WorldWideScience

Sample records for highly compressed ion

  1. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  2. Initial Results on Neutralized Drift Compression Experiments (NDCX-IA) for High Intensity Ion Beam

    CERN Document Server

    Roy, Prabir K; Baca, David; Bieniosek, Frank; Coleman, Joshua E; Davidson, Ronald C; Efthimion, Philip; Eylon, Shmuel; Gilson, Erik P; Grant Logan, B; Greenway, Wayne; Henestroza, Enrique; Kaganovich, Igor D; Leitner, Matthaeus; Rose, David; Sefkow, Adam; Sharp, William M; Shuman, Derek; Thoma, Carsten H; Vanecek, David; Waldron, William; Welch, Dale; Yu, Simon

    2005-01-01

    Ion beam neutralization and compression experiments are designed to determine the feasibility of using compressed high intensity ion beams for high energy density physics (HEDP) experiments and for inertial fusion power. To quantitatively ascertain the various mechanisms and methods for beam compression, the Neutralized Drift Compression Experiment (NDCX) facility is being constructed at Lawrence Berkeley National Laboratory (LBNL). In the first compression experiment, a 260 KeV, 25 mA, K+ ion beam of centimeters size is radially compressed to a mm size spot by neutralization in a meter-long plasma column and beam peak current is longitudinally compressed by an induction velocity tilt core. Instrumentation, preliminary results of the experiments, and practical limits of compression are presented. These include parameters such as emittance, degree of neutralization, velocity tilt time profile, and accuracy of measurements (fast and spatially high resolution diagnostic) are discussed.

  3. Compression Ratio Ion Mobility Programming (CRIMP) Accumulation and Compression of Billions of Ions for Ion Mobility-Mass Spectrometry Using Traveling Waves in Structures for Lossless Ion Manipulations (SLIM)

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Liulin; Garimella, Venkata BS; Hamid, Ahmed M.; Webb, Ian K.; Attah, Isaac K.; Norheim, Randolph V.; Prost, Spencer A.; Zheng, Xueyun; Sandoval, Jeremy A.; Baker, Erin M.; Ibrahim, Yehia M.; Smith, Richard D.

    2017-05-25

    We report on the implementation of a traveling wave (TW) based compression ratio ion mobility programming (CRIMP) approach within Structures for Lossless Ion Manipulations (SLIM) that enables both greatly enlarged trapped ion charge capacities and also their subsequent efficient compression for use in ion mobility (IM) separations. Ion accumulation is conducted in a long serpentine path TW SLIM region after which CRIMP allows the large ion populations to be ‘squeezed’. The compression process occurs at an interface between two SLIM regions, one operating conventionally and the second having an intermittently pausing or ‘stuttering’ TW, allowing the contents of multiple bins of ions from the first region to be merged into a single bin in the second region. In this initial work stationary voltages in the second region were used to block ions from exiting the first (trapping) region, and the resumption of TWs in the second region allows ions to exit, and the population to also be compressed if CRIMP is applied. In our initial evaluation we show that the number of charges trapped for a 40 s accumulation period was ~5×109, more than two orders of magnitude greater than the previously reported charge capacity using an ion funnel trap. We also show that over 1×109 ions can be accumulated with high efficiency in the present device, and that the extent of subsequent compression is only limited by the space charge capacity of the trapping region. Lower compression ratios allow increased IM peak heights without significant loss of signal, while excessively large compression ratios can lead to ion losses and other artifacts. Importantly, we show that extended ion accumulation in conjunction with CRIMP and multiple passes provides the basis for a highly desirable combination of ultra-high sensitivity and ultra-high resolution IM separations using SLIM.

  4. Ultrasensitive SLIM Serpentine Ultra-long Path with Extended Routing (SUPER) high resolution ion mobility-MS using large ion populations and peak compression (ASMS 2017)

    OpenAIRE

    PNNL, Omics; Smith, Richard D.; Deng, Liulin; Hamid, Ahmed M.; Webb, Ian K.; Garimella, Sandilya V.B.; Wojcik, Roza; Zheng, Xueyun Y.; Chouinard, Christopher D.; Prost, Spencer A; Anderson, Gordon A.; Baker, Erin S.; Ibrahim, Yehia M.

    2017-01-01

    The benefits of ion mobility (IM) separations generally increase as separation power increases. However, the highest resolution IM separations reported to date have been achieved in conjunction with significant ion losses or over a very limited mobility range, substantially limiting their practicality and applicability. Limitations are not only related to the long path lengths needed for much higher resolution, but also the limited size of injected ion populations, and the decrease in IM peak...

  5. Fast Faraday cup to measure neutralized drift compression in intense ion charge bunches

    Directory of Open Access Journals (Sweden)

    A. B. Sefkow

    2006-05-01

    Full Text Available Heavy ion drivers for heavy ion fusion and high energy density physics applications use space-charge-dominated ion beams which must undergo longitudinal bunch compression in order to meet the requisite beam intensities desired at the target. The Neutralized Drift Compression Experiment-1A (NDCX-1A at Lawrence Berkeley National Laboratory is used to determine the effective limits of neutralized drift compression, which occurs due to an imposed longitudinal velocity tilt on the drifting beam and subsequent neutralization of the beam’s space charge with background plasma. The accurate and temporally resolved measurement of the ion beam’s current and pulse length, which has been longitudinally compressed to a few nanoseconds duration at its focal plane, is a critical diagnostic. This paper describes the design and experimental results for a fast and accurate ion beam probe, which reliably measures the absolute beam current in the presence of high density plasma at the focal plane as a function of time. A particle-in-cell code has been used to model the propagation of the intense ion beam and to design the diagnostic probe.

  6. Compression of self-ion implanted iron micropillars

    Energy Technology Data Exchange (ETDEWEB)

    Grieveson, E.M. [University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Armstrong, D.E.J., E-mail: david.armstrong@materials.ox.ac.uk [University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Xu, S.; Roberts, S.G. [University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Self-ion implantation used to cause cascade damage in pure iron. Black-Right-Pointing-Pointer Increase in hardness measured in implanted region using nanoindentation. Black-Right-Pointing-Pointer Micropillars manufactured and tested in both implanted and unimplanted material. Black-Right-Pointing-Pointer Marked difference in deformation mechanisms in each set of pillars seen using scanning electron microscopy. Black-Right-Pointing-Pointer No difference in yield stress seen, suggesting it is difficult to use micro-compression to understand bulk properties. - Abstract: Ion implantation causes displacement damage in materials, leading to the formation of small dislocation loops and can cause changes to the material's mechanical properties. Samples of pure Fe were subjected to Fe{sup +} implantation at 275 Degree-Sign C, producing damage of {approx}6 dpa to {approx}1 {mu}m depth. Nanoindentation into implanted material shows an increase in hardness compared to unimplanted material. Micropillars were manufactured in cross-section specimens of implanted and unimplanted material and compressed using a nanoindenter. The implanted pillars have a deformation mode which differs markedly from the unimplanted pillars but show no change in yield-stress. This suggests that the controlling mechanism for deformation is different between nanoindentation and micropillar compression and that care is needed if using micropillar compression to extract bulk properties of irradiated materials.

  7. New longitudinal mode and compression of pair ions in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ehsan, Zahida; Imran, Muhammad, E-mail: imransindhu@hotmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Tsintsadze, N. L. [Faculty of Exact and Natural Sciences and Andronicashvili Institute of Physics, Javakhishvili Tbilisi University, Tbilisi 0128, Georgia (United States); Shah, H. A. [GC University, Lahore 54000 (Pakistan); Trines, R. M. G. M. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Department of Physics, Lancaster University, Lancaster LA1 4YW (United Kingdom)

    2016-06-15

    Positive and negative ions forming the so-called pair plasma differing in sign of their charge but asymmetric in mass and temperature support a new acoustic-like mode. The condition for the excitation of ion sound wave through electron beam induced Cherenkov instability is also investigated. This beam can generate a perturbation in the pair ion plasmas in the presence of electrons when there is number density, temperature, and mass difference in the two species of ions. Basic emphasis is on the focusing of ion sound waves, and we show how, in the area of localization of wave energy, the density of pair particles increases while electrons are pushed away from that region. Further, this localization of wave is dependent on the shape of the pulse. Considering the example of pancake and bullet shaped pulses, we find that only the former leads to compression of pair ions in the supersonic regime of the focusing region. Here, possible existence of regions where pure pair particles can exist may also be speculated which is not only useful from academic point of view but also to mimic the situation of plasma (electron positron asymmetric and symmetric) observed in astrophysical environment.

  8. Sieving hydrogen based on its high compressibility

    Science.gov (United States)

    Chen, Hangyan; Sun, Deyan; Gong, Xingao; Liu, Zhifeng

    2011-03-01

    Based on carbon nanotube intramolecular junction and a C60, a molecular sieve for hydrogen is presented. The small interspace between C60 and junction provides a size changeable channel for the permselectivity of hydrogen while blocking Ne and Ar. The sieving mechanism is due to the high compressibility of hydrogen.

  9. Compressive sensing for high resolution radar imaging

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Hoogeboom, P.

    2010-01-01

    In this paper we present some preliminary results on the application of Compressive Sensing (CS) to high resolution radar imaging. CS is a recently developed theory which allows reconstruction of sparse signals with a number of measurements much lower than what is required by the Shannon sampling

  10. High-quality lossy compression: current and future trends

    Science.gov (United States)

    McLaughlin, Steven W.

    1995-01-01

    This paper is concerned with current and future trends in the lossy compression of real sources such as imagery, video, speech and music. We put all lossy compression schemes into common framework where each can be characterized in terms of three well-defined advantages: cell shape, region shape and memory advantages. We concentrate on image compression and discuss how new entropy constrained trellis-based compressors achieve cell- shape, region-shape and memory gain resulting in high fidelity and high compression.

  11. TOPICAL REVIEW: Highly charged ions

    Science.gov (United States)

    Gillaspy, J. D.

    2001-10-01

    This paper reviews some of the fundamental properties of highly charged ions, the methods of producing them (with particular emphasis on table-top devices), and their use as a tool for both basic science and applied technology. Topics discussed include: charge dependence and scaling laws along isoelectronic or isonuclear sequences (for wavefunction size or Bohr radius, ionization energy, dipole transition energy, relativistic fine structure, hyperfine structure, Zeeman effect, Stark effect, line intensities, linewidths, strength of parity violation, etc), changes in angular momentum coupling schemes, selection rules, interactions with surfaces, electron-impact ionization, the electron beam ion trap (EBIT), ion accelerators, atomic reference data, cosmic chronometers, laboratory x-ray astrophysics, vacuum polarization, solar flares, ion implantation, ion lithography, ion microprobes (SIMS and x-ray microscope), nuclear fusion diagnostics, nanotechnology, quantum computing, cancer therapy and biotechnology.

  12. Recent U.S. advances in ion-beam-driven high energy densityphysics and heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy,P.K.; Seidl, P.A.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, Qin H.; Sefkow, A.B.; Startsev,E.A.; Welch, D.; Olson, C.

    2006-07-05

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport; and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by > 50 X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. They are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy.

  13. Compression Behavior of High Performance Polymeric Fibers

    National Research Council Canada - National Science Library

    Kumar, Satish

    2003-01-01

    Hydrogen bonding has proven to be effective in improving the compressive strength of rigid-rod polymeric fibers without resulting in a decrease in tensile strength while covalent crosslinking results in brittle fibers...

  14. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-04

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K{sup +} beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  15. Simulation and optimization of a 10 A electron gun with electrostatic compression for the electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Beebe, E. N.; Raparia, D. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2013-03-15

    Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 Division-Sign 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 Division-Sign 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.

  16. PIC simulation of compressive and rarefactive dust ion-acoustic solitary waves

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhong-Zheng; Zhang, Heng; Hong, Xue-Ren; Gao, Dong-Ning; Zhang, Jie; Duan, Wen-Shan, E-mail: duanws@nwnu.edu.cn [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU & IMP CAS, Northwest Normal University, Lanzhou 730070 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yang, Lei, E-mail: lyang@impcas.ac.cn [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU & IMP CAS, Northwest Normal University, Lanzhou 730070 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Department of Physics, Lanzhou University, Lanzhou 730000 (China)

    2016-08-15

    The nonlinear propagations of dust ion-acoustic solitary waves in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated by the particle-in-cell method. By comparing the simulation results with those obtained from the traditional reductive perturbation method, it is observed that the rarefactive KdV solitons propagate stably at a low amplitude, and when the amplitude is increased, the prime wave form evolves and then gradually breaks into several small amplitude solitary waves near the tail of soliton structure. The compressive KdV solitons propagate unstably and oscillation arises near the tail of soliton structure. The finite amplitude rarefactive and compressive Gardner solitons seem to propagate stably.

  17. Beam dynamics analysis in pulse compression using electron beam compact simulator for Heavy Ion Fusion

    Directory of Open Access Journals (Sweden)

    Kikuchi Takashi

    2013-11-01

    Full Text Available In a final stage of an accelerator system for heavy ion inertial fusion (HIF, pulse shaping and beam current increase by bunch compression are required for effective pellet implosion. A compact simulator with an electron beam was constructed to understand the beam dynamics. In this study, we investigate theoretically and numerically the beam dynamics for the extreme bunch compression in the final stage of HIF accelerator complex. The theoretical and numerical results implied that the compact experimental device simulates the beam dynamics around the stagnation point for initial low temperature condition.

  18. Developing The Physics Desing for NDCS-II, A Unique Pulse-Compressing Ion Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Faltens, A; Henestroza, E; Jung, J; Kwan, J W; Lee, E P; Leitner, M A; Logan, B G; Vay, J -; Waldron, W L; Davidson, R C; Dorf, M; Gilson, E P; Kaganovich, I

    2009-09-24

    The Heavy Ion Fusion Science Virtual National Laboratory (a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the 'warm dense matter' regime at {approx}< 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL, NDCX-II will compress a {approx}500 ns pulse of Li{sup +} ions to {approx} 1 ns while accelerating it to 3-4 MeV over {approx} 15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  19. Storage and compression design of high speed CCD

    Science.gov (United States)

    Cai, Xichang; Zhai, LinPei

    2009-05-01

    In current field of CCD measurement, large area and high resolution CCD is used to obtain big measurement image, so that, speed and capacity of CCD requires high performance of later storage and process system. The paper discusses how to use SCSI hard disk to construct storage system and use DSPs and FPGA to realize image compression. As for storage subsystem, Because CCD is divided into multiplex output, SCSI array is used in RAID0 way. The storage system is com posed of high speed buffer, DM A controller, control M CU, SCSI protocol controller and SCSI hard disk. As for compression subsystem, according to requirement of communication and monitor system, the output is fixed resolution image and analog PA L signal. The compression means is JPEG 2000 standard, in which, 9/7 wavelets in lifting format is used. 2 DSPs and FPGA are used to com pose parallel compression system. The system is com posed of FPGA pre-processing module, DSP compression module, video decoder module, data buffer module and communication module. Firstly, discrete wavelet transform and quantization is realized in FPGA. Secondly, entropy coding and stream adaption is realized in DSPs. Last, analog PA L signal is output by Video decoder. Data buffer is realized in synchronous dual-port RAM and state of subsystem is transfer to controller. Through subjective and objective evaluation, the storage and compression system satisfies the requirement of system.

  20. Highly Stripped Ion Sources for MeV Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  1. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-10-01

    We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.

  2. Compressive Coherent Structures at Ion Scales in the Slow Solar Wind

    CERN Document Server

    Perrone, D; Mangeney, A; Maksimovic, M; Lacombe, C; Rokoto, V; Kasper, J C; Jovanovic, D

    2016-01-01

    We present a study of magnetic field fluctuations, in a slow solar wind stream, close to ion scales, where an increase of the level of magnetic compressibility is observed. Here, the nature of these compressive fluctuations is found to be characterized by coherent structures. Although previous studies have shown that current sheets can be considered as the principal cause of intermittency at ion scales, here we show for the first time that, in the case of the slow solar wind, a large variety of coherent structures contributes to intermittency at proton scales, and current sheets are not the most common. Specifically, we find compressive ($\\delta b_{\\|} \\gg \\delta b_{\\perp}$), linearly polarized structures in the form of magnetic holes, solitons and shock waves. Examples of Alfv\\'enic structures ($\\delta b_{\\perp} > \\delta b_{\\|}$) are identified as current sheets and vortex-like structures. Some of these vortices have $ \\delta b_{\\perp} \\gg \\delta b_{\\|}$, as in the case of Alfv\\'en vortices, but the majority...

  3. High Current Ion Sources and Injectors for Heavy Ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Joe W.

    2005-02-15

    Heavy ion beam driven inertial fusion requires short ion beam pulses with high current and high brightness. Depending on the beam current and the number of beams in the driver system, the injector can use a large diameter surface ionization source or merge an array of small beamlets from a plasma source. In this paper, we review the scaling laws that govern the injector design and the various ion source options including the contact ionizer, the aluminosilicate source, the multicusp plasma source, and the MEVVA source.

  4. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source.

    Science.gov (United States)

    Pilz, W; Laufer, P; Tajmar, M; Böttger, R; Bischoff, L

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi 2 + ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  5. High Resolution Scanning Ion Microscopy

    NARCIS (Netherlands)

    Castaldo, V.

    2011-01-01

    The structure of the thesis is the following. The first chapter is an introduction to scanning microscopy, where the path that led to the Focused Ion Beam (FIB) is described and the main differences between electrons and ion beams are highlighted. Chapter 2 is what is normally referred to (which I

  6. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, Henrik; Brincker, Rune

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...... method has been used to investigate the influence of boundary conditions, loading rate, size effects and the influence of the strength on the fracture energy of high-strength concrete over the range 70 MPa to 150 MPa, expressed in nominal values.......Compression tests are usually carried out in load control. This implies the termination of the test at the peak point of the load-displacement curve, while the fracture under these conditions becomes unstable at the descending branch of the load displacement relation. However, the descending branch...

  7. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, H.; Brincker, Rune

    1989-01-01

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...... method has been used to investigate the influence of boundary conditions, loading rate, size effects and the influence of the strength on the fracture energy of high-strength concrete over the range 70 MPa to 150 MPa, expressed in nominal values.......Compression tests are usually carried out in load control. This implies the termination of the test at the peak point of the load-displacement curve, while the fracture under these conditions becomes unstable at the descending branch of the load displacement relation. However, the descending branch...

  8. Influence of curing regimes on compressive strength of ultra high ...

    Indian Academy of Sciences (India)

    The present paper is aimed to identify an efficient curing regime for ultra high performance concrete (UHPC), to achieve a target compressive strength more than 150 MPa, using indigenous materials. The thermal regime plays a vital role due to the limited fineness of ingredients and low water/binder ratio. By activation of the ...

  9. Modeling Compressibility Effects in High-Speed Turbulent Flows

    Science.gov (United States)

    Sarkar, S.

    2004-01-01

    Man has strived to make objects fly faster, first from subsonic to supersonic and then to hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach numbers, M greater than 5. In defense applications, aircraft reach hypersonic speeds at high altitude and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, has formidable challenges that have spurred vigorous research and development, mainly by NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of the eighties and early nineties, did not lead to flight demonstration, much basic research and technology development was possible. There is renewed interest in supersonic and hypersonic flight with the HyTech program of the Air Force and the Hyper-X program at NASA being examples of current thrusts in the field. At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly important in the turbulent boundary layers and shear layers associated with the flow around aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the flow may be qualitative such as shocks which have no incompressible counterpart, or quantitative such as the reduction of skin friction with Mach number, large heat transfer rates due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, have been reviewed by Fernholz and Finley. Predictions of aerodynamic performance in high-speed applications require accurate computational modeling of these "compressibility effects" on turbulence. During the course of the project we have made fundamental advances in modeling the pressure-strain correlation and developed a code to evaluate alternate turbulence models in the compressible shear layer.

  10. A novel high-frequency encoding algorithm for image compression

    Science.gov (United States)

    Siddeq, Mohammed M.; Rodrigues, Marcos A.

    2017-12-01

    In this paper, a new method for image compression is proposed whose quality is demonstrated through accurate 3D reconstruction from 2D images. The method is based on the discrete cosine transform (DCT) together with a high-frequency minimization encoding algorithm at compression stage and a new concurrent binary search algorithm at decompression stage. The proposed compression method consists of five main steps: (1) divide the image into blocks and apply DCT to each block; (2) apply a high-frequency minimization method to the AC-coefficients reducing each block by 2/3 resulting in a minimized array; (3) build a look up table of probability data to enable the recovery of the original high frequencies at decompression stage; (4) apply a delta or differential operator to the list of DC-components; and (5) apply arithmetic encoding to the outputs of steps (2) and (4). At decompression stage, the look up table and the concurrent binary search algorithm are used to reconstruct all high-frequency AC-coefficients while the DC-components are decoded by reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested the technique by compressing and decompressing 2D images including images with structured light patterns for 3D reconstruction. The technique is compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression method is perceptually superior to JPEG with equivalent quality to JPEG2000. Concerning 3D surface reconstruction from images, it is demonstrated that the proposed method is superior to both JPEG and JPEG2000.

  11. Data compression techniques applied to high resolution high frame rate video technology

    Science.gov (United States)

    Hartz, William G.; Alexovich, Robert E.; Neustadter, Marc S.

    1989-01-01

    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended.

  12. Low-frequency waves in a high-beta collisionless plasma Polarization, compressibility and helicity

    Science.gov (United States)

    Gary, S. P.

    1986-01-01

    This paper considers the linear theory of waves near and below the ion cyclotron frequency in an isothermal electron-ion Vlasov plasma which is isotropic, homogeneous and magnetized. Numerical solutions of the full dispersion equation for the magnetosonic/whistler and Alfven/ion cyclotron modes at beta(i) = 1.0 are presented, and the polarizations, compressibilities, helicities, ion Alfven ratios and ion cross-helicities are exhibited and compared. At sufficiently large beta(i) and theta, the angle of propagation with respect to the magnetic field, the real part of the polarization of the Alfven/ion cyclotron wave changes sign, so that, for such parameters, this mode is no longer left-hand polarized. The Alfven/ion cyclotron mode becomes more compressive as the wavenumber increases, whereas the magnetosonic/whistler becomes more compressive with increasing theta.

  13. Compressive Coherent Structures at Ion Scales in the Slow Solar Wind

    Science.gov (United States)

    Perrone, D.; Alexandrova, O.; Mangeney, A.; Maksimovic, M.; Lacombe, C.; Rakoto, V.; Kasper, J. C.; Jovanovic, D.

    2016-08-01

    We present a study of magnetic field fluctuations in a slow solar wind stream, close to ion scales, where an increase of the level of magnetic compressibility is observed. Here, the nature of these compressive fluctuations is found to be characterized by coherent structures. Although previous studies have shown that current sheets can be considered the principal cause of intermittency at ion scales, here we show for the first time that, in the case of the slow solar wind, a large variety of coherent structures contributes to intermittency at proton scales, and current sheets are not the most common. Specifically, we find compressive (δ {b}\\parallel \\gg δ {b}\\perp ), linearly polarized structures in the form of magnetic holes, solitons, and shock waves. Examples of Alfvénic structures (δ {b}\\perp \\gt δ {b}\\parallel ) are identified as current sheets and vortex-like structures. Some of these vortices have δ {b}\\perp \\gg δ {b}\\parallel , as in the case of Alfvén vortices, but the majority of them are characterized by δ {b}\\perp ≳ δ {b}\\parallel . Thanks to multi-point measurements by the Cluster spacecraft, for about 100 structures we could determine the normal, the propagation velocity, and the spatial scale along this normal. Independently of the nature of the structures, the normal is always perpendicular to the local magnetic field, meaning that k ⊥ ≫ k ∥. The spatial scales of the studied structures are found to be between two and eight times the proton gyroradius. Most of them are simply convected by the wind, but 25% propagate in the plasma frame. Possible interpretations of the observed structures and the connection with plasma heating are discussed.

  14. Spectroscopy with trapped highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P

    2008-01-23

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed, and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  15. A high-compression electron gun for C6+ production: concept, simulations and mechanical design

    Science.gov (United States)

    Mertzig, Robert; Breitenfeldt, M.; Mathot, S.; Pitters, J.; Shornikov, A.; Wenander, F.

    2017-07-01

    In this paper we report on simulations and the mechanical design of a high-compression electron gun for an Electron Beam Ion Source (EBIS) dedicated for production of high intensity and high repetition rate pulses of bare carbon ions for injection into linac-based hadron therapy facilities. The gun is presently under construction at CERN to be retrofitted into the TwinEBIS test bench for experimental studies. We describe the design constraints, show results of numeric simulations and report on the mechanical design featuring several novel ideas. The reported design makes use of combined-function units with reduced number of mechanical joints that were carefully controlled and tuned during the manufacturing phase. The simulations addressed a wide range of topics including the influence of thermal effects, focusing optics, symmetry-breaking misalignments and injection into a full 5 T field.

  16. Optical properties of highly compressed polystyrene: An ab initio study

    Science.gov (United States)

    Hu, S. X.; Collins, L. A.; Colgan, J. P.; Goncharov, V. N.; Kilcrease, D. P.

    2017-10-01

    Using all-electron density functional theory, we have performed an ab initio study on x-ray absorption spectra of highly compressed polystyrene (CH). We found that the K -edge shifts in strongly coupled, degenerate polystyrene cannot be explained by existing continuum-lowering models adopted in traditional plasma physics. To gain insights into the K -edge shift in warm, dense CH, we have developed a model designated as "single mixture in a box" (SMIAB), which incorporates both the lowering of the continuum and the rising of the Fermi surface resulting from high compression. This simple SMIAB model correctly predicts the K -edge shift of carbon in highly compressed CH in good agreement with results from quantum molecular dynamics (QMD) calculations. Traditional opacity models failed to give the proper K -edge shifts as the CH density increased. Based on QMD calculations, we have established a first-principles opacity table (FPOT) for CH in a wide range of densities and temperatures [ρ =0.1 -100 g /c m3 and T =2000 -1 000 000 K ]. The FPOT gives much higher Rosseland mean opacity compared to the cold-opacity-patched astrophysics opacity table for warm, dense CH and favorably compares to the newly improved Los Alamos atomic model for moderately compressed CH (ρCH≤10 g /c m3 ), but remains a factor of 2 to 3 higher at extremely high densities (ρCH≥50 g /c m3 ). We anticipate the established FPOT of CH will find important applications to reliable designs of high-energy-density experiments. Moreover, the understanding of K -edge shifting revealed in this study could provide guides for improving the traditional opacity models to properly handle the strongly coupled and degenerate conditions.

  17. Embedded function methods for compressible high speed turbulent flow

    Science.gov (United States)

    Walker, J. D. A.

    1994-09-01

    This is the final report on the work performed on the grant 'Embedded Function Methods for Compressible High Speed Turbulent Flow' carried out at Lehigh University during the contract period from September, 1987, to October of 1991. Work has continued at Lehigh on this project on an unfunded basis to the present. The original proposed work had two separate thrusts which were associated with developing embedded function methods in order to obviate the need to expend computational resources on turbulent wall layers in Navier Stokes and boundary-layer calculations. Previous work on the incompressible problem had indicated that this could be done successfully for two-dimensional and three-dimensional incompressible flows. The central objective here was to extend the basic approach to the high speed compressible problem.

  18. ENHANCED MAGNETIC COMPRESSIBILITY AND ISOTROPIC SCALE INVARIANCE AT SUB-ION LARMOR SCALES IN SOLAR WIND TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Kiyani, K. H.; Fauvarque, O. [Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Chapman, S. C.; Hnat, B. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Sahraoui, F. [Laboratoire de Physique des Plasmas, Observatoire de Saint-Maur, F-94107 Saint-Maur-Des-Fosses (France); Khotyaintsev, Yu. V., E-mail: k.kiyani@imperial.ac.uk [Swedish Institute of Space Physics, SE-75121 Uppsala (Sweden)

    2013-01-20

    The anisotropic nature of solar wind magnetic turbulence fluctuations is investigated scale by scale using high cadence in situ magnetic field measurements from the Cluster and ACE spacecraft missions. The data span five decades in scales from the inertial range to the electron Larmor radius. In contrast to the inertial range, there is a successive increase toward isotropy between parallel and transverse power at scales below the ion Larmor radius, with isotropy being achieved at the electron Larmor radius. In the context of wave-mediated theories of turbulence, we show that this enhancement in magnetic fluctuations parallel to the local mean background field is qualitatively consistent with the magnetic compressibility signature of kinetic Alfven wave solutions of the linearized Vlasov equation. More generally, we discuss how these results may arise naturally due to the prominent role of the Hall term at sub-ion Larmor scales. Furthermore, computing higher-order statistics, we show that the full statistical signature of the fluctuations at scales below the ion Larmor radius is that of a single isotropic globally scale-invariant process distinct from the anisotropic statistics of the inertial range.

  19. Enhanced Magnetic Compressibility and Isotropic Scale Invariance at Sub-ion Larmor Scales in Solar Wind Turbulence

    Science.gov (United States)

    Kiyani, K. H.; Chapman, S. C.; Sahraoui, F.; Hnat, B.; Fauvarque, O.; Khotyaintsev, Yu. V.

    2013-01-01

    The anisotropic nature of solar wind magnetic turbulence fluctuations is investigated scale by scale using high cadence in situ magnetic field measurements from the Cluster and ACE spacecraft missions. The data span five decades in scales from the inertial range to the electron Larmor radius. In contrast to the inertial range, there is a successive increase toward isotropy between parallel and transverse power at scales below the ion Larmor radius, with isotropy being achieved at the electron Larmor radius. In the context of wave-mediated theories of turbulence, we show that this enhancement in magnetic fluctuations parallel to the local mean background field is qualitatively consistent with the magnetic compressibility signature of kinetic Alfvén wave solutions of the linearized Vlasov equation. More generally, we discuss how these results may arise naturally due to the prominent role of the Hall term at sub-ion Larmor scales. Furthermore, computing higher-order statistics, we show that the full statistical signature of the fluctuations at scales below the ion Larmor radius is that of a single isotropic globally scale-invariant process distinct from the anisotropic statistics of the inertial range.

  20. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  1. High Rate Performing Li-ion Battery

    Science.gov (United States)

    2015-02-09

    permeable to lithium ions and efficient in transferring the electrons into/from the LVP surface to the corresponding current collector. a) b) c) d) e...PO4)3/C for High Rate Lithium-ion Battery Applications”, Lee Hwang Sheng, Nail Suleimanov, Vishwanathan Ramar, Mangayarkarasi Murugan, Kuppan

  2. Production of High-Intensity, Highly Charged Ions

    CERN Document Server

    Gammino, S.

    2013-12-16

    In the past three decades, the development of nuclear physics facilities for fundamental and applied science purposes has required an increasing current of multicharged ion beams. Multiple ionization implies the formation of dense and energetic plasmas, which, in turn, requires specific plasma trapping configurations. Two types of ion source have been able to produce very high charge states in a reliable and reproducible way: electron beam ion sources (EBIS) and electron cyclotron resonance ion sources (ECRIS). Multiple ionization is also obtained in laser-generated plasmas (laser ion sources (LIS)), where the high-energy electrons and the extremely high electron density allow step-by-step ionization, but the reproducibility is poor. This chapter discusses the atomic physics background at the basis of the production of highly charged ions and describes the scientific and technological features of the most advanced ion sources. Particular attention is paid to ECRIS and the latest developments, since they now r...

  3. Compressive behaviour at High Temperatures of Fibre Reinforced Concretes

    Directory of Open Access Journals (Sweden)

    S. O. Santos

    2009-01-01

    Full Text Available This paper summarizes the research that is being carried out at the Universities of Coimbra and Rio de Janeiro, on fibre reinforced concretes at high temperatures. Several high strength concrete compositions reinforced with fibres (polypropylene, steel and glass fibres were developed. The results of compressive tests at high temperatures (300 °C, 500 °C and 600 °C and after heating and cooling down of the concrete are presented in the paper. In both research studies, the results indicated that polypropylene fibers prevent concrete spalling. 

  4. Compressed gas domestic aerosol valve design using high viscous product

    Directory of Open Access Journals (Sweden)

    A Nourian

    2016-10-01

    Full Text Available Most of the current universal consumer aerosol products using high viscous product such as cooking oil, antiperspirants, hair removal cream are primarily used LPG (Liquefied Petroleum Gas propellant which is unfriendly environmental. The advantages of the new innovative technology described in this paper are: i. No butane or other liquefied hydrocarbon gas is used as a propellant and it replaced with Compressed air, nitrogen or other safe gas propellant. ii. Customer acceptable spray quality and consistency during can lifetime iii. Conventional cans and filling technology There is only a feasible energy source which is inert gas (i.e. compressed air to replace VOCs (Volatile Organic Compounds and greenhouse gases, which must be avoided, to improve atomisation by generating gas bubbles and turbulence inside the atomiser insert and the actuator. This research concentrates on using "bubbly flow" in the valve stem, with injection of compressed gas into the passing flow, thus also generating turbulence. The new valve designed in this investigation using inert gases has advantageous over conventional valve with butane propellant using high viscous product (> 400 Cp because, when the valving arrangement is fully open, there are negligible energy losses as fluid passes through the valve from the interior of the container to the actuator insert. The use of valving arrangement thus permits all pressure drops to be controlled, resulting in improved control of atomising efficiency and flow rate, whereas in conventional valves a significant pressure drops occurs through the valve which has a complex effect on the corresponding spray.

  5. CO2 laser scribe of chemically strengthened glass with high surface compressive stress

    Science.gov (United States)

    Li, Xinghua; Vaddi, Butchi R.

    2011-03-01

    Chemically strengthened glass is finding increasing use in handheld, IT and TV cover glass applications. Chemically strengthened glass, particularly with high (>600MPa) compressive stress (CS) and deeper depth of layer (DOL), enable to retain higher strength after damage than non-strengthened glass when its surface is abraded. Corning Gorilla® Glass has particularly proven to be advantageous over competition in this attribute. However, due to high compressive stress (CS) and Central Tension (CT) cutting ion-exchanged glass is extremely difficult and often unmanageable where ever the applications require dicing the chemically strengthened mother glass into smaller parts. We at Corning have developed a CO2 laser scribe and break method (LSB) to separate a single chemically strengthened glass sheet into plurality of devices. Furthermore, CO2 laser scribe and break method enables debris-free separation of glass with high edge strength due to its mirror-like edge finish. We have investigated laser scribe and break of chemically strengthened glass with surface compressive stress greater than 600 MPa. In this paper we present the results of CO2 scribe and break method and underlying laser scribing mechanisms. We demonstrated cross-scribe repetitively on GEN 2 size chemically strengthened glass substrates. Specimens for edge strength measurements of different thickness and CS/DOL glass were prepared using the laser scribe and break technique. The specimens were tested using the standard 4-point bend method and the results are presented.

  6. A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers

    Energy Technology Data Exchange (ETDEWEB)

    Tötzke, C. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin (Germany); Universität Potsdam, 14476 Potsdam (Germany); Manke, I.; Banhart, J. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin (Germany); Gaiselmann, G.; Schmidt, V. [Universität Ulm, 89069 Ulm (Germany); Bohner, J. [Forschungszentrum Jülich, 52425 Jülich (Germany); Müller, B. R.; Kupsch, A.; Hentschel, M. P. [BAM Bundesanstalt für Materialforschung und -Prüfung, 12200 Berlin (Germany); Lehnert, W. [Forschungszentrum Jülich, 52425 Jülich (Germany); RTWH Aachen University, 52062 Aachen (Germany)

    2015-04-15

    We present an experimental approach to study the three-dimensional microstructure of gas diffusion layer (GDL) materials under realistic compression conditions. A dedicated compression device was designed that allows for synchrotron-tomographic investigation of circular samples under well-defined compression conditions. The tomographic data provide the experimental basis for stochastic modeling of nonwoven GDL materials. A plain compression tool is used to study the fiber courses in the material at different compression stages. Transport relevant geometrical parameters, such as porosity, pore size, and tortuosity distributions, are exemplarily evaluated for a GDL sample in the uncompressed state and for a compression of 30 vol.%. To mimic the geometry of the flow-field, we employed a compression punch with an integrated channel-rib-profile. It turned out that the GDL material is homogeneously compressed under the ribs, however, much less compressed underneath the channel. GDL fibers extend far into the channel volume where they might interfere with the convective gas transport and the removal of liquid water from the cell.

  7. A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers.

    Science.gov (United States)

    Tötzke, C; Manke, I; Gaiselmann, G; Bohner, J; Müller, B R; Kupsch, A; Hentschel, M P; Schmidt, V; Banhart, J; Lehnert, W

    2015-04-01

    We present an experimental approach to study the three-dimensional microstructure of gas diffusion layer (GDL) materials under realistic compression conditions. A dedicated compression device was designed that allows for synchrotron-tomographic investigation of circular samples under well-defined compression conditions. The tomographic data provide the experimental basis for stochastic modeling of nonwoven GDL materials. A plain compression tool is used to study the fiber courses in the material at different compression stages. Transport relevant geometrical parameters, such as porosity, pore size, and tortuosity distributions, are exemplarily evaluated for a GDL sample in the uncompressed state and for a compression of 30 vol.%. To mimic the geometry of the flow-field, we employed a compression punch with an integrated channel-rib-profile. It turned out that the GDL material is homogeneously compressed under the ribs, however, much less compressed underneath the channel. GDL fibers extend far into the channel volume where they might interfere with the convective gas transport and the removal of liquid water from the cell.

  8. High current pelletron for ion implantation

    Science.gov (United States)

    Schroeder, James B.

    1989-04-01

    Since 1984, when the first production MeV ion implanter (an NEC model MV-T30) went on-line, interest in versatile electrostatic accelerator systems for MeV ion implantation has grown. The systems use a negative ion source to inject a tandem megavolt accelerator. In early systems the 0.4 mA of charging current from the two Pelletron charging chains in the accelerator was sufficient for the low intensity of beams from the ion source. This 2-chain system, however, is no longer adequate for the much higher beam intensities from today's improved ion sources. A 4-chain charging system, which delivers 1.3 mA to the high voltage terminal, was developed and is in operation in new models of NEC S Series Pelletron accelerators. This paper describes the latest beam performance of 1 MV and 1.7 MV Pelletron accelerators with this new 4-chain charging system.

  9. High sensitivity field asymmetric ion mobility spectrometer.

    Science.gov (United States)

    Chavarria, Mario A; Matheoud, Alessandro V; Marmillod, Philippe; Liu, Youjiang; Kong, Deyi; Brugger, Jürgen; Boero, Giovanni

    2017-03-01

    A high sensitivity field asymmetric ion mobility spectrometer (FAIMS) was designed, fabricated, and tested. The main components of the system are a 10.6 eV UV photoionization source, an ion filter driven by a high voltage/high frequency n-MOS inverter circuit, and a low noise ion detector. The ion filter electronics are capable to generate square waveforms with peak-to-peak voltages up to 1000 V at frequencies up to 1 MHz with adjustable duty cycles. The ion detector current amplifier has a gain up to 10 12 V/A with an effective equivalent input noise level down to about 1 fA/Hz 1/2 during operation with the ion filter at the maximum voltage and frequency. The FAIMS system was characterized by detecting different standard chemical compounds. Additionally, we investigated the use of a synchronous modulation/demodulation technique to improve the signal-to-noise ratio in FAIMS measurements. In particular, we implemented the modulation of the compensation voltage with the synchronous demodulation of the ion current. The analysis of the measurements at low concentration levels led to an extrapolated limit of detection for acetone of 10 ppt with an averaging time of 1 s.

  10. High sensitivity field asymmetric ion mobility spectrometer

    Science.gov (United States)

    Chavarria, Mario A.; Matheoud, Alessandro V.; Marmillod, Philippe; Liu, Youjiang; Kong, Deyi; Brugger, Jürgen; Boero, Giovanni

    2017-03-01

    A high sensitivity field asymmetric ion mobility spectrometer (FAIMS) was designed, fabricated, and tested. The main components of the system are a 10.6 eV UV photoionization source, an ion filter driven by a high voltage/high frequency n-MOS inverter circuit, and a low noise ion detector. The ion filter electronics are capable to generate square waveforms with peak-to-peak voltages up to 1000 V at frequencies up to 1 MHz with adjustable duty cycles. The ion detector current amplifier has a gain up to 1012 V/A with an effective equivalent input noise level down to about 1 fA/Hz1/2 during operation with the ion filter at the maximum voltage and frequency. The FAIMS system was characterized by detecting different standard chemical compounds. Additionally, we investigated the use of a synchronous modulation/demodulation technique to improve the signal-to-noise ratio in FAIMS measurements. In particular, we implemented the modulation of the compensation voltage with the synchronous demodulation of the ion current. The analysis of the measurements at low concentration levels led to an extrapolated limit of detection for acetone of 10 ppt with an averaging time of 1 s.

  11. A high performance microfabricated surface ion trap

    Science.gov (United States)

    Lobser, Daniel; Blain, Matthew; Haltli, Raymond; Hollowell, Andrew; Revelle, Melissa; Stick, Daniel; Yale, Christopher; Maunz, Peter

    2017-04-01

    Microfabricated surface ion traps present a natural solution to the problem of scalability in trapped ion quantum computing architectures. We address some of the chief concerns about surface ion traps by demonstrating low heating rates, long trapping times as well as other high-performance features of Sandia's high optical access (HOA-2) trap. For example, due to the HOA's specific electrode layout, we are able to rotate principal axes of the trapping potential from 0 to 2 π without any change in the secular trap frequencies. We have also achieved the first single-qubit gates with a diamond norm below a rigorous fault tolerance threshold, and a two-qubit Mølmer-Sørensen gate with a process fidelity of 99.58(6). Here we present specific details of trap capabilities, such as shuttling and ion reordering, as well as details of our high fidelity single- and two-qubit gates.

  12. Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers.

    Science.gov (United States)

    Song, Jianwei; Chen, Chaoji; Yang, Zhi; Kuang, Yudi; Li, Tian; Li, Yiju; Huang, Hao; Kierzewski, Iain; Liu, Boyang; He, Shuaiming; Gao, Tingting; Yuruker, Sevket U; Gong, Amy; Yang, Bao; Hu, Liangbing

    2018-01-23

    Aerogels can be used in a broad range of applications such as bioscaffolds, energy storage devices, sensors, pollutant treatment, and thermal insulating materials due to their excellent properties including large surface area, low density, low thermal conductivity, and high porosity. Here we report a facile and effective top-down approach to fabricate an anisotropic wood aerogel directly from natural wood by a simple chemical treatment. The wood aerogel has a layered structure with anisotropic structural properties due to the destruction of cell walls by the removal of lignin and hemicellulose. The layered structure results in the anisotropic wood aerogel having good mechanical compressibility and fragility resistance, demonstrated by a high reversible compression of 60% and stress retention of ∼90% after 10 000 compression cycles. Moreover, the anisotropic structure of the wood aerogel with curved layers stacking layer-by-layer and aligned cellulose nanofibers inside each individual layer enables the wood aerogel to have an anisotropic thermal conductivity with an anisotropy factor of ∼4.3. An extremely low thermal conductivity of 0.028 W/m·K perpendicular to the cellulose alignment direction and a thermal conductivity of 0.12 W/m·K along the cellulose alignment direction can be achieved. The thermal conductivity is not only much lower than that of the natural wood material (by ∼3.6 times) but also lower than most of the commercial thermal insulation materials. The top-down approach is low-cost, scalable, simple, yet effective, representing a promising direction for the fabrication of high-quality aerogel materials.

  13. Dynamic High-Temperature Characterization of an Iridium Alloy in Compression at High Strain Rates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Experimental Environment Simulation Dept.; Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials Dept.; Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technology Dept.; Bignell, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Structural and Thermal Analysis Dept.; Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program; George, E. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Radioisotope Power Systems Program

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 – 10000 s-1) and temperatures (750°C and 1030°C). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  14. High-speed cinematography of compressible mixing layers

    Science.gov (United States)

    Mahadevan, R.; Loth, Eric

    1994-07-01

    Experiments are performed using high-speed film cinematography to temporally resolve compressible planar mixing layer structures using shadowgraphs and planar light sheet visualization. The technique is relatively inexpensive and allows multiple images. The time-dependent shadowgraph and Mie scattering images are documented with a rotating mirror camera operating at approximately 350 kHz. The results show the presence of large scale structures in the mixing layer which flatten as they convect downstream. Both spatial and temporal covariances have been obtained through digital image processing which yield, on average, elliptical structures with convective speeds above the isentropic prediction, and non-isotropic streamwise and transverse scalar transport fluctuations.

  15. Effects of Leaching Behavior of Calcium Ions on Compression and Durability of Cement-Based Materials with Mineral Admixtures

    Science.gov (United States)

    Cheng, An; Chao, Sao-Jeng; Lin, Wei-Ting

    2013-01-01

    Leaching of calcium ions increases the porosity of cement-based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing reinforcing steel corrosion. This study investigates the effects of leaching behavior of calcium ions on the compression and durability of cement-based materials. Since the parameters influencing the leaching behavior of cement-based materials are unclear and diverse, this paper focuses on the influence of added mineral admixtures (fly ash, slag and silica fume) on the leaching behavior of calcium ions regarding compression and durability of cemented-based materials. Ammonium nitrate solution was used to accelerate the leaching process in this study. Scanning electron microscopy, X-ray diffraction analysis, and thermogravimetric analysis were employed to analyze and compare the cement-based material compositions prior to and after calcium ion leaching. The experimental results show that the mineral admixtures reduce calcium hydroxide quantity and refine pore structure through pozzolanic reaction, thus enhancing the compressive strength and durability of cement-based materials. PMID:28809247

  16. Compressed sensing for high frame rate, high resolution and high contrast ultrasound imaging.

    Science.gov (United States)

    Jing Liu; Qiong He; Jianwen Luo

    2015-08-01

    Compressed sensing (CS) or compressive sampling allows much lower sampling frequency than the Nyquist sampling frequency. In this paper, we propose a novel technique, named compressed sensing based synthetic transmit aperture (CS-STA), to speed up the acquisition of ultrasound imaging. Ultrasound transducer transmits plane wave with random apodizations for several times and receives the corresponding echoes. The full dataset of STA is then recovered from the recorded echoes using a CS reconstruction algorithm. Finally, a standard STA beamforming is performed on the dataset to form a B-mode image. When the number of CS-STA firings is smaller than the number of STA firings, higher frame rate is achieved. In addition, CS-STA maintains the high resolution of STA because of the CS recovered full dataset of STA, and improves the contrast due to plane wave firings. Computer simulations and phantom experiments are carried out to investigate the feasibility and performance of the proposed CS-STA method. The CS-STA method is proven to be capable of obtaining simultaneously high frame rate, high solution and high contrast ultrasound imaging.

  17. Estimating Compressive Strength of High Performance Concrete with Gaussian Process Regression Model

    National Research Council Canada - National Science Library

    Nhat-Duc Hoang; Anh-Duc Pham; Quoc-Lam Nguyen; Quang-Nhat Pham

    2016-01-01

    ...) for modeling compressive strength of high-performance concrete (HPC). This machine learning approach is utilized to establish the nonlinear functional mapping between the compressive strength and HPC ingredients...

  18. Graphene/Polyaniline Aerogel with Superelasticity and High Capacitance as Highly Compression-Tolerant Supercapacitor Electrode.

    Science.gov (United States)

    Lv, Peng; Tang, Xun; Zheng, Ruilin; Ma, Xiaobo; Yu, Kehan; Wei, Wei

    2017-12-19

    Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimized PANI mass content of 63 wt% shows the improved specific capacitance of 713 F g-1 in the three-electrode system. And the graphene/PANI aerogel presents a high recoverable compressive strain of 90% due to the strong interaction between PANI and graphene. The all-solid-state supercapacitors were assembled to demonstrate the compression-tolerant ability of graphene/PANI electrodes. The gravimetric capacitance of graphene/PANI electrodes reaches 424 F g-1 and retains 96% even at 90% compressive strain. And a volumetric capacitance of 65.5 F cm-3 is achieved, which is much higher than that of other compressible composite electrodes. Furthermore, several compressible supercapacitors can be integrated and connected in series to enhance the overall output voltage, suggesting the potential to meet the practical application.

  19. Graphene/Polyaniline Aerogel with Superelasticity and High Capacitance as Highly Compression-Tolerant Supercapacitor Electrode

    Science.gov (United States)

    Lv, Peng; Tang, Xun; Zheng, Ruilin; Ma, Xiaobo; Yu, Kehan; Wei, Wei

    2017-12-01

    Superelastic graphene aerogel with ultra-high compressibility shows promising potential for compression-tolerant supercapacitor electrode. However, its specific capacitance is too low to meet the practical application. Herein, we deposited polyaniline (PANI) into the superelastic graphene aerogel to improve the capacitance while maintaining the superelasticity. Graphene/PANI aerogel with optimized PANI mass content of 63 wt% shows the improved specific capacitance of 713 F g-1 in the three-electrode system. And the graphene/PANI aerogel presents a high recoverable compressive strain of 90% due to the strong interaction between PANI and graphene. The all-solid-state supercapacitors were assembled to demonstrate the compression-tolerant ability of graphene/PANI electrodes. The gravimetric capacitance of graphene/PANI electrodes reaches 424 F g-1 and retains 96% even at 90% compressive strain. And a volumetric capacitance of 65.5 F cm-3 is achieved, which is much higher than that of other compressible composite electrodes. Furthermore, several compressible supercapacitors can be integrated and connected in series to enhance the overall output voltage, suggesting the potential to meet the practical application.

  20. Coulomb crystallization of highly charged ions.

    Science.gov (United States)

    Schmöger, L; Versolato, O O; Schwarz, M; Kohnen, M; Windberger, A; Piest, B; Feuchtenbeiner, S; Pedregosa-Gutierrez, J; Leopold, T; Micke, P; Hansen, A K; Baumann, T M; Drewsen, M; Ullrich, J; Schmidt, P O; López-Urrutia, J R Crespo

    2015-03-13

    Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically (40)Ar(13+)) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be(+) ions. We also demonstrate cooling of a single Ar(13+) ion by a single Be(+) ion-the prerequisite for quantum logic spectroscopy with a potential 10(-19) accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy. Copyright © 2015, American Association for the Advancement of Science.

  1. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Haseroth, Helmut [European Organization for Nuclear Research, Geneva (Switzerland); Hora, Heinrich [New South Wales Univ., Kensington, NSW (Australia)]|[Regensburg Inst. of Tech. (Germany). Anwenderzentrum

    1996-12-31

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10{sup 11} C{sup 4+} ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ``hot`` electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author).

  2. Radioactive decays of highly-charged ions

    Directory of Open Access Journals (Sweden)

    Gao B. S.

    2015-01-01

    Full Text Available Access to stored and cooled highly-charged radionuclides offers unprecedented opportunities to perform high-precision investigations of their decays. Since the few-electron ions, e.g. hydrogen- or helium-like ions, are quantum mechanical systems with clear electronic ground state configurations, the decay studies of such ions are performed under well-defined conditions and allow for addressing fundamental aspects of the decay process. Presented here is a compact review of the relevant experiments conducted at the Experimental Storage Ring ESR of GSI. A particular emphasis is given to the investigations of the two-body beta decay, namely the bound-state β-decay and its time-mirrored counterpart, orbital electron-capture.

  3. Direct drive heavy-ion-beam inertial fusion at high coupling efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Logan, B.G.; Perkins, L.J.; Barnard, J.J.

    2008-05-16

    Issues with coupling efficiency, beam illumination symmetry, and Rayleigh-Taylor instability are discussed for spherical heavy-ion-beam-driven targets with and without hohlraums. Efficient coupling of heavy-ion beams to compress direct-drive inertial fusion targets without hohlraums is found to require ion range increasing several-fold during the drive pulse. One-dimensional implosion calculations using the LASNEX inertial confinement fusion target physics code shows the ion range increasing fourfold during the drive pulse to keep ion energy deposition following closely behind the imploding ablation front, resulting in high coupling efficiencies (shell kinetic energy/incident beam energy of 16% to 18%). Ways to increase beam ion range while mitigating Rayleigh-Taylor instabilities are discussed for future work.

  4. Highly compressible 3D periodic graphene aerogel microlattices

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.

  5. Highly compressible 3D periodic graphene aerogel microlattices

    Science.gov (United States)

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-01-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications. PMID:25902277

  6. Metastable states of highly excited heavy ions

    Science.gov (United States)

    Pegg, D. J.; Griffin, P. M.; Sellin, I. A.; Smith, W. W.; Donnally, B.

    1973-01-01

    Description of the method used and results obtained in an experimental study of the metastable states of highly stripped heavy ions, aimed at determining the lifetimes of such states by the rates of autoionization and radiation. The significance and limitations of the results presented are discussed.

  7. High-quality JPEG compression history detection for fake uncompressed images

    Science.gov (United States)

    Zhang, Rong; Wang, Rang-Ding; Guo, Li-Jun; Jiang, Bao-Chuan

    2017-05-01

    Authenticity is one of the most important evaluation factors of images for photography competitions or journalism. Unusual compression history of an image often implies the illicit intent of its author. Our work aims at distinguishing real uncompressed images from fake uncompressed images that are saved in uncompressed formats but have been previously compressed. To detect the potential image JPEG compression, we analyze the JPEG compression artifacts based on the tetrolet covering, which corresponds to the local image geometrical structure. Since the compression can alter the structure information, the tetrolet covering indexes may be changed if a compression is performed on the test image. Such changes can provide valuable clues about the image compression history. To be specific, the test image is first compressed with different quality factors to generate a set of temporary images. Then, the test image is compared with each temporary image block-by-block to investigate whether the tetrolet covering index of each 4×4 block is different between them. The percentages of the changed tetrolet covering indexes corresponding to the quality factors (from low to high) are computed and used to form the p-curve, the local minimum of which may indicate the potential compression. Our experimental results demonstrate the advantage of our method to detect JPEG compressions of high quality, even the highest quality factors such as 98, 99, or 100 of the standard JPEG compression, from uncompressed-format images. At the same time, our detection algorithm can accurately identify the corresponding compression quality factor.

  8. Direct observation of strong ion coupling in laser-driven shock-compressed targets.

    Science.gov (United States)

    Ravasio, A; Gregori, G; Benuzzi-Mounaix, A; Daligault, J; Delserieys, A; Faenov, A Ya; Loupias, B; Ozaki, N; Rabec le Gloahec, M; Pikuz, T A; Riley, D; Koenig, M

    2007-09-28

    In this Letter we report on a near collective x-ray scattering experiment on shock-compressed targets. A highly coupled Al plasma was generated and probed by spectrally resolving an x-ray source forward scattered by the sample. A significant reduction in the intensity of the elastic scatter was observed, which we attribute to the formation of an incipient long-range order. This speculation is confirmed by x-ray scattering calculations accounting for both electron degeneracy and strong coupling effects. Measurements from rear side visible diagnostics are consistent with the plasma parameters inferred from x-ray scattering data. These results give the experimental evidence of the strongly coupled ionic dynamics in dense plasmas.

  9. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  10. Accelerated high-resolution photoacoustic tomography via compressed sensing.

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-21

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  11. Accelerated high-resolution photoacoustic tomography via compressed sensing

    Science.gov (United States)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  12. Lagrangian transported MDF methods for compressible high speed flows

    Science.gov (United States)

    Gerlinger, Peter

    2017-06-01

    This paper deals with the application of thermochemical Lagrangian MDF (mass density function) methods for compressible sub- and supersonic RANS (Reynolds Averaged Navier-Stokes) simulations. A new approach to treat molecular transport is presented. This technique on the one hand ensures numerical stability of the particle solver in laminar regions of the flow field (e.g. in the viscous sublayer) and on the other hand takes differential diffusion into account. It is shown in a detailed analysis, that the new method correctly predicts first and second-order moments on the basis of conventional modeling approaches. Moreover, a number of challenges for MDF particle methods in high speed flows is discussed, e.g. high cell aspect ratio grids close to solid walls, wall heat transfer, shock resolution, and problems from statistical noise which may cause artificial shock systems in supersonic flows. A Mach 2 supersonic mixing channel with multiple shock reflection and a model rocket combustor simulation demonstrate the eligibility of this technique to practical applications. Both test cases are simulated successfully for the first time with a hybrid finite-volume (FV)/Lagrangian particle solver (PS).

  13. Development of ultra-short high voltage pulse technology using magnetic pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Byung Heon; Kim, S. G.; Nam, S. M.; Lee, B. C.; Lee, S. M.; Jeong, Y. U.; Cho, S. O.; Jin, J. T.; Choi, H. L

    1998-01-01

    The control circuit for high voltage switches, the saturable inductor for magnetic assist, and the magnetic pulse compression circuit were designed, constructed, and tested. The core materials of saturable inductors in magnetic pulse compression circuit were amorphous metal and ferrite and total compression stages were 3. By the test, in high repetition rate, high pulse compression were certified. As a result of this test, it became possible to increase life-time of thyratrons and to replace thyratrons by solid-state semiconductor switches. (author). 16 refs., 16 tabs.

  14. DETERMINATION OF STRONTIUM IONS IN WATERS WITH A HIGH CONTENT OF SODIUM IONS

    OpenAIRE

    Tatiana Mitina; Nadejda Bondarenco; Diana Grigoras; Elena Botizat; Tudor Lupascu

    2015-01-01

    This paper reports on the influence of sodium ions on experimental determination of strontium ions concentration in waters with a high content of sodium ions by using emission flame photometry and atomic absorption spectroscopy. For the method of emission flame photometry it was shown that at a wavelength of 460.7 nm (spectral emission line of strontium) the emission is linearly dependent on the concentration of sodium ions. The greatest impact of high concentrations of sodium ions on the res...

  15. Synthetic, structural, spectroscopic and theoretical study of a Mn(III)-Cu(II) dimer containing a Jahn-Teller compressed Mn ion.

    Science.gov (United States)

    Berg, Nelly; Hooper, Thomas N; Liu, Junjie; Beedle, Christopher C; Singh, Saurabh Kumar; Rajaraman, Gopalan; Piligkos, Stergios; Hill, Stephen; Brechin, Euan K; Jones, Leigh F

    2013-01-07

    The heterobimetallic complex [Cu(II)Mn(III)(L)(2)(py)(4)](ClO(4))·EtOH (1) built using the pro-ligand 2,2'-biphenol (LH(2)), contains a rare example of a Jahn-Teller compressed Mn(III) centre. Dc magnetic susceptibility measurements on 1 reveal a strong antiferromagnetic exchange between the Cu(II) and Mn(III) ions mediated through the phenolate O-atoms (J = -33.4 cm(-1)), with magnetisation measurements at low temperatures and high fields suggesting significant anisotropy. Simulations of high-field and high frequency powder EPR data suggest a single-ion anisotropy D(Mn(III)) = +4.45 cm(-1). DFT calculations also yield an antiferromagnetic exchange for 1, though the magnitude is overestimated (J(DFT) = -71 cm(-1)). Calculations reveal that the antiferromagnetic interaction essentially stems from the Mn(d(x(2)-y(2)))-Cu(d(x(2)-y(2))) interaction. The computed single-ion anisotropy and cluster anisotropy also correlates well with experiment. A larger cluster anisotropy for the S = 3/2 state compared to the single-ion anisotropy of Mn(III) is rationalised on the basis of orbital mixing and various contributions that arise due to the spin-orbit interaction.

  16. Compression of high-density EMG signals for trapezius and gastrocnemius muscles

    Science.gov (United States)

    2014-01-01

    Background New technologies for data transmission and multi-electrode arrays increased the demand for compressing high-density electromyography (HD EMG) signals. This article aims the compression of HD EMG signals recorded by two-dimensional electrode matrices at different muscle-contraction forces. It also shows methodological aspects of compressing HD EMG signals for non-pinnate (upper trapezius) and pinnate (medial gastrocnemius) muscles, using image compression techniques. Methods HD EMG signals were placed in image rows, according to two distinct electrode orders: parallel and perpendicular to the muscle longitudinal axis. For the lossless case, the images obtained from single-differential signals as well as their differences in time were compressed. For the lossy algorithm, the images associated to the recorded monopolar or single-differential signals were compressed for different compression levels. Results Lossless compression provided up to 59.3% file-size reduction (FSR), with lower contraction forces associated to higher FSR. For lossy compression, a 90.8% reduction on the file size was attained, while keeping the signal-to-noise ratio (SNR) at 21.19 dB. For a similar FSR, higher contraction forces corresponded to higher SNR Conclusions The computation of signal differences in time improves the performance of lossless compression while the selection of signals in the transversal order improves the lossy compression of HD EMG, for both pinnate and non-pinnate muscles. PMID:24612604

  17. High-Frequency Chest Compression: A Summary of the Literature

    Directory of Open Access Journals (Sweden)

    Cara F Dosman

    2005-01-01

    Full Text Available The purpose of the present literature summary is to describe high-frequency chest compression (HFCC, summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have shown that HFCC leads to more mucus clearance and better lung function compared with conventional chest physiotherapy. However, HFCC also decreases end-expiratory lung volume, which can lead to increased airway resistance and a decreased oscillated volume. Adding positive end-expiratory pressure to HFCC has been shown to prevent this decrease in end-expiratory lung volume and to increase the oscillated volume. It is possible that the HFCC-induced decrease in end-expiratory lung volume may result in more mucus clearance in airways that remain open by reducing airway size. Adjunctive methods, such as positive end-expiratory pressure, may not always be needed to make HFCC more effective.

  18. Very High Resolution SAR Tomography via Compressive Sensing

    Science.gov (United States)

    Zhu, Xiao Xiang; Bamler, Richard

    2010-03-01

    By using multi-pass SAR acquisitions, SAR tomography (TomoSAR) extends the synthetic aperture principle into the elevation direction for 3-D imaging. Since the orbits of modern space-borne SAR systems, like TerraSAR-X, are tightly controlled, the elevation resolution (depending on the elevation aperture size) is at least an order of magnitude lower than in range and azimuth. Hence, super- resolution algorithms are desired. The high anisotropic 3- D resolution element renders the signals sparse in elevation. This property suggests using compressive sensing (CS) methods. The paper presents the theory of 4- D (i.e. space-time) CS TomoSAR and compares it with classical tomographic methods. Super-resolution properties and point localization accuracies are demonstrated using simulations and real data. A CS reconstruction of a building complex from TerraSAR-X spotlight data is presented. In addition, the model based time warp method for differential tomographic non-linear motion monitoring is proposed and validated by reconstructing seasonal motion (caused by thermal expansion) of a building complex.

  19. Drift compression and final focus systems for heavy ion inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    de Hoon, Michiel Jan Laurens [Univ. of California, Berkeley, CA (United States)

    2001-01-01

    Longitudinal compression of space-charge dominated beams can be achieved by imposing a head-to-tail velocity tilt on the beam. This tilt has to be carefully tailored, such that it is removed by the longitudinal space-charge repulsion by the time the beam reaches the end of the drift compression section. The transverse focusing lattice should be designed such that all parts of the beam stay approximately matched, while the beam smoothly expands transversely to the larger beam radius needed in the final focus system following drift compression. In this thesis, several drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression. The occurrence of mismatches due to a rapidly increasing current was analyzed. In addition, the sensitivity of drift compression to errors in the initial velocity tilt and current profile was studied. These calculations were done using a new computer code that accurately calculates the longitudinal electric field in the space-charge dominated regime.

  20. High current injector for heavy ion fusion

    Science.gov (United States)

    Yu, S.; Eylon, S.; Chupp, W. W.

    1993-05-01

    A 2 MV, 800 mA, K(+) injector for heavy ion fusion studies is under construction. This new injector is a one-beam version of the proposed 4-beam ILSE injector. A new 36-module MARX is being built to achieve a 5 micro-s flat top. The high voltage generator is stiff (less than 5k Omega) to minimize effects of beam-induced transients. A large (approximately 7 in. diameter) curved hot alumina-silicate source emits a 1 micro-s long beam pulse through a gridless extraction electrode, and the ions are accelerated to 1 MV in a diode configuration. Acceleration to 2 MV takes place in a set of electrostatic quadrupole (ESQ) units, arranged to simultaneously focus and accelerate the ion beam. Heavy shields and other protection devices have been built in to minimize risks of high voltage breakdown. Beam aberration effects through the ESQ have been studied extensively with theory, simulations, and scaled experiments. The design, simulations, experiments, and engineering of the ESQ injector will be presented.

  1. Prospects for achieving high dynamic compression with low energy

    Science.gov (United States)

    Armstrong, Michael; Crowhurst, Jonathan; Zaug, Joseph; Bastea, Sorin; Goncharov, Alexander

    2013-06-01

    Laser driven dynamic compression experiments may, in materials with picosecond equilibration times, be possible with orders of magnitude less drive energy than currently used. As we show, the compression energy for geometrically similar experiments varies as the third power of the time scale of compression. For materials which equilibrate and can be characterized on picosecond time scales, the compression energy can be orders of magnitude smaller than the 1-100 ns scale time scale of many current experiments. The use of substantially lower compression energy is a great practical advantage in such experiments, potentially enabling the observation of extreme states of matter with table top scale laser systems. We discuss prospects for realizing this scheme in practice. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with Laboratory directed Research and Development funding (11ERD039), as well as being based on work supported as part of the EFree, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Grant No. DESC0001057.

  2. High strain-rate compressive behavior and constitutive modeling of selected polymers

    OpenAIRE

    Yokoyama T; Nakai K

    2012-01-01

    The present paper deals with constitutive modeling of the compressive stress-strain behavior of selected polymers at strain rates from 10−3 to 103/s using a modified Ramberg-Osgood equation. High strain-rate compressive stress-strain curves for four different commercially available extruded polymers are determined on the standard split Hopkinson pressure bar. The low and intermediate strain-rates compressive stress-strain relations are measured in an Instron testing machine. The five paramete...

  3. Material Compressing Test of the High Polymer Part Used in Draft Gear of Heavy Load Locomotive

    Directory of Open Access Journals (Sweden)

    Wei Yangang

    2016-01-01

    Full Text Available According to the actual load cases of heavy load locomotive, the material compressing tests of the high polymer parts used in the locomotive are researched. The relationship between stress and strain during the material compressing are acquired by means of comparing the many results of the material compressing tests under different test condition. The relationship between stress and strain during the material compressing is nonlinear in large range of strain, but the relationship is approximately linear in small range of strain. The material of the high polymer made in China and the material of the high polymer imported are compared through the tests. The results show that the compressing property of the material of the high polymer made in China and the material of the high polymer imported are almost same. The research offers the foundation to study the structure elasticity of the draft gear.

  4. Transverse microanalysis of high energy Ion implants

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, S.P.; Jamieson, D.N.; Nugent, K.W.; Prawer, S. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    High energy ion implants in semiconductor materials have been analyzed by Channeling Contrast Microscopy (CCM) perpendicular to the implant direction, allowing imaging of the entire ion track. The damage produced by Channeled and Random 1.4 MeV H{sup +} implants into the edge of a <100> type IIa diamond wafer were analyzed by channeling into the face of the crystal. The results showed negligible damage in the surface region of the implants, and swelling induced misalignment at the end of range of the implants. Channeled 1.4 MeV H{sup +} implants in diamond had a range only 9% deeper than Random implants, which could be accounted for by dechanneling of the beam. The channeling of H{sup +}{sub 2} ions has been previously found to be identical to that of protons of half energy, however the current experiment has shown a 1% increase in {chi}{sub min} for H{sup +}{sub 2} in diamond compared to H{sup +} at 1,2 MeV per proton. This is due to repulsion between protons within the same channel. 5 refs., 2 figs.

  5. Precision mass measurements of highly charged ions

    Science.gov (United States)

    Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2012-10-01

    The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.

  6. Evaluation of Risk Factors for Vertebral Compression Fracture after Carbon-Ion Radiotherapy for Primary Spinal and Paraspinal Sarcoma

    Directory of Open Access Journals (Sweden)

    Yoshihiro Matsumoto

    2017-01-01

    Full Text Available Background and Purpose. Carbon-ion radiotherapy (C-ion RT was effective therapy for inoperable spinal and paraspinal sarcomas. However, a significant adverse event following radiotherapies is vertebral compression fractures (VCFs. In this study, we investigated the incidence of and risk factors for post-C-ion RT VCFs in patients with spinal or paraspinal sarcomas. Material and Methods. Thirty consecutive patients with spinal or paraspinal sarcomas treated with C-ion RT were retrospectively reviewed. Various clinical parameters and the Spinal Instability Neoplastic Score (SINS were used to evaluate the risk factors for post-C-ion RT VCFs. Results. The overall incidence of VCFs was 23% (median time: 7 months. Patients with VCFs showed a markedly higher SINS score (median value, 9 points than those without VCF (5 points. The area under the receiver operating characteristic curve for the SINS score was 0.88, and the optimum SINS cut-off score was 8 points. The cumulative incidence of VCFs at 1 year was 9% for patients with a SINS score under 8 points, versus 80% for those with a SINS score of 8 points or higher (p<0.0001. Conclusions. In patients with a SINS score of 8 points or higher, referral to a spine surgeon for stabilization and multidisciplinary discussion is appropriate.

  7. High strain-rate compressive behavior and constitutive modeling of selected polymers

    Directory of Open Access Journals (Sweden)

    Yokoyama T.

    2012-08-01

    Full Text Available The present paper deals with constitutive modeling of the compressive stress-strain behavior of selected polymers at strain rates from 10−3 to 103/s using a modified Ramberg-Osgood equation. High strain-rate compressive stress-strain curves for four different commercially available extruded polymers are determined on the standard split Hopkinson pressure bar. The low and intermediate strain-rates compressive stress-strain relations are measured in an Instron testing machine. The five parameters for the modified Ramberg-Osgood equation are determined by fitting to the experimental compressive stress-strain data using a least-squares fit. The compressive stress-strain curves at three different strain rates derived from the modified Ramberg-Osgood models are compared with the experimental results. It is shown that the compressive stress-strain behavior during loading process can be successfully predicted by the modified Ramberg-Osgood equation.

  8. High strain-rate compressive behavior and constitutive modeling of selected polymers

    Science.gov (United States)

    Nakai, K.; Yokoyama, T.

    2012-08-01

    The present paper deals with constitutive modeling of the compressive stress-strain behavior of selected polymers at strain rates from 10-3 to 103/s using a modified Ramberg-Osgood equation. High strain-rate compressive stress-strain curves for four different commercially available extruded polymers are determined on the standard split Hopkinson pressure bar. The low and intermediate strain-rates compressive stress-strain relations are measured in an Instron testing machine. The five parameters for the modified Ramberg-Osgood equation are determined by fitting to the experimental compressive stress-strain data using a least-squares fit. The compressive stress-strain curves at three different strain rates derived from the modified Ramberg-Osgood models are compared with the experimental results. It is shown that the compressive stress-strain behavior during loading process can be successfully predicted by the modified Ramberg-Osgood equation.

  9. Correlation between Compressive Strength and Rheological Parameters of High-Performance Concrete

    Directory of Open Access Journals (Sweden)

    Aminul Islam Laskar

    2007-01-01

    Full Text Available Compressive strength is greatly influenced by the performance of concrete in its fresh stage such as uniform mixing, proper compaction, resistance to segregation during transporting and placing. Attempt has, therefore, been made to correlate compressive strength to the rheological behavior of high performance concrete with a modified setup of parallel plate rheometer. Modified setup considers the shearing of concrete at the centre of the cylindrical container that takes into account the resistance between concrete and the vertical side of the wall. It has been observed that compressive strength increases steeply as the yield strength increases up to a certain level. Plastic viscosity, however, shows optimum value for maximum compressive strength.

  10. Compressive sensing for high resolution profiles with enhanced Doppler performance

    NARCIS (Netherlands)

    Anitori, L.; Hoogeboom, P.; Chevalier, F. Le; Otten, M.P.G.

    2012-01-01

    In this paper we demonstrate how Compressive Sensing (CS) can be used in pulse-Doppler radars to improve the Doppler performance while preserving range resolution. We investigate here two types of stepped frequency waveforms, the coherent frequency bursts and successive frequency ramps, which can be

  11. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    Energy Technology Data Exchange (ETDEWEB)

    Gravel, Roland [U.S. Department of Energy' s Vehicle Technologies Office, Washington, DC (United States); Maronde, Carl [National Energy Technology Lab. (NETL), Albany, OR (United States); Gehrke, Chris [Caterpillar, Inc., Peoria, IL (United States); Fiveland, Scott [Caterpillar, Inc., Peoria, IL (United States)

    2010-10-30

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well

  12. Existence domain of the compressive ion acoustic super solitary wave in a two electron temperature warm multi-ion plasma

    Science.gov (United States)

    Steffy, S. V.; Ghosh, S. S.

    2017-10-01

    The transition of an ion acoustic solitary wave into a "supersoliton," or a super solitary wave have been explored in a two electron temperature warm multi-ion plasma using the Sagdeev pseudopotential technique. It is generally believed that the ion acoustic solitary wave can be transformed to a super solitary wave only through a double layer. The present work shows that the transition route of an ion acoustic solitary wave to a super solitary wave is not unique. Depending on the electron temperature ratio, a regular solitary wave may transform to a super solitary wave either via the double layer, or through an extra-nonlinear solitary structure whose morphology differs from that of a regular one. These extra-nonlinear structures are associated with a fluctuation of the charge separation within the potential profile and are named as "variable solitary waves." Depending on these analyses, the upper and lower bounds of a super solitary wave have been deciphered and its existence domain has been delineated in the parametric space. It reveals that super solitary waves are a subset of a more generalized class of extra-nonlinear solitary structures called variable solitary waves.

  13. Highly Supersonic Ion Pulses in a Collisionless Magnetized Plasma

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens; Schrittwieser, R.

    1982-01-01

    The initial transient response of a collisionless plasma to a high positive voltage step is investigated. Four different pulses are observed. An electron plasma wave pulse is followed by an ion burst. The latter is overtaken and absorbed by a highly supersonic ion pulse. Thereafter, an ion...

  14. Highly charged ion based time of flight emission microscope

    Science.gov (United States)

    Barnes, Alan V.; Schenkel, Thomas; Hamza, Alex V.; Schneider, Dieter H.; Doyle, Barney

    2001-01-01

    A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.

  15. N-Cadherin Maintains the Healthy Biology of Nucleus Pulposus Cells under High-Magnitude Compression.

    Science.gov (United States)

    Wang, Zhenyu; Leng, Jiali; Zhao, Yuguang; Yu, Dehai; Xu, Feng; Song, Qingxu; Qu, Zhigang; Zhuang, Xinming; Liu, Yi

    2017-01-01

    Mechanical load can regulate disc nucleus pulposus (NP) biology in terms of cell viability, matrix homeostasis and cell phenotype. N-cadherin (N-CDH) is a molecular marker of NP cells. This study investigated the role of N-CDH in maintaining NP cell phenotype, NP matrix synthesis and NP cell viability under high-magnitude compression. Rat NP cells seeded on scaffolds were perfusion-cultured using a self-developed perfusion bioreactor for 5 days. NP cell biology in terms of cell apoptosis, matrix biosynthesis and cell phenotype was studied after the cells were subjected to different compressive magnitudes (low- and high-magnitudes: 2% and 20% compressive deformation, respectively). Non-loaded NP cells were used as controls. Lentivirus-mediated N-CDH overexpression was used to further investigate the role of N-CDH under high-magnitude compression. The 20% deformation compression condition significantly decreased N-CDH expression compared with the 2% deformation compression and control conditions. Meanwhile, 20% deformation compression increased the number of apoptotic NP cells, up-regulated the expression of Bax and cleaved-caspase-3 and down-regulated the expression of Bcl-2, matrix macromolecules (aggrecan and collagen II) and NP cell markers (glypican-3, CAXII and keratin-19) compared with 2% deformation compression. Additionally, N-CDH overexpression attenuated the effects of 20% deformation compression on NP cell biology in relation to the designated parameters. N-CDH helps to restore the cell viability, matrix biosynthesis and cellular phenotype of NP cells under high-magnitude compression. © 2017 The Author(s). Published by S. Karger AG, Basel.

  16. The Role of Shabansky Orbits in Compression-Related Electromagnetic Ion Cyclotron Wave Growth (Postprint)

    Science.gov (United States)

    2012-03-15

    compressing the field. Equation (5) uses a geocentric spherical coordinate system with units of length in Earth radii. It is clear that setting b1 = 0...1966), The motion of magnetic field lines, Space Sci. Rev., 6(2), 147–173. Summers, D., R. M. Thorne, and F. L. Xiao (1998), Relativistic theory of

  17. Production of High Energy Ions Near an Ion Thruster Discharge Hollow Cathode

    Science.gov (United States)

    Katz, Ira; Mikellides, I. G.; Goebel, D. M.; Jameson, K. K.; Wirz, R.; Polk, James E.

    2006-01-01

    Several researchers have measured ions leaving ion thruster discharge chambers with energies far greater than measured discharge chamber potentials. Presented in this paper is a new mechanism for the generation of high energy ions and a comparison with measured ion spectra. The source of high energy ions has been a puzzle because they not only have energies in excess of measured steady state potentials, but as reported by Goebel et. al. [1], their flux is independent of the amplitude of time dependent plasma fluctuations. The mechanism relies on the charge exchange neutralization of xenon ions accelerated radially into the potential trough in front of the discharge cathode. Previous researchers [2] have identified the importance of charge exchange in this region as a mechanism for protecting discharge cathode surfaces from ion bombardment. This paper is the first to identify how charge exchange in this region can lead to ion energy enhancement.

  18. Physics with Highly-Charged Ions in an EBIT

    Science.gov (United States)

    Crespo López-Urrutia, J. R.; Bapat, B.; Draganić, I.; Feuerstein, B.; Fischer, D.; Lörch, H.; Moshammer, R.; Ullrich, J.; DuBois, R. D.; Zou, Y.

    After the commissioning of the Freiburg electron beam ion trap, experiments on dielectronic recombination of the low-lying resonances in He-like Ar16+ have been carried out at high resolution. Forbidden transitions (``coronal lines'') of highly charged argon ions in the optical range have been measured with an accuracy around 1 ppm. Ions extracted from FreEBIT have been used to perform collision experiments using the Cold Target Recoil-Ion Momentum Spectroscopy (COLTRIMS) technique.

  19. Highly charged Arq+ ions interacting with metals

    Science.gov (United States)

    Wang, Jijin; Zhang, Jian; Gu, Jiangang; Luo, Xianwen; Hu, Bitao

    2009-12-01

    Using computer simulation, alternative methods of the interaction of highly charged ions Arq+ with metals (Au, Ag) are used and verified in the present work. Based on the classical over-barrier model, we discussed the promotion loss and peeling off processes. The simulated total potential electron yields agree well with the experiment data in incident energy ranging from 100 eV to 5 keV and all charge states of Arq+ . Based on the TRIM code, we obtain the side-feeding rate as well as the motion and charge transfer of HCI below the surface. Some results, including the array of KLx x-ray satellite lines, the respective contribution of autoionization, and side-feeding to inner shells, and the filling rates and lifetime of inner shells for Ar agree well with experiment or theory.

  20. High Strain-Rate Compressive Properties and Constitutive Modeling of Selected Polymers

    Science.gov (United States)

    Nakai, Kenji; Yokoyama, Takashi

    The present paper is concerned with constitutive modeling of the compressive stress-strain behavior of selected polymers at strain rates from 10-3 to 103/s using a modified Ramberg-Osgood equation. High strain-rate compressive stress-strain curves within a strain range of nearly 0.08 for four different commercially available extruded polymers are determined on the standard split Hopkinson pressure bar. The low and intermediate strain-rates compressive stress-strain relations are measured in an Instron testing machine. The five parameters for the modified Ramberg-Osgood equation are determined by fitting to the experimental compressive stress-strain data using a least-squares fit. It is shown that the compressive stress-strain behavior at different strain rates up to the maximum stress can successfully be predicted by the modified Ramberg-Osgood equation. The limitations of the modified Ramberg-Osgood models are discussed.

  1. A high energy, heavy ion microprobe for ion beam research on the tandem accelerator at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Siegele, R.; Dytlewski, N.

    1996-04-01

    A comprehensive review is given on the production and use of heavy ion beams with spot sizes of a few {mu}m. The development of a high energy, heavy ion microprobe at ANSTO and its possible applications are discussed. The microprobe is designed to focus a wide range of ion beam types, from light ions such as protons up to ions as heavy as iodine. Details of the ion beam optics, optical calculations and a description of the proposed microbeam design are given. The unique combination of high energy, heavy ions and improved detection systems will provide high sensitivity elemental composition and depth profiling information, allowing surface topography and 3D surface reconstruction to be performed on a broad range of materials. 86 refs., 5 tabs., 15 figs.

  2. Post Preloading Creep Properties of Highly Compressible Harbor Marine Sediments

    Directory of Open Access Journals (Sweden)

    Franciscus Xaverius Toha

    2017-07-01

    Full Text Available A laboratory experimental research in creep behavior of soft clay marine sediments was done to investigate creep strain under reloading. A total of 52 oedometer tests were carried out with 16 slurry sediment samples subjected to cycles of unloading at preload removal pressure and reloading to higher design pressures. Common practice as well as more recent advanced methods of creep deformation analysis were used to refine the predictions. The study indicates that although preloading substantially reduces post construction creep, the analysis is very sensitive to creep indices at slight overconsolidation and the resulting creep may not be negligible at previously established limits of primary to secondary compression ratios.

  3. Twin stability in highly nanotwinned Cu under compression, torsion and tension

    DEFF Research Database (Denmark)

    Hodge, A.M.; Furnish, T.A.; Shute, C.J.

    2012-01-01

    Twin stability under four distinct mechanical loading states has been investigated for highly nanotwinned Cu containing parallel nanotwins 40 nm thick. Observed deformation-induced microstructural changes under tension, compression, tension–tension fatigue and torsion are qualitatively compared...

  4. HEDgeHOB High-energy density matter generated by heavy ion beams at the future facility for antiprotons and ion research

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Wouchuk, G; Deutsch, C; Fortov, V E; Hoffmann, D H H; Schmidt, R

    2007-01-01

    This paper presents an overview of the theoretical work that has been carried out during the past few years to assess the capabilities of intense heavy ion beams to induce states of High-Energy Density (HED) in matter. This work has shown that two different experimental schemes can be used to study HED physics employing intense ion beams. These schemes have been named HIHEX [Heavy Ion Heating and EXpansion] and LAPLAS [LAboratory PLAnetary Sciences], respectively. The first scheme involves isochoric and uniform heating and subsequent isentropic expansion of matter while the latter deals with low entropy compression of matter using multiple shock reflection technique. This work has been done within the framework of the HEDgeHOB [High Energy Density Matter Generated by Heavy Ion Beams] collaboration that has been formed to organize and facilitate construction of experimental facilities and later to perform experimental work in the field of HED matter at the future accelerator facility, FAIR [Facility for Antipr...

  5. High-Resolution Ion Cyclotron Mobility Spectrometry

    Science.gov (United States)

    Merenbloom, Samuel I.; Glaskin, Rebecca S.; Henson, Zachary B.; Clemmer, David E.

    2009-01-01

    A novel ion mobility spectrometry instrument incorporating a cyclotron geometry drift tube is presented. The drift tube consists of eight regions, four curved drift tubes and four ion funnels. Packets of ions are propagated around the drift tube by changing the drift field at a frequency that is resonant with the ion’s drift time through each region. The approach trims each packet of ions as it leaves and enters each new region. An electrostatic gate allows ions to be kept in the drift tube for numerous cycles, increasing the ability to resolve specified ions. We demonstrate the approach by isolating the [M+2H]2+ or [M+3H]3+ charge state of substance P as well as individual trisaccharide isomers from a mixture of melezitose and raffinose. Resolving powers in excess of 300 are obtainable with this approach. PMID:19143495

  6. Compressibility of Ir-Os alloys under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Yusenko, Kirill V., E-mail: kirill.yusenko@smn.uio.no [Department of Chemistry, Center for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo (Norway); Bykova, Elena [Materialphysik und Technologie, Lehrstuhl für Kristallographie, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth (Germany); Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); Bykov, Maxim [Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth (Germany); Gromilov, Sergey A. [Department of Physics, Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk (Russian Federation); Department of Crystal Chemistry, Nikolaev Institute of Inorganic Chemistry, Lavrentiev Ave. 3, 630090 Novosibirsk (Russian Federation); Kurnosov, Alexander V. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany); Prescher, Clemens; Prakapenka, Vitali B. [Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637 (United States); Hanfland, Michael [European Synchrotron Radiation Facility, Polygone Scientifique Louis Neel, 6 rue Jules Horowitz, 38000 Grenoble (France); Smaalen, Sander van [Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth (Germany); Margadonna, Serena [Department of Chemistry, Center for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo (Norway); Dubrovinsky, Leonid S. [Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth (Germany)

    2015-02-15

    Highlights: • fcc- and hcp-Ir-Os alloys were prepared from single-source precursors. • Their atomic volumes measured at ambient conditions using powder X-ray diffraction follow nearly linear dependence. • Compressibility of alloys have been studied up to 30 GPa at room temperature in diamond anvil cells. • Their bulk moduli increase with increasing osmium content. - Abstract: Several fcc- and hcp-structured Ir-Os alloys were prepared from single-source precursors in hydrogen atmosphere at 873 K. Their atomic volumes measured at ambient conditions using powder X-ray diffraction follow nearly linear dependence as a function of composition. Alloys have been studied up to 30 GPa at room temperature by means of synchrotron-based X-ray powder diffraction in diamond anvil cells. Their bