Sample records for highly conductive slags

  1. Calibration-free electrical conductivity measurements for highly conductive slags

    Energy Technology Data Exchange (ETDEWEB)



    This research involves the measurement of the electrical conductivity (K) for the ESR (electroslag remelting) slag (60 wt.% CaF{sub 2} - 20 wt.% CaO - 20 wt.% Al{sub 2}O{sub 3}) used in the decontamination of radioactive stainless steel. The electrical conductivity is measured with an improved high-accuracy-height-differential technique that requires no calibration. This method consists of making continuous AC impedance measurements over several successive depth increments of the coaxial cylindrical electrodes in the ESR slag. The electrical conductivity is then calculated from the slope of the plot of inverse impedance versus the depth of the electrodes in the slag. The improvements on the existing technique include an increased electrochemical cell geometry and the capability of measuring high precision depth increments and the associated impedances. These improvements allow this technique to be used for measuring the electrical conductivity of highly conductive slags such as the ESR slag. The volatilization rate and the volatile species of the ESR slag measured through thermogravimetric (TG) and mass spectroscopy analysis, respectively, reveal that the ESR slag composition essentially remains the same throughout the electrical conductivity experiments.

  2. Slag wool manufacturing from blast furnace slag

    Directory of Open Access Journals (Sweden)

    Володимир Петрович Руських


    Full Text Available Slag wool is the most expensive and valuable product of blast furnace slag processing. Slag wool is in great demand nowadays. The article highlights the factors influencing the mineral wool quality: chemical composition that determines the acidity of the module, the temperature of the molten slag and the required slag jet thickness consistency. Mineral wool is produced by blowing air or steam into a jet of molten slag. As a result of it the slag crushes into droplets stretching. The resulting wool contains 5% slag and 95% air. The quality of the obtained slag wool depends on the module acidity of the slag. The blast furnace slags of «Ilyich iron and steel works of Mariupol» and «Azovstal iron & steel works» are the main (short slags – they give short fibers. To obtain high-quality long fiber wool it is necessary to add admixtures into basic blast furnace slag to reduce its basicity. As a result of the fuel and energy rising prices and the necessity to reduce the slag wool cost it is necessary to develop a new technology with fiery-liquid slag, with the removal of iron compounds and sulphur from the melts and the introduction of corrective additives to improve the quality of slag wool. Good thermal conductivity (about 0,03 kcal/m∙h∙°C and other indicators (resistance, volume weight make it possible to use the materials from slag wool (pads, rigid and semi-rigid plates as heat and sound insulating materials

  3. Heat Recovery from High Temperature Slags: A Review of Chemical Methods

    Directory of Open Access Journals (Sweden)

    Yongqi Sun


    Full Text Available Waste heat recovery from high temperature slags represents the latest potential way to remarkably reduce the energy consumption and CO2 emissions of the steel industry. The molten slags, in the temperature range of 1723–1923 K, carry large amounts of high quality energy. However, the heat recovery from slags faces several fundamental challenges, including their low thermal conductivity, inside crystallization, and discontinuous availability. During past decades, various chemical methods have been exploited and performed including methane reforming, coal and biomass gasification, and direct compositional modification and utilization of slags. These methods effectively meet the challenges mentioned before and help integrate the steel industry with other industrial sectors. During the heat recovery using chemical methods, slags can act as not only heat carriers but also as catalysts and reactants, which expands the field of utilization of slags. Fuel gas production using the waste heat accounts for the main R&D trend, through which the thermal heat in the slag could be transformed into high quality chemical energy in the fuel gas. Moreover, these chemical methods should be extended to an industrial scale to realize their commercial application, which is the only way by which the substantial energy in the slags could be extracted, i.e., amounting to 16 million tons of standard coal in China.

  4. On the Heat Flux Vector and Thermal Conductivity of Slags: A Brief Review

    Directory of Open Access Journals (Sweden)

    Mehrdad Massoudi


    Full Text Available The viscosity and the thermal conductivity of slag are among two of the most important material properties that need to be studied. In this paper we review the existing theoretical and experimental correlations for the thermal conductivity of slag. However, since, in general, slag behaves as a non-linear fluid, it is the heat flux vector which must be studied. Both explicit and implicit approaches are discussed and suggestions about the form of the heat flux vector and the thermal conductivity and their dependence on shear rate, porosity, deformation, etc. are provided. The discussion of the constitutive modeling of the heat flux vector for slag is from a theoretical perspective.

  5. Combined Performance of Polypropylene Fibre and Weld Slag in High Performance Concrete (United States)

    Ananthi, A.; Karthikeyan, J.


    The effect of polypropylene fibre and weld slag on the mechanical properties of High Performance Concrete (HPC) containing silica fume as the mineral admixtures was experimentally verified in this study. Sixteen series of HPC mixtures(70 MPa) were designed with varying fibre fractions and Weld Slag (WS). Fibre added at different proportion (0, 0.1, 0.3 and 0.6%) to the weight of cement. Weld slag was substituted to the fine aggregate (0, 10, 20 and 30%) at volume. The addition of fibre decreases the slump at 5, 9 and 14%, whereas the substitution of weld slag decreases by about 3, 11 and 21% with respect to the control mixture. Mechanical properties like compressive strength, split tensile strength, flexural strength, Ultrasonic Pulse Velocity test (UPV) and bond strength were tested. Durability studies such as Water absorption and Sorptivity test were conducted to check the absorption of water in HPC. Weld slag of 10% and fibre dosage of 0.3% in HPC, attains the maximum strength and hence this combination is most favourable for the structural applications.


    Directory of Open Access Journals (Sweden)

    Mieke eQuaghebeur


    Full Text Available Mineral carbonation involves the capture and storage of carbon dioxide in carbonate minerals. Mineral carbonation presents opportunities for the recycling of steel slags and other alkaline residues that are currently landfilled. The Carbstone process was initially developed to transform non-hydraulic steel slags (stainless steel slag and basic oxygen furnace slags in high quality construction materials. The process makes use of accelerated mineral carbonation by treating different types of steel slags with CO2 at elevated pressure (up to 2 MPa and temperatures (20 to 140°C. For stainless steel slags raising the temperature from 20 to 140°C had a positive effect on the CO2 uptake, strength development and the environmental properties (i.e. leaching of Cr and Mo of the carbonated slag compacts. For BOF slags raising the temperature was not beneficial for the carbonation process. Elevated CO2 pressure and CO2 concentration of the feed gas had a positive effect on the CO2 uptake and strength development for both types of steel slags. In addition also the compaction force had a positive effect on the strength development. The carbonates that are produced in-situ during the carbonation reaction act as a binder, cementing the slag particles together. The carbonated compacts (Carbstones have technical properties that are equivalent to conventional concrete products. An additional advantage is that the carbonated materials sequester 100 to 150 g CO2/kg slag. The technology was developed on lab scale by optimisation of process parameters with regard to compressive strength development, CO2 uptake and environmental properties of the carbonated construction materials. The Carbstone technology was validated using (semi-industrial equipment and process conditions.

  7. Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties (United States)

    Dong, Mengge; Xue, Xiangxin; Yang, He; Li, Zhefu


    Highly cost-effective shielding composite was prepared by vanadium slag, boron-rich slag and epoxy resin in this paper. WinXCOM program and 60Co gamma ray source were used to analyze the gamma ray shielding properties. Gamma ray irradiation for composite was tested with 60Co gamma ray irradiation field. Simultaneous DSC-TGA, electronic universal testing machine and scanning electron microscopy were used to analyze the material properties of composite. The HVL of all composites are nearly same for 60Co gamma ray, about 3.90 cm at 1173 keV and 4.15 cm at 1332 keV. Maximum resistance temperature of composites is about 230 °C. Bending strength of all composites is nearly same and more than 10 MPa. Composites have good resistance for gamma ray irradiation effect under 93.5 kGy dose gamma ray.

  8. On the effect of addition of carbon nanotubes on the electric conductivity of alkali-activated slag mortars (United States)

    Kusak, I.; Lunak, M.


    This paper presents basic electric properties of laboratory prepared alkali-activated composite materials on the basis of finely ground granular high furnace slag to which various quantities of carbon nanotubes (CNT) have been added. Impedance spectroscopy in the frequency range from 40 Hz to 1 MHz was used to measure the specimens. Electric resistivity ρ versus frequency and electric resistivity ρ versus CNT content relationships were examined on our specimens R&S ZNC vector analyser with DAK-12 coaxial probe (made by Speag) was used to carry out the measurements at higher frequencies (from 100 MHz to 3 GHz). Electric conductivity σ as a function of the frequency and as a function of the specimen CNT content was studied in this frequency range. Up-to-date instruments and a unique approach have evidently been employed to carry out non-destructive measurement of mortar materials.

  9. Removing boron from metallurgical grade silicon by a high basic slag refining technique


    Wu J.J.; Xu M.; Liu K.B.; Ma W.H.; Yang B.; Dai Y.N.


    A new purification method of removing boron from metallurgical grade silicon (MG-Si) using a high baisicity slag was developed in this paper. The typical impurities Al, Ca, Ti, B, P etc in MG-Si can be removed by the binary calcium sillicate slag and it is especially efficient for removing impurity Boron. It was found that the maximal distribution coefficient of boron between calcium sillicate slag and silicon reaches to 1.57 when the mass ratio of CaO/SiO2 ...

  10. High-Temperatures Rheometric Analysis Of Selected Heterogeneous Slag Systems

    Directory of Open Access Journals (Sweden)

    Migas P.


    Full Text Available It is known that the dynamic viscosity coefficient of slag – with an increased titanium compounds content in the reducing conditions of the blast furnace - may rapidly change. The products of the reduction reaction, precipitation and separation of titanium compounds are responsible for the thickening effect of the slag and the problems of permeability of blast furnace, causing anomalies in the dipping zone. The presence of solid components (particles in the melts determines the rheological character of the entire system. Identifying the rheological character of semi-solid slag systems provides opportunities for the development of mathematical modeling of liquid phase flows in a dripping zone of the blast furnace, allowing e.g to indentify the unstable parts of a metallurgical aggregate.

  11. Phase Reactions Between Refractory and High-Acidic Synthetic CaO-Ferronickel Slag (United States)

    Sagadin, Christoph; Luidold, Stefan; Wagner, Christoph; Spanring, Alfred; Kremmer, Thomas


    Interactions between high melting synthetic ferronickel slags with acidic character and MgO as refractory were investigated. In order to facilitate the complex composition of real ferronickel slag, a synthetic slag of SiO2-MgO-Fe2O3-CaO was used. The practical corrosion tests of the MgO refractory were performed in a hot-stage microscope at temperatures of 1650°C under a CO/CO2 atmosphere for process-oriented conditions. The formed phases between slag and magnesia substrate were analyzed by scanning electron microscope analysis. The results show that, by penetrating the slag into the refractory, the melt dissolves the magnesia and forms Mg- and Ca silicates. Furthermore, a diffusion of Fe from the slag into the magnesia grains can be observed and a transformation to magnesiowustite occurs. Thermodynamic phase calculations using FactSage software confirmed the generation of these minerals. The combination of practical testing and thermodynamic calculations should ultimately provide a path for improving the refractory lifetime and performance.

  12. Removing boron from metallurgical grade silicon by a high basic slag refining technique

    Directory of Open Access Journals (Sweden)

    Wu J.J.


    Full Text Available A new purification method of removing boron from metallurgical grade silicon (MG-Si using a high baisicity slag was developed in this paper. The typical impurities Al, Ca, Ti, B, P etc in MG-Si can be removed by the binary calcium sillicate slag and it is especially efficient for removing impurity Boron. It was found that the maximal distribution coefficient of boron between calcium sillicate slag and silicon reaches to 1.57 when the mass ratio of CaO/SiO2 was 1.5 and the composition was 60%CaO-40%SiO2. It showed that the oxidizability of calcium sillicate slag was affected and restricted by the basicity and the mass ratio of acid oxide SiO slag according to the thermodynamic relationship. The boron concentration in MG-Si can be reduced from 18x10-6 to 4.5x10-6 and 1.4x10-6, respectively, when using the ternary slags 40.5%CaO-49.5%SiO2-10%Li2O and 32CaO-38%SiO2-30%Li2O.

  13. Effect of MnO on High-Alumina Slag Viscosity and Corrosion Behavior of Refractory in Slags

    National Research Council Canada - National Science Library

    Xu, Renze; Zhang, Jianliang; Fan, Xiaoyue; Zheng, Weiwei; Zhao, Yongan


    The influence of MnO on viscosities of CaO–SiO2–MgO–Al2O3–Cr2O3-based slags and the corrosion mechanism of carbon composite brick used in blast furnace hearth by slags was investigated in this work...

  14. High temperature millimeter wave radiometric and interferometric measurements of slag-refractory interaction for application to coal gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    McCloy, John S.; Crum, Jarrod V.; Sundaram, S. K.; Slaugh, Ryan W.; Woskov, Paul P.


    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments) such as in slagging coal gasifiers, where sensors have been identified as a key enabling technology need for process optimization. We present a state-of-the-art dual-channel MMW heterodyne radiometer with active interferometric capability that allows simultaneous radiometric measurements of sample temperature, emissivity, and flow dynamics to over 1873 K. Interferometric capability is supplied via a probe signal originating from the 137 GHz radiometer local oscillator (LO). The interferometric 'video' channels allow measurement of additional parameters simultaneously, such as volume expansion, thickness change, and slag viscosity along with temperature or emissivity. This capability has been used to demonstrate measurement of temperature and simulated coal slag infiltration into a chromia refractory brick sample as well as slag flow down a vertically placed refractory brick. Observed phenomena include slag melting and slumping, slag reboil and foam with oxygen evolution, and eventual failure of the alumina crucible through corrosion by the molten slag. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters from operating slagging coal gasifiers, providing valuable information for process efficiency, control, and increased productivity.

  15. Experimental Study on the Utilization of Fine Steel Slag on Stabilizing High Plastic Subgrade Soil

    Directory of Open Access Journals (Sweden)

    Hussien Aldeeky


    Full Text Available The three major steel manufacturing factories in Jordan dump their byproduct, steel slag, randomly in open areas, which causes many environmental hazardous problems. This study intended to explore the effectiveness of using fine steel slag aggregate (FSSA in improving the geotechnical properties of high plastic subgrade soil. First soil and fine steel slag mechanical and engineering properties were evaluating. Then 0%, 5%, 10%, 15%, 20%, and 25% dry weight of soil of fine steel slag (FSSA were added and mixed into the prepared soil samples. The effectiveness of the FSSA was judged by the improvement in consistency limits, compaction, free swell, unconfined compression strength, and California bearing ratio (CBR. From the test results, it is observed that 20% FSSA additives will reduce plasticity index and free swell by 26.3% and 58.3%, respectively. Furthermore, 20% FSSA additives will increase the unconfined compressive strength, maximum dry density, and CBR value by 100%, 6.9%, and 154%. By conclusion FSSA had a positive effect on the geotechnical properties of the soil and it can be used as admixture in proving geotechnical characteristics of subgrade soil, not only solving the waste disposal problem.

  16. Performance of alkaline activated slag at high temperatures

    Directory of Open Access Journals (Sweden)

    Mejía de Gutiérrez, R.


    Full Text Available This paper presents an investigation into the performance of alkali-activated slag (AAS mortar exposed to elevated temperatures. Sodium silicate, sodium hydroxide and a mix (waterglass with a modulus (SiO2/Na20 of 1.5 were used as activators. The specimens were heated in an electric furnace up to 1000 ºC in steps of 200 ºC for a constant period of 2 hours. The weight loss, residual compressive strength, resistance to chloride ion penetration, porosity and capillary sorption were evaluated and the results were compared with those of ordinary and blended Portland cement mortar

    En el presente traba jo se estudió el comportamiento frente a ¡a temperatura de morteros producidos a partir de escorias siderúrgicas activadas alcalinamente (EAA, utilizando diferentes activantes tales como silicato sódico, hidróxido de sodio y sus correspondientes mezclas. Cada espécimen se expuso por dos horas a temperaturas hasta de 1.000 ºC, en intervalos de 200 °C y en cada caso se determinaron los cambios de color peso, resistencia mecánica y durabilidad. Esta última propiedad se evaluó determinando las modificaciones de porosidad y permeabilidad a cloruros. Los resultados se comparan con los obtenidos en morteros de cemento Portland con y sin adición, específicamente con aquéllos que incorporan humo de sílice.

  17. Dissolution of steel slags in aqueous media. (United States)

    Yadav, Shashikant; Mehra, Anurag


    Steel slag is a major industrial waste in steel industries, and its dissolution behavior in water needs to be characterized in the larger context of its potential use as an agent for sequestering CO2. For this purpose, a small closed system batch reactor was used to conduct the dissolution of steel slags in an aqueous medium under various dissolution conditions. In this study, two different types of steel slags were procured from steel plants in India, having diverse structural features, mineralogical compositions, and particle sizes. The experiment was performed at different temperatures for 240 h of dissolution at atmospheric pressure. The dissolution rates of major and minor slag elements were quantified through liquid-phase elemental analysis using an inductively coupled plasma atomic emission spectroscopy at different time intervals. Advanced analytical techniques such as field emission gun-scanning electron microscope, energy-dispersive X-ray, BET, and XRD were also used to analyze mineralogical and structural changes in the slag particles. High dissolution of slags was observed irrespective of the particle size distribution, which suggests high carbonation potential. Concentrations of toxic heavy metals in the leachate were far below maximum acceptable limits. Thus, the present study investigates the dissolution behavior of different mineral ions of steel slag in aqueous media in light of its potential application in CO2 sequestration.

  18. Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators

    National Research Council Canada - National Science Library

    Bernal, S. A; Rodríguez, E. D; Mejía de Gutiérrez, R; Provis, J. L


    This study assessed the mechanical properties, and structural changes induced by high temperature exposure, of alkali-silicate activated slag cements produced with sodium silicates derived from silica fume (SF) and rice husk ash (RHA...

  19. Analysis of the causes of failure in high chrome oxide refractory materials from slagging gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, J.P.; Kwong, K.-S.; Powell, C.A.; Thomas, H.; Krabbe, R.A.


    High Cr2O3 refractory materials are used to line the hot face of slagging gasifiers. Gasifiers are reaction chambers that convert water, oxygen, and a carbon feedstock into CO, H2, and methane at temperatures as high as 1575oC and pressures up to 1000 psi. Ash in the carbon feedstock liquefies, erodes and corrodes the gasifier’s refractory liner, contributing to liner failure within a few months to two years. The failure of a refractory liner decreases a gasifier’s on-line availability and causes costly system downtime and repairs. Many factors contribute to refractory lining failure, including slag penetration and corrosion, thermal cycling, gasifier environment, and mechanical loads. The results of refractory post-mortem failure analysis and how observations relate to gasifier service life will be discussed.

  20. An analysis of the causes of failure in high chrome oxide refractory materials from slagging gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, James P.; Kwong, Kyei-Sing; Powell, Cynthia A.; Thomas, Hugh; Krabbe, Rick


    High Cr2O3 refractory materials are used to line the hot face of slagging gasifiers. Gasifiers are reaction chambers that convert water, oxygen, and a carbon feedstock into CO, H2, and methane at temperatures as high as 1575DGC and pressures up to 1000 psi. Ash in the carbon feedstock liquefies, erodes and corrodes the gasifier's refractory liner, contributing to liner failure within a few months to two years. The failure of a refractory liner decreases a gasifier's on-line availability and causes costly system downtime and repairs. Many factors contribute to refractory lining failure, including slag penetration and corrosion, thermal cycling, gasifier environment, and mechanical loads. The results of refractory post-mortem failure analysis and how observations relate to gasifier service life will be discussed.

  1. Extraction of vanadium from vanadium slag by high pressure oxidative acid leaching (United States)

    Zhang, Guo-quan; Zhang, Ting-an; Lü, Guo-zhi; Zhang, Ying; Liu, Yan; Liu, Zhuo-lin


    To extract vanadium in an environment friendly manner, this study focuses on the process of leaching vanadium from vanadium slag by high pressure oxidative acid leaching. Characterizations of the raw slag, mineralogy transformation, and the form of leach residues were made by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The result shows that the vanadium slag is composed of major phases of fayalite, titanomagnetite, and spinel. During the high pressure oxidative acid leaching process, the fayalite and spinel phases are gradually decomposed by sulfuric acid, causing the release of vanadium and iron in the solution. Meanwhile, unreacted silicon and titanium are enriched in the leach residues. With the initial concentration of sulfuric acid at 250 g·L-1, a leaching temperature of 140°C, a leaching time of 50 min, a liquid-solid ratio of 10:1 mL·g-1, and oxygen pressure at 0.2 MPa, the leaching rate of vanadium reaches 97.69%.

  2. Highly Thermal Conductive Nanocomposites (United States)

    Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)


    Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.

  3. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L


    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  4. Treatment of LF slag to prevent powdering during cooling

    Directory of Open Access Journals (Sweden)

    Ghorai S.


    Full Text Available The polymorphic transformation of the monoclinic β-polymorph to the orthorhombic γ-polymorph of di-calcium silicate at around 500°C during cooling results in disintegration of slag. The slag generated, during the production of thermo mechanically treated steel in ladle furnace at M/s Tata Steel Limited, Jamshedpur, India, behaves in similar manner. An attempt has been made to prevent the crumbling of ladle furnace slag. The experiments were conducted in 10 kg air induction furnace. Various types of silica source were used to prevent the disintegration of ladle furnace slag by reducing the basicity and optimizing the additives amount. Apart from silica sources, other additives like borax and barium carbonate were also used to stabilize the β phase. Present investigation reveals that disintegration of ladle furnace slag can be prevented either by addition of 0.2% boarx or 2% barium carbonate. Dust formation can also be prevented by decreasing the ladle furnace slag basicity to about 1.7. Toxicity Characteristic Leaching Procedure test, of the borax and barium carbonate treated slag samples, indicates that barium carbonate treated slag cannot be used for the dusting prevention as it contains high level of barium.

  5. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction (United States)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai


    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450–1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society. PMID:26558350

  6. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction (United States)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai


    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society.

  7. Recovery of Vanadium from a High Ca/V Ratio Vanadium Slag Using Sodium Roasting and Ammonia Leaching (United States)

    Xu, Song; Long, Mujun; Chen, Dengfu; Fan, Helin; Chen, Yuting; Sun, Xue

    In order to seek an effective extraction process for vanadium, the recovery of vanadium from a high Ca/V ratio vanadium slag was studied by sodium roasting and ammonia leaching. In the present paper, the oxidation and leaching process of vanadium slag was investigated by X-ray diffraction (XRD), scanning electron microscopy and energy dispersive X-ray spectrometry (SEM/EDS) techniques. The effects of ammonium carbonate concentration, leaching temperature and leaching time on the leaching ratio of vanadium were discussed. As indicated in the experimental result, the optimal (NH4)2CO3 concentration was 120g/L, leaching temperature was 60°C and leaching time was 20 min. Approximately 92% of the vanadium was recovered under the optimal conditions. Furthermore, by means of X-ray diffraction analysis, the phase transformations of the vanadium slag during roasting and leaching processes were analyzed and discussed.

  8. Melting temperature of archaeometallurgical slag

    Directory of Open Access Journals (Sweden)

    Jozef Petrík


    Full Text Available The aim of submitted work is to search the softening and melting temperature of archeometallurgy bloomery and blast furnace slag using high – temperature microscope. The high values of melting temperature of bloomery slag is a result of secondary oxidation of wüstite in the chamber of a microscope. The melting temperature increases with an increase in SiO2 and decreases with increasing basicity of the slag.

  9. Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag (United States)

    Jiang, Tao; Liao, De-ming; Zhou, Mi; Zhang, Qiao-yi; Yue, Hong-rui; Yang, Song-tao; Duan, Pei-ning; Xue, Xiang-xin


    Experimental studies on the rheological properties of a CaO-SiO2-Al2O3-MgO-TiO2-(TiC) blast furnace (BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different TiC contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing TiC content, the viscosity of the molten slag tended to increase. If the TiC content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the TiC content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the TiC content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.

  10. Evaluation of portland cement concrete pavement with high slag content cement. (United States)


    The performance of a section of concrete pavement built with 30 percent Ground Granulated Blast Furnace Slag (GGBFS) is compared to a control section of concrete pavement built with 25 percent GGBFS to determine if the higher slag content pavement is...

  11. Vanadium bioavailability in soils amended with blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Maja A., E-mail: [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Baken, Stijn, E-mail: [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Smolders, Erik, E-mail: [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Cubadda, Francesco, E-mail: [Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161 (Italy); Gustafsson, Jon Petter, E-mail: [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Division of Land and Water Resources Engineering, KTH Royal Institute of Technology, Brinellvägen 28, 100 44 Stockholm (Sweden)


    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg{sup −1}) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  12. Hydrology and geochemistry of a slag-affected aquifer and chemical characteristics of slag-affected ground water, northwestern Indiana and northeastern Illinois (United States)

    Bayless, E. Randall; Greeman, T.K.; Harvey, C.C.


    Slag is a by-product of steel manufacturing and a ubiquitous fill material in northwestern Indiana. Ground water associated with slag deposits generally is characterized by high pH and elevated concentrations of many inorganic water-quality constituents. The U.S. Geological Survey, in cooperation with the Indiana Department of Environmental Management, conducted a study in northwestern Indiana from June 1995 to September 1996 to improve understanding of the effects of slag deposits on the water quality of a glacial-outwash aquifer. The Bairstow Landfill, a slag-fill deposit overlying the Calumet aquifer near Hammond, Indiana, was studied to represent conditions in slag-deposit settings that are common in northwestern Indiana. Ground water from 10 observation wells, located in four nests at the site, and surface water from the adjacent Lake George were analyzed for values of field-measured parameters and concentrations of major ions, nutrients, trace elements, and bulk properties. Solid-phase samples of slag and aquifer sediment collected during drilling were examined with X-ray diffraction and geochemical digestion and analysis. Concentrations of calcium, potassium, sodium, and sulfate were highest in wells screened partly or fully in slag. Potassium concentrations in ground water ranged from 2.9 to 120 milligrams per liter (mg/L), were highest in water from slag deposits, and decreased with depth. The highest concentrations for aluminum, barium, molybdenum, nickel, and selenium were in water from the slag. Silica concentrations were highest in wells screened directly beneath the slag?aquifer interface, and magnesium concentrations were highest in intermediate and deep aquifer wells. Silica concentrations in shallow and intermediate aquifer wells ranged from 27 to 41 mg/L and were about 10 times greater than those in water from slag deposits. The highest concentrations for chromium, lead, and zinc were in ground water from immediately below the slag

  13. Ternary Blends of High Aluminate Cement, Fly ash and Blast-furnace slag for Sewerage Lining Mortar (United States)

    Chao, L. C.; Kuo, C. P.


    High aluminate cement (HAC), fly ash (FA) and blast-furnace slag (BFS) have been treated sustainable materials for the use of cement products for wastewater infrastructure due to their capabilities of corrosion resistance. The purpose of this study is to optimize a ternary blend of above mentioned materials for a special type of mortar for sewerage lining. By the using of Taguchi method, four control parameters including water/cementitious material ratio, mix water content, fly ash content and blast-furnace slag content were considered in nine trial mix designs in this study. By evaluating target properties including (1) maximization of compressive strength, (2) maximization of electricity resistance and (3) minimization of water absorption rate, the best possible levels for each control parameter were determined and the optimal mix proportions were verified. Through the implementation of the study, a practical and completed idea for designing corrosion resistive mortar comprising HAC, FA and BSF is provided.

  14. Study on cementitious properties of steel slag

    Directory of Open Access Journals (Sweden)

    Zhu G.


    Full Text Available The converter steel slag chemical and mineral components in China’s main steel plants have been analysed in the present paper. The electronic microscope, energy spectrum analysis, X-ray diffraction analysis confirmed the main mineral compositions in the converter slag. Converter slag of different components were grounded to obtain a powder with specific surface area over 400m2/kg, making them to take place some part of the cement in the concrete as the admixture and carry out the standard tests. The results indicate that the converter slag can be used as cementitious materials for construction. Furthermore, physical mechanic and durability tests on the concrete that certain amount of cement be substituted by converter steel slag powder from different steel plants are carried out, the results show that the concrete with partial substitution of steel slag powder has the advantages of higher later period strength, better frost resistance, good wear resistance and lower hydration heat, etc. This study can be used as the technical basis for “Steel Slag Powder Used For Cement And Concrete”, “Steel Slag Portland Cement”, “Low Heat Portland Steel Slag Cement”, “Steel Slag Road Cement” in China, as well as a driving force to the works of steel slag utilization with high-value addition, circular economy, energy conservation and discharge reduction in the iron and steel industry.

  15. Improvement of cracking and chloride penetration resistance of slag concrete by utilizing high alite cement


    Huynh, Phuong Nam


    The durability of concrete is one of the most concerns of researchers andengineers. Early ages are the time concrete suffers from many factors those inducecracking in the concrete. Microcracking in concrete adversely affects macroscopic tensilestrength of concrete that will leads to the severe cracking in later ages. Especially with theaddition of mineral additives such as ground granulated blast furnace slag or fly ash,concrete is susceptible to microcracking particularly under temperature v...

  16. Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag

    Directory of Open Access Journals (Sweden)

    Mehrdad Massoudi


    Full Text Available The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.

  17. Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, Mehrdad [National Energy Technology Laboratory; Wang, Ping


    The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.

  18. Transport and removal of bacteriophages MS2 and PhiX174 in steel slag-amended soils: column experiments and transport model analyses. (United States)

    Park, Jeong-Ann; Kang, Jin-Kyu; Kim, Jae-Hyun; Kim, Song-Bae; Yu, Seungho; Kim, Tae-Hun


    The aim of this study was to investigate the removal of bacteriophages MS2 and PhiX174 in soils amended with converter furnace steel slag. Column experiments were performed to examine the bacteriophage removal in slag-amended (slag content: 0%, 25%, and 50%) loam soils. For comparison, column experiments were also conducted with Escherichia coli. In addition, chloride (Cl) was used as a conservative tracer to determine transport characteristics. Results showed mass recoveries of Cl of 98.6 +/- 3.5%, indicating that the experiments were conducted successfully. The mass recovery of MS2 was 86.7% in no slag (100% soil), decreasing to 0% in slag contents of 25% and 50%. The mass recovery of PhiX174 decreased from 87.8% to 51.5% with increasing slag content from 0% to 50%. In the case of E. coli, the mass recoveries decreased from 47.0% to 10.5% with increasing slag content from 0% to 50%. In the transport models analyses, the HYDRUS-1D code was used to quantify the sorption parameters from breakthrough curves. For the 100% soil column, a one-site kinetic sorption model was fitted to the data, whereas a two-site kinetic sorption model was fitted for slag-amended (25% and 50% slag) soil data. Results demonstrate that the addition of steel slag to soil enhances the removal of bacteriophages due to the presence of FeO in the steel slag. However, CaO could not contribute to the bacteriophage removal in our experimental conditions because the effluent pH (7.7-8.9) in slag-amended (25% and 50% slag) soils was not high enough to promote the bacteriophage inactivation.

  19. Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag. (United States)

    Tian, Sicong; Jiang, Jianguo; Yan, Feng; Li, Kaimin; Chen, Xuejing


    Capturing anthropogenic CO2 in a cost-effective and highly efficient manner is one of the most challenging issues faced by scientists today. Herein, we report a novel structure-reforming approach to convert steel slag, a cheap, abundant, and nontoxic calcium-rich industrial waste, as the only feedstock into superior CaO-based, self-stabilizing CO2 sorbents. The CO2 capture capacity of all the steel slag-derived sorbents was improved more than 10-fold compared to the raw slag, with the maximum uptake of CO2 achieving at 0.50 gCO2 gsorbent(-1). Additionally, the initial steel slag-derived sorbent could retain 0.25 gCO2 gsorbent(-1), that is, a decay rate of only 12% over 30 carbonation-calcination cycles, the excellent self-stabilizing property allowed it to significantly outperform conventional CaO, and match with most of the existing synthetic CaO-based sorbents. A synergistic effect that facilitated CO2 capture by CaO-based sorbents was clearly recognized when Mg and Al, the most common elements in steel slag, coexisted with CaO in the forms of MgO and Al2O3, respectively. During the calcium looping process, MgO served as a well spacer to increase the porosity of sorbents together with Al2O3 serving as a durable stabilizer to coresist the sintering of CaCO3 grains at high temperatures.

  20. Environmental and economic implications of slag disposal practices ...

    African Journals Online (AJOL)

    A large volume of slag is annually produced by the ferrochromium industry and the slag has historically been dumped without any pollution prevention, control or remediation measures. The slag at the ASSMANG Chrome Machadodorp (ACM) plant in Mpumalanga (where this case study was conducted) contains elements ...

  1. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J.; Tervola, K. [Oulu Univ. (Finland). Dept. of Process Engineering


    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquidus temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) SULA 2 Research Programme; 2 refs.

  2. The characterisation, improvement and modelling aspects of Frost Salt Scaling of Cement-Based Materials with a High Slag Content

    NARCIS (Netherlands)

    Copuroglu, O.


    Blast furnace slag cement concrete is used extensively in a number of countries. In comparison with OPC, it is particularly well known for its excellent performance in marine environments. One dis-advantage of slag cement is its vulnerability to scaling under the combined load of freezing-thawing


    Directory of Open Access Journals (Sweden)



    Full Text Available Summary. Purpose. Development of scientific-technical bases of manufacture and application of concrete on the basis of ash and slag mixes of thermal power plants. Methods. It is proposed a new technology of preparation of ash and slag concrete mixes. First the ash and slag mix is dispersed through the sieve with meshes 5 mm in a fine-grained fraction and slag. Then, in accordance with the composition of the concrete, obtained fine-grained fraction, slag, cement and tempering water are separately dosed into the mixer. Results. It is proven the high efficiency of the proposed technology of manufacture of ash and slag concretes. It is established that this technological solution allows to increase the strength of concrete by 20...30%, and in the preparation of full-strength concrete to reduce the cement consumption by 15...20%. Scientific novelty. It is developed the new technology of ash and slag mixes application. The concrete mix on the basis of ash and slag mix has an optimal particle size distribution, which ensures the best compaction and, accordingly, the greatest strength of ash and slag concrete with the given cement consumption. Practical significance. The research results promote the mass application of ash and slag mixes of thermal power plants in construction, obtaining of products from the proposed concretes of low cost with high physical-mechanical properties. Conclusion. It is proven the high efficiency of the proposed technology of production of ash and slag concretes. It is established that this technological solution allows increasing concrete strength, and obtaining full-strength concrete to reduce cement consumption. The extensive application of such concrete in construction makes it possible to solve the problem of aggregates for concrete, promotes recycling of TPP waste and consequently the protection of the environment.

  4. High-Thermal-Conductivity Fabrics (United States)

    Chibante, L. P. Felipe


    Heat management with common textiles such as nylon and spandex is hindered by the poor thermal conductivity from the skin surface to cooling surfaces. This innovation showed marked improvement in thermal conductivity of the individual fibers and tubing, as well as components assembled from them. The problem is centered on improving the heat removal of the liquid-cooled ventilation garments (LCVGs) used by astronauts. The current design uses an extensive network of water-cooling tubes that introduces bulkiness and discomfort, and increases fatigue. Range of motion and ease of movement are affected as well. The current technology is the same as developed during the Apollo program of the 1960s. Tubing material is hand-threaded through a spandex/nylon mesh layer, in a series of loops throughout the torso and limbs such that there is close, form-fitting contact with the user. Usually, there is a nylon liner layer to improve comfort. Circulating water is chilled by an external heat exchanger (sublimator). The purpose of this innovation is to produce new LCVG components with improved thermal conductivity. This was addressed using nanocomposite engineering incorporating high-thermalconductivity nanoscale fillers in the fabric and tubing components. Specifically, carbon nanotubes were added using normal processing methods such as thermoplastic melt mixing (compounding twin screw extruder) and downstream processing (fiber spinning, tubing extrusion). Fibers were produced as yarns and woven into fabric cloths. The application of isotropic nanofillers can be modeled using a modified Nielsen Model for conductive fillers in a matrix based on Einstein s viscosity model. This is a drop-in technology with no additional equipment needed. The loading is limited by the ability to maintain adequate dispersion. Undispersed materials will plug filtering screens in processing equipment. Generally, the viscosity increases were acceptable, and allowed the filled polymers to still be

  5. A New Technique for Preparation of High-Grade Titanium Slag from Titanomagnetite Concentrate by Reduction-Melting-Magnetic Separation Processing (United States)

    Lv, Chao; Yang, Kun; Wen, Shu-ming; Bai, Shao-jun; Feng, Qi-cheng


    This paper proposes a new technique for preparation of high-grade titanium slag from Panzhihua vanadium titanomagnetite concentrate by reduction-melting-magnetic separation processing. Chemical analysis, x-ray diffraction, and scanning electron microscopy in conjunction with energy-dispersive spectroscopy were used to characterize the samples. The effective separation of iron and titanium slag could be realized by melting metallized pellets at 1550°C for 60 min with the addition of 1% CaO (basicity of 1.1) and 2% graphite powder. The small iron particles embedded in the slag could be removed by fine grinding and magnetic separation process. The grade of TiO2 in the obtained high-grade titanium slag reached 60.68% and the total recovery of TiO2 was 91.25%, which could be directly applied for producing titanium white by the sulfuric acid process. This technique provides an alternative method to use vanadium titanomagnetite concentrate of the Panzhihua area in China.

  6. Study on the ratio and properties of the slurry of light insulation masonry with volcanic slag (United States)

    Liguang, Xiao; Dawei, Jiang


    Volcanic slag is a kind of natural high quality porous material, and it has a good thermal insulation effect, and it is an extremely rich natural resource. Therefore, this paper adopts the natural volcanic slag as the aggregate to build the insulation mortar mix design for the slag masonry, and tests the related performance of the mortar. The results show that adopts natural volcanic slag as the aggregate and the cement use fly ash to replace, and the appropriate uniform sealing pores were introduced into the mortar mix. The performance of the manufactured products can meet the requirements of JC/T890. The coefficient of thermal conductivity of lightweight masonry mortar is less than 0.14W/(m•K), and the frost resistance is greater than 100 times, and it is with a low price.

  7. A study of slag freezing in metallurgical furnaces (United States)

    Guevara, Fernando

    Many smelting and slag-cleaning furnaces operate with cooling systems designed to freeze a slag layer over the refractory to protect it. The fluid flow and heat transfer conditions associated with the freeze layer and mushy zones are poorly understood. This study was conducted to understand the chill layer formation and heat transfer that is required to design cooling systems in pyrometallurgical operations where a slag layer is required to protect the furnace wall. The freeze layer formation and heat transfer in mushy zones were experimentally study at room temperature in a 2-dimensional square cavity differentially heated, using an aqueous solution of calcium chloride to simulate the slag. Reasonable similarity with conditions encountered with copper and nickel smelting systems was achieved (Pr ≈ 50 and Ra ≈ 108, in the laminar-turbulent transition). Measurements of velocities were made with the Particle Image Velocimetry (PIV) technique. The freeze layer development was tracked using a digital camera. Direct Numerical Simulations (DNS) of the mean flow using a finite control volume technique with a fixed domain method were also made of the unsteady fluid flow and heat transfer problem. It was found that the macro solidification process is well described using an improved model for high molecular viscosity in the mushy zone. Solid front growth, isothermal profiles, velocity profiles and heat transfer through the walls showed good agreement between the PIV and DNS results. Experimental and numerical velocity profiles close to the freeze layer show a parabolic behaviour in the vertical velocity profile which is completely different from the calculation of heat transfer using a sharp interface model. The reason for this is attributed to the effects of the mushy zone with a high viscosity and high shear stresses acting on that area. In Part III of this Thesis, effects of slag viscosity temperature relationship were analysed with a two-dimensional mathematical

  8. Environmental characteristics and utilization potential of metallurgical slag: Chapter 19 (United States)

    Piatak, Nadine; De Vivo, Benedetto; Belkin, Harvey E.; Lima, Annamaria


    Slag, an abundant byproduct from the pyrometallurgical processing of ores, can be an environmental liability or a valuable resource. The most common environmental impact of slag is from the leaching of potentially toxic elements, acidity, or alkalinity that may impact nearby soils and surface water and groundwater. Factors that influence its environmental behavior include physical characteristics, such as grain size and porosity, chemical composition with some slag being enriched in certain elements, the mineralogy and partitioning of elements in more or less reactive phases, water-slag interactions, and site conditions. Many of these same factors also influence its resource potential. For example, crystalline ferrous slag is most commonly used as construction aggregate, whereas glassy (i.e., granulated) slag is used in cement. Also, the calcium minerals found in ferrous slag result in useful applications in water treatment. In contrast, the high trace-element content of some base-metal slags makes the slags economically attractive for extraction of residual elements. An evaluation tool is used to help categorize a particular slag as an environmental hazard or valuable byproduct. Results for one type of slag, legacy steelmaking slag from the Chicago area in the USA, suggest the material has potential to be used for treating phosphate-rich or acidic waters; however, the pH and trace-element content of resulting solutions may warrant further examination.

  9. Assessment of the use of spent copper slag for land reclamation. (United States)

    Lim, Teik-Thye; Chu, J


    The shortage of waste landfill space for waste disposal and the high demand for fill materials for land reclamation projects in Singapore have prompted a study on the feasibility of using spent copper slag as fill material in land reclamation. The physical and geotechnical properties of the spent copper slag were first assessed by laboratory tests, including hydraulic conductivity and shear strength tests. The physical and geotechnical properties were compared with those of conventional fill materials such as sands. The potential environmental impacts associated with the use of the spent copper slag for land reclamation were also evaluated by conducting laboratory tests including pH and Eh measurements, batch-leaching tests, acid neutralization capacity determination, and monitoring of long-term dissolution of the material. The spent copper slag was slightly alkaline, with pH 8.4 at a solid : water ratio of 1 : 1. The batch-leaching test results show that the concentrations of the regulated heavy metals leached from the material at pH 5.0 were significantly lower than the maximum concentrations for their toxicity limits referred by US EPA's Toxicity Characteristic Leaching Procedure (TCLP). It was also found that the material is unlikely to cause significant change in the redox condition of the subsurface environment over a long-term period. In terms of physical and geotechnical properties, the spent copper slag is a good fill material. In general, the spent copper slag is suitable to be used as a fill material for land reclamation.


    Energy Technology Data Exchange (ETDEWEB)

    Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb


    conditions, resulting in unburned carbon as well as slagging. A second phase of the project involved advanced analysis of the baseline coal along with an Australian coal fired at the plant. These analysis results were used in equilibrium thermodynamic modeling along with a coal quality model developed by the EERC to assess slagging, fouling, and opacity for the coals. Bench-scale carbon conversion testing was performed in a drop-tube furnace to assess the reactivity of the coals. The Australian coal had a higher mineral content with significantly more clay minerals present than the baseline coal. The presence of these clay minerals, which tend to melt at relatively low temperatures, indicated a higher potential for problematic slagging than the baseline coal. However, the pyritic minerals, comprising over 25% of the baseline mineral content, may form sticky iron sulfides, leading to severe slagging in the burner region if local areas with reducing conditions exist. Modeling results indicated that neither would present significant fouling problems. The Australian coal was expected to show slagging behavior much more severe than the baseline coal except at very high furnace temperatures. However, the baseline coal was predicted to exhibit opacity problems, as well as have a higher potential for problematic calcium sulfate-based low-temperature fouling. The baseline coal had a somewhat higher reactivity than the Australian coal, which was consistent with both the lower average activation energy for the baseline coal and the greater carbon conversion at a given temperature and residence time. The activation energy of the baseline coal showed some effect of oxygen on the activation energy, with E{sub a} increasing at the lower oxygen concentration, but may be due to the scatter in the baseline coal kinetic values at the higher oxygen level tested.

  11. The Role of Limestone in Preventing Agglomeration and Slagging during CFB Combustion of High-Phosphorous Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Barisic, V.; Coda Zabetta E. (Foster Wheeler Energia Oy, FI-78201 Varkaus (Finland)). e-mail:; Aamand, L.E. (Chalmers Univ. of Technology, Energiteknik 4, SE-412 96 Goeteborg (Sweden))


    This paper presents key observations on the role of limestone in preventing bed agglomeration during combustion of a high-phosphorous fuel in CFB boilers. Composition of the bed material samples were analyzed using Xray fluorescence, and scanning electron microscope combined with an energy dispersive X-ray analyzer (SEM/EDXA). It has been demonstrated that during combustion of the high-phosphorous fuel under CFB conditions, addition of limestone reduces or prevents bed agglomeration and formation of slag by interfering with the ash chemistry, and not by simple dilution of the reacting system. The role of limestone can be summarized as: 1) to provide calcium for the reaction with phosphorous forming high-temperature-melting calcium phosphates instead of low-temperature-melting potassium phosphates, and 2) to coat silica particles preventing the reaction of potassium (calcium) phosphates and silica originating from the fluidizing sand, which can form low-temperature-melting potassium (calcium) silicates, especially relevant for fluidized bed combustion conditions. Keywords: agricultural residues, phosphorous, circulating fluidized bed (CFB), agglomeration, limestone

  12. A Brief Review of Viscosity Models for Slag in Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, Mehrdad; Wang, Ping


    of ash and slag, especially in high-temperature environments need to be understood and properly modeled. The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal (and biomass for co-firing cases) present a special challenge of modeling efforts in computational fluid dynamics applications. In this report, we first provide a brief review of the various approaches taken by different researchers in formulating or obtaining a slag viscosity model. In general, these models are based on experiments. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied.

  13. Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators

    Directory of Open Access Journals (Sweden)

    Bernal, S. A.


    Full Text Available This study assessed the mechanical properties, and structural changes induced by high temperature exposure, of alkali-silicate activated slag cements produced with sodium silicates derived from silica fume (SF and rice husk ash (RHA. Similar reaction products were identified, independent of the type of silicate used, but with subtle differences in the composition of the C-S-H gels, leading to different strength losses after elevated temperature exposure. Cements produced with the alternative activators developed higher compressive strengths than those produced with commercial silicate. All samples retained strengths of more than 50 MPa after exposure to 600 °C, however, after exposure to 800 °C only the specimens produced with the RHA-based activator retained measurable strength. This study elucidated that silicate-activated slag binders, either activated with commercial silicate solutions or with sodium silicates based on SF or RHA, are stable up to 600 °C.Este estudio evaluó las propiedades mecánicas, y cambios estructurales inducidos por exposición a temperaturas elevadas, de cementos de escoria activada alcalinamente producidos con silicatos sódicos derivados de humo de sílice (SF y ceniza de cascarilla de arroz (RHA. Se identificaron productos de reacción similares, independiente del tipo de silicato utilizado, pero con diferencias menores en la composición de las geles C-S-H, lo cual indujo diferentes pérdidas de resistencia posterior a exposición a temperaturas elevadas. Los cementantes producidos con los activadores alternativos desarrollaron resistencias a la compresión más altas que aquellos producidos con silicato comercial. Todas las muestras retuvieron resistencias de más de 50 MPa posterior a la exposición a 600 °C, sin embargo, posterior a la exposición a 800 °C únicamente muestras producidas con activadores de RHA retuvieron resistencias medibles. Este estudio elucidó que cementantes de escoria activada con

  14. Phosphorus partitioning and recovery of low-phosphorus iron-rich compounds through physical separation of Linz-Donawitz slag (United States)

    Makhija, Dilip; Rath, Rajendra Kumar; Chakravarty, Kaushik; Patra, Abhay Shankar; Mukherjee, Asim Kumar; Dubey, Akhilesh Kumar


    The Linz-Donawitz (LD) steelmaking process produces LD slag at a rate of about 125 kg/t. After metallic scrap recovery, the non-metallic LD slag is rejected because its physical/chemical properties are unsuitable for recycling. X-ray diffraction (XRD) studies have indicated that non-metallic LD slag contains a substantial quantity of mineral phases such as di- and tricalcium silicates. The availability of these mineral phases indicates that LD slag can be recycled by iron (Fe)-ore sintering. However, the presence of 1.2wt% phosphorus (P) in the slag renders the material unsuitable for sintering operations. Electron probe microscopic analysis (EPMA) studies indicated concentration of phosphorus in dicalcium silicate phase as calcium phosphate. The Fe-bearing phases (i.e., wustite and dicalcium ferrite) showed comparatively lower concentrations of P compared with other phases in the slag. Attempts were made to lower the P content of LD slag by adopting various beneficiation techniques. Dry high-intensity magnetic separation and jigging were performed on as-received samples with particle sizes of 6 and 3 mm. Spiral separation was conducted using samples ground to sizes of less than 1 and 0.5 mm. Among these studies, grinding to 0.5 mm followed by spiral concentration demonstrated the best results, yielding a concentrate with about 0.75wt% P and 45wt% Fe.

  15. Effect of High-Temperature Curing Methods on the Compressive Strength Development of Concrete Containing High Volumes of Ground Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Wonsuk Jung


    Full Text Available This paper investigates the effect of the high-temperature curing methods on the compressive strength of concrete containing high volumes of ground granulated blast-furnace slag (GGBS. GGBS was used to replace Portland cement at a replacement ratio of 60% by binder mass. The high-temperature curing parameters used in this study were the delay period, temperature rise, peak temperature (PT, peak period, and temperature down. Test results demonstrate that the compressive strength of the samples with PTs of 65°C and 75°C was about 88% higher than that of the samples with a PT of 55°C after 1 day. According to this investigation, there might be optimum high-temperature curing conditions for preparing a concrete containing high volumes of GGBS, and incorporating GGBS into precast concrete mixes can be a very effective tool in increasing the applicability of this by-product.

  16. Comparison of Ultrasound-Assisted and Regular Leaching of Vanadium and Chromium from Roasted High Chromium Vanadium Slag (United States)

    Wen, Jing; Jiang, Tao; Gao, Huiyang; Liu, Yajing; Zheng, Xiaole; Xue, Xiangxin


    Ultrasound-assisted leaching (UAL) was used for vanadium and chromium leaching from roasted material obtained by the calcification roasting of high-chromium-vanadium slag. UAL was compared with regular leaching. The effect of the leaching time and temperature, acid concentration, and liquid-solid ratio on the vanadium and chromium leaching behaviors was investigated. The UAL mechanism was determined from particle-size-distribution and microstructure analyses. UAL decreased the reaction time and leaching temperature significantly. Furthermore, 96.67% vanadium and less than 1% chromium were leached at 60°C for 60 min with 20% H2SO4 at a liquid-solid ratio of 8, which was higher than the maximum vanadium leaching rate of 90.89% obtained using regular leaching at 80°C for 120 min. Ultrasonic waves broke and dispersed the solid sample because of ultrasonic cavitation, which increased the contact area of the roasted sample and the leaching medium, the solid-liquid mass transfer, and the vanadium leaching rate.

  17. A Comparison Study of the Oxygen-Rich Side Blow Furnace and the Oxygen-Rich Bottom Blow Furnace for Liquid High Lead Slag Reduction (United States)

    Chen, Lin; Hao, Zhandong; Yang, Tianzu; Liu, Weifeng; Zhang, Duchao; Zhang, Li; Bin, Shu; Bin, Wanda


    This work investigates the characteristics of the oxygen-rich side blow furnace (OSBF) and the oxygen-rich bottom blow furnace (OBBF) as the reductive smelting reactor for molten high lead slag. The slags were collected from different sampling points of these furnaces during a regular high lead slag reduction process and analyzed. It is disclosed that lead content of the melt in the OSBF shows dramatic fluctuations, while melt from different sampling points of the furnace behave similarly, exhibiting the characteristics of batch reactor. An obvious axial lead content gradient is detected in the OBBF, showing the characteristics of a plug flow reactor. The industrial performances of these furnaces are also compared. The results indicate that 1.38% higher lead recovery can be achieved by using the OSBF instead of the OBBF. Unit energy consumptions of the OBBF-OSBF and OBBF-OBBF processes can be reduced to 230 kgce/ t crude lead, which is 70 kgce/ t crude lead less than that of the tradition Shuikoushan (SKS) process.

  18. Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags. (United States)

    Pasetto, Marco; Baldo, Nicola


    The paper presents the results of a laboratory study aimed at verifying the use of two types of electric arc furnace (EAF) steel slags as substitutes for natural aggregates, in the composition of base course and road base asphalt concrete (BBAC) for flexible pavements. The trial was composed of a preliminary study of the chemical, physical, mechanical and leaching properties of the EAF steel slags, followed by the mix design and performance characterization of the bituminous mixes, through gyratory compaction tests, permanent deformation tests, stiffness modulus tests at various temperatures, fatigue tests and indirect tensile strength tests. All the mixtures with EAF slags presented better mechanical characteristics than those of the corresponding asphalts with natural aggregate and satisfied the requisites for acceptance in the Italian road sector technical standards, thus resulting as suitable for use in road construction. Copyright 2010 Elsevier B.V. All rights reserved.

  19. The opportunity of silicate product manufacturing with simultaneous pig iron reduction from slag technogenic formations (United States)

    Sheshukov, O. Yu.; Lobanov, D. A.; Mikheenkov, M. A.; Nekrasov, I. V.; Egiazaryan, D. K.


    There are two main kinds of slag in modern steelmaking industry: the electric arc furnace slag (EAF slag) and ladle furnace slag (LF slag). The all known slag processing schemes provide the iron-containing component reduction while silicate component stays unprocessed. On the contrary, the silicate processing schemes doesn't provide the utilization of the iron-containing component. The present-day situation doesn't solve the problem of total slag utilization. The aim of this work is to investigate the opportunity of silicate product obtaining with simultaneous pig iron reduction from EAF and LF slags. The tests are conducted by the method of simplex-lattice design. The test samples are heated and melted under reductive conditions, slowly cooled and then analyzed by XRD methods. The experiment results prove the opportunity: the Portland clinker and pig iron can be simultaneously produced on the basis of these slags with a limestone addition.

  20. Role of steel slags on biomass/carbon dioxide gasification integrated with recovery of high temperature heat. (United States)

    Sun, Yongqi; Liu, Qianyi; Wang, Hao; Zhang, Zuotai; Wang, Xidong


    Disposal of biomass in the agriculture and steel slags in the steel industry provides a significant solution toward sustainability in China. Herein these two sectors were creatively combined as a novel method, i.e., biomass/CO 2 gasification using waste heat from hot slags where the influence of chemical compositions of steel slags, characterized as iron oxide content and basicity, on gasification thermodynamics, was systemically reported for the first time. Both the target gases of CO, H 2 and CH 4 and the polluted gases of NH 3 , NO and NO 2 were considered. It was first found that an increasing iron content and slag basicity continuously improved the CO yield at 600-1000°C and 800-1000°C, respectively; while the effect on polluted gas releases was limited. Moreover, the solid wastes after gasification could be utilized to provide nutrients and improve the soil in the agriculture, starting from which an integrated modern system was proposed herein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure

    Directory of Open Access Journals (Sweden)

    Wojciech Sas


    Full Text Available Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young’s modules E, and resilient modules Mr showed that their values corresponding with requirements for subbase (principal or auxiliary and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads’ structures. Mechanical characterization was obtained by performing California bearing ratio (CBR tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented.

  2. High-temperature performance of mortars and concretes based on alkali-activated slag/metakaolin blends

    Directory of Open Access Journals (Sweden)

    Bernal, S. A.


    Full Text Available This paper assesses the performance of mortars and concretes based on alkali activated granulated blastfurnace slag (GBFS/metakaolin (MK blends when exposed to high temperatures. High stability of mortars with contents of MK up to 60 wt.% when exposed to 600 °C is identified, with residual strengths of 20 MPa following exposure to this temperature. On the other hand, exposure to higher temperatures leads to cracking of the concretes, as a consequence of the high shrinkage of the binder matrix and the restraining effects of the aggregate, especially in those specimens with binders containing high MK content. A significant difference is identified between the water absorption properties of mortars and concretes, and this is able to be correlated with divergences in their performance after exposure to high temperatures. This indicates that the performance at high temperatures of alkali-activated mortars is not completely transferable to concrete, because the systems differ in permeability. The differences in the thermal expansion coefficients between the binder matrix and the coarse aggregates contribute to the macrocracking of the material, and the consequent reduction of mechanical properties.

    Este artículo evalúa el desempeño de morteros y hormigones basados en mezclas de escoria siderúrgica (GBFS/metacaolín (MK, activadas alcalinamente expuestos a temperaturas altas. Se identifica una elevada estabilidad en morteros con contenidos de MK de hasta un 60% cuando se exponen a temperaturas de 600 ºC, con una resistencia residual de 20 MPa posterior a la exposición a esta temperatura. Por otra parte, la exposición a temperaturas más elevadas conduce al agrietamiento de los hormigones como consecuencia de una elevada contracción de la matriz cementante y las restricciones por efecto de los áridos, especialmente en aquellos especímenes con cementantes que contienen altos contenidos de MK. Se identifican diferencias significativas en

  3. Microstructures of Metallurgical Slags

    Directory of Open Access Journals (Sweden)

    Jonczy I.


    Full Text Available The article characterizes microstructures of metallurgic slag of varying age remaining from the production of iron and steel and the Zn-Pb ore processing in relation to magmatic rocks and ores. Based on microscopic observations - among others - hypocrystalline, hyaline and felsite (characteristic for magmatic rocks microstructures were observed in the slag. Also microstructures related to ores, including framework and dendritic, colomorphic and corrosive structures were noted. The diversity of the microstructures presented in the article is a result of the differentiation in the formations of individual components of the slags, which depends, inter alia, on the method and the rate of cooling of the alloys.

  4. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux. (United States)

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A


    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. Copyright © 2014. Published by Elsevier B.V.

  5. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari


    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  6. Characterization and Conduction Mechanism of Highly Conductive Vanadate Glass

    Directory of Open Access Journals (Sweden)

    Tetsuaki Nishida


    Full Text Available This paper reviews recent studies of highly conductive barium iron vanadate glass with a composition of 20 BaO ∙ 10 Fe2O3 ∙ 70 V2O5 (in mol %. Isothermal annealing of the vanadate glass for several ten minutes at a given temperature, higher than glass transition temperature or crystallization temperature, caused an increase in σ. Substitution of CuI (3d10, ZnII (3d10 and CuII (3d9 for FeIII (3d5 was investigated to elucidate the effect of electron configuration on the conductivity (σ. A marked decrease in the activation energy of conduction (Ea was also observed after the annealing. Values of Ea were correlated to the energy gap between the donor level and the conduction band (CB in the n-type semiconductor model. Isothermal annealing of ZnII-substituted vanadate glass (20 BaO ∙ 5 ZnO ∙ 5 Fe2O3 ∙ 70 V2O5 at 450 °C for 30 min showed an increase in σ from 2.5 × 10–6 to 2.1 × 10–1 S cm–1, which was one order of magnitude larger than that of non-substituted vanadate glass (3.4 × 10–2 S cm–1. Under the same annealing condition, σ’s of 2.0 × 10–1 and 3.2 × 10–1 S cm–1 were observed for 20 BaO ∙ 5 Cu2O ∙ 5 Fe2O3 ∙ 70 V2O5 and 20 BaO ∙ 5 CuO ∙ 5 Fe2O3 ∙ 70 V2O5 glasses, respectively. These results demonstrate an increase in the carrier (electron density in the CB, primarily composed of anti-bonding 4s-orbitals.

  7. Thermal conductivity of iron at high pressures (United States)

    Suehiro, S.; Ohta, K.; Yagi, T.; Hirose, K.


    Earth generates and preserves a dipole magnetic field by self-sustained dynamo action in its liquid outer core for geologic timescale. Secular cooling of the core induces growth of the solid inner core that contributes additional buoyant source for the core convection. The electrical and thermal conductivities of core are fundamental physical parameters for knowing the dynamics inside the Earth. Direct measurements of the electrical and thermal conductivities of iron (Fe) at the Earth's core conditions have been recently reported (Konôpková et al., 2016; Ohta et al., 2016). Measurements of Fe thermal conductivity at the core conditions suggested thermal conductivity of the outer core was 18-32 W/m/K (Konôpková et al., 2016). On the other hand, Ohta et al. (2016) experimentally determined electrical conductivity of Fe at the core conditions, and estimated the core conductivity to be 75-117 W/m/K from obtained electrical conductivity and Wiedemann-Franz relation (κ = σLT; κ: thermal conductivity, σ: electrical conductivity, L: Lorenz number, T: absolute temperature) with ideal Lorenz number. Such large discrepancy in the estimated core thermal conductivity throw doubt on the validity of the Wiedemann-Franz relation at extremely high P-T conditions. In this study, we performed thermal conductivity measurements on Fe up to 130 GPa at room temperature in a diamond anvil cell using the pulsed light heating thermoreflectance technique (Ohta et al., 2012). The obtained thermal conductivity of Fe is in good agreement with calculated thermal conductivity via high-P/room-T Fe electrical conductivity and the Wiedemann-Franz law with constant Lorenz number up to around 50 GPa. However, the obtained thermal conductivity deviated downward from the calculated thermal conductivity profile above 50 GPa. Our results suggest pressure-dependent Lorenz number of Fe,which could be due to pressure- induced electronic topological transition in hcp Fe (Glazyrin et al., 2013). Kon

  8. Prevention of bottom build-up in reverberatory furnace by injection of reducing gas in converter slag

    Energy Technology Data Exchange (ETDEWEB)

    Saeid, S.; Hassani, H.R. [Sarcheshmeh Copper Complex, Kerman (Iran, Islamic Republic of); Vaghar, R.; Allah Karam, S.R. [Tehran Univ., Kerman (Iran, Islamic Republic of)


    A common way to produce copper from sulfide minerals is by converting the molten matte in reverberatory furnaces. In Iran, the process of melting copper matte is carried out by two reverberatory furnaces in the Sarcheshmeh Copper Complex. Efforts are being made to increase efficiency of the furnaces and to eliminate any factors which reduce production. Since the presence of magnetite increases the viscosity of slag, it can prevent complete separation of matte from the slag. For this reason, a study was conducted in which magnetite in a converter slag was reduced by injecting a reducing gas, which was a mixture of propane a butane. Gas blowing was conducted through a lance and a ladle containing 50 kg of molten converter slag for different periods of time at various flow rates. It was determined that the amount of magnetite could be reduced to less than 3-4 per cent with an efficiency of about 85 to 90 per cent. The precipitation of magnetite can also cause a reduction in the life expectancy of the refractories because of the effect of the burner flame and high temperatures. Magnetite can increase the melting point of the slag, resulting in higher energy consumption. It was determined that during the reduction operation, there was a settling time for the reduced copper droplets in the ladle of the slag. The upper layer of the slag could be completely discarded since it contained very little copper. Therefore, a larger volume of the reverberatory furnace remains free for operation. 5 refs., 1 tab., 2 figs.

  9. Electrical Conductivity of Micas at High Temperatures (United States)

    Watanabe, T.


    Electrical conductivity, along with seismic velocity, gives us clues to infer constituent materials and temperatures in the Earth's interior. Dry rocks have been considered to be electrically insulating at crustal temperatures. Observed high conductivity has been ascribed to the existence of fluids. However, Fuji-ta et al. (2007) recently reported that a dry gneiss shows relatively high conductivity (10-4-10-3 S/m) at the temperature of 300-400°C, and that it is strongly anisotropic in conductivity. They suggested that the alignment of biotite grains governs conductivity of the gneiss sample. Electrical properties of rock forming minerals are still poorly understood. We thus have measured electrical properties of biotite single crystals up to 700°C. In order to get a good understanding of conduction mechanisms, measurements have been also made on phlogopite and muscovite, which are common micas with similar crystallographic structures. Thin plates parallel to cleavages (thickness~0.1mm) were prepared from mica single crystals. Electrical impedance was measured by 2-electrode method. The specimen was kept in nitrogen or argon atmosphere. The conductivity measured parallel to cleavages is higher than that measured perpendicular to cleavages by 3-4 orders of magnitude. However, no significant difference in the activation energy of conductivity was observed between two directions. The activation energy of conductivity is ~50 kJ/mol for biotite and ~100 kJ/mol for phlogopite and muscovite. The conductivity of biotite is higher than those of phlogopite and muscovite by several orders of magnitude at the same temperature. The conductivity of biotite parallel to cleavages is ~10-1 S/m at 400°C. The conductivity of biotite increases irreversibly by heating. The irreversible change was not significant below 450°C. Remarkable increase is observed at the temperature of 450-550°C. No significant change was observed in the second heating. Such an increase in conductivity

  10. Study of Reaction Between Slag and Carbonaceous Materials (United States)

    Maroufi, Samane; Mayyas, Mohannad; Mansuri, Irshad; O'Kane, Paul; Skidmore, Catherine; Jin, Zheshi; Fontana, Andrea; Sahajwalla, Veena


    The chemical interaction of a typical slag of EAF with three different carbon sources, coke, rubber-derived carbon (RDC), coke-RDC blend, was studied in atmospheric pressure at 1823 K (1550 °C). Using an IR-gas analyzer, off-gases evolved from the sample were monitored. While the coke-RDC blend exhibited the best reducing performance in reaction with molten slag, the RDC sample showed poor interaction with the molten slag. The gasification of the coke, RDC, and coke-RDC blend was also carried out under oxidizing conditions using a gas mixture of CO2 (4 wt pct) and Ar (96 wt pct) and it was shown that the RDC sample had the highest rate of gasification step C0 {\\longrightarrow}\\limits{{k3 }}{CO} + nCf (11.6 site/g s (×6.023 × 1023/2.24 × 104)). This may be attributed to its disordered structure confirmed by Raman spectra and its nano-particle morphology observed by FE-SEM. The high reactivity of RDC with CO2 provided evidence that the Boudouard reaction was fast during the interaction with molten slag. However, low reduction rate of iron oxide from slag with RDC can be attributed to the initial weak contact between RDC and molten slag implying that the contact between carbonaceous matter and slag plays significant roles in the reduction of iron oxide from slag.

  11. Modeling and control of copper loss in smelting slag (United States)

    Tan, Pengfu


    A series of technical improvements have been implemented to address the issue of high copper losses in rotary holding furnace (RHF) slag, which were experienced at the Xstrata Copper Smelter at Mount Isa in 2007 and 2008. The copper losses in smelting slag in the RHF were more than 3% in 2006 and 2007. Thermodynamic models and viscosity models have been applied in the operation of Xstrata Copper Smelter in Australia. The theory of RHF key performance indicators has also been developed to reduce the copper losses in RHF slag. The RHF KPIs Theory has been applied in Mount Isa Copper Smelter. The copper losses in RHF slag dropped from 3.1% in 2007 to 0.76% in April 2009. The average copper loss in RHF slag in 2009 and 2010 was about 0.9%.

  12. Measuring nanowire thermal conductivity at high temperatures (United States)

    Wang, Xiaomeng; Yang, Juekuan; Xiong, Yucheng; Huang, Baoling; Xu, Terry T.; Li, Deyu; Xu, Dongyan


    This work extends the micro-thermal-bridge method for thermal conductivity measurements of nanowires to high temperatures. The thermal-bridge method, based on a microfabricated device with two side-by-side suspended membranes with integrated platinum resistance heaters/thermometers, has been used to determine thermal conductivity of various nanowires/nanotubes/nanoribbons at relatively low temperatures. However, to date, thermal conductivity characterization of nanowires at temperatures above 600 K has seldom been reported presumably due to several technical difficulties including the instability of the microfabricated thermometers, radiation heat loss, and the effect of the background conductance on the measurement. Here we report on our attempt to address the aforementioned challenges and demonstrate thermal conductivity measurement of boron nanoribbons up to 740 K. To eliminate high temperature resistance instability, the device is first annealed at 1023 K for 5 min in an argon atmosphere. Two radiation shields are installed in the measurement chamber to minimize radiation heat loss from the measurement device to the surroundings; and the temperature of the device at each set point is calibrated by an additional thermocouple directly mounted on the chip carrier. The effect of the background conductance is eliminated by adopting a differential measurement scheme. With all these modifications, we successfully measured the thermal conductivity of boron nanoribbons over a wide temperature range from 27 K to 740 K. The measured thermal conductivity increases monotonically with temperature and reaches a plateau of ~2.5 W m‑1 K‑1 at approximately 400 K, with no clear signature of Umklapp scattering observed in the whole measurement temperature range.


    African Journals Online (AJOL)

    van die betekenis watdie Slag van Bloedriviervir die Suid-Afrikaansemilitere geskiedenis inhou, is Bloedrivier een van die slagvelde in die land wat die volledigste gerekonstrueer is. Voetnote. 1. J. J. Oberholster: Die Historiese Monumente van Suid-Afrika, p. 279. 2. H. J. Hofstede: Geschiedenis van den Oranje-Vrijstaat,.

  14. Effects of Design/Operating Parameters and Physical Properties on Slag Thickness and Heat Transfer during Coal Gasification

    Directory of Open Access Journals (Sweden)

    Insoo Ye


    Full Text Available The behaviors of the slag layers formed by the deposition of molten ash onto the wall are important for the operation of entrained coal gasifiers. In this study, the effects of design/operation parameters and slag properties on the slag behaviors were assessed in a commercial coal gasifier using numerical modeling. The parameters influenced the slag behaviors through mechanisms interrelated to the heat transfer, temperature, velocity, and viscosity of the slag layers. The velocity profile of the liquid slag was less sensitive to the variations in the parameters. Therefore, the change in the liquid slag thickness was typically smaller than that of the solid slag. The gas temperature was the most influential factor, because of its dominant effect on the radiative heat transfer to the slag layer. The solid slag thickness exponentially increased with higher gas temperatures. The influence of the ash deposition rate was diminished by the high-velocity region developed near the liquid slag surface. The slag viscosity significantly influenced the solid slag thickness through the corresponding changes in the critical temperature and the temperature gradient (heat flux. For the bottom cone of the gasifier, steeper angles were favorable in reducing the thickness of the slag layers.

  15. Ice melting properties of steel slag asphalt concrete with microwave heating (United States)

    Li, Bin; Sun, Yihan; Liu, Quantao; Fang, Hao; Wu, Shaopeng; Tang, Jin; Ye, Qunshan


    The ice on the surface of asphalt pavement in winter significantly influences the road transportation safety. This paper aims at the improvement of the ice melting efficiency on the surface of asphalt pavement. The steel slag asphalt concrete was prepared and the high ice melting efficiency was achieved with the microwave heating. A series of experiments were conducted to evaluate the ice melting performance of steel slag asphalt concrete, including the heating test, ice melting test, thermal conductivity test and so on. The results indicated that the microwave heating of steel slag concrete can improve the efficiency of deicing, mainly because the heating rates of steel slag asphalt mixture are much better than traditional limestone asphalt mixture. According to different thickness lever of ice, the final temperatures of each sample were very close to each other at the end of melting test. It is believed the thickness of the ice has a limited impact on the ice melting efficiency. According to the heating tests results, the bonding of ice and asphalt concrete is defined failure at the moment when the surface temperature of the ice reached 3 °C.

  16. High Conductive CFRP Sandwich Technologies for Platforms (United States)

    Ihle, Alexander; Hartmann, D.; Wurfl, T.; Reichmann, O.; Liedtke, V.; Tschepe, C.; Berrill, M.


    A general trend in the design of Satellites structures is to use more and more extensively CFRP materials. These materials are lighter, stiffer and have a better dimensional stability than their metallic counterparts. However, the usually used CFRP materials have a low thermal conductivity, which makes the use of these materials difficult if not impossible for all parts that must conduct and distribute heat.For such applications, aluminium skin/core panels are often used for e.g. radiative structure panels. The goal of the study was to design, manufacture and test a CFRP spacecraft sandwich panel structure (based on a shear web supporting dissipative equipments) using high conductive CFRP in order to substitute common aluminium panels.

  17. Highly stretchable electrospun conducting polymer nanofibers (United States)

    Boubée de Gramont, Fanny; Zhang, Shiming; Tomasello, Gaia; Kumar, Prajwal; Sarkissian, Andranik; Cicoira, Fabio


    Biomedical electronics research targets both wearable and biocompatible electronic devices easily adaptable to specific functions. To achieve such goals, stretchable organic electronic materials are some of the most intriguing candidates. Herein, we develop highly stretchable poly-(3,4-ethylenedioxythiphene) (PEDOT) doped with tosylate (PEDOT:Tos) nanofibers. A two-step process involving electrospinning of a carrier polymer (with oxidant) and vapor phase polymerization was used to produce fibers on a polydimethylsiloxane substrate. The fibers can be stretched up to 140% of the initial length maintaining high conductivity.

  18. Hierarchical order of influence of mix variables affecting compressive strength of sustainable concrete containing fly ash, copper slag, silica fume, and fibres. (United States)

    Natarajan, Sakthieswaran; Karuppiah, Ganesan


    Experiments have been conducted to study the effect of addition of fly ash, copper slag, and steel and polypropylene fibres on compressive strength of concrete and to determine the hierarchical order of influence of the mix variables in affecting the strength using cluster analysis experimentally. While fly ash and copper slag are used for partial replacement of cement and fine aggregate, respectively, defined quantities of steel and polypropylene fibres were added to the mixes. It is found from the experimental study that, in general, irrespective of the presence or absence of fibres, (i) for a given copper slag-fine aggregate ratio, increase in fly ash-cement ratio the concrete strength decreases and with the increase in copper slag-sand ratio also the rate of strength decrease and (ii) for a given fly ash-cement ratio, increase in copper slag-fine aggregate ratio increases the strength of the concrete. From the cluster analysis, it is found that the quantities of coarse and fine aggregate present have high influence in affecting the strength. It is also observed that the quantities of fly ash and copper slag used as substitutes have equal "influence" in affecting the strength. Marginal effect of addition of fibres in the compression strength of concrete is also revealed by the cluster analysis.

  19. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material. (United States)

    Phummiphan, Itthikorn; Horpibulsuk, Suksun; Rachan, Runglawan; Arulrajah, Arul; Shen, Shui-Long; Chindaprasirt, Prinya


    Granulated Blast Furnace Slag (GBFS) was used as a replacement material in marginal lateritic soil (LS) while class C Fly Ash (FA) was used as a precursor for the geopolymerization process to develop a low-carbon pavement base material at ambient temperature. Unconfined Compression Strength (UCS) tests were performed to investigate the strength development of geopolymer stabilized LS/GBFS blends. Scanning Electron Microscopy and X-ray Diffraction analysis were undertaken to examine the role of the various influencing factors on UCS development. The influencing factors studied included GBFS content, Na2SiO3:NaOH ratio (NS:NH) and curing time. The 7-day soaked UCS of FA geopolymer stabilized LS/GBFS blends at various NS:NH ratios tested was found to satisfy the specifications of the Thailand national road authorities. The GBFS replacement was found to be insignificant for the improvement of the UCS of FA geopolymer stabilized LS/GBFS blends at low NS:NH ratio of 50:50. Microstructural analysis indicated the coexistence of Calcium Silicate Hydrate (CSH) and Sodium Alumino Silicate Hydrate products in FA geopolymer stabilized LS/GBFS blends. This research enables GBFS, which is traditionally considered as a waste material, to be used as a replacement and partially reactive material in FA geopolymer pavement applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Hydraulic properties of ladle slags

    Directory of Open Access Journals (Sweden)

    J. Vlček


    Full Text Available The article presents results of examining of hydraulic properties of ladle slags formed during production of steel. The studied ladle slags were subjected to different cooling mode from the molten state. Based on the ability of the slag react with the water was assessed their hydraulic activity. The hydraulic properties are caused by the presence of minerals dicalcium silicate, tricalcium aluminate, mayenite, brownmillerite and dicalcium ferite. The emergence of required hydrating phases in the ladle slags is conditioned by a sufficient CaO content and their cooling rate. The contact the slag with water during processing and their ageing has a negative effect. The experiment has shown that the phase transformation of the mineral dicalcium silicate which occurs during cooling of the ladle slags cause their volume instability.

  1. Highly conductive, printable pastes from capillary suspensions (United States)

    Schneider, Monica; Koos, Erin; Willenbacher, Norbert


    We have used the capillary suspension phenomenon to design conductive pastes for printed electronic applications, such as front side metallization of solar cells, without non-volatile, organic additives that often deteriorate electrical properties. Adding a small amount of a second, immiscible fluid to a suspension creates a network of liquid bridges between the particles. This capillary force-controlled microstructure allows for tuning the flow behavior in a wide range. Yield stress and low-shear viscosity can be adjusted such that long-term stability is provided by inhibiting sedimentation, and, even more importantly, narrow line widths and high aspect ratios are accessible. These ternary mixtures, called capillary suspensions, exhibit a strong degree of shear thinning that allows for conventional coating or printing equipment to be used. Finally, the secondary fluid, beneficial for stability and processing of the wet paste, completely evaporates during drying and sintering. Thus, we obtained high purity silver and nickel layers with a conductivity two times greater than could be obtained with state-of-the-art, commercial materials. This revolutionary concept can be easily applied to other systems using inorganic or even organic conductive particles and represents a fundamental paradigm change to the formulation of pastes for printed electronics.

  2. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites (United States)

    Yoonessi, Mitra; Gaier, James R.


    Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

  3. Laser patterning of highly conductive flexible circuits (United States)

    Ji, Seok Young; Muhammed Ajmal, C.; Kim, Taehun; Chang, Won Seok; Baik, Seunghyun


    There has been considerable attention paid to highly conductive flexible adhesive (CFA) materials as electrodes and interconnectors for future flexible electronic devices. However, the patterning technology still needs to be developed to construct micro-scale electrodes and circuits. Here we developed the selective laser sintering technology where the pattering and curing were accomplished simultaneously without making additional masks. The CFA was composed of micro-scale Ag flakes, multiwalled carbon nanotubes decorated with Ag nanoparticles, and a nitrile-butadiene-rubber matrix. The Teflon-coated polyethylene terephthalate film was used as a flexible substrate. The width of lines (50-500 μm) and circuit patterns were controlled by the programmable scanning of a focused laser beam (power = 50 mW, scanning speed = 1 mm s-1). The laser irradiation removed solvent and induced effective coalescence among fillers providing a conductivity as high as 25 012 S cm-1. The conductivity stability was excellent under the ambient air and humid environments. The normalized resistance change of the pattern was smaller than 1.2 at the bending radius of 5 mm. The cyclability and adhesion of the laser-sintered line pattern on the substrate was excellent. A flexible circuit was fabricated sequentially for operating light emitting diodes during the bending motion, demonstrating excellent feasibility for practical applications in flexible electronics.

  4. Microstructural characterisation of chromium slags


    J. Burja; F. Tehovnik; Vode, F.; B. Arh


    In this chromium slags that form during melting of chromium alloyed steels are examined. During melting and oxidation of these steel grades a considerable amount of chromium is lost, and gained back with slag reduction. Laboratory experiments were performed to study the mechanism of chromium oxide reduction by silicon. Slags chemistry and phase composition have a strong effect on the steelmaking process. Phase analysis revealed two types of chromium oxides, calcium chromites and chromite spin...

  5. "En anden slags bog"

    DEFF Research Database (Denmark)

    Wulf-Andersen, Trine Østergaard


    derfor arbejdet undersøgende mod at skabe en involverende forskningsproces og ”en anden slags bog”, der bestræber sig på at repræsentere (i den dobbelte betydning af både at synliggøre og konstituere) deltagerne som subjekter i forskningen såvel som objekter for den. Artiklen fokuserer på poetiske...

  6. Microstructural characterisation of chromium slags

    Directory of Open Access Journals (Sweden)

    J. Burja


    Full Text Available In this chromium slags that form during melting of chromium alloyed steels are examined. During melting and oxidation of these steel grades a considerable amount of chromium is lost, and gained back with slag reduction. Laboratory experiments were performed to study the mechanism of chromium oxide reduction by silicon. Slags chemistry and phase composition have a strong effect on the steelmaking process. Phase analysis revealed two types of chromium oxides, calcium chromites and chromite spinels dependent on chemistry and basicity of the slag.

  7. Synthesis of highly effective absorbents with waste quenching blast furnace slag to remove Methyl Orange from aqueous solution. (United States)

    Gao, Hongyu; Song, Zhenzhen; Zhang, Weijun; Yang, Xiaofang; Wang, Xuan; Wang, Dongsheng


    Water quenching blast furnace slag (WQBFS) is widely produced in the blast furnace iron making process. It is mainly composed of CaO, MgO, Al 2 O 3 , and SiO 2 with low contents of other metal elements such as Fe, Mn, Ti, K and Na. In this study, WQBFS was treated with grinding, hydrochloric acid acidification, filtration, filtrate extraction by alkali liquor and a hydration reaction. Then BFS micropowder (BFSMP), BFS acidified solid (BFSAS) and BFS acid-alkali precipitate (BFSAP) were obtained, which were characterized by X-ray diffraction, scanning electron microscopy, X-ray fluorescence and Brunauer-Emmet-Teller (BET) specific surface area. The decoloration efficiency for Methyl Orange (MO) was used to evaluate the adsorptive ability of the three absorbents. The effects of adsorptive reaction conditions (pH and temperature of solution, reaction time, sorbent dosage and initial concentration) on MO removal were also investigated in detail. The results indicated that BFSAP performed better in MO removal than the other two absorbents. When the pH value of MO solutions was in the range 3.0-13.0, the degradation efficiency of a solution with initial MO concentration of 25mg/L reached 99.97% for a reaction time of 25min at 25°C. The maximum adsorption capacity of BFSAP for MO was 167mg/g. Based on optimized experiments, the results conformed with the Langmuir adsorption isotherm and pseudo-second-order kinetics. Among inorganic anions, SO 4 2- and PO 4 3- had significant inhibitory effects on MO removal in BFSAP treatment due to ion-exchange adsorption. Copyright © 2016. Published by Elsevier B.V.

  8. Highly anisotropic conductivity in organosiloxane liquid crystals (United States)

    Gardiner, D. J.; Coles, H. J.


    In this paper, we present the conductivity and dielectric characterization of three homologous series of smectic A siloxane containing liquid crystals. The materials studied include one monomesogenic series, which consists of a 4-(ω-alkyloxy)-4'-cyanobiphenyl unit terminated by pentamethyldisiloxane, and two bimesogenic series, which consist of twin 4-(ω-alkyloxy)-4'-cyanobiphenyls joined via tetramethyldisiloxane or decamethylpentasiloxane. All of the compounds exhibit wide temperature range enantiotropic smectic A phases; the effect of the siloxane moiety is to suppress nematic morphology even in the short chain homologs. We find that these compounds exhibit a highly anisotropic conductivity: the value perpendicular to the director is to up to 200 times that parallel to the director. For the nonsiloxane analog 4-(ω-octyl)-4'-cyanobiphenyl (8CB), this value is approximately 2. It is also found that the dielectric anisotropy is reduced significantly; a typical value is ˜1 compared to 8.4 for 8CB. We propose that the origin of these unusual properties is in the smectic structure; the microphase separation of the bulky, globular siloxane moieties into liquidlike regions severely inhibits the mobility parallel to the director and across the smectic layers. Further, the inclusion of this unit acts to increase the antiparallel correlations of molecular dipoles in the aromatic and alkyloxy sublayers, reducing the dielectric anisotropy significantly compared to nonsiloxane analogs. The highly anisotropic conductivity suggests that these materials are particularly suitable for application in electro-optic effects which exploit this property, e.g., the bistable electro-optic effect in smectic A liquid crystals.

  9. performance of steel slag performance of steel slag as fine

    African Journals Online (AJOL)


    50% of weight of sand could be replaced with slag to produce structural concrete. Keywords: Keywords: structural concrete, steel slag, fine aggregate, compressive strength and flexural strength. 1. INTRODUCTION. INTRODUCTION. INTRODUCTION. Environmental sustainability has been subject of discourse virtually in all ...

  10. Highly Conducting Graphite Epoxy Composite Demonstrated (United States)

    Gaier, James R.


    Weight savings as high as 80 percent could be achieved if graphite polymer composites could replace aluminum in structures such as electromagnetic interference shielding covers and grounding planes. This could result in significant cost savings, especially for the mobile electronics found in spacecraft, aircraft, automobiles, and hand-held consumer electronics. However, such composites had not yet been fabricated with conductivity sufficient to enable these applications. To address this lack, a partnership of the NASA Lewis Research Center, Manchester College, and Applied Sciences, Inc., fabricated nonmetallic composites with unprecedented electrical conductivity. For these composites, heat-treated, vapor-grown graphite fibers were selected which have a resistivity of about 80 mW-cm, more than 20 times more conductive than typical carbon fibers. These fibers were then intercalated with iodine bromide (IBr). Intercalation is the insertion of guest atoms or molecules between the carbon planes of the graphite fibers. Since the carbon planes are not highly distorted in the process, intercalation has little effect on mechanical and thermal properties. Intercalation does, however, lower the carbon fiber resistivity to less than 10 mW-cm, which is comparable to that of metal fibers. Scaleup of the reaction was required since the initial intercalation experiments would be carried out on 20-mg quantities of fibers, and tens of grams of intercalated fibers would be needed to fabricate even small demonstration composites. The reaction was first optimized through a time and temperature study that yielded fibers with a resistivity of 8.7 2 mW-cm when exposed to IBr vapor at 114 C for 24 hours. Stability studies indicated that the intercalated fibers rapidly lost their conductivity when exposed to temperatures as low as 40 C in air. They were not, however, susceptible to degradation by water vapor in the manner of most graphite intercalation compounds. The 1000-fold scaleup

  11. Effect of Coarse Aggregate and Slag Type on the Mechanical Behavior of High and Normal Weight Concrete Used at Barrage Structure

    Directory of Open Access Journals (Sweden)

    Muhammad Sanaullah


    Full Text Available Present study is an effort to assess the composite effect of limestone aggregate and blast furnace slag on the mechanical characteristics of normal and high weight concrete at various structural units (barrage girders, main weir and block apron of New Khanki Barrage Project, Punjab. Mix designs for different concrete classes falling under the domain of high and normal weight concrete were prepared after aggregate quality testing. On attaining satisfactory results of quality testing nine concrete mixes were designed (three for each class: A1, A and B by absolute volume method (ACI- 211.1. The required compressive strength of normal and high strength was set at 6200, 5200 and 4200 Psi for the concrete types A1, A and B respectively after 28 days (ACI -318. For compressive strength assessment, a total 27 concrete cylinders were casted (9-cylinders for each mix and were water cured. The achieved average UCS of cylinder concrete specimens at 3, 7 and 28 days are 5170, 6338 and 7320 Psi for A1 – type, 3210, 4187 and 5602 Psi for A-type and 2650, 3360 and 4408 Psi for B- type mix. It has been found that all concrete mixes for suggested classes attained target strength at age of 7-days. The coarse aggregate (Margala Hill limestone and fine aggregates (from Lawrancepur /Qibla Bandi quarries used in all concrete mix designs have demonstrated a sound mechanical suitability for high and normal weight concrete.

  12. Use of Al-Killed Ladle Furnace Slag in Si-Killed Steel Process to Reduce Lime Consumption, Improve Slag Fluidity (United States)

    Behera, Narottam; Raddadi, Ahmad; Ahmad, Shahreer; Tewari, Neeraj; Zeghaibi, Othman

    Slag is a by-product formed in most metallurgical process. During the steelmaking process a large amount of slag is produced, which becomes a source of waste, which in many instances is land filled. Such areas filled with waste materials have become a significant source of pollution. Slag recycling is then becoming important in recent years. Recycling can be an efficient option to reduce such waste. Fluorspar (Calcium Fluoride) is generally used to help fluidize the slag; however, Fluorspar has a corrosive effect on the ladle refractory and is environmentally harmful. Alternatively, Calcium Aluminate synthetic slag is very effective in making the slag more fluid, but it is costly. The slag generated in Al-killed treatment at ladle can provide a material with advantages over Calcium aluminate synthetic slags and Fluorspar, by being low-cost, noncorrosive, and less environmentally harmful. Plant trials conducted at Hadeed indicate that Al-killed ladle slags coming from its Flat Product Ladle Furnace process could be used in place of Calcium Fluoride/ Bauxite/Calcium Aluminate fluxes for the production of Si- killed steel grades, thus reducing Lime consumption, reducing waste and improving desulphurization levels.

  13. Highly conducting one-dimensional solids

    CERN Document Server

    Evrard, Roger; Doren, Victor


    Although the problem of a metal in one dimension has long been known to solid-state physicists, it was not until the synthesis of real one-dimensional or quasi-one-dimensional systems that this subject began to attract considerable attention. This has been due in part to the search for high­ temperature superconductivity and the possibility of reaching this goal with quasi-one-dimensional substances. A period of intense activity began in 1973 with the report of a measurement of an apparently divergent conduc­ tivity peak in TfF-TCNQ. Since then a great deal has been learned about quasi-one-dimensional conductors. The emphasis now has shifted from trying to find materials of very high conductivity to the many interesting problems of physics and chemistry involved. But many questions remain open and are still under active investigation. This book gives a review of the experimental as well as theoretical progress made in this field over the last years. All the chapters have been written by scientists who have ...

  14. Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass (United States)

    Chen, Chang-hong; Feng, Ke-qin; Zhou, Yu; Zhou, Hong-ling


    Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature (900-1060°C) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060°C. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength (16.64 MPa) among the investigated samples and a relatively low bulk density (0.83 g/cm3), were attained in the case of the foamed glass-ceramics sintered at 1000°C.

  15. Recovery of metal values from copper slag and reuse of residual secondary slag. (United States)

    Sarfo, Prince; Das, Avimanyu; Wyss, Gary; Young, Courtney


    Resource and environmental factors have become major forces in mining and metallurgy sectors driving research for sustainability purposes. The concept of zero-waste processing has been gaining ground readily. The scant availability of high quality raw materials has forced the researchers to shift their focus to recycling while the exceedingly stringent environmental regulations have forced researchers to explore new frontiers of minimizing/eliminating waste generation. The present work is aimed at addressing both aspects by employing recycling to generate wealth from copper slag and producing utilizable materials at the same time thus restoring the ecosystem. Copper slag was characterized and processed. The pyro-metallurgical processing prospects to generate utilizable materials were arrived at through rigorous thermodynamic analysis. Carbothermal reduction at elevated temperature (near 1440°C) helped recover a majority of the metal values (e.g., Fe, Cu and Mo) into the iron-rich alloy product which can be a feed material for steel making. On the other hand, the non-metallic residue, the secondary slag, can be used in the glass and ceramic industries. Reduction time and temperature and carbon content were shown to be the most important process variables for the reaction which were optimized to identify the most favored operating regime that maximizes the metal recovery and simultaneously maximizes the hardness of the secondary slag and minimizes its density, the two major criteria for the secondary slag product to be utilizable. The flux addition level was shown to have relatively less impact on the process performance if these are maintained at an adequate level. The work established that the copper slag, a waste material, can be successfully processed to generate reusable products through pyrometallurgical processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Decarburization of ferrochrome and high alloy steels with optimized gas and slag phases towards improved Cr retention

    Directory of Open Access Journals (Sweden)

    Wang H.


    Full Text Available Chromium is a high value metal and the retention of the same during the refining of high carbon ferrochrome as well as high alloy steel has significant economic and environmental impacts. The loss of chromium during the decarburization is generally minimized using argon-oxygen mixtures thereby reducing the oxygen partial pressure (PO2 of the oxidant gas. In the current study, experiments were carried out in an induction furnace and CO2 was introduced with the view to partly reduce PO2 and partly as an oxidizer. During these experiments, the decarburization of molten Cr-alloy was conducted using pure O2, pure CO2 or O2+CO2 mixtures. The results demonstrated that the Cr loss can be minimized under CO2 introduction. The kinetic analysis showed that the mass transfer is effective due to the production of 2CO gas molecules from one CO2 molecule during the reaction which will improve the stirring of the bath. Besides, CO2 reacts with carbon in melt is an endothermic reaction, introduction of CO2 could be a cooler during the refining process, hence the temperature could be controlled by controlling the diluting gas amount, in this case, the over heat of bath refractory could be prevented and the lifetime of refractory could be extended.

  17. Current emitted by highly conducting Taylor cones (United States)

    Delamora, J. Fernandez; Loscertales, I. G.


    When a liquid meniscus held at the exit of a metallic capillary tube is charged to a high voltage V, the free surface often takes the form of a cone whose apex emits a steady microjet, and thus injects a certain charge I and liquid volume Q per unit time into the surrounding gas. This work deals with liquids with relatively large conductivities K, for which the jet diameter d(j) is much smaller than the diameter d(n) of the capillary tube. In the limit d(j)/d(n) to O, the structure of the jet (d(j) and I, in particular) becomes independent of electrostatic parameters such as V or the electrode configuration, being governed mostly by the liquid properties and flow rate Q. Furthermore, the measured current is given approximately by I = f(epsilon)(gamma QK/epsilon)(exp 1/2) for a wide variety of liquids and conditions (epsilon, and gamma are, respectively, the dielectric constant of the liquid and the coefficient of interfacial tension, f(epsilon) is shown). A proposed explanation for this behavior is presented.

  18. Steel slag filters to upgrade phosphorus removal in constructed wetlands: two years of field experiments. (United States)

    Barca, Cristian; Troesch, Stéphane; Meyer, Daniel; Drissen, Peter; Andrès, Yves; Chazarenc, Florent


    Electric arc furnace steel slag (EAF-slag) and basic oxygen furnace steel slag (BOF-slag) were used as filter substrates in two horizontal subsurface flow filters (6 m(3) each) designed to remove phosphorus (P) from the effluent of a constructed wetland. The influences of slag composition, void hydraulic retention time (HRTv), temperature, and wastewater quality on treatment performances were studied. Over a period of almost two years of operation, the filter filled with EAF-slag removed 37% of the inlet total P, whereas the filter filled with BOF-slag removed 62% of the inlet total P. P removal occurred predominantly via CaO-slag dissolution followed by Ca phosphate precipitation. P removal efficiencies improved with increasing temperature and HRTv, most probably because this affected the rates of CaO-slag dissolution and Ca phosphate precipitation. It was observed that long HRTv (>3 days) can cause high pH in the effluents (>9) as a result of excessive CaO-slag dissolution. However, at shorter HRTv (1-2 days), pH values were elevated only during the first five weeks and then stabilized below a pH of 9. The kinetics of P removal were investigated employing a first-order equation, and a model for filter design was proposed.

  19. Effect of slag composition on iron nuggets formation from carbon composite pellets

    Directory of Open Access Journals (Sweden)

    Alberto Eloy Anduze Nogueira


    Full Text Available Iron-carbon nuggets can be obtained by high temperature reduction of iron ore by carbonaceous material when both are agglomerated together as a carbon composite pellet. During this process, the stable oxides contained in the materials will form a slag. This work investigates the effect of this slag composition on iron nugget formation. Pellets were prepared with iron ore and two different carbonaceous materials. Through the addition of Portland® cement, silica and alumina the slag composition was varied to adjust the expected liquidus temperature to 1573 and 2273 K. It has been shown that the formation of iron nuggets is favored for slags presenting low liquidus temperature. In order to further investigate this phenomenon, pellets containing iron powder and carbonaceous material, together with previously prepared slags, were also submitted to high temperature, and it has been shown that iron carburization depends on slag composition.

  20. Slag-Based Nanomaterial in the Removal of Hexavalent Chromium (United States)

    Baalamurugan, J.; Ganesh Kumar, V.; Govindaraju, K.; Naveen Prasad, B. S.; Bupesh Raja, V. K.; Padmapriya, R.

    Slag-based nanomaterial is a by-product obtained during steel production and has wide range of components in the form of oxides. In this study, Induction Furnace (IF) steel slag-based application in adsorption of hexavalent chromium is investigated. IF slag has mixture of oxides mainly Fe2O3 and Chromium (VI) a highly toxic pollutant leads to environmental pollution and causes problem to human health mainly, carcinogenetic diseases. Slag-based nanomaterial is characterized using High Resolution Scanning Electron Microscope (HR-SEM) in which the size was around 100nm and X-ray Fluorescence (XRF) spectroscopy. Further inductively coupled plasma mass spectroscopy and Fourier transform infrared spectroscopy were used for adsorption studies. Slag activation using NaOH (alkali activation) to the intent of surface hydroxyl (‑OH) group attachment will be a cost-effective process in the removal of hexavalent chromium. Cr(VI) ions are adsorbed on the surface of alkali activated slag material. The core-shell formation of Fe(II)/Fe(III)/Cr(VI) and the adsorption are investigated in detail in the present study.

  1. Adição de escória de alto forno em argamassas colantes tipo AC-I High oven slag addition in tile adhesive type AC-I

    Directory of Open Access Journals (Sweden)

    J. Rossa Jr.


    Full Text Available Neste estudo foi investigado o uso da adição da escória de forno em argamassa colante tipo ACI, em substituição ao cimento de Portland. Os aspectos físicos e químicos (difração de raios X, fluorescência de raios X, microscopia eletrônica de varredura e análise por dispersão de elétrons de três composições de escória de diferentes partes do Brasil foram estudados, usando a escória de menor reatividade. Os resultados indicaram a potencialidade do seu uso, com resistência de aderência à tração similar às amostras de referência e mais altas do que as recomendações normativas.In this study the use of high oven slag addition in tile adhesives, type AC-I, in place of Portland's cement parts of mass was investigated. The physical and chemical aspects (XRD, XRF, SEM and EDS of three compositions of different parts from Brazil slag were studied, using the less reactivity slag. The results indicated the potentiality of use, with similar adherence strain stress to reference samples and higher than the standard recommendation.

  2. Use of steel slag as a granular material: volume expansion prediction and usability criteria. (United States)

    Wang, George; Wang, Yuhong; Gao, Zhili


    The theoretical equation for predicting volume expansion of steel slag is deduced based on both chemical reaction and physical changes of free lime in steel slag during the hydration process. Laboratory volume expansion testing is conducted to compare the results with the theoretical volume expansion. It is proved that they correlated well. It is furthermore experimentally proved that certain volume expansion of steel slag can be absorbed internally by the void volume in bulk steel slag under external surcharge weight making the apparent volume expansion equal zero. The minimum (lowest) absorbable void volume is approximately 7.5%, which is unrelated to the free lime content. A usability criterion is then developed based on the volume expansion of steel slag (%) and the minimum percentage of the volume that can take the volume expansion of steel slag (%). Eventually the criterion (relationship) is established based on the free lime content, the specific gravity and bulk relative gravity of a specific steel slag sample. The criteria can be used as guidance and specification for the use of steel slag and other expansion-prone nonferrous slags, copper, nickel for instance as a granular material in highway construction. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Effect Of LLDPE Addition On The Reduction Of Feo From EAF Slags

    Directory of Open Access Journals (Sweden)

    James Ransford Dankwah


    Full Text Available Abstract The effect of waste linear low density propylene LLDPE addition on the reduction of FeO-containing slag by metallurgical coke has been investigated through experiments conducted in a laboratory scale horizontal tube furnace. Composite pellets of EAF slag 47.1 FeO with coke LLDPE and blends of cokeLLDPE in four different proportions were rapidly heated at 1520 C under high purity argon gas and the off gas was continuously analysed for CO and CO2 using an online infrared gas analyser IR. The extent of reduction after ten minutes level of carburisation and desulphurization were determined for each carbonaceous reductant. The results show significant improvements in extent of reduction along with improved levels of carburisation and desulphurisation of the reduced metal when coke was blended with LLDPE.

  4. Investigation of Origin of Attached Cu-Ag Droplets to Solid Particles During High-Temperature Slag/Copper/Spinel Interactions (United States)

    Bellemans, Inge; De Wilde, Evelien; Blanpain, Bart; Moelans, Nele; Verbeken, Kim


    This study investigates the origin of mechanically entrained metal droplets in liquid slag due to their interaction with solid spinel particles. Two possible mechanisms were proposed previously: separately formed droplets and spinel particles get attached to each other due to agitation of the slag and metal phases; or the spinel particles form by a chemical reaction together with a new droplet or alongside a droplet that was already present in the system. In this study, an inert tracer element was added to the metallic phase in adapted sessile drop experiments. For this purpose, Cu-Ag alloys, with various Ag-contents, were produced. The results showed that the small entrained metal droplets within the slag droplet contained Ag, but in very low amounts with respect to the amount of Ag in the Cu-Ag alloy. This indicates that the entrained metal droplets are formed due to a sequential combination of the two origins: first, very small metal droplets are dispersed in the slag drop, due to the emulsification process. Then, these metal droplets are nucleation sites for the Cu-spinel reactive formation.

  5. Carbothermic Reduction Reactions at the Metal-Slag Interface in Ti-Bearing Slag from a Blast Furnace (United States)

    Wang, Yao-Zu; Zhang, Jian-Liang; Liu, Zheng-Jian; Du, Cheng-Bo


    Carbothermic reduction reactions at the metal-slag interface and the mechanisms of iron loss during the smelting of vanadium-bearing titanomagnetite in a blast furnace are still not clear as a result of the limited ability to observe the high-temperature zone of a blast furnace. The chemical composition of a Ti-bearing slag was determined by x-ray fluorescence and x-ray diffraction. The interfaces were characterized by scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy. The interfacial chemical reactions were deduced based on the characterization results and on the thermodynamic calculations performed using Factsage 6.4. The results indicated that the forms of iron in the slag were iron droplets wetted by Ti(C x , N1- x ), mechanically separated by iron and iron oxide. The different forms possessed unique characteristics and were formed by different mechanisms. Iron droplets wetted by Ti(C x , N1- x ) were generated through a series of interfacial reactions between TiO2 in the slag and [C] and [N] in the metal. Iron droplets without attached Ti(C x , N1- x ) were mainly located on the edges of pores and were attributed to the reduction of Fe x O in the slag. Insufficient reduction of iron-bearing minerals made it difficult for iron droplets to aggregate and separate from the slag, which created an Fe x O-enriched zone.

  6. Reduction of nitrobenzene by steel convert slag with Fe(II) system: The role of calcium in steel slag

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Fubo [State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai (China); Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA (United States); Xie, Li, E-mail: [State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai (China); Sheng, Jie; Li, Jun; Zhou, Qi; Zhai, Guiming [State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai (China)


    Highlights: Black-Right-Pointing-Pointer Steel convert slag (SCS) adsorbed Fe(II) by ion replacement with Ca(II) in SCS. Black-Right-Pointing-Pointer Adsorbed Fe(II) on SCS were able to reduce nitrobenzene to aniline. Black-Right-Pointing-Pointer A three-step model was proposed for nitrobenzene reduction in SCS-Fe(II) system. - Abstract: Experiments were conducted to examine of nitrobenzene reduction by steel convert slag (SCS) with Fe(II) system. The results showed SCS with Fe(II) was an effective reductant for nitrobenzene at pH 5.5-6.5. Further analysis suggested Fe(II) was adsorbed by SCS through ion replacement with SCS-bound Ca(II). More than 81% of the total Ca(II) in SCS was replaced with dissolved Fe(II), indicating a high adsorption capacity for Fe(II) (more than 5.82 mmol Fe(II)/g SCS). A three step mechanism (replacement process, conversion process and electron transfer process) was proposed for nitrobenzene reduction by SCS with Fe(II) system. The amount of Ca(II) in SCS determined the adsorption capacity for Fe(II) and further determined the reduction capacity of SCS with Fe(II) system.

  7. Effect of Na2CO3 Addition on Carbothermic Reduction of Copper Smelting Slag to Prepare Crude Fe-Cu Alloy (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Yao, Weijie; Xu, Wuqi; Chen, Jinan


    Copper smelting slag is a useful secondary resource containing high iron and copper, which can be utilized to prepare crude Fe-Cu alloy by a direct reduction-magnetic separation process for making weathering-resistant steel. However, it is difficult to recover iron and copper from the slag by direct reduction since the iron mainly occurs in fayalite and the copper is held in copper sulfide. Therefore, enhancement reduction of copper slag is conducted to improve the recovery of copper and iron. Additives such as Na2CO3 has been proven to be capable of reinforcing the reduction of refractory iron ore. In this research, the effect of Na2CO3 on the carbothermic reduction of copper slag was investigated, and phase transformations during reduction and the distributing characteristics of iron and copper in the alloy and non-metallic phases of the reduced pellets were also studied. The results show that the metallization rate of iron and copper was increased with the addition of Na2CO3, leading to higher iron and copper recovery in Fe-Cu alloy powder. X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) results confirm that Na2CO3 is capable of enhancing the reduction of fayaltie, copper silicate and copper sulfide, which agrees well with thermodynamic analysis. Furthermore, the reduction mechanism of copper slag was demonstrated based on systematic experimental observations.


    Energy Technology Data Exchange (ETDEWEB)



    Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. Conventional slag removal methods including soot blowers and water lances have great difficulties in removing slags especially from the down stream areas of utility power plant boilers. The detonation wave technique, based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. A slight increase in the boiler efficiency, due to more effective ash/deposit removal and corresponding reduction in plant maintenance downtime and increased heat transfer efficiency, will save millions of dollars in operational costs. Reductions in toxic emissions will also be accomplished due to reduction in coal usage. Detonation waves have been demonstrated experimentally to have exceptionally high shearing capability, important to the task of removing slag and fouling deposits. The experimental results describe the parametric study of the input parameters in removing the different types of slag and operating condition. The experimental results show that both the single and multi shot detonation waves have high potential in effectively removing slag deposit from boiler heat transfer surfaces. The results obtained are encouraging and satisfactory. A good indication has also been obtained from the agreement with the preliminary computational fluid dynamics analysis that the wave impacts are more effective in removing slag deposits from tube bundles rather than single tube. This report presents results obtained in effectively removing three different types of slag (economizer, reheater, and air-heater) t a distance of up to 20 cm from the exit of the detonation tube. The experimental results show that the softer slags can be removed more easily. Also closer the slag to the exit of

  9. Decontamination of metals by melt refinings/slagging: An annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, R.E. [ed.; Worcester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A.


    As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste storage problems, Westinghouse Idaho Nuclear Company (WINCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small scale melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--500 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development.

  10. Gasification slag rheology and crystalline phase formation in titanium-calcium-alumina-silica-rich glass

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, D.D. [Texaco, Inc., Beacon, NY (United States); Oh, M.S. [Hongik Univ., Seoul (Korea, Republic of)


    The Texaco Gasification Process employs a high temperature and pressure slagging gasifier, in which the viscosity of the slag plays a key role in determining operating conditions. The empirical models available in the literature as well as laboratory testing have concentrated on low titanium feeds. During the gasification of waste material, titanium oxide will become an important element in controlling the ash and slag behavior. Slag viscosity was measured at temperatures in the range of 1150-1500{degrees}C under reducing atmosphere with 0-30% titanium in combination with calcium-alumina-silica rich feeds to gain a better understanding of the slag theology. The slag viscosities with most titanium-rich slags showed the behavior of a crystalline slag with T{sub cv} of 1250{degrees}C. Crystalline phase analyses of the slag samples revealed that titanium oxide crystal will nucleate, but the glass phase is dominated by calcium-titanium-silicate and calcium-alumina-silicate glasses which have low melting points.

  11. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong


    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  12. Overview of Steel Slag Application and Utilization

    Directory of Open Access Journals (Sweden)

    Lim J.W.


    Full Text Available Significant quantities of steel slag are generated as waste material or byproduct every day from steel industries. Slag is produced from different types of furnaces with different operating conditions. Slag contains Ferrous Oxide, Calcium Oxide, Silica etc. Physical and chemical properties of slag are affected by different methods of slag solidification such as air cooled, steam, and injection of additives. Several material characterization methods, such as X-ray Diffraction (XRD, Scanned Electron Microscopy (SEM and Inductive Coupled Plasma (ICP-OES are used to determine elemental composition in the steel slag. Therefore, slags can become one of the promising materials in various applications such as in transportation industry, construction, cement production, waste water and water treatment. The various applications of steel slag indicate that it can be reused and utilized rather than being disposed to the landfill. This paper presents a review of its applications and utilization.

  13. Distribution of P2O5 and Na2O Between Solid Solution and Liquid Phase in the CaO-SiO2-Fe2O3-P2O5-Na2O Slag System with High P2O5 Content (United States)

    Du, Chuan-ming; Gao, Xu; Ueda, Shigeru; Kitamura, Shin-ya


    The phosphorus content in hot metal will increase in future, because iron ores are steadily deteriorating in quality. Na2O addition to slag is considered an effective method for increasing the efficiency of dephosphorization. In addition, Na2O modification also facilitates phosphorus recovery from dephosphorization slag with high P2O5 content by selective leaching. Therefore, it is necessary to investigate the distribution ratios of P2O5 and Na2O between solid solution and liquid phase in the CaO-SiO2-Fe2O3-P2O5-Na2O slag system. A linear relationship was found between the distribution ratio of P2O5 and the Na2O content in slag, and was independent of P2O5 content. When the Na2O content was high, the Na2O content in the solid solution approached saturation and a new 2CaO·SiO2-2CaO·Na2O·P2O5 solid solution formed. The addition of Na2O decreased the P2O5 content in solid solution, while it increased the mass fraction of solid solution in slag. The distribution ratio of P2O5 increased with increase in the Fe2O3 content and basicity of slag. An increase in P2O5 content in slag results in an increase in the activity coefficient of P2O5 both in the liquid phase and in the solid solution.

  14. Modelling and measurement of high switching frequency conducted EMI

    CSIR Research Space (South Africa)

    Grobler, Inus


    Full Text Available High density high switching frequency power converter conducted EMC had been analysed, modelling the noise source and noise path, while providing accurate conducted EMC noise levels comparable to accredited noise measurements up to 100 MHz...

  15. Wettability between molten slag and dolomitic refractory


    Shen, Ping; Zhang, Lifeng; Wang, Yi; Sridhar, Seetharaman; Wang, Qiangqiang


    In the current study, the wettability between molten slag and dolomitic refractory materials used in the ladle during steel refining was investigated. The contact angle between molten slag and dolomitic substrate decreased with increasing temperature. The slag with lower basicity spread on the substrate more easily and penetrated deeper into the substrate. The penetration depth of slag into the refractory increased with the extension of holding time. The CaO in the refractory dissolved into s...



    Cavallotti, P.L.; Mapelli, C.; Memoli, F.; Pustorino, M.


    Over the last few years technologies of the plants dedicated to recycle of ladle slag have been improved. The type of recycling evaluated in the present study mainly consists in the reuse of the ladle slag and refractory, injecting them into the Electric Arc Furnace. The recycling of ladle slag can permit to achieve interesting advantageous results: decreasing the amount of dumped material, the cost of EAF fluxes and improve the slag foaminess.

  17. Decontamination of metals by melt refining/slagging: First year progress report

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, R.E. [ed.; Worcester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A.


    As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult. The problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste storage problems, Westinghouse Idaho Nuclear Company (WINCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technologies for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small scale melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of pilot scale melting demonstrations (100-500 lbs) to be conducted at selected commercial facilities. This program will identify methods that can be used to recycle stainless steel RSM which will be used to fabricate high and low level waste canisters for the Idaho Waste Immobilization Facility. This report summarizes the results of an extensive literature review and the first year`s progress on slag design, small-scale melt refining of surrogate-containing stainless steel (presently only a three month effort), and pilot-scale preparation of surrogate master ingots.

  18. Numerical simulations with the P-Hydroslag model to predict phosphorus removal by steel slag filters. (United States)

    Claveau-Mallet, Dominique; Courcelles, Benoît; Pasquier, Philippe; Comeau, Yves


    The first version of the P-Hydroslag model for numerical simulations of steel slag filters is presented. This model main original feature is the implementation of slag exhaustion behavior, crystal growth and crystal size effect on crystal solubility, and crystal accumulation effect on slag dissolution. The model includes four mineral phases: calcite, monetite, homogeneous hydroxyapatite (constant size and solubility) and heterogeneous hydroxyapatite (increasing size and decreasing solubility). In the proposed model, slag behavior is represented by CaO dissolution kinetic rate and exhaustion equations; while slag dissolution is limited by a diffusion rate through a crystal layer. An experimental test for measurement of exhaustion equations is provided. The model was calibrated with an experimental program made of three phases. Firstly, batch tests with 300 g slag sample in synthetic solutions were conducted for the determination of exhaustion equation. Secondly, a slag filter column test fed with synthetic solution was run for 623 days, divided into 9 cells and sampled at the end of the experiment. Finally, the column was dismantled, sampled and analyzed with XRD, TEM and SEM. Experimental column curves for pH, oPO4, Ca and inorganic carbon were well predicted by the model. Crystal sizes measured by XRD and TEM validated the hypothesis for homogeneous precipitation while SEM observations validated the thin crystal layer hypothesis. A preliminary validation of the model resulted in successful predictions of a steel slag filter longevity fed with real wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.


    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  20. Pyrometallurgical slags as a potential source of selected metals recovery

    Directory of Open Access Journals (Sweden)

    K. Nowińska


    Full Text Available Complex analysis of concentration and form of occurrence such metals as Zn, Pb, Fe and Cu in slags formed during a current zinc production in the Imperial Smelting Process (ISP is a possible basis for development of optimal recovery technology. For this purpose studies of slags from the current production of the Shaft Furnace Unit and of the Lead Refining of the “Miasteczko Śląskie” Zinc Smelting Plant were carried out. The studies results show that slags includes high concentrations of: Zn from 0,064 % to 1,680 %, Pb from 10,56 % to 50,71 %, Fe from 0,015 % to 2,576 %, Cu from 7,48 % to 64,95 %, and change in a broad range. This slags show significant heterogeneity, caused by intermetallic phases (Zn - Pb, Cu - Zn, Cu - Pb formed on the surface thereof. It is so possible that slag can be a potential source of this metals recovery.

  1. Slags in steel making; Kuonat teraeksen valmistuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J.; Paeaetalo, M.; Karhu, P.; Jauhiainen, A.; Alamaeki, P.; Koski-Laine, S.; Ollila, J. [Oulu Univ. (Finland). Dept. of Process Engineering


    At the first step of the project all stages of the steelmaking processes were viewed from the blast furnace to the continuous casting. Slag knowledge of each processes were collected into a guide, which is meant to help both production and research. At the same time the essential problems caused by slags in steelmaking were focused. At the second step the focus of this slag-project were transferred into the desulphurization, converter, ladle and tundish slags. Wide slag knowledge has been divided into smaller parts and applied versatile into the steelmaking process taking into account the metallurgical, economical and qualitative aspects. (orig.) SULA 2 Research Programme; 13 refs.


    This report describes the development of high thermal conductivity electrical embedding compounds utilizing a technique wherein the mold is first...Contained herein, are the pertinent results of a previously reported study which led to the development of three high thermal conductivity compounds...and the further development of several additional compounds with still higher conductivities. (Author)

  3. Superconducting magnetic separation of ground steel slag powder for recovery of resources

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. W.; Kim, J. J.; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, D. W. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of); Choi, J. H. [Dept. of Environmental Engineering, Catholic University of Pusan, Pusan (Korea, Republic of)


    Steel slag has been considered as an industrial waste. A huge amount of slag is produced as a byproduct and the steel slag usually has been dumped in a landfill site. However the steel slag contains valuable resources such as iron, copper, manganese, and magnesium. Superconducting magnetic separation has been applied on recovery of the valuable resources from the steel slag and this process also has intended to reduce the waste to be dumped. Cryo-cooled Nb-Ti superconducting magnet with 100 mm bore and 600 mm of height was used as the magnetic separator. The separating efficiency was evaluated in the function of magnetic field. A steel slag was ground and analyzed for the composition. Iron containing minerals were successfully concentrated from less iron containing portion. The separation efficiency was highly dependent on the particle size giving higher separating efficiency with finer particle. The magnetic field also effects on the separation ratio. Current study showed that an appropriate grinding of slag and magnetic separation lead to the recovery of metal resources from steel slag waste rather than dumping all of the volume.

  4. Treatment of metallurgical wastes : recovery of metal values from smelter slags by pressure oxidative leaching

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Perederiy, I.; Papangelakis, V.G. [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry


    Vast quantities of slag are produced and dumped as waste by-products during the production of base metals by smelting operations. These slags contain large amounts of valuable metals which lead to a decrease in metal yield and, combined with the entrapped sulphur, pose a danger to the environment. The dissolution of fayalite is important for the selective recovery of valuable metals and the cleanup of slags in high pressure oxidative leaching. The nature of base metals and iron in solidified slag must be investigated in order to understand the mechanism of the process. This paper discussed the application of powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) for the characterization of a smelter slag microstructure. The study used leaching tests with the same smelter slag to measure and monitor the results of leaching, including metal extraction levels, the extent of iron dissolution as well as impurity contents. The paper provided information on the experiment with particular reference to slag leaching, chemical analysis, and characterization. It was concluded that slag consists of several solid phases with base metal sulfide and oxide droplets entrapped in the fayalite matrix or silica regions. Therefore, nickel, copper, cobalt, and zinc need to be exposed either chemically or mechanically to promote their recovery. 21 refs., 4 tabs., 5 figs.

  5. Physico-chemical characterization of steel slag. Study of its behavior under simulated environmental conditions. (United States)

    Navarro, Carla; Díaz, Mario; Villa-García, María A


    The chemical and mineralogical composition of steel slag produced in two ArcelorMittal steel plants located in the North of Spain, as well as the study of the influence of simulated environmental conditions on the properties of the slag stored in disposal areas, was carried out by elemental chemical analysis, XRF, X-ray diffraction, thermal analysis, and scanning electron microscopy with EDS analyzer. Spectroscopic characterization of the slag was also performed by using FTIR spectroscopy. Due to the potential uses of the slag as low cost adsorbent for water treatment and pollutants removal, its detailed textural characterization was carried out by nitrogen adsorption-desorption at 77 K and mercury intrusion porosimetry. The results show that the slag is a crystalline heterogeneous material whose main components are iron oxides, calcium (magnesium) compounds (hydroxide, oxide, silicates, and carbonate), elemental iron, and quartz. The slags are porous materials with specific surface area of 11 m(2)g(-1), containing both mesopores and macropores. Slag exposure to simulated environmental conditions lead to the formation of carbonate phases. Carbonation reduces the leaching of alkaline earth elements as well as the release of the harmful trace elements Cr (VI) and V. Steel slags with high contents of portlandite and calcium silicates are potential raw materials for CO(2) long-term storage.

  6. Comparison of Ferrous Calcium Silicate Slag and Calcium Ferrite Slag Interactions with Magnesia-Chrome Refractories (United States)

    Kaur, R. R.; Swinbourne, D. R.; Wadsley, M. W.; Nexhip, C.


    The cost of maintaining and eventually replacing refractories as a result of slag attack is a significant cost component in the copper industry. Converting matte to blister copper takes place in reactors lined with direct-bonded magnesia-chrome refractories, and several continuous converting operations use calcium ferrite slag. Unfortunately, the low viscosity of calcium ferrite slag makes it aggressive toward the refractories. Ferrous calcium silicate (FCS) slag has been proposed as a replacement; however, the effect of this slag on magnesia-chrome refractories has not been studied. In this work, the interactions between FCS slag and magnesia-chrome refractory at 1573 K (1300 °C) with an oxygen partial pressure of 10-6 atm were studied and compared with that experienced with calcium ferrite slag under the same conditions. Both slags penetrated the pores in the refractory and caused compositional change in the chromite spinel intergranular bonding phase through cation interdiffusion, which resulted in cracking and debonding of periclase grains. It was observed that the refractory was penetrated much more deeply by calcium ferrite slag than FCS slag because of the higher surface tension and lower viscosity of calcium ferrite slag. As a result, the refractory was attacked less by FCS slag than it was by calcium ferrite slag. It is concluded that the use of FCS slag in continuous copper converting is likely to extend refractory life.

  7. A Review of Granulation Process for Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Yu Pengfei


    Full Text Available Molten slags of blast furnace is a second resources with great value of 1600~1 800 MJ sensible heat per ton. At present, water-quenching process plays a leading role in recovering waste heat of the molten slags. However, this method not only cost lots of water, but also recover little sensible heat and can pollute the surrounding environment. Dry granulation process, as an environmentally friendly method with high-efficiency heat recovery, have attracted widespread attentions. In this paper, the water quenching and dry granulation processes were discussed in detail. After a thorough comparative analysis of various treatment technologies, it can be concluded that centrifugal granulation affiliated with dry granulation is the optimum process, with smaller slag particle size (about 2mm, more glassy phase and higher recovery rate.

  8. Precipitation of metallic chromium during rapid cooling of Cr2O3 slags

    Directory of Open Access Journals (Sweden)

    J. Burja


    Full Text Available The slag systems of CaO-SiO2- Cr2O3 and Al2O3-CaO-MgO-SiO2- Cr2O3 were analyzed. These slag systems occur in the production of stainless steel and are important from the process metallurgy point of view. Synthetic slag samples with different chromium oxide content were prepared and melted. The melted slag samples where then rapidly cooled on large steel plates, so that the high temperature microstructure was preserved. The samples were analyzed by scanning electron microscopy (SEM and X-ray diffraction (XRD. The precipitation of different chromium oxide phases was studied, but most importantly the precipitation of metallic chromium was observed. These findings help us interpret industrial slag samples.

  9. Enhancing The Extremely High Thermal Conduction of Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Xiuqiang eLi


    Full Text Available Graphene and Graphene nanoribbons (GNRs are found to have superior high thermal conductivity favorable for high-performance heat dissipation. In this letter, by using molecular dynamics simulations, we show that constructing specific structure can further enhance high thermal conduction of GNRs. By introducing a small gap at the center, the average heat flux (thermal conductivity can be enhanced by up to 23%, the corresponding increase in total heat current is 16%. This unusual thermal conduction enhancement is achieved by an intriguing physical mechanism of suppress phonon-phonon scattering. Our findings uncover new mechanism to increase thermal conduction of GNRs.

  10. New Slag for Nickel Matte Smelting Process and Subsequent Fe Extraction (United States)

    Zhao, Junxue; Zhao, Zhongyu; Cui, Yaru; Shi, Ruimeng; Tang, Wendan; Li, Xiaoming; Shang, Nan


    Large quantities of residual slag with high Fe content are left behind in pyrometallurgical nickel processing. How to separate and recover iron from the high fayalite residue is still a problem because iron mainly exists as iron-magnesium silicate in slag. This article suggests that the slag for nickel smelting is adjusted by increasing the amount of lime, partly instead of quartz, to form liable reduction compounds for subsequent Fe extraction. Based on the thermodynamic analysis and phase diagram of the FeO-SiO2-CaO-MgO slag system, the new slag composition was chosen, the suitable melting point of relevant slags was measured, and the phase change was observed. The new slag with a composition of 7 to 9 pct MgO, 10 to 15 pct CaO and 1.5 to 1.8 Fe/SiO2 was found to work well for nickel matte smelting. With the increase of CaO and decrease of SiO2 content in slag, Ca(Fe, Mg)Si2O6 and Mg(Ca)Fe2O4 are the main existing phases instead of (Fe, Mg)2SiO4 in the residual smelting slag. More than 50 pct of Fe-containing phases are in the form of MgFe2O4 when 15 pct CaO is added, which is what we want because the MgFe2O4 is much better for magnetic separation and reduction than the original (Fe, Mg)2SiO4. In this way, Fe can be much more easily extracted from residual slag and have multipurpose benefits.

  11. Effect of Slag Chemistry on the Desulfurization Kinetics in Secondary Refining Processes (United States)

    Kang, Jin Gyu; Shin, Jae Hong; Chung, Yongsug; Park, Joo Hyun


    Desulfurization behavior was investigated based on a wide slag composition and working temperature range. Moreover, the rate-controlling step (RCS) for desulfurization with regard to the ladle-refining conditions and the transition of the RCS by changing the slag composition was systematically discussed. The desulfurization ratio reached an equilibrium value within approximately 15 minutes irrespective of the CaO/Al2O3 (=C/A = 1.3 to 1.9) and CaO/SiO2 (=C/S = 3.8 to 6.3) ratios. However, the desulfurization behavior of less basic slags (C/A = 1.1 or C/S = 1.9) exhibited a relatively sluggish [S]-decreasing rate as a function of time. The equilibrium S partition ratio increased with an increase in slag basicity (C/A and C/S ratio), not only due to an increase in sulfide capacity but also due to a decrease in oxygen activity in the molten steel. There was a good correlation between the calculated and measured S partition ratios at various slag compositions. However, the measured S partition ratio increased by adding 5 pct CaF2, followed by a constant value. Multiphase slag exhibited a relatively slow desulfurization rate compared to that of fully liquid slag, possibly due to a decrease in the effective liquid slag volume, interfacial reaction area, and a relatively slow slag initial melting rate due to a high melting point. The activation energy of the desulfurization process was estimated to be 58.7 kJ/mol, from which it was proposed that the desulfurization reaction of molten steel via CaO-Al2O3-SiO2-MgO-CaF2 ladle slag was generally controlled by the mass transfer of sulfur in the metal phase. However, there was a transitional period associated with the rate-controlling mechanism due to a change in the physicochemical properties of the slag. For slag with a viscosity greater than about 1.1 dPa·s and an equilibrium S partition ratio lower than about 400, the overall mass-transfer coefficient was affected by the slag properties. Hence, it was theoretically and

  12. The effect of slag addition on strength development of Class C fly ash geopolymer concrete at normal temperature (United States)

    Wardhono, Arie; Law, David W.; Sutikno, Dani, Hasan


    This paper presents the effect of slag addition on strength development and workability of fly ash/slag based geopolymer (FASLG) concrete cured at normal temperature. Class C fly ash with high ferrite (Fe) content was used as the primary material. The proportions of fly ash (FA) to slag (SL) are: 1 FA : 0 SL, 0.9 FA : 0.1 SL, 0.7 FA : 0.3 SL, and 0.5 FA : 0.5 SL. The workability and strength properties were determined by slump, vikat, and compressive strength tests. The result shows that the highest compressive strength was achieved by FASLG-3 concrete with 30% slag addition and exhibited a comparable strength to that normal concrete at 28 days. The 30% slag addition also improve the workability and increase the setting time of FASLG concrete specimens. It can be concluded that the slag inclusion on fly ash will improve the performance of geopolymer concrete at normal temperature.

