important roles in growth and development of flax.

  15. Relaxed selection against accidental binding of transcription factors with conserved chromatin contexts.

    Science.gov (United States)

    Babbitt, G A

    2010-10-15

    The spurious (or nonfunctional) binding of transcription factors (TF) to the wrong locations on DNA presents a formidable challenge to genomes given the relatively low ceiling for sequence complexity within the short lengths of most binding motifs. The high potential for the occurrence of random motifs and subsequent nonfunctional binding of many transcription factors should theoretically lead to natural selection against the occurrence of spurious motif throughout the genome. However, because of the active role that chromatin can influence over eukaryotic gene regulation, it may also be expected that many supposed spurious binding sites could escape purifying selection if (A) they simply occur in regions of high nucleosome occupancy or (B) their surrounding chromatin was dynamically involved in their identity and function. We compared nucleosome occupancy and the presence/absence of functionally conserved chromatin context to the strength of selection against spurious binding of various TF binding motifs in Saccharomyces yeast. While we find no direct relationship with nucleosome occupancy, we find strong evidence that transcription factors spatially associated with evolutionarily conserved chromatin states are under relaxed selection against accidental binding. Transcription factors (with/without) a conserved chromatin context were found to occur on average, (87.7%/49.3%) of their expected frequencies. Functional binding motifs with conserved chromatin contexts were also significantly shorter in length and more often clustered. These results indicate a role of chromatin context dependency in relaxing selection against spurious binding in nearly half of all TF binding motifs throughout the yeast genome. 2010 Elsevier B.V. All rights reserved.

  16. Population Structure and Adaptive Divergence in a High Gene Flow Marine Fish: The Small Yellow Croaker (Larimichthys polyactis.

    Directory of Open Access Journals (Sweden)

    Bing-Jian Liu

    Full Text Available The spatial distribution of genetic diversity has been long considered as a key component of policy development for management and conservation of marine fishes. However, unraveling the population genetic structure of migratory fish species is challenging due to high potential for gene flow. Despite the shallow population differentiation revealed by putatively neutral loci, the higher genetic differentiation with panels of putatively adaptive loci could provide greater resolution for stock identification. Here, patterns of population differentiation of small yellow croaker (Larimichthys polyactis were investigated by genotyping 15 highly polymorphic microsatellites in 337 individuals of 15 geographic populations collected from both spawning and overwintering grounds. Outlier analyses indicated that the locus Lpol03 might be under directional selection, which showed a strong homology with Grid2 gene encoding the glutamate receptor δ2 protein (GluRδ2. Based on Lpol03, two distinct clusters were identified by both STRUCTURE and PCoA analyses, suggesting that there were two overwintering aggregations of L. polyactis. A novel migration pattern was suggested for L. polyactis, which was inconsistent with results of previous studies based on historical fishing yield statistics. These results provided new perspectives on the population genetic structure and migratory routes of L. polyactis, which could have significant implications for sustainable management and utilization of this important fishery resource.

  17. What is a conservation actor?

    Directory of Open Access Journals (Sweden)

    Paul Jepson

    2011-01-01

    Full Text Available As a crisis-oriented discipline, conservation biology needs actions to understand the state of nature and thwart declines in biodiversity. Actors-traditionally individuals, institutions, and collectives-have been central to delivering such goals in practice. However, the definition of actors within the discipline has been narrow and their role in influencing conservation outcomes inadequately conceptualised. In this paper, we examine the question ′What is a conservation actor?′ Who or what creates the capacity to influence conservation values and actions? Drawing from theoretical developments in Actor-Network Theory and collective governance, we argue that the concept of an actor in conservation biology should be broadened to include non-humans, such as species and devices, because they have the agency and ability to influence project goals and outcomes. We illustrate this through four examples: the Asian elephant, International Union for Conservation of Nature red lists, the High Conservation Value approach, and an Integrated Conservation and Development Project. We argue that a broader conceptualisation of actors in conservation biology will produce new forms of understanding that could open up new areas of conservation research, enhance practice and draw attention to spheres of conservation activity that might require stronger oversight and governance.

  18. High cumulants of conserved charges and their statistical uncertainties

    Science.gov (United States)

    Li-Zhu, Chen; Ye-Yin, Zhao; Xue, Pan; Zhi-Ming, Li; Yuan-Fang, Wu

    2017-10-01

    We study the influence of measured high cumulants of conserved charges on their associated statistical uncertainties in relativistic heavy-ion collisions. With a given number of events, the measured cumulants randomly fluctuate with an approximately normal distribution, while the estimated statistical uncertainties are found to be correlated with corresponding values of the obtained cumulants. Generally, with a given number of events, the larger the cumulants we measure, the larger the statistical uncertainties that are estimated. The error-weighted averaged cumulants are dependent on statistics. Despite this effect, however, it is found that the three sigma rule of thumb is still applicable when the statistics are above one million. Supported by NSFC (11405088, 11521064, 11647093), Major State Basic Research Development Program of China (2014CB845402) and Ministry of Science and Technology (MoST) (2016YFE0104800)

  19. Identification of evolutionarily conserved Momordica charantia microRNAs using computational approach and its utility in phylogeny analysis.

    Science.gov (United States)

    Thirugnanasambantham, Krishnaraj; Saravanan, Subramanian; Karikalan, Kulandaivelu; Bharanidharan, Rajaraman; Lalitha, Perumal; Ilango, S; HairulIslam, Villianur Ibrahim

    2015-10-01

    Momordica charantia (bitter gourd, bitter melon) is a monoecious Cucurbitaceae with anti-oxidant, anti-microbial, anti-viral and anti-diabetic potential. Molecular studies on this economically valuable plant are very essential to understand its phylogeny and evolution. MicroRNAs (miRNAs) are conserved, small, non-coding RNA with ability to regulate gene expression by bind the 3' UTR region of target mRNA and are evolved at different rates in different plant species. In this study we have utilized homology based computational approach and identified 27 mature miRNAs for the first time from this bio-medically important plant. The phylogenetic tree developed from binary data derived from the data on presence/absence of the identified miRNAs were noticed to be uncertain and biased. Most of the identified miRNAs were highly conserved among the plant species and sequence based phylogeny analysis of miRNAs resolved the above difficulties in phylogeny approach using miRNA. Predicted gene targets of the identified miRNAs revealed their importance in regulation of plant developmental process. Reported miRNAs held sequence conservation in mature miRNAs and the detailed phylogeny analysis of pre-miRNA sequences revealed genus specific segregation of clusters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Use of genotyping by sequencing data to develop a high-throughput and multifunctional SNP panel for conservation applications in Pacific lamprey.

    Science.gov (United States)

    Hess, Jon E; Campbell, Nathan R; Docker, Margaret F; Baker, Cyndi; Jackson, Aaron; Lampman, Ralph; McIlraith, Brian; Moser, Mary L; Statler, David P; Young, William P; Wildbill, Andrew J; Narum, Shawn R

    2015-01-01

    Next-generation sequencing data can be mined for highly informative single nucleotide polymorphisms (SNPs) to develop high-throughput genomic assays for nonmodel organisms. However, choosing a set of SNPs to address a variety of objectives can be difficult because SNPs are often not equally informative. We developed an optimal combination of 96 high-throughput SNP assays from a total of 4439 SNPs identified in a previous study of Pacific lamprey (Entosphenus tridentatus) and used them to address four disparate objectives: parentage analysis, species identification and characterization of neutral and adaptive variation. Nine of these SNPs are FST outliers, and five of these outliers are localized within genes and significantly associated with geography, run-timing and dwarf life history. Two of the 96 SNPs were diagnostic for two other lamprey species that were morphologically indistinguishable at early larval stages and were sympatric in the Pacific Northwest. The majority (85) of SNPs in the panel were highly informative for parentage analysis, that is, putatively neutral with high minor allele frequency across the species' range. Results from three case studies are presented to demonstrate the broad utility of this panel of SNP markers in this species. As Pacific lamprey populations are undergoing rapid decline, these SNPs provide an important resource to address critical uncertainties associated with the conservation and recovery of this imperiled species. © 2014 John Wiley & Sons Ltd.

  1. Genome-Wide Identification and Evolution of HECT Genes in Soybean

    Directory of Open Access Journals (Sweden)

    Xianwen Meng

    2015-04-01

    Full Text Available Proteins containing domains homologous to the E6-associated protein (E6-AP carboxyl terminus (HECT are an important class of E3 ubiquitin ligases involved in the ubiquitin proteasome pathway. HECT-type E3s play crucial roles in plant growth and development. However, current understanding of plant HECT genes and their evolution is very limited. In this study, we performed a genome-wide analysis of the HECT domain-containing genes in soybean. Using high-quality genome sequences, we identified 19 soybean HECT genes. The predicted HECT genes were distributed unevenly across 15 of 20 chromosomes. Nineteen of these genes were inferred to be segmentally duplicated gene pairs, suggesting that in soybean, segmental duplications have made a significant contribution to the expansion of the HECT gene family. Phylogenetic analysis showed that these HECT genes can be divided into seven groups, among which gene structure and domain architecture was relatively well-conserved. The Ka/Ks ratios show that after the duplication events, duplicated HECT genes underwent purifying selection. Moreover, expression analysis reveals that 15 of the HECT genes in soybean are differentially expressed in 14 tissues, and are often highly expressed in the flowers and roots. In summary, this work provides useful information on which further functional studies of soybean HECT genes can be based.

  2. Species Richness and Community Structure on a High Latitude Reef: Implications for Conservation and Management

    Directory of Open Access Journals (Sweden)

    Wayne Houston

    2011-07-01

    Full Text Available In spite of the wealth of research on the Great Barrier Reef, few detailed biodiversity assessments of its inshore coral communities have been conducted. Effective conservation and management of marine ecosystems begins with fine-scale biophysical assessments focused on diversity and the architectural species that build the structural framework of the reef. In this study, we investigate key coral diversity and environmental attributes of an inshore reef system surrounding the Keppel Bay Islands near Rockhampton in Central Queensland, Australia, and assess their implications for conservation and management. The Keppels has much higher coral diversity than previously found. The average species richness for the 19 study sites was ~40 with representatives from 68% of the ~244 species previously described for the southern Great Barrier Reef. Using scleractinian coral species richness, taxonomic distinctiveness and coral cover as the main criteria, we found that five out of 19 sites had particularly high conservation value. A further site was also considered to be of relatively high value. Corals at this site were taxonomically distinct from the others (representatives of two families were found here but not at other sites and a wide range of functionally diverse taxa were present. This site was associated with more stressful conditions such as high temperatures and turbidity. Highly diverse coral communities or biodiversity ‘hotspots’ and taxonomically distinct reefs may act as insurance policies for climatic disturbance, much like Noah’s Arks for reefs. While improving water quality and limiting anthropogenic impacts are clearly important management initiatives to improve the long-term outlook for inshore reefs, identifying, mapping and protecting these coastal ‘refugia’ may be the key for ensuring their regeneration against catastrophic climatic disturbance in the meantime.

  3. Open reading frame 176 in the photosynthesis gene cluster of Rhodobacter capsulatus encodes idi, a gene for isopentenyl diphosphate isomerase.

    OpenAIRE

    Hahn, F M; Baker, J A; Poulter, C D

    1996-01-01

    Isopentenyl diphosphate (IPP) isomerase catalyzes an essential activation step in the isoprenoid biosynthetic pathway. A database search based on probes from the highly conserved regions in three eukaryotic IPP isomerases revealed substantial similarity with ORF176 in the photosynthesis gene cluster in Rhodobacter capsulatus. The open reading frame was cloned into an Escherichia coli expression vector. The encoded 20-kDa protein, which was purified in two steps by ion exchange and hydrophobic...

  4. High-order conservative discretizations for some cases of the rigid body motion

    International Nuclear Information System (INIS)

    Kozlov, Roman

    2008-01-01

    Modified vector fields can be used to construct high-order structure-preserving numerical integrators for ordinary differential equations. In the present Letter we consider high-order integrators based on the implicit midpoint rule, which conserve quadratic first integrals. It is shown that these integrators are particularly suitable for the rigid body motion with an additional quadratic first integral. In this case high-order integrators preserve all four first integrals of motion. The approach is illustrated on the Lagrange top (a rotationally symmetric rigid body with a fixed point on the symmetry axis). The equations of motion are considered in the space fixed frame because in this frame Lagrange top admits a neat description. The Lagrange top motion includes the spherical pendulum and the planar pendulum, which swings in a vertical plane, as particular cases

  5. Combining genetic and demographic data for the conservation of a Mediterranean marine habitat-forming species.

    Directory of Open Access Journals (Sweden)

    Rosana Arizmendi-Mejía

    Full Text Available The integration of ecological and evolutionary data is highly valuable for conservation planning. However, it has been rarely used in the marine realm, where the adequate design of marine protected areas (MPAs is urgently needed. Here, we examined the interacting processes underlying the patterns of genetic structure and demographic strucuture of a highly vulnerable Mediterranean habitat-forming species (i.e. Paramuricea clavata (Risso, 1826, with particular emphasis on the processes of contemporary dispersal, genetic drift, and colonization of a new population. Isolation by distance and genetic discontinuities were found, and three genetic clusters were detected; each submitted to variations in the relative impact of drift and gene flow. No founder effect was found in the new population. The interplay of ecology and evolution revealed that drift is strongly impacting the smallest, most isolated populations, where partial mortality of individuals was highest. Moreover, the eco-evolutionary analyses entailed important conservation implications for P. clavata. Our study supports the inclusion of habitat-forming organisms in the design of MPAs and highlights the need to account for genetic drift in the development of MPAs. Moreover, it reinforces the importance of integrating genetic and demographic data in marine conservation.

  6. A conserved motif in the linker domain of STAT1 transcription factor is required for both recognition and release from high-affinity DNA-binding sites.

    Science.gov (United States)

    Hüntelmann, Bettina; Staab, Julia; Herrmann-Lingen, Christoph; Meyer, Thomas

    2014-01-01

    Binding to specific palindromic sequences termed gamma-activated sites (GAS) is a hallmark of gene activation by members of the STAT (signal transducer and activator of transcription) family of cytokine-inducible transcription factors. However, the precise molecular mechanisms involved in the signal-dependent finding of target genes by STAT dimers have not yet been very well studied. In this study, we have characterized a sequence motif in the STAT1 linker domain which is highly conserved among the seven human STAT proteins and includes surface-exposed residues in close proximity to the bound DNA. Using site-directed mutagenesis, we have demonstrated that a lysine residue in position 567 of the full-length molecule is required for GAS recognition. The substitution of alanine for this residue completely abolished both binding to high-affinity GAS elements and transcriptional activation of endogenous target genes in cells stimulated with interferon-γ (IFNγ), while the time course of transient nuclear accumulation and tyrosine phosphorylation were virtually unchanged. In contrast, two glutamic acid residues (E559 and E563) on each monomer are important for the dissociation of dimeric STAT1 from DNA and, when mutated to alanine, result in elevated levels of tyrosine-phosphorylated STAT1 as well as prolonged IFNγ-stimulated nuclear accumulation. In conclusion, our data indicate that the kinetics of signal-dependent GAS binding is determined by an array of glutamic acid residues located at the interior surface of the STAT1 dimer. These negatively charged residues appear to align the long axis of the STAT1 dimer in a position perpendicular to the DNA, thereby facilitating the interaction between lysine 567 and the phosphodiester backbone of a bound GAS element, which is a prerequisite for transient gene induction.

  7. Molecular Evolution and Genetic Variation of G2-Like Transcription Factor Genes in Maize.

    Directory of Open Access Journals (Sweden)

    Fang Liu

    Full Text Available The productivity of maize (Zea mays L. depends on the development of chloroplasts, and G2-like transcription factors play a central role in regulating chloroplast development. In this study, we identified 59 G2-like genes in the B73 maize genome and systematically analyzed these genes at the molecular and evolutionary levels. Based on gene structure character, motif compositions and phylogenetic analysis, maize G2-like genes (ZmG1- ZmG59 were divided into seven groups (I-VII. By synteny analysis, 18 collinear gene pairs and strongly conserved microsyntny among regions hosting G2-like genes across maize and sorghum were found. Here, we showed that the vast majority of ZmG gene duplications resulted from whole genome duplication events rather than tandem duplications. After gene duplication events, some ZmG genes were silenced. The functions of G2-like genes were multifarious and most genes that are expressed in green tissues may relate to maize photosynthesis. The qRT-PCR showed that the expression of these genes was sensitive to low temperature and drought. Furthermore, we analyzed differences of ZmGs specific to cultivars in temperate and tropical regions at the population level. Interestingly, the single nucleotide polymorphism (SNP analysis revealed that nucleotide polymorphism associated with different temperature zones. Above all, G2-like genes were highly conserved during evolution, but polymorphism could be caused due to a different geographical location. Moreover, G2-like genes might be related to cold and drought stresses.

  8. Chalcone synthase genes from milk thistle (Silybum marianum)

    Indian Academy of Sciences (India)

    ... the identification of encoding genes in milk thistle plant can be of great importance. In the current research, fragments of genes were amplified using degenerate primers based on the conserved parts of Asteraceae genes, and then cloned and sequenced. Analysis of the resultant nucleotide and deduced ...

  9. Comparative analysis of vertebrate EIF2AK2 (PKR genes and assignment of the equine gene to ECA15q24–q25 and the bovine gene to BTA11q12–q15

    Directory of Open Access Journals (Sweden)

    Zharkikh Andrey A

    2006-09-01

    Full Text Available Abstract The structures of the canine, rabbit, bovine and equine EIF2AK2 genes were determined. Each of these genes has a 5' non-coding exon as well as 15 coding exons. All of the canine, bovine and equine EIF2AK2 introns have consensus donor and acceptor splice sites. In the equine EIF2AK2 gene, a unique single nucleotide polymorphism that encoded a Tyr329Cys substitution was detected. Regulatory elements predicted in the promoter region were conserved in ungulates, primates, rodents, Afrotheria (elephant and Insectifora (shrew. Western clawed frog and fugu EIF2AK2 gene sequences were detected in the USCS Genome Browser and compared to those of other vertebrate EIF2AK2 genes. A comparison of EIF2AK2 protein domains in vertebrates indicates that the kinase catalytic domains were evolutionarily more conserved than the nucleic acid-binding motifs. Nucleotide substitution rates were uniform among the vertebrate sequences with the exception of the zebrafish and goldfish EIF2AK2 genes, which showed substitution rates about 20% higher than those of other vertebrates. FISH was used to physically assign the horse and cattle genes to chromosome locations, ECA15q24–q25 and BTA11q12–15, respectively. Comparative mapping data confirmed conservation of synteny between ungulates, humans and rodents.

  10. Differential Regulation of Receptor Activation and Agonist Selectivity by Highly Conserved Tryptophans in the Nicotinic Acetylcholine Receptor Binding Site

    OpenAIRE

    Williams, Dustin K.; Stokes, Clare; Horenstein, Nicole A.; Papke, Roger L.

    2009-01-01

    We have shown previously that a highly conserved Tyr in the nicotinic acetylcholine receptor (nAChR) ligand-binding domain (LBD) (α7 Tyr188 or α4 Tyr195) differentially regulates the activity of acetylcholine (ACh) and the α7-selective agonist 3-(4-hydroxy,2-methoxybenzylidene)anabaseine (4OH-GTS-21) in α4β2 and α7 nAChR. In this study, we mutated two highly conserved LBD Trp residues in human α7 and α4β2 and expressed the receptors in Xenopus laevis oocytes. α7 Re...

  11. Evolution of the C-Type Lectin-Like Receptor Genes of the DECTIN-1 Cluster in the NK Gene Complex

    Directory of Open Access Journals (Sweden)

    Susanne Sattler

    2012-01-01

    Full Text Available Pattern recognition receptors are crucial in initiating and shaping innate and adaptive immune responses and often belong to families of structurally and evolutionarily related proteins. The human C-type lectin-like receptors encoded in the DECTIN-1 cluster within the NK gene complex contain prominent receptors with pattern recognition function, such as DECTIN-1 and LOX-1. All members of this cluster share significant homology and are considered to have arisen from subsequent gene duplications. Recent developments in sequencing and the availability of comprehensive sequence data comprising many species showed that the receptors of the DECTIN-1 cluster are not only homologous to each other but also highly conserved between species. Even in Caenorhabditis elegans, genes displaying homology to the mammalian C-type lectin-like receptors have been detected. In this paper, we conduct a comprehensive phylogenetic survey and give an up-to-date overview of the currently available data on the evolutionary emergence of the DECTIN-1 cluster genes.

  12. Comparative modular analysis of gene expression in vertebrate organs

    Directory of Open Access Journals (Sweden)

    Piasecka Barbara

    2012-03-01

    Full Text Available Abstract Background The degree of conservation of gene expression between homologous organs largely remains an open question. Several recent studies reported some evidence in favor of such conservation. Most studies compute organs' similarity across all orthologous genes, whereas the expression level of many genes are not informative about organ specificity. Results Here, we use a modularization algorithm to overcome this limitation through the identification of inter-species co-modules of organs and genes. We identify such co-modules using mouse and human microarray expression data. They are functionally coherent both in terms of genes and of organs from both organisms. We show that a large proportion of genes belonging to the same co-module are orthologous between mouse and human. Moreover, their zebrafish orthologs also tend to be expressed in the corresponding homologous organs. Notable exceptions to the general pattern of conservation are the testis and the olfactory bulb. Interestingly, some co-modules consist of single organs, while others combine several functionally related organs. For instance, amygdala, cerebral cortex, hypothalamus and spinal cord form a clearly discernible unit of expression, both in mouse and human. Conclusions Our study provides a new framework for comparative analysis which will be applicable also to other sets of large-scale phenotypic data collected across different species.

  13. Comparative modular analysis of gene expression in vertebrate organs.

    Science.gov (United States)

    Piasecka, Barbara; Kutalik, Zoltán; Roux, Julien; Bergmann, Sven; Robinson-Rechavi, Marc

    2012-03-29

    The degree of conservation of gene expression between homologous organs largely remains an open question. Several recent studies reported some evidence in favor of such conservation. Most studies compute organs' similarity across all orthologous genes, whereas the expression level of many genes are not informative about organ specificity. Here, we use a modularization algorithm to overcome this limitation through the identification of inter-species co-modules of organs and genes. We identify such co-modules using mouse and human microarray expression data. They are functionally coherent both in terms of genes and of organs from both organisms. We show that a large proportion of genes belonging to the same co-module are orthologous between mouse and human. Moreover, their zebrafish orthologs also tend to be expressed in the corresponding homologous organs. Notable exceptions to the general pattern of conservation are the testis and the olfactory bulb. Interestingly, some co-modules consist of single organs, while others combine several functionally related organs. For instance, amygdala, cerebral cortex, hypothalamus and spinal cord form a clearly discernible unit of expression, both in mouse and human. Our study provides a new framework for comparative analysis which will be applicable also to other sets of large-scale phenotypic data collected across different species.

  14. Low-Intensity Agricultural Landscapes in Transylvania Support High Butterfly Diversity: Implications for Conservation

    Science.gov (United States)

    Loos, Jacqueline; Dorresteijn, Ine; Hanspach, Jan; Fust, Pascal; Rakosy, László; Fischer, Joern

    2014-01-01

    European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide

  15. Comparative mapping reveals similar linkage of functional genes to ...

    Indian Academy of Sciences (India)

    genes between O. sativa and B. napus may have consistent function and control similar traits, which may be ..... acea chromosomes reveals islands of conserved organization. ... 1998 Conserved structure and function of the Arabidopsis flow-.

  16. Genome-wide identification of key modulators of gene-gene interaction networks in breast cancer.

    Science.gov (United States)

    Chiu, Yu-Chiao; Wang, Li-Ju; Hsiao, Tzu-Hung; Chuang, Eric Y; Chen, Yidong

    2017-10-03

    With the advances in high-throughput gene profiling technologies, a large volume of gene interaction maps has been constructed. A higher-level layer of gene-gene interaction, namely modulate gene interaction, is composed of gene pairs of which interaction strengths are modulated by (i.e., dependent on) the expression level of a key modulator gene. Systematic investigations into the modulation by estrogen receptor (ER), the best-known modulator gene, have revealed the functional and prognostic significance in breast cancer. However, a genome-wide identification of key modulator genes that may further unveil the landscape of modulated gene interaction is still lacking. We proposed a systematic workflow to screen for key modulators based on genome-wide gene expression profiles. We designed four modularity parameters to measure the ability of a putative modulator to perturb gene interaction networks. Applying the method to a dataset of 286 breast tumors, we comprehensively characterized the modularity parameters and identified a total of 973 key modulator genes. The modularity of these modulators was verified in three independent breast cancer datasets. ESR1, the encoding gene of ER, appeared in the list, and abundant novel modulators were illuminated. For instance, a prognostic predictor of breast cancer, SFRP1, was found the second modulator. Functional annotation analysis of the 973 modulators revealed involvements in ER-related cellular processes as well as immune- and tumor-associated functions. Here we present, as far as we know, the first comprehensive analysis of key modulator genes on a genome-wide scale. The validity of filtering parameters as well as the conservativity of modulators among cohorts were corroborated. Our data bring new insights into the modulated layer of gene-gene interaction and provide candidates for further biological investigations.

  17. Mutational Analysis of the Rhodopsin Gene in Sector Retinitis Pigmentosa.

    Science.gov (United States)

    Napier, Maria L; Durga, Dash; Wolsley, Clive J; Chamney, Sarah; Alexander, Sharon; Brennan, Rosie; Simpson, David A; Silvestri, Giuliana; Willoughby, Colin E

    2015-01-01

    To determine the role of rhodopsin (RHO) gene mutations in patients with sector retinitis pigmentosa (RP) from Northern Ireland. A case series of sector RP in a tertiary ocular genetics clinic. Four patients with sector RP were recruited from the Royal Victoria Hospital (Belfast, Northern Ireland) and Altnagelvin Hospital (Londonderry, Northern Ireland) following informed consent. The diagnosis of sector RP was based on clinical examination, International Society for Clinical Electrophysiology of Vision (ISCEV) standard electrophysiology, and visual field analysis. DNA was extracted from peripheral blood leucocytes and the coding regions and adjacent flanking intronic sequences of the RHO gene were polymerase chain reaction (PCR) amplified and cycle sequenced. Rhodopsin mutational status. A heterozygous missense mutation in RHO (c.173C > T) resulting in a non-conservative substitution of threonine to methionine (p. Thr58Met) was identified in one patient and was absent from 360 control individuals. This non-conservative substitution (p.Thr58Met) replaces a highly evolutionary conserved polar hydrophilic threonine residue with a non-polar hydrophobic methionine residue at position 58 near the cytoplasmic border of helix A of RHO. The study identified a RHO gene mutation (p.Thr58Met) not previously reported in RP in a patient with sector RP. These findings outline the phenotypic variability associated with RHO mutations. It has been proposed that the regional effects of RHO mutations are likely to result from interplay between mutant alleles and other genetic, epigenetic and environmental factors.

  18. Text mining and network analysis to find functional associations of genes in high altitude diseases.

    Science.gov (United States)

    Bhasuran, Balu; Subramanian, Devika; Natarajan, Jeyakumar

    2018-05-02

    Travel to elevations above 2500 m is associated with the risk of developing one or more forms of acute altitude illness such as acute mountain sickness (AMS), high altitude cerebral edema (HACE) or high altitude pulmonary edema (HAPE). Our work aims to identify the functional association of genes involved in high altitude diseases. In this work we identified the gene networks responsible for high altitude diseases by using the principle of gene co-occurrence statistics from literature and network analysis. First, we mined the literature data from PubMed on high-altitude diseases, and extracted the co-occurring gene pairs. Next, based on their co-occurrence frequency, gene pairs were ranked. Finally, a gene association network was created using statistical measures to explore potential relationships. Network analysis results revealed that EPO, ACE, IL6 and TNF are the top five genes that were found to co-occur with 20 or more genes, while the association between EPAS1 and EGLN1 genes is strongly substantiated. The network constructed from this study proposes a large number of genes that work in-toto in high altitude conditions. Overall, the result provides a good reference for further study of the genetic relationships in high altitude diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Evolutionary novelty in gravity sensing through horizontal gene transfer and high-order protein assembly.

    Directory of Open Access Journals (Sweden)

    Tu Anh Nguyen

    2018-04-01

    Full Text Available Horizontal gene transfer (HGT can promote evolutionary adaptation by transforming a species' relationship to the environment. In most well-understood cases of HGT, acquired and donor functions appear to remain closely related. Thus, the degree to which HGT can lead to evolutionary novelties remains unclear. Mucorales fungi sense gravity through the sedimentation of vacuolar protein crystals. Here, we identify the octahedral crystal matrix protein (OCTIN. Phylogenetic analysis strongly supports acquisition of octin by HGT from bacteria. A bacterial OCTIN forms high-order periplasmic oligomers, and inter-molecular disulphide bonds are formed by both fungal and bacterial OCTINs, suggesting that they share elements of a conserved assembly mechanism. However, estimated sedimentation velocities preclude a gravity-sensing function for the bacterial structures. Together, our data suggest that HGT from bacteria into the Mucorales allowed a dramatic increase in assembly scale and emergence of the gravity-sensing function. We conclude that HGT can lead to evolutionary novelties that emerge depending on the physiological and cellular context of protein assembly.

  20. Neurospora crassa tox-1 Gene Encodes a pH- and Temperature-Tolerant Mini-Cellulase.

    Science.gov (United States)

    Xiao, Yue; Zhang, Qiongsi; Luo, Yiquan; Zhang, Ying; Luo, Xi; Wang, Yuchuan; Cao, Weiguo; Pinto, Vito De; Liu, Qiuyun; Li, Gang

    2016-06-15

    Cellulases that endure extreme conditions are essential in various industrial sectors. This study reports a mini-cellulase gene tox-1 from Neurospora crassa. The gene tox-1 was cloned in Escherichia coli after chimerization with the YebF gene and substitutions of certain isoleucine and valine with leucine residues. The yeast transformants could grow on rice straw-agar medium. The 44-amino acid peptide and its two mutant variants displayed potent cellulase activities in Congo Red assay and enzymatic assays. Conservative replacements with leucine have substantially increased the stabilities and half-lives of the peptides at alkaline pH and low and high temperatures and also the tolerance to organic solvents and surfactants, on the basis of activities toward cellose. The small size of the mini-cellulase would allow for commercially viable automatic chemical peptide synthesis. This work suggests that conservative leucine replacements may serve as a general strategy in the engineering of more robust enzymes with special features with little loss of activities.

  1. A mitochondrial tRNA(His) gene mutation causing pigmentary retinopathy and neurosensorial deafness.

    Science.gov (United States)

    Crimi, M; Galbiati, S; Perini, M P; Bordoni, A; Malferrari, G; Sciacco, M; Biunno, I; Strazzer, S; Moggio, M; Bresolin, N; Comi, G P

    2003-04-08

    We have identified a heteroplasmic G to A mutation at position 12,183 of the mitochondrial transfer RNA Histidine (tRNA(His)) gene in three related patients. These phenotypes varied according to mutation heteroplasmy: one had severe pigmentary retinopathy, neurosensorial deafness, testicular dysfunction, muscle hypotrophy, and ataxia; the other two had only retinal and inner ear involvement. The mutation is in a highly conserved region of the T(psi)C stem of the tRNA(His) gene and may alter secondary structure formation. This is the first described pathogenic, maternally inherited mutation of the mitochondrial tRNA(His) gene.

  2. Genes and co-expression modules common to drought and bacterial stress responses in Arabidopsis and rice.

    Directory of Open Access Journals (Sweden)

    Rafi Shaik

    Full Text Available Plants are simultaneously exposed to multiple stresses resulting in enormous changes in the molecular landscape within the cell. Identification and characterization of the synergistic and antagonistic components of stress response mechanisms contributing to the cross talk between stresses is of high priority to explore and enhance multiple stress responses. To this end, we performed meta-analysis of drought (abiotic, bacterial (biotic stress response in rice and Arabidopsis by analyzing a total of 386 microarray samples belonging to 20 microarray studies and identified approximately 3100 and 900 DEGs in rice and Arabidopsis, respectively. About 38.5% (1214 and 28.7% (272 DEGs were common to drought and bacterial stresses in rice and Arabidopsis, respectively. A majority of these common DEGs showed conserved expression status in both stresses. Gene ontology enrichment analysis clearly demarcated the response and regulation of various plant hormones and related biological processes. Fatty acid metabolism and biosynthesis of alkaloids were upregulated and, nitrogen metabolism and photosynthesis was downregulated in both stress conditions. WRKY transcription family genes were highly enriched in all upregulated gene sets while 'CO-like' TF family showed inverse relationship of expression between drought and bacterial stresses. Weighted gene co-expression network analysis divided DEG sets into multiple modules that show high co-expression and identified stress specific hub genes with high connectivity. Detection of consensus modules based on DEGs common to drought and bacterial stress revealed 9 and 4 modules in rice and Arabidopsis, respectively, with conserved and reversed co-expression patterns.

  3. Comparative genome analysis and resistance gene mapping in grain legumes

    International Nuclear Information System (INIS)

    Young, N.D.

    1998-01-01

    Using, DNA markers and genome organization, several important disease resistance genes have been analyzed in mungbean (Vigna radiata), cowpea (Vigna unguiculata), common bean (Phaseolus vulgaris), and soybean (Glycine max). In the process, medium-density linkage maps consisting of restriction fragment length polymorphism (RFLP) markers were constructed for both mungbean and cowpea. Comparisons between these maps, as well as the maps of soybean and common bean, indicate that there is significant conservation of DNA marker order, though the conserved blocks in soybean are much shorter than in the others. DNA mapping results also indicate that a gene for seed weight may be conserved between mungbean and cowpea. Using the linkage maps, genes that control bruchid (genus Callosobruchus) and powdery mildew (Erysiphe polygoni) resistance in mungbean, aphid resistance in cowpea (Aphis craccivora), and cyst nematode (Heterodera glycines) resistance in soybean have all been mapped and characterized. For some of these traits resistance was found to be oligogenic and DNA mapping uncovered multiple genes involved in the phenotype. (author)

  4. Highly tissue specific expression of Sphinx supports its male courtship related role in Drosophila melanogaster.

    Science.gov (United States)

    Chen, Ying; Dai, Hongzheng; Chen, Sidi; Zhang, Luoying; Long, Manyuan

    2011-04-26

    Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5' flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta). Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ∼800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes.

  5. Highly tissue specific expression of Sphinx supports its male courtship related role in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2011-04-01

    Full Text Available Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5' flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta. Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ∼800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes.

  6. Haloalkane-utilizing Rhodococcus strains isolated from geographically distinct locations possess a highly conserved gene cluster encoding haloalkane catabolism

    NARCIS (Netherlands)

    Poelarends, GJ; Bosma, T; Kulakov, LA; Larkin, MJ; Marchesi, [No Value; Weightman, AJ; Janssen, DB; Kulakov, Leonid A.; Larkin, Michael J.; Marchesi, Julian R.; Weightman, Andrew J.

    The sequences of the 16S rRNA and haloalkane dehalogenase (dhaA) genes of five gram-positive haloalkane-utilizing bacteria isolated from contaminated sites in Europe, Japan, and the United States and of the archetypal haloalkane-degrading bacterium Rhodococcus sp. strain NCIMB13064 were compared.

  7. Genomic Survey and Expression Profiling of the MYB Gene Family in Watermelon

    Directory of Open Access Journals (Sweden)

    Qing XU

    2018-01-01

    Full Text Available Myeloblastosis (MYB proteins constitute one of the largest transcription factor (TF families in plants. They are functionally diverse in regulating plant development, metabolism, and multiple stress responses. However, the function of watermelon MYB proteins remains elusive to date. Here, a genome-wide identification of watermelon MYB TFs was performed by bioinformatics analysis. A total of 162 MYB genes were identified from watermelon (ClaMYB. A comprehensive overview of the ClaMYB genes was undertaken, including the gene structures, chromosomal distribution, gene duplication, conserved protein motif, and phylogenetic relationship. According to the analyses, the watermelon MYB genes were categorized into three groups (R1R2R3-MYB, R2R3-MYB, and MYB-related. Amino acid alignments for all MYB motifs of ClaMYBs demonstrated high conservation. Investigation of their chromosomal localization revealed that these ClaMYB genes distributed across the 11 watermelon chromosomes. Gene duplication analyses showed that tandem duplication events contributed predominantly to the expansion of the MYB gene family in the watermelon genome. Phylogenetic comparison of the ClaMYB proteins with Arabidopsis MYB proteins revealed that watermelon MYB proteins underwent a more diverse evolution after divergence from Arabidopsis. Some watermelon MYBs were found to cluster into the functional clades of Arabidopsis MYB proteins. Expression analysis under different stress conditions identified a group of watermelon MYB proteins implicated in the plant stress responses. The comprehensive investigation of watermelon MYB genes in this study provides a useful reference for future cloning and functional analysis of watermelon MYB proteins. Keywords: watermelon, MYB transcription factor, abiotic stress, phylogenetic analysis

  8. Toxin gene determination and evolution in scorpaenoid fish.

    Science.gov (United States)

    Chuang, Po-Shun; Shiao, Jen-Chieh

    2014-09-01

    In this study, we determine the toxin genes from both cDNA and genomic DNA of four scorpaenoid fish and reconstruct their evolutionary relationship. The deduced protein sequences of the two toxin subunits in Sebastapistes strongia, Scorpaenopsis oxycephala, and Sebastiscus marmoratus are about 700 amino acid, similar to the sizes of the stonefish (Synanceia horrida, and Synanceia verrucosa) and lionfish (Pterois antennata and Pterois volitans) toxins previously published. The intron positions are highly conserved among these species, which indicate the applicability of gene finding by using genomic DNA template. The phylogenetic analysis shows that the two toxin subunits were duplicated prior to the speciation of Scorpaenoidei. The precedence of the gene duplication over speciation indicates that the toxin genes may be common to the whole family of Scorpaeniform. Furthermore, one additional toxin gene has been determined in the genomic DNA of Dendrochirus zebra. The phylogenetic analysis suggests that an additional gene duplication occurred before the speciation of the lionfish (Pteroinae) and a pseudogene may be generally present in the lineage of lionfish. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Selection for the compactness of highly expressed genes in Gallus gallus

    Directory of Open Access Journals (Sweden)

    Zhou Ming

    2010-05-01

    (n = 1105, and compared the first intron length and the average intron length between highly expressed genes (top 5% expressed genes and weakly expressed genes (bottom 5% expressed genes. We found that the first intron length and the average intron length in highly expressed genes are not different from that in weakly expressed genes. We also made a comparison between ubiquitously expressed genes and narrowly expressed somatic genes with similar expression levels. Our data demonstrated that ubiquitously expressed genes are less compact than narrowly expressed genes with the similar expression levels. Obviously, these observations can not be explained by mutational bias hypotheses either. We also found that the significant trend between genes' compactness and expression level could not be affected by local mutational biases. We argued that the selection of economy model is most likely one to explain the relationship between gene expression and gene characteristics in chicken genome. Conclusion Natural selection appears to favor the compactness of highly expressed genes in chicken genome. This observation can be explained by the selection of economy model. Reviewers This article was reviewed by Dr. Gavin Huttley, Dr. Liran Carmel (nominated by Dr. Eugene V. Koonin and Dr. Araxi Urrutia (nominated by Dr. Laurence D. Hurst.

  10. Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity.

    Science.gov (United States)

    Boessenkool, Sanne; McGlynn, Gayle; Epp, Laura S; Taylor, David; Pimentel, Manuel; Gizaw, Abel; Nemomissa, Sileshi; Brochmann, Christian; Popp, Magnus

    2014-04-01

    Conservation of biodiversity may in the future increasingly depend upon the availability of scientific information to set suitable restoration targets. In traditional paleoecology, sediment-based pollen provides a means to define preanthropogenic impact conditions, but problems in establishing the exact provenance and ecologically meaningful levels of taxonomic resolution of the evidence are limiting. We explored the extent to which the use of sedimentary ancient DNA (sedaDNA) may complement pollen data in reconstructing past alpine environments in the tropics. We constructed a record of afro-alpine plants retrieved from DNA preserved in sediment cores from 2 volcanic crater sites in the Albertine Rift, eastern Africa. The record extended well beyond the onset of substantial anthropogenic effects on tropical mountains. To ensure high-quality taxonomic inference from the sedaDNA sequences, we built an extensive DNA reference library covering the majority of the afro-alpine flora, by sequencing DNA from taxonomically verified specimens. Comparisons with pollen records from the same sediment cores showed that plant diversity recovered with sedaDNA improved vegetation reconstructions based on pollen records by revealing both additional taxa and providing increased taxonomic resolution. Furthermore, combining the 2 measures assisted in distinguishing vegetation change at different geographic scales; sedaDNA almost exclusively reflects local vegetation, whereas pollen can potentially originate from a wide area that in highlands in particular can span several ecozones. Our results suggest that sedaDNA may provide information on restoration targets and the nature and magnitude of human-induced environmental changes, including in high conservation priority, biodiversity hotspots, where understanding of preanthropogenic impact (or reference) conditions is highly limited. © 2013 Society for Conservation Biology.

  11. The primary structures of two leghemoglobin genes from soybean

    DEFF Research Database (Denmark)

    Hyldig-Nielsen, J J; Jensen, E O; Paludan, K

    1982-01-01

    We present the complete nucleotide sequences of two leghemoglobin genes isolated from soybean DNA. Both genes contain three intervening sequences which interrupt the two coding sequences in identical positions. The 5' and 3' flanking sequences in both genes contain conserved sequences similar...

  12. Biodiversity conservation in a telecoupled world

    Directory of Open Access Journals (Sweden)

    L. Roman Carrasco

    2017-09-01

    Conservation practitioners need to adopt a global perspective on telecoupling and focus on the new conservation opportunities represented by shaping the social norms of affluent consumers in emerging and high-income economies.

  13. High-throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhang

    2010-11-01

    Full Text Available We performed comprehensive data mining to explore the vomeronasal receptor (V1R & V2R repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on computational prediction from gene sequence data, thereby establishing that these genes are indeed part of the vomeronasal system, especially the V2Rs. 168 V1Rs and 98 V2Rs were detected to be highly enriched in mouse vomeronasal organ (VNO, and 108 V1Rs and 87 V2Rs in rat VNO. We monitored the expression profile of mouse VR genes in other non-VNO tissues with the result that some VR genes were re-designated as VR-like genes based on their non-olfactory expression pattern. Temporal expression profiles for mouse VR genes were characterized and their patterns were classified, revealing the developmental dynamics of these so-called pheromone receptors. We found numerous patterns of temporal expression which indicate possible behavior-related functions. The uneven composition of VR genes in certain patterns suggests a functional differentiation between the two types of VR genes. We found the coherence between VR genes and transcription factors in terms of their temporal expression patterns. In situ hybridization experiments were performed to evaluate the cell number change over time for selected receptor genes.

  14. Prioritizing orphan proteins for further study using phylogenomics and gene expression profiles in Streptomyces coelicolor

    Directory of Open Access Journals (Sweden)

    Takano Eriko

    2011-09-01

    Full Text Available Abstract Background Streptomyces coelicolor, a model organism of antibiotic producing bacteria, has one of the largest genomes of the bacterial kingdom, including 7825 predicted protein coding genes. A large number of these genes, nearly 34%, are functionally orphan (hypothetical proteins with unknown function. However, in gene expression time course data, many of these functionally orphan genes show interesting expression patterns. Results In this paper, we analyzed all functionally orphan genes of Streptomyces coelicolor and identified a list of "high priority" orphans by combining gene expression analysis and additional phylogenetic information (i.e. the level of evolutionary conservation of each protein. Conclusions The prioritized orphan genes are promising candidates to be examined experimentally in the lab for further characterization of their function.

  15. Use of a chiA probe for detection of chitinase genes in bacteria from the Chesapeake Bay

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Hill, R.T.; Chun, J.; Ravel, J.; Matte, M.H.; Straube, W.L.; Colwell, R.R.

    PCR primers specific for the chiA gene were designed by alignment and selection of highly conserved regions of chiA sequences from Serratia marcescens, Alteromonas sp., Bacillus circulans and Aeromonas caviae. These primers were used to amplify a...

  16. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms.

    Science.gov (United States)

    Li, Zhen; Defoort, Jonas; Tasdighian, Setareh; Maere, Steven; Van de Peer, Yves; De Smet, Riet

    2016-02-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of "gene duplicability" is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. © 2016 American Society of Plant Biologists. All rights reserved.

  17. Multi-species sequence comparison reveals dynamic evolution of the elastin gene that has involved purifying selection and lineage-specific insertions/deletions

    Directory of Open Access Journals (Sweden)

    Green Eric D

    2004-05-01

    Full Text Available Abstract Background The elastin gene (ELN is implicated as a factor in both supravalvular aortic stenosis (SVAS and Williams Beuren Syndrome (WBS, two diseases involving pronounced complications in mental or physical development. Although the complete spectrum of functional roles of the processed gene product remains to be established, these roles are inferred to be analogous in human and mouse. This view is supported by genomic sequence comparison, in which there are no large-scale differences in the ~1.8 Mb sequence block encompassing the common region deleted in WBS, with the exception of an overall reversed physical orientation between human and mouse. Results Conserved synteny around ELN does not translate to a high level of conservation in the gene itself. In fact, ELN orthologs in mammals show more sequence divergence than expected for a gene with a critical role in development. The pattern of divergence is non-conventional due to an unusually high ratio of gaps to substitutions. Specifically, multi-sequence alignments of eight mammalian sequences reveal numerous non-aligning regions caused by species-specific insertions and deletions, in spite of the fact that the vast majority of aligning sites appear to be conserved and undergoing purifying selection. Conclusions The pattern of lineage-specific, in-frame insertions/deletions in the coding exons of ELN orthologous genes is unusual and has led to unique features of the gene in each lineage. These differences may indicate that the gene has a slightly different functional mechanism in mammalian lineages, or that the corresponding regions are functionally inert. Identified regions that undergo purifying selection reflect a functional importance associated with evolutionary pressure to retain those features.

  18. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas.

    Directory of Open Access Journals (Sweden)

    Diane I Schroeder

    2015-08-01

    Full Text Available Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs and highly methylated domains (HMDs with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo.

  19. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas.

    Directory of Open Access Journals (Sweden)

    Hong Lu

    Full Text Available Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown.To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage.Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small

  20. A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes

    Science.gov (United States)

    Larremore, Daniel B.; Clauset, Aaron; Buckee, Caroline O.

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences. PMID:24130474