  13. Extremely High Thermal Conductivity of Graphene: Experimental Study


    Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N.


    We report on the first measurement of the thermal conductivity of a suspended single layer graphene. The measurements were performed using a non-contact optical technique. The near room-temperature values of the thermal conductivity in the range ~ 4840 to 5300 W/mK were extracted for a single-layer graphene. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction.

  14. Heat conductivity of high-temperature thermal insulators (United States)

    Kharlamov, A. G.

    The book deals essentially with the mechanisms of heat transfer by conduction, convection, and thermal radiation in absorbing and transmitting media. Particular attention is given to materials for gas-cooled reactor systems, the temperature dependent conductivities of high-temperature insulations in vacuum, and the thermal conductivities of MgO, Al2O3, ZrO2, and other powders at temperatures up to 2000 C. The thermal conductivity of pyrolitic graphite and graphite foam are studied.

  15. Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets

    Energy Technology Data Exchange (ETDEWEB)



    This factsheet describes a project that developed a new, continuous manufacturing process to make high molecular weight, high thermal conductivity polyethylene fibers and sheets to replace metals and ceramics in heat transfer applications.

  16. Application of PCA and SIMCA statistical analysis of FT-IR spectra for the classification and identification of different slag types with environmental origin. (United States)

    Stumpe, B; Engel, T; Steinweg, B; Marschner, B


    In the past, different slag materials were often used for landscaping and construction purposes or simply dumped. Nowadays German environmental laws strictly control the use of slags, but there is still a remaining part of 35% which is uncontrolled dumped in landfills. Since some slags have high heavy metal contents and different slag types have typical chemical and physical properties that will influence the risk potential and other characteristics of the deposits, an identification of the slag types is needed. We developed a FT-IR-based statistical method to identify different slags classes. Slags samples were collected at different sites throughout various cities within the industrial Ruhr area. Then, spectra of 35 samples from four different slags classes, ladle furnace (LF), blast furnace (BF), oxygen furnace steel (OF), and zinc furnace slags (ZF), were determined in the mid-infrared region (4000-400 cm(-1)). The spectra data sets were subject to statistical classification methods for the separation of separate spectral data of different slag classes. Principal component analysis (PCA) models for each slag class were developed and further used for soft independent modeling of class analogy (SIMCA). Precise classification of slag samples into four different slag classes were achieved using two different SIMCA models stepwise. At first, SIMCA 1 was used for classification of ZF as well as OF slags over the total spectral range. If no correct classification was found, then the spectrum was analyzed with SIMCA 2 at reduced wavenumbers for the classification of LF as well as BF spectra. As a result, we provide a time- and cost-efficient method based on FT-IR spectroscopy for processing and identifying large numbers of environmental slag samples.

  17. Chloride ingress of carbonated blast furnace slag cement mortars

    NARCIS (Netherlands)

    Holthuizen, P.E.; Çopuroglu, O.; Polder, R.B.


    In the Netherlands civil engineering structures, such as overpasses, bridges and tunnels are generally built using blast furnace slag cement (BFSC, CEM III/B) concrete, because of its high resistance against chloride penetration. Although the Dutch experience regarding durability performance of BFSC

  18. Some Insights to the Reuse of Dredged Marine Soils by Admixing with Activated Steel Slag

    Directory of Open Access Journals (Sweden)

    Chee-Ming Chan


    Full Text Available Regular dredging is necessary for the development of coastal regions and the maintenance of shipping channels. The dredging process dislodges sediments from the seabed, and the removed materials, termed dredged marine soils, are generally considered a geowaste for dumping. However, disposal of the dredged soils offshores can lead to severe and irreversible impact on the marine ecosystem, while disposal on land often incurs exorbitant costs with no guarantee of zero-contamination. It is therefore desirable to reuse the material, and one option is solidification with another industrial waste, that is, steel slag. This paper describes the exploratory work of admixing dredged marine soil with activated steel slag for improvement of the mechanical properties. An optimum activation concentration of NaOH was introduced to the soil-slag mixture for uniform blending. Specimens were prepared at different mix ratios then left to cure for up to 4 weeks. The unconfined compressive strength test was conducted to monitor the changes in strength at predetermined intervals. It was found that the strength does not necessarily increase with higher steel slag content, indicating an optimum slag content required for the maximum solidification effect to take place. Also, regardless of the slag content, longer curing time produces greater strength gain. In conclusion, steel slag addition to dredged sediments can effectively strengthen the originally weak soil structure by both the “cementation” and “filler” effects, though the combined effects were not distinguished in the present study.

  19. Nanostructure design for drastic reduction of thermal conductivity while preserving high electrical conductivity. (United States)

    Nakamura, Yoshiaki


    The design and fabrication of nanostructured materials to control both thermal and electrical properties are demonstrated for high-performance thermoelectric conversion. We have focused on silicon (Si) because it is an environmentally friendly and ubiquitous element. High bulk thermal conductivity of Si limits its potential as a thermoelectric material. The thermal conductivity of Si has been reduced by introducing grains, or wires, yet a further reduction is required while retaining a high electrical conductivity. We have designed two different nanostructures for this purpose. One structure is connected Si nanodots (NDs) with the same crystal orientation. The phonons scattering at the interfaces of these NDs occurred and it depended on the ND size. As a result of phonon scattering, the thermal conductivity of this nanostructured material was below/close to the amorphous limit. The other structure is Si films containing epitaxially grown Ge NDs. The Si layer imparted high electrical conductivity, while the Ge NDs served as phonon scattering bodies reducing thermal conductivity drastically. This work gives a methodology for the independent control of electron and phonon transport using nanostructured materials. This can bring the realization of thermoelectric Si-based materials that are compatible with large scale integrated circuit processing technologies.

  20. Improving electrical conductivity in polycarbonate nanocomposites using highly conductive PEDOT/PSS coated MWCNTs

    KAUST Repository

    Zhou, Jian


    We describe a strategy to design highly electrically conductive polycarbonate nanocomposites by using multiwalled carbon nanotubes (MWCNTs) coated with a thin layer of poly(3,4-ethylenedioxythiophene)/ poly(styrenesulfonate), a conductive polymer. We found that this coating method improves the electrical properties of the nanocomposites in two ways. First, the coating becomes the main electrical conductive path. Second, the coating promotes the formation of a percolation network at a low filler concentration (0.3 wt %). To tailor the electrical properties of the conductive polymer coating, we used a polar solvent ethylene glycol, and we can tune the final properties of the nanocomposite by controlling the concentrations of the elementary constituents or the intrinsic properties of the conductive polymer coating. This very flexible technique allows for tailoring the properties of the final product. © 2013 American Chemical Society.

  1. Effect of blast furnace slag on self-healing of microcracks in cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haoliang, E-mail: [Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology (Netherlands); Ye, Guang [Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology (Netherlands); Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University (Belgium); Damidot, Denis [Université Lille Nord de France (France); EM Douai, LGCgE-MPE-GCE, Douai (France)


    The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH)₂ solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO₄⁻² ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling, when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation.

  2. Characteristics and propierties of oil-well cements additioned with blast furnace slag


    Sánchez, R.; Palacios, M.; Puertas, F.


    The present paper addresses the alkali activation of Portland cements containing blast furnace slag (20 and 30% of the cement by weight) with a view to the possible use of these materials in oil well construction. The hydration studies conducted showed that in cement/slag blends, the sodium silicate activating solution partially inhibited the dissolution of the silicate phases in the Portland cement, retarding cement hydration and reducing the precipitation of reaction products. D...

  3. Effect of different curing methods on the compressive strength development of pulverized copper slag concrete


    Daniel Mensah Boakye; Herbert Chidozie Uzoegbo; Nonhlanhla Mojagotlhe; Moeti Malemona


    The results of laboratory studies conducted to evaluate the effects of different curing conditions on the compressive strength development of concrete made with pulverized copper slag as partial replacement for ordinary Portland cement (OPC) is presented. Concrete cube specimens were made with copper slag replacing cement in the following proportions; 2.5, 5, 10 and 15% compared to the control (0%) specimen under normal laboratory conditions and cured in three different conditions, namely; wa...

  4. Remediation of chromium-slag leakage with electricity cogeneration via a urea-Cr(VI) cell


    Binbin Yu; Huimin Zhang; Wei Xu; Gang Li; Zucheng Wu


    Chromium pollution has been historically widespread throughout the world. Most available remediation technologies often require energy consumption. This study is aimed to develop electrochemical remediation for Cr(VI) in chromium-slag leakage with self-generated electricity. Dynamic leaching experiments of chromium-slag samples were conducted to survey the release and leaching behavior of Cr(VI). Based on previous work, a unique urea-Cr(VI) was designed, in which urea was employed as the fuel...

  5. Intensification of the electro slag process exothermic mixtures (fluxеs)


    ВЛАСОВ А.Ф.; Макаренко, Н. О.; Чигарьов, Валерій Васильович


    It is established that an effective way to improve performance is to use the electro slag processes exothermic mixture (mechanical mixture scaling of aluminum powder and а standard flux) or flux exothermic (mechanical scaling mixtures, alloys, aluminum powder and a flux standard) in amounts sufficient for the exothermal reaction. Experimentally is defined the presence of the electrically conductive layer exothermic flux, allowing to carry out the electro slag process mono, bifilar or three-ph...

  6. Heavily doped silicon electrode for dielectrophoresis in high conductivity media (United States)

    Zhu, Xiongfeng; Tung, Kuan-Wen; Chiou, Pei-Yu


    A hemispherically shaped, heavily doped (N++) silicon electrode is proposed to overcome the challenges of dielectrophoretic (DEP) manipulation using a conventional metal electrode operating in high conductivity media. An N++ electrode decouples the strong electric field region from the electrode interface and provides a large interface capacitance to prevent surface charging in high conductivity media, thereby effectively suppressing electrochemical reactions. Compared to a conventional metal electrode, an N++ electrode can provide 3 times higher threshold voltage and a corresponding 9-fold enhancement of maximum DEP force in 1× phosphate-buffered saline buffer with an electrical conductivity of 1 S/m. Furthermore, an N++ silicon electrode has excellent thermal conductivity and low electrical impedance, ideal for powering massively parallel DEP manipulation in high conductivity media across a large area.

  7. High conductivity Be-Cu alloys for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lilley, E.A. [NGK Metals Corp., Reading, PA (United States); Adachi, Takao; Ishibashi, Yoshiki [NGK Insulators, Ltd., Aichi-ken (Japan)


    The optimum material has not yet been identified. This will result in heat from plasma to the first wall and divertor. That is, because of cracks and melting by thermal power and shock. Today, it is considered to be some kinds of copper, alloys, however, for using, it must have high conductivity. And it is also needed another property, for example, high strength and so on. We have developed some new beryllium copper alloys with high conductivity, high strength, and high endurance. Therefore, we are introducing these new alloys as suitable materials for the heat sink in fusion reactors.

  8. Ablation characteristics and reaction mechanism of insulation materials under slag deposition condition (United States)

    Guan, Yiwen; Li, Jiang; Liu, Yang


    Current understanding of the physical and chemical processes involved in the ablation of insulation materials by highly aluminized solid propellants is limited. The study on the heat transfer and ablation principle of ethylene propylene diene monomer (EPDM) materials under slag deposition condition is essential for future design or modification of large solid rocket motors (SRMs) for launch application. In this paper, the alumina liquid flow pattern and the deposition principle in full-scale SRM engines are discussed. The interaction mechanism between the alumina droplets and the wall are analyzed. Then, an experimental method was developed to simulate the insulation material ablation under slag deposition condition. Experimental study was conducted based on a laboratory-scale device. Meanwhile, from the analysis of the cross-sectional morphology and chemical composition of the charring layer after ablation, the reaction mechanism of the charring layer under deposition condition was discussed, and the main reaction equation was derived. The numerical simulation and experimental results show the following. (i) The alumina droplet flow in the deposition section of the laboratory-scale device is similar to that of a full-scale SRM. (ii) The charring layer of the EPDM insulator displays a porous tight/loose structure under high-temperature slag deposition condition. (iii) A seven-step carbothermal reduction in the alumina is derived and established under high-pressure and high-temperature environment in the SRM combustion chamber. (iv) The analysis using thermodynamic software indicates that the reaction of the alumina and charring layer initially forms Al4C3 during the operation. Then, Al element and Al2OC compound are subsequently produced with the reduction in the release of gas CO as well with continuous environmental heating.

  9. Development of high-thermal-conductivity silicon nitride ceramics

    Directory of Open Access Journals (Sweden)

    You Zhou


    Full Text Available Silicon nitride (Si3N4 with high thermal conductivity has emerged as one of the most promising substrate materials for the next-generation power devices. This paper gives an overview on recent developments in preparing high-thermal-conductivity Si3N4 by a sintering of reaction-bonded silicon nitride (SRBSN method. Due to the reduction of lattice oxygen content, the SRBSN ceramics could attain substantially higher thermal conductivities than the Si3N4 ceramics prepared by the conventional gas-pressure sintering of silicon nitride (SSN method. Thermal conductivity could further be improved through increasing the β/α phase ratio during nitridation and enhancing grain growth during post-sintering. Studies on fracture resistance behaviors of the SRBSN ceramics revealed that they possessed high fracture toughness and exhibited obvious R-curve behaviors. Using the SRBSN method, a Si3N4 with a record-high thermal conductivity of 177 Wm−1K−1 and a fracture toughness of 11.2 MPa m1/2 was developed. Studies on the influences of two typical metallic impurity elements, Fe and Al, on thermal conductivities of the SRBSN ceramics revealed that the tolerable content limits for the two impurities were different. While 1 wt% of impurity Fe hardly degraded thermal conductivity, only 0.01 wt% of Al caused large decrease in thermal conductivity.

  10. Ecotoxicity of Concretes with Granulated Slag from Gray Iron Pilot Production as Filler

    Directory of Open Access Journals (Sweden)

    Helena Hybská


    Full Text Available This paper focuses on research concerning the ecotoxicological properties of granulated slag from the pilot production of gray iron with red mud addition and concrete composites with the application of this slag. Red mud is a hazardous waste generated in the production of aluminium oxide. Negative ecotoxicological tests are, therefore, one of the basic prerequisites for the ability to use granulated slag from gray iron pilot production. Granulated slag and concrete composite samples with various ratios of granulated slag have been subject to ecotoxicity tests: determining root growth inhibition in the highly-cultivated plant Sinapis alba, and determining acute toxicity in Daphnia magna. The results of ecotoxicological testing of granulated slag from gray iron standard production and gray iron pilot production with the additive were, according to the standard (STN 83 8303, negative. Additionally, the results of ecotoxicological tests of concrete composites were negative, with the exception of a 50% substitution of fine aggregate with slag from gray iron pilot production.

  11. Steel desulphurization with synthetic slag

    Directory of Open Access Journals (Sweden)

    Heput, T.


    Full Text Available Generally speaking, sulphur is considered a harmful element for steel quality, reason why all the technological steps are being taken in order to eliminate it from the metal bath. This paper deals with the influence of the chemical composition, on the slag quantity and of the bath stirring condition upon the desulphurization process in the casting ladle by treatment with synthetic slag. The experiments were made at an open-hearth plant with the steel tapping in two ladles (the desulphurization was made with synthetic slag at one ladle while the other one was considered standard and at the electric steel plant and for the synthetic slag formation a mix was used, made, according to several receipts, of: lime (50-75%, fluorine (0-17%, bauxite (0-32% and aluminous slag (8-22%. The data were processed in the calculation programs EXCEL and MATLAB, which resulted in a series of correlations between the desulphurization degree and the chemical composition of the slag, respectively the slag quantity both for the charges bubbled with Argon and the unbubbled ones.

    En general, el azufre es considerado un elemento nocivo para la calidad del acero y, por eso, en la práctica, se toman todas las medidas de orden tecnológico para su eliminación del baño metálico. En este trabajo se analiza la influencia de la composición química, de la cantidad de escoria y del estado de agitación del baño sobre el proceso de desulfuración en la cuchara para fundir por tratamiento con escoria sintética. Los experimentos se han realizado en una acería evacuando el acero en dos ollas (en una cuchara se efectuó la desulfuración con escoria sintética y a la otra se consideró como patrón y en un acería eléctrica y para la formación de la escoria sintética se utilizó una mezcla producida según muchas recetas, formada por: cal (50-75%, fluorina (0-17%, bauxita (0-32% y escoria aluminosa (8-22%. Los datos han sido procesados en los programas de c

  12. Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. (United States)

    Ahmedzade, Perviz; Sengoz, Burak


    This paper presents the influences of the utilization of steel slag as a coarse aggregate on the properties of hot mix asphalt. Four different asphalt mixtures containing two types of asphalt cement (AC-5; AC-10) and coarse aggregate (limestone; steel slag) were used to prepare Marshall specimens and to determine optimum bitumen content. Mechanical characteristics of all mixtures were evaluated by Marshall stability, indirect tensile stiffness modulus, creep stiffness, and indirect tensile strength tests. The electrical sensitivity of the specimens were also investigated in accordance with ASTM D257-91. It was observed that steel slag used as a coarse aggregate improved the mechanical properties of asphalt mixtures. Moreover, volume resistivity values demonstrated that the electrical conductivity of steel slag mixtures were better than that of limestone mixtures.

  13. Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia

    Energy Technology Data Exchange (ETDEWEB)

    Ettler, Vojtech [Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University, Albertov 6, 128 43 Prague 2 (Czech Republic)], E-mail:; Johan, Zdenek [Bureau des Recherches Geologiques et Minieres (BRGM), av. Claude Guillemin, 45060 Orleans, cedex 2 (France); Kribek, Bohdan [Czech Geological Survey, Geologicka 6, 152 00 Prague 5 (Czech Republic); Sebek, Ondrej [Laboratories of the Geological Institutes, Charles University, Albertov 6, 128 43 Prague 2 (Czech Republic); Mihaljevic, Martin [Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University, Albertov 6, 128 43 Prague 2 (Czech Republic)


    Three types of smelting slags originating from historically different smelting technologies in the Tsumeb area (Namibia) were studied: (i) slags from processing of carbonate/oxide ore in a Cu-Pb smelter (1907-1948), (ii) slags from Cu and Pb smelting of sulphide ores (1963-1970) and (iii) granulated Cu smelting slags (1980-2000). Bulk chemical analyses of slags were combined with detailed mineralogical investigation using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS) and electron microprobe (EPMA). The slags are significantly enriched in metals and metalloids: Pb (0.97-18.4 wt.%), Cu (0.49-12.2 wt.%), Zn (2.82-12.09 wt.%), Cd (12-6940 mg/kg), As (930-75,870 mg/kg) and Sb (67-2175 mg/kg). Slags from the oldest technology are composed of primary Ca- and Pb-bearing feldspars, spinels, complex Cu-Fe and Cu-Cr oxides, delafossite-mcconnellite phases and Ca-Pb arsenates. The presence of arsenates indicates that these slags underwent long-term alteration. More recent slags are composed of high-temperature phases: Ca-Fe alumosilicates (olivine, melilite), Pb- and Zn-rich glass, spinel oxides and small sulphide/metallic inclusions embedded in glass. XRD and SEM/EDS were used to study secondary alteration products developed on the surface of slags exposed for decades to weathering on the dumps. Highly soluble complex Cu-Pb-(Ca) arsenates (bayldonite, lammerite, olivenite, lavendulan) associated with litharge and hydrocerussite were detected. To determine the mineralogical and geochemical parameters governing the release of inorganic contaminants from slags, two standardized short-term batch leaching tests (European norm EN 12457 and USEPA TCLP), coupled with speciation-solubility modelling using PHREEQC-2 were performed. Arsenic in the leachate exceeded the EU regulatory limit for hazardous waste materials (2.5 mg/L). The toxicity limits defined by USEPA for the TCLP test were exceeded for Cd, Pb and As. The PHREEQC-2 calculation predicted that

  14. Impact of steel slag on the ammonium adsorption by zeolite and a new configuration of zeolite-steel slag substrate for constructed wetlands. (United States)

    Shi, Pengbo; Jiang, Yingbo; Zhu, Hongtao; Sun, Dezhi


    The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied in this paper. Modeling results of Ca2+ and OH- release from slag indicated that pseudo-second-order reaction had a better fitness than pseudo-first-order reaction. Changing pH value from 7 to 12 resulted in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak adsorption capacity at pH 7. High Ca2+ concentration in solution also inhibited the adsorption of ammonium onto zeolite. There are two proposed mechanisms for steel slag inhibiting the ammonium adsorption capacity of zeolite. On the one hand, OH- released from steel slag can react with ammonium ions to produce the molecular form of ammonia (NH3·H2O), which would cause the dissociation of NH4+ from zeolite. On the other hand, Ca2+ could replace the NH4+ ions to adhere onto the surface of zeolite. An innovative substrate filling configuration with zeolite placed upstream of the steel slag was then proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that this novel filling configuration was superior to two other filling configurations in terms of ammonium removal.

  15. Comparative research on phosphorus removal by pilot-scale vertical flow constructed wetlands using steel slag and modified steel slag as substrates. (United States)

    Yun, Yupan; Zhou, Xiaoqin; Li, Zifu; Uddin, Sayed Mohammad Nazim; Bai, Xiaofeng


    This research mainly focused on the phosphorus removal performance of pilot-scale vertical flow constructed wetlands with steel slag (SS) and modified steel slag (MSS). First, bench-scale experiments were conducted to evaluate the phosphorus adsorption capacity. Results showed that the Langmuir model could better describe the adsorption characteristics of the two materials; the maximum adsorption of MSS reached 12.7 mg/g, increasing by 34% compared to SS (9.5 mg/g). Moreover, pilot-scale constructed wetlands with SS and MSS were set up outdoors. Then, the influence of hydraulic retention time (HRT) and phosphorus concentration in phosphorus removal for two wetlands were investigated. Results revealed that better performance of the two systems could be achieved with an HRT of 2 d and phosphorus concentration in the range of 3-4.5 mg/L; the system with MSS had a better removal efficiency than the one with SS in the same control operation. Finally, the study implied that MSS could be used as a promising substrate for wetlands to treat wastewater with a high phosphorus concentration. However, considering energy consumption, SS could be regarded as a better alternative for substrate when treating sewage with a low phosphorus concentration.

  16. Exchangeable Sodium Percentage decrease in saline sodic soil after Basic Oxygen Furnace Slag application in a lysimeter trial. (United States)

    Pistocchi, Chiara; Ragaglini, Giorgio; Colla, Valentina; Branca, Teresa Annunziata; Tozzini, Cristiano; Romaniello, Lea


    The Basic Oxygen Furnace Slag results from the conversion of hot metal into steel. Some properties of this slag, such as the high pH or calcium and magnesium content, makes it suitable for agricultural use as a soil amendment. Slag application to agricultural soils is allowed in some European countries, but to date there is no common regulation in the European Union. In Italy soils in coastal areas are often affected by excess sodium, which has several detrimental effects on the soil structure and crop production. In this study, carried out within an European project, the ability of the Basic Oxygen Furnace Slag to decrease the soil Exchangeable Sodium Percentage of a sodic soil was evaluated. A three-year lysimeter trial with wheat and tomato crops was carried out to assess the effects of two slag doses (D1, 3.5 g kg(-1)year(-1) and D, 2, 7 g kg(-1)year(-1)) on exchangeable cations in comparison with unamended soil. In addition, the accumulation in the topsoil of vanadium and chromium, the two main trace metals present in the Basic Oxygen Furnace Slag, was assessed. After two years, the soil Exchangeable Sodium Percentage was reduced by 40% in D1 and 45% in D2 compared to the control. A concomitant increase in exchangeable bivalent cations (Ca(++) and Mg(++)) was observed. We concluded that bivalent cations supplied with the slag competed with sodium for the sorption sites in the soil. The slag treatments also had a positive effect on tomato yields, which were higher than the control. Conversely the wheat yield was lower in the slag-amended soil, possibly because of the toxicity of vanadium added with the slag. This study showed that Basic Oxygen Furnace Slag decreased the Exchangeable Sodium Percentage, but precautions are needed to avoid the build up of toxic concentrations of trace metals in the soil, especially vanadium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications. (United States)

    Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Kříbek, Bohdan; Mapani, Ben


    The leaching behaviors of primary copper (Cu) slags originating from Ausmelt, reverbatory, and converter furnaces operating under a single technological process were compared to a residual slag tailing obtained by slag re-processing via flotation and metal recovery. The EN 12457-2 leaching test, used for assessment of the hazardous properties, was followed by the CEN/TS 14997 pH-static leaching test (pH range 3-12). Both leaching experiments were coupled with a mineralogical investigation of the primary and secondary phases as well as geochemical modeling. Metals (Cd, Cu, Pb, Zn) exhibit the highest leaching at low pH. Under acidic conditions (pH 3-6), Ausmelt slag and slag tailing exhibited higher metal leaching compared to other slag types. Very low leaching of metals (far below EU limits for non-hazardous waste) was observed at natural pH (7.9-9.0) for all the studied slag samples. In contrast, relatively high leaching of As was observed over the entire pH range, especially for Ausmelt slag (exceeding the EU limit for hazardous waste by 1.7×). However, geochemical modeling and scanning electron microscopy indicated that formation of stable Ca-Cu-Pb arsenates and the binding of As to newly formed Fe (oxyhydr)oxides play an important role in efficient As immobilization at the slag-water interface. In contrast, no controls were predicted for Sb, whose leaching was almost pH-independent. Nevertheless Sb leached concentrations at natural pH were below EU limit for hazardous waste. Re-processing of primary Cu slags for metal recovery, and subsequent co-disposal of the resulting slag tailing with dolomite-rich mine tailing and local laterite is suitable for stabilizing the remaining contaminants (except Sb) and limiting their leaching into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of Coal Properties and Operation Conditions on Flow Behavior of Coal Slag in Entrained Flow Gasifiers: A Brief Review

    Energy Technology Data Exchange (ETDEWEB)

    Wang,Ping; Massoudi, Mehrdad


    Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system. In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and

  19. Processing and utilization of metallurgical slag

    Directory of Open Access Journals (Sweden)

    Alena Pribulová


    Full Text Available Metallurgy and foundry industry create a huge amount of slags that are by-products in production of pig iron, steel and cast iron. Slag is produced in a very large amount in pyrometallurgical processes, and is a huge source of waste if not properly recycled and utilized. With rapid growth of industrialization, land available for land-filling of large quantity of metallurgical slag is being reduced all over the world and disposal cost is becoming increasingly higher. Metallurgical slag from different metallurgical processes treated and utilized in different ways based on different slag characteristics. The most economic and efficient option for reducing metallurgical waste is through recycling, which is a significant contribution to saving natural resources and reducing CO2 emissions. Characteristic of slags as well as its treatment and utilization are given in the paper. Slag from pig iron and steel production is used most frequently in building industry. From experiments using blast furnace slag and granulated blast furnace slag as gravel, and water glass as binder it can be concluded that that the best results – the best values of compression strength and tensile strength were reached by using of 18% of water glass as a solidification activating agent. According to cubic compression strength, mixture from 50% blast furnace gravel, 50% granulated blast furnace slag and 18% water glass falls into C35/45 class of concrete. Such concrete also fulfils strength requirements for road concrete, moreover, it even exceeds them considerably and, therefore, it can find an application in construction of road communications or in production of concrete slabs.

  20. The Use Of Phosphates To Reduce Slag Penetration In Cr203-Based Refractories (United States)

    Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Petty, Arthur V.


    A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorous oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.

  1. Use of phosphates to reduce slag penetration in Cr2O3-based refractories

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Petty, Arthur V.


    A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorous oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.

  2. Use of Phosphates to Reduce Slag Penetration in CR203-Based Refractories

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Petty, Arthur V.


    A high-chromium refractory material that provides improved resistance to coal slag penetration is presented. The refractory mixture comprises a blend of chromium oxide, aluminum oxide and phosphates. The refractory mixture may be blended with an aggregate and cured. In addition a phosphorus oxide may be blended with chromium oxide and aluminum oxide and additionally an aggregate. The refractory mixture reduces the rate of coal slag penetration into the surface of the cured refractory.

  3. Evaluation of the environmental compatibility of using slag from refuse incineration in road construction

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, D.; Gerwinski, W.


    Relatively large amounts of combustion slag, which subsequently have to be disposed of, are left after refuse incineration. Possible applications, for example in road construction, are problematical because of the high heavy metal content. Knowledge of the leaching behaviour of slag is important for estimating the degree of contamination of ground water. Laboratory experiments are being confirmed by open-air tests using lysimeters or by the observation of actual cases of application to see if conclusions can be drawn from them.

  4. Highly Conductive Wire: Cu Carbon Nanotube Composite Ampacity and Metallic CNT Buckypaper Conductivity (United States)

    de Groh, Henry C.


    NASA is currently working on developing motors for hybrid electric propulsion applications in aviation. To make electric power more feasible in airplanes higher power to weight ratios are sought for electric motors. One facet to these efforts is to improve (increase) the conductivity and (lower) density of the magnet wire used in motors. Carbon nanotubes (CNT) and composites containing CNT are being explored as a possible way to increase wire conductivity and lower density. Presented here are measurements of the current carrying capacity (ampacity) of a composite made from CNT and copper. The ability of CNT to improve the conductivity of such composites is hindered by the presence of semiconductive CNT (s-CNT) that exist in CNT supplies naturally, and currently, unavoidably. To solve this problem, and avoid s-CNT, various preferential growth and sorting methods are being explored. A supply of sorted 95 metallic CNT (m-CNT) was acquired in the form of thick film Buckypaper (BP) as part of this work and characterized using Raman spectroscopy, resistivity, and density measurements. The ampacity (Acm2) of the Cu-5volCNT composite was 3.8 lower than the same gauge pure Cu wire similarly tested. The lower ampacity in the composite wire is believed to be due to the presence of s-CNT in the composite and the relatively low (proper) level of longitudinal cooling employed in the test method. Although Raman spectroscopy can be used to characterize CNT, a strong relation between the ratios of the primary peaks GGand the relative amounts of m-CNT and s-CNT was not observed. The average effective conductivity of the CNT in the sorted, 95 m-CNT BP was 2.5 times higher than the CNT in the similar but un-sorted BP. This is an indication that improvements in the conductivity of CNT composites can be made by the use of sorted, highly conductive m-CNT.

  5. Dyes Degradation with Fe-Doped Titanium Nanotube Photocatalysts Prepared from Spend Steel Slag

    Directory of Open Access Journals (Sweden)

    Chih Ming Ma


    Full Text Available TiO2 has been studied most commonly because it has high stability, nontoxicity, high catalytic activity, and high conductivity. Many studies have shown that TiO2 would generate electron-hole pairs illuminated with UV and surround more energy than that before being illuminated. In this study, the titanium nanotube (TNT photocatalysts were prepared to increase the surface area and adsorption capacity. The Fe TNT was also prepared from a slag iron since many slag irons cause waste treatment problems. In this study, a different Fe loading was also assessed since TNT doped with metals can be used to improve the degradation efficiency. Furthermore, five kinds of dye concentration, including 10, 20, 100, 200, and 400 ppm, and five kinds of Fe-doped content, including 0, 0.77, 1.13, 2.24, and 4.50%, were tested. Different kinds of reaction time and dye species were also assessed. In this result, Direct Black 22 was the most difficult to be degraded, although the concentration was decreased or the dose amount was increased. The degradation efficiency of 10 ppm Direct Black 22 was below 40% with 0.04 gL−1 TNT under 365 nm UV irradiation.

  6. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    Energy Technology Data Exchange (ETDEWEB)

    Han, K.; Embury, J.D.


    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  7. Silicon-graphene conductive photodetector with ultra-high responsivity (United States)

    Liu, Jingjing; Yin, Yanlong; Yu, Longhai; Shi, Yaocheng; Liang, Di; Dai, Daoxin


    Graphene is attractive for realizing optoelectronic devices, including photodetectors because of the unique advantages. It can easily co-work with other semiconductors to form a Schottky junction, in which the photo-carrier generated by light absorption in the semiconductor might be transported to the graphene layer efficiently by the build-in field. It changes the graphene conduction greatly and provides the possibility of realizing a graphene-based conductive-mode photodetector. Here we design and demonstrate a silicon-graphene conductive photodetector with improved responsivity and response speed. An electrical-circuit model is established and the graphene-sheet pattern is designed optimally for maximizing the responsivity. The fabricated silicon-graphene conductive photodetector shows a responsivity of up to ~105 A/W at room temperature (27 °C) and the response time is as short as ~30 μs. The temperature dependence of the silicon-graphene conductive photodetector is studied for the first time. It is shown that the silicon-graphene conductive photodetector has ultra-high responsivity when operating at low temperature, which provides the possibility to detect extremely weak optical power. For example, the device can detect an input optical power as low as 6.2 pW with the responsivity as high as 2.4 × 107 A/W when operating at -25 °C in our experiment.

  8. Effect of Temperature and Graphite Immersion Method on Carbothermic Reduction of Fayalite Slag (United States)

    Mitrašinović, Aleksandar


    In this work, graphite flakes were used to reduce fayalite slag originated from the pyrometallurgical copper extraction process. Experiments were conducted with a significantly different contact area between graphite and slag at two temperatures, 1300°C and 1400°C. The process was continuously monitored via the concentration change of CO and CO2 in off-gas. Reduction rate values in experiments where 150-micron-diameter graphite flakes were submerged into the slag and left to float slowly to the top are about four times higher compared with when graphite flakes were dispersed at the top surface of liquid slag. The activation energy for instigating reduction was 302.61 kJ mol-1 and 306.67 kJ mol-1 in the case where graphite flakes were submerged into the slag and dispersed at the surface, respectively. The reduction process is characterized by two distinctive periods: an initial steep increase in the concentration of CO and CO2 controlled by the Boudouard reaction and a subsequent slow decrease of CO and CO2 concentrations in the off-gas controlled by mass transfer of reducible oxides from bulk to the gas-slag interface.

  9. Hybrid electrokinetic manipulation in high-conductivity media† (United States)

    Gao, Jian; Sin, Mandy L. Y.; Liu, Tingting; Gau, Vincent; Liao, Joseph C.


    This study reports a hybrid electrokinetic technique for label-free manipulation of pathogenic bacteria in biological samples toward medical diagnostic applications. While most electrokinetic techniques only function in low-conductivity buffers, hybrid electrokinetics enables effective operation in high-conductivity samples, such as physiological fluids (~1 S m−1). The hybrid electrokinetic technique combines short-range electrophoresis and dielectrophoresis, and long-range AC electrothermal flow to improve its effectiveness. The major technical hurdle of electrode instability for manipulating high conductivity samples is tackled by using a Ti–Au–Ti sandwich electrode and a 3-parallel-electrode configuration is designed for continuous isolation of bacteria. The device operates directly with biological samples including urine and buffy coats. We show that pathogenic bacteria and biowarfare agents can be concentrated for over 3 orders of magnitude using hybrid electrokinetics. PMID:21487576

  10. Highly Confined Electronic and Ionic Conduction in Oxide Heterostructures

    DEFF Research Database (Denmark)

    Pryds, Nini


    The conductance confined at the interface of complex oxide heterostructures provides new opportunities to explore nanoelectronic as well as nanoionic devices. In this talk I will present our recent results both on ionic and electronic conductivity at different heterostructures systems. In the first...... unattainable for Bi2O3-based materials, is achieved[1]. These confined heterostructures provide a playground not only for new high ionic conductivity phenomena that are sufficiently stable but also uncover a large variety of possible technological perspectives. At the second part, I will discuss and show our...... recent results of high mobile samples realized by, interface confined redox reactions[2], strain induced polarization[3]and modulation doping at complex oxide interfaces. This collection of samples offers unique opportunities for a wide range of rich world of mesoscopic physics. [1] S. Sanne et al...

  11. High ionic conductivity in confined bismuth oxide-based heterostructures

    DEFF Research Database (Denmark)

    Sanna, Simone; Esposito, Vincenzo; Christensen, Mogens


    Bismuth trioxide in the cubic fluorite phase (δ-Bi2O3) exhibits the highest oxygen ionic conductivity. In this study, we were able to stabilize the pure -Bi2O3 at low temperature with no addition of stabilizer but only by engineering the interface, using highly coherent heterostructures made...... of alternative layers of δ-Bi2O3 and Yttria Stabilized Zirconia (YSZ), deposited by pulsed laser deposition. The resulting [δ-Bi2O3=YSZ] heterostructures are found to be stable over a wide temperature range (500-750 °C) and exhibits stable high ionic conductivity over a long time comparable to the value...... of the pure δ-Bi2O3, which is approximately two orders of magnitude higher than the conductivity of YSZ bulk....

  12. Strength of VGCF/Al Composites for High Thermal Conductivity (United States)

    Fukuchi, Kohei; Sasaki, Katsuhiko; Imanishi, Terumitsu; Katagiri, Kazuaki; Kakitsuji, Atsushi; Shimizu, Akiyuki

    In this paper, the evaluation of the strength of the VGCF/Aluminum composites which have high thermal conductivity is reported. VGCF (Vapor Growth Carbon Fiber) is a kind of the Carbon nanotube (CNT) which has very high thermal conductivity as well as CNT. The composites are made by spark plasma sintering. The stress-strain curves of the composites are obtained by the tensile tests and show that the composites have brittle behavior. The brittleness of the composites increases with increase in the volume fraction of VGCF. A numerical simulation based on the micromechanics is conducted to estimate nonlinear behavior in the elastic deformation and plastic deformation of the stress-strain relations of the composites. The theories of Eshelby, Mori-Tanaka, Weibull, and Ramberg-Osgood are employed for the numerical simulation. The simulations give some information of the microstructural change in the composite related to the volume fraction of VGCF.

  13. Novel Highly Conductive and Transparent Graphene-Based Conductors


    Khrapach, Ivan; Withers, Freddie; Bointon, Thomas H.; Polyushkin, Dmitry K.; Barnes, William L.; Russo, Saverio; Craciun, Monica F.


    Future wearable electronics, displays and photovoltaic devices rely on highly conductive, transparent and yet mechanically flexible materials. Nowadays indium tin oxide (ITO) is the most wide spread transparent conductor in optoelectronic applications, however the mechanical rigidity of this material limits its use for future flexible devices. Here we report novel transparent conductors based on few layer graphene (FLG) intercalated with ferric chloride (FeCl3) with an outstandingly high elec...

  14. High ionic conductivity in confined bismuth oxide-based heterostructures

    DEFF Research Database (Denmark)

    Sanna, Simone; Esposito, Vincenzo; Christensen, Mogens


    Bismuth trioxide in the cubic fluorite phase (δ-Bi2O3) exhibits the highest oxygen ionic conductivity. In this study, we were able to stabilize the pure -Bi2O3 at low temperature with no addition of stabilizer but only by engineering the interface, using highly coherent heterostructures made...

  15. Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters. (United States)

    Claveau-Mallet, Dominique; Wallace, Scott; Comeau, Yves


    The objective of this work was to evaluate the capacity of steel slag filters to treat a gypsum mining leachate containing 11-107 mg P/L ortho-phosphates, 9-37 mg/L fluoride, 0.24-0.83 mg/L manganese, 0.20-3.3 zinc and 1.7-8.2 mg/L aluminum. Column tests fed with reconstituted leachates were conducted for 145-222 days and sampled twice a week. Two types of electric arc furnace (EAF) slags and three filter sequences were tested. The voids hydraulic retention time (HRT(v)) of columns ranged between 4.3 and 19.2 h. Precipitates of contaminants present in columns were sampled and analyzed with X-ray diffraction at the end of tests. The best removal efficiencies over a period of 179 days were obtained with sequential filters that were composed of Fort Smith EAF slag operated at a total HRT(v) of 34 h which removed 99.9% of phosphorus, 85.3% of fluoride, 98.0% of manganese and 99.3% of zinc. Mean concentration at this system's effluent was 0.04 mg P/L ortho-phosphates, 4 mg/L fluoride, 0.02 mg/L manganese, 0.02 zinc and 0.5 mg/L aluminum. Thus, slag filters are promising passive and economical systems for the remediation of mining effluents. Phosphorus was removed by the formation of apatite (hydroxyapatite, Ca(5)(PO(4))(3)OH or fluoroapatite, Ca(5)(PO(4))(3)F) as confirmed by visual and X-ray diffraction analyses. The growth rate of apatite was favored by a high phosphorus concentration. Calcite crystals were present in columns and appeared to be competing for calcium and volume needed for apatite formation. The calcite crystal growth rate was higher than that of apatite crystals. Fluoride was removed by precipitation of fluoroapatite and its removal was favored by a high ratio of phosphorus to fluoride in the wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. (United States)

    Tang, Changyu; Hackenberg, Ken; Fu, Qiang; Ajayan, Pulickel M; Ardebili, Haleh


    There is a growing shift from liquid electrolytes toward solid polymer electrolytes, in energy storage devices, due to the many advantages of the latter such as enhanced safety, flexibility, and manufacturability. The main issue with polymer electrolytes is their lower ionic conductivity compared to that of liquid electrolytes. Nanoscale fillers such as silica and alumina nanoparticles are known to enhance the ionic conductivity of polymer electrolytes. Although carbon nanotubes have been used as fillers for polymers in various applications, they have not yet been used in polymer electrolytes as they are conductive and can pose the risk of electrical shorting. In this study, we show that nanotubes can be packaged within insulating clay layers to form effective 3D nanofillers. We show that such hybrid nanofillers increase the lithium ion conductivity of PEO electrolyte by almost 2 orders of magnitude. Furthermore, significant improvement in mechanical properties were observed where only 5 wt % addition of the filler led to 160% increase in the tensile strength of the polymer. This new approach of embedding conducting-insulating hybrid nanofillers could lead to the development of a new generation of polymer nanocomposite electrolytes with high ion conductivity and improved mechanical properties. © 2012 American Chemical Society

  17. Copper slag as a catalyst for mercury oxidation in coal combustion flue gas. (United States)

    Li, Hailong; Zhang, Weilin; Wang, Jun; Yang, Zequn; Li, Liqing; Shih, Kaimin


    Copper slag is a byproduct of the pyrometallurgical smelting of copper concentrate. It was used in this study to catalyze elemental mercury (Hg0) oxidation in simulated coal combustion flue gas. The copper slag exhibited excellent catalytic performance in Hg0 oxidation at temperatures between 200 °C and 300 °C. At the most optimal temperature of 250 °C, a Hg0 oxidation efficiency of 93.8% was achieved under simulated coal combustion flue gas with both a high Hg0 concentration and a high gas hourly space velocity of 128,000 h-1. Hydrogen chloride (HCl) was the flue gas component responsible for Hg0 oxidation over the copper slag. The transition metal oxides, including iron oxides and copper oxide in the copper slag, exhibited significant catalytic activities in the surface-mediated oxidation of Hg0 in the presence of HCl. It is proposed that the Hg0 oxidation over the copper slag followed the Langmuir-Hinshelwood mechanism whereby reactive chlorine species that originated from HCl reacted with the physically adsorbed Hg0 to form oxidized mercury. This study demonstrated the possibility of reusing copper slag as a catalyst for Hg0 oxidation and revealed the mechanisms involved in the process and the key factors in the performance. This knowledge has fundamental importance in simultaneously reducing industrial waste and controlling mercury emissions from coal-fired power plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Highly thermally conductive and mechanically strong graphene fibers. (United States)

    Xin, Guoqing; Yao, Tiankai; Sun, Hongtao; Scott, Spencer Michael; Shao, Dali; Wang, Gongkai; Lian, Jie


    Graphene, a single layer of carbon atoms bonded in a hexagonal lattice, is the thinnest, strongest, and stiffest known material and an excellent conductor of heat and electricity. However, these superior properties have yet to be realized for graphene-derived macroscopic structures such as graphene fibers. We report the fabrication of graphene fibers with high thermal and electrical conductivity and enhanced mechanical strength. The inner fiber structure consists of large-sized graphene sheets forming a highly ordered arrangement intercalated with small-sized graphene sheets filling the space and microvoids. The graphene fibers exhibit a submicrometer crystallite domain size through high-temperature treatment, achieving an enhanced thermal conductivity up to 1290 watts per meter per kelvin. The tensile strength of the graphene fiber reaches 1080 megapascals. Copyright © 2015, American Association for the Advancement of Science.

  19. Highly conductive paper for energy-storage devices

    KAUST Repository

    Hu, L.


    Paper, invented more than 2,000 years ago and widely used today in our everyday lives, is explored in this study as a platform for energy-storage devices by integration with 1D nanomaterials. Here, we show that commercially available paper can be made highly conductive with a sheet resistance as low as 1 ohm per square (Omega/sq) by using simple solution processes to achieve conformal coating of single-walled carbon nanotube (CNT) and silver nanowire films. Compared with plastics, paper substrates can dramatically improve film adhesion, greatly simplify the coating process, and significantly lower the cost. Supercapacitors based on CNT-conductive paper show excellent performance. When only CNT mass is considered, a specific capacitance of 200 F/g, a specific energy of 30-47 Watt-hour/kilogram (Wh/kg), a specific power of 200,000 W/kg, and a stable cycling life over 40,000 cycles are achieved. These values are much better than those of devices on other flat substrates, such as plastics. Even in a case in which the weight of all of the dead components is considered, a specific energy of 7.5 Wh/kg is achieved. In addition, this conductive paper can be used as an excellent lightweight current collector in lithium-ion batteries to replace the existing metallic counterparts. This work suggests that our conductive paper can be a highly scalable and low-cost solution for high-performance energy storage devices.

  20. Simulation Basics: How to Conduct a High-Fidelity Simulation. (United States)

    Willhaus, Janet


    Well-planned and conducted health care simulation scenarios provide opportunities for staff development in areas such as communication, patient care, and teamwork. Consideration of resources, the location for the training, preparation of learners, and use of either a high-fidelity mannequin or a trained actor (eg, a standardized patient) are all part of the operational attentions needed to conduct a simulation training scenario. In order for participants to meet training objectives, the execution of the simulation session must be both planned and purposeful.

  1. Electric conductivity of high explosives with carbon nanotubes (United States)

    Rubtsov, I. A.; Pruuel, E. R.; Ten, K. A.; Kashkarov, A. O.; Kremenko, S. I.


    The paper presents a technique for introducing carbon nanotubes into high explosives (HEs). For a number of explosives (trinitrotoluene, pentaerythritol tetranitrate, benzotrifuroxan), it was possible to achieve the appearance of conductivity by adding a small amount (up to 1% by mass) of single-walled carbon nanotubes TUBALL COATE H2O (CNTs) produced by OCSiAl. Thus it is possible to reduce the sensitivity of explosives to static electricity by adding an insignificant part of conductive nanotubes. This will increase safety of HEs during production and application and will reduce the number of accidents.

  2. A novel process for comprehensive utilization of vanadium slag (United States)

    Liu, Li-ying; Du, Tao; Tan, Wen-jun; Zhang, Xin-pu; Yang, Fan


    Traditional processes for treating vanadium slag generate a huge volume of solid residue and a large amount of harmful gas, which cause serious environmental problems. In this study, a new process for the comprehensive utilization of vanadium slag was proposed, wherein zeolite A and a V2O5/TiO2 system were synthesized. The structural properties of the as-synthesized zeolite A and the V2O5/TiO2 system were characterized using various experimental techniques, including X-ray diffraction, X-ray fluorescence, scanning electron microscopy, and infrared spectroscopy. The results reveal that zeolite A and the V2O5/TiO2 system are successfully obtained with high purity. The results of gas adsorption measurements indicate that the prepared zeolite A exhibits high selectivity for CO2 over N2 and is a candidate material for CO2 capture from flue-gas streams.

  3. Slag melting temperature and contact angle on high carbon containing refractory substrates Temperatura de fusão e ângulo de contato de escórias em substratos de concretos refratários contendo alto teor de carbono

    Directory of Open Access Journals (Sweden)

    A. P. Luz


    Full Text Available In this work the sessile drop technique was used in order to evaluate the melting temperature of synthetic and industrial slags, and their contact angle as a function of time and temperature on substrates of an Al2O3-SiO2-SiC-C castable containing 10 wt.% of carbon or its matrix. The best experimental conditions for the evaluation of the wetting behavior of refractory castables were attained when 25 x 25 x 10 mm³ matrix substrates and cylindrical slag pellets of 3 mm diameter and 5 mm high were used. This substrate - slag set resulted in contact angle values with good reliability. Small differences between the contact angle behavior on ground and polished matrix surfaces for synthetic slags were also detected. Additionally, industrial slags containing various oxide components, showed high values of contact angles and lower liquid spreading when compared with synthetic slags. This difference can be associated to the interaction liquid-solid at the material interface. Besides that, the wetting experiments were presented as a good alternative for measuring the melting temperatures of slags, as their values are difficult to determine due to the high oxide variety in the industrial slag compositions and the interaction between the slag and the substrate.Neste trabalho a técnica da gota séssil foi usada na avaliação da temperatura de fusão de escórias sintéticas e industriais e de seus ângulos de contato, em função do tempo e da temperatura, sobre substratos de um concreto Al2O3-SiO2-SiC-C que contém 10%-p de carbono ou sobre somente sua matriz. As melhores condições experimentais para a avaliação do comportamento de molhamento dos concretos refratários foram obtidas quando utilizados substratos da matriz de 25 x 25 x 10 mm³ e cilindros das escórias com 3 mm de diâmetro e 5 mm de altura. O uso deste conjunto substrato-escória proporcionou a obtenção de valores de ângulo de contato com boa reprodutibilidade. Pequenas diferen

  4. Conducting high quality writing intervention research: Twelve recommendations

    Directory of Open Access Journals (Sweden)

    Steve Graham


    Full Text Available Writing intervention research can enhance our knowledge about writing, its development, and how to teach it effectively. Despite the importance of such research, many of the writing intervention studies conducted previously were of poor quality, as documented by Graham and colleagues in a series of meta-analyses (Graham, McKeown, Kiuhara, & Harris, 2012; Graham & Perin, 2007; Rogers & Graham, 2008. In this article, we offer 12 recommendations for conducting high quality intervention research, recommendations that draw on those meta-analyses as well as previous work on improving the quality of intervention research (Pressley & Harris, 1994a, 1994b and our experiences as writing intervention researchers and editors of journals that publish intervention research (including the Journal of Writing Research . The recommendations address issues and actions involved in designing, conducting, and reporting such research.

  5. Glassy slags for minimum additive waste stabilization. Interim progress report, May 1993--February 1994

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Dietz, N.L.; Gong, M.; Emery, J.W. [Argonne National Lab., IL (United States). Chemical Technology Div.


    Glassy slag waste forms are being developed to complement glass waste forms in implementing Minimum Additive Waste Stabilization (MAWS) for supporting DOE`s environmental restoration efforts. The glassy slag waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. The MAWS approach was adopted by blending multiple waste streams to achieve up to 100% waste loadings. The crystalline phases, such as spinels, are very durable and contain hazardous and radioactive elements in their lattice structures. These crystalline phases may account for up to 80% of the total volume of slags having over 80% metal loading. The structural bond strength model was used to quantify the correlation between glassy slag composition and chemical durability so that optimized slag compositions were obtained with limited crucible melting and testing. Slag compositions developed through crucible melts were also successfully generated in a pilot-scale Retech plasma centrifugal furnace at Ukiah, California. Utilization of glassy slag waste forms allows the MAWS approach to be applied to a much wider range of waste streams than glass waste forms. The initial work at ANL has indicated that glassy slags are good final waste forms because of (1) their high chemical durability; (2) their ability to incorporate large amounts of metal oxides; (3) their ability to incorporate waste streams having low contents of flux components; (4) their less stringent requirements on processing parameters, compared to glass waste forms; and (5) their low requirements for purchased additives, which means greater waste volume reduction and treatment cost savings.

  6. Highly Conductive Polypropylene-Graphene Nonwoven Composite via Interface Engineering. (United States)

    Pan, Qin; Shim, Eunkyoung; Pourdeyhimi, Behnam; Gao, Wei


    Here we report a highly conductive polypropylene-graphene nonwoven composite via direct coating of melt blown polypropylene (PP) nonwoven fabrics with graphene oxide (GO) dispersions in N,N-dimethylformamide (DMF), followed by the chemical reduction of GO with hydroiodic acid (HI). GO as an amphiphilic macromolecule can be dispersed in DMF homogeneously at a concentration of 5 mg/mL, which has much lower surface tension (37.5 mN/m) than that of GO in water (72.9 mN/m, at 5 mg/mL). The hydrophobic PP nonwoven has a surface energy of 30.1 mN/m, close to the surface tension of GO in DMF. Therefore, the PP nonwoven can be easily wetted by the GO/DMF dispersion without any pretreatment. Soaking PP nonwoven in a GO/DMF dispersion leads to uniform coatings of GO on PP-fiber surfaces. After chemical reduction of GO to graphene, the resulting PP/graphene nonwoven composite offers an electrical conductivity of 35.6 S m -1 at graphene loading of 5.2 wt %, the highest among the existing conductive PP systems reported, indicating that surface tension of coating baths has significant impact on the coating uniformity and affinity. The conductivity of our PP/graphene nonwoven is also stable against stirring washing test. In addition, here we demonstrate a monolithic supercapacitor derived from the PP-GO nonwoven composite by using a direct laser-patterning process. The resulted sandwich supercapacitor shows a high areal capacitance of 4.18 mF/cm 2 in PVA-H 2 SO 4 gel electrolyte. The resulting highly conductive or capacitive PP/graphene nonwoven carries great promise to be used as electronic textiles.

  7. Analysis of Slug Tests in Formations of High Hydraulic Conductivity (United States)

    Butler, J.J.; Garnett, E.J.; Healey, J.M.


    A new procedure is presented for the analysis of slug tests performed in partially penetrating wells in formations of high hydraulic conductivity. This approach is a simple, spreadsheet-based implementation of existing models that can be used for analysis of tests from confined or unconfined aquifers. Field examples of tests exhibiting oscillatory and nonoscillatory behavior are used to illustrate the procedure and to compare results with estimates obtained using alternative approaches. The procedure is considerably simpler than recently proposed methods for this hydrogeologic setting. Although the simplifications required by the approach can introduce error into hydraulic-conductivity estimates, this additional error becomes negligible when appropriate measures are taken in the field. These measures are summarized in a set of practical field guidelines for slug tests in highly permeable aquifers.

  8. Investigation of the corrosion of MgO-graphite ladle refractories via a laboratory slag test (United States)

    Akkurt, Sedat

    Corrosion and erosion of refractory bricks used for lining the slag-line of secondary steelmaking vessels are an important problem. Refractories are a major cost factor in steel shops and their loss needs to be minimized. Corrosion of MgO-C refractories occurs through the loss of carbon bond phase and by reaction with corrosive slags. A laboratory slag corrosion testing method was developed and successfully used to obtain a mathematical model to describe the corrosion process and its dependence on time, temperature, slag basicity and atmosphere. Response surface plots as a function of time, temperature, slag basicity were graphically plotted, and a polynomial equation was developed to predict the amount of corrosion in the range of factors studied. The correlation coefficient of the model developed was 0.95. Other experimental methods have long suffered from lack of reliable and reproducable quantitative data mainly due to the lack of adequate control of important factors that influence the corrosion rate. The tests used were performed in isothermal conditions in a controlled atmosphere in a vertical tube furnace while the refractory specimens were immersed into the melt for prescribed amounts of time. Activation energy for slag viscosity was estimated from high temperature viscosity measurements. The mathematical model developed can be used by steelmakers followed by a limited number of more refined tests using their industrial materials.


    Directory of Open Access Journals (Sweden)

    H. A. Abdel-Gawwad


    Full Text Available The effect of different proportions and different reactivities of MgO on the drying shrinkage and compressive strength of alkali activated slag pastes (AAS has been investigated. The slag was activated by 6 wt.% sodium hydroxide and liquid sodium silicate at ratio of 3:3 (wt.. The different reactivities of MgOs were produced from the calcination of hydromagnesite at different temperatures (550, 1000, 1250 C. The results showed that the reactivity of magnesium oxide decreases with increasing the calcination temperature. Also, the drying shrinkage of AAS was reduced by the replacement of slag with MgOs. The highly reactive MgO accelerated the hydration of AAS at early ages. The replacement of slag with 5% MgO550 increased one day compressive strength by ~26 % while MgO1250 had little effect. A significant increase in strength was observed after 7 days in case of replacement of slag with 5 % MgO1250. The MgO reacts with slag to form hydrotalcite likephases (Ht as detected by XRD, FTIR spectroscopy, TGA/DTG analysis and SEM.

  10. Synthesis of steel slag ceramics: chemical composition and crystalline phases of raw materials (United States)

    Zhao, Li-hua; Wei, Wei; Bai, Hao; Zhang, Xu; Cang, Da-qiang


    Two types of porcelain tiles with steel slag as the main raw material (steel slag ceramics) were synthesized based on the CaO-Al2O3-SiO2 and CaO-MgO-SiO2 systems, and their bending strengths up to 53.47 MPa and 99.84 MPa, respectively, were obtained. The presence of anorthite, α-quartz, magnetite, and pyroxene crystals (augite and diopside) in the steel slag ceramics were very different from the composition of traditional ceramics. X-ray diffraction (XRD) and electron probe X-ray microanalysis (EPMA) results illustrated that the addition of steel slag reduced the temperature of extensive liquid generation and further decreased the firing temperature. The considerable contents of glass-modifying oxide liquids with rather low viscosities at high temperature in the steel slag ceramic adobes promoted element diffusion and crystallization. The results of this study demonstrated a new approach for extensive and effective recycling of steel slag.

  11. Effect of Cr2O3 Pickup on Dissolution of Lime in Converter Slag (United States)

    Yan, Wei; Chen, Weiqing; Zhao, Xiaobo; Yang, Yindong; McLean, Alex


    Application of low-nickel laterite ore containing chromium as charging material for ironmaking can reduce raw material costs, but result in an increase of chromium content in the hot metal and hence, Cr2O3 content in the steelmaking slag, which subsequently causes many problems related to lime dissolution for the steelmaking operation. In this work, a rotating cylinder method was employed to study the effect of Cr2O3 on lime dissolution in steelmaking slag. The lime dissolution mechanism, rate control step and affecting factors, including slag basicity, FeOx and B2O3 content, and the formation of phases at reacted layer, were discussed. It was found that mass transfer was the rate control step in slag phase, increase of Cr2O3 and slag basicity delayed lime dissolution due to the formation of high-melting temperature phases of FeO · Cr2O3 spinel and 2CaO · SiO2 at the slag/lime reacted interface. Addition of B2O3 promoted lime dissolution and suppressed formation of FeO · Cr2O3 spinel.

  12. Switch on the high thermal conductivity of graphene paper. (United States)

    Xie, Yangsu; Yuan, Pengyu; Wang, Tianyu; Hashemi, Nastaran; Wang, Xinwei


    This work reports on the discovery of a high thermal conductivity (κ) switch-on phenomenon in high purity graphene paper (GP) when its temperature is reduced from room temperature down to 10 K. The κ after switch-on (1732 to 3013 W m(-1) K(-1)) is 4-8 times that before switch-on. The triggering temperature is 245-260 K. The switch-on behavior is attributed to the thermal expansion mismatch between pure graphene flakes and impurity-embedded flakes. This is confirmed by the switch behavior of the temperature coefficient of resistance. Before switch-on, the interactions between pure graphene flakes and surrounding impurity-embedded flakes efficiently suppress phonon transport in GP. After switch-on, the structure separation frees the pure graphene flakes from the impurity-embedded neighbors, leading to a several-fold κ increase. The measured κ before and after switch-on is consistent with the literature reported κ values of supported and suspended graphene. By conducting comparison studies with pyrolytic graphite, graphene oxide paper and partly reduced graphene paper, the whole physical picture is illustrated clearly. The thermal expansion induced switch-on is feasible only for high purity GP materials. This finding points out a novel way to switch on/off the thermal conductivity of graphene paper based on substrate-phonon scattering.


    Directory of Open Access Journals (Sweden)

    V. I. Chegel


    Full Text Available This paper presents the results of experimental and theoretical studies of quenching and enhancement of fluorescence by colloidal solutions of nanoparticles and arrays of nanostructures on solid substrates — nanochips. The literature data and the results of authors’ own studies on the possibility of fluorescence signal manipulation in the presence of gold and silver nanostructures were shown. Mathematical modeling and comparative investigation of the samples with high-conductive metal nanostructures as active elements for the regulation of fluorescence signal were also performed. Nanochips samples were fabricated by thermal annealing of highly conductive gold and silver island films. Using developed novel laser-based fluorometer FluorotestNano it was shown that fluorescence intensity of Rhodamine 6G dye can be enhanced up to 23 times near gold nanostructures by spacing the dye from the nanoparticle at the distance of 20 nm using SiO2 coating. Using high-conductive metal nanostructures to adjust the fluorescence signal opens promising new directions in biochemical studies, such as increasing the sensitivity of fluorescence methods, development of new biosensors, fluorescence microscopy techniques and medical diagnostics.

  14. High pressure electrical conductivity in naturally occurring silicate liquids (United States)

    Tyburczy, James A.; Waff, Harve S.

    Electrical conductivities of molten Hawaiian rhyodacite and Yellowstone rhyolite obsidian were measured between 1200° C and 1400° C and at pressures up to 25 kilobars. The two melts exhibit similar trends. Arrhenius behavior is observed at all pressures studied. Isobaric activation enthalpies increase from about 0.5 eV at atmospheric pressure to about 0.9 eV at 25 kbars, and the magnitude of the conductivity decreases by about a factor of 4 between 0 and 25 kbar. At pressures between about 10 and 15 kbar an abrupt decrease in the slopes of isothermal log a versus pressure plots is observed. In each pressure range an equation of the form σ = σ'0 exp [- (E'σ + PΔV'σ)/kT], where σ'0, E'σ, and ΔV'σ, are constants, describes the polybaric, polythermal data. Comparison of these data with high pressure electrical conductivities of molten basalt and andesite reveals that relatively silica-rich melts, from andesitic to rhyolitic in composition, display similar trends, while the basaltic melt has analogous, but quantitatively different trends. Comparison of zero-pressure electrical conductivity and sodium diffusivity by means of the Nernst-Einstein relation indicates that sodium ion transport is the dominant mechanism of charge transport in the obsidian melt at zero pressure. The tholeiitic melt, on the other hand, displays only order of magnitude agreement between the electrical conductivity and sodium diffusivity, indicating that either ions other than sodium play a significant role in electrical transport or that the motions of the sodium ions are strongly correlated, or both. Comparison of the isobaric and isochoric activation enthalpies indicates that electrical conduction is energy restrained, as opposed to volume restrained. Conductivities in the andesitic, rhyodacitic, and rhyolitic melts conform to a single compensation law line, with no indication of the change in activation volume. The tholeiitic melt has a slightly different compensation line. In light

  15. Electroslag Remelting (ESR) Slags for Removal of Radioactive Oxide Contaminants from Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Chernicoff, W.P.; Chou, K.C.; Gao, H.; MacDonald, C.J.; Molecke, M.A.; Pal, U.B.; Van Den, J.; Woolley, D.


    Downsizing and decommissioning of nuclear operations is increasing the stockpile of Radioactive Scrap Metal (RSM). It is estimated that the annual generation of RSM for the entire DOE complex will be approximately 120,000 metric tons beginning in the year 2000. Out of which contaminated stainless steel with high chromium and nickel contents constitutes 25-30 wt. % [1]. Disposal of this material not only represents resource and value lost, but also necessitates long term monitoring for environmental compliance. The latter results in additional recurring expense. Therefore, it is desirable to be able to decontaminate the radioactive stainless steel to a satisfactory level that can be recycled or at least used for fabrication of containers for RSM disposal instead of using virgin stainless steel. Decontamination of radioactive stainless steel using the ESR process is investigated. In this paper the relevant slag properties, capacity to incorporate the radioactive contaminant, slag-metal partition coefficient, volatilization rate, volatile species, viscosity, electrical conductivity and surface tension are presented as a function of temperature. The impact of these properties on the ESR decontamination process is discussed.

  16. Slagging and fouling risk of Mediterranean biomasses for combustion

    Energy Technology Data Exchange (ETDEWEB)

    Vega-Nieva, Daniel J.; Dopazo, Raquel; Ortiz, Luis (Univ. of Vigo (Spain), Forestry School, A Xunqueira Campus, Pontevedra)


    The interest in biomass combustion has grown exponentially in the last years, as a means for renewable heat and energy promoting local development and mitigating climate change. Various Mediterranean agricultural and forest resources such as olive stone, almond shell or pinecone chips remain large unutilized, despite their potential for being utilized in biomass combustion. New energy crops such as Cardoon, Brassica or Sorghum, are being introduced in Mediterranean countries for Bioenergy production; however, the slagging and fouling risk of many of these potential feedstocks are currently limiting their application in combustion processes given their high alkali, silica or chlorine contents. In this publication, various methods for biomass slagging and fouling hazard monitoring and prediction are presented based on recent studies with Mediterranean biomasses combustion in Spain

  17. Conductive MOF electrodes for stable supercapacitors with high areal capacitance (United States)

    Sheberla, Dennis; Bachman, John C.; Elias, Joseph S.; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea


    Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

  18. Slags from steel production: Properties and their utilization

    Directory of Open Access Journals (Sweden)

    J. Vlcek


    Full Text Available During steel production a considerable amount of slags is produced. In addition to its usual processing, as recycling in device for steel production and preparation of aggregates, it is also possible to apply less common slag processing ways. Depending on cooling mode of the steel slags these may show some binding properties. Geopolymer type binders can be prepared from the slag using alkali activators or the hydraulic properties of the dicalciumsilicate present in the slag can be induced by water. The paper summarizes present state of material utilisation of the steel slags with focus on emphasize of the possible sources of the slag volume instability. The influence of process of slag cooling on its phase composition is documented. It was also found that slags from real sources show different parameters compared to samples obtained for laboratory examination.

  19. Co-injection of basic fluxes or BF flue dust with PC into a BF charged with 100% pellets:effects on slag formation and coal combustion


    Sundqvist Ökvist, Lena


    Based on 100% pellets operation at BF No. 3 at SSAB Tunnplåt in Luleå a new pellet with CaO/SiO2=1 was developed during early nineties. The pellet showed good results in metallurgical laboratory test but caused slag formation problems in the bosh. A high basicity slag was formed during interaction with basic fluxes and its melting point was increased when the slag was finally reduced. By injection of basic fluxes, the slag formation problems in the bosh can be avoided. Without a sinter plant,...

  20. Development and modelling of a steel slag filter effluent neutralization process with CO2-enriched air from an upstream bioprocess. (United States)

    Bove, Patricia; Claveau-Mallet, Dominique; Boutet, Étienne; Lida, Félix; Comeau, Yves


    The main objective of this project was to develop a steel slag filter effluent neutralization process by acidification with CO 2 -enriched air coming from a bioprocess. Sub-objectives were to evaluate the neutralization capacity of different configurations of neutralization units in lab-scale conditions and to propose a design model of steel slag effluent neutralization. Two lab-scale column neutralization units fed with two different types of influent were operated at hydraulic retention time of 10 h. Tested variables were mode of flow (saturated or percolating), type of media (none, gravel, Bionest and AnoxKaldnes K3), type of air (ambient or CO 2 -enriched) and airflow rate. One neutralization field test (saturated and no media, 2000-5000 ppm CO 2 , sequential feeding, hydraulic retention time of 7.8 h) was conducted for 7 days. Lab-scale and field-scale tests resulted in effluent pH of 7.5-9.5 when the aeration rate was sufficiently high. A model was implemented in the PHREEQC software and was based on the carbonate system, CO 2 transfer and calcite precipitation; and was calibrated on ambient air lab tests. The model was validated with CO 2 -enriched air lab and field tests, providing satisfactory validation results over a wide range of CO 2 concentrations. The flow mode had a major impact on CO 2 transfer and hydraulic efficiency, while the type of media had little influence. The flow mode also had a major impact on the calcite surface concentration in the reactor: it was constant in saturated mode and was increasing in percolating mode. Predictions could be made for different steel slag effluent pH and different operation conditions (hydraulic retention time, CO 2 concentration, media and mode of flow). The pH of the steel slag filter effluent and the CO 2 concentration of the enriched air were factors that influenced most the effluent pH of the neutralization process. An increased concentration in CO 2 in the enriched air reduced calcite precipitation

  1. Estimation of slagging in furnaces; Kuonaavuuden ennustaminen kivihiilen poelypoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, T.; Jaeaeskelaeinen, K.; Oeini, J.; Koskiahde, A.; Jokiniemi, J.; Pyykkoenen, J. [Imatran Voima Oy, Vantaa (Finland)


    Understanding and estimation of slagging in furnaces is essential in the design of new power plants with high steam values or in modifications like low-NO{sub x} retrofits in existing furnaces. Major slagging yields poor efficiency, difficult operation and high maintenance costs of the plant. The aim of the project is to develop a computational model for slagging in pulverized coal combustion. The model is based on Computer Controlled Scanning Electron Microscopy (CCSEM) analysis of mineral composition of the coal and physical models for behaviour of minerals inside a furnace. The analyzed mineral particles are classified to five composition classes and distributed to calculational coal particles if internal minerals of coal. The calculational coal particles and the external minerals are traced in the furnace to find out the behaviour of minerals inside the furnace. If the particle tracing indicates that the particle hits the heat transfer surface of the furnace the viscosity of the particle is determined to see if particle is sticky. The model will be implemented to 3D computational fluid dynamics based furnace simulation environment Ardemus which predicts the fluid dynamics, heat transfer and combustion in a furnace. (orig.)

  2. Transient Response of Different Highly Conductive PCM Composites (United States)

    Mahmoud Alhamdo, Mohammed H.; Bdaiwi, Bashar A.; Hasan, Ali H.

    In this work, the thermal conductivity of paraffin wax has been enhanced by employing four different high conductivity additives infiltrated within the PCM. These include the use of Graphite Powder (GP), Copper Particles (CP), Aluminum oxide Particles (AP), and Copper Network (CN). Four different types of pure waxes were selected, tested and compared. Twelve samples of wax/additives composites were prepared by adding different mass ratios of 3, 6 and 9 % of additives by weight in each type of wax. The storage system contains spherical capsules filled with composite PCMs that are packed in an insulated cylindrical storage. Transient temperature based governing equations have been developed and solved numerically by both ANSYS FLUENT 14 code and by numerical implicit time marching model. With progress of time, results showed that the numerical predictions of ANSYS software start to deviate from the experimental observations. The grade-B paraffin was found to be the best one. Results indicate that all the enhancement methods have significant effect on the thermal response of the system. However, the utilization of 6 % additives by weight has been found to provide the best enhancement effect. The developed new-sort CN composite is found to produce the best thermal response due to its good homogeneity with wax and its high conductivity. Results showed that for CN composite with 6 % additives, the charging and discharging time decreased by 26.4 and 30.3 % respectively than that of pure wax and the thermal conductivity enhanced by 2.57 times that of pure wax.

  3. Electroslag Remelting (ESR) Slags for Removal of Radioactive Oxide Contaminants from Stainless Steel, Annual Report (1998-1999)

    Energy Technology Data Exchange (ETDEWEB)

    PAL, UDAY B.


    Decontamination of radioactive contaminated stainless steel using the ESR process is investigated by conducting thermophysical and thermochemical laboratory studies on the slag. The ESR base slag investigated in this research project is 60wt%CaF{sub 2}-20wt%CaO-20wt%Al{sub 2}O{sub 3}. In this report, we present the data obtained to date on relevant slag properties, capacity to incorporate the radioactive contaminant (using CeO{sub 3}) as surrogate, simulant for PUO{sub 2} and UO{sub 2}, slag-metal partition coefficient, volatilization rate and volatile species, viscosity, electrical conductivity and surface tension as a function of temperature. The impact of these properties on the ESR decontamination process is presented.

  4. Recycling of the rare earth oxides from spent rechargeable batteries using waste metallurgical slags

    Directory of Open Access Journals (Sweden)

    Tang K.


    Full Text Available A high temperature process for recycling spent nickel-metal hydride rechargeable batteries has been recently developed at SINTEF/NTNU. The spent battery modules were first frozen with liquid nitrogen for the de-activation and brittle fracture treatment. The broken steel scraps and plastics were then separated by the mechanical classification and magnetic separation. The remaining positive and negative electrodes, together with the polymer separator, were heated to 600-800oC in order to remove the organic components and further separate the Ni-based negative electrode. XRF analyses indicate that the heat-treated materials consist mainly of nickel, rare earth and cobalt oxides. The valuable rare earth oxides were further recovered by the high-temperature slagging treatment. The waste metallurgical slags, consist mainly of SiO2 and CaO, were used as the rare earth oxide absorbent. After the high temperature slagging treatment, over 98% of nickel and cobalt oxides were reduced to the metal phase; meanwhile almost all rare earth oxides remain in the molten slags. Furthermore, EPMA and XRF analyses of the slag samples indicate that the rare earth oxides selectively precipitate in the forms of solid xSiO2•yCaO•zRe2O3. The matrix of slag phase is Re2O3 deficient, typically being less than 5 wt%. This provides a sound basis to further develop the high-temperature process of concentrating the Re2O3 oxides in slags.

  5. High-throughput search for improved transparent conducting oxides (United States)

    Miglio, Anna

    High-throughput methodologies are a very useful computational tool to explore the space of binary and ternary oxides. We use these methods to search for new and improved transparent conducting oxides (TCOs). TCOs exhibit both visible transparency and good carrier mobility and underpin many energy and electronic applications (e.g. photovoltaics, transparent transistors). We find several potential new n-type and p-type TCOs with a low effective mass. Combining different ab initio approaches, we characterize candidate oxides by their effective mass (mobility), band gap (transparency) and dopability. We present several compounds, not considered previously as TCOs, and discuss the chemical rationale for their promising properties. This analysis is useful to formulate design strategies for future high mobility oxides and has led to follow-up studies including preliminary experimental characterization of a p-type TCO candidate with unexpected chemistry. G. Hautier, A. Miglio, D. Waroquiers, G.-M. Rignanese, and X. Gonze, ``How Does Chemistry Influence Electron Effective Mass in Oxides? A High-Throughput Computational Analysis'', Chem. Mater. 26, 5447 (2014). G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, and X. Gonze, ``Identification and design principles of low hole effective mass p-type transparent conducting oxides'', Nature Commun. 4, 2292 (2013).

  6. Electrical properties of alkali-activated slag composite with combined graphite/CNT filler (United States)

    Rovnaník, P.; Míková, M.; Kusák, I.


    Alkali-activated industrial by-products such as blast furnace slag are known to possess properties which are comparable to or even better than those observed for ordinary Portland cement. The combination of alkali-activated slag matrix with conductive filler introduces new functionalities which are commonly known for self-sensing or self-heating concrete. The present paper discusses the effect of the mixture of two different conductive fillers, graphite powder and carbon nanotubes (CNTs), on the electrical properties of alkali-activated slag mortars. Prepared samples were also tested for their mechanical properties and microstructure was investigated by means of mercury intrusion porosimetry and scanning electron microscopy. The percolation threshold for the resistance was reached for the mixture containing 0.1% CNTs and 8% graphite powder.

  7. Development of a high capacity variable conductance heat pipe. (United States)

    Kosson, R.; Hembach, R.; Edelstein, F.; Loose, J.


    The high-capacity, pressure-primed, tunnel-artery wick concept was used in a gas-controlled variable conductance heat pipe. A variety of techniques were employed to control the size of gas/vapor bubbles trapped within the artery. Successful operation was attained with a nominal 6-foot long, 1-inch diameter cold reservoir VCHP using ammonia working fluid and nitrogen control gas. The pipe contained a heat exchanger to subcool the liquid in the artery. Maximum transport capacity with a 46-inch effective length was 1200 watts level (more than 50,000 watt-inches) and 800 watts at 0.5-inch adverse tilt.

  8. Electro-flow focusing. The high conductivity, low viscosity limit (United States)

    Ganan-Calvo, Alfonso M.; Lopez-Herrera, José M.


    Electro-flow focusing, a technique combining the features of electrospray (ES) and flow focusing (FF), provides a reliable tool to reach parametrical micro-jetting ranges not attainable by ES or FF alone under specific operational regimes (liquid properties and flow rate). In this work, we provide not only a closed theoretical model predicting the diameter of a high electrical conductivity electro-flow focused liquid micro-jet, but also its convective/absolute instability, linked to the jetting/dripping transition and the minimum liquid flow rate that can be issued in steady jetting regime. Our predictions are compared to experiments with good accord.

  9. Research on the use of Ferro-Chrome slag in civil engineering applications

    Directory of Open Access Journals (Sweden)

    Al-Jabri Khalifa S.


    Full Text Available Over recent decades there has been rapid increase in the industrial waste materials and by-products yields due to the progressive growth rate of population, development of industry and technology and the growth of consumerism. With the growing environmental pressures to reduce waste and pollution, Intensive research studies have been conducted to explore all suitable reuse methods. Wastes such as construction waste, blast furnace, steel slag, coal fly ash and bottom ash have been approved in many places as alternative materials in bridges, roads, pavements, foundations and building construction. The use of industrial solid waste as a partial replacement of raw materials in construction activities not only saves landfill space but also reduces the demand for extraction of natural raw materials. Ferrochrome slag is a by-product from the production of chrome. There are environmental and economic advantages in seeing slags as a potentially useful resource rather than as waste products. Slag management at ferrochrome producing companies has been influenced by the limited space available and financial cost implications of the slag dumps. Internationally, e.g. South Africa, India, Norway, Turkey, East Europe, China, Sweden and USA, ferrochrome slag is used commercially in the road and construction Industries. This material is being used for road construction, as aggregates in concrete industry, brick manufacturing, and in pavement construction as engineering fill and has recently been tried in cement. This paper presents an overview of the recent advances of the use of ferrochrome slag in various civil engineering applications such as road construction, and cement and concrete industries.

  10. Use of Bermuda grass [Cynodon dactylon (L. Pers.] on ash and slag dumps of thermoelectric power plants

    Directory of Open Access Journals (Sweden)

    Stavretović N.


    Full Text Available Biological recultivation is conducted regularly on ash and slag dumps of thermoelectric power plants. New methods and new plant species for use in the process of recultivation are being investigated by experts the world over. Bermuda grass (Cynodon dactylon represents a potentially valuable species that should become an ingredient of sowing mixtures used in the process of revitalisation of ash and slag dumps of thermoelectric power plants.

  11. Blasted copper slag as fine aggregate in Portland cement concrete. (United States)

    Dos Anjos, M A G; Sales, A T C; Andrade, N


    The present work focuses on assessing the viability of applying blasted copper slag, produced during abrasive blasting, as fine aggregate for Portland cement concrete manufacturing, resulting in an alternative and safe disposal method. Leaching assays showed no toxicity for this material. Concrete mixtures were produced, with high aggregate replacement ratios, varying from 0% to 100%. Axial compressive strength, diametrical compressive strength, elastic modulus, physical indexes and durability were evaluated. Assays showed a significant improvement in workability, with the increase in substitution of fine aggregate. With 80% of replacement, the concrete presented lower levels of water absorption capacity. Axial compressive strength and diametrical compressive strength decreased, with the increase of residue replacement content. The greatest reductions of compressive strength were found when the replacement was over 40%. For tensile strength by diametrical compression, the greatest reduction occurred for the concrete with 80% of replacement. After the accelerated aging, results of mechanic properties showed a small reduction of the concrete with blasted copper slag performance, when compared with the reference mixture. Results indicated that the blasted copper slag is a technically viable material for application as fine aggregate for concrete mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. High-Temperature Proton-Conducting Ceramics Developed (United States)

    Sayir, Ali; Dynys, Frederick W.; Berger, M. H.


    High-temperature protonic conductors (HTPC) are needed for hydrogen separation, hydrogen sensors, fuel cells, and hydrogen production from fossil fuels. The HTPC materials for hydrogen separation at high temperatures are foreseen to be metal oxides with the perovskite structure A(sup 2+)B(sup 4+)C(sup 2-, sub 3) and with the trivalent cation (M(sup 3+)) substitution at the B(sup 4+)-site to introduce oxygen vacancies. The high affinity for hydrogen ions (H(sup +)) is advantageous for protonic transport, but it increases the reactivity toward water (H2O) and carbon dioxide (CO2), which can lead to premature membrane failure. In addition, there are considerable technological challenges related to the processing of HTPC materials. The high melting point and multi-cation chemistry of HTPC materials creates difficulties in in achieving high-density, single-phase membranes by solid-state sintering. The presence of secondary phases and grain-boundary interfaces are detrimental to the protonic conduction and environmental stability of polycrystalline HTPC materials.

  13. Modification of Inclusions in Molten Steel by Mg-Ca Transfer from Top Slag: Experimental Confirmation of the `Refractory-Slag-Metal-Inclusion (ReSMI)' Multiphase Reaction Model (United States)

    Shin, Jae Hong; Park, Joo Hyun


    High-temperature experiments and Refractory-Slag-Metal-Inclusion (ReSMI) multiphase reaction simulations were carried out to determine the effect of the ladle slag composition on the formation behavior of non-metallic inclusions in molten steel. Immediately after the slag-metal reaction, magnesium migrated to the molten steel and a MgAl2O4 spinel inclusion was formed due to a reaction between magnesium and alumina inclusions. However, the spinel inclusion changed entirely into a liquid oxide inclusion via the transfer of calcium from slag to metal in the final stage of the reaction. Calcium transfer from slag to metal was more enhanced for lower SiO2 content in the slag. Consequently, the spinel inclusion was modified to form a liquid CaO-Al2O3-MgO-SiO2 inclusion, which is harmless under steelmaking conditions. The modification reaction was more efficient as the SiO2 content in the slag decreases.

  14. Physical processes in high field insulating liquid conduction (United States)

    Mazarakis, Michael; Kiefer, Mark; Leckbee, Joshua; Anderson, Delmar; Wilkins, Frank; Obregon, Robert


    In the power grid transmission where a large amount of energy is transmitted to long distances, High Voltage DC (HVDC) transmission of up to 1MV becomes more attractive since is more efficient than the counterpart AC. However, two of the most difficult problems to solve are the cable connections to the high voltage power sources and their insulation from the ground. The insulating systems are usually composed of transformer oil and solid insulators. The oil behavior under HVDC is similar to that of a weak electrolyte. Its behavior under HVDC is dominated more by conductivity than dielectric constant. Space charge effects in the oil bulk near high voltage electrodes and impeded plastic insulators affect the voltage oil hold-off. We have constructed an experimental facility where we study the oil and plastic insulator behavior in an actual HVDC System. Experimental results will be presented and compared with the present understanding of the physics governing the oil behavior under very high electrical stresses. Sandia National Laboratories managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. D.O.E., NNSA under contract DE-NA-0003525.

  15. Surface modification of titanium using steel slag ball and shot blasting treatment for biomedical implant applications (United States)

    Arifvianto, Budi; Suyitno; Mahardika, Muslim


    Surface modification is often performed using grit or shot blasting treatment for improving the performances of biomedical implants. The effects of blasting treatments using steel slag balls and spherical shots on the surface and subsurface of titanium were studied in this paper. The treatments were conducted for 60-300 s using 2-5 mm steel slag balls and 3.18 mm spherical shots. The surface morphology, roughness, and elemental composition of titanium specimens were examined prior to and after the treatments. Irregular and rough titanium surfaces were formed after the treatment with the steel slag balls instead of the spherical shots. The former treatment also introduced some bioactive elements on the titanium surface, but the latter one yielded a harder surface layer. In conclusion, both steel slag ball and shot blasting treatment have their own specialization in modifying the surface of metallic biomaterials. Steel slag ball blasting is potential for improving the osseointegration quality of implants; but the shot blasting is more appropriate for improving the mechanical properties of temporary and load bearing implants, such as osteosynthesis plates.

  16. Avoiding vacuum arcs in high gradient normal conducting RF structures

    CERN Document Server

    Sjøbæk, Kyrre Ness; Adli, Erik; Grudiev, Alexej; Wuensch, Walter

    In order to build the Compact LInear Collider (CLIC), accelerating structures reaching extremely high accelerating gradients are needed. Such structures have been built and tested using normal-conducting copper, powered by X-band RF power and reaching gradients of 100 MV/m and above. One phenomenon that must be avoided in order to reliably reach such gradients, is vacuum arcs or “breakdowns”. This can be accomplished by carefully designing the structure geometry such that high surface fields and large local power flows are avoided. The research presented in this thesis presents a method for optimizing the geometry of accelerating structures so that these breakdowns are made less likely, allowing the structure to operate reliably at high gradients. This was done primarily based on a phenomenological scaling model, which predicted the maximum gradient as a function of the break down rate, pulse length, and field distribution in the structure. The model is written in such a way that it allows direct comparis...

  17. Decontamination of metals by melt refining/slagging. An annotated bibliography: Update on stainless steel and steel

    Energy Technology Data Exchange (ETDEWEB)

    Worchester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A. [Montana Tech of the Univ., of Montana (United States); Mizia, R.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)


    The following presentation is an update to a previous annotation, i.e., WINCO-1138. The literature search and annotated review covers all metals used in the nuclear industries but the emphasis of this update is directed toward work performed on mild steels. As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste problems, Lockheed Idaho Technologies Co (LITCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small wide melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--2,000 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste and Pit 9/RWMC boxes. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development. The program plan will be jointly developed by Montana Tech and LITCO.

  18. Performance of separation processes for precipitated calcium carbonate produced with an innovative method from steelmaking slag and carbon dioxide

    Directory of Open Access Journals (Sweden)

    Sebastian eTeir


    Full Text Available In this work, experiments were performed to determine the filterability of calcium carbonate produced with an alternative calcium carbonate production concept. The concept uses steelmaking slag as raw material and has potential to fix CO2 emissions and utilize steelmaking slag, simultaneously. As calcium carbonate is precipitated in a solution containing ammonium chloride, calcium chloride and ammonia, the product needs to be washed and hence filtered. In this work different separation processes, including washing, filtering and drying, were tested on two calcium carbonate slurries produced from steel converter slag and CO2 by a laboratory-scale pilot facility, with the aim of obtaining a solid product with a low chloride content using a minimum amount of washing water. The order of maximum filtration rates achievable of the calcium carbonate slurries was determined by experimental work. The tests included pressure filtration and vacuum filtration and the test series contained altogether 21 different filtration cycles with varying combinations of filtering, washing, and drying steps. The filtered cakes were analyzed by their residual moisture content, chloride content and conductivity, and the filtrates by their residual solids content, chloride content and conductivity. Pressure filtration gave a high capacity (400-460 kg/m2h and a low cake residual moisture content (12-14 wt-%. Vacuum filtration gave slightly higher filtration rates (500-610 kg/m2h at the lowest residual chloride contents of the cakes, but the cake residual moisture also stayed higher (25-26 wt-%. As the vacuum filtration tests used a filter cloth with higher permeability than that of the pressure filtration tests, a slightly higher filtration rate was expected. However, both filtration technologies seem suitable for filtering and washing calcium carbonate prepared with the studied method as a residual chloride content as low as 10 ppm of the filtered solids can be achieved

  19. High frequency conductivity of hot electrons in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Amekpewu, M., E-mail: [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, S.Y. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Musah, R. [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, N.G. [Department of Mathematics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Abukari, S.S.; Dompreh, K.A. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana)


    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac–dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons’ source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  20. Conduction cooled high temperature superconducting dipole magnet for accelerator applications

    DEFF Research Database (Denmark)

    Zangenberg, N.; Nielsen, G.; Hauge, N.


    A 3T proof-of-principle dipole magnet for accelerator applications, based on 2nd generation high temperature superconducting tape was designed, built, and tested by a consortium under the lead of Danfysik. The magnet was designed to have a straight, circular bore with a good field region of radius...... = 25 mm, and a magnetic length of 250 mm. A total length of 2.5 km YBCO-based copper stabilized conductor supplied by SuperPower Inc., NY, USA, was isolated with 0.025 mm of epoxy and subsequently wound into 14 saddle coils and 4 racetrack coils with a cosine theta like configuration. The coils were......-liquid free operation of an HTS accelerator magnet was demonstrated. The cold mass support design permits magnet orientation under arbitrary angles. Careful choice of materials in terms of magnetic, heat conducting and mechanical properties resulted in a robust and compact solution which opens up...

  1. Flexible and conductive MXene films and nanocomposites with high capacitance. (United States)

    Ling, Zheng; Ren, Chang E; Zhao, Meng-Qiang; Yang, Jian; Giammarco, James M; Qiu, Jieshan; Barsoum, Michel W; Gogotsi, Yury


    MXenes, a new family of 2D materials, combine hydrophilic surfaces with metallic conductivity. Delamination of MXene produces single-layer nanosheets with thickness of about a nanometer and lateral size of the order of micrometers. The high aspect ratio of delaminated MXene renders it promising nanofiller in multifunctional polymer nanocomposites. Herein, Ti3C2T(x) MXene was mixed with either a charged polydiallyldimethylammonium chloride (PDDA) or an electrically neutral polyvinyl alcohol (PVA) to produce Ti3C2T(x)/polymer composites. The as-fabricated composites are flexible and have electrical conductivities as high as 2.2 × 10(4) S/m in the case of the Ti3C2T(x)/PVA composite film and 2.4 × 10(5) S/m for pure Ti3C2T(x) films. The tensile strength of the Ti3C2T(x)/PVA composites was significantly enhanced compared with pure Ti3C2T(x) or PVA films. The intercalation and confinement of the polymer between the MXene flakes not only increased flexibility but also enhanced cationic intercalation, offering an impressive volumetric capacitance of ∼530 F/cm(3) for MXene/PVA-KOH composite film at 2 mV/s. To our knowledge, this study is a first, but crucial, step in exploring the potential of using MXenes in polymer-based multifunctional nanocomposites for a host of applications, such as structural components, energy storage devices, wearable electronics, electrochemical actuators, and radiofrequency shielding, to name a few.

  2. Process-integrated slag treatment; Prozessintegrierte Schlackebehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Koralewska, R.; Faulstich, M. [Technische Univ., Garching (Germany). Lehrstuhl fuer Wasserguete- und Abfallwirtschaft


    The present study compares two methods of washing waste incineration slag, one with water only, and one which uses additives during wet deslagging. The presented aggregate offers ideal conditions for process-integrated slag treatment. The paper gives a schematic description of the integrated slag washing process. The washing liquid serves to wash out the readily soluble constituents and remove the fines, while the additives are for immobilising heavy metals in the slag material. The study is based on laboratory and semi-technical trials on the wet chemical treatment of grate slag with addition of carbon dioxide and phosphoric acid. [Deutsch] Die dargestellten Untersuchungen beziehen sich auf den Vergleich zwischen einer Waesche der Muellverbrennungsschlacke mit Wasser und unter Zugabe von Additiven im Nassentschlacker. In diesem Aggregat bieten sich optimale Voraussetzungen fuer eine prozessintegrierte Schlackebehandlung. Die Durchfuehrung der integrierten Schlackewaesche wird schematisch gezeigt. Durch die Waschfluessigkeit sollen die leichtloeslichen Bestandteile ausgewaschen und die Feinanteile ausgetragen sowie durch die Additive zusaetzlich die Schwermetalle im Schlackematerial immobilisiert werden. Dazu erfolgten Labor- und halbtechnische Versuche zur nasschemischen Behandlung der Rostschlacken unter Zugabe von Kohlendioxid und Phosphorsaeure. (orig./SR)

  3. The improvement of slagging gasifier refractories

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, K.-S.; Bennett, J.P.; Powell, C.A.; Krabbe, R.A.


    Refractories play a vital role in slagging gasifier on-line availability and profitability for the next clean power generation system. A recent survey of gasifier users by USDOE indicated that a longer service life of refractories is the highest need among gasifier operators. Currently, Cr2O3 based refractories, the best of commercially available materials for use in slagging gasifiers, last between 3 and 24 months. Researchers at Albany Research Center (ARC) have identified structural spalling, caused by slag penetration, as one of the major failure mechanisms of Cr2O3 refractories through postmortem analysis. New Cr2O3 refractories with phosphate additives have been developed by ARC to decrease slag penetration and thus structural spalling. Laboratory physical property tests indicated that ARC developed refractories are superior to other commercial bricks. One of the ARC developed phosphate containing refractories has been installed in a slagging gasifier. Preliminary results of the performance of this refractory in the gasifier will be reported along with research to develop non-chromia refractories.

  4. Evaluation of steel slag and crushed limestone mixtures as subbase material in flexible pavement

    Directory of Open Access Journals (Sweden)

    Ahmed Ebrahim Abu El-Maaty Behiry


    Full Text Available Steel slag is produced as a by-product during the oxidation of steel pellets in an electric arc furnace. This by-product that mainly consists of calcium carbonate is broken down to smaller sizes to be used as aggregates in pavement layers. They are particularly useful in areas where a good-quality aggregate is scarce. This research study was conducted to evaluate the effect of quantity of steel slag on the mechanical properties of blended mixes with crushed limestone aggregates, which used as subbase material in Egypt. Moreover, a theoretical analysis was employed to estimate the resistance for failure factors such as vertical deformations, vertical and radial stresses and vertical strains of subbase under overweight trucks loads. These loads cause severe deterioration to the pavement and thus reduce its life. The results indicated that the mechanical characteristics, and the resistance factors were improved by adding steel slag to the crushed limestone.

  5. Optimisasi Bubuk Slag Nikel Dengan Sistem Ternary C-A-S


    Ashad, Hanafi; Nasution, Amrinsyah; Imran, Iswandi; Soegiri, Saptahari


    . This papers study concerning optimization of nickel slag powder as substitution material to partial cement by C-A-S (CaO-Al2O3-SiO2) ternary system. Optimization conducted to determine procentage of nickel slag powder in the consuming calcium hydroxide compound as hydration product of tricalcium silicate (C3S) and dicalcium silicate (C2S) cement with water so that form secondary of calcium silicate hydrate (CSH) compound. By the phase diagram C-A-S ternary system, procentage of optimum nick...

  6. Characterisation of sand transport in gravel-bed rivers using iron slag dated by historical studies (United States)

    Houbrechts, G.; Levecq, Y.; Petit, F.


    Considerable quantities of iron-smelting slag are present in the bed of the Ardennian rivers. These waste products come from hundreds of ironworks (mainly blast furnaces and finery forges) built close to different-sized rivers between the 14th and the 19th centuries. In general, slag was crushed by hammers, sorted and piled up in heaps around the furnaces, generally onto the floodplains. Furthermore, some archives mention that they were sometimes thrown out directly into the rivers. This means that for centuries, slag elements have been swept away by floods, mixed with the sediment and spread out along river courses. Due to their distinctive appearance, slag particles are easily recognizable among the natural elements. Thanks to many historical studies conducted on the early iron industry, we are able to date quite precisely the inception and the periods of activity of the different sites established in the catchments. These data are indispensable in order to use slag as a tracer to quantify the particles' velocity in rivers. Downstream of ironworks, samples of sand have been collected in the surface layer of many gravel-bed rivers. Then, the slag concentration of each sample has been measured in the coarse sand fraction. The representation of the longitudinal evolution of slag concentration in these rivers permits the dispersion of slag to be analysed, the relative bed-material discharges at confluences to be quantified and the velocity of coarse sand to be determined. A survey of the bedload discharge in the Ardennian rivers established that more than 90 % of the bedload transport consists of coarse sand grains that are transported on the bottom of the bed. However, in the literature, this grain-size fraction is generally not considered in bedload discharge estimations because the sandy particles are very difficult to tag and to recover. Consequently, the huge amounts of slag injected in rivers several centuries ago can be considered as a very useful opportunity

  7. Ecological conditions of ponds situated on blast furnace slag deposits located in South Gare Site of Special Scientific Interest (SSSI), Teesside, UK. (United States)

    Raper, E; Davies, S; Perkins, B; Lamb, H; Hermanson, M; Soares, A; Stephenson, T


    Slag, a by-product from the iron and steel industry, has a range of applications within construction and is used in wastewater treatment. Historically considered a waste material, little consideration was given to the environmental impacts of its disposal. South Gare (a Site of Special Scientific Interest) located at the mouth of the Tees estuary, UK, formed on slag deposits used to create a sea wall and make the land behind permanent. Over time, ponds formed in depressions with the water chemistry, being significantly impacted by the slag deposits. Calcium levels reached 504 mg/L, nitrate 49.0 mg/L and sulphate 1,698 mg/L. These levels were also reflected in the composition of the sediment. pH (5.10-9.90) and electrical conductivity (2,710-3,598 µS/cm) were variable but often notably high. Pb, Cu and Cd were not present within the water, whilst Zn ranged from 0.027 to 0.37 mg/L. Heavy metal levels were higher in surface sediments. Zinc was most dominant (174.3-1,310.2 mg/L) followed by Pb (9.9-431 mg/L), Cu (8.4-41.8 mg/L) and Cd (0.4-1.1 mg/L). A sediment core provided a historical overview of the ponds. The ponds were unfavourable for aquatic biodiversity and unsuitable for drinking water abstraction.

  8. Granulated blast furnace slag – A boon for foundry industry

    African Journals Online (AJOL)

    A356 alloy and grey cast iron castings were executed on these recently built up slag moulds. The outcomes show that the mould's compression, permeability as well as the shear strength of the GBF slag is an appropriate candidate for ... with silica sand the BF slag can be used as a moulding material in foundry industry.

  9. Environmental and economic implications of slag disposal practices ...

    African Journals Online (AJOL)


    Jan 1, 2003 ... slag), a semi-solid waste still containing ferrochromium and. 2% moisture, is tapped into a slag bell (a big round pot-like container) and processed through a metal-recovery processing. (MRP) plant where the slag is crushed, screened and separated from the residual metal through a hydro-jigging process.

  10. Utilization of steel melting electric arc furnace slag for development ...

    Indian Academy of Sciences (India)

    ... but generates a new waste, electric arc furnace slag, which is getting accumulated and land/mine filling and road construction are the only utilization. This slag has been tried to be value added and utilized to develop vitreous ceramic tiles. Slag, to the extent of 30–40 wt% with other conventional raw materials, were used ...

  11. Radiative properties of ash and slag

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Markham, J.R.; Best, P.E.; Yu, Zhen-Zhong.


    The objective of this program has been to make laboratory measurements of the radiative properties of ash and slag deposits that have been extracted from combustion devices. The program has resuited in measurements of radiative properlies of materials at high temperatures made by a technique employing a sample heatng deVice that is coupled to a FT-IR spectrometer to measure emission, directional-hemispherical transmission, and directional-hemispherical reflection of a sample. By this technique, the temperature at the measurement point and the spectral emittance (emissivity) of the surface are both obtained. These measurements are then related to the physical and chemical properties of the surface to determine what controls the radiative properlies. The measurements have shown that the physical state of a deposit (i.e. fused, sintered or packed particles) greatly influence the measured spectral emittance. The main accomplishments of the program are as follows: (1) Demonstration of measurement technique validation. (2) Measurements of spectral emittance for deposit samples as a function of temperature and morphology. (3) Accurate calculations of the optical properties of smooth and sintered surfaces based on the material's complex Index of refraction and the surface morphology.

  12. Preparation of Highly Conductive Yarns by an Optimized Impregnation Process (United States)

    Amba Sankar, K. N.; Mohanta, Kallol


    We report the development of the electrical conductivity in textile yarns through impregnation and post-treatment of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The conductive polymer is deposited on fibers, which fills the gap space within the hierarchical structure of the yarns. Organic nonpolar solvents act as reducing agent to increase the density of PEDOT moieties on the yarns, galvanizing increment in conductivity values. Post-treatment by ethylene glycol transforms the resonance configuration of the conductive moieties of conjugated polymer, which helps in further enhancement of electrical conductivity of the yarns. We have optimized the method in terms of loading and conformal change of the polymer to have a lesser resistance of the coated conductive yarns. The minimum resistance achieved has a value of 77 Ωcm-1. This technique of developing conductivity in conventional yarns enables retaining the flexibility of yarns and feeling of softness which would find suitable␣applications for wearable electronics.

  13. Preparation of Highly Conductive Yarns by an Optimized Impregnation Process (United States)

    Amba Sankar, K. N.; Mohanta, Kallol


    We report the development of the electrical conductivity in textile yarns through impregnation and post-treatment of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The conductive polymer is deposited on fibers, which fills the gap space within the hierarchical structure of the yarns. Organic nonpolar solvents act as reducing agent to increase the density of PEDOT moieties on the yarns, galvanizing increment in conductivity values. Post-treatment by ethylene glycol transforms the resonance configuration of the conductive moieties of conjugated polymer, which helps in further enhancement of electrical conductivity of the yarns. We have optimized the method in terms of loading and conformal change of the polymer to have a lesser resistance of the coated conductive yarns. The minimum resistance achieved has a value of 77 Ωcm-1. This technique of developing conductivity in conventional yarns enables retaining the flexibility of yarns and feeling of softness which would find suitable applications for wearable electronics.

  14. Immobilization of antimony waste slag by applying geopolymerization and stabilization/solidification technologies. (United States)

    Salihoglu, Güray


    During the processing of antimony ore by pyrometallurgical methods, a considerable amount of slag is formed. This antimony waste slag is listed by the European Union as absolutely hazardous waste with a European Waste Catalogue code of 10 08 08. Since the levels of antimony and arsenic in the leachate of the antimony waste slag are generally higher than the landfilling limits, it is necessary to treat the slag before landfilling. In this study, stabilization/solidification and geopolymerization technologies were both applied in order to limit the leaching potential of antimony and arsenic. Different combinations ofpastes by using Portland cement, fly ash, clay, gypsum, and blast furnace slag were prepared as stabilization/solidification or geopoljymer matrixes. Sodium silicate-sodium hydroxide solution and sodium hydroxide solution at 8 M were used as activators for geopolymer samples. Efficiencies of the combinations were evaluated in terms of leaching and unconfined compressive strength. None of the geopolymer samples prepared with the activators yielded arsenic and antimony leaching below the regulatory limit at the same time, although they yielded high unconfined compressive strength levels. On the other hand, the stabilization/solidification samples prepared by using water showed low leaching results meeting the landfilling criteria. Use of gypsum as an additive was found to be successful in immobilizing the arsenic and antimony.

  15. Arc model for slag coated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Satheesh Kumar, A.; Gupta, B.; Tewari, D.P. [Department of Physics, IIT, New Delhi (India)


    A model for arcs in the cathode region in the presence of a slag layer is given. The arc has been assumed to be comprised of two sections; one in the slag layer and the other in the plasma boundary layer. A model for the arc consisting of an arc column, a spreading region and a diffuse region has been considered. The dimensions of the arc, such as arc height and diameter, have been obtained. The boundary layer voltage drop, comprised of the arc column voltage drop, spreading region voltage drop and diffuse region drop, and the arc current have also been obtained. (Author)

  16. High conducting oxide--sulfide composite lithium superionic conductor (United States)

    Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin


    A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.

  17. Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Andrade Lima, L.R.P. de, E-mail: [Department of Materials Science and Technology, Federal University of Bahia, C.P. 6974, Salvador, BA 41810-971 (Brazil); Bernardez, L.A. [Ingenium Consultoria em Engenharia Ltda (Brazil)


    For 33 years, a primary lead smelter operated in Santo Amaro (Brazil). Since the 1970s, large amounts of Pb and Cd have been widely documented in the blood and hair of people living near the smelter. The plant closed down in 1993, and several years later, the Pb levels in the blood of children under 4 years of age living near the smelter were high, where the disposed lead slag was suspected to be the main source of this contamination. The objective of this study is to elucidate the source of the Pb contamination and any other potentially toxic contamination, focusing on the characterization of the slag. The samples used for this characterization study were taken from the slag heaps. The results of the chemical analysis showed that the major constituents of the slag, in decreasing order of wt%, were the following: Fe{sub 2}O{sub 3} (28.10), CaO (23.11), SiO{sub 2} (21.39), ZnO (9.47), MgO (5.44), PbO (4.06), Al{sub 2}O{sub 3} (3.56), C (2.26), MnO (1.44), Na{sub 2}O (0.27), S (0.37), K{sub 2}O (0.26), and TiO{sub 2} (0.25). The Cd content of the slag was 57.3 mg/kg, which is relatively low. The X-ray diffraction and the electron probe microanalyzer X-ray mapping indicated that the major phases in the slag were wuestite, olivine, kirschsteinite, and franklinite. Only spheroidal metallic Pb was found in the slag. The leaching study showed that the slag was stable at a pH greater than 2.8, and only in an extremely acidic environment was the solubilization of the Pb enhanced significantly. The solubilization of Zn was very limited in the acidic and alkaline environments. These results can be explained by the limited leachability of the metallic Pb and Zn-bearing compounds. The leaching study used TCLP, SPLP, and SWEP and indicated that the lead slag was stable in weak acidic environments for short contact times.

  18. Effect of additives in reducing ash sintering and slagging in biomass combustion applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang


    The objective of this study was to investigate sintering and slagging behaviors of biofuels during combustion processes. Biofuels tested are derived from the agricultural sector, wood and furniture industry as well as from municipal sewage sludge. It was also the aim to test and evaluate additives that can prevent and abate biomass ash sintering by conducting laboratory and industrial scale tests. Sintering characteristics of sewage sludge ashes at elevated temperatures were investigated by means of different laboratory methods. Utilizing of phosphorus participation agents Al2(SO4)3 or Fe2(SO4)3 caused substantially high contents of aluminum or iron in the studied sewage sludge ashes, respectively. High initial melting temperatures over 1100 degrees C and low sintering tendencies were observed from the sewage sludge ashes rich in aluminum. It was related to presence and formation of the inert mineral phases such as aluminum oxide, quartz and calcium aluminum silicates in the aluminum rich sewage sludge ashes at elevated temperatures. A low melting temperature, about 994 degree C, was detected from the iron rich sewage sludge ash. Severe sintering of this sewage sludge ash was mainly due to generation of low temperature melting iron silicates, as results of interaction and re-assemblage of hematite (Fe2O3), quartz (SiO2) and alkali feldspars under heating. Fusion behaviors of corn cob ashes under rising temperatures were characterized. The work revealed that chemical compositions of corn cob ashes are dominated by potassium, silicon, chlorine and phosphorus. However, the relative concentrations of these principal elements are considerably different for three studied corn cob ashes, which have major influence on ash transformation reactions and sintering tendencies. Compared with the other two, the chemical composition of the Waimanalo corn cob (WCob) was characterized with the highest K/Cl, Si/(Ca+Mg) and (Si+P+K)/(Ca+Mg) molar ratios, which was favorable for

  19. High Thermal Conductivity Functionally Graded Heat Sinks for High Power Packaging Project (United States)

    National Aeronautics and Space Administration — This NASA SBIR Phase I program proposes the development of a high thermal conductivity (400 W/mK), low coefficient of thermal expansion (7-10 ppm/?K), and light...

  20. Study on electrolytic reduction with controlled oxygen flow for iron from molten oxide slag containing FeO

    Directory of Open Access Journals (Sweden)

    Gao Y.M.


    Full Text Available A ZrO2-based solid membrane electrolytic cell with controlled oxygen flow was constructed: graphite rod /[O]Fe+C saturated / ZrO2(MgO/(FeO slag/iron crucible. The feasibility of extraction of iron from molten oxide slag containing FeO at an applied voltage was investigated by means of the electrolytic cell. The effects of some important process factors on the FeO electrolytic reduction with the controlled oxygen flow were discussed. The results show that: solid iron can be extracted from molten oxide slag containing FeO at 1450ºC and an applied potential of 4V. These factors, such as precipitation and growth of solid iron dendrites, change of the cathode active area on the inner wall of the iron crucible and ion diffusion flux in the molten slag may affect the electrochemical reaction rate. The reduction for Fe2+ ions mainly appears on new iron dendrites of the iron crucible cathode, and a very small amount of iron are also formed on the MSZ (2.18% MgO partially stabilized zirconia tube/slag interface due to electronic conductance of MSZ tube. Internal electronic current through MSZ tube may change direction at earlier and later electrolytic reduction stage. It has a role of promoting electrolytic reduction for FeO in the molten slag at the earlier stage, but will lower the current efficiency at the later stage. The final reduction ratio of FeO in the molten slag can achieve 99%. A novel electrolytic method with controlled oxygen flow for iron from the molten oxide slag containing FeO was proposed. The theory of electrolytic reduction with the controlled oxygen flow was developed.

  1. Mixture of industrial waste oxidized titanium and reduced slag from electric furnace used as hydraulic material. Denkiro kangen slug to sanka titan kogyo haikibutsu no kongobutsu no suinan zairyo to shiteno riyo

    Energy Technology Data Exchange (ETDEWEB)

    Honda, A. (Osaka City University, Osaka (Japan). Faculty of Engineering); Kuwayama, T. (Daido Institute of Technology, Nagoya (Japan)); Yamada, M.; Ikezaki, H. (Osaka City University, Osaka (Japan). Faculty of Engineering)


    Slag released from an electric furnace consists mainly of waste steel. There are two types of slag, namely, oxidized slag and reduced slag. Reduced slag, which is generally in the form of powder, is difficult to recycle as compared with oxidized slag. However, with a hydraulicity, some reduced slag is expected to be useful as hydraulic material. Test results obtained here show that the hydraulic properties of reduced slag powder can be improved by mixing it with gypsum and that the resultant mixture can serve to improve the prooperties of soft clay. Another study is made to determine the potential, as hydraulic material, of mixtures of reduced slag powder and waste gypsum material with a high gypsum content released from an oxidized titanium production process. The hydraulicity is found to develop as a result of the formation of a hydrate of calcium aluminate which is contained in the slag. Addition of water to the hydrate and gypsum cause the formation of ettringite, leading to an increased uniaxial compressive strength. These findings indicate that the above-mentioned mixture can be useful to improve the hydraulic properties of coal ash to be disposed of at landfill sites. 5 refs., 5 figs., 1 tab.

  2. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing

    Energy Technology Data Exchange (ETDEWEB)

    Liapis, Ioannis, E-mail: [AEIFOROS SA, 12th km Thessaloniki-Veroia Rd, PO Box 59, 57008 Ionia, Thessaloniki (Greece); Papayianni, Ioanna [Laboratory of Building Materials, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)


    Highlights: • Addition of 10% perlite decreases specific weight of the slag by approx. 7.5%. • Slag-crucible interaction and thin coating layer result in variations in XRF. • XRD shows high glass content and smaller crystalline sizes due to rapid cooling. • SEM shows higher homogeneity and lower crystallisation for SiO{sub 2}/CaO-rich samples. • Physical properties (LA, PSV, AAV) of modified slag show limited deterioration. - Abstract: Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector.


    Directory of Open Access Journals (Sweden)



    Full Text Available In this study, metakaolin plus different weight percent of phosphorus slag (10-100 wt. % were used in preparation of geopolymer. The compressive strength, phase analysis and microstructure changes were compared with a metakaolin based geopolymer control sample. Results showed that the substitution of slag up to 40 wt. % instead of metakaolin increase the 28 days compressive strength (14.5 % compared with control sample. This enhancement of strength is related to coexistence of geopolymeric gel and C‒S‒H gel or C‒A‒S‒H phase by XRD and FTIR study. In slag containing geopolymer samples some microcracks were observed at microstructure that established by volume change during formation of new phase or mismatching of unreacted particle with geopolymeric gel. These microcrack can dominate at high content of slag (above 40 wt. % substitution and decrease the strength of samples. These results show that it is possible to produce geopolymer cement from waste phosphorus slages.

  4. Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. (United States)

    Xue, Yongjie; Hou, Haobo; Zhu, Shujing


    The adsorption characteristics of phosphate adsorption on the basic oxygen furnace (BOF) slag were identified as a function of pH and ion strengths in solution. In addition, adsorption mechanisms were investigated by conducting batch tests on both the hydrolysis and phosphate adsorption process of the BOF slag, and making a comparative analysis to gain newer insights into understanding the adsorption process. Results show that the adsorption capacity from 4.97 to 3.71 mgP/g slag when the solution pH was increased from 2.0 to 13.0 and phosphate initial concentration was 50 mg/L, indicating that adsorption capacity is largely dependent upon the pH of the system. The results of the competitive adsorption between phosphate and typical anions found in wastewater, such as NO(3)(-), SO(4)(2-) and Cl(-), onto BOF slag reveal that BOF slag can selectively adsorb phosphate ions. The insignificant effect of NO(3)(-), SO(4)(2-) and Cl(-) on phosphate adsorption capacity indicates that phosphate adsorption is through a kind of inner-sphere complex reaction. During the adsorption process, the decrease of phosphate concentration in solution accompanied with an increase in pH values and concentrations of NO(3)(-), SO(4)(2-) and Cl(-) suggests that phosphate replaced the functional groups from the surface of BOF slag which infers that ligand exchange is the dominating mechanism for phosphate removal. At the same time, the simultaneous decreases in PO(4)(3-) and total calcium, magnesium and aluminum concentration in solution indicate that chemical reaction and precipitation are other mechanisms of phosphate removal.

  5. Thermodynamic properties of chromium bearing slags and minerals. A review

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Yanping; Holappa, L.


    In this report, the thermodynamic properties of chromium bearing slags and minerals were reviewed based on the available information in the literature. It includes the analysing methods for oxidation state of chromium in slags, oxidation state of chromium and activities of chromium oxides in slags and minerals. The phase diagrams of chromium oxide systems and chromium distributions between slag and metal phases are also covered ill this review. Concerning the analysing methods, it was found that most of the available approaches are limited to iron free slag systems and the sample preparation is very sensitive to the analysing results. In silicate slags under reducing atmosphere, divalent and trivalent chromium co-exist in the slags. It is agreed that the fraction of divalent chromium to total chromium increases with higher temperature, lower slag basicity and oxygen potential. For the slags under oxidising atmosphere, trivalent, pentavalent and hexavalent states were reported to be stable. The activities of CrO and CrO{sub 1.5} were concluded to have positive deviation from ideal solution. Slag basicity has a positive effect and temperature has a negative effect on the activities of chromium oxides. The phase diagrams of the Cr-O, binary, and ternary chromium containing oxide systems have been examined systematically. The analysis shows that the data on the quaternary and quinary systems are insufficient, and require further investigation. The most important features of the chromium containing silicate slags are the large miscibility gaps and the stability of the chromite spinel. (orig.) (76 refs.)

  6. Impact of electro slag remelting on 14 109 steel properties

    Directory of Open Access Journals (Sweden)

    Pribulová A.


    Full Text Available The Electro Slag Remelting (ESR is one of the remelting processes in the field of metal refinery. In this process, the slag plays various roles, such as heat generation, protection of melt, and chemical refining. The main objective of the experiments described in this article was to identify the most appropriate slag composition for the electro slag remelting of the steel in order to achieve the chemical composition compliant with the standard applicable to the given steel, minimum sulphur content, minimum contents of oxide and sulphide inclusions, as well as mechanical properties corresponding to the standard applicable to the steel STN 14 109. Ten electrodes were remelted, whereas the remelting was carried out under 8 slags. The used slags containing 70% of CaF2 and 30% of Al2O3 with different addition of CaO, the slags consisted of the same components as previous slags, whereas the ratio of individual components was 1:1:1, and with SiO2 and MgO and slag without Al2O3. With regard to all the above mentioned facts, the slag types which may be regarded as the most appropriate for the STN 14 109 steel remelting are the basic slags containing 70% of CaF2 - 30% of Al2O3 with added 30 and 45 weight % of CaO.

  7. Characteristics and environmental aspects of slag: a review (United States)

    Piatak, Nadine M.; Parsons, Michael B.; Seal, Robert R.


    Slag is a waste product from the pyrometallurgical processing of various ores. Based on over 150 published studies, this paper provides an overview of mineralogical and geochemical characteristics of different types of slag and their environmental consequences, particularly from the release of potentially toxic elements to water. This chapter reviews the characteristics of both ferrous (steel and blast furnace Fe) and non-ferrous (Ag, Cu, Ni, Pb, Sn, Zn) slag. Interest in slag has been increasing steadily as large volumes, on the order of hundreds of millions of tonnes, are produced annually worldwide. Research on slag generally focuses on potential environmental issues related to the weathering of slag dumps or on its utility as a construction material or reprocessing for secondary metal recovery. The chemistry and mineralogy of slag depend on the metallurgical processes that create the material and will influence its fate as waste or as a reusable product.

  8. Disruption of the Electrical Conductivity of Highly Conductive Poly(3,4-ethylenedioxythiophene) : Poly(styrene sulfonate) by Hypochlorite

    NARCIS (Netherlands)

    Oostra, A. Jolt; Bos, Karel H.W. van den; Blom, Paul W.M.; Michels, Jasper J.


    The effect of hypochlorite treatment on the layer thickness and conductivity of a state-of-the-art high conducting poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is investigated as a function of exposure time and hypochlorite concentration. Because of overoxidation by the

  9. Combination of Slag, Limestone and Sedimentary Apatite in Columns for Phosphorus Removal from Sludge Fish Farm Effluents

    Directory of Open Access Journals (Sweden)

    Florent Chazarenc


    Full Text Available Laboratory scale studies have repeatedly reported high P-retention in slag, a by-product of the steel manufacturing industry. Thus, it has emerged as a potential material to increase P-removal from constructed wetlands (CWs. However, several limitations were highlighted by field experiments, including the high pH of treated water and clogging. We hypothesized that the addition of sedimentary rocks to slag would preserve P-removal properties while reducing the pH of treated water. Four 2.5 L-columns were filled with 100% apatite (column A; a 50% weight each mixture of limestone with apatite (column B; 10% steel slag located at the inlet, plus 45% limestone mixed with 45% apatite (column C; and a mixture of steel slag (10%, limestone (45% apatite (45% (column D. A synthetic effluent (26 mg P/L and a reconstituted sludge fish farm effluent containing 97 mg/L total suspended solids (TSS, 220 mg/L chemical oxygen demand (COD and 23.5 mg P/L phosphorus (P were applied sequentially during 373 and 176 days, under saturated flow conditions and 12–24 hours hydraulic residence time (HRT, respectively. Treatment performance, P-removal, pH and calcium (Ca2+ were monitored. Results indicated that columns that contained 10% weight steel slag resulted in a higher P retention capacity than the columns without steel slag. The highest P removal was achieved in column C, containing a layer of slag in the inlet zone, 45% apatite and 45% limestone. Feeding the columns with a reconstituted fish farm effluent led to biofilm development, but this had little effect on the P-removal. A combination of slag and sedimentary rocks represents a promising filtration material that could be useful downstream of CWs to further increase P-removal.

  10. Verification of Steelmaking Slags Iron Content Final Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    J.Y. Hwang


    The steel industry in the United States generates about 30 million tons of by-products each year, including 6 million tons of desulfurization and BOF/BOP slag. The recycling of BF (blast furnace) slag has made significant progress in past years with much of the material being utilized as construction aggregate and in cementitious applications. However, the recycling of desulfurization and BOF/BOP slags still faces many technical, economic, and environmental challenges. Previous efforts have focused on in-plant recycling of the by-products, achieving only limited success. As a result, large amounts of by-products of various qualities have been stockpiled at steel mills or disposed into landfills. After more than 50 years of stockpiling and landfilling, available mill site space has diminished and environmental constraints have increased. The prospect of conventionally landfilling of the material is a high cost option, a waste of true national resources, and an eternal material liability issue. The research effort has demonstrated that major inroads have been made in establishing the viability of recycling and reuse of the steelmaking slags. The research identified key components in the slags, developed technologies to separate the iron units and produce marketable products from the separation processes. Three products are generated from the technology developed in this research, including a high grade iron product containing about 90%Fe, a medium grade iron product containing about 60% Fe, and a low grade iron product containing less than 10% Fe. The high grade iron product contains primarily metallic iron and can be marketed as a replacement of pig iron or DRI (Direct Reduced Iron) for steel mills. The medium grade iron product contains both iron oxide and metallic iron and can be utilized as a substitute for the iron ore in the blast furnace. The low grade iron product is rich in calcium, magnesium and iron oxides and silicates. It has a sufficient lime value and

  11. Study on slag forming mechanism of hot metal containing titanium in converter (United States)

    Wang, H. B.; Lv, Y. C.; Qin, L. Y.; Liu, Y.; Ma, C. W.; Kong, X. T.


    The use of titanium containing molten iron can expand the sources of raw materials, reduce the cost, but the process produce serious foaming slag, low dephosphorization proportion and the consumption of lime is high. The technicians have improved the operation process through experiments and solved the problem of efficient and smooth blowing of hot metal containing titanium. Through mine phase composition analysis of slag using SEM and EDS, the distribution of titanium and the regularity of phosphorus retention are found, and measures to prevent phosphorus recovery in the later stage of converter are put forward.

  12. Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Sulfide Capacity (United States)

    Yan, Zhiming; Lv, Xuewei; Pang, Zhengde; He, Wenchao; Liang, Dong; Bai, Chenguang


    The effect of Al2O3 and Al2O3/SiO2 ratio on the sulfide capacity of the molten aluminosilicate CaO-SiO2-Al2O3-MgO-TiO2 slag system with high Al2O3 content was measured at 1773 K (1500 °C) using a metal-slag equilibration method. The sulfide capacity between silicate-based and aluminate-based slag was also compared based on the thermodynamic analysis and structural characteristics of melts. At a fixed CaO/SiO2 ratio of 1.20, the sulfide capacity decreases with increasing Al2O3 content primarily due to the decrease of free oxygen (FO) and the activity of O2-. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.79 causes a significant increase in the sulfide capacity of the slags, and a slight increase is found when the Al2O3/SiO2 ratio is more than 0.79. The effect of the substitution of silica by alumina on the sulfide capacity of the slags was not only due to an increase in the activity of basic oxides ( a_{{{O}^{2 - } }} ) but also to a decrease in the stability of sulfide ( γ_{{{S}^{2 - } }} ). Moreover, a_{{{O}^{2 - } }} and γ_{{{S}^{2 - } }} increase in a similar degree, and the weaker binding electronegativity of Al3+ with oxygen atoms results in a slight increase in the final sulfide capacity in the aluminate-based slag system with Al2O3 ↔ SiO2 substitution. Five different sulfide capacity models were employed to predict the sulfide capacity, and the iso-sulfide capacity distribution diagram based on the Young's model was obtained in the high Al2O3 corner of the diagram.

  13. Mechanical behaviour of alkali-activated blast furnace slag-activated metakaolin blended pastes. Statistical study

    Directory of Open Access Journals (Sweden)

    Higuera, I.


    Full Text Available The study and development of alternative, more ecoefficient binders than portland cement are attracting a good deal of scientific and technological interest. Binders obtained from the chemical interaction between calcium silico-aluminous materials and highly alkaline solutions are one of several types of such possible cements. The present paper discusses the mechanical behaviour and mineralogical composition of blended pastes made from NaOH-activated vitreous blast furnace slag and metakaolin. The aim of the study was to determine how parameters such as the slag/metakaolin ratio, activating solution concentration and curing temperature affect strength development in these binders. A statistical study was conducted to establish the impact of each variable and model strength behaviour in these alkaline cements. The conclusion drawn is that activator concentration and the slag/metakaolin ratio are both determinant parameters.

    El estudio y desarrollo de cementos alternativos y más eco-eficientes que el cemento Portland es un tema de gran impacto a nivel científico y tecnológico. Entre esos posibles cementos se encuentran los cementos alcalinos que son materiales conglomerantes obtenidos por la interacción química de materiales silico-aluminosos cálcicos y disoluciones fuertemente alcalinas. En el presente trabajo se estudia el comportamiento mecánico y la composición mineralógica de mezclas de escoria vítrea de horno alto y metacaolín activadas alcalinamente con disoluciones de NaOH. El objetivo de este estudio es conocer cómo afectan parámetros tales como la relación escoria/metacaolín, la concentración de la disolución activadora y la temperatura de curado, al desarrollo resistente de las mezclas. A través del estudio estadístico realizado se ha podido establecer la influencia de cada variable y modelizar el comportamiento resistente de estos cementos alcalinos. Se concluye que la concentración del activador y la relaci

  14. Evidence for high ionic conductivity in lithium–lanthanum titanate,

    Indian Academy of Sciences (India)

    ion migration and the number of defects at the Li sites. Recent investigations have been shown that tilting of TiO6 octahedra changes the bottle-neck size, which is directly related to the Li. + conductivity (Latie et al. ∗. Author for correspondence ( 1984; Inaguma et al 1993, 2002; Fourquet et al 1996; ...

  15. The role of alumina on performance of alkali-activated slag paste exposed to 50 °C

    Energy Technology Data Exchange (ETDEWEB)

    Jambunathan, N. [Department of Civil Engineering, Monash University, Clayton, Victoria 3800 (Australia); Sanjayan, J.G. [Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Victoria (Australia); Pan, Z., E-mail: [Department of Civil Engineering, Monash University, Clayton, Victoria 3800 (Australia); Li, G. [School of Mechanical and Chemical Engineering, The University of Western Australia, Crawley, WA 6009 (Australia); Liu, Y. [School of Geosciences and Info-Physics, Central South University, Changsha 410083 (China); Korayem, A.H.; Duan, W.H.; Collins, F. [Department of Civil Engineering, Monash University, Clayton, Victoria 3800 (Australia)


    The strength and microstructural evolution of two alkali-activated slags, with distinct alumina content, exposed to 50 °C have been investigated. These two slags are ground-granulated blast furnace slag (containing 13% (wt.) alumina) and phosphorous slag (containing 3% (wt.) alumina). They were hydrated in the presence of a combination of sodium hydroxide and sodium silicate solution at different ratios. The microstructure of the resultant slag pastes was assessed by X-ray diffraction, differential thermogravimetric analysis, and scanning electron microscopy. The results obtained from these techniques reveal the presence of hexagonal hydrates: CAH{sub 10} and C{sub 4}AH{sub 13} in all alkali-activated ground-granulated blast-furnace slag pastes (AAGBS). These hydrates are not observed in pastes formed by alkali-activated ground phosphorous slag (AAGPS). Upon exposure to 50 °C, the aforementioned hydration products of AAGBS pastes convert to C{sub 3}AH{sub 6}, leading to a rapid deterioration in the strength of the paste. In contrast, no strength loss was detected in AAGPS pastes following exposure to 50 °C. -- Highlights: •Strength of alkali-activated slag (AAS) pastes after exposure to 50 °C is studied. •AAS pastes with high alumina content lose strength after the exposure. •C{sub 4}AH{sub 13} and CAH{sub 10} form in these AAS pastes. •Conversion of these calcium alumina hydrates is associated with the strength loss. •AAS pastes with low alumina content maintain its strength after the exposure.

  16. Influence of B2O3 and Basicity on Viscosity and Structure of Medium Titanium Bearing Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Lingtao Bian


    Full Text Available The effects of B2O3 and basicity (CaO/SiO2 on the viscous behavior and structure of medium titanium bearing blast furnace slag (MTBBFS were investigated. High temperature viscosimeter was applied to measure the viscosities of CaO-SiO2-MgO-TiO2-Al2O3-B2O3 slag system and X-ray diffraction (XRD, NBO/T ratio, and structure parameter Q were employed to analyze its network structure. The results showed that the viscosity decreased and break point temperature increased with increasing basicity to 1.20. However B2O3 addition gave rise to a decrease in slag viscosity and break point temperature inspite of basicity. The more B2O3 content leads to the more pronounced variation, especially for the slag with larger basicity. The conventional NBO/T formula was revised to predict the structure variation of relatively complicated medium Ti bearing slag based on the work of Yanhong Gao and other researchers. The increase of B2O3 content in slag made parameter Q turn from Q2 to Q1, suggesting that network structure became simpler. It was also noticed that the addition of B2O3 could suppress the formation of perovskite.

  17. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, Susan A., E-mail: [Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010 (Australia); Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Provis, John L., E-mail: [Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010 (Australia); Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Walkley, Brant; San Nicolas, Rackel [Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010 (Australia); Gehman, John D. [School of Chemistry and Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia); Brice, David G.; Kilcullen, Adam R. [Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010 (Australia); Zeobond Pty Ltd, P.O. Box 23450, Docklands, Victoria 8012 (Australia); Duxson, Peter [Zeobond Pty Ltd, P.O. Box 23450, Docklands, Victoria 8012 (Australia); Deventer, Jannie S.J. van [Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010 (Australia); Zeobond Pty Ltd, P.O. Box 23450, Docklands, Victoria 8012 (Australia)


    Binders formed through alkali-activation of slags and fly ashes, including ‘fly ash geopolymers’, provide appealing properties as binders for low-emissions concrete production. However, the changes in pH and pore solution chemistry induced during accelerated carbonation testing provide unrealistically low predictions of in-service carbonation resistance. The aluminosilicate gel remaining in an alkali-activated slag system after accelerated carbonation is highly polymerised, consistent with a decalcification mechanism, while fly ash-based binders mainly carbonate through precipitation of alkali salts (bicarbonates at elevated CO{sub 2} concentrations, or carbonates under natural exposure) from the pore solution, with little change in the binder gel identifiable by nuclear magnetic resonance spectroscopy. In activated fly ash/slag blends, two distinct gels (C–A–S–H and N–A–S–H) are formed; under accelerated carbonation, the N–A–S–H gel behaves comparably to fly ash-based systems, while the C–A–S–H gel is decalcified similarly to alkali-activated slag. This provides new scope for durability optimisation, and for developing appropriate testing methodologies. -- Highlights: •C-A-S-H gel in alkali-activated slag decalcifies during accelerated carbonation. •Alkali-activated fly ash gel changes much less under CO{sub 2} exposure. •Blended slag-fly ash binder contains two coexisting gel types. •These two gels respond differently to carbonation. •Understanding of carbonation mechanisms is essential in developing test methods.

  18. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Na; Li, Hongxu [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, Yazhao [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Xiaoming, E-mail: [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China)


    Highlights: • Cementitious material was designed according to [SiO{sub 4}] polymerization degree of raw materials. • The cementitious material composed of calcium silicate slag yields excellent physical and mechanical properties. • Amorphous C–A–S–H gel and rod-like ettringite are predominantly responsible for the strength development. • Leaching toxicity and radioactivity tests show the cementitious material is environmentally acceptable. - Abstract: Calcium silicate slag is an alkali leaching waste generated during the process of extracting Al{sub 2}O{sub 3} from high-alumina fly ash. In this research, a cementitious material composed of calcium silicate slag was developed, and its mechanical and physical properties, hydration characteristics and environmental friendly performance were investigated. The results show that an optimal design for the cementitious material composed of calcium silicate slag was determined by the specimen CFSC7 containing 30% calcium silicate slag, 5% high-alumina fly ash, 24% blast furnace slag, 35% clinker and 6% FGD gypsum. This blended system yields excellent physical and mechanical properties, confirming the usefulness of CFSC7. The hydration products of CFSC7 are mostly amorphous C–A–S–H gel, rod-like ettringite and hexagonal-sheet Ca(OH){sub 2} with small amount of zeolite-like minerals such as CaAl{sub 2}Si{sub 2}O{sub 8}·4H{sub 2}O and Na{sub 2}Al{sub 2}Si{sub 2}O{sub 8}·H{sub 2}O. As the predominant hydration products, rod-like ettringite and amorphous C–A–S–H gel play a positive role in promoting densification of the paste structure, resulting in strength development of CFSC7 in the early hydration process. The leaching toxicity and radioactivity tests results indicate that the developed cementitious material composed of calcium silicate slag is environmentally acceptable. This study points out a promising direction for the proper utilization of calcium silicate slag in large quantities.

  19. Highly anisotropic electric conductivity in PAN-based carbon nanofibers (United States)

    Aprojanz, J.; Dreyer, B.; Wehr, M.; Wiegand, J.; Baringhaus, J.; Koch, J.; Renz, F.; Sindelar, R.; Tegenkamp, C.


    In addition to the chemical and physical properties of nanostructures their successful utilization for applications is strongly triggered by economic aspects. Electrospinning of nanowires from solution followed by subsequent annealing steps is a comparably cheap technique to fabricate conductive carbon nanofibers (CNF) made from polyacrylonitrile (PAN) molecules in large quantities. In this work, we investigated the microscopic properties of the CNFs with diameters of 100–300 nm by means of Raman and x-ray photoelectron spectroscopy and correlated these results with transport measurements done with a 4-tip STM. In particular, we investigated the effect of fiber alignment and knot densities, which can be controlled by applying constant creep due to stress during the stabilization process. The comparison of the conductivity obtained from single CNFs revealed further that the fiber crossings within the ensemble structure act as scattering centers and proofs that the transport is along the surfaces of the CNFs.

  20. Lattice thermal conductivity of silicate glasses at high pressures (United States)

    Chang, Y. Y.; Hsieh, W. P.


    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  1. Influences of Steelmaking Slags on Hydration and Hardening of Concretes (United States)

    Kirsanova, A. A.; Dildin, A. N.; Maksimov, S. P.


    It is shown that the slag of metallurgical production can be used in the construction industry as an active mineral additive for concrete. This approach allows us to solve environmental problems and reduce costs for the production of binder and concrete simultaneously. Most often slag is used in the form of a filler, an active mineral additive or as a part of a binder for artificial conglomerates. The introduction of slag allows one to notice a part of the cement, to obtain concretes that are more resistant to the impact of aggressive sulfate media. The paper shows the possibility of using recycled steel-smelting slags in the construction industry for the production of cement. An assessment was made of their effect on the hydration of the cement stone and hardening of the concrete together with the plasticizer under normal conditions. In the process of work, we used the slag of the Zlatoust Electrometallurgical Factory. Possible limitations of the content of steel-slag slag in concrete because of the possible presence of harmful impurities are shown. It is necessary to enter slag in conjunction with superplasticizers to reduce the flow of water mixing. Slags can be used as a hardening accelerator for cement concrete as they allow one to increase the degree of cement hydration and concrete strength. It is shown that slags can be used to produce fast-hardening concretes and their comparative characteristics with other active mineral additives are given.

  2. Synthesis and heavy metal immobilization behaviors of slag based geopolymer. (United States)

    Yunsheng, Zhang; Wei, Sun; Qianli, Chen; Lin, Chen


    In this paper, two aspects of studies are carried out: (1) synthesis of geopolymer by using slag and metakaolin; (2) immobilization behaviors of slag based geopolymer in a presence of Pb and Cu ions. As for the synthesis of slag based geopolymer, four different slag content (10%, 30%, 50%, 70%) and three types of curing regimes (standard curing, steam curing and autoclave curing) are investigated to obtain the optimum synthesis condition based on the compressive and flexural strength. The testing results showed that geopolymer mortar containing 50% slag that is synthesized at steam curing (80 degrees C for 8h), exhibits higher mechanical strengths. The compressive and flexural strengths of slag based geopolymer mortar are 75.2 MPa and 10.1 MPa, respectively. Additionally, Infrared (IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques are used to characterize the microstructure of the slag based geopolymer paste. IR spectra show that the absorptive band at 1086 cm(-1) shifts to lower wave number around 1007 cm(-1), and some six-coordinated Als transforms into four-coordination during the synthesis of slag based geopolymer paste. The resulting slag based geopolymeric products are X-ray amorphous materials. SEM observation shows that it is possible to have geopolymeric gel and calcium silicate hydrate (C-S-H) gel forming simultaneously within slag based geopolymer paste. As for immobilization of heavy metals, the leaching tests are employed to investigate the immobilization behaviors of the slag based geopolymer mortar synthesized under the above optimum condition. The leaching tests show that slag based geopolymer mortar can effectively immobilize Cu and Pb heavy metal ions, and the immobilization efficiency reach 98.5% greater when heavy metals are incorporated in the slag geopolymeric matrix in the range of 0.1-0.3%. The Pb exhibits better immobilization efficiency than the Cu in the case of large dosages of heavy metals.

  3. High Thermal Conductivity of Copper Matrix Composite Coatings with Highly-Aligned Graphite Nanoplatelets. (United States)

    Simoncini, Alessandro; Tagliaferri, Vincenzo; Ucciardello, Nadia


    Nanocomposite coatings with highly-aligned graphite nanoplatelets in a copper matrix were successfully fabricated by electrodeposition. For the first time, the disposition and thermal conductivity of the nanofiller has been evaluated. The degree of alignment and inclination of the filling materials has been quantitatively evaluated by polarized micro-Raman spectroscopy. The room temperature values of the thermal conductivity were extracted for the graphite nanoplatelets by the dependence of the Raman G-peak frequency on the laser power excitation. Temperature dependency of the G-peak shift has been also measured. Most remarkable is the global thermal conductivity of 640 ± 20 W·m -1 ·K -1 (+57% of copper) obtained for the composite coating by the flash method. Our experimental results are accounted for by an effective medium approximation (EMA) model that considers the influence of filler geometry, orientation, and thermal conductivity inside a copper matrix.

  4. High Thermal Conductivity of Copper Matrix Composite Coatings with Highly-Aligned Graphite Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Alessandro Simoncini


    Full Text Available Nanocomposite coatings with highly-aligned graphite nanoplatelets in a copper matrix were successfully fabricated by electrodeposition. For the first time, the disposition and thermal conductivity of the nanofiller has been evaluated. The degree of alignment and inclination of the filling materials has been quantitatively evaluated by polarized micro-Raman spectroscopy. The room temperature values of the thermal conductivity were extracted for the graphite nanoplatelets by the dependence of the Raman G-peak frequency on the laser power excitation. Temperature dependency of the G-peak shift has been also measured. Most remarkable is the global thermal conductivity of 640 ± 20 W·m−1·K−1 (+57% of copper obtained for the composite coating by the flash method. Our experimental results are accounted for by an effective medium approximation (EMA model that considers the influence of filler geometry, orientation, and thermal conductivity inside a copper matrix.

  5. High-Conductance Thermal Interfaces Based on Carbon Nanotubes Project (United States)

    National Aeronautics and Space Administration — We propose to develop a novel thermal interface material (TIM) that is based on an array of vertical carbon nanotubes (CNTs) for high heat flux applications. For...

  6. High throughput thermal conductivity of high temperature solid phases: The case of oxide and fluoride perovskites

    CERN Document Server

    van Roekeghem, Ambroise; Oses, Corey; Curtarolo, Stefano; Mingo, Natalio


    Using finite-temperature phonon calculations and machine-learning methods, we calculate the mechanical stability of about 400 semiconducting oxides and fluorides with cubic perovskite structures at 0 K, 300 K and 1000 K. We find 92 mechanically stable compounds at high temperatures -- including 36 not mentioned in the literature so far -- for which we calculate the thermal conductivity. We demonstrate that the thermal conductivity is generally smaller in fluorides than in oxides, largely due to a lower ionic charge, and describe simple structural descriptors that are correlated with its magnitude. Furthermore, we show that the thermal conductivities of most cubic perovskites decrease more slowly than the usual $T^{-1}$ behavior. Within this set, we also screen for materials exhibiting negative thermal expansion. Finally, we describe a strategy to accelerate the discovery of mechanically stable compounds at high temperatures.

  7. Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes

    Directory of Open Access Journals (Sweden)

    Andrew J Stapleton, Rakesh A Afre, Amanda V Ellis, Joe G Shapter, Gunther G Andersson, Jamie S Quinton and David A Lewis


    Full Text Available Electrodes fabricated using commercially available silver nanowires (AgNWs and single walled carbon nanotubes (SWCNTs produced sheet resistances in the range 4–24 Ω squ−1 with specular transparencies up to 82 %. Increasing the aqueous dispersibility of SWCNTs decreased the bundle size present in the film resulting in improved SWCNT surface dispersion in the films without compromising transparency or sheet resistance. In addition to providing conduction pathways between the AgNW network, the SWCNTs also provide structural support, creating stable self-supporting films. Entanglement of the AgNWs and SWCNTs was demonstrated to occur in solution prior to deposition by monitoring the transverse plasmon resonance mode of the AgNWs during processing. The interwoven AgNW/SWCNT structures show potential for use in optoelectronic applications as transparent electrodes and as an ITO replacement.

  8. Development of high performance proton-conducting solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A.; Kopitzke, R.W. [Florida Solar Energy Center, Cocoa, FL (United States)


    This work seeks to improve the efficiency of fuel cell and electrolyzer operation by developing solid electrolytes that will function at higher temperatures. Two objectives were pursued: (1) determine the mechanism of hydrolytic decomposition of aromatic sulfonic acid ionomers, with the intent of identifying structural weaknesses that can be avoided in future materials; and (2) identify new directions in solid electrolyte development. After evaluating a number of aromatic sulfonates, it became apparent that no common mechanism was going to be found; instead, each polymer had its own sequence of degradation steps, involving some combination of desulfonation and/or chain scission. For electrochemical cell operation at temperatures > 200 C, it will be necessary to develop solid electrolytes that do not require sulfonic acids and do not require water to maintain its conductivity mechanism.

  9. Elemental properties of coal slag and measured airborne exposures at two coal slag processing facilities. (United States)

    Mugford, Christopher; Boylstein, Randy; Gibbs, Jenna L


    In 1974, the National Institute for Occupational Safety and Health recommended a ban on the use of silica sand abrasives containing >1% silica due to the risk of silicosis. This gave rise to substitutes including coal slag. An Occupational Safety and Health Administration investigation in 2010 uncovered a case cluster of suspected pneumoconiosis in four former workers at a coal slag processing facility in Illinois, possibly attributable to occupational exposure to coal slag dust. This article presents the results from a National Institute for Occupational Safety and Health industrial hygiene survey at the same coal slag processing facility and a second facility. The industrial hygiene survey consisted of the collection of: (a) bulk samples of unprocessed coal slag, finished granule product, and settled dust for metals and silica; (b) full-shift area air samples for dust, metals, and crystalline silica; and (c) full-shift personal air samples for dust, metals, and crystalline silica. Bulk samples consisted mainly of iron, manganese, titanium, and vanadium. Some samples had detectable levels of arsenic, beryllium, cadmium, and cobalt. Unprocessed coal slags from Illinois and Kentucky contained 0.43-0.48% (4,300-4,800 mg/kg) silica. Full-shift area air samples identified elevated total dust levels in the screen (2-38 mg/m3) and bag house (21 mg/m3) areas. Full-shift area air samples identified beryllium, chromium, cobalt, copper, iron, nickel, manganese, and vanadium. Overall, personal air samples for total and respirable dust (0.1-6.6 mg/m3 total; and 0.1-0.4 mg/m3 respirable) were lower than area air samples. All full-shift personal air samples for metals and silica were below published occupational exposure limits. All bulk samples of finished product granules contained less than 1% silica, supporting the claim coal slag may present less risk for silicosis than silica sand. We note that the results presented here are solely from two coal slag processing

  10. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo


    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  11. Nickel recovery from electric arc furnace slag by magnetic separation

    Directory of Open Access Journals (Sweden)

    Sakaroglou Marianna


    Full Text Available During the pyrometallurgical treatment of the nickel-bearing laterite in the plant of G.M.M. S.A. LARCO, slag is produced after treatment in electric-arc furnace (EAF that contains 0.10 to 0.20 % Ni. Taking into account the great quantity of slag produced per year, the recovery of nickel from the EAF slag will add benefits to the entire process. The target of the current work is to investigate the possibility of nickel recovery from EAF slag by magnetic separation. To meet the target, the effect of the following parameters was studied: grain size, magnetic field intensity, thickness of slag layer, moisture content, and re-grinding of the coarser slag particles. The results show that it is possible to obtain a magnetic product with nickel grade close to that of the primary raw material or even better, with sufficient nickel recovery.

  12. Moderate Dilution of Copper Slag by Natural Gas (United States)

    Zhang, Bao-jing; Zhang, Ting-an; Niu, Li-ping; Liu, Nan-song; Dou, Zhi-he; Li, Zhi-qiang


    To enable use of copper slag and extract the maximum value from the contained copper, an innovative method of reducing moderately diluted slag to smelt copper-containing antibacterial stainless steel is proposed. This work focused on moderate dilution of copper slag using natural gas. The thermodynamics of copper slag dilution and ternary phase diagrams of the slag system were calculated. The effects of blowing time, temperature, matte settling time, and calcium oxide addition were investigated. The optimum reaction conditions were identified to be blowing time of 20 min, reaction temperature of 1250°C, settling time of 60 min, CaO addition of 4% of mass of slag, natural gas flow rate of 80 mL/min, and outlet pressure of 0.1 MPa. Under these conditions, the Fe3O4 and copper contents of the residue were 7.36% and 0.50%, respectively.

  13. Evidence for high ionic conductivity in lithium–lanthanum titanate

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 6. Evidence ... The analysis of FTIR and Raman spectra of the sample supported tetragonal structure inferred from XRD data. The impedance spectrum of the sample is separated into bulk and grain boundary parts by analysing the impedance data. The high ...

  14. Highly conductive anion exchange membrane for high power density fuel-cell performance. (United States)

    Ren, Xiaoming; Price, Samuel C; Jackson, Aaron C; Pomerantz, Natalie; Beyer, Frederick L


    Anion exchange membrane fuel cells (AEMFCs) are regarded as a new generation of fuel cell technology that has the potential to overcome many obstacles of the mainstream proton exchange membrane fuel cells (PEMFCs) in cost, catalyst stability, efficiency, and system size. However, the low ionic conductivity and poor thermal stability of current anion exchange membranes (AEMs) have been the key factors limiting the performance of AEMFCs. In this study, an AEM made of styrenic diblock copolymer with a quaternary ammonium-functionalized hydrophilic block and a cross-linkable hydrophobic block and possessing bicontinuous phases of a hydrophobic network and hydrophilic conduction paths was found to have high ionic conductivity at 98 mS cm(-1) and controlled membrane swelling with water uptake at 117 wt % at 22 °C. Membrane characterizations and fuel cell tests of the new AEM were carried out together with a commercial AEM, Tokuyama A201, for comparison. The high ionic conductivity and water permeability of the new membrane reported in this study is attributed to the reduced torturosity of the ionic conduction paths, while the hydrophobic network maintains the membrane mechanical integrity, preventing excessive water uptake.

  15. Highly conductive side chain block copolymer anion exchange membranes. (United States)

    Wang, Lizhu; Hickner, Michael A


    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days.

  16. Electrochemical Properties for Co-Doped Pyrite with High Conductivity

    Directory of Open Access Journals (Sweden)

    Yongchao Liu


    Full Text Available In this paper, the hydrothermal method was adopted to synthesize nanostructure Co-doped pyrite (FeS2. The structural properties and morphology of the synthesized materials were characterized using X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. Co in the crystal lattice of FeS2 could change the growth rate of different crystal planes of the crystal particles, which resulted in various polyhedrons with clear faces and sharp outlines. In addition, the electrochemical performance of the doping pyrite in Li/FeS2 batteries was evaluated using the galvanostatic discharge test, cyclic voltammetry and electrochemical impedance spectroscopy. The results showed that the discharge capacity of the doped material (801.8 mAh·g−1 with a doping ratio of 7% was significantly higher than that of the original FeS2 (574.6 mAh·g−1 because of the enhanced conductivity. Therefore, the doping method is potentially effective for improving the electrochemical performance of FeS2.

  17. Reduction of chromium oxide from slags

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Paredes, J.


    Full Text Available Experimental and theoretical work were performed to estimate the effect of slag basicity and amount of reducing agents on the reduction of chromium oxide from the slag which interacted with molten steel at 1,600 °C. The slag system contained CaO, MgO, SiO2, CaF2 and Cr2O3 together with Fe-alloys (Fe-Si and Fe-Si-Mg. The CaF2 and MgO contents in the slags were 10 mass % each; Cr2O3 was 25%. The amount of the ferroalloys ranged from 12.5 to 50 g per 100 g of slag. The (CaO+MgO/SiO2 ratio was held at 1 and 2. The Cr yield was determined using both Fe-alloys as reducing agents. Some estimations were made to determine the theoretical effect of temperature, slag basicity, (CaO+MgO/SiO2, and amount of reducing agents in the slag on the chromium recovery. The FACT (Facility for the Analysis of Chemical Thermodynamics computational package is used to determine the equilibrium between the slag and molten steel.

    En el presente trabajo se realiza un estudio teórico y experimental para determinar el efecto de la basicidad de la escoria y la cantidad de agentes reductores sobre la reducción de óxidos de cromo contenidos en la escoria, la cual está en contacto con acero líquido a 1.600 °C. La escoria se prepara con los reactivos CaO, MgO, SiO2, CaF2 y ferroaleaciones (Fe-Si y Fe-Si-Mg. Los contenidos de CaF2 y MgO en la escoria son de 10 %, cada uno, y el de Cr2O3 es 25 %. La cantidad de la ferroaleación varía de 12,5 a 50 g por cada 100 g de escoria. La relación (CaO+MgO/SiO2 tiene los valores de 1 y 2. Se determina la eficiencia de recuperación de cromo empleando los dos tipos de ferroaleaciones. Se realizaron cálculos para determinar el efecto teórico de la temperatura, la basicidad de la escoria, (CaO+MgO/SiO2, y la cantidad de agentes reductores sobre la reducci

  18. Phosphorus removal by electric arc furnace steel slag adsorption (United States)

    Lim, J. W.; Lee, K. F.; Chong, Thomas S. Y.; Abdullah, L. C.; Razak, M. A.; Tezara, C.


    As to overcome the eutrophication in lakes and reservoirs which is resulted from excessive input of phosphorus due to rapid urbanization or uncontrolled agricultural activities, Electric Arc Furnace steel slag (EAFS), a steelmaking by-product, in which the disposal of this industrial waste considered economically unfavourable yet it’s physical and chemical properties exhibits high potential to be great P adsorbent. The objective of this study was to identify most suitable mathematical model in description of adsorption by using traditional batch experiment and to investigate the effect on Phosphorus removal efficiency and Phosphorus removal capacity by EAFS adsorption through variation of parameters such as pH, size of slag and initial concentration of Phosphorus. Result demonstrated that, Langmuir is suitable in describing Phosphorus removal mechanisms with the Maximum Adsorption Capacity, Q m of 0.166 mg/g and Langmuir Constant, KL of 0.03519 L/mg. As for effect studies, smaller size of adsorbent shows higher percentage (up to 37.8%) of Phosphorus removal compared to the larger size. Besides that, the experiment indicated a more acidic environment is favourable for Phosphorus removal and the amount of Phosphorus adsorbed at pH 3.0 was the highest. In addition, the adsorption capacity increases steadily as the initial Phosphorus concentration increases but it remained steady at 100mg P/L. Eventually, this study serves as better understanding on preliminary studies of P removal mechanisms by EAFS.

  19. Titania preparation from soda roasted slag using sulfuric acid solution

    Directory of Open Access Journals (Sweden)

    El-Sayed A. Manaa


    Full Text Available This work deals with treatment of the sodium titanate cake results from roasted titania slag using 60% sulfuric acid solution. The working sample produced by roasting titania slag with NaCO3 at 850 °C. After roasting V and Cr species as impurities in the roasted sample are converted to water soluble species as NaVO3 and Na2CrO4 before acid treatment however, the insoluble sodium titanate products (NaFeTiO4, Na8Ti5O14, Na6Ti2O7 and Na2TiO4 are then subjected to H2SO4 acid dissolution. The produced sulfate solution is subjected to hydrolysis step in presence of oxalic acid as a reducing agent. The hydrolyzed precipitate after filtration and washing with H2SO4 solution and warm water is dried at 100 °C and calcinated at 850 °C to prepare high pure TiO2 (99.8% besides removing ferrous sulfate (FeSO4 as a byproduct from the sulfate solution.

  20. Evaluation of copper slag blast media for railcar maintenance (United States)

    Sagers, N. W.; Finlayson, Mack H.


    Copper slag was tested as a blasting substitute for zirconium silicate which is used to remove paint from railroad cars. The copper slag tested is less costly, strips paint faster, is produced near the point of need, provides a good bonding surface for paint, and permits the operator to work in a more comfortable position, i.e., standing nearly erect instead of having to crouch. Outdoor blasting with the tested Blackhawk (20 to 40 mesh) copper slag is also environmentally acceptable to the State of Utah. Results of tests for the surface erosion rate with copper slag blasting are included.

  1. Pilot-scale steam aging of steel slags. (United States)

    Kumar, Praveen; Satish Kumar, D; Marutiram, K; Prasad, Smr


    Solid waste management has gained importance in the steel industry in view of rising environmental concerns and scarcity of raw materials. In spite of significant developments in reducing waste generation and development of recycling technologies, steel slag is still a concern for the industry as most of it is dumped. Steel slag is similar to stone aggregates in strength, but its volumetric instability in contact with water hinders its application as aggregates in construction. A part of steel slag is normally exposed to rain and sun for natural aging and stabilization for months before use. The natural aging process is slow and time-consuming, and thus restricts its usage. The steelmaking slag can be put to effective use as coarse aggregates if quickly aged and stabilized by pre-reacting the free expansive phases. In the present work, a new process has been developed to accelerate the steel slag aging process using steam in a 30 T pilot scale facility. The setup has controlled steam injection, distribution, and process control system for steam, temperature, flow, and pressure. Steam percolates through the minute pores in the slag lumps and hydrates the expansive free lime and MgO phases, making it stable. The aged slag expansion properties were tested using an in-house developed expansion testing apparatus. The process is capable of reducing the expansion of steel slag from 3.5% to steel slag is currently being used in roads at JSW Steel, Vijayanagar Works.

  2. Chemical, Mineralogical, and Morphological Properties of Steel Slag

    Directory of Open Access Journals (Sweden)

    Irem Zeynep Yildirim


    Full Text Available Steel slag is a byproduct of the steelmaking and steel refining processes. This paper provides an overview of the different types of steel slag that are generated from basic-oxygen-furnace (BOF steelmaking, electric-arc-furnace (EAF steelmaking, and ladle-furnace steel refining processes. The mineralogical and morphological properties of BOF and electric-arc-furnace-ladle [EAF(L] slag samples generated from two steel plants in Indiana were determined through X-Ray Diffraction (XRD analyses and Scanning Electron Microscopy (SEM studies. The XRD patterns of both BOF and EAF(L slag samples were very complex, with several overlapping peaks resulting from the many minerals present in these samples. The XRD analyses indicated the presence of free MgO and CaO in both the BOF and EAF(L slag samples. SEM micrographs showed that the majority of the sand-size steel slag particles had subangular to angular shapes. Very rough surface textures with distinct crystal structures were observed on the sand-size particles of BOF and EAF(L slag samples under SEM. The characteristics of the steel slag samples considered in this study are discussed in the context of a detailed review of steel slag properties.

  3. Flexural Fatigue performance of Alkali Activated Slag Concrete mixes incorporating Copper Slag as Fine Aggregate

    Directory of Open Access Journals (Sweden)

    Mithun B.M.


    Full Text Available The present investigation attempts a detailed study of mechanical properties and fatigue characteristics of a new class of Alkali Activated Slag Concrete (AASC mixes incorporating Copper Slag (CS as fine aggregates. The natural river sand is replaced with Copper Slag, upto 100% (by volume as fine aggregate in these AASC mixes. The behavior of plain concrete prisms, cast with this range of AASC mixes under dynamic cyclic loads with sand/CS fine aggregates is studied and is compared with conventional OPC-based concrete specimens. The results indicate that incorporation of CS even upto 100% as fine aggregates, did not have any adverse effects on the mechanical properties of AASC mixes. The AASC mixes with CS displayed slightly better fatigue performance as compared to AASC mix with river sand. An attempt is also made herein to statistically describe the fatigue life data of AASC mixes using a 2-parameter Weibull distribution.

  4. Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic Site, Pennsylvania, USA (United States)

    Piatak, Nadine; Seal, Robert


    The Hopewell Furnace National Historic Site in southeastern Pennsylvania, which features an Fe smelter that was operational in the 18th and 19th centuries, is dominated by three slag piles. Pile 1 slag, from the Hopewell Furnace, and pile 2 slag, likely from the nearby Cornwall Furnace, were both produced in cold-blast charcoal-fired smelters. In contrast, pile 3 slag was produced in an anthracite furnace. Ore samples from the nearby Jones and Hopewell mines that fed the smelter are mainly magnetite-rich with some sulfides (pyrite, chalcopyrite, sphalerite) and accessory silicates (quartz, garnet, feldspar, and clay minerals). Slag piles 1 and 2 are similar mineralogically containing predominantly skeletal and dendritic aluminian diopside and augite, skeletal forsteritic olivine, glass, rounded blebs of metallic Fe, and exotic quartz. Olivine is a major phase in all samples from pile 2, whereas it occurs in only a few samples from pile 1. Samples of the glass, euhedral spinel, metallic Fe, alabandite–oldhamite solid solution, as well as a sparse Ti carbonitride phase. The bulk chemistry of the slag is dominated by Al2O3 (8.5–16.2 wt.%), CaO (8.2–26.2 wt.%), MgO (4.2–24.7 wt.%), and SiO2 (36.4–59.8 wt.%), constituting between 81% and 97% of the mass of the samples. Piles 1 and 2 are chemically similar; pile 1 slag overall contains the highest Fe2O3, K2O and MnO, and the lowest MgO concentrations. Pile 3 slag is high in Al2O3, CaO and S, and low in Fe2O3, K2O and SiO2 compared to the other piles. In general, piles 1 and 2 are chemically similar to each other, whereas pile 3 is distinct – a conclusion that reflects their mineralogy. The similarities and differences among piles in terms of mineralogy and major element chemistry result from the different smelting conditions under which the slag formed and include the fuel source, the composition of the ore and flux, the type of blast (cold versus hot), which affects the furnace temperature, and other

  5. Thermal Conductivity of Foam Glasses Prepared using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    The increasing focus on better building insulation is important to lower energy consumption. Development of new and improved insulation materials can contribute to solving this problem. Foam glass has a good insulating effect due to its large gas volume (porosity >90 %). It can be produced...... with open or closed pores. If only open pores exist, air is the dominating medium for the insulating effect. However, closed pores make it possible to trap gases inside the foam. The gas can be introduced either chemically, through foaming agents, or physically, by gas compression-decompression at high...... temperatures. By introducing the gas physically it is possible to control composition of both the gas phase and the solid phase of the foam glass. In this work we have prepared foam glasses by physical foaming. Panel glass powder from obsolete televisions was first sintered under a gas pressure of 5-25 MPa...

  6. Feedback experience from a 30 years old concrete using cement with a high content of blast furnace slag; Retour d'experience sur un beton age de 30 ans contenant un ciment riche en laitier

    Energy Technology Data Exchange (ETDEWEB)

    Charron, Ch. [Holcim, Obourg (Belgium); Lion, M.; Jeanpierre, A. [Electricite de France (EDF), Ceidre-TEGG, 13 - Aix en Provence (France); Ammouche, A. [LERM, 13 - Arles (France)


    In this study, we analyze the aspect of a slag cement concrete used in the seventies for the construction of the walls of a structure located close to the channel sea. From different characterization tests (chemical, physical, and micro structural), it can be conclude that the concrete is not showing any pathology and any important attack, due to the marine environment. After being exposed during 30 years, the chlorides ions have not reach the steel metal bar reinforcement and the carbonation depth is still low. This study details the results of chloride diffusion coefficient and carbonation depth measurements, sulfates and chloride quantification, XRD analysis, and SEM examination. (authors)

  7. Effect of different curing methods on the compressive strength development of pulverized copper slag concrete

    Directory of Open Access Journals (Sweden)

    Daniel Mensah Boakye


    Full Text Available The results of laboratory studies conducted to evaluate the effects of different curing conditions on the compressive strength development of concrete made with pulverized copper slag as partial replacement for ordinary Portland cement (OPC is presented. Concrete cube specimens were made with copper slag replacing cement in the following proportions; 2.5, 5, 10 and 15% compared to the control (0% specimen under normal laboratory conditions and cured in three different conditions, namely; water, solar chamber and ambient air up 90 days. Test performed included X-ray Fluorescence (XRF and sieve analysis respectively for the chemical oxide composition and fineness for both the pulverized copper slag and ordinary Portland cement. Specimens were tested for compressive strength up to 90 days of curing, with the temperature and humidity of the surrounding curing environment recorded for each of the three curing method used. The experimental results indicate a significant drop in the compressive strength as the copper slag content increases for all curing methods. Moreover, for the control samples, the percentage decrease in the compressive strength for the 3-day curing for water cured sample, compared to the solar chamber and ambient air were respectively 31% and 28%. However, beyond 28 up to 90 days of curing, the water cured samples yielded a higher compressive strength, followed by the solar chamber and ambient air. The percentage increase in the compressive strength up to 90 days of curing for water cured specimen, compared to the solar chamber and ambient air were respectively 8.5% and 12%. This trend was similar for all percentage replacement of cement with the pulverized copper slag

  8. Effects of CaO, Al2O3 and MgO on liquidus temperatures of copper smelting and converting slags under controlled oxygen partial pressures

    Directory of Open Access Journals (Sweden)

    Zhao B.


    Full Text Available Phase equilibria of silicate slags relevant to the copper smelting/converting operations have been experimentally studied over a wide range of slag compositions, temperatures and atmospheric conditions. Selected systems are of industrial interest and fill the gaps in fundamental information required to systematically characterise and describe copper slag chemistry. The experimental procedures include equilibration of synthetic slag at high temperatures, rapid quenching of resulting phases, and accurate measurement of phase compositions using electron probe X-ray microanalysis (EPMA. The effects of CaO, Al2O3 and MgO on the phase equilibria of this slag system have been experimentally investigated in the temperature range 1200 to 1300 oC and oxygen partial pressures between 10-5 and 10-9 atm. It was found that spinel and silica are major primary phases in the composition range related to copper smelting/converting slags. In addition, olivine, diopside and pyroxene also appear at certain conditions. The presence of CaO, MgO and Al2O3 in the slag increases the spinel liquidus and decreases the silica liquidus. Liquidus temperatures in silica primary phase field are not sensitive to Po2; Liquidus temperatures in spinel primary phase field increase with increasing Po2. At 1300 oC and low Po2, the spinel (Fe2+,Mg2+O.(Al3+,Fe3+ primary phase field can be replaced by wustite (Fe2+,Mg2+O.

  9. Investigations of the surface tension of coal ash slags under gasification conditions; Untersuchungen zur Oberflaechenspannung von Kohleschlacken unter Vergasungsbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Melchior, Tobias


    In the context of CO{sub 2}-emission-induced global warming, greenhouse gases resulting from the production of electricity in coal-fired power plants gain increasing attention. One possible way to reduce such emissions is to gasify coal instead of burning it. The corresponding process is referred to as Integrated Gasification Combined Cycle and allows for the separation of CO{sub 2} before converting a synthesis gas into electrical energy. However, further improvements in efficiency and availability of this plant technology are needed to render the alternative generation of electricity sensible from an economic point of view. One corresponding approach introduces hot gas cleaning facilities to the gasification plant which guarantee a removal of slag particles from the synthesis gas at high temperatures. The development of such filters depends on the availability of data on the material properties of the coal ash slags to be withdrawn. In this respect, the surface tension is a relevant characteristic. Currently, the surface tension of real coal ash slags as well as of synthetic model systems was measured successfully by means of the sessile drop and the maximum bubble pressure method. With regard to the sessile drop technique, those experiments were conducted in a gasification-like atmosphere at temperatures of up to 1500 C. Furthermore, the pressure inside the experimental vessel was raised to 10 bar in order to allow for deriving the influence of this variable on the surface tension. In contrast, maximum bubble pressure trials were realised at atmospheric pressure while the gas atmosphere assured inert conditions. For performing sessile drop measurements, a corresponding apparatus was set up and is described in detail in this thesis. Three computer algorithms were employed to calculate surface tensions out of the photos of sessile drops and their individual performance was evaluated. A very good agreement between two of the codes was found while the third one

  10. Enrichment of valuable elements from vanadium slag using superconducting HGMS technology

    Energy Technology Data Exchange (ETDEWEB)

    He, Sai; Yang, Chang Qiao; Li, Su Qin; Zhang, Chang Quan [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing (China)


    Vanadium slags is a kind of vanadiferous solid waste from steelmaking process. It not only occupies land, pollutes environment, but also leads to waste of resources. Based on the difference of magnetic susceptibility of different particles caused by their chemical and physical properties from vanadium slag, a new technology, superconducting high gradient magnetic separation was investigated for separation and extraction of valuable substances from vanadium slag. The magnetic concentrate was obtained under optimal parameters, i.e., a particle size -200 mesh, a magnetic flux density of 0.8 T, a slurry concentration of 5 g/L, an amount of steel wools of 25 g and a slurry flow velocity of 2 L/min. The content of Fe{sub 2}O{sub 3} in concentrate could be increased from 39.6% to 55.0% and V2O5 from 2.5% to 4.0%, respectively. The recovery rate is up to 42.9%, and the vanadium slag has been effectively reused.

  11. Analysis on the stability of chromium in mineral phases in stainless steel slag (United States)

    Cao, Long-hu; Liu, Cheng-jun; Zhao, Qing; Jiang, Mao-fa


    Stainless steel slag from high alloy steel is hardly used in the construction industry. The chromium leaching in unstable phase is the limiting factor for the application in the slag. The aim of this study is to investigate the stability of mineral phases in stainless steel slag. In this work, the mineral phases were firstly confirmed through experimental results by SEM-EDS and XRD. Thermodynamic calculation and leaching test were adopted to characterize the theoretical stability of mineral phases in aqueous solution. The results showed that the main phases in the stainless steel slag were spinel, melilite [solid solution of gehlenite (Ca2Al2SiO7) and akermanite (Ca2MgSi2O7)], dicalcium silicate, merwinite and periclase phases. It can be concluded that the minerals behave differently when dissolving in aqueous solution and the dissolution of dicalcium silicate (Ca2SiO4), merwinite (Ca3MgSi2O8), akermanite (Ca2MgSi2O7) and periclase phase could be generally higher, especially at lower pH values. In addition, the solubility of chromium in the spinel phase is considered low. The leaching test demonstrated that the formation of spinel phase can limit the leaching of chromium and the chromium existing in the silicate and periclase phases can facilitate the chromium leaching.

  12. Copper recovery from slag by indirect bio leaching; Recuperacion de cobre en escorias mediante biolixiviacion indirecta

    Energy Technology Data Exchange (ETDEWEB)

    Mazuelos, A.; Iglesias, N.; Romero, R.; Forcat, O.; Carranza, F.


    The main source of copper loss from a smelter is copper in discard slag. Slag can contain Cu in concentrations very much higher than those of many ores. Cu is present in slag entrained in very small drops of matte, white metal and blister copper occluded in fayalitic phase. In this work, the technical viability of the BRISA process, that is based on the indirect bio leaching, for this residue has been proved. A sample of slag, containing 2 % of copper, has been chemical, granulometric and metallographic characterized and it has been leached with ferric sulphate solutions in agitated reactors. The influence of several variables have been investigated. Once the best operating conditions had been selecting and an economic estimation had been done (with very really attractive results), the leaching stage has been designed for a plant of 30 tonnes per hour capacity. Cu extractions higher than 70% can be achieved with a residence time of only five hours. Despite of Cu(II) concentration in fed is as high as 30 g/l, bio oxidation stage can supply Fe(III) demanded by ferric leaching stage. (Author) 17 refs.

  13. Producing fired bricks using coal slag from a gasification plant in indiana (United States)

    Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.


    Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.

  14. [Transformation of inorganic nitrogen in slag-wetland during the start-up period]. (United States)

    Sun, Shu-Ming; Shan, Bao-Qing; Peng, Wan-Jiang


    Lab-scale subsurface flow slag-wetlands were constructed to study the removal efficiency and transformation processes of low-concentration inorganic N during the start-up period. As for ammonium-dominated wastewater, the removal rates of total nitrogen (TN), ammonium nitrogen (NH4(+)-N), nitrate nitrogen (NO3(-)-N) and nitrite nitrogen (NO2(-)-N) were 0.12 g x (m2 x d)(-1), 0.07 g x (m2 x d)(-1), 0.10 g x (m2 x d)(-1) and 0.04 g x (m2 x d)(-1), respectively. Nitrifying bacteria was not detected by fluorescence in situ hybridization (FISH) on the slag. NH3 volatilization is the main contribution for N removal resulting from high pH (> 10) and surface soil absorbed most of NH3. For nitrate-dominated wastewater, the removal rates of TN and NO3(-)-N were 0.23 g x (m2 x d)(-1) and 0.48 g x (m2 x d)(-1), and NO2(-)-N accumulated by 0.22 g x (m2 x d)(-1) during the process of denitrification. Removal efficiency of inorganic N for nitrate-dominated wastewater was higher than that for ammonium-dominated wastewater during the start-up period of slag-wetlands, so steel slag can be used as a substrate in constructed wetlands for extensive treatment of nitrate pollution.

  15. Recycling waste plastics in EAF steelmaking. Carbon/slag interactions of HDPE-coke blends

    Energy Technology Data Exchange (ETDEWEB)

    Sahajwalla, Veena; Rahman, Muhammad; Khanna, Rita; Saha-Chaudhury, Narendra [Centre for Sustainable Materials Research and Technology, The Univ. of New South Wales, Sydney, NSW (Australia); O' Kane, Paul; Skidmore, Catherine; Knights, David [OneSteel, Rooty Hill, Sydney, NSW (Australia)


    Due to the inherent limitations of current methods of plastic waste disposal, there have been concerted efforts worldwide towards developing alternative, environment friendly and economic recycling processes. With an aim to recycle waste plastics in EAF steelmaking, carbon/slag interactions for a number of blends made of metallurgical coke and HDPE (high density polyethylene) and an EAF slag (34.8 mass-% Fe{sub 2}O{sub 3}) have been investigated at 1550 C using a sessile drop arrangement. The rate of gas generation showed an increase with increasing HDPE concentration, reaching a maximum for blend 3 (with appr. 30% HDPE) and decreasing thereafter. Among all the blends investigated, blend 3 showed significantly higher levels of slag foaming as compared to metallurgical coke. HDPE-coke blends also showed better wetting compared to metallurgical coke with contact angles in some cases improving from 140 to 70 after 10 minutes of contact. These results have been discussed in terms of ash and sulphur contents of carbonaceous residues and dynamic changes in slag composition. Industrial trials on blend 3 showed a good agreement with laboratory results. This work opens novel avenues for the utilisation of plastics wastes as a valuable carbon resource in EAF steelmaking. (orig.)

  16. Effect of by-product steel slag on the engineering properties of clay soils

    Directory of Open Access Journals (Sweden)

    Faisal I. Shalabi


    Full Text Available Clay soils, mainly if they contain swelling minerals such as smectite or illite, may cause severe damage to structures, especially when these soils are subjected to wetting and drying conditions. High expansion and reduction in shear strength and foundation bearing capacity will take place due to the increase in water content of these soils. The engineering properties of these kinds of soils can be improved by using additives and chemical stabilizers. In this work, by-product steel slag was used to improve the engineering properties of clay soils. Lab and field experimental programs were developed to investigate the effect of adding different percentages of steel slag on plasticity, swelling, compressibility, shear strength, compaction, and California bearing ratio (CBR of the treated materials. The results of tests on the clay soil showed that as steel slag content increased, the soil dry density, plasticity, swelling potential, and cohesion intercept decreased and the angle of internal friction increased. For the CBR, the results of the tests showed an increase in the CBR value with the increase in slag content.

  17. Influence of Titanium Dioxide Nanoparticles on the Sulfate Attack upon Ordinary Portland Cement and Slag-Blended Mortars

    Directory of Open Access Journals (Sweden)



    Full Text Available In this study, the effects of titanium dioxide (TiO2 nanoparticles on the sulfate attack resistance of ordinary Portland cement (OPC and slag-blended mortars were investigated. OPC and slag-blended mortars (OPC:Slag = 50:50 were made with water to binder ratio of 0.4 and a binder to sand ratio of 1:3. TiO2 was added as an admixture as 0%, 3%, 6%, 9% and 12% of the binder weight. Mortar specimens were exposed to an accelerated sulfate attack environment. Expansion, changes in mass and surface microhardness were measured. Scanning Electron Microscopy (SEM, Energy Dispersive Spectroscopy (EDS, X-ray Diffraction (XRD, Thermogravimetry Analysis (TGA and Differential Scanning Calorimetry (DSC tests were conducted. The formation of ettringite and gypsum crystals after the sulfate attack were detected. Both these products had caused crystallization pressure in the microstructure of mortars and deteriorated the mortars. Our results show that the addition of nano-TiO2 accelerated expansion, variation in mass, loss of surface microhardness and widened cracks in OPC and slag-blended mortars. Nano-TiO2 containing slag-blended mortars were more resistant to sulfate attack than nano-TiO2 containing OPC mortars. Because nano-TiO2 reduced the size of coarse pores, so it increased crystallization pressure due to the formation of ettringite and gypsum thus led to more damage under sulfate attack.

  18. Thin-film versus slurry-phase carbonation of steel slag: CO₂ uptake and effects on mineralogy. (United States)

    Baciocchi, R; Costa, G; Di Gianfilippo, M; Polettini, A; Pomi, R; Stramazzo, A


    The results of direct aqueous accelerated carbonation of three types of steel manufacturing residues, including an electric arc furnace (EAF) slag and two basic oxygen furnace (BOF) slags, are reported. Batch accelerated carbonation tests were conducted at different temperatures and CO2 pressures applying the thin-film route (liquid to solid, L/S, ratio=0.3L/kg) or the slurry-phase route (L/S ratio=5L/kg). The CO2 uptake strongly depended on both the slag characteristics and the process route; maximum yields of 280 (EAF), 325 (BOF1) and 403 (BOF2) gCO2/kg slag were achieved in slurry phase at T=100°C and pCO2=10 bar. Differently from previous studies, additional carbonates (other than Ca-based phases) were retrieved in the carbonated BOF slags, indicating that also Mg-, Fe- and Mn-containing phases partially reacted with CO2 under the tested conditions. The results hence show that the effects of accelerated carbonation in terms of CO2 uptake capacity, yield of mineral conversion into carbonates and mineralogy of the treated product, strongly rely on several factors. These include, above all, the mineralogy of the original material and the operating conditions adopted, which thus need specific case-by-case optimization to maximize the CO2 sequestration yield. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Characteristics and properties of oil-well cements auditioned with blast furnace slag; Cementos petroleros con adicion de escoria de horno alto. Caracteristicas y propiedades

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Palacios, M.; Puertas, F.


    The present paper addresses the alkali activation of Portland cements containing blast furnace slag (20 and 30% by cement weight) with a view to the possible use of these materials in oil well construction. The hydration studies conducted showed that in cement/slag blends, the sodium silicate activator partially inhibited the dissolution of the silicate phases in the Portland cement, retarding cement hydration and reducing the precipitation of reaction products. Due to such partial inhibition, the cement/slag blends had significantly lower mechanical strength than Portland cements hydrated with water. {sup 2}9Si and {sup 2}7Al MAS NMR and BSE/EDX studies, in turn, showed that the CSH gel forming in the alkali-activated cement/slag pastes contained Al in tetrahedral positions and low Ca/Si ratios. (Author) 29 refs.

  20. Graphite-high density polyethylene laminated composites with high thermal conductivity made by filament winding

    Directory of Open Access Journals (Sweden)

    W. Lv


    Full Text Available The low thermal conductivity of polymers limits their use in numerous applications, where heat transfer is important. The two primary approaches to overcome this limitation, are to mix in other materials with high thermal conductivity, or mechanically stretch the polymers to increase their intrinsic thermal conductivity. Progress along both of these pathways has been stifled by issues associated with thermal interface resistance and manufacturing scalability respectively. Here, we report a novel polymer composite architecture that is enabled by employing typical composites manufacturing method such as filament winding with the twist that the polymer is in fiber form and the filler in form of sheets. The resulting novel architecture enables accession of the idealized effective medium composite behavior as it minimizes the interfacial resistance. The process results in neat polymer and 50 vol% graphite/polymer plates with thermal conductivity of 42 W·m–1·K–1 (similar to steel and 130 W·m–1·K–1 respectively.

  1. Mineralogy and the release of trace elements from slag from the Hegeler Zinc smelter, Illinois (USA) (United States)

    Piatak, Nadine M.; Seal, Robert R.


    Slag from the former Hegeler Zn-smelting facility in Illinois (USA) is mainly composed of spinifex Ca-rich plagioclase, fine-grained dendritic or coarse-grained subhedral to anhedral clinopyroxenes, euhedral to subhedral spinels, spherical blebs of Fe sulfides, silicate glass, and less commonly fayalitic olivine. Mullite and quartz were also identified in one sample as representing remnants of the furnace lining. Secondary phases such as goethite, hematite and gypsum are significant in some samples and reflect surficial weathering of the dump piles or represent byproducts of roasting. A relatively rare Zn-rich material contains anhedral willemite, subhedral gahnite, massive zincite, hardystonite and a Zn sulfate (brianyoungite), among other phases, and likely represents the molten content of the smelting furnace before Zn extraction. The bulk major-element chemistry of most slag samples is dominated by SiO2, Al2O3, Fe2O3 and CaO. The bulk composition of the slag suggests a high viscosity of the melt and the mineralogy suggests a high silica content of the melt. Bulk slag trace-element chemistry shows that the dominant metal is Zn with >28.4 wt.% in the Zn-rich material and between 212 and 14,900 mg/kg in the other slags. The concentrations of other trace elements reach the following: 45 mg/kg As, 1170 mg/kg Ba, 191 mg/kg Cd, 242 mg/kg Co, 103 mg/kg Cr, 6360 mg/kg Cu, 107 mg/kg Ni, and 711 mg/kg Pb.Zinc, as the dominant metal in the slags, is likely the most environmentally significant metal in these samples; Cd, Cu, and Pb are also of concern and their concentrations exceed US Environmental Protection Agency preliminary remediation goals for residential soils. Spinel was found to be the dominant concentrator of Zn for samples containing significant Zn (>1 wt.%); the silicate glass also contained relatively high concentrations of Zn compared to other phases. Zinc partitioned into the silicates and oxides in these samples is generally more resistant to

  2. Highly conductive ionic liquids toward high-performance space-lubricating greases. (United States)

    Fan, Xiaoqiang; Wang, Liping


    Although ionic liquids (ILs) as a class of promising materials have a wide range of applications due to the excellent properties, their potential as space lubricants has been not systematically explored. Here two kinds of conductive alkyl imidazolium ILs greases were prepared using 1-hexyl-3-methylimidazolium tetrafluoroborate (LB106) and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide (L-F106) as base oil and the polytetrafluoroethylene (PTFE) as thickener, with multiple-alkylated cyclopentane grease (MACs) as a comparison. Their chemical composition and tribological properties were investigated in detail under simulated space environment which is composed of high vacuum, high temperature and irradiation. Results show that the high conductive ILs greases not only possess good adaptive abilities to space environment and thermal stability but also provide excellent friction reducing and antiwear behaviors as well as high load carrying capacities. The unique physicochemical properties are attributed to a combination of special anions and cations, the excellent tribological properties are strongly dependent on a boundary protective film on the rubbing surfaces.

  3. Radiological significance of coal, slag and fly ash samples from the Eastern Black Sea region

    Energy Technology Data Exchange (ETDEWEB)

    Damla, Nevzat [Batman Univ. (Turkey). Dept. of Physics; Cevik, Ugur [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Physics; Kara, Ayhan [Osmaniye Korkut Ata Univ. (Turkey). Dept. of Physics


    This work presents a study of natural radioactivity levels in coal and its combustion residues (fly ash and slag) used in the houses in Black Sea Region, Turkey. Coal, fly ash and slag samples were provided from different locations of the region and analyzed by gamma spectroscopy using a high-purity germanium detector (HPGe). Also, chemical analyses of these samples were carried out using energy dispersive X-ray fluorescence spectrometer. The mean {sup 226}Ra activity concentrations in coal, slag and fly ash were measured as 83, 99 and 38 Bq kg{sup -1}, respectively. The mean {sup 232}Th activity concentrations in coal, slag and fly ash were measured as 108, 113 and 50 Bq kg{sup -1}, respectively. The mean {sup 40}K activity concentrations in coal, slag and fly ash were found to be 366, 381 and 204 Bq kg{sup -1}, respectively. The potential radiological hazards associated to these materials were evaluated by calculating the radium equivalent activity (Ra{sub eq}), the air absorbed gamma dose rate (D), the annual effective dose rate (AED), the external hazard index (H{sub ex}) and internal hazard index (H{sub in}) and compared with the internationally accepted or reference values. The mean Ra{sub eq} values of the coal, fly ash and slag samples were lower than the recommended maximum values 370 Bq kg{sup -1} by the Organization for Economic Cooperation and Development (OECD). The overall mean outdoor terrestrial gamma air absorbed dose rate in coal, fly ash and slag samples are 119, 129 and 62 nGy h{sup -1} and the corresponding outdoor annual effective doses are 0.60, 0.32 and 0.64 mSv y{sup -1}, which is higher than the worldwide average (0.07 mSv y{sup -1}), respectively. Moreover, the enrichment factors relative to the input coal are calculated for the radionuclide contents observed. Calculated enrichment factor values for {sup 226}Ra and {sup 232}Th were found 1.14 and 1.01, respectively. (orig.)

  4. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing. (United States)

    Liapis, Ioannis; Papayianni, Ioanna


    Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Strength Properties and Micro-structure of Steel Slag Based Hardened Cementitious Composite with Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Li Mao


    Full Text Available For the rapid hardening of concrete, various types of calcium aluminate composite have been used for special purpose as shotcrete or rapid repairing in construction field. However, high cost of calcium aluminates is demerit in the point of expanding usage. In recent years, a new binder for rapid hardening has been introduced as the pulverized ladle furnace slag (RC-LFS with main components of C12A7 and β-C2S. Like other traditional cementitious materials, it’s use will preserve natural resources and has high environmental advantage with economic efficiency, by transferring the industry byproducts into high value materials. Even though flake state, graphene oxide has high tensile strength and electric conductivity. Then, it can be used to increase strength and thermal properties of concrete and its efficiency depends on the dispersion in the cement matrix. In this paper, we used graphene oxide for increasing the engineering properties in RC-LFS concrete with GGBFS. Test results showed that the 0.05w% of graphene oxide increase the flexural strength to 26% and compressive strength to 16%.

  6. Performance of Steel Slag as Fine Aggregate in Structural Concrete ...

    African Journals Online (AJOL)

    Suitability of using steel slag (SS) as substitute for sand in concrete was investigated. SS was collected from a dump site, crushed manually and sieved through between sieves No. 4 and 200. SS was characterized using XRF and XRD techniques. Concrete of mix ratio 1:2:4 was batched by weight with slag replacement ...

  7. Novel high refractive index, thermally conductive additives for high brightness white LEDs (United States)

    Hutchison, Richard Stephen

    In prior works the inclusion of nanoparticle fillers has typically been shown to increase the thermal conductivity or refractive index of polymer nanocomposites separately. High refractive index zirconia nanoparticles have already proved their merit in increasing the optical efficiency of encapsulated light emitting diodes. However, the thermal properties of zirconia-silicone nanocomposites have yet to be investigated. While phosphor-converted light emitting diodes are at the forefront of solid-state lighting technologies for producing white light, they are plagued by efficiency losses due to excessive heating at the semiconductor die and in and around the phosphor particles, as well as photon scattering losses in the phosphor layer. It would then be of great interest if the high refractive index nanoparticles were found to both be capable of increasing the refractive index, thus reducing the optical scattering, and also the thermal conductivity, channeling more heat away from the LED die and phosphors, mitigating efficiency losses from heat. Thermal conductance measurements on unfilled and nanoparticle loaded silicone samples were conducted to quantify the effect of the zirconia nanoparticle loading on silicone nanocomposite thermal conductivity. An increase in thermal conductivity from 0.27 W/mK to 0.49 W/mK from base silicone to silicone with 33.5 wt% zirconia nanoparticles was observed. This trend closely mirrored a basic rule of mixtures prediction, implying a further enhancement in thermal conductivity could be achieved at higher nanoparticle loadings. The optical properties of transparency and light extraction efficiency of these composites were also investigated. While overall the zirconia nanocomposite showed good transparency, there was a slight decrease at the shorter wavelengths with increasing zirconia content. For longer wavelength LEDs, such as green or red, this might not matter, but phosphor-converted white LEDs use a blue LED as the photon source

  8. Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag. (United States)

    He, Huaidong; Tam, Nora F Y; Yao, Aijun; Qiu, Rongliang; Li, Wai Chin; Ye, Zhihong


    Contamination of rice (Oryza sativa) by Cd is of great concern. Steel slag could be used to amend Cd-contaminated soils and make them safe for cereal production. This work was conducted to study the effects of steel slag on Cd uptake and growth of rice plants in acidic and Cd-contaminated paddy soils and to determine the possible mechanisms behind these effects. Pot (rhizobag) experiments were conducted using rice plants grown on two acidic and Cd-contaminated paddy soils with or without steel slag amendment. Steel slag amendment significantly increased grain yield by 36-45% and root catalase activity, and decreased Cd concentrations in brown rice by 66-77% compared with the control, in both soils. Steel slag amendment also markedly decreased extractable soil Cd, Cd concentrations in pore-water and Cd translocation from roots to above-ground parts. It also significantly increased soil pH, extractable Si and Ca in soils and Ca concentrations in roots. Significant positive correlations were found between extractable soil Cd and Cd concentrations in rice tissues, but it was negatively correlated with soil pH and extractable Si. Calcium in root tissues significantly and negatively correlated with Cd translocation factors from roots to straw. Overall, steel slag amendment not only significantly promoted rice growth but decreased Cd accumulation in brown rice. These benefits appear to be related to improvements in soil conditions (e.g. increasing pH, extractable Si and Ca), a reduction in extractable soil Cd, and suppression of Cd translocation from roots to above-ground parts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes (United States)

    Ma, Zhaoji; Guo, Zhengrong; Zhang, Hongwei; Chang, Tienchong


    Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  10. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhaoji Ma


    Full Text Available Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  11. Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite Production

    Directory of Open Access Journals (Sweden)

    Camille Crouzet


    Full Text Available The effect of acidic conditions (in a pH range of 3 to 6 and temperature on the kinetics of the hydrothermal oxidation of ferrous iron contained in BOF steel slag has been tested in the 150–350°C range for acid acetic concentrations from 0 to 4 M. Reaction progress was monitored with the amount of produced H2. Higher temperature and lower pH are found to enhance the hydrothermal oxidation kinetics of the slag. These two parameters are believed to increase iron dissolution rate which has already been identified as the rate limiting step of the hydrothermal oxidation of pure FeO. An activation energy of 28 ± 4 kJ/mole is found for the hydrothermal oxidation of the steel slag which compares very well with that of pure FeO under similar conditions. In the case of the slag run in water at 300°C for 70.5 h, magnetite product has been separated magnetically and characterized. Particles were found to fall in three size ranges: 10–30 nm, 100–300 nm, and 1–10 μm. The smallest fraction (10–30 nm is comparable to the 10–20 nm size range that is achieved when nanomagnetite are synthesized by co-precipitation methods. Obviously, the production of nanomagnetite enhances the economic interest of the hydrothermal processing of steel slags, which has already proven its capacity to produce high-purity H2.

  12. Design of Inorganic Polymer Mortar from Ferricalsialic and Calsialic Slags for Indoor Humidity Control. (United States)

    Kamseu, Elie; Lancellotti, Isabella; Sglavo, Vincenzo M; Modolo, Luca; Leonelli, Cristina


    Amorphous silica and alumina of metakaolin are used to adjust the bulk composition of black (BSS) and white (WSS) steel slag to prepare alkali-activated (AAS) mortars consolidated at room temperature. The mix-design also includes also the addition of semi-crystalline matrix of river sand to the metakaolin/steel powders. The results showed that high strength of the steel slag/metakaolin mortars can be achieved with the geopolymerization process which was particularly affected by the metallic iron present into the steel slag. The corrosion of the Fe particles was found to be responsible for porosity in the range between 0.1 and 10 µm. This class of porosity dominated (~31 vol %) the pore network of B compared to W samples (~16 vol %). However, W series remained with the higher cumulative pore volume (0.18 mL/g) compared to B series, with 0.12 mL/g. The maximum flexural strength was 6.89 and 8.51 MPa for the W and B series, respectively. The fracture surface ESEM observations of AAS showed large grains covered with the matrix assuming the good adhesion bonds between the gel-like geopolymer structure mixed with alkali activated steel slag and the residual unreacted portion. The correlation between the metallic iron/Fe oxides content, the pore network development, the strength and microstructure suggested the steel slag's significant action into the strengthening mechanism of consolidated products. These products also showed an interesting adsorption/desorption behavior that suggested their use as coating material to maintain the stability of the indoor relative humidity.

  13. Design of Inorganic Polymer Mortar from Ferricalsialic and Calsialic Slags for Indoor Humidity Control (United States)

    Kamseu, Elie; Lancellotti, Isabella; Sglavo, Vincenzo M.; Modolo, Luca; Leonelli, Cristina


    Amorphous silica and alumina of metakaolin are used to adjust the bulk composition of black (BSS) and white (WSS) steel slag to prepare alkali-activated (AAS) mortars consolidated at room temperature. The mix-design also includes also the addition of semi-crystalline matrix of river sand to the metakaolin/steel powders. The results showed that high strength of the steel slag/metakaolin mortars can be achieved with the geopolymerization process which was particularly affected by the metallic iron present into the steel slag. The corrosion of the Fe particles was found to be responsible for porosity in the range between 0.1 and 10 µm. This class of porosity dominated (~31 vol %) the pore network of B compared to W samples (~16 vol %). However, W series remained with the higher cumulative pore volume (0.18 mL/g) compared to B series, with 0.12 mL/g. The maximum flexural strength was 6.89 and 8.51 MPa for the W and B series, respectively. The fracture surface ESEM observations of AAS showed large grains covered with the matrix assuming the good adhesion bonds between the gel-like geopolymer structure mixed with alkali activated steel slag and the residual unreacted portion. The correlation between the metallic iron/Fe oxides content, the pore network development, the strength and microstructure suggested the steel slag's significant action into the strengthening mechanism of consolidated products. These products also showed an interesting adsorption/desorption behavior that suggested their use as coating material to maintain the stability of the indoor relative humidity. PMID:28773529

  14. [Spectroscopic Research on Slag Nanocrystal Glass Ceramics Containing Rare Earth Elements]. (United States)

    Ouyang, Shun-li; Li, Bao-wei; Zhang, Xue-feng; Jia, Xiao-lin; Zhao, Ming; Deng, Lei-bo


    The research group prepared the high-performance slag nanocrystal glass ceramics by utilizing the valuable elements of the wastes in the Chinese Bayan Obo which are characterized by their symbiotic or associated existence. In this paper, inductively coupled plasma emission spectroscopy (ICP), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) are all used in the depth analysis for the composition and structure of the samples. The experiment results of ICP, XRD and SEM showed that the principal crystalline phase of the slag nanocrystal glass ceramics containing rare earth elements is diopside, its grain size ranges from 45 to 100 nm, the elements showed in the SEM scan are basically in consistent with the component analysis of ICP. Raman analysis indicated that its amorphous phase is a three-dimensional network structure composed by the structural unit of silicon-oxy tetrahedron with different non-bridging oxygen bonds. According to the further analysis, we found that the rare earth microelement has significant effect on the network structure. Compared the nanocrystal slag glass ceramic with the glass ceramics of similar ingredients, we found that generally, the Raman band wavenumber for the former is lower than the later. The composition difference between the glass ceramics and the slag nanocrystal with the similar ingredients mainly lies on the rare earth elements and other trace elements. Therefore, we think that the rare earth elements and other trace elements remains in the slag nanocrystal glass ceramics have a significant effect on the network structure of amorphous phase. The research method of this study provides an approach for the relationship among the composition, structure and performance of the glass ceramics.

  15. CO{sub 2} sequestration by carbonation of steelmaking slags in an autoclave reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, E.-E. [Department of Biochemistry, Taipei Medical University, Taipei, Taiwan (China); Pan, Shu-Yuan [Graduate Institute of Environmental Engineering, National Taiwan University, No. 71 Chou-shan Rd., Taiwan (China); Chen, Yi-Hung [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taiwan (China); Chu, Hsiao-Wen [Graduate Institute of Environmental Engineering, National Taiwan University, No. 71 Chou-shan Rd., Taiwan (China); Wang, Chu-Fang [Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Taiwan (China); Chiang, Pen-Chi, E-mail: [Graduate Institute of Environmental Engineering, National Taiwan University, No. 71 Chou-shan Rd., Taiwan (China)


    Highlights: {yields} The aqueous carbonation of steelmaking slags in an autoclave reactor is feasible and results in a high conversion. {yields} The product was identified as crystallized calcite based on SEM and XRD measurements. {yields} The kinetics of this reaction were described using a surface coverage model and consistent with the predicted values. - Abstract: Carbon dioxide (CO{sub 2}) sequestration experiments using the accelerated carbonation of three types of steelmaking slags, i.e., ultra-fine (UF) slag, fly-ash (FA) slag, and blended hydraulic slag cement (BHC), were performed in an autoclave reactor. The effects of reaction time, liquid-to-solid ratio (L/S), temperature, CO{sub 2} pressure, and initial pH on CO{sub 2} sequestration were evaluated. Two different CO{sub 2} pressures were chosen: the normal condition (700 psig) and the supercritical condition (1300 psig). The carbonation conversion was determined quantitatively by using thermo-gravimetric analysis (TGA). The major factors that affected the conversion were reaction time (5 min to 12 h) and temperature (40-160 {sup o}C). The BHC was found to have the highest carbonation conversion of approximately 68%, corresponding to a capacity of 0.283 kg CO{sub 2}/kg BHC, in 12 h at 700 psig and 160 {sup o}C. In addition, the carbonation products were confirmed to be mainly in CaCO{sub 3,} which was determined by using scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) to analyze samples before and after carbonation. Furthermore, reaction kinetics were expressed with a surface coverage model, and the carbon footprint of the developed technology in this investigation was calculated by a life cycle assessment (LCA).

  16. Combining Proximal and Penetrating Soil Electrical Conductivity Sensors for High Resolution Digital Soil Mapping (United States)

    Proximal ground conductivity sensors produce high spatial resolution maps that integrate the bulk electrical conductivity (ECa) of the soil profile. Variability in conductivity maps must either be inverted to profile conductivity, or be directly calibrated to profile properties for meaningful interp...


    Proximal ground conductivity sensors produce a high spatial resolution map that integrates the bulk electrical conductivity (ECa) of the soil profile. Variability in the conductivity map must either be inverted to estimate profile conductivity, or be directly calibrated to soil profile properties fo...

  18. Characterization and Recovery of Valuables from Waste Copper Smelting Slag (United States)

    Prince, Sarfo; Young, Jamie; Ma, Guojun; Young, Courtney

    Silicate slags produced from smelting copper concentrates contains valuables such as Cu and Fe as well as heavy metals such as Pb and As which are considered hazardous. In this paper, various slags were characterized with several techniques: SEM-MLA, XRD, TG-DTA and ICP-MS. A recovery process was developed to separate the valuables from the silicates thereby producing value-added products and simultaneously reducing environmental concerns. Results show that the major phases in air-cooled slag are fayalite and magnetite whereas the water-cooled slag is amorphous. Thermodynamic calculations and carbothermal reduction experiments indicate that most of Cu and Fe can be recovered from both types using minor amounts of lime and alumina and treating at 1350°C (1623K) or higher for 30 min. The secondary slag can be recycled to the glass and/or ceramic industries.

  19. High Thermal Conductivity and High Wear Resistance Tool Steels for cost-effective Hot Stamping Tools (United States)

    Valls, I.; Hamasaiid, A.; Padré, A.


    In hot stamping/press hardening, in addition to its shaping function, the tool controls the cycle time, the quality of the stamped components through determining the cooling rate of the stamped blank, the production costs and the feasibility frontier for stamping a given component. During the stamping, heat is extracted from the stamped blank and transported through the tool to the cooling medium in the cooling lines. Hence, the tools’ thermal properties determine the cooling rate of the blank, the heat transport mechanism, stamping times and temperature distribution. The tool’s surface resistance to adhesive and abrasive wear is also an important cost factor, as it determines the tool durability and maintenance costs. Wear is influenced by many tool material parameters, such as the microstructure, composition, hardness level and distribution of strengthening phases, as well as the tool’s working temperature. A decade ago, Rovalma developed a hot work tool steel for hot stamping that features a thermal conductivity of more than double that of any conventional hot work tool steel. Since that time, many complimentary grades have been developed in order to provide tailored material solutions as a function of the production volume, degree of blank cooling and wear resistance requirements, tool geometries, tool manufacturing method, type and thickness of the blank material, etc. Recently, Rovalma has developed a new generation of high thermal conductivity, high wear resistance tool steel grades that enable the manufacture of cost effective tools for hot stamping to increase process productivity and reduce tool manufacturing costs and lead times. Both of these novel grades feature high wear resistance and high thermal conductivity to enhance tool durability and cut cycle times in the production process of hot stamped components. Furthermore, one of these new grades reduces tool manufacturing costs through low tool material cost and hardening through readily

  20. Tensile and electrical properties of high-strength high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)


    Electrical conductivity and tensile properties have been measured on an extruded and annealed CuCrNb dispersion strengthened copper alloy which has been developed for demanding aerospace high heat flux applications. The properties of this alloy are somewhat inferior to GlidCop dispersion strengthened copper and prime-aged CuCrZr over the temperature range of 20--500 C. However, if the property degradation in CuCrZr due to joining operations and the anisotropic properties of GlidCop in the short transverse direction are taken into consideration, CuCrNb may be a suitable alternative material for high heat flux structural applications in fusion energy devices. The electrical conductivity and tensile properties of CuCrZr that was solution annealed and then simultaneously aged and diffusion bonded are also summarized. A severe reduction in tensile elongation is observed in the diffusion bonded joint, particularly if a thin copper shim is not placed in the diffusion bondline.

  1. CO2Mineralization and Utilization using Steel Slag for Establishing a Waste-to-Resource Supply Chain. (United States)

    Pan, Shu-Yuan; Chung, Tai-Chun; Ho, Chang-Ching; Hou, Chin-Jen; Chen, Yi-Hung; Chiang, Pen-Chi


    Both steelmaking via an electric arc furnace and manufacturing of portland cement are energy-intensive and resource-exploiting processes, with great amounts of carbon dioxide (CO 2 ) emission and alkaline solid waste generation. In fact, most CO 2 capture and storage technologies are currently too expensive to be widely applied in industries. Moreover, proper stabilization prior to utilization of electric arc furnace slag are still challenging due to its high alkalinity, heavy metal leaching potentials and volume instability. Here we deploy an integrated approach to mineralizing flue gas CO 2 using electric arc furnace slag while utilizing the reacted product as supplementary cementitious materials to establish a waste-to-resource supply chain toward a circular economy. We found that the flue gas CO 2 was rapidly mineralized into calcite precipitates using electric arc furnace slag. The carbonated slag can be successfully utilized as green construction materials in blended cement mortar. By this modulus, the global CO 2 reduction potential using iron and steel slags was estimated to be ~138 million tons per year.

  2. Natural attenuation in a slag heap contaminated with cadmium: The role of plants and arbuscular mycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Chavez, M.C. [Programa de Edafologia. Colegio de Postgraduados en Ciencias Agricolas, Campus Montecillo. Carretera Mexico-Texcoco, km 36.5. Montecillo, Texcoco, Mexico, 56230 (Mexico)], E-mail:; Carrillo-Gonzalez, R.; Gutierrez-Castorena, M.C. [Programa de Edafologia. Colegio de Postgraduados en Ciencias Agricolas, Campus Montecillo. Carretera Mexico-Texcoco, km 36.5. Montecillo, Texcoco, Mexico, 56230 (Mexico)


    A field study of the natural attenuation occurring in a slag heap contaminated with high available cadmium was carried out. The aims of this research were: to determine plants colonizing this slag heap; to analyze colonization and morphological biodiversity of spores of arbuscular mycorrhizal fungi (AMF); to determine spore distribution in undisturbed samples; to know mycelium and glomalin abundance in the rhizosphere of these plants, and to investigate glomalin participation in Cd-stabilization. Forming vegetal islands, 22 different pioneering plant species from 11 families were colonizing the slag heap. The most common plants were species of Fabaceae, Asteraceae and Poaceae. Almost all plants were hosting AMF in their roots, and spores belonging to Gigaspora, Glomus, Scutellospora and Acaulospora species were observed. Micromorphological analysis showed that spores were related to decomposing vegetal residues and excrements, which means that mesofauna is contributing to their dispersion in the groundmass. Mycelium mass ranged from 0.11 to 26.3 mg/g, which contained between 13 and 75 mg of glomalin/g. Slag-extracted total glomalin was between 0.36 and 4.74 mg/g. Cadmium sequestered by glomalin extracted from either slag or mycelium was 0.028 mg/g. The ecological implication of these results is that organisms occupying vegetal patches are modifying mine residues, which contribute to soil formation.

  3. Composite cements containing natural pozzolan and granulated blast furnace slag

    Directory of Open Access Journals (Sweden)

    Irassar, E. F.


    Full Text Available For reasons of market demand and Portland cement production,the manufacture of cements with two or more separately ground additions to produce customized cements is becoming common practice.When pozzolan or slag content in this type of cements is high, however, the initial strength of the resulting product may be adversely impacted. This problem can be minimized by activating one or both of the replacement materials. The present study analyzes the effect of Portland cement additions such as physically activated natural pozzolan(up to 20% and/or granulated blast furnace slag (up to 35% on mortar flexural and compressive strength. The results show that higher strength is attained in ternary than binary cements. Initially (2 and 7 days, the highest compressive strengths are reached by mortars with up to 13% natural pozzolan and 5% slag, whereas at later ages mortars with larger proportions of additions are found to perform best.Debido a las exigencias del mercado y de la producción de cemento Portland, es cada vez más frecuente la elaboración de cementos con dos o más adiciones a partir de la molienda separada de sus constituyentes, dando origen a la formulación de los cementos a medida.Cuando el contenido de adiciones es alto, la utilización de puzolana y escoria en este tipo de cementos presenta la peculiaridad de disminuir la resistencia inicial del cemento resultante. Sin embargo, si algunas o ambas adiciones se activan, este problema puede minimizarse. En este trabajo se analiza la influencia de la incorporación al cemento Portland de puzolana natural (hasta 20% activada físicamente y/o escoria granulada de alto horno (hasta 35% sobre la resistencia a flexión y a compresión de morteros. Los resultados indican que los cementos ternarios presentan un mejor comportamiento resistente que los cementos binarios. Las máximas resistencias a compresión en las primeras edades (2 y 7 díasse alcanzan con hasta 13% de puzolana natural y 5% de

  4. Leaching Behavior of Slags from AN Old Lead Smelter in Chihuahua, Mexico: Metals, Chlorides, Nitrates, Sulfates and Tds Analyses (United States)

    Espejel-Garcia, D.; Wenglas-Lara, G.; Villalobos-Aragon, A.; Espejel-Garcia, V. V.


    Waste materials (such as, smelter slags, waste glass, tires, plastics, rubbish, ashes, etc.), have a large potential to substitute natural materials, reducing costs, especially for the construction industry. Smelter slags are resistant and have better compression strength values in comparison to natural aggregates, and generally are far beyond of what the standard ratios need to qualify a material as a good one for construction. But this material has a big problem within it: the existence of toxic elements and compounds in high concentrations, which means that water and soil contamination can be present after water infiltrates through this material; so we perform leaching experiments to characterize and measure the possible contamination under controlled conditions. To perform the slags-leaching experiments, we used an EA-NEN-7375-2004 tank test standard from Netherlands. This test was selected because to our knowledge it is the only one which allows the use of coarse material, as the one utilized in construction. The leaching experiments sampling was performed at different times: 6, 24, 168 and 360 hours, to compare the leachate concentration at the two different pH's values (5 and 8) selected to simulate real conditions. For the leaching experiments, the slags were mixed with natural road base material (gravel-sands from volcanic rocks) at different proportions of 30% and 50%. In order to understand the slags' leaching behavior, other experiments were carried out with the pure material, for both (slags and natural aggregates). After analyses by ICP-OES , the slags from this smelter in Chihuahua contain Pb (0.5 - 4 wt.%), Zn (15-35 wt.%) and As (0.6 wt.%), as well such as: bicarbonates, chlorides, nitrates, sulfates, Mg, K, Na, Ca and TDS. Based on the results of the leaching analyses, via atomic absorption technique, we conclude that Pb and As concentrations are provided by the slags, meanwhile, the bicarbonates, chlorides, Na and Ca are contributed by the road

  5. Behaviour of slag HPC submitted to immersion-drying cycles

    Directory of Open Access Journals (Sweden)

    Rabah Chaid


    Full Text Available This article is part of a summary of the work developed in conjunction with the Laboratory of Civil Engineering and Mechanical Engineering from INSA Rennes and Research Unit: Materials, Processes and Environment, University of Boumerdes. One of the objectives was indeed to promote, through studies of variants, the use of local cementitious additions in the formulation of high performance concretes (HPC. The binding contribution of mineral additions to the physical, mechanical and durability of concrete was evaluated by an experimental methodology to subjugate their original granular and pozzolanic effect. The results show that the contribution of couple cement -slag intensification of the matrix is higher than that obtained when the cement is not substituted by addition. Therefore, a significant improvement in performance of concretes was observed, despite the adverse action immersion cycles - drying maintained for 365 days.

  6. Distribution of nickel between copper-nickel and alumina saturated iron silicate slags

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, R.G.; Acholonu, C.C.


    The solubility of nickel in slag is determined in this article by equilibrating copper-nickel alloys with alumina-saturated iron silicate slags in an alumina crucible at 1573 K. The results showed that nickel dissolves in slag both as nickel oxide and as nickel metal. The presence of alumina is shown to increase the solubility of nickel in slags.

  7. Alkali-activated composites based on slags from iron and steel metallurgy

    Directory of Open Access Journals (Sweden)

    J. Vlček


    Full Text Available Slag as a secondary raw material from metallurgy is most often heaped in slag disposal areas without any profit. This paper deals with alkali activated slag from iron and steel production which can be used in the building industry. Products of alkali slag activation fulfill the role of inorganic binders.

  8. Comparative study of antimicrobial efficiency of metallurgical slags suitable for construction applications (United States)

    Strigac, J.; Stevulova, N.; Mikusinec, J.; Varecka, L.; Hudecova, D.


    The article deals with comparative study of antimicrobial efficiency of metallurgical slags suitable for construction applications. The tested slags were as follows: granulated blast-furnace slag (GS1), air cooled blast-furnace slag (AS2), demetallized steel slag (DS3), calcerous ladle slag (LS4), slag from copper refining (CS5). The antimicrobial activity was tested on selected representatives of bacteria, yeasts, and filamentous fungi. The highest antibacterial activity possessed LS4, which intensely inhibited growth of bacteria with the lowest concentration of slag (10%) in the growth media. 100% inhibition of growth of some bacteria was observed only in slags LS4, DS3 and AS2 in concentrations 20% - 60% of slag. Antibacterial activity of slag samples was decreasing in the order: LS4 > DS3 > AS2 > GS1 > CS5. Growth of all model yeasts was 100% inhibited at as low concentration as 20% of slag GS1 and DS3, and 10% of slag LS4. Antiyeast activity of slags was decreasing in the order: LS4 > GS1 = DS3 > AS2 > CS5. Regarding that filamentous fungi were selectively sensitive to presence of slags, it is possible to determine only approximate order of inhibition effectiveness of slags to fungi: LS4 > GS1 = DS3 > AS2 = CS5.


    Directory of Open Access Journals (Sweden)

    Natalia Hidalgo


    Full Text Available This work aim was to recover and improvethe extraction of gold and silvercontained in the slag smelting, using the same metallurgical processes as in gold ores.The slag was concentrated in a centrifuge type Knelson, obtaining a(C1 concentrate and a (T1 tail. In order to optimize the recovery, an intensive T1 leaching was conducted. The variables used were: particle size, NaCN concentration (2000 to 4000 g/cm3 and aeration, with the residence time of 120 minutes. It is concluded that the recovery of Au, using gravity concentration (Knelson centrifuge is 83.6%, with Ag recovery of 52.5%. Au recovery is optimized to 90.4% by means of leaching tail centrifugal separation and 45.6% of Ag. The optimal conditions are: 4000 g/cm3of NaCN and artificial aeration, size [-14 # - # +35], in a lapse of 98 hours.

  10. Stabilisation of erodible soil by fly ash and blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Indraratna, B.; Salim, W. [Civil Engineering Division, University of Wollongong, N.S.W., Wollongong (Australia)


    Residual soils are found on large terrains which are often subjected to considerable erosion. This paper presents a detailed laboratory evaluation of the effect of fly ash and blast furnace slag on two different soils: (a) culluvium (sandy loam) from New South Wales, Australia and (b) erodible dispersive clay from northeast Thailand. Geotechnical tests were conducted to determine the compaction characteristics and the compressive and shear strength properties of the blended and natural soil specimens. The effect of the above mentioned industrial wastes on the rate of erosion and on the associated pH levels is also investigated. Fine grained fly ash is found to be useful as a void filler if used in substantial quantities, whereas selfhardening milled slag is more effective in terms of improving the internal friction angle of the treated soil. 18 refs.

  11. Highly conductive ultrathin Co films by high-power impulse magnetron sputtering (United States)

    Jablonka, L.; Riekehr, L.; Zhang, Z.; Zhang, S.-L.; Kubart, T.


    Ultrathin Co films deposited on SiO2 with conductivities exceeding that of Cu are demonstrated. Ionized deposition implemented by high-power impulse magnetron sputtering (HiPIMS) is shown to result in smooth films with large grains and low resistivities, namely, 14 µΩ cm at a thickness of 40 nm, which is close to the bulk value of Co. Even at a thickness of only 6 nm, a resistivity of 35 µΩ cm is obtained. The improved film quality is attributed to a higher nucleation density in the Co-ion dominated plasma in HiPIMS. In particular, the pulsed nature of the Co flux as well as shallow ion implantation of Co into SiO2 can increase the nucleation density. Adatom diffusion is further enhanced in the ionized process, resulting in a dense microstructure. These results are in contrast to Co deposited by conventional direct current magnetron sputtering where the conductivity is reduced due to smaller grains, voids, rougher interfaces, and Ar incorporation. The resistivity of the HiPIMS films is shown to be in accordance with models by Mayadas-Shatzkes and Sondheimer which consider grain-boundary and surface-scattering.


    Energy Technology Data Exchange (ETDEWEB)

    Vas Choudhry; Stephen Kwan; Steven R. Hadley


    The objective of the project entitled ''Utilization of Lightweight Materials Made from Coal Gasification Slags'' was to demonstrate the technical and economic viability of manufacturing low-unit-weight products from coal gasification slags which can be used as substitutes for conventional lightweight and ultra-lightweight aggregates. In Phase I, the technology developed by Praxis to produce lightweight aggregates from slag (termed SLA) was applied to produce a large batch (10 tons) of expanded slag using pilot direct-fired rotary kilns and a fluidized bed calciner. The expanded products were characterized using basic characterization and application-oriented tests. Phase II involved the demonstration and evaluation of the use of expanded slag aggregates to produce a number of end-use applications including lightweight roof tiles, lightweight precast products (e.g., masonry blocks), structural concrete, insulating concrete, loose fill insulation, and as a substitute for expanded perlite and vermiculite in horticultural applications. Prototypes of these end-use applications were made and tested with the assistance of commercial manufacturers. Finally, the economics of expanded slag production was determined and compared with the alternative of slag disposal. Production of value-added products from SLA has a significant potential to enhance the overall gasification process economics, especially when the avoided costs of disposal are considered.

  13. Characterization of chilean copper slag smelting nineteenth century

    Directory of Open Access Journals (Sweden)

    Amin Nazer


    Full Text Available The aim of this work is to characterize four copper smelters slag nineteenth century, from abandoned landfills in Atacama Region - Chile, using the techniques of X-ray fluorescence (XRF, X-ray diffraction (XRD, scanning electron microscopy (SEM, particle analysis by laser diffraction (ADL, Fourier Transform Infrared Spectroscopy (FTIR and thermogravimetric analysis (TGA. Copper slags studied were chemically classified as acidic slags, this slags presented higher SiO2 content (38–49% than Fe2O3 (18–37% and a significant amount of CaO (8–26% and Al2O3 (8.5%. Mineralogy and structure was varied, presenting one of them an amorphous structure and the remaining three, a crystalline structure with partially amorphous character. The majority mineral phases presented in the copper slag were diopside, fayalite, magnetite, cristobalite and clinoferrosilita. Calcium levels indicate that the slags could have cementitious properties for use as a binder in construction materials. Moreover, the significant amount of slag available and CuO content (0.6–1.2% show that may be of interest as raw material for metal recovery.

  14. Analysis of coal slag for naturally occurring radioactive material. (United States)

    Spitz, H B; Rajaretnam, G


    Samples of aerosolized coal slag were collected during an abrasive blasting operation to determine the concentration of naturally occurring radioactive materials (NORM) in the respirable and nonrespirable fractions. Each slag fraction was analyzed using alpha and gamma spectrometry. Since the slag is insoluble, it was necessary to dissolve samples completely by fusion with potassium fluoride and, after additional transposing and separation, mount the precipitate containing radium (Ra), the main radioactive component in NORM, on a membrane filter for alpha counting. The concentration of 226Ra in coal slag was independent of the particle size fraction and equal to 2.28 picocuries/gram (pCi/g) +/- 0.43 pCi/g, which is approximately twice the typical concentration of NORM in uncontaminated soil. Analysis of NORM by gamma spectrometry identified low concentrations of uranium, thorium, and potassium, all primordial radioactive materials that are commonly encountered in normal background soil. Integral exposure to workers from inhalation of NORM during abrasive blasting with coal slag is extremely low and could be essentially eliminated by use of appropriate respiratory protection. External radiation exposure to workers handling large quantities of NORM-contaminated coal slag during shipping or storage is also low, but would vary depending on the concentration of NORM in the slag.

  15. An Overview of Use of Linz-Donawitz (LD) Steel Slag in Agriculture


    Sasmita Chand; Biswajit Paul; Manish Kumar


    Slag generated from basic oxygen furnace (BOF) or Linz-Donawitz (LD) converter is one of the recyclable wastes in integrated steel plants. This paper deals with the present and possible use of LD slag in agriculture. At present, the amount of slag deposited in storage yard, leading to the occupation of farm land and serious pollution to the environment. Improving the slag utilization is an important way to resolve these problems. The physical and chemical characteristics of steel slag were an...

  16. The Integration of Plant Sample Analysis, Laboratory Studies, and Thermodynamic Modeling to Predict Slag-Matte Equilibria in Nickel Sulfide Converting (United States)

    Hidayat, Taufiq; Shishin, Denis; Grimsey, David; Hayes, Peter C.; Jak, Evgueni


    The Kalgoorlie Nickel Smelter (KNS) produces low Fe, low Cu nickel matte in its Peirce-Smith converter operations. To inform process development in the plant, new fundamental data are required on the effect of CaO in slag on the distribution of arsenic between slag and matte. A combination of plant sample analysis, high-temperature laboratory experiments, and thermodynamic modeling was carried out to identify process conditions in the converter and to investigate the effect of slag composition on the chemical behavior of the system. The high-temperature experiments involved re-equilibration of industrial matte-slag-lime samples at 1498 K (1225 °C) and P(SO2) = 0.12 atm on a magnetite/quartz substrate, rapid quenching in water, and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). A private thermodynamic database for the Ca-Cu-Fe-Mg-Ni-O-S-Si-(As) system was used together with the FactSage software package to assist in the analysis. Thermodynamic predictions combined with plant sample characterization and the present experimental data provide a quantitative basis for the analysis of the effect of CaO fluxing on the slag-matte thermochemistry during nickel sulfide converting, in particular on the spinel liquidus and the distribution of elements between slag and matte as a function of CaO addition.

  17. The Integration of Plant Sample Analysis, Laboratory Studies, and Thermodynamic Modeling to Predict Slag-Matte Equilibria in Nickel Sulfide Converting (United States)

    Hidayat, Taufiq; Shishin, Denis; Grimsey, David; Hayes, Peter C.; Jak, Evgueni


    The Kalgoorlie Nickel Smelter (KNS) produces low Fe, low Cu nickel matte in its Peirce-Smith converter operations. To inform process development in the plant, new fundamental data are required on the effect of CaO in slag on the distribution of arsenic between slag and matte. A combination of plant sample analysis, high-temperature laboratory experiments, and thermodynamic modeling was carried out to identify process conditions in the converter and to investigate the effect of slag composition on the chemical behavior of the system. The high-temperature experiments involved re-equilibration of industrial matte-slag-lime samples at 1498 K (1225 °C) and P(SO2) = 0.12 atm on a magnetite/quartz substrate, rapid quenching in water, and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). A private thermodynamic database for the Ca-Cu-Fe-Mg-Ni-O-S-Si-(As) system was used together with the FactSage software package to assist in the analysis. Thermodynamic predictions combined with plant sample characterization and the present experimental data provide a quantitative basis for the analysis of the effect of CaO fluxing on the slag-matte thermochemistry during nickel sulfide converting, in particular on the spinel liquidus and the distribution of elements between slag and matte as a function of CaO addition.

  18. Highly Conductive Aromatic Functionalized Multi-Walled Carbon Nanotube for Inkjet Printable High Performance Supercapacitor Electrodes.

    Directory of Open Access Journals (Sweden)

    Sanjeev K Ujjain

    Full Text Available We report the functionalization of multiwalled carbon nanotubes (MWCNT via the 1,3-dipolar [3+2] cycloaddition of aromatic azides, which resulted in a detangled CNT as shown by transmission electron microscopy (TEM. Carboxylic moieties (-COOH on aromatic azide result in highly stable aqueous dispersion (max. conc. ~ 10 mg/mL H2O, making the suitable for inkjet printing. Printed patterns on polyethylene terephthalate (PET flexible substrate exhibit low sheet resistivity ~65 Ω. cm, which is attributed to enhanced conductivity. Fabricated Supercapacitors (SC assembled using these printed substrates exhibit good electrochemical performance in organic as well as aqueous electrolytes. High energy and power density (57.8 Wh/kg and 0.85 kW/kg in 1M H2SO4 aqueous electrolyte demonstrate the excellent performance of the proposed supercapacitor. Capacitive retention varies from ~85-94% with columbic efficiency ~95% after 1000 charge/discharge cycles in different electrolytes, demonstrating the excellent potential of the device for futuristic power applications.

  19. Design of instantaneous liquid film thickness measurement system for conductive or non-conductive fluid with high viscosity

    Directory of Open Access Journals (Sweden)

    Yongxin Yu


    Full Text Available In the paper, a new capacitive sensor with a dielectric film coating was designed to measure the thickness of the liquid film on a flat surface. The measured medium can be conductive or non-conductive fluid with high viscosity such as silicone oil, syrup, CMC solution and melt. With the dielectric film coating, the defects caused by the humidity in a capacitor can be avoided completely. With a excitation frequency 0-20kHz, the static permittivity of capacitive sensor is obtained and stable when small thicknesses are monitored within the frequency of 0-3kHz. Based on the measurement principle, an experimental system was designed and verified including calibration and actual measurement for different liquid film thickness. Experimental results showed that the sensitivity, the resolution, repeatability and linear range of the capacitive sensor are satisfied to the liquid film thickness measurement. Finally, the capacitive measuring system was successfully applied to the water, silicone oil and syrup film thickness measurement.

  20. Optimizing of Work Arc Furnace to Decopperisation of Flash Slag

    Directory of Open Access Journals (Sweden)

    Bydałek A.W.


    Full Text Available Discusses an attempt to optimize the operation of an electric furnace slag to be decopperisation suspension of the internal recycling process for the production of copper. The paper presents a new method to recover copper from metallurgical slags in arc-resistance electric furnace. It involves the use of alternating current for a first period reduction, constant or pulsed DC in the final stage of processing. Even distribution of the electric field density in the final phase of melting caused to achieve an extremely low content of metallic copper in the slag phase. They achieved by including the economic effects by reducing the time reduction.

  1. Effect of air-cooled slag and granulated blast furnace slag addition as substitutor on fly ash based geopolymer (United States)

    Harmaji, Andrie; Imran, Aishah Mahyarni; Sunendar, Bambang; Lazuardi, Muhammad Sofyan; Khairunnasari, Ikhsan; Sobandi, Ahmad


    Air Cooled Slag and Granulated Blast Furnace Slag is a waste material from steelmaking process that not utilized, even though it rich in silica and CaO that can increase mechanical properties of building materials. Therefore, this material is potential as substitutor for geopolymer. Geopolymer is an alkali activated material consists of aluminosilicate precursor activated by NaOH and waterglass as activator. One of the common aluminosilicate binder used is fly ash. Geopolymer was made by mixing fly ash and air cooled slag or granulated blast furnace slag in certain ratio with alkali activator solution. The aim for this study is to obtain the best ratio of slag to fly ash binder that produces the highest compressive strength. The best compressive strength was 29.80 MPa achieved in fly ash:air cooled slag 40:60 ratio and 31.33 MPa achieved in fly ash:granulated blast furnace slag 40:60 ratio. X-Ray Diffraction test showed the appearance of anorthite (Ca, Na (Al, Si)4 O8). FTIR characterization showed the appearance of siloxo and sialate bonding which commonly found in geopolymerization.

  2. An approach for phosphate removal with quartz sand, ceramsite, blast furnace slag and steel slag as seed crystal. (United States)

    Qiu, Liping; Wang, Guangwei; Zhang, Shoubin; Yang, Zhongxi; Li, Yanbo


    The phosphate removal abilities and crystallization performance of quartz sand, ceramsite, blast furnace slag and steel slag were investigated. The residual phosphate concentrations in the reaction solutions were not changed by addition of the ceramsite, quartz sand and blast furnace slag. The steel slag could provide alkalinity and Ca(2+) to the reaction solution due to its hydration activity, and performed a better phosphate removal performance than the other three. Under the conditions of Ca/P 2.0, pH 8.5 and 10 mg P/L, the phosphate crystallization occurred during 12 h. The quartz sand and ceramsite did not improve the phosphate crystallization, but steel slag was an effective seed crystal. The phosphate concentration decreased drastically after 12 h after addition of steel slag, and near complete removal was achieved after 48 h. The XRD analysis showed that the main crystallization products were hydroxyapatite (HAP) and the crystallinity increased with the reaction time. Phosphate was successfully recovered from low phosphate concentration wastewater using steel slag as seed material.

  3. Thermodynamics Behavior of Germanium During Equilibrium Reactions between FeOx-CaO-SiO2-MgO Slag and Molten Copper (United States)

    Shuva, M. A. H.; Rhamdhani, M. A.; Brooks, G. A.; Masood, S.; Reuter, M. A.


    The distribution ratio of germanium (Ge), L_{{Ge}}^{s/m} during equilibrium reactions between magnesia-saturated FeOx-CaO-SiO2 (FCS) slag and molten copper has been measured under oxygen partial pressures from 10-10 to 10-7 atm and at temperatures 1473 to 1623 K (1200 to 1350 °C). It was observed that the Ge distribution ratio increases with increasing oxygen partial pressure, and with decreasing temperature. It was also observed that the distribution ratio is strongly dependent on slag basicity. The distribution ratio was observed to increase with increasing optical basicity. At fixed CaO concentration in the slag, the distribution ratio was found to increase with increasing Fe/SiO2 ratio, tending to a plateau at L_{{Ge}}^{s/m} = 0.8. This behavior is consistent with the assessment of ionic bond fraction carried out in this study, and suggested the acidic nature of germanium oxide (GeO2) in the slag system studied. The characterisation results of the quenched slag suggested that Ge is present in the FeOx-CaO-SiO2-MgO slag predominantly as GeO2. At 1573 K (1300 °C) and p_{{{{O}}2 }} = 10-8 atm, the activity coefficient of GeO2 in the slag was calculated to be in the range of 0.24 to 1.50. The results from the current study suggested that less-basic slag, high operating temperature, and low oxygen partial pressure promote a low Ge distribution ratio. These conditions are desired for maximizing Ge recovery, for example, during pyrometallurgical processing of Ge-containing e-waste through secondary copper smelting. Overall, the thermodynamics data generated from this study can be used for process modeling purposes for improving recovery of Ge in primary and secondary copper smelting processes.

  4. High Transparent Conductive Aluminum-Doped Zinc Oxide Thin Films by Reactive Co-Sputtering (Postprint) (United States)



  5. Evaluation of recycled MgO-C bricks and dead-burned dolomite fines in setting slag foaming in the electric arc furnace

    Directory of Open Access Journals (Sweden)

    Thiago da Costa Avelar

    Full Text Available Abstract Production cost reduction for the Electric Arc Furnace (EAF technology is strongly dependent on the efficiency of the electrical energy being introduced into the metal bath. Besides EAF technology, the slag foaming process is currently applied to some other equipment for steel production aiming to save energy, productivity improvements, enhance the refractory service life and inhibit steel re-oxidation. In this way, this study involved the recycling options of Crushed MgO-C spent refractories removed from the EAF without complex and costly beneficiation, with emphasis on its application as a slag conditioner, since its composition presents high MgO content. The experiments were performed in a laboratory induction furnace and the temperature was controlled at 1700°C.The initial height of the slag was recorded and foaming briquettes added into the furnace. The experiments were carried out for 30 minutes. When the foaming process was finalized, an aliquot from the slag was collected to be analyzed by chemical analysis. Then, the metal with slag was tapped into a mold. The results indicated that the best viscosity was 0.39poise. The maximum height of foam formation was observed for a binary basicity greater than 1.2. The concentration of MgO in the slag is close to the saturation point.

  6. Bubble separation at the interface between a liquid metal and a liquid slag (United States)

    Chevrier, Vincent F.

    Due to more specific consumer demand, most steel manufacturers are developing techniques to produce quality steels by limiting the number of defects in the final product. There are several aspects to be considered when producing "clean steels", and this research project will focus on one of them: inclusion and bubble separation. Large inclusions (solid or liquid) and gas bubbles have to be removed from the liquid metal before casting, and separation occurs mostly at the slag-metal interface. The objective of this study to develop a fundamental understanding of bubble separation at the slag-metal interface by looking at the chemical engineering literature on separation and coalescence, and by studying experimentally bubble separation at a liquid-liquid interface, first using a water-oil system and then with a metal-slag system. The literature review and the water modeling experiments have shown that four separate steps need to be considered when studying the removal of a buoyant phase particle at a liquid-liquid interface: the transport to the interface, the separation at the interface (film drainage), the film rupture and the removal from the interface. The major factors influencing the rest-time of an argon bubble at an oil-water interface are determined experimentally. The high temperature apparatus permits direct visualization of bubble behavior in metal and slag. The separation of argon bubbles at the slag-metal interface exhibits a behavior similar to what is observed in water modeling: the bubbles impact the interface and rest there for some time before coalescing. A methodology of studying the separation of solid and liquid inclusions is also established using two complementary techniques: x-ray fluoroscopy and confocal scanning electron microscopy. This experimental study showed that inclusions and bubbles do not separate immediately upon reaching the slag-metal interface but can rest in the metal phase for long periods of time before separating. Enhancing

  7. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Xiao Zhao


    Full Text Available Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM and slag-foamed mortar (SFM, 50% cement was replaced by slag weight. Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.

  8. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag. (United States)

    Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan


    Foamed mortar with a density of 1300 kg/m³ was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV) and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.

  9. Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles. (United States)

    de Almeida, Rodrigo Pereira; Leite, Adilson do Lago; Borghetti Soares, Anderson


    The extraction of gold, coal, nickel, uranium, copper and other earth-moving activities almost always leads to environmental damage. In metal and coal extraction, exposure of sulfide minerals to the atmosphere leads to generation of acid rock drainage (ARD) and in underground mining to acid mine drainage (AMD) due to contamination of infiltrating groundwater. This study proposes to develop a reactive cover system that inhibits infiltration of oxygen and also releases alkalinity to increase the pH of generated ARD and attenuate metal contaminants at the same time. The reactive cover system is constructed using steel slag, a waste product generated from steel industries. This study shows that this type of cover system has the potential to reduce some of the adverse effects of sulfide mine waste disposal on land. Geochemical and geotechnical characterization tests were carried out. Different proportions of sulfide mine waste and steel slag were studied in leachate extraction tests. The best proportion was 33% of steel slag in dry weight. Other tests were conducted as follows: soil consolidation, saturated permeability and soil water characteristic curve. The cover system was numerically modeled through unsaturated flux analysis using Vadose/w. The solution proposed is an oxygen transport barrier that allows rain water percolation to treat the ARD in the waste rock pile. The results showed that the waste pile slope is an important factor and the cover system must have 5 m thickness to achieve an acceptable effectiveness. © The Author(s) 2015.

  10. On the use of slag from silicomanganese production for welding flux manufacturing (United States)

    Kozyrev, N. A.; Kryukov, R. E.; Lipatova, U. I.; Kozyreva, O. E.


    The technologies for manufacturing of welding fluxes with the use of slag from silicomanganese production and dust of gas purification from aluminum production are developed. The new compositions and production technology of welding fluxes are offered. The comparative evaluation of the new compositions and widely used AN-348 flux is provided. It is shown that the quality of submerged arc welding with the use of the developed flux composition is significantly better than the submerged arc welding with AN-348 flux. The effect of fractional composition on high-quality performance of the weld is investigated. The macro- and microstructures, nonmetallic inclusions and the mechanical properties of the weld are examined. It is shown that the introduction of carbon-fluorine containing additive into the flux, based on the dust of gas purification from aluminum production, can significantly improve the whole complex of mechanical properties of the weld, especially characteristics of impact hardness at low temperatures. The conducted research served as a basis for development of submerged arc welding technologies protected by the patents of the Russian Federation.

  11. Glass containing portland slag cement materials

    Directory of Open Access Journals (Sweden)

    Ольга Петровна Бондаренко


    Full Text Available The effect of glass powder on the kinetics of curing materials based on Portland slag cement is investigated. As a result of optimizing the domain of existence it is obtained binder composition, limited by the axis X1 from 25 to 55% of the axis X2 from 5 to 7.5 % and the X3 axis values of W/C from 0.243 to 0.33, allowing to obtain an artificial stone, characterized by a compressive strength of 30-106 MPa in the range 2-90 days of hardening, characterized by porosity: total - 27.1 %; open - 21.42 % and closed – 5 %

  12. Effect of fillers Granulated slag on the durability of HPC in marine environment

    Directory of Open Access Journals (Sweden)

    Tebbal Nadia


    Full Text Available The combined effect of fillers of silica fume and blast furnace slag on the durability of high performance concretes was studied .The storage media are: seawater and tap water as reference. This work focuses on the effect of the incorporation of different amounts of milk more silica fume on the mechanical strength of concretes with limestone cements and its influence on sustainability with respect to marine. The results show that the addition of quantity 10%slag and 5% silica fume offers the best protection in marine waters .One of the indicators of sustainability are selected and monitored from 1 day to 28 days are variations of unconfined compressive strengths . The PH of the solution, especially related to the frequency of renewal baths, appears as an important parameter of aggressiveness.

  13. Characterization of ancient Indian iron and entrapped slag ...

    Indian Academy of Sciences (India)

    year old Indian iron using microprobe techniques (EDS, XRD and PIXE). Several different local locations in the iron matrix and in the entrapped slag inclusions were analyzed. The P content of the metallic iron matrix was very heterogeneous.

  14. Directly patternable, highly conducting polymers for broad applications in organic electronics. (United States)

    Yoo, Joung Eun; Lee, Kwang Seok; Garcia, Andres; Tarver, Jacob; Gomez, Enrique D; Baldwin, Kimberly; Sun, Yangming; Meng, Hong; Nguyen, Thuc-Quyen; Loo, Yueh-Lin


    Postdeposition solvent annealing of water-dispersible conducting polymers induces dramatic structural rearrangement and improves electrical conductivities by more than two orders of magnitude. We attain electrical conductivities in excess of 50 S/cm when polyaniline films are exposed to dichloroacetic acid. Subjecting commercially available poly(ethylene dioxythiophene) to the same treatment yields a conductivity as high as 250 S/cm. This process has enabled the wide incorporation of conducting polymers in organic electronics; conducting polymers that are not typically processable can now be deposited from solution and their conductivities subsequently enhanced to practical levels via a simple and straightforward solvent annealing process. The treated conducting polymers are thus promising alternatives for metals as source and drain electrodes in organic thin-film transistors as well as for transparent metal oxide conductors as anodes in organic solar cells and light-emitting diodes.

  15. Experimental Investigation and Modeling of Copper Smelting Slags (United States)

    Starodub, Konstantin; Kuminova, Yaroslava; Dinsdale, Alan; Cheverikin, Vladimir; Filichkina, Vera; Saynazarov, Abdukahhar; Khvan, Alexandra; Kondratiev, Alex


    Effective extraction of copper from sulfide ores requires careful operation of a copper smelter, which in turn depends very much on chemistry of the feed and resulted slag and matte. For example, chemical composition of copper smelting slags has to be in a certain range to ensure that their properties are within specific limits. Disobeying these rules may lead to complications in smelting operation, poor quality of the copper products, and premature shutdown of the copper smelter. In the present paper the microstructure and phase composition of slags from the Almalyk copper flash smelter were investigated experimentally and then modeled thermodynamically to evaluate potential ways of improvement and optimization of the copper smelting process and its products. The slag samples were taken at different stages of the copper smelting process: on slag tapping, after slag transportation to a deposition site, and at the site. Experimental investigation included the XRD, XRF, and SEM techniques, which were also confirmed by the traditional wet chemistry analysis. Thermodynamic modeling was carried out using thermochemical software package MTDATA, which enables thermodynamic and physical properties of the matte, slag, and gas phases to be calculated in a wide range of temperatures, pressures, and chemical compositions. In addition, slag viscosities and corresponding matte settling rates were estimated using the modified Urbain and Utigard-Warczok models, and the Hadamard-Rybczynski equation, respectively. It was found that the copper content in the slags may vary significantly depending on the location of slag sampling. Cu was found to be present as sulfide particles, almost no Cu was found to be dissolved in the slag. Analysis of microstructure and phase composition showed that major phase found in the samples is fayalite, while other phases are complex spinels (based on magnetite), different sulfides, and a glass-like phase. Thermodynamic calculations demonstrated the

  16. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure.

    NARCIS (Netherlands)

    Zomeren, van A.; Laan, der S.R.; Kobesen, H.B.A.; Huijgen, W.J.J.; Comans, R.N.J.


    Steel slag can be applied as substitute for natural aggregates in construction applications. The material imposes a high pH (typically 12.5) and low redox potential (Eh), which may lead to environmental problems in specific application scenarios. The aim of this study is to investigate the potential

  17. Artificial neural networks application for solid fuel slagging intensity predictions


    Kakietek Sławomir; Szymczak Jerzy


    Slagging issues present in pulverized steam boilers very often lead to heat transfer problems, corrosion and not planned outages of boilers which increase the cost of energy production and decrease the efficiency of energy production. Slagging especially occurs in regions with reductive atmospheres which nowadays are very common due to very strict limitations in NOx emissions. Moreover alternative fuels like biomass which are also used in combustion systems from two decades in order to decrea...

  18. Application of a method of welding for improvement of reliability of hoppers of slag carriages

    Directory of Open Access Journals (Sweden)

    Аркадій Васильович Лоза


    Full Text Available Reliability of the design of slag carriages is of great importance, as these belong to transportation system of iron and steel works, operating with enhanced danger due to the necessity to carry molten materials. That is why it is required to eliminate the slightest possibility of any failures of emergency situations at operation of slag carriages. Presence of defects in the hopper’s wall undermines its reliability and diminishes its service life. Hopper’s wall undergo at operation tremendous mechanical and thermal loads. Heating over the temperature range 500-600C º leads to appearance of residual deformations, it deteriorating exploitation conditions of a slag carrier. Overheating of separate sections of the casing can drastically deteriorate strength characteristics of the material, specified for the hopper’s design. This leads to alternations of its original geometry. The existing methods of improvement of its strength are insufficient due to economic and technological reasons. For this reason a technical solution was proposed and tested, in which additional reinforcing ribs to be installed above the deformation area on the side surface of the hopper were presumed. The indicted area is characterized by the smallest heating temperature its exploitation temperature possesses higher strength characteristics than other sections. This feature was used for strengthening of a less strong adjoining deformation area, undergoing high heating temperature. Reinforcing ribs are made by foundry methods do not always ensure the desired effect as they present the source of inner defects and formation of cracks. This is explained by formation of heat centres and T-shaped elements of casting, that are last crystallized and have no dense structure. That is why it was proposed to install welded reinforcing ribs for improved design of a slag carriers. The ribs are to be manufactured of steel rolled stock. This variant of installation of additional

  19. Steel slags in a landfill top cover--experiences from a full-scale experiment. (United States)

    Andreas, L; Diener, S; Lagerkvist, A


    A full scale field study has been carried out in order to test and evaluate the use of slags from high-alloy steel production as the construction materials for a final cover of an old municipal landfill. Five test areas were built using different slag mixtures within the barrier layer (liner). The cover consisted of a foundation layer, a liner with a thickness of 0.7 m, a drainage layer of 0.3 m, a protection layer of 1.5 m and a vegetation layer of 0.25 m. The infiltration varied depending on the cover design used, mainly the liner recipe but also over time and was related to seasons and precipitation intensity. The test areas with liners composed of 50% electric arc furnace (EAF) slag and 50% cementitious ladle slag (LS) on a weight basis and with a proper consistence of the protection layer were found to meet the Swedish infiltration criteria of ⩽50 l (m(2)a)(-1) for final covers for landfills for non-hazardous waste: the cumulative infiltration rates to date were 44, 19 and 0.4 l (m(2)a)(-1) for A1, A4 and A5, respectively. Compared to the precipitation, the portion of leachate was always lower after the summer despite high precipitation from June to August. The main reason for this is evapotranspiration but also the fact that the time delay in the leachate formation following a precipitation event has a stronger effect during the shorter summer sampling periods than the long winter periods. Conventional techniques and equipment can be used but close cooperation between all involved partners is crucial in order to achieve the required performance of the cover. This includes planning, method and equipment testing and quality assurance. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Leaching of aluminum and iron from boiler slag generated from a typical Chinese Steel Plant. (United States)

    Li, Jinping; Gan, Jinhua; Li, Xianwang


    This paper presents a new way of recycling aluminum and iron in boiler slag derived from coal combustion plants, which integrates efficient extraction and reuse of the leached pellets together. The boiler slag was pelletized together with washed coal and lime prior to sintering and then was sintered at 800-1200 degrees C for different periods to produce sintered pellets for the leaching test. An elemental analysis of aqueous solutions leached by sulfuric acid was determined by EDTA-Na(2)-ZnCl(2) titration method. The components and microstructures of the samples, sintered pellets and leached residue were examined by means of XRF, XRD and SEM. XRD analysis indicates that predominate minerals such as kaolinite, quartz, calcium silicide, hematate and metakoalin exist in the boiler slag. An aluminum extraction efficiency of 86.50% was achieved. The maximum extraction efficiency of Fe was 94.60% in the same conditions of that for the maximum extraction efficiency of Al. The extraction efficiencies of Al and Fe increased with an increase in temperature, leaching time and acidity. High Al extraction efficiency was obtained for pellets with high CaO content. The final product of alumina would be used directly for the production of metallic aluminum.

  1. Kinetics of Vanadium Extraction from Hot Metal by Basic Slag (United States)

    Zhang, Tao; Xie, Bing; Liu, Xuan; Diao, Jiang; Zhang, Zhen; Li, Hong-Yi

    Extracting vanadium from vanadium containing hot metal by LD process has been proven an effective solution for the utilization of vanadium-titanium magnetite ore, but the systematic analyses of vanadium extraction rate and mechanism by basic slag are seldom reported. In this study, mathematical model of vanadium transfer from metal to slag was formulated and the rates of vanadium extraction of hot metal with basic slag were investigated. The results indicated that the apparent vanadium extraction rate constant, k p , were in the range of 1.33˜9.07×10-4g/(cm3·s). And the rate constant was increased with the increase of final slag basicity, reaction temperature and stirring gas flow. The apparent of mass transfer parameter decreases significantly from 0.13 cm3/ s to 0 cm3/ s in 20min, and the data changed as negative due to the decrease of slag oxidation and recovery of vanadium from slag to metal.

  2. Growth promotion effect of steelmaking slag on Spirulina platensis (United States)

    Nogami, R.; Tam, L. T.; Anh, H. T. L.; Quynh, H. T. H.; Thom, L. T.; Nhat, P. V.; Thu, N. T. H.; Hong, D. D.; Wakisaka, M.


    A growth promotion effect of steelmaking slag on Spirulina platensis M135 was investigated. The growth promotion effect was obtained that was 1.27 times greater than that obtained by the control by adding 500 mg L-1 of steelmaking slag and culturing for 60 days. The lipid content decreased in a concentration-dependent manner with steelmaking slag, whereas the carbohydrate content remained constant. The protein content of S. platensis M135 increased in a concentration-dependent manner with steelmaking slag when cultured at day 45. The superoxide dismutase activity of S. platensis M135 exhibited a decreasing trend in a time-dependent manner and an increasing trend in the control. The superoxide dismutase activity was lower than that of the control at day 1 but was higher at day 30. No genetic damage was observed up to 500 mg L-1 of steelmaking slag at 30 days of culture. Recovery from genetic damage was observed at 1,000 mg L-1 of steelmaking slag but not at higher concentrations.

  3. Stabilization of carbon dioxide and chromium slag via carbonation. (United States)

    Wu, Xingxing; Yu, Binbin; Xu, Wei; Fan, Zheng; Wu, Zucheng; Zhang, Huimin


    As the main greenhouse gas, CO2 is considered as a threat in the context of global warming. Many available technologies to reduce CO2 emission was about CO2 separation from coal combustion and geological sequestration. However, how to deal with the cost-effective storage of CO2 has become a new challenge. Moreover, chromium pollution, the treatment of which requires huge energy consumption, has attracted people's widespread attention. This study is aimed to develop the sequestration of CO2 via chromium slag. A dynamic leaching experiment of chromium slag was designed to testify the ability of CO2 adsorption onto chromium slag and to release Cr(VI) for stabilization. The results showed that the accumulative amounts of Cr(VI) were ca. 2.6 mg/g released from the chromium slag after 24 h of leaching. In addition, ca. 89 mg/g CO2 was adsorbed by using pure CO2 in the experiment at 12 h. Calcite is the only carbonate species in the post-carbonated slag analyzed by powder X-ray diffraction and thermal analysis. The approach provides the feasibility of the utilization of chromium slag and sequestration of the carbon dioxide at the same time at ordinary temperatures and pressures.

  4. An overview of high thermal conductive hot press forming die material development

    Directory of Open Access Journals (Sweden)

    A.R. Zulhishamuddin


    Full Text Available Most of the automotive industries are using high strength steel components, which are produced via hot press forming process. This process requires die material with high thermal conductivity that increases cooling rate during simultaneous quenching and forming stage. Due to the benefit of high quenching rate, thermal conductive die materials were produced by adding carbide former elements. This paper presents an overview of the modification of alloying elements in tool steel for high thermal conductivity properties by transition metal elements addition. Different types of manufacturing processes involved in producing high thermal conductive materials were discussed. Methods reported were powder metallurgy hot press, direct metal deposition, selective laser melting, direct metal laser sintering and spray forming. Elements likes manganese, nickel, molybdenum, tungsten and chromium were proven to increase thermal conductivity properties. Thermal conductivity properties resulted from carbide network presence in the steel microstructure. To develop feasible and low cost hot press forming die material, casting of Fe-based alloy with carbide former composition can be an option. Current thermal conductivity properties of hot press forming die material range between 25 and 66 W/m.K. The wide range of thermal conductivity varies the mechanical properties of the resulting components and lifetime of HPF dies.

  5. Liquid Phase Synthesis of CoP Nanoparticles with High Electrical Conductivity for Advanced Energy Storage

    Directory of Open Access Journals (Sweden)

    Guo-Qun Zhang


    Full Text Available Transition metal phosphide alloys possess the metalloid characteristics and superior electrical conductivity and are a kind of high electrical conductive pseudocapacitive materials. Herein, high electrical conductive cobalt phosphide alloys are fabricated through a liquid phase process and a nanoparticles structure with high surface area is obtained. The highest specific capacitance of 286 F g−1 is reached at a current density of 0.5 A g−1. 63.4% of the specific capacitance is retained when the current density increased 16 times and 98.5% of the specific capacitance is maintained after 5000 cycles. The AC//CoP asymmetric supercapacitor also shows a high energy density (21.3 Wh kg−1 and excellent stability (97.8% of the specific capacitance is retained after 5000 cycles. The study provides a new strategy for the construction of high-performance energy storage materials by enhancing their intrinsic electrical conductivity.

  6. Removal and recovery of vanadium from alkaline steel slag leachates with anion exchange resins. (United States)

    Gomes, Helena I; Jones, Ashley; Rogerson, Mike; Greenway, Gillian M; Lisbona, Diego Fernandez; Burke, Ian T; Mayes, William M


    Leachable vanadium (V) from steel production residues poses a potential environmental hazard due to its mobility and toxicity under the highly alkaline pH conditions that characterise these leachates. This work aims to test the efficiency of anion exchange resins for vanadium removal and recovery from steel slag leachates at a representative average pH of 11.5. Kinetic studies were performed to understand the vanadium sorption process. The sorption kinetics were consistent with a pseudo-first order kinetic model. The isotherm data cannot differentiate between the Langmuir and Freundlich models. The maximum adsorption capacity (Langmuir value qmax) was 27 mg V g(-1) resin. In column anion exchange, breakthrough was only 14% of the influent concentration after passing 90 L of steel slag leachate with 2 mg L(-1) V through the column. When eluting the column 57-72% of vanadium was recovered from the resin with 2 M NaOH. Trials on the reuse of the anion exchange resin showed it could be reused 20 times without loss of efficacy, and on average 69% of V was recovered during regeneration. The results document for the first time the use of anion exchange resins to remove vanadium from steel slag leachate. As an environmental contaminant, removal of V from leachates may be an obligation for long-term management requirements of steel slag repositories. Vanadium removal coupled with the recovery can potentially be used to offset long-term legacy treatment costs. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. Electrical conductivity of molten SnCl{sub 2} at temperature as high as 1314 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Ural Branch of RAS, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry


    The electrical conductivity of molten SnCl{sub 2} was measured in a wide temperature range (ΔT=763 K), from 551 K to temperature as high as 1314 K, that is, 391 above the boiling point of the salt. The specific electrical conductance was found to reach its maximum at 1143 K, after that it decreases with the temperature rising.

  8. A Simplified Method for Upscaling Composite Materials with High Contrast of the Conductivity

    KAUST Repository

    Ewing, R.


    A large class of industrial composite materials, such as metal foams, fibrous glass materials, mineral wools, and the like, are widely used in insulation and advanced heat exchangers. These materials are characterized by a substantial difference between the thermal properties of the highly conductive materials (glass or metal) and the insulator (air) as well as low volume fractions and complex network-like structures of the highly conductive components. In this paper we address the important issue for the engineering practice of developing fast, reliable, and accurate methods for computing the macroscopic (upscaled) thermal conductivities of such materials. We assume that the materials have constant macroscopic thermal conductivity tensors, which can be obtained by upscaling techniques based on the postprocessing of a number of linearly independent solutions of the steady-state heat equation on representative elementary volumes (REVs). We propose, theoretically justify, and computationally study a numerical method for computing the effective conductivities of materials for which the ratio δ of low and high conductivities satisfies δ ≪ 1. We show that in this case one needs to solve the heat equation in the region occupied by the highly conductive media only. Further, we prove that under certain conditions on the microscale geometry the proposed method gives an approximation that is O(δ)-close to the upscaled conductivity. Finally, we illustrate the accuracy and the limitations of the method on a number of numerical examples. © 2009 Society for Industrial and Applied Mathematics.

  9. First-principles calculation of thermal conductivity of silicate perovskite at high pressures and high temperatures (United States)

    Dong, Jianjun; Tang, Xiaoli; Kavner, Abby; Ntam, Moses


    The lattice thermal conductivity of silicate perovskite, the most abundant mineral in the Earth's lower mantle, is calculated by combining the first-principles electronic structure theory and Peierls-Boltzmann transport theory. The phonon scattering rate due to lattice anharmonicity and Mg/Fe mass disorder is evaluated for each mode at the extreme P-T conditions of the lower mantle. The predicted thermal conductivity of single crystal MgSiO3 perovskite at ambient condition, about 5.7 W/m/K, is in excellent agreement with experiment. Adding about 6% Fe will lower the thermal conductivity by nearly 40%. Our calculation also reveals an unique pressure dependence for the thermal conductivity of perovskite, and the calculated thermal conductivity of iron bearing perovskite is almost an order of magnitude lower than the previously estimates based on long extrapolation of single crystal data. Including a re-evaluation of radiative contribution, we discuss the implications of our results for the heat flow in deep Earth. Funded by NSF (EAR-0757847).

  10. Resistance of Alkali Activated Water-Cooled Slag Geopolymer to Sulphate Attack

    Directory of Open Access Journals (Sweden)

    S. A. Hasanein


    Full Text Available Ground granulated blast furnace slag is a finely ground, rapidly chilled aluminosilicate melt material that is separated from molten iron in the blast furnace as a by-product. Rapid cooling results in an amorphous or a glassy phase known as GGBFS or water cooled slag (WCS. Alkaline activation of latent hydraulic WCS by sodium hydroxide and/or sodium silicate in different ratios was studied. Curing was performed under 100 % relative humidity and at a temperature of 38°C. The results showed that mixing of both sodium hydroxide and sodium silicate in ratio of 3:3 wt.,% is the optimum one giving better mechanical as well as microstructural characteristics as compared with cement mortar that has various cement content (cement : sand were 1:3 and 1:2. Durability of the water cooled slag in 5 % MgSO4 as revealed by better microstructure and high resistivity-clarifying that activation by 3:3 sodium hydroxide and sodium silicate, respectively is better than using 2 and 6 % of sodium hydroxide.

  11. CTE-Matched, Liquid-Cooled, High Thermal Conductivity Heat Sink Project (United States)

    National Aeronautics and Space Administration — We propose the development of a CTE-matched, liquid-cooled, high thermal conductivity heat sink for use in spacecraft thermal management applications. The material...

  12. Irregular Firing and High-Conductance States in Spinal Motoneurons during Scratching and Swimming

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Hounsgaard, Jorn; Alaburda, Aidas


    in general. Here we compare conductance and firing patterns in spinal motoneurons during network activity for scratching and swimming in an ex vivo carapace-spinal cord preparation from adult turtles (Trachemys scripta elegans). The pattern and relative engagement of motoneurons are distinctly different...... of spinal motor network activity. SIGNIFICANCE STATEMENT: Neurons embedded in active neural networks can enter high-conductance states with irregular firing. This was previously shown for spinal motoneurons during scratching. Because scratching is highly specialized rhythmic behavior, it is not known...... whether high-conductance states and irregular firing are a peculiarity for motoneurons during scratching. Here, using intracellular recordings from motoneurons in an ex vivo carapace-spinal cord preparation from adult turtles, we demonstrate that irregular firing and high-conductance states are present...

  13. Characterizing phosphorus removal from polluted urban river water by steel slags in a vertical flow constructed wetland. (United States)

    Ge, Yuan; Wang, Xiaochang C; Dzakpasu, Mawuli; Zheng, Yucong; Zhao, Yaqian; Xiong, Jiaqing


    Phosphorus (P) removal in constructed wetlands (CWs) is often low unless special substrates with high sorption capacities are used. However, the use of special substrates in vertical flow (VF) CWs has not been proved to enhance P sorption. Thus, two VF wetlands were designed to evaluate the potential for enhanced P removal from polluted urban river water, one with slag as substrate and the other as a control with gravel as substrate. Findings from batch experiments showed P sorption capacities of 3.15 gP/kg and 0.81 gP/kg, respectively, for steel slag and gravel. Different organic matter fractions played different roles in P sorption, the effects of which were significant only at high concentrations. Over a 220 days' operation, the VF-slag removed 76.0% of the influent total phosphorus (TP) at 0.159 g/m(2)·d and PO4-P of 70.9% at 0.063 g/m(2)·d, whereas the VF-gravel removed 65.0% at 0.136 g/m(2)·d and 48.6% at 0.040 g/m(2)·d, respectively. Therefore, the merit of using a steel slag substrate in VF wetlands can be significant for the removal of PO4-P.

  14. Highly conductive graphene by low-temperature thermal reduction and in situ preparation of conductive polymer nanocomposites. (United States)

    Yang, Liping; Kong, Junhua; Yee, Wu Aik; Liu, Wanshuang; Phua, Si Lei; Toh, Cher Ling; Huang, Shu; Lu, Xuehong


    Polydopamine-coated graphene oxide (DGO) films exhibit electrical conductivities of 11,000 S m(-1) and 30,000 S m(-1) upon vacuum annealing at 130 °C and 180 °C, respectively. Conductive poly(vinyl alcohol)/graphene and epoxy/graphene nanocomposites show low percolation thresholds due to the excellent dispersibility of the DGO sheets and their effective in situ reduction.

  15. NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter [Vanderbilt Univ., Nashville, TN (United States)


    The objective of this proposal is to fabricate and characterize a new class of NanoCapillary Network (NCN) proton conducting membranes for hydrogen/air fuel cells that operate under high temperature, low humidity conditions. The membranes will be intelligently designed, where a high density interconnecting 3-D network of nm-diameter electrospun proton conducting polymer fibers is embedded in an inert (uncharged) water/gas impermeable polymer matrix. The high density of fibers in the resulting mat and the high ion-exchange capacity of the fiber polymer will ensure high proton conductivity. To further enhance water retention, molecular silica will be added to the sulfonated polymer fibers. The uncharged matrix material will control water swelling of the high ion-exchange capacity proton conducting polymer fibers and will impart toughness to the final nanocapillary composite membrane. Thus, unlike other fuel cell membranes, the role of the polymer support matrix will be decoupled from that of the proton-conducting channels. The expected final outcome of this 5-year project is the fabrication of fuel cell membranes with properties that exceed the DOE’s technical targets, in particular a proton conductivity of 0.1 S/cm at a temperature less than or equal to120°C and 25-50% relative humidity.

  16. Conductivity of SrTiO3 based oxides in the reducing atmosphere at high temperature

    DEFF Research Database (Denmark)

    Hashimoto, Shin-Ichi; Poulsen, Finn Willy; Mogensen, Mogens Bjerg


    The conductivities of several donor-doped SrTiO3 based oxides, which were prepared in air, were studied in a reducing atmosphere at high temperature. The conductivities of all specimens increased slowly with time at 1000 degrees C in 9% H-2/N-2, even after 100 h. Nb-doped SrTiO3 showed relatively...... at 500-800 degrees C, while that of La-doped SrTiO3 dropped immediately on exposure to air. The conduction behavior of Nb-doped SrTiO3 was explained by reduction of Ti4+ and/or Nb5+ and the relatively slow oxygen diffusibility. (c) 2006 Elsevier B.V. All rights reserved.......The conductivities of several donor-doped SrTiO3 based oxides, which were prepared in air, were studied in a reducing atmosphere at high temperature. The conductivities of all specimens increased slowly with time at 1000 degrees C in 9% H-2/N-2, even after 100 h. Nb-doped SrTiO3 showed relatively...... fast reduction and high conductivity compared with the other SrTiO3 based oxides. The conductivity of Nb-doped SrTiO3 was ca. 50 S cm(-1) at 500 degrees C after reduction at 1200 degrees C. After strong reduction, the conductivity of Nb-doped SrTiO3 was almost independent of the oxygen partial pressure...

  17. Mineral precipitation and dissolution at two slag-disposal sites in northwestern Indiana, USA (United States)

    Bayless, E.R.; Schulz, M.S.


    Slag is a ubiquitous byproduct of the iron- and steel-refining industries. In northwestern Indiana and northeastern Illinois, slag has been deposited over more than 52 km2 of land surface. Despite the widespread use of slag for fill and construction purposes, little is known about its chemical effects on the environment. Two slagdisposal sites were examined in northwestern Indiana where slag was deposited over the native glacial deposits. At a third site, where slag was not present, background conditions were defined. Samples were collected from cores and drill cuttings and described with scanning electron microscopy and electron microprobe analysis. Ground-water samples were collected and used to assess thermodynamic equilibria between authigenic minerals and existing conditions. Differences in the mineralogy at background and slag-affected sites were apparent. Calcite, dolomite, gypsum, iron oxides, and clay minerals were abundant in native sediments immediately beneath the slag. Mineral features indicated that these minerals precipitated rapidly from slag drainage and co-precipitated minor amounts of non-calcium metals and trace elements. Quartz fragments immediately beneath the slag showed extensive pitting that was not apparent in sediments from the background site, indicating chemical weathering by the hyperalkaline slag drainage. The environmental impacts of slag-related mineral precipitation include disruption of natural ground-water flow patterns and bed-sediment armoring in adjacent surface-water systems. Dissolution of native quartz by the hyperalkaline drainage may cause instability in structures situated over slag fill or in roadways comprised of slag aggregates.

  18. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete. (United States)

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek


    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.

  19. Characterization of Ladle Furnace Slag from Carbon Steel Production as a Potential Adsorbent

    Directory of Open Access Journals (Sweden)

    Ankica Rađenović


    Full Text Available A promising type of steel slag for applications is the ladle furnace (LF slag, which is also known as the basic slag, the reducing slag, the white slag, and the secondary refining slag. The LF slag is a byproduct from further refining molten steel after coming out of a basic oxygen furnace (BOF or an electric arc furnace (EAF. The use of the LF slag in further applications requires knowledge of its characteristics. The LF slag characterization in this paper has been performed using the following analytical methods: chemical analysis by energy dispersive spectrometry (EDS, mineralogical composition by X-ray diffraction (XRD, surface area properties by the Brunauer-Emmett-Teller (BET and the Barrett-Joyner-Halenda (BJH methods, surface chemistry by infrared absorption (FTIR spectroscopy, and morphological analysis by scanning electron microscopy (SEM. The results showed that the main compounds are calcium, silicon, magnesium, and aluminium oxides, and calcium silicates under their various allotropic forms are the major compounds in the LF slag. Surface area properties have shown that the LF slag is a mesoporous material with relatively great BET surface area. The ladle furnace slag is a nonhazardous industrial waste because the ecotoxicity evaluation by its eluate has shown that the LF slag does not contain constituents which might in any way affect the environment harmfully.

  20. Artificial neural networks application for solid fuel slagging intensity predictions

    Directory of Open Access Journals (Sweden)

    Kakietek Sławomir


    Full Text Available Slagging issues present in pulverized steam boilers very often lead to heat transfer problems, corrosion and not planned outages of boilers which increase the cost of energy production and decrease the efficiency of energy production. Slagging especially occurs in regions with reductive atmospheres which nowadays are very common due to very strict limitations in NOx emissions. Moreover alternative fuels like biomass which are also used in combustion systems from two decades in order to decrease CO2 emissions also usually increase the risk of slagging. Thus the prediction of slagging properties of fuels is not the minor issue which can be neglected before purchasing or mixing of fuels. This however is rather difficult to estimate and even commonly known standard laboratory methods like fusion temperature determination or special indexers calculated on the basis of proximate and ultimate analyses, very often have no reasonable correlation to real boiler fuel behaviour. In this paper the method of determination of slagging properties of solid fuels based on laboratory investigation and artificial neural networks were presented. A fuel data base with over 40 fuels was created. Neural networks simulations were carried out in order to predict the beginning temperature and intensity of slagging. Reasonable results were obtained for some of tested neural networks, especially for hybrid feedforward networks with PCA technique. Consequently neural network model will be used in Common Intelligent Boiler Operation Platform (CIBOP being elaborated within CERUBIS research project for two BP-1150 and BB-1150 steam boilers. The model among others enables proper fuel selection in order to minimize slagging risk.

  1. Slagging and Fouling Characteristics of HRSG for Ferrosilicon Electric Furnaces

    Directory of Open Access Journals (Sweden)

    Yungang Wang


    Full Text Available The slagging and fouling characteristics of the heat recovery steam generator (HRSG for ferrosilicon electric furnaces are discussed in this paper. Three ash samples were taken from the HRSG of a ferrosilicon furnace in Ningxia Province, China, which suffered from serious slagging and fouling. X-ray fluorescence (XRF, X-ray powder diffraction (XRD and scanning electron microscope (SEM were used to analyze the ash samples. The results show that low melting point salt Na2SO4 and composite salts Na (AlSi3O8 and 3K2SO4·CaSO4 deposit on the superheater tube walls in aerosol form and solidify to form the initial slag layer. With the continuous deposition of the low melting point compounds, more and more ash particles in the flue gas adhere to the slag surface to form a thicker slag. Low melting point composite salt NaO·Al2O3·SiO2 is absorbed on the evaporator tube walls in aerosol form. With the deposition of NaO·Al2O3·SiO2, more and more ash particles are absorbed to form the fouling. Since there is less space between pin-finned tubes, the large iron-rich slag particles are easily deposited on tube walls and fin surfaces, which is advantageous to the fouling process. There are large quantities of superfine ash particles in the flue gas that easily adhere to other particles or tube walls, which facilitates the slagging and fouling process.

  2. Slag columns for upgrading phosphorus removal from constructed wetland effluents. (United States)

    Chazarenc, F; Brisson, J; Comeau, Y


    The current best option to upgrade constructed wetlands (CWs) for phosphorus (P) retention, in terms of efficiency, cost and simplicity, consists in using media having a strong P affinity. The media can be used either in the planted beds or in a filtration system downstream of the beds. The use of slag filters was shown to be efficient for removing P from wastewater as it represented a slow release source of calcium and hydroxide, favouring the formation of hydroxyapatite. Our study aimed at maximising the P retention capacity of slag filters located at the outlet of CWs since electric arc furnace slag has been shown to inhibit the growth of macrophytes when used in the filtration matrix. Bench-scale columns (Vtot = 6.2 L) filled with various combinations of filter media (slag, granite, limestone) of different sizes (2-5, 5-10, 10-20 mm) were fed on-site during four months with a CW effluent (in mg/L: 30 COD, 30 TSS, 10 Pt). Results showed that the best media combination enabling the maximum o-PO4 retention (more than 80% removal without clogging) consisted in a series of a ternary mix column (slag 5-10 mm, granite 2-5 mm, limestone 5-10 mm) followed by a slag column (slag 5-10 mm). Pilot scale columns (Vtot = 300 L), filled with the best media combination, were installed at the outlet of a 28 m2 CW. These columns showed more than 75% removal efficiency during one year and were designed to be easily replaced each year.

  3. Surprisingly High Conductivity and Efficient Exciton Blocking in Fullerene/Wide-Energy-Gap Small Molecule Mixtures. (United States)

    Bergemann, Kevin J; Amonoo, Jojo A; Song, Byeongseop; Green, Peter F; Forrest, Stephen R


    We find that mixtures of C60 with the wide energy gap, small molecular weight semiconductor bathophenanthroline (BPhen) exhibit a combination of surprisingly high electron conductivity and efficient exciton blocking when employed as buffer layers in organic photovoltaic cells. Photoluminescence quenching measurements show that a 1:1 BPhen/C60 mixed layer has an exciton blocking efficiency of 84 ± 5% compared to that of 100% for a neat BPhen layer. This high blocking efficiency is accompanied by a 100-fold increase in electron conductivity compared with neat BPhen. Transient photocurrent measurements show that charge transport through a neat BPhen buffer is dispersive, in contrast to nondispersive transport in the compound buffer. Interestingly, although the conductivity is high, there is no clearly defined insulating-to-conducting phase transition with increased insulating BPhen fraction. Thus, we infer that C60 undergoes nanoscale (80%) BPhen fractions.

  4. Protection of Conductive and Non-conductive Advanced Polymer-based Paints from Highly Aggressive Oxidative Environments (United States)

    Gudimenko, Y.; Ng, R.; Iskanderova, Z.; Kleiman, J.; Grigorevsky, A.; Kiseleva, L.; Finckenor, M.; Edwards, D.


    Research has been continued to further improve the space durability of conductive and non-conductive polymer-based paints and of conductive thermal control paints for space applications. Efforts have been made to enhance the space durability and stability of functional Characteristics in ground-based space environment imitating conditions, using specially developed surface modification treatment. The results of surface modification of new conductive paints, including the ground-based testing in aggressive oxidative environments, such as atomic oxygen/UV and oxygen plasma, and performance evaluation are presented. Functional properties and performance characteristics, such as thermal optical properties (differential solar absorptance and thermal emittance representing the thermal optical performance of thermal control paints) and surface resistivity characteristics of pristine, surface modified, and tested materials were verified. Extensive surface analysis studies have been performed using complementary surface analyses including SEM/EDS and XPS. Test results revealed that the successfully treated materials exhibit reduced mass loss and no surface morphology change, thus indicating good protection from the severe oxidative environment. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints.

  5. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications. (United States)

    Kang, Joon Sang; Wu, Huan; Hu, Yongjie


    Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of

  6. Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors (United States)

    Prasad, D. N.; Ayyappan, R.; Kamble, L. P.; Singh, J. P.; Muralikrishna, L. V.; Alex, M.; Balagi, V.; Mukhopadhyay, P. K.


    Gas-filled radiation detectors need gas filling at pressures that range from few cms of mercury to as high as 25kg/cm2 at room temperature. Before gas-filling these detectors require evacuation to a vacuum of the order of ~1 × 10-5 mbar. For these operations of evacuation and gas filling a system consisting of a vacuum pump with a high vacuum gauge, gas cylinder with a pressure gauge and a valve is used. The valve has to meet the three requirements of compatibility with high-pressure and high vacuum and high conductance. A piston valve suitable for the evacuation and gas filling of radiation detectors has been designed and fabricated to meet the above requirements. The stainless steel body (80mm×160mm overall dimensions) valve with a piston arrangement has a 1/2 inch inlet/outlet opening, neoprene/viton O-ring at piston face & diameter for sealing and a knob for opening and closing the valve. The piston movement mechanism is designed to have minimum wear of sealing O-rings. The valve has been hydrostatic pressure tested up to 75bars and has Helium leak rate of less than 9.6×10-9 m bar ltr/sec in vacuum mode and 2×10-7 mbar ltr/sec in pressure mode. As compared to a commercial diaphragm valve, which needed 3 hours to evacuate a 7 litre chamber to 2.5×10-5 mbar, the new valve achieved vacuum 7.4×10-6mbar in the same time under the same conditions.

  7. The recovery of Zn and Pb and the manufacture of lightweight bricks from zinc smelting slag and clay. (United States)

    Hu, Huiping; Deng, Qiufeng; Li, Chao; Xie, Yue; Dong, Zeqin; Zhang, Wei


    Novel lightweight bricks have been produced by sintering mixes of zinc smelting slag and clay. A two-stage sintered process has been proposed to recovery of Zn and Pb and reutilization of the zinc smelting slag. In the first stage of the process, called reduction and volatilization procedure, zinc and lead were reduced by the carbon contained in the zinc smelting slag and volatilized into the dust, and the dust can be used as a secondary zinc resource. In the second stage of the process, called oxidation sintering procedure, a lightweight brick was produced. Samples containing up to 60 wt.% zinc smelting slag and 40 wt.% kaolin clay were reduced at 1050°C for 6h, and then sintered at 1050°C for 4h. The recoveries of Zn and Pb from the brick are 94.5 ± 0.6% and 97.6 ± 0.2%, respectively. Low bulk density (1.42 g cm(-3)) and relatively high compressive strength (2 2MPa) sintered bricks were produced, and the leaching toxicity of the sintered bricks was below the regulatory thresholds of Chinese National Standards. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A Study on Suitability of EAF Oxidizing Slag in Concrete: An Eco-Friendly and Sustainable Replacement for Natural Coarse Aggregate

    Directory of Open Access Journals (Sweden)

    Alan Sekaran


    Full Text Available Environmental and economic factors increasingly encourage higher utility of industrial by-products. The basic objective of this study was to identify alternative source for good quality aggregates which is depleting very fast due to fast pace of construction activities in India. EAF oxidizing slag as a by-product obtained during the process in steel making industry provides great opportunity to utilize it as an alternative to normally available coarse aggregates. The primary aim of this research was to evaluate the physical, mechanical, and durability properties of concrete made with EAF oxidizing slag in addition to supplementary cementing material fly ash. This study presents the experimental investigations carried out on concrete grades of M20 and M30 with three mixes: (i Mix A, conventional concrete mix with no material substitution, (ii Mix B, 30% replacement of cement with fly ash, and (iii Mix C, 30% replacement of cement with fly ash and 50% replacement of coarse aggregate with EAF oxidizing slag. Tests were conducted to determine mechanical and durability properties up to the age of 90 days. The test results concluded that concrete made with EAF oxidizing slag and fly ash (Mix C had greater strength and durability characteristics when compared to Mix A and Mix B. Based on the overall observations, it could be recommended that EAF oxidizing slag and fly ash could be effectively utilized as coarse aggregate replacement and cement replacement in all concrete applications.

  9. Fabrication of Aligned-Carbon-Nanotube-Composite Paper with High and Anisotropic Conductivity

    Directory of Open Access Journals (Sweden)

    Yuki Fujitsuka


    Full Text Available A functional carbon-nanotube (CNT-composite paper is described in which the CNTs are aligned. This “aligned-CNT composite paper” is a flexible composite material that has CNT functionality (e.g., electrical conductivity despite being a paper. An advanced fabrication method was developed to overcome the problem of previous CNT-composite papers, that is, reduced conductivity due to random CNT alignment. Aligning the CNTs by using an alternating current (AC field was hypothesized to increase the electrical conductivity and give the paper an anisotropic characteristic. Experimental results showed that a nonionic surfactant was not suitable as a CNT dispersant for fabricating aligned-CNT composite paper and that catechin with its six-membered rings and hydrophilic groups was suitable. Observation by scanning electron microscopy of samples prepared using catechin showed that the CNTs were aligned in the direction of the AC field on the paper fibers. Measurement of the electric conductivity showed that the surface resistance was different between the direction of the aligned CNTs (high conductivity and that of verticality (low. The conductivity of the aligned-CNT-composite paper samples was higher than that of nonaligned samples. This unique and functional paper, which has high and anisotropic conductivity, is applicable to a conductive material to control the direction of current.

  10. Optimizing amorphous indium zinc oxide film growth for low residual stress and high electrical conductivity (United States)

    Kumar, Mukesh; Sigdel, A. K.; Gennett, T.; Berry, J. J.; Perkins, J. D.; Ginley, D. S.; Packard, C. E.


    With recent advances in flexible electronics, there is a growing need for transparent conductors with optimum conductivity tailored to the application and nearly zero residual stress to ensure mechanical reliability. Within amorphous transparent conducting oxide (TCO) systems, a variety of sputter growth parameters have been shown to separately impact film stress and optoelectronic properties due to the complex nature of the deposition process. We apply a statistical design of experiments (DOE) approach to identify growth parameter-material property relationships in amorphous indium zinc oxide (a-IZO) thin films and observed large, compressive residual stresses in films grown under conditions typically used for the deposition of highly conductive samples. Power, growth pressure, oxygen partial pressure, and RF power ratio (RF/(RF + DC)) were varied according to a full-factorial test matrix and each film was characterized. The resulting regression model and analysis of variance (ANOVA) revealed significant contributions to the residual stress from individual growth parameters as well as interactions of different growth parameters, but no conditions were found within the initial growth space that simultaneously produced low residual stress and high electrical conductivity. Extrapolation of the model results to lower oxygen partial pressures, combined with prior knowledge of conductivity-growth parameter relationships in the IZO system, allowed the selection of two promising growth conditions that were both empirically verified to achieve nearly zero residual stress and electrical conductivities >1480 S/cm. This work shows that a-IZO can be simultaneously optimized for high conductivity and low residual stress.

  11. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability (United States)

    Wu, Qian; Wei, Junjie; Xu, Bing; Liu, Xinhua; Wang, Hongbo; Wang, Wei; Wang, Qigang; Liu, Wenguang


    Dual amide hydrogen bond crosslinked and strengthened high strength supramolecular polymer conductive hydrogels were fabricated by simply in situ doping poly (N-acryloyl glycinamide-co-2-acrylamide-2-methylpropanesulfonic) (PNAGA-PAMPS) hydrogels with PEDOT/PSS. The nonswellable conductive hydrogels in PBS demonstrated high mechanical performances—0.22-0.58 MPa tensile strength, 1.02-7.62 MPa compressive strength, and 817-1709% breaking strain. The doping of PEDOT/PSS could significantly improve the specific conductivities of the hydrogels. Cyclic heating and cooling could lead to reversible sol-gel transition and self-healability due to the dynamic breakup and reconstruction of hydrogen bonds. The mending hydrogels recovered not only the mechanical properties, but also conductivities very well. These supramolecular conductive hydrogels could be designed into arbitrary shapes with 3D printing technique, and further, printable electrode can be obtained by blending activated charcoal powder with PNAGA-PAMPS/PEDOT/PSS hydrogel under melting state. The fabricated supercapacitor via the conducting hydrogel electrodes possessed high capacitive performances. These cytocompatible conductive hydrogels have a great potential to be used as electro-active and electrical biomaterials.

  12. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines (United States)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender


    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  13. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges. (United States)

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis


    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.

  14. Reactions Between MgO-C Refractory, Molten Slag and Metal

    National Research Council Canada - National Science Library

    Li, Zushu; Mukai, Kusuhiro; Tao, Zainan


    The behavior of MgO-C refractory-slag-metal system, which is caused by the reactions such as the dissolution of MgO and graphite in the refractory into slag and metal respectively and the generation...

  15. Prevalence of conduct disorder and associated factors among the high school students in Sanandaj, 2013

    Directory of Open Access Journals (Sweden)

    Fayegh Yousefi


    Full Text Available Background: This study was performed to assess the prevalence of conduct disorder and its associated factors among the high school students of Sanandaj in 2013. Methods: The study sample included 375 high school students selected from the high school students in Sanandaj through multistage stratified random sampling. The instruments for data collection comprised of Child Symptom Inventory and Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-1. The results were evaluated by SPSS (version 21 using chi-square test. Results: The results showed the prevalence of conduct disorder among the high school students was 8.8%. Also, the prevalence of conduct disorder among students with separated parents was higher than other students. The prevalence of conduct disorder in the male students was significantly more than that of the female students. Moreover, there was a significant correlation between students’ conduct disorder and their parents’ separation and divorce. However, no significant difference was obtained between conduct disorder and other associated factors, including parents’ death rate, parents’ history of psychological disorder and academic level of students (P<0.05. Conclusion: Based on the results of this study, running counseling centers at schools and holding family training programs for parents by psychologists are recommended.

  16. Study of controlled leaching process of steel slag in Soxhlet extractor aiming employment in pavements; Estudo do processo de lixiviacao controlada da escoria de aciaria em extrator Soxhlet visando emprego em pavimentos

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Kissyla Avila; Guimaraes, Antonio Carlos Rodrigues; Reis, Marcelo de Miranda; Santana, Claudeny Simone Alves, E-mail:, E-mail:, E-mail:, E-mail: [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)


    This work addresses the characterization of physical, chemical and mechanical properties of steel slag as an alternative aggregation before and after leaching testing controlled Soxhlet extractor. The material it was characterized before going through the natural leaching process and after controlled leaching in different periods of 24, 56, 96, 120 hours. The steel slag was subjected in the laboratory to simulate the precipitation in Soxhlet equipment to evaluate its physical, chemical and mechanical properties after each period described. The study of the process of leaching in steel slag searched to understand the influence of the washing process in a slag behavior in such a process. The physical characterization occurred through traditional testing of coarse aggregates, the chemical characterization through the testing of Scanning Electron Microscopy (SEM) completed by Dispersive Spectroscopy Energy (DSE) and X- ray diffraction and the mechanical characterization through testing of standardized expansion and adapted. The sample virgin, without receiving process of stabilization by controlled leaching, showed satisfactory results in the physics characterization when compared to conventional aggregates, the chemical characterization proved to be a steel slag with high contents of CaO, MgO and FeO, the mechanical characterization demonstrated that, although the degree of expansibility of the slag is low demonstrated that this should not be disregarded in the paving work. After controlled leaching the steel slag showed no significant loss of its physical properties. As the mechanical testing of expansion had decreased the potential of expansibility after leaching periods. It is concluded that the leaching process in a Soxhlet extractor is of importance in the study the properties of steel slag, once covering several days of leaching was reduced potential for expansion, limiting feature in the use of steel slag for paving. (author)

  17. Heat Pipe Embedded AlSiC Plates for High Conductivity - Low CTE Heat Spreaders

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Matthew (DOE/NNSA Kansas City Plant (United States)); Weyant, J.; Garner, S. (Advanced Cooling Technologies, Inc. (Lancaster, PA (United States)); Occhionero, M. (CPS Technologies Corporation, Norton, MA (United States))


    Heat pipe embedded aluminum silicon carbide (AlSiC) plates are innovative heat spreaders that provide high thermal conductivity and low coefficient of thermal expansion (CTE). Since heat pipes are two phase devices, they demonstrate effective thermal conductivities ranging between 50,000 and 200,000 W/m-K, depending on the heat pipe length. Installing heat pipes into an AlSiC plate dramatically increases the plate’s effective thermal conductivity. AlSiC plates alone have a thermal conductivity of roughly 200 W/m-K and a CTE ranging from 7-12 ppm/ deg C, similar to that of silicon. An equivalent sized heat pipe embedded AlSiC plate has effective thermal conductivity ranging from 400 to 500 W/m-K and retains the CTE of AlSiC.


    Directory of Open Access Journals (Sweden)



    Full Text Available Raising of problem. Currently of particular relevance was given to the matter of introduction in manufacture of building materials and products, resource-saving techniques and technologies; integrated use of raw materials and materials that prevent or significantly reduce their harmful impact on the environment. This allows you to recycle hundreds of thousands of tons of the fiery liquid slags of silicon manganese and to develop effective structural materials that can replace metals, non-metallic building materials of natural origin, concretes, cast stone, plastics and refractories. Purpose. The study of the structure and properties of building materials and products from electric furnace slag of silicon manganese. Conclusion. Slags from the smelting of silicon manganese are classified as acidic. Their lime factor is in the range of 0.47–0.52. The composition of the slag located in the heterogeneous region SiO2 near the line of separation of cristobalite spread to the crystallization of wollastonite, according to the ternary system MnO-CaO-SiO2, which in consideration of their stability, allows the development of technology of building materials (gravel, sand, granulated slag, etc. and products (foundation blocks, road slabs, containers for transportation and storage of hazardous waste, and others.

  19. Fabrication of Al2O3/glass/Cf Composite Substrate with High Thermal Conductivity (United States)

    Wang, S. X.; Liu, G. S.; Ouyang, X. Q.; Wang, Y. D.; Zhang, D.


    In this paper, carbon fiber with high thermal conductivity was introduced into the alumina-based composites. To avoid oriented alignment of carbon fibers (Cf) and carbothermal reactions during the sintering process, the Al2O3/glass/Cf substrate was hot-pressed under a segmental-pressure procedure at 1123 K. Experimental results show that carbon fibers randomly distribute and form a bridging structure in the matrix. The three-dimensional network of Cf in Al2O3/glass/Cf substrate brings excellent heat conducting performance due to the heat conduction by electrons. The thermal conductivity of Al2O3/30%glass/30%Cf is as high as 28.98 W mK-1, which is 4.56 times larger than that of Al2O3/30%glass.

  20. Ink-jet printing of cu-ag-based highly conductive tracks on a transparent substrate. (United States)

    Woo, Kyoohee; Kim, Dongjo; Kim, Jang Sub; Lim, Soonkwon; Moon, Jooho


    We have developed a Cu-Ag-based mixed metal conductive ink from which highly conductive tracks form on a flexible substrate after annealing at low temperature. Addition of small Ag particles significantly improves the particle packing density by filling the interstices formed between the larger Cu particles, which in turn facilitates better conductivity compared to pure Cu metal film. The particle size and volume ratio of the Ag particles added should be carefully controlled to achieve maximum packing density in the bimodal particle system, which is consistent with the theoretical considerations of the Furnas model. In addition, we demonstrate direct writing of complex patterns that exhibit high conductivity upon annealing at sufficiently low temperature (175-210 degrees C) to not damage the transparent plastic substrate such as polyethersulphone (PES).

  1. Phytostabilisation of a copper contaminated topsoil aided by basic slags: assessment of Cu mobility and phytoavailability


    Le Forestier, Lydie; Motelica-Heino, Mikael; Le Coustumer, Philippe; Mench, Michel


    Purpose Basic slags are alkaline by-products of the steel industry with potential properties to ameliorate nutrient supply and metal stabilisation in contaminated soils. This study aimed at investigating the potential of a P-spiked Link Donawitz slag and a conventional basic slag called Carmeuse for the aided phytostabilisation of a Cu-contaminated soil at a wood treatment site. The effects of basic slag addition on Cu fractionation, mobility and (phyto) availability were assessed.[br/] ...

  2. Normal and anti Meyer-Neldel rule in conductivity of highly crystallized undoped microcrystalline silicon films


    Ram, Sanjay K.; Kumar, Satyendra; Cabarrocas, P. Roca i


    We have studied the electrical conductivity behavior of highly crystallized undoped hydrogenated microcrystalline silicon films having different microstructures. The dark conductivity is seen to follow Meyer Neldel rule (MNR) in some films and anti MNR in others, which has been explained on the basis of variation in the film microstructure and the corresponding changes in the effective density of states distributions. A band tail transport and statistical shift of Fermi level are used to expl...

  3. 3D Printing of Highly Conductive Nanocomposites for the Functional Optimization of Liquid Sensors. (United States)

    Chizari, Kambiz; Daoud, Mohamed Amine; Ravindran, Anil Raj; Therriault, Daniel


    The utilization of 3D printing of highly conductive (σ ≈ 2350 S m-1 ) polymer composite structures for the functional optimization of scaffold-shaped liquid sensors is demonstrated. This study can open the pathway of the application of 3D printing of conductive composites for optimization of structures useful for various applications such as smart sensors in textile or in the field of electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Whitehill Formation - a high conductivity marker horizon in the Karoo Basin


    T. Branch; Oliver Ritter; Ute Weckmann; R. F. Sachsenhofer; Frank R. Schilling;  


    Within the Inkaba yeAfrica project, magnetotelluric (MT) data were acquired along three profiles across the Karoo Basin in South Africa. The entire Karoo Basin and its sedimentary sequences are intersected by a number of deep boreholes, which were drilled during exploration for coal, oil and uranium. One of the most consistent and prominent features in the electrical conductivity images is a shoallow, regionally continuous, sub-horizontal band of high conductivity that seems to correlate with...

  5. Tunable architecture for flexible and highly conductive graphene-polymer composites


    Noël, Amélie; Faucheu, Jenny; Rieu, Mathilde; Viricelle, Jean-Paul; Bourgeat-Lami, Elodie


    International audience; Printed electronics, particularly on flexible and textile substrates, raised a strong interest during the past decades. This work presents a good candidate for conductive inks based on a graphene/polymer nanocomposite material that gathers three main benefits that are 1 - neither clogging nor flocculation, 2 - spontaneous film formation around room temperature, 3 - high conductivity. Nanosized Multilayered Graphene (NMG) is produced through a solvent-free procedure, us...

  6. Electrical conductivity of molten CdCl{sub 2} at temperatures as high as 1474 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry


    The electrical conductivity of molten CdCl{sub 2} was measured across a wide temperature range (ΔT=628 K), from 846 K to as high as 1474 K, i.e. 241 above the normal boiling point of the salt. In previous studies, a maximum temperature of 1201 K was reached, this being 273 lower than in the present work. The activation energy of electrical conductivity was calculated.

  7. Method for producing high carrier concentration p-Type transparent conducting oxides (United States)

    Li, Xiaonan; Yan, Yanfa; Coutts, Timothy J.; Gessert, Timothy A.; Dehart, Clay M.


    A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

  8. A facile approach to a silver conductive ink with high performance for macroelectronics


    Tao, Yu; Tao, Yuxiao; Wang, Biaobing; Wang, Liuyang; Tai, Yanlong


    An unusual kind of transparent and high-efficiency organic silver conductive ink (OSC ink) was synthesized with silver acetate as silver carrier, ethanolamine as additive, and different kinds of aldehyde-based materials as reduction agents and was characterized by using a thermogravimetric analyzer, X-ray diffraction, a scanning electron microscope, and a four-point probe. The results show that different reduction agents all have an important influence on the conductive properties of the ink ...

  9. The hydration of slag, part 2: reaction models for blended cement

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos


    The hydration of slag-blended cement is studied by considering the interaction between the hydrations of slag and Portland cement clinker. Three reaction models for the slag-blended cement are developed based on stoichiometric calculations. These models correlate the compositions of the unhydrated

  10. On the nature of iron-chromium oxides in stainless steel steelmaking slags (United States)

    Matteazzi, P.; Magrini, M.; Ramous, E.


    A number of slags from electric steelmaking production of AISI 420 and AISI 304 steels, were examined by Mössbauer spectroscopy. The slag samples were taken before and after oxygen blowing. The slag constitution showed the presence of a metallic part, MO mixed oxide and Fe-Cr spinel (Fe2+ Fe{x/3+} Cr2-xO4' x<1).

  11. Effects of slag and fly ash in concrete in chloride environment

    NARCIS (Netherlands)

    Polder, R.B.


    This paper addresses experience from The Netherlands with blast furnace slag and fly ash in concrete in chloride contaminated environments, both from the field and the laboratory. Use of slag produced in The Netherlands started in the 1930s and CEM III/B LH HS, with typically 70% slag, became the

  12. suitability of electric arc furnace (eaf) slag as partial replacement for ...

    African Journals Online (AJOL)


    sustainable development (IISI, 2005). Table 1: Chemical Compositions of Slags in Steel ... replaced cement in mortar mix preparation. (Aderibigbe et al, 1982. As the technology of ... Table 3: Comparison of Density and Compressive Strength of Mortar Mixes from EAF Slag and River. Sand. SLAG MORTAR. RIVER SAND ...

  13. Stochastic inference with spiking neurons in the high-conductance state (United States)

    Petrovici, Mihai A.; Bill, Johannes; Bytschok, Ilja; Schemmel, Johannes; Meier, Karlheinz


    The highly variable dynamics of neocortical circuits observed in vivo have been hypothesized to represent a signature of ongoing stochastic inference but stand in apparent contrast to the deterministic response of neurons measured in vitro. Based on a propagation of the membrane autocorrelation across spike bursts, we provide an analytical derivation of the neural activation function that holds for a large parameter space, including the high-conductance state. On this basis, we show how an ensemble of leaky integrate-and-fire neurons with conductance-based synapses embedded in a spiking environment can attain the correct firing statistics for sampling from a well-defined target distribution. For recurrent networks, we examine convergence toward stationarity in computer simulations and demonstrate sample-based Bayesian inference in a mixed graphical model. This points to a new computational role of high-conductance states and establishes a rigorous link between deterministic neuron models and functional stochastic dynamics on the network level.

  14. An SPH Study of Molten Matte-Slag Dispersion (United States)

    Natsui, Shungo; Nashimoto, Ryota; Kumagai, Takehiko; Kikuchi, Tatsuya; Suzuki, Ryosuke O.


    The transient behaviors of two immiscible liquids, namely, molten matte and molten slag, with a high interfacial tension were investigated using the smoothed particle hydrodynamics model. Numerical simulations were performed using a discrete-element-type method that could track the movement of both the continuous liquid phase and the dispersed one directly. Numerical simulations were also performed for conditions corresponding to different interfacial tension and density values. Further, the predicted topological changes as well as the relationship between the physical properties and the droplet size distribution were investigated. It was found that, with an increase in the interfacial tension, the large droplets formed aggregate quickly with the bulk phase, owing to the buoyancy force. It was also found that the absolute value of the interfacial tension determines the interfacial area, suggesting that it also affects the droplet settling time. As such, we can conclude that the nonlinearly changed interface shape can easily become unstable as a result of only a slight change in the curvature.

  15. Radiative properties of ash and slag. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Markham, J.R.; Best, P.E.; Yu, Zhen-Zhong


    The objective of this program has been to make laboratory measurements of the radiative properties of ash and slag deposits that have been extracted from combustion devices. The program has resuited in measurements of radiative properlies of materials at high temperatures made by a technique employing a sample heatng deVice that is coupled to a FT-IR spectrometer to measure emission, directional-hemispherical transmission, and directional-hemispherical reflection of a sample. By this technique, the temperature at the measurement point and the spectral emittance (emissivity) of the surface are both obtained. These measurements are then related to the physical and chemical properties of the surface to determine what controls the radiative properlies. The measurements have shown that the physical state of a deposit (i.e. fused, sintered or packed particles) greatly influence the measured spectral emittance. The main accomplishments of the program are as follows: (1) Demonstration of measurement technique validation. (2) Measurements of spectral emittance for deposit samples as a function of temperature and morphology. (3) Accurate calculations of the optical properties of smooth and sintered surfaces based on the material`s complex Index of refraction and the surface morphology.

  16. Electrokinetic device design and constraints for use in high conductance solutions. (United States)

    Heineck, D P; Lewis, J M; Heller, M J


    The quest for new cell-free DNA and exosome biomarker-based molecular diagnostics require fast and efficient sample preparation techniques. Conventional methods for isolating these biomarkers from blood are both time-consuming and laborious. New electrokinetic microarray devices using dielectrophoresis (DEP) to isolate cell-free DNA and exosome biomarkers have now greatly improved the sample preparation process. Nevertheless, these devices still have some limitations when used with high conductance biological fluids, e.g. blood, plasma, and serum. This study demonstrates that electrochemical damage may occur on the platinum electrodes of DEP microarray devices. It further examines two model device designs that include a parallel wire arrangement and a planar array. Effective isolation of fluorescent beads with parallel wires is shown under low-conductance conditions (10-4  S/m), but electrothermal flow overcomes DEP forces under high conductance conditions (>0.1 S/m). Planar devices are shown to be effective under high conductance conditions (∼1 S/m) without the deleterious effects of electrothermal flow. This study provides new insights into design compromises and limitations for producing future electrokinetic devices for better performance with high conductance solutions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Low temperature platinum atomic layer deposition on nylon-6 for highly conductive and catalytic fiber mats

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, J. Zachary; Shafiefarhood, Arya; Li, Fanxing; Khan, Saad A.; Parsons, Gregory N., E-mail: [Department of Chemical and Biomolecular Engineering, North Carolina State University, Engineering Building I, 911 Partners Way, Raleigh, North Carolina 27695-7905 (United States)


    Low temperature platinum atomic layer deposition (Pt-ALD) via (methylcyclopentadienyl)trimethyl platinum and ozone (O{sub 3}) is used to produce highly conductive nonwoven nylon-6 (polyamide-6, PA-6) fiber mats, having effective conductivities as high as ∼5500–6000 S/cm with only a 6% fractional increase in mass. The authors show that an alumina ALD nucleation layer deposited at high temperature is required to promote Pt film nucleation and growth on the polymeric substrate. Fractional mass gain scales linearly with Pt-ALD cycle number while effective conductivity exhibits a nonlinear trend with cycle number, corresponding to film coalescence. Field-emission scanning electron microscopy reveals island growth mode of the Pt film at low cycle number with a coalesced film observed after 200 cycles. The metallic coating also exhibits exceptional resistance to mechanical flexing, maintaining up to 93% of unstressed conductivity after bending around cylinders with radii as small as 0.3 cm. Catalytic activity of the as-deposited Pt film is demonstrated via carbon monoxide oxidation to carbon dioxide. This novel low temperature processing allows for the inclusion of highly conductive catalytic material on a number of temperature-sensitive substrates with minimal mass gain for use in such areas as smart textiles and flexible electronics.

  18. Influence of Mechanically Activated Electric Arc Furnace Slag on Compressive Strength of Mortars Incorporating Curing Moisture and Temperature Effects

    Directory of Open Access Journals (Sweden)

    Muhammad Nasir Amin


    Full Text Available In this study, the influence of mechanically activated electric arc furnace slag (EAFS was investigated through compressive strength tests on 50 mm mortar cubes. The objective was to convert the wasteful EAFS into a useful binding material to reduce the cement content in concrete without compromising strength and economy. Four different groups of mortar were cast which include control mortar, reference fly ash mortar, mortar containing EAFS to determine its optimum fineness and replacement with cement, mortar blend containing fly ash and EAFS of optimum fineness. EAFS were identified with respect to its fineness as slag ground (SG, slag-fine (SF 100% passing 75 µm sieve, and slag-super-fine (SSF 100% passing 45 µm sieve. Compressive strength was measured according to ASTM C109. Specimens were cured under different temperatures and moisture to incorporate the effects of normal and hot environmental conditions. Compressive strength of mortars increases with fineness of EAFS and its strength activity index matches the ASTM C989 blast furnace slag (BFS Grade 80 up to 30% cement substitution and Grade 100 when 10% cement substituted with SSF. The influence of curing temperatures was also significant in mortars containing SG or 10% SF where strength decreased with increasing curing temperature. However, a 20–30% and 20% cement substitution with SF produced strength comparable to control and reference fly ash mortars under moderate (40 °C and high curing temperature (60 °C, respectively. The utilization of EAFS as binder in concrete may reduce needs for cement, as well as save environment and natural resources from depletion.

  19. Process for introducing electrical conductivity into high-temperature polymeric materials (United States)

    Liepins, R.; Jorgensen, B.S.; Liepins, L.Z.


    High-temperature electrically conducting polymers. The in situ reactions: AgNO/sub 3/ + RCHO ..-->.. Ag/sup 0/ + RCOOH and R/sub 3/M ..-->.. M/sup 0/ + 3R, where M = Au or Pt have been found to introduce either substantial bulk or surface conductivity in high- temperature polymers. The reactions involving the R/sub 3/M were caused to proceed thermally suggesting the possibility of using laser means for initiating such reactions in selected areas or volumes of the polymeric materials. The polymers successfully investigated to date are polyphenylquinoxaline, polytolylquinoxaline, polyquinoline, polythiazole, and pyrrone. 3 tabs.

  20. Slag-metal equilibrium during submerged arc welding (United States)

    Chai, C. S.; Eagar, T. W.


    A thermodynamic model of the equilibria existing between the slag and the weld metal during submerged arc welding is presented. As formulated, the model applies only to fused neutral fluxes containing less than 20 pct CaF2, however some results indicate that the model may be useful in more general cases as well. The model is shown to be capable of predicting the gain or loss of both Mn and Si over a wide range of baseplate, electrode and flux compositions. At large deviations from the predicted equilibrium, the experimental results indicate considerable variability in the amount of Mn or Si transferred between the slag and metal phases, while closer to the calculated equilibrium, the extent of metal transfer becomes more predictable. The variability in metal transfer rate at large deviations from equilibrium may be explained by variations between the bulk and the surface concentrations of Mn and Si in both metal and slag phases.

  1. The thermal conductivity of high modulus Zylon fibers between 400 mK and 4 K (United States)

    Wikus, Patrick; Figueroa-Feliciano, Enectalí; Hertel, Scott A.; Leman, Steven W.; McCarthy, Kevin A.; Rutherford, John M.


    Zylon is a synthetic polyurethane polymer fiber featuring very high mechanical strength. Measurements of the thermal conductivity λZ(T) of high modulus Zylon fibers at temperatures between 400 mK and 4 K were performed to assess if they can be successfully employed in the design of high performance suspension systems for cold stages of adiabatic demagnetization refrigerators. The linear mass density of the yarn used in these measurements amounts to 3270 dtex, which is also a measure for the yarn's cross section. The experimental data for the thermal conductivity was fitted to a function of the form λZ=(1010±30)·TpWmmdtexK. This result was normalized to the breaking strength of the fibers and compared with Kevlar. It shows that Kevlar outperforms Zylon in the investigated temperature range. At 1.5 K, the thermal conductivity integral of Zylon yarn is twice as high as the thermal conductivity integral of Kevlar yarn with the same breaking strength. A linear mass density of 1 tex is equivalent to a yarn mass of 1 g/km. High modulus Zylon has a density of 1.56 g/cm 3.

  2. Exfoliation approach for preparing high conductive reduced graphite oxide and its application in natural rubber composites

    Energy Technology Data Exchange (ETDEWEB)

    Wipatkrut, Pattharaporn [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Poompradub, Sirilux, E-mail: [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Center for Petroleum, Petrochemical and Advanced Material, Chulalongkorn University, Bangkok 10330 (Thailand)


    Highlights: • Graphite waste was exfoliated by oxidation and chemical and thermal reduction. • The obtained graphene-T was a single layer sheet with a high electrical conductivity. • Graphene-T incorporation at 5 phr improved the electrical conductivity of NR. • Graphene-T incorporation at 5–25 phr improved the mechanical properties of NR. - Abstract: High conductivity reduced graphite oxide (RGO) was prepared by exfoliation of graphite waste from the metal smelting industry. To improve the surface properties of the RGO, the graphite oxide obtained based on Hummers’ method was reduced by L-ascorbic acid to give RGOV, which was then subjected to thermal reduction to obtain RGOT. The residual oxygen-containing groups in RGOV were almost completely removed by the thermal reduction and the conjugated graphene networks were restored in RGOT. The effect of the RGOT content in natural rubber (NR) on the cure, electrical and mechanical properties of the NR-RGOT (NG) composites was evaluated. The electrical conductivity of NR was increased by the inclusion of RGOT at a percolation threshold of 5 phr, with an electrical conductivity of 8.71 × 10{sup −6} S/m. The mechanical properties, i.e., the modulus, tensile strength and hardness, of NG were comparable with those of conductive carbon black filled NR ones.

  3. Phosphate removal from domestic wastewater using thermally modified steel slag. (United States)

    Yu, Jian; Liang, Wenyan; Wang, Li; Li, Feizhen; Zou, Yuanlong; Wang, Haidong


    This study was performed to investigate the removal of phosphate from domestic wastewater using a modified steel slag as the adsorbent. The adsorption effects of alkalinity, salt, water, and thermal modification were investigated. The results showed that thermal activation at 800°C for 1 hr was the optimum operation to improve the adsorption capacity. The adsorption process of the thermally modified slag was well described by the Elovich kinetic model and the Langmuir isotherm model. The maximum adsorption capacity calculated from the Langmuir model reached 13.62 mg/g. Scanning electron microscopy indicated that the surface of the modified slag was cracked and that the texture became loose after heating. The surface area and pore volume did not change after thermal modification. In the treatment of domestic wastewater, the modified slag bed (35.5 kg) removed phosphate effectively and operated for 158 days until the effluent P rose above the limit concentration of 0.5 mg/L. The phosphate fractionation method, which is often applied in soil research, was used to analyze the phosphate adsorption behavior in the slag bed. The analysis revealed that the total contents of various Ca-P forms accounted for 81.4%-91.1%, i.e., Ca10-P 50.6%-65.1%, Ca8-P 17.8%-25.0%, and Ca2-P 4.66%-9.20%. The forms of Al-P, Fe-P, and O-P accounted for only 8.9%-18.6%. The formation of Ca10-P precipitates was considered to be the main mechanism of phosphate removal in the thermally modified slag bed. Copyright © 2015. Published by Elsevier B.V.

  4. Atomistic simulations of highly conductive molecular transport junctions under realistic conditions

    KAUST Repository

    French, William R.


    We report state-of-the-art atomistic simulations combined with high-fidelity conductance calculations to probe structure-conductance relationships in Au-benzenedithiolate (BDT)-Au junctions under elongation. Our results demonstrate that large increases in conductance are associated with the formation of monatomic chains (MACs) of Au atoms directly connected to BDT. An analysis of the electronic structure of the simulated junctions reveals that enhancement in the s-like states in Au MACs causes the increases in conductance. Other structures also result in increased conductance but are too short-lived to be detected in experiment, while MACs remain stable for long simulation times. Examinations of thermally evolved junctions with and without MACs show negligible overlap between conductance histograms, indicating that the increase in conductance is related to this unique structural change and not thermal fluctuation. These results, which provide an excellent explanation for a recently observed anomalous experimental result [Bruot et al., Nat. Nanotechnol., 2012, 7, 35-40], should aid in the development of mechanically responsive molecular electronic devices. © 2013 The Royal Society of Chemistry.

  5. Geochemical and isotopic characteristics associated with high electrical conductivities in a shallow hydrocarbon-contaminated aquifer (United States)

    Legall, F.; Atekwana, E.; Atekwana, E.; Krishnamurthy, R.; Sauck, W.


    Data collected from a network of in-situ vertical resistivity probes (VRPs) deployed within a hydrocarbon contaminated aquifer showed high soil conductivities associated with zones where residual and dissolved phase hydrocarbons (RDH) occur and zones where these phases coexist with free phase hydrocarbons (RDFH). Bulk soil conductivities were highest (12 to 30 mS/m) in the RDFH zone compared to the RDH zone (10 to 25 mS/m). Groundwater from closely spaced multi-level piezometers (MLPs) installed in the aquifer was analyzed to investigate the role of mineral weathering as the source of ions responsible for the high soil conductivity. Evidence for mineral weathering in the aquifer was assessed using major inorganic ions, dissolved inorganic carbon (DIC), stable carbon isotope ratio of DIC (δ13CDIC), and bulk soil conductivity. The link between bulk soil conductivity and δ13CDIC in contaminant plumes has never been reported in the literature. The results show higher Na, Ca, and Mg in the contaminated zone compared to background. The higher TDS in the contaminated zones is consistent with the weathering of carbonates and Na and Ca feldspars, the dominant minerals in the aquifer. Higher TDS at the contaminated locations was also coincident with higher DIC. The δ13CDIC values of 16.9 to 9.5 ppm suggest that DIC evolution within this zone is controlled by carbonate dissolution through enhanced CO_2 production related to microbial hydrocarbon degradation. Within the range of δ13CDIC values reported for groundwater at the RDH locations, the more positive δ13CDIC values were observed in zones where reduction of NO_3, Mn(IV), Fe(III), and SO_4 was occurring and was coincident with higher bulk soil conductivity. Within the portion of the aquifer with RDFH, δ13CDIC ranged from +6.5 to 4.4 ppm, suggesting that methanogenesis is the dominant redox process at this location. High DIC within the methanogenic zone is also coincident with higher bulk soil conductivity. Thus the

  6. Highly Thermally Conductive Composite Papers Prepared Based on the Thought of Bioinspired Engineering. (United States)

    Yao, Yimin; Zeng, Xiaoliang; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping


    The rapid development of modern electronics and three-dimensional integration sets stringent requirements for efficient heat removal of thermal-management materials to ensure the long lifetime of the electronics. However, conventional polymer composites that have been used widely as thermal-management materials suffer from undesired thermal conductivity lower than 10 W m(-1) K(-1). In this work, we report a novel thermally conductive composite paper based on the thought of bioinspired engineering. The advantage of the bioinspired papers over conventional composites lies in that they possess a very high in-plane thermal conductivity up to 21.7 W m(-1) K(-1) along with good mechanical properties and high electrical insulation. We attribute the high thermal conductivity to the improved interfacial interaction between assembled components through the introduction of silver nanoparticles and the oriented structure based on boron nitride nanosheets and silicon carbide nanowires. This thought based on bioinspired engineering provides a creative opportunity for design and fabrication of novel thermally conductive materials, and this kind of composite paper has potential applications in powerful integrated microelectronics.

  7. Highly conductive and flexible nylon-6 nonwoven fiber mats formed using tungsten atomic layer deposition. (United States)

    Kalanyan, Berç; Oldham, Christopher J; Sweet, William J; Parsons, Gregory N


    Low-temperature vapor-phase tungsten atomic layer deposition (ALD) using WF6 and dilute silane (SiH4, 2% in Ar) can yield highly conductive coatings on nylon-6 microfiber mats, producing flexible and supple nonwovens with conductivity of ∼1000 S/cm. We find that an alumina nucleation layer, reactant exposure, and deposition temperature all influence the rate of W mass uptake on 3D fibers, and film growth rate is calibrated using high surface area anodic aluminum oxide. Transmission electron microscopy (TEM) reveals highly conformal tungsten coatings on nylon fibers with complex "winged" cross-section. Using reactant gas "hold" sequences during the ALD process, we conclude that reactant species can transport readily to reactive sites throughout the fiber mat, consistent with conformal uniform coverage observed by TEM. The conductivity of 1000 S/cm for the W-coated nylon is much larger than found in other conductive nonwovens. We also find that the nylon mats maintain 90% of their conductivity after being flexed around cylinders with radii as small as 0.3 cm. Metal ALD coatings on nonwovens make possible the solvent-free functionalization of textiles for electronic applications.

  8. High frequency characterization of conductive inks embedded within a structural composite (United States)

    Pa, Peter; McCauley, Raymond; Larimore, Zachary; Mills, Matthew; Yarlaggada, Shridhar; Mirotznik, Mark S.


    Woven fabric composites provide an attractive platform for integrating electromagnetic functionality—such as conformal load-bearing antennas and frequency selective surfaces—into a structural platform. One practical fabrication method for integrating conductive elements within a woven fabric composite system involves using additive manufacturing systems such as screen printing. While screen printing is an inherently scalable, flexible and cost effective method, little is known about the high frequency electrical properties of its conductive inks when they are embedded within the woven fabric composite. Thus, we have completed numerical and experimental studies to determine the electrical conductivity of screen printable conductive inks that are embedded within this composite. We have also performed mechanical studies to evaluate how printing affects the structural performance of the composite.

  9. The physics of high-conductivity transparent materials based on wide-band zinc oxide (United States)

    Lashkarev, G. V.; Karpyna, V. A.; Ovsiannikova, L. I.; Kartuzov, V. V.; Dranchuk, M. V.; Godlewski, M.; Pietruszka, R.; Khomyak, V. V.; Petrosyan, L. I.


    The properties of transparent conductive materials based on wide-gap zinc oxide semiconductors are considered, which are promising in their application to photovoltaics and liquid crystal displays. The impact of aluminum doping on the conductivity of thin ZnO films is examined. Temperature studies of the concentration, mobility, and resistivity in the temperature range of 77-300 K are conducted, revealing the metal conductivity of highly doped films. The electroactivity of aluminum as a donor impurity in the ZnO lattice is studied for thin films grown using atomic layer deposition on glass and silicone, containing 1-7 at. % aluminum. The reasons behind the low electroactivity of Al in ZnO are discussed, as are the methods for its enhancement.

  10. Model Implementation of Boron Removal Using CaCl2-CaO-SiO2 Slag System for Solar-Grade Silicon (United States)

    Chen, Hui; Wang, Ye; Zheng, Wenjia; Li, Qincan; Yuan, Xizhi; Morita, Kazuki


    A new CaCl2-CaO-SiO2 slag system was recently proposed to remove boron from metallurgy-grade silicon by oxidized chlorination and evaporation. To further investigate the boron transformation process at a high temperature, a model implementation to present the transfer of boron from molten silicon to the gas phase via slag is introduced. Heat transfer, fluid flow, the chemical reactions at the interface and surface, the mass transfer and diffusion of boron in the molten silicon and slag, and the evaporation of BOCl and CaCl2 were coupled in this model. After the confirmation of the thermal field, other critical parameters, including the boron partition ratios (L B) for this slag from 1723 K to 1823 K (1450 °C to 1550 °C), the thicknesses of the velocity boundary layer at the surface and interface, the mass transfer coefficients of the boundary layer at the surface and interface, and partial pressure of BOCl in the gas phase were analyzed to determine the rate-limiting step. To verify this model implementation, boron removal experiments were carried out at various temperatures and with various initial mass ratios of slag to silicon (μ). The evaporation rate of CaCl2 was also measured by thermogravimetry analysis (TGA).

  11. Model Implementation of Boron Removal Using CaCl2-CaO-SiO2 Slag System for Solar-Grade Silicon (United States)

    Chen, Hui; Wang, Ye; Zheng, Wenjia; Li, Qincan; Yuan, Xizhi; Morita, Kazuki


    A new CaCl2-CaO-SiO2 slag system was recently proposed to remove boron from metallurgy-grade silicon by oxidized chlorination and evaporation. To further investigate the boron transformation process at a high temperature, a model implementation to present the transfer of boron from molten silicon to the gas phase via slag is introduced. Heat transfer, fluid flow, the chemical reactions at the interface and surface, the mass transfer and diffusion of boron in the molten silicon and slag, and the evaporation of BOCl and CaCl2 were coupled in this model. After the confirmation of the thermal field, other critical parameters, including the boron partition ratios ( L B) for this slag from 1723 K to 1823 K (1450 °C to 1550 °C), the thicknesses of the velocity boundary layer at the surface and interface, the mass transfer coefficients of the boundary layer at the surface and interface, and partial pressure of BOCl in the gas phase were analyzed to determine the rate-limiting step. To verify this model implementation, boron removal experiments were carried out at various temperatures and with various initial mass ratios of slag to silicon ( μ). The evaporation rate of CaCl2 was also measured by thermogravimetry analysis (TGA).

  12. Modeling the service life of slag concrete exposed to chlorides

    Directory of Open Access Journals (Sweden)

    O.A. Hodhod


    A partial replacement of OPC with 50% WCS in OPC paste mixes resulted in an increase in the amount of calcium silicate hydrate (CSH by 57%, a decrease in the amount of calcium hydroxide (CH by 66%, and a decrease in the amount of capillary pores by 57%, compared to those in the pure OPC matrix. In addition, the research results demonstrate that increasing Cs from 1% to 5% resulted in dramatically decreasing the service life of OPC/slag concrete, where the amount of decreasing reaches about 71%. Also, the service life of concrete increases with increasing slag content.

  13. Thermal Conductivity of High Performance Concrete in Wide Temperature and Moisture Ranges

    Directory of Open Access Journals (Sweden)

    J. Toman


    Full Text Available The thermal conductivity of two types of high performance concrete was measured in the temperature range from 100 °C to 800 °C and in the moisture range from dry material to saturation water content. A transient measuring method based on analysis of the measured temperature fields was chosen for the high temperature measurements, and a commercial hot wire device was employed in room temperature measurements of the effect of moisture on thermal conductivity. The measured results reveal that both temperature and moisture exhibit significant effects on the values of thermal conductivity, and these effects are quite comparable from the point of view of the magnitude of the observed variations.

  14. Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a High-Performance Memristor (United States)

    Miao, Feng; Strachan, John Paul; Yang, J. Joshua; Yi, Wei; Goldfarb, Ilan; Zhang, M.-X.; Torrezan, Antonio C.; Eschbach, Peter; Kelley, Ronald D.; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley


    Two major challenges for resistance memory devices (memristors) based on conductivity changes in oxide materials are better performance and understanding of the microscopic picture of the switching. After researchers' relentless pursuit for years, tantalum oxide-based memristors have rapidly risen to be the top candidate, showing fast speed, high endurance and excellent scalability. While the microscopic picture of these devices remains obscure, by employing a precise method for locating and directly visualizing the conduction channel, here we observed a nanoscale channel consisting of an amorphous Ta(O) solid solution surrounded by crystalline Ta2O5. Structural and chemical analyses of the channel combined with temperature dependent transport measurements revealed a unique resistance switching mechanism: the modulation of the channel elemental composition, and thus the conductivity, by the cooperative influence of drift, diffusion and thermophoresis, which seem to enable the high switching performance observed. (Miao*, Strachan*, Yang* et al., Advanced Materials. DOI: 10.1002/adma201103379 (2011))

  15. Highly conductive and flexible paper of 1D silver-nanowire-doped graphene. (United States)

    Chen, Jian; Bi, Hui; Sun, Shengrui; Tang, Yufeng; Zhao, Wei; Lin, Tianquan; Wan, Dongyun; Huang, Fuqiang; Zhou, Xiaodong; Xie, Xiaoming; Jiang, Mianheng


    A novel architecture of graphene paper is proposed to consist of "1D metallic nanowires/defect-free graphene sheets". Highly conductive and flexible papers of 1D silver nanowires (Ag NWs) and chemical vapor deposition (CVD) graphene sheets as an example were fabricated by a simple filtration method. CVD graphene paper possesses much higher electrical conductivity of 1097 S/cm, compared with other reported carbon-related papers (graphene, carbon nanotube, etc.). With the addition of Ag NWs to form Ag NWs/graphene paper, the electrical conductivity is further improved up to 3189 S/cm, even higher than ∼2000 S/cm of bulk graphite. Ag NWs/graphene papers have very good flexibility with the only papers have potential in high-performance, flexible energy conversion and storage devices.

  16. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio


    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution. All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity. An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to auroral arcs as a result of ionosphere-magnetosphere coupling, as discussed by Aikio et al. (2004 In

  17. Statistical properties of Joule heating rate, electric field and conductances at high latitudes

    Directory of Open Access Journals (Sweden)

    A. T. Aikio


    Full Text Available Statistical properties of Joule heating rate, electric field and conductances in the high latitude ionosphere are studied by a unique one-month measurement made by the EISCAT incoherent scatter radar in Tromsø (66.6 cgmlat from 6 March to 6 April 2006. The data are from the same season (close to vernal equinox and from similar sunspot conditions (about 1.5 years before the sunspot minimum providing an excellent set of data to study the MLT and Kp dependence of parameters with high temporal and spatial resolution.

    All the parameters show a clear MLT variation, which is different for low and high Kp conditions. Our results indicate that the response of morning sector conductances and conductance ratios to increased magnetic activity is stronger than that of the evening sector. The co-location of Pedersen conductance maximum and electric field maximum in the morning sector produces the largest Joule heating rates 03–05 MLT for Kp≥3. In the evening sector, a smaller maximum occurs at 18 MLT. Minimum Joule heating rates in the nightside are statistically observed at 23 MLT, which is the location of the electric Harang discontinuity.

    An important outcome of the paper are the fitted functions for the Joule heating rate as a function of electric field magnitude, separately for four MLT sectors and two activity levels (Kp<3 and Kp≥3. In addition to the squared electric field, the fit includes a linear term to study the possible anticorrelation or correlation between electric field and conductance. In the midday sector, positive correlation is found as well as in the morning sector for the high activity case. In the midnight and evening sectors, anticorrelation between electric field and conductance is obtained, i.e. high electric fields are associated with low conductances. This is expected to occur in the return current regions adjacent to

  18. Conductive 3D sponges for affordable and highly-efficient water purification. (United States)

    Liu, Yanbiao; Li, Fang; Xia, Qin; Wu, Jiawei; Liu, Jianshe; Huang, Mingzhi; Xie, Jianping


    Effective, affordable and low energy water purification technologies are highly desirable to address the current environmental issues. In this study, we developed a low-cost method to achieve efficient organic pollutants degradation by incorporating conductive nanomaterials (i.e., carbon nanotubes, CNTs) to assist electro-oxidation, leading to an efficient conductive nano-sponge filtration device. The integration of electrochemistry has significantly improved the performance of the sponge-based device to adsorb and oxidize organic compounds in aqueous solution. In particular, CNT materials could serve as both high-performance electro-catalysts for pollutant degradation and conductive additives that make polyurethane sponges highly conductive. On the other hand, the polyurethane sponge could work as a low-cost and highly porous matrix that could effectively host these CNT conductors. The conductive sponge can be easily fabricated by a simple dying based approach. The as-fabricated gravity fed device could effectively oxidize two model organic compounds (i.e., >92% antibiotic tetracycline and >94% methyl orange) via a single pass through the conductive sponge under the optimized experimental conditions (e.g., [Na 2 SO 4 ] = 10 mmol L -1 , [CNT] = 0.3 mg mL -1 , and [SDBS] = 2.0 mg mL -1 ). We have achieved >88% degradation efficiency for the antibiotic tetracycline within 6 h of continuous operation with an average electro-oxidation flux of 0.82 ± 0.05 mol h -1 m -2 and an energy requirement of 1.0 kW h kg -1 COD or <0.02 kW h m -3 . These promising data make our CNT-sponge filtration device attractive for affordable and effective water purification.

  19. Cross-correlations in high-conductance states of a model cortical network

    DEFF Research Database (Denmark)

    Hertz, John


    (dansk abstrakt findes ikke) Neuronal firing correlations are studied using simulations of a simple network model for a cortical column in a high-conductance state with dynamically balanced excitation and inhibition.  Although correlations between individual pairs of neurons exhibit considerable ...

  20. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina


    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...

  1. High electrical conductivity of individual epitaxially grown MoO2 nanorods (United States)

    Xie, Qiliang; Zheng, Xiaoming; Wu, Di; Chen, Xiaoliu; Shi, Jiao; Han, Xintong; Zhang, Xueao; Peng, Gang; Gao, Yongli; Huang, Han


    Molybdenum dioxides (MoO2) have potential applications in batteries owing to their good electrical conductivity. Here, we report the electrical properties of high-quality MoO2 nanorods grown using chemical vapor deposition which are partially wrapped in MoS2 on c-sapphire [α-Al2O3(0001)] substrates and subsequently transferred onto Si wafers for device fabrication. The as-fabricated devices with the individual MoO2 nanorods showed a high electrical conductivity of 6.04 × 103 S/cm and a low contact resistance of 33 Ω, thus demonstrating a superior electrical performance than in any other previous reports on MoO2-based devices. The MoS2 wrapping around the rods had a negligible effect on the conductivity. The electrical conductivity of the MoO2 nanorods was observed to decline in air when a high voltage was applied; this could be mitigated by packaging the nanorods using SiO2 or holding them under high vacuum. Our results provide the foundation for understanding the properties and potential applications of MoO2 nanorods in nanoscale electronic devices.

  2. Methodological Lessons Learned from Conducting Civic Education Research in High Schools (United States)

    Matto, Elizabeth C.; Vercellotti, Timothy


    With the growing size of the "Millennial Generation" and its potential impact on American democracy, the civic education of this cohort deserves study. Using news media and discussion of politics at home and in the classroom at four public high schools in New Jersey, we conducted an experiment to measure changes in media use, political…

  3. Erythrocyte orientation and lung conductivity analysis with a high temporal resolution FEM model for bioimpedance measurements

    NARCIS (Netherlands)

    Ulbrich, M.; Paluchowski, P.; Muehlsteff, J.; Leonhardt, S.


    Impedance cardiography (ICG) is a simple and cheap method to acquirehemodynamic parameters. In this work, the influence of three dynamic physiological sources has been analyzed using a model of the humanthorax with a high temporal resolution. Therefore, simulations havebeen conducted using the

  4. Highly electrically conductive Ag-doped graphene fibers as stretchable conductors. (United States)

    Xu, Zhen; Liu, Zheng; Sun, Haiyan; Gao, Chao


    Ag-doped graphene fibers show remarkable electrical conductivity, high current capacity, good mechanical strength and fine flexibility. The integration of these merits promises Ag-doped graphene fibers expanding applications as stretchable conductors, wearable electronics, and actual microcables. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electrical conductivity of molten ZnCl{sub 2} at temperature as high as 1421 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [RAS Ural Branch, Ekaterinburg. (Russian Federation) Institute of High-Temperature Electrochemistry


    The electrical conductivity of molten ZnCl{sub 2} was measured in a wide temperature range (ΔT=863 K) to a temperature as high as 1421 K that is 417 degrees above the boiling point of the salt. At the temperature maximum of the own vapor pressure of the salt reached several megapascals.

  6. High Biofilm Conductivity Maintained Despite Anode Potential Changes in a Geobacter-Enriched Biofilm (United States)

    This study systematically assessed intracellular electron transfer (IET) and extracellular electron transfer (EET) kinetics with respect to anode potential (Eanode) in a mixed-culture biofilm anode enriched with Geobacter spp. High biofilm conductivity (0.96–1.24 mScm^-1) was mai...

  7. "Saturday Night Live" Goes to High School: Conducting and Advising a Political Science Fair Project (United States)

    Allen, Meg; Brewer, Paul R.


    This article uses a case study to illustrate how science fair projects--which traditionally focus on "hard science" topics--can contribute to political science education. One of the authors, a high school student, conducted an experimental study of politics for her science fair project. The other author, a faculty member, was asked to advise the…

  8. A polyoxometalate-organic supramolecular nanotube with high chemical stability and proton-conducting properties. (United States)

    Cao, Gao-Juan; Liu, Jing-Dong; Zhuang, Ting-Ting; Cai, Xiu-Hong; Zheng, Shou-Tian


    The use of 1H-1,2,4-triazole-3-thiol (H2trzS) has led to a rare inorganic-organic hybrid supramolecular nanotube built from novel Ni5-substituted polyoxotungstates, which presents interesting structural characteristics, high chemical stability, and proton-conducting properties.

  9. A Simple Demonstration of the High-Temperature Electrical Conductivity of Glass (United States)

    Chiaverina, Chris


    We usually think of glass as a good electrical insulator; this, however, is not always the case. There are several ways to show that glass becomes conducting at high temperatures, but the following approach, devised by Brown University demonstration manager Gerald Zani, may be one of the simplest to perform.

  10. Experimental determination and numerical simulation of viscositites in slag-systems under gasification conditions; Experimentelle Bestimmung und numerische Simulation von Viskositaeten in Schlackesystemen unter Vergasungsbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Nentwig, Thomas


    Silica melts are reflected in many different industrial and natural processes such as slags in steel production and gasification of coal, glass in the glass making industry, lava in the volcanology and in lots of other fields. Rheological properties like the viscosity of this silica melts are really important in all of these processes. A general and good working viscosity model would help all scientists and engineers, who have to simulate and optimise these processes. First, it is important to have the possibility to measure viscosities of slags. As part of this PhD thesis a new high-temperature high-pressure rotational viscosimeter is developed for measurements up to {>=}1600 C and 20 bar. Particularly in relation to the coal gasification process this two parameters are really important, because coal gasification occurs under high temperatures and high pressures. With this new viscosimeter it is possible to measure slag viscosities under realistic gasification conditions. To show that the new viscosimeter works quite good viscosity measurements of four real slags have been done. The influence of pressure and atmosphere on viscosity have been examined. The measurements are also compared with different viscosity models. The Arrhenius- and Weymann-Equation have been determined and the correlation between viscosity and basicity of the slag has been evaluated. In the second part of the Phd thesis a new viscosity model is developed. The model is based on the structure inside the slag and consists in existing thermodynamic models. After a detailed literature research the model is developed for the SiO{sub 2}-Al{sub 2}O{sub 3}-Na{sub 2}O-K{sub 2}O system. The quality of this new model is estimated by comparing calculated viscosity values with measurements found during the literature research. The new model is also compared with other existing models for viscosity calculation.

  11. Experimental Preparation and Numerical Simulation of High Thermal Conductive Cu/CNTs Nanocomposites

    Directory of Open Access Journals (Sweden)

    Muhsan Ali Samer


    Full Text Available Due to the rapid growth of high performance electronics devices accompanied by overheating problem, heat dissipater nanocomposites material having ultra-high thermal conductivity and low coefficient of thermal expansion was proposed. In this work, a nanocomposite material made of copper (Cu reinforced by multi-walled carbon nanotubes (CNTs up to 10 vol. % was prepared and their thermal behaviour was measured experimentally and evaluated using numerical simulation. In order to numerically predict the thermal behaviour of Cu/CNTs composites, three different prediction methods were performed. The results showed that rules of mixture method records the highest thermal conductivity for all predicted composites. In contrast, the prediction model which takes into account the influence of the interface thermal resistance between CNTs and copper particles, has shown the lowest thermal conductivity which considered as the closest results to the experimental measurement. The experimentally measured thermal conductivities showed remarkable increase after adding 5 vol.% CNTs and higher than the thermal conductivities predicted via Nan models, indicating that the improved fabrication technique of powder injection molding that has been used to produced Cu/CNTs nanocomposites has overcome the challenges assumed in the mathematical models.

  12. Two-dimensional quantum transport in highly conductive carbon nanotube fibers (United States)

    Piraux, L.; Abreu Araujo, F.; Bui, T. N.; Otto, M. J.; Issi, J.-P.


    Measurements of the electrical resistivity, from 1.5 to 300 K, and of the low temperature magnetoresistance of highly conductive carbon nanotube (CNT) fibers, obtained by wet-spinning from liquid crystalline phase (LCP), are reported. At high temperature the results obtained on the raw CNT fibers show a typical metallic behavior and the resistivity levels without postdoping process were found to be only one order of magnitude higher than the best electrical conductors, with the specific conductivity (conductivity per unit weight) comparable to that of pure copper. At low temperature a logarithmic dependence of the resistivity and the temperature dependence of the negative magnetoresistance are consistent with a two-dimensional quantum charge transport—weak localization and Coulomb interaction—in the few-walled CNT fibers. The temperature dependence of the phase-breaking scattering rate has also been determined from magnetoresistance measurements. In the temperature range T conductive CNT fibers. While quantum effects demonstrate the two-dimensional aspect of conduction in the fibers, the fact that it was found that their resistance is mainly determined by the intrinsic resistivity of the CNTs—and not by intertube resistances—suggests that better practical conductors could be obtained by improving the quality of the CNTs and the fiber morphology.

  13. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. (United States)

    Kazem, Navid; Bartlett, Michael D.; Powell-Palm, Matthew J.; Huang, Xiaonan; Sun, Wenhuan; Malen, Jonathan A.; Majidi, Carmel

    Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrains thermal conductivity (k) to decrease monotonically with decreasing elastic modulus (E) . This is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with a dielectric composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (E 600% strain). By incorporating liquid metal (LM) microdroplets into a soft elastomer, we achieve a 25x increase in thermal conductivity (4.7 +/-0.2 W/mK) over the base polymer (0.20 +/-0.01 W/mK) under stress-free conditions and a 50x increase (9.8 +/-0.8 W/mK) when strained. This exceptional combination of thermal and mechanical properties is through the deformation of the LM inclusions to create thermally conductive pathways in situ. Moreover, these materials offer new possibilities for passive heat exchange in stretchable electronics and bio-inspired robotics, which we demonstrate through the rapid heat dissipation of an elastomer-mounted extreme high power LED lamp and a swimming soft robot. AFOSR Young Investigator Program (Mechanics of Multifunctional Materials and Microsystems; Dr. Les Lee; FA9550-13-1-0123), NASA Early Career Faculty Award (NNX14AO49G), Army Research Office Grant W911NF-14-0350.

  14. Highly Water-Stable Lanthanide-Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence. (United States)

    Zhang, Kun; Xie, Xiaoji; Li, Hongyu; Gao, Jiaxin; Nie, Li; Pan, Yue; Xie, Juan; Tian, Dan; Liu, Wenlong; Fan, Quli; Su, Haiquan; Huang, Ling; Huang, Wei


    Although proton conductors derived from metal-organic frameworks (MOFs) are highly anticipated for various applications including solid-state electrolytes, H2 sensors, and ammonia synthesis, they are facing serious challenges such as poor water stability, fastidious working conditions, and low proton conductivity. Herein, we report two lanthanide-oxalate MOFs that are highly water stable, with so far the highest room-temperature proton conductivity (3.42 × 10-3 S cm-1 ) under 100% relative humidity (RH) among lanthanide-based MOFs and, most importantly, luminescent. Moreover, the simultaneous response of both the proton conductivity and luminescence intensity to RH allows the linkage of proton conductivity with luminescence intensity. This way, the electric signal of proton conductivity variation versus RH will be readily translated to optical signal of luminescence intensity, which can be directly visualized by the naked eye. If proper lanthanide ions or even transition-metal ions are used, the working wavelengths of luminescence emissions can be further extended from visible to near infrared light for even wider-range applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, Dominic Francis [Univ. of Arizona, Tucson, AZ (United States)


    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without or with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration at

  16. Die attach dimension and material on thermal conductivity study for high power COB LED (United States)

    Sarukunaselan, K.; Ong, N. R.; Sauli, Z.; Mahmed, N.; Kirtsaeng, S.; Sakuntasathien, S.; Suppiah, S.; Alcain, J. B.; Retnasamy, V.


    High power LED began to gain popularity in the semiconductor market due to its efficiency and luminance. Nonetheless, along with the increased in efficiency, there was an increased in the junction temperature too. The alleviating junction temperature is undesirable since the performances and lifetime will be degraded over time. Therefore, it is crucial to solve this thermal problem by maximizing the heat dissipation to the ambience. Improvising the die attach (DA) layer would be the best option because this layer is sandwiched between the chip (heat source) and the substrate (channel to the ambient). In this paper, the impact of thickness and thermal conductivity onto the junction temperature and Von Mises stress is analyzed. Results obtained showed that the junction temperature is directly proportional to the thickness but the stress was inversely proportional to the thickness of the DA. The thermal conductivity of the materials did affect the junction temperature as there was not much changes once the thermal conductivity reached 20W/mK. However, no significant changes were observed on the Von Mises stress caused by the thermal conductivity. Material with the second highest thermal conductivity had the lowest stress, whereas the highest conductivity material had the highest stress value at 20 µm. Overall, silver sinter provided the best thermal dissipation compared to the other materials.

  17. A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte

    KAUST Repository

    Agrawal, Akanksha


    © 2015 The Royal Society of Chemistry. We report on the physical properties of lithium-ion conducting nanoparticle-polymer hybrid electrolytes created by dispersing bidisperse mixtures of polyethylene glycol (PEG)-functionalized silica nanoparticles in an aprotic liquid host. At high particle contents, we find that the ionic conductivity is a non-monotonic function of the fraction of larger particles xL in the mixtures, and that for the nearly symmetric case xL ≈ 0.5 (i.e. equal volume fraction of small and large particles), the room temperature ionic conductivity is nearly ten-times larger than in similar nanoparticle hybrid electrolytes comprised of the pure small (xL ≈ 0) or large (xL ≈ 1) particle components. Complementary trends are seen in the activation energy for ion migration and effective tortuosity of the electrolytes, which both exhibit minima near xL ≈ 0.5. Characterization of the electrolytes by dynamic rheology reveals that the maximum conductivity coincides with a distinct transition in soft glassy properties from a jammed to partially jammed and back to jammed state, as the fraction of large particles is increased from 0 to 1. This finding implies that the conductivity enhancement arises from purely entropic loss of correlation between nanoparticle centers arising from particle size dispersity. As a consequence of these physics, it is now possible to create hybrid electrolytes with MPa elastic moduli and mS cm-1 ionic conductivity levels at room temperature using common aprotic liquid media as the electrolyte solvent. Remarkably, we also find that even in highly flammable liquid media, the bidisperse nanoparticle hybrid electrolytes can be formulated to exhibit low or no flammability without compromising their favorable room temperature ionic conductivity and mechanical properties.

  18. An Analysis of the Orbital Distribution of Solid Rocket Motor Slag (United States)

    Horstman, Matthew F.; Mulrooney, Mark


    The contribution made by orbiting solid rocket motors (SRMs) to the orbital debris environment is both potentially significant and insufficiently studied. A combination of rocket motor design and the mechanisms of the combustion process can lead to the emission of sufficiently large and numerous by-products to warrant assessment of their contribution to the orbital debris environment. These particles are formed during SRM tail-off, or the termination of burn, by the rapid expansion, dissemination, and solidification of the molten Al2O3 slag pool accumulated during the main burn phase of SRMs utilizing immersion-type nozzles. Though the usage of SRMs is low compared to the usage of liquid fueled motors, the propensity of SRMs to generate particles in the 100 m and larger size regime has caused concern regarding their contributing to the debris environment. Particle sizes as large as 1 cm have been witnessed in ground tests conducted under vacuum conditions and comparable sizes have been estimated via ground-based telescopic and in-situ observations of sub-orbital SRM tail-off events. Using sub-orbital and post recovery observations, a simplistic number-size-velocity distribution of slag from on-orbit SRM firings was postulated. In this paper we have developed more elaborate distributions and emission scenarios and modeled the resultant orbital population and its time evolution by incorporating a historical database of SRM launches, propellant masses, and likely location and time of particulate deposition. From this analysis a more comprehensive understanding has been obtained of the role of SRM ejecta in the orbital debris environment, indicating that SRM slag is a significant component of the current and future population.

  19. Improvement of Early Strength of Cement Mortar Containing Granulated Blast Furnace Slag Using Industrial Byproducts

    Directory of Open Access Journals (Sweden)

    Jin-Hyoung Kim


    Full Text Available In the field of construction, securing the early strength of concrete (on the first and third days of aging has been an important problem in deciding the mold release time (i.e., shortening the construction time period. Therefore, the problem of reduced compressive strength in the early aging stage caused by mixing granulated blast furnace slag (GBFS with concrete must certainly be resolved. In this study, we conduct experiments to explore methods for generating a concrete that develops an early strength equivalent to that of 100% OPC. The objective of this study is the development of an early-strength accelerator (ESA made from an industrial by-product, for a GBFS-mixed cement mortar. This study also analyzes the mechanism of the early-strength generation in the concrete to evaluate the influence of the burning temperature of ESA on the optimal compressive strength of the concrete. According to the results of the experiment, GBFS, whose ESA is burnt at 800 °C, shows an activation factor of 102.6–104.7% in comparison with 100% OPC on the first and third days during early aging, thereby meeting the target compressive strength. The results of the micro-analytic experiment are as follows: ESA showed a pH of strongly alkaline. In addition, it was found that the content of SO3 was high in the chemical components, thus activating the hydration reaction of GBFS in the early age. This initial hydration reaction was thought to be due to the increase in the filling effect of the hydrate and the generation of C-S-H of the early age by the mass production of Ettringite.

  20. Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors (United States)

    Yoon, Sang Su; Lee, Kang Eun; Cha, Hwa-Jin; Seong, Dong Gi; Um, Moon-Kwang; Byun, Joon-Hyung; Oh, Youngseok; Oh, Joon Hak; Lee, Wonoh; Lee, Jea Uk


    Mechanically robust, flexible, and electrically conductive textiles are highly suitable for use in wearable electronic applications. In this study, highly conductive and flexible graphene/Ag hybrid fibers were prepared and used as electrodes for planar and fiber-type transistors. The graphene/Ag hybrid fibers were fabricated by the wet-spinning/drawing of giant graphene oxide and subsequent functionalization with Ag nanoparticles. The graphene/Ag hybrid fibers exhibited record-high electrical conductivity of up to 15,800 S cm-1. As the graphene/Ag hybrid fibers can be easily cut and placed onto flexible substrates by simply gluing or stitching, ion gel-gated planar transistors were fabricated by using the hybrid fibers as source, drain, and gate electrodes. Finally, fiber-type transistors were constructed by embedding the graphene/Ag hybrid fiber electrodes onto conventional polyurethane monofilaments, which exhibited excellent flexibility (highly bendable and rollable properties), high electrical performance (μh = 15.6 cm2 V-1 s-1, Ion/Ioff > 104), and outstanding device performance stability (stable after 1,000 cycles of bending tests and being exposed for 30 days to ambient conditions). We believe that our simple methods for the fabrication of graphene/Ag hybrid fiber electrodes for use in fiber-type transistors can potentially be applied to the development all-organic wearable devices.

  1. Conductive Microporous Covalent Triazine-Based Framework for High-Performance Electrochemical Capacitive Energy Storage. (United States)

    Li, Yajuan; Zheng, Shuanghao; Liu, Xue; Li, Pan; Sun, Lei; Yang, Ruixia; Wang, Sen; Wu, Zhong-Shuai; Bao, Xinhe; Deng, Wei-Qiao


    Nitrogen-enriched porous nanocarbon, graphene, and conductive polymers attract increasing attention for application in supercapacitors. However, electrode materials with a large specific surface area (SSA) and a high nitrogen doping concentration, which is needed for excellent supercapacitors, has not been achieved thus far. Herein, we developed a class of tetracyanoquinodimethane-derived conductive microporous covalent triazine-based frameworks (TCNQ-CTFs) with both high nitrogen content (>8 %) and large SSA (>3600 m2  g-1 ). These CTFs exhibited excellent specific capacitances with the highest value exceeding 380 F g-1 , considerable energy density of 42.8 Wh kg-1 , and remarkable cycling stability without any capacitance degradation after 10 000 cycles. This class of CTFs should hold a great potential as high-performance electrode material for electrochemical energy-storage systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Iron Recovery from Discarded Copper Slag in a RHF Direct Reduction and Subsequent Grinding/Magnetic Separation Process

    Directory of Open Access Journals (Sweden)

    Zhicheng Cao


    Full Text Available Studies on the direct reduction of carbon-bearing pellets made from discarded copper slag have been conducted in this paper. They include the influences of reduction coal content, limestone content, industrial sodium carbonate content, reduction temperature, reduction time and layers of carbon-bearing pellets on reduction effect. Finally, the optimum conditions have been obtained. The pilot scale experiment results show that the optimum conditions are the mass proportion of discarded copper slag, reduction coal, limestone and industrial sodium carbonate of 100:25:10:3, the reduction temperature of 1280 °C for the reduction time of 35 min, three layers (approximately 42 mm of carbon-bearing pellets—this was the basis on which the pilot tests in a rotary hearth furnace (RHF were conducted. The iron products obtained from the pilot tests under such conditions have an iron grade of 90.35% with an iron recovery rate of 89.70%. The mechanism research based on the analysis results of X-ray diffraction (XRD, scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS indicates that fayalite (2FeO·SiO2 and magnetite (Fe3O4 in the copper slag are reduced into metallic Fe in the direct reduction (DR process, and the mass and heat transfer become stronger from the bottom to the top layer of the pellets, resulting in a rising iron recovery rate.

  3. Design of conduction cooling system for a high current HTS DC reactor (United States)

    Dao, Van Quan; Kim, Taekue; Le Tat, Thang; Sung, Haejin; Choi, Jongho; Kim, Kwangmin; Hwang, Chul-Sang; Park, Minwon; Yu, In-Keun


    A DC reactor using a high temperature superconducting (HTS) magnet reduces the reactor’s size, weight, flux leakage, and electrical losses. An HTS magnet needs cryogenic cooling to achieve and maintain its superconducting state. There are two methods for doing this: one is pool boiling and the other is conduction cooling. The conduction cooling method is more effective than the pool boiling method in terms of smaller size and lighter weight. This paper discusses a design of conduction cooling system for a high current, high temperature superconducting DC reactor. Dimensions of the conduction cooling system parts including HTS magnets, bobbin structures, current leads, support bars, and thermal exchangers were calculated and drawn using a 3D CAD program. A finite element method model was built for determining the optimal design parameters and analyzing the thermo-mechanical characteristics. The operating current and inductance of the reactor magnet were 1,500 A, 400 mH, respectively. The thermal load of the HTS DC reactor was analyzed for determining the cooling capacity of the cryo-cooler. The study results can be effectively utilized for the design and fabrication of a commercial HTS DC reactor.

  4. 3D printable highly conductive and mechanically strong thermoplastic-based nanocomposites (United States)

    Tabiai, Ilyass; Therriault, Daniel

    Highly conductive 3D printable inks can be used to design electrical devices with various functionalities and geometries. We use the solvent evaporation assisted 3D-printing method to create high resolution structures made of poly(lactid) acid (PLA) reinforced with multi-walled carbon nanotube (MWCNTs). We characterize fibers with diameters ranging between 100 μm to 330 μm and reinforced with MWCNTs from 0.5 up to 40wt% here. Tensile test, shrinkage ratio, density and electrical conductivity measurements of the printed nanocomposite are presented. The material's electrical conductivity is strongly improved by adding MWCNTs (up to 3000S/m), this value was found to be higher than any 3D-printable carbon based material available in the literature. It is observed that MWCNTs significantly increase the material's strength and stiffness while reducing its ductility. The ink's density was also higher while still being in the range of polymers' densities. The presented nanocomposite is light weight, highly conductive, has good mechanical properties and can be printed in a freeform fashion at the micro scale. A myriad of low power consumption with less resistive heating sensors and devices can potentially be designed using it and integrated into other 3D printable products.

  5. Production of Synthetic Rutile from Molten Titanium Slag with the Addition of B2O3 (United States)

    Fan, Helin; Duan, Huamei; Tan, Kai; Li, Yuankun; Chen, Dengfu; Long, Mujun; Liu, Tao


    A new process of producing synthetic rutile from molten titanium slag with the addition B2O3 is proposed. The process includes a molten modification process and a leaching process. The molten modification process was conducted by adding B2O3 into molten slag. The leaching process was conducted by adding hydrochloric acid and subsequent NaOH. The results show that CaO and MgO are leached out by hydrochloric acid and that synthetic rutile is further improved by NaOH. The optimized conditions are 2% B2O3 amount, 5% hydrochloric concentration, 80°C leaching temperature, and 30 min leaching time. The synthetic rutile with 86.77% TiO2 and 1.23% (CaO + MgO) was prepared. From x-ray diffraction results, thermodynamic calculation and the theory of bond parameter function, with the addition of B2O3, calcium silicate is transformed into calcium borate and anosovite is transformed into magnesium borate. Calcium borate and magnesium borate are leached out by hydrochloric acid, leading to the enrichment of rutile.

  6. Petrogenetic characteristics of molten slag from the pyrolysis/melting treatment of MSW. (United States)

    Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Motomura, Yoshinobu; Watanabe, Koichiro


    MSW slag materials derived from four pyrolysis melting plants in Japan were studied from the viewpoint of petrology in order to discriminate the glass and mineral phases and to propose a petrogenetic model for the formation process of molten slag. Slag material is composed of two major components: melt and refractory products. The melt products that formed during the melting process comprise silicate glass, and a suite of minerals as major constituents. The silicate glass is essentially composed of low and high silica glass members (typically 30% and 50% of SiO(2), respectively), from which minerals such as spinels, melilite, pseudowollastonite, and metallic inclusions have been precipitated. The refractory products consist mainly of pieces of metals, minerals and lithic fragments that survived through the melting process. Investigations demonstrated that the low silica melts (higher Ca and Al contents) were produced at upper levels of high temperature combustion chamber HTCC, at narrower temperature ranges (1250-1350 degrees C), while the high silica melts formed at broader temperature ranges (1250-1450 degrees C), at the lower levels of HTCC. The recent temperature ranges were estimated by using CaOAl(2)O(3)SiO(2) (CAS) ternary liquidus diagram that are reasonably consistent with those reported for a typical combustor. It was also understood that the samples with a higher CaO/SiO(2) ratio (>0.74-0.75) have undergone improved melting, incipient crystallization of minerals, and extensive homogenization. The combined mineralogical and geochemical examinations provided evidence to accept the concept of stepwise generation of different melt phases within the HTCC. The petrogenesis of the melt products may therefore be described as a two-phase melt system with immiscible characteristics that have been successively generated during the melting process of MSW.

  7. Conductance fluctuations in high mobility monolayer graphene: Nonergodicity, lack of determinism and chaotic behavior. (United States)

    da Cunha, C R; Mineharu, M; Matsunaga, M; Matsumoto, N; Chuang, C; Ochiai, Y; Kim, G-H; Watanabe, K; Taniguchi, T; Ferry, D K; Aoki, N


    We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these fluctuations. The distribution of eigenvalues was estimated from the conductance fluctuations with Gaussian kernels and it indicates that the carrier motion is chaotic at low temperatures. We argue that a two-phase dynamical fluid model best describes the transport in this system and can be used to explain the violation of the so-called ergodic hypothesis found in graphene.

  8. Proton conducting membranes for high temperature fuel cells with solid state water free membranes (United States)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)


    A water free, proton conducting membrane for use in a fuel cell is fabricated as a highly conducting sheet of converted solid state organic amine salt, such as converted acid salt of triethylenediamine with two quaternized tertiary nitrogen atoms, combined with a nanoparticulate oxide and a stable binder combined with the converted solid state organic amine salt to form a polymeric electrolyte membrane. In one embodiment the membrane is derived from triethylenediamine sulfate, hydrogen phosphate or trifiate, an oxoanion with at least one ionizable hydrogen, organic tertiary amine bisulfate, polymeric quaternized amine bisulfate or phosphate, or polymeric organic compounds with quaternizable nitrogen combined with Nafion to form an intimate network with ionic interactions.

  9. High-conductance states in a mean-field cortical network model

    CERN Document Server

    Lerchner, A; Hertz, J


    Measured responses from visual cortical neurons show that spike times tend to be correlated rather than exactly Poisson distributed. Fano factors vary and are usually greater than 1 due to the tendency of spikes being clustered into bursts. We show that this behavior emerges naturally in a balanced cortical network model with random connectivity and conductance-based synapses. We employ mean field theory with correctly colored noise to describe temporal correlations in the neuronal activity. Our results illuminate the connection between two independent experimental findings: high conductance states of cortical neurons in their natural environment, and variable non-Poissonian spike statistics with Fano factors greater than 1.

  10. Fast prototyping of conducting polymer microelectrodes using resistance-controlled high precision drilling

    DEFF Research Database (Denmark)

    Kafka, Jan Robert; Geschke, Oliver; Skaarup, Steen


    We present a straightforward method for fast prototyping of microelectrode arrays in the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Microelectrode arrays were produced by electrical resistance-controlled microdrilling through an insulating polymer layer (TOPAS® 5013...... of 130μm and 300μm, respectively, were fabricated. Their functionality was verified by chronoamperometry on potassium ferro-/ferricyanide. Comparison of the experimentally obtained results to finite element modeling of the respective electrode configurations shows that the conducting polymer electrodes...

  11. Geochemical and isotopic characteristics associated with high soil conductivities in a shallow hydrocarbon-contaminated aquifer (United States)

    Legall, Franklyn David

    Data collected from a network of in-situ vertical resistivity probes (VRPs) deployed at a hydrocarbon-contaminated site in SW Michigan showed high conductivities associated with the zone of contamination. Within the contaminated portion of the aquifer, different phases of hydrocarbon impact are recognized, namely, zones with residual and dissolved phase hydrocarbons (RDH) and zones where these phases coexist with free product (RDFH). Bulk soil conductivities were highest (12 to 30 mS/m) in the RDFH zone compared to the RDH zone (10 to 25 mS/m). Geochemical and isotopic data from closely spaced vertical samples within the high conductive zones were used to provide geochemical evidence for biodegradation and to investigate redox processes occurring within the conductive zones. Depth distribution of TEAs and educts showed evidence of reduction of nitrate, iron, manganese, and sulfate across steep vertical gradients. Within the portion of the plume characterized by RDH, SO4 reduction has supplanted denitrification via dissimilatory nitrate reduction, and the reduction of Fe (III) and Mn(IV) as the major observed redox process. This zone was also characterized by the highest DIC. The delta 13CDIC values of -16.9 to -9.5‰ suggest that DIC evolution within this zone is controlled by carbonate dissolution through enhanced CO2 production related to microbial hydrocarbon degradation. Within the portion of the aquifer with RDFH, DIC was lower compared to the RDH location with an associated delta13CDIC in the range of +6.5 to -4.4‰. Both the DIC and delta 13CDIC suggest that methanogenesis is the dominant redox process. With respect to mineral weathering as a possible source of ions contributing to high conductivities, the results show higher concentrations of Na, Ca, and Mg in the contaminated portion of the aquifer compared to uncontaminated parts. This is consistent with the weathering of carbonate and Na and Ca feldspars, the dominant minerals in the aquifer. Higher

  12. Synthesis of a novel slow-release potassium fertilizer from modified Pidgeon magnesium slag by potassium carbonate. (United States)

    Li, Yongling; Cheng, Fangqin


    A novel slow-release potassium fertilizer (SPF) was synthesized using Pidgeon magnesium slag (PMS) and potassium carbonate, which could minimize fertilizer nutrient loss and PMS disposal problems. Orthogonal experiments were conducted to determine the optimum conditions for synthesis. The potassium (K)-bearing compounds of SPF existed mainly in the form of crystalline phases Ca1.197K0.166SiO4, K2MgSiO4, and K4CaSi3O9, and in the noncrystalline phase. The active silicon content of SPF was 2.09 times as much as that of magnesium slag, and the slow-release character of SPF met the requirement for partly slow-release fertilizer in the national standard (GB/T23348-2009). The best models for describing the K release kinetics in water and 2% citric acid were the Elovich model and the first-order model, respectively. The heavy metal contents of SPF conformed to the national standard for organic-inorganic compound fertilizers, and the leaching mass concentrations of heavy metals and Fluorine were far lower than the limit values of the identification standard for hazardous waste identification for extraction toxicity (GB5085.3-2007), and also met the class II quality standard for ground water. The environmental risk of SPF is therefore very low, but because SPF is alkaline, its effect on soil pH should be taken into account. PMS is the solid waste resulting from the production of magnesium metal by Pidgeon's reduction process. Utilization of PMS in the high-technology and high-value areas may promote the high-efficiency development of worldwide collection metallic magnesium industry and contribute to the reduction of emissions of fine dust to air. This paper presents one of the new techniques in the use of PMS as a slow-release fertilizer by adding K2CO3. The product can serve as a very cost-effective and reliable artificial fertilizer.

  13. Highly conductive quasi-coaxial electrospun quaternized polyvinyl alcohol nanofibers and composite as high-performance solid electrolytes (United States)

    Liao, Guan-Ming; Li, Pin-Chieh; Lin, Jia-Shiun; Ma, Wei-Ting; Yu, Bor-Chern; Li, Hsieh-Yu; Liu, Ying-Ling; Yang, Chun-Chen; Shih, Chao-Ming; Lue, Shingjiang Jessie


    Electrospun quaternized polyvinyl alcohol (Q-PVA) nanofibers are prepared, and a potassium hydroxide (KOH)-doped nanofiber mat demonstrates enhanced ionic conductivity compared with a dense Q-PVA film with KOH doping. The Q-PVA composite containing 5.98% electrospun Q-PVA nanofibers exhibits suppressed methanol permeability. Both the high conductivity and suppressed methanol permeability are attributed to the quasi-coaxial structure of the electrospun nanofibers. The core of the fibers exhibits a more amorphous region that forms highly conductive paths, while the outer shell of the nanofibers contains more polymer crystals that serve as a hard sheath surrounding the soft core. This shell induces mass transfer resistance and creates a tortuous fuel pathway that suppresses methanol permeation. Such a Q-PVA composite is an effective solid electrolyte that makes the use of alkaline fuel cells viable. In a direct methanol alkaline fuel cell operated at 60 °C, a peak power density of 54 mW cm-2 is obtained using the electrospun Q-PVA composite, a 36.4% increase compared with a cell employing a pristine Q-PVA film. These results demonstrate that highly conductive coaxial electrospun nanofibers can be prepared through a single-opening spinneret and provide a possible approach for high-performance electrolyte fabrication.

  14. Thermal conductivity changes across a structural phase transition: The case of high-pressure silica (United States)

    Aramberri, Hugo; Rurali, Riccardo; Íñiguez, Jorge


    By means of first-principles calculations, we investigate the thermal properties of silica as it evolves, under hydrostatic compression, from a stishovite phase into a CaCl2-type structure. We compute the thermal conductivity tensor by solving the linearized Boltzmann transport equation iteratively in a wide temperature range, using for this the pressure-dependent harmonic and anharmonic interatomic couplings obtained from first principles. Most remarkably, we find that, at low temperatures, SiO2 displays a large peak in the in-plane thermal conductivity and a highly anisotropic behavior close to the structural transformation. We trace back the origin of these features by analyzing the phonon contributions to the conductivity. We discuss the implications of our results in the general context of continuous structural transformations in solids, as well as the potential geological interest of our results for silica.

  15. Chemical synthesis and characterization of highly soluble conducting polyaniline in the mixtures of common solvents

    Directory of Open Access Journals (Sweden)

    Zeghioud Hichem


    Full Text Available This work presents the synthesis and characterization of soluble and conducting polyaniline PANI-PIA according to chemical polymerization route. This polymerization pathway leads to the formation of poly(itaconic acid doped polyaniline salts, which are highly soluble in a number of mixtures between organic common polar solvents and water, the solubility reaches 4 mg mL-1. The effect of synthesis parameters such as doping level on the conductivity and the study of solubility and other properties of the resulting PANI salts were also undertaken. The maximum of conductivity was found equal to 2.48×10-4 S cm-1 for fully protonated PANI-EB. In addition, various characterizations of the synthesized materials were also done with the help of viscosity measurements, UV-vis spectroscopy, XRD, FTIR and finally TGA for the thermal properties behaviour.

  16. A facile approach to a silver conductive ink with high performance for macroelectronics. (United States)

    Tao, Yu; Tao, Yuxiao; Wang, Biaobing; Wang, Liuyang; Tai, Yanlong


    An unusual kind of transparent and high-efficiency organic silver conductive ink (OSC ink) was synthesized with silver acetate as silver carrier, ethanolamine as additive, and different kinds of aldehyde-based materials as reduction agents and was characterized by using a thermogravimetric analyzer, X-ray diffraction, a scanning electron microscope, and a four-point probe. The results show that different reduction agents all have an important influence on the conductive properties of the ink through a series of complex chemical reactions, and especially when formic acid or dimethylformamide was used as the reduction agent and sintered at 120°C for 30 s, the resistivity can be lowered to 6 to 9 μΩ·cm. Furthermore, formula mechanism, conductive properties, temperature, and dynamic fatigue properties were investigated systematically, and the feasibility of the OSC ink was also verified through the preparation of an antenna pattern.

  17. Portable conduction velocity experiments using earthworms for the college and high school neuroscience teaching laboratory. (United States)

    Shannon, Kyle M; Gage, Gregory J; Jankovic, Aleksandra; Wilson, W Jeffrey; Marzullo, Timothy C


    The earthworm is ideal for studying action potential conduction velocity in a classroom setting, as its simple linear anatomy allows easy axon length measurements and the worm's sparse coding allows single action potentials to be easily identified. The earthworm has two giant fiber systems (lateral and medial) with different conduction velocities that can be easily measured by manipulating electrode placement and the tactile stimulus. Here, we present a portable and robust experimental setup that allows students to perform conduction velocity measurements within a 30-min to 1-h laboratory session. Our improvement over this well-known preparation is the combination of behaviorally relevant tactile stimuli (avoiding electrical stimulation) with the invention of minimal, low-cost, and portable equipment. We tested these experiments during workshops in both a high school and college classroom environment and found positive learning outcomes when we compared pre- and posttests taken by the students.

  18. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films

    KAUST Repository

    Sarath Kumar, S. R.


    We report the high temperature thermoelectric properties of solution processed pristine and sulphuric acid treated poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (or PEDOT:PSS) films. The acid treatment is shown to simultaneously enhance the electrical conductivity and Seebeck coefficient of the metal-like films, resulting in a five-fold increase in thermoelectric power factor (0.052 W/m. K ) at 460 K, compared to the pristine film. By using atomic force micrographs, Raman and impedance spectra and using a series heterogeneous model for electrical conductivity, we demonstrate that acid treatment results in the removal of PSS from the films, leading to the quenching of accumulated charge-induced energy barriers that prevent hopping conduction. The continuous removal of PSS with duration of acid treatment also alters the local band structure of PEDOT:PSS, resulting in simultaneous enhancement in Seebeck coefficient.

  19. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity (United States)

    Shen, Wenfeng; Zhang, Xianpeng; Huang, Qijin; Xu, Qingsong; Song, Weijie


    Silver nanoparticles (NPs) which could be kept in solid form and were easily stored without degeneration or oxidation at room temperature for a long period of time were synthesized by a simple and environmentally friendly wet chemistry method in an aqueous phase. Highly stable dispersions of aqueous silver NP inks, sintered at room temperature, for printing highly conductive tracks (~8.0 μΩ cm) were prepared simply by dispersing the synthesized silver NP powder in water. These inks are stable, fairly homogeneous and suitable for a wide range of patterning techniques. The inks were successfully printed on paper and polyethylene terephthalate (PET) substrates using a common color printer. Upon annealing at 180 °C, the resistivity of the printed silver patterns decreased to 3.7 μΩ cm, which is close to twice that of bulk silver. Various factors affecting the resistivity of the printed silver patterns, such as annealing temperature and the number of printing cycles, were investigated. The resulting high conductivity of the printed silver patterns reached over 20% of the bulk silver value under ambient conditions, which enabled the fabrication of flexible electronic devices, as demonstrated by the inkjet printing of conductive circuits of LED devices.Silver nanoparticles (NPs) which could be kept in solid form and were easily stored without degeneration or oxidation at room temperature for a long period of time were synthesized by a simple and environmentally friendly wet chemistry method in an aqueous phase. Highly stable dispersions of aqueous silver NP inks, sintered at room temperature, for printing highly conductive tracks (~8.0 μΩ cm) were prepared simply by dispersing the synthesized silver NP powder in water. These inks are stable, fairly homogeneous and suitable for a wide range of patterning techniques. The inks were successfully printed on paper and polyethylene terephthalate (PET) substrates using a common color printer. Upon annealing at 180 °C, the

  20. Flexible Lithium-Ion Batteries with High Areal Capacity Enabled by Smart Conductive Textiles. (United States)

    Ha, Sung Hoon; Shin, Kyu Hang; Park, Hae Won; Lee, Yun Jung


    Increasing demand for flexible devices in various applications, such as smart watches, healthcare, and military applications, requires the development of flexible energy-storage devices, such as lithium-ion batteries (LIBs) with high flexibility and capacity. However, it is difficult to ensure high capacity and high flexibility simultaneously through conventional electrode preparation processes. Herein, smart conductive textiles are employed as current collectors for flexible LIBs owing to their inherent flexibility, fibrous network, rough surface for better adhesion, and electrical conductivity. Conductivity and flexibility are further enhanced by nanosizing lithium titanate oxide (LTO) and lithium iron phosphate (LFP) active materials, and hybridizing them with a flexible 2D graphene template. The resulting LTO/LFP full cells demonstrate high areal capacity and flexibility with tolerance to mechanical fatigue. The battery achieves a capacity of 1.2 mA h cm-2 while showing excellent flexibility. The cells demonstrate stable open circuit voltage retention under repeated flexing for 1000 times at a bending radius of 10 mm. The discharge capacity of the unflexed battery is retained in cells subjected to bending for 100 times at bending radii of 30, 20, and 10 mm, respectively, confirming that the suggested electrode configuration successfully prevents structural damage (delamination or cracking) upon repeated deformation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Crystallization Kinetics of CaO-SiO2-Al2O3-MgO Slags (United States)

    Esfahani, Shaghayegh; Barati, Mansoor

    Crystallization behavior of blast furnace slag is of great interest for generating value-added products from slag, such as cement feedstock, where the slag structure determines the material quality. Aided with a Hot Thermocouple Device, the kinetics of crystallization of CaO-SiO2-Al2O3-MgO slags was determined. The rate of nucleation and growth of crystals were measured for a range of slag basicities, temperatures, and hold times.

  2. High-Thermal-Conductivity Densified Graphitic Foams as Novel Bearing Materials

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [ORNL; Blau, Peter Julian [ORNL; Klett, James William [ORNL; Jolly, Brian C [ORNL


    The high-thermal-conductivity graphitic foams (foam-reinforced carbon-carbon composites) developed at ORNL have been mainly used for thermal management, as in heat sinks for electronic circuit boards and highly-efficient automotive radiators. However, recent studies in our laboratory have rather unexpectedly revealed their potential as novel bearing materials. In addition to their low density and potential for weight savings, there are three primary tribological advantages of the graphitic foam materials: (1) their graphitic structures provide self-lubricating qualities, (2) their extraordinarily high thermal conductivity aids in the efficient removal of frictionally-generated heat, and (3) the pores in the foam serve both as wear debris traps and lubricant reservoirs. Previous studies on the densified graphitic foam (DGF) sliding against steel and alumina at relatively low speed (1 m/s) and low load (10 N), revealed their encouraging self-lubricating behavior, comparable to solid graphite while much better than bronze and polytetrafluoroethylene (Teflon{trademark}). In this study, pin-on-disk tests with higher speeds (2, 6, and 10 m/s) and higher loads (322 N) were conducted on DGF and graphite disks sliding against a DGF pin. The surface temperature on the graphite disk increased rapidly due to frictional heating and the friction coefficient increased proportionally with surface temperature when it was higher than 40 C. The DGF disk, however, ran much cooler due to the higher thermal conductivity, and more impressively, the friction coefficient remained low and constant even at elevated disk temperatures. This suggests high potential for the graphitic foam material in weight-sensitive, high-speed, and elevated temperature bearing applications.

  3. Utilization of steel melting electric arc furnace slag for development ...

    Indian Academy of Sciences (India)


    Steel melting through electric arc furnace route is gaining popularity due to its many advantages, but generates a new waste, electric arc furnace slag, which is getting accumulated and land/mine filling and road construction are the only ... is a key factor, in such constructions as breakwater blocks, foundations, shoring walls, ...

  4. Environmental and economic implications of slag disposal practices ...

    African Journals Online (AJOL)


    Jan 1, 2003 ... slag in terms of the minimum requirements, as prescribed by the Department of Water Affairs and Forestry (DWAF), and to determine ... and disposal on a permitted H:H landfill site is currently the final waste management option. Permitting .... substance, based on its relevant acute mammalian toxicity (LD50).

  5. Aluminium salt slag characterization and utilization--a review. (United States)

    Tsakiridis, P E


    Aluminium salt slag (also known as aluminium salt cake), which is produced by the secondary aluminium industry, is formed during aluminium scrap/dross melting and contains 15-30% aluminium oxide, 30-55% sodium chloride, 15-30% potassium chloride, 5-7% metallic aluminium and impurities (carbides, nitrides, sulphides and phosphides). Depending on the raw mix the amount of salt slag produced per tonne of secondary aluminium ranges from 200 to 500 kg. As salt slag has been classified as toxic and hazardous waste, it should be managed in compliance with the current legislation. Its landfill disposal is forbidden in most of the European countries and it should be recycled and processed in a proper way by taking the environmental impact into consideration. This paper presents a review of the aluminium salt slag chemical and mineralogical characteristics, as well as various processes for metal recovery, recycling of sodium and potassium chlorides content back to the smelting process and preparation of value added products from the final non metallic residue. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Micronutrient availability from steel slag amendment in peatmoss substrates (United States)

    The objective of this research was to determine the suitability of a steel slag product for supplying micronutrients to container-grown floriculture crops. Geranium (Pelargonium xhortorum 'Maverick Red') and tomato (Solanum lycopersicon 'Megabite') were grown in 11.4 cm containers with a substrate ...

  7. Characterization of ancient Indian iron and entrapped slag ...

    Indian Academy of Sciences (India)


    Abstract. Compositional and structural information were obtained from an ancient 1600-year old Indian iron using microprobe techniques (EDS, µXRD and µPIXE). Several different local locations in the iron matrix and in the entrapped slag inclusions were analyzed. The P content of the metallic iron matrix was very hetero-.

  8. Assessment of toxicity and hazard class slag of incinerator

    Directory of Open Access Journals (Sweden)

    Demura V.I.


    Full Text Available Researches of the contents soluble forms of heavy metals in waste are executed. The estimation of a degree of toxicity of products of thermal processing of waste is lead. It is established, that slag of an incinerate factory concerns to І class of danger under the contents of mobile forms of heavy meta


    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrova


    Full Text Available The article presents the results of investigation focused on the utilization of ash and slag wastes (ASW in Russia including investigation of chemical and physical properties of ASW and processing products. Many factors influence the technological properties of ash and slag materials: naturals, processes and environments. The integrated treatment of ash and slag wastes of both stored and re-formed types will allow obtaining the following commercial products: coal concentrate, iron concentrate, aluminosilicate cenospheres, aluminosilicate product. In this study we have analyzed the methods for separation of ASW iron-containing part using the different types of the magnetic separation from the ash and slag material from one of the combined heat and power plant (CHPP in the Russian Far East Federal District. The greatest interest is the dry magnetic separation with travelling electromagnetic field. The subject of research was a sample taken from one of ash dump of CHPP in the Far East. In the study iron concentrate containing Fetotal = 64% was obtained recovery 68% in the low intensity (up to 5 kOe travelling magnetic field.

  10. Application of TEM to characterize fly ash- and slag cements

    NARCIS (Netherlands)

    Pietersen, H.S.


    A Portland fly ash cement containing 20% of a fine fly ash and a blast furnace slag cement of approximately 290 days old were examined with analytical transmission electron microscopy, in order to examine the (local) microstructure in these cements in detail. In the Portland fly ash cement the fly

  11. Three-dimensional computer modeling of slag cement hydration

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos; Shui, Z.H.


    A newly developed version of a three-dimensional computer model for simulating the hydration and microstructure development of slag cement pastes is presented in this study. It is based on a 3-D computer model for Portland cement hydration (CEMHYD3D) which was originally developed at NIST, taken

  12. Unexpected Dominance of Elusive Acidobacteria in Early Industrial Soft Coal Slags

    Directory of Open Access Journals (Sweden)

    Carl-Eric Wegner


    Full Text Available Acid mine drainage (AMD and mine tailing environments are well-characterized ecosystems known to be dominated by organisms involved in iron- and sulfur-cycling. Here we examined the microbiology of industrial soft coal slags that originate from alum leaching, an ecosystem distantly related to AMD environments. Our study involved geochemical analyses, bacterial community profiling, and shotgun metagenomics. The slags still contained high amounts of alum constituents (aluminum, sulfur, which mediated direct and indirect effects on bacterial community structure. Bacterial groups typically found in AMD systems and mine tailings were not present. Instead, the soft coal slags were dominated by uncharacterized groups of Acidobacteria (DA052 [subdivision 2], KF-JG30-18 [subdivision 13], Actinobacteria (TM214, Alphaproteobacteria (DA111, and Chloroflexi (JG37-AG-4, which have previously been detected primarily in peatlands and uranium waste piles. Shotgun metagenomics allowed us to reconstruct 13 high-quality Acidobacteria draft genomes, of which two genomes could be directly linked to dominating groups (DA052, KF-JG30-18 by recovered 16S rRNA gene sequences. Comparative genomics revealed broad carbon utilization capabilities for these two groups of elusive Acidobacteria, including polysaccharide breakdown (cellulose, xylan and the competence to metabolize C1 compounds (ribulose monophosphate pathway and lignin derivatives (dye-decolorizing peroxidases. Equipped with a broad range of efflux systems for metal cations and xenobiotics, DA052 and KF-JG30-18 may have a competitive advantage over other bacterial groups in this unique habitat.

  13. Impaired neural conduction in the auditory brainstem of high-risk very preterm infants. (United States)

    Jiang, Ze D; Chen, Chao


    To test the hypothesis that neural conduction in the auditory brainstem is impaired in high-risk very preterm infants. Eighty-two very preterm infants (gestation 28-32 weeks) with various perinatal problems or complications were studied at term using maximum length sequence (MLS) brainstem auditory evoked response (BAER) with click rates 91-910/s. The data were compared with those in 31 age-matched low-risk very preterm infants and 44 normal gestation (term) infants. High-risk very preterm infants showed a general increase in MLS BAER wave latencies and interpeak intervals. Wave V latency, and III-V and I-V intervals in high-risk very preterm infants were significantly longer than in normal term infants at all click rates, particularly higher rates. I-III interval was significantly longer, and III-V/I-III interval ratio was significantly greater at higher rates. These latency and intervals in high-risk very preterm infants were also longer, though relatively less significantly, than in low-risk very preterm infants. Click rate-related changes in major MLS BAER variables in high-risk infants were more significant than in the two groups of controls. There were major abnormalities in MLS BAER variables that mainly reflect central neural conduction in high-risk very preterm infants. The abnormalities were relatively less significant when compared with low-risk very preterm infants than with normal term infants. Neural conduction in the auditory brainstem, mainly the more central regions, is impaired in high-risk very preterm infants. The impairment is largely attributed to the associated perinatal problems, and partially related to very preterm birth. Copyright © 2013. Published by Elsevier Ireland Ltd.

  14. Thermal conductivity and diffusivity of climax stock quartz monzonite at high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Durham, W.B.; Abey, A.E.


    Measurements of thermal conductivity and thermal diffusivity have been made on two samples of Climax Stock quartz monzonite at pressures between 3 and 50 MPa and temperatures between 300 and 523{sup 0}K. Following those measurements the apparatus was calibrated with respect to the thermal conductivity measurement using a reference standard of fused silica. Corrected thermal conductivity of the rock indicates a value at room temperature of 2.60 +- 0.25 W/mK at 3 MPa increasing linearly to 2.75 +- 0.25 W/mK at 50 MPa. These values are unchanged (+- 0.07 W/mK) by heating under 50-MPa pressure to as high as 473{sup 0}K. The conductivity under 50-MPa confining pressure falls smoothly from 2.75 +- 0.25 W/mK at 313{sup 0}K to 2.15 +- 0.25 W/mK at 473{sup 0}K. Thermal diffusivity at 300{sup 0}K was found to be 1.2 +- 0.4 X 10{sup -6} m{sup 2}/s and shows approximately the same pressure and temperature dependencies as the thermal conductivity.

  15. The design of high-temperature thermal conductivity measurements apparatus for thin sample size

    Directory of Open Access Journals (Sweden)

    Hadi Syamsul


    Full Text Available This study presents the designing, constructing and validating processes of thermal conductivity apparatus using steady-state heat-transfer techniques with the capability of testing a material at high temperatures. This design is an improvement from ASTM D5470 standard where meter-bars with the equal cross-sectional area were used to extrapolate surface temperature and measure heat transfer across a sample. There were two meter-bars in apparatus where each was placed three thermocouples. This Apparatus using a heater with a power of 1,000 watts, and cooling water to stable condition. The pressure applied was 3.4 MPa at the cross-sectional area of 113.09 mm2 meter-bar and thermal grease to minimized interfacial thermal contact resistance. To determine the performance, the validating process proceeded by comparing the results with thermal conductivity obtained by THB 500 made by LINSEIS. The tests showed the thermal conductivity of the stainless steel and bronze are 15.28 Wm-1K-1 and 38.01 Wm-1K-1 with a difference of test apparatus THB 500 are −2.55% and 2.49%. Furthermore, this apparatus has the capability to measure the thermal conductivity of the material to a temperature of 400°C where the results for the thermal conductivity of stainless steel is 19.21 Wm-1K-1 and the difference was 7.93%.

  16. Effects of high-frequency alternating current on axonal conduction through the vagus nerve (United States)

    Waataja, Jonathan J.; Tweden, Katherine S.; Honda, Christopher N.


    High-frequency alternating current (HFAC) is known to disrupt axonal conduction in peripheral nerves, and HFAC has much potential as a therapeutic approach for a number of pathological conditions. Many previous studies have utilized motor output as a bioassay of effects of HFAC on conduction through medium- to large-diameter motor axons. However, little is known about the effectiveness of HFAC on smaller, more slowly conducting nerve fibres. The present study tested whether HFAC influences axonal conduction through sub-diaphragmatic levels of the rat vagus nerve, which consists almost entirely of small calibre axons. Using an isolated nerve preparation, we tested the effects of HFAC on electrically evoked compound action potentials (CAPs). We found that delivery of charge-balanced HFAC at 5000 Hz for 1 min was effective in producing reversible blockade of axonal conduction. Both Aδ and C components of the vagus CAP were attenuated, and the degree of blockade as well as time to recovery was proportional to the amount of HFAC current delivered. The Aδ waves were more sensitive than C waves to HFAC blockade, but they required more time to recover.

  17. Highly Sulfonated Diamine Synthesized Polyimides and Protic Ionic Liquid Composite Membranes Improve PEM Conductivity

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen


    Full Text Available A novel sulfonated diamine was synthesized from 1,4-bis(4-aminophenoxy benzene [pBAB]. Sulfonated polyimides (SPIs were synthesized from sulfonated pBAB, 1,4-bis(4-aminophenoxy-2-sulfonic acid benzenesulfonic acid [pBABTS], various diamines and aromatic dianhydrides. Composite proton exchange membranes (PEMs made of novel SPIs and a protic ionic liquid (PIL 1-vinyl-3-H-imidazolium trifluoromethanesulfonate [VIm][OTf] showed substantially increased conductivity. We prepared an SPI/PIL composite PEM using pBABTS, 4,4′-(9-fluorenylidene dianiline (9FDA as diamine, 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA as dianhydride and 40 wt % [VIm][OTf] with a high conductivity of 16 mS/cm at 120 °C and anhydrous condition. pBABTS offered better conductivity, since the chemical structure had more sulfonated groups that provide increased conductivity. The new composite membrane could be a promising anhydrous or low-humidity PEM for intermediate or high-temperature fuel cells.

  18. Temperature-Dependent Thermal Conductivity of High Strength Lightweight Raw Perlite Aggregate Concrete (United States)

    Tandiroglu, Ahmet


    Twenty-four types of high strength lightweight concrete have been designed with raw perlite aggregate (PA) from the Erzincan Mollaköy region as new low-temperature insulation material. The effects of the water/cement ratio, the amount of raw PA, and the temperature on high strength lightweight raw perlite aggregate concrete (HSLWPAC) have been investigated. Three empirical equations were derived to correlate the thermal conductivity of HSLWPAC as a function of PA percentage and temperature depending on the water/cement ratio. Experimentally observed thermal conductivities of concrete samples were predicted 92 % of the time for each set of concrete matrices within 97 % accuracy and over the range from 1.457 W · m-1 · K-1 to 1.777 W · m-1 · K-1. The experimental investigation revealed that the usage of raw PA from the Erzincan Mollaköy region in concrete production reduces the concrete unit mass, increases the concrete strength, and furthermore, the thermal conductivity of the concrete has been improved. The proposed empirical correlations of thermal conductivity were considered to be applicable within the range of temperatures 203.15 K ≤ T ≤ 303.15 K in the form of λ = a( PAP b ) + c( T d ).

  19. Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity. (United States)

    Sun, Pengzhan; Ma, Renzhi; Bai, Xueyin; Wang, Kunlin; Zhu, Hongwei; Sasaki, Takayoshi


    When the dimensionality of layered materials is reduced to the physical limit, an ultimate two-dimensional (2D) anisotropy and/or confinement effect may bring about extraordinary physical and chemical properties. Layered double hydroxides (LDHs), bearing abundant hydroxyl groups covalently bonded within 2D host layers, have been proposed as inorganic anion conductors. However, typical hydroxyl ion conductivities for bulk or lamellar LDHs, generally up to 10 -3 S cm -1 , are considered not high enough for practical applications. We show that single-layer LDH nanosheets exhibited exceptionally high in-plane conductivities approaching 10 -1 S cm -1 , which were the highest among anion conductors and comparable to proton conductivities in commercial proton exchange membranes (for example, Nafion). The in-plane conductivities were four to five orders of magnitude higher than the cross-plane or cross-membrane values of restacked LDH nanosheets. This 2D superionic transport characteristic might have great promises in a variety of applications including alkaline fuel cells and water electrolysis.

  20. Construction of 3D Skeleton for Polymer Composites Achieving a High Thermal Conductivity. (United States)

    Yao, Yimin; Sun, Jiajia; Zeng, Xiaoliang; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping


    Owing to the growing heat removal issue in modern electronic devices, electrically insulating polymer composites with high thermal conductivity have drawn much attention during the past decade. However, the conventional method to improve through-plane thermal conductivity of these polymer composites usually yields an undesired value (below 3.0 Wm -1 K -1 ). Here, construction of a 3D phonon skeleton is reported composed of stacked boron nitride (BN) platelets reinforced with reduced graphene oxide (rGO) for epoxy composites by the combination of ice-templated and infiltrating methods. At a low filler loading of 13.16 vol%, the resulting 3D BN-rGO/epoxy composites exhibit an ultrahigh through-plane thermal conductivity of 5.05 Wm -1 K -1 as the best thermal-conduction performance reported so far for BN sheet-based composites. Theoretical models qualitatively demonstrate that this enhancement results from the formation of phonon-matching 3D BN-rGO networks, leading to high rates of phonon transport. The strong potential application for thermal management has been demonstrated by the surface temperature variations of the composites with time during heating and cooling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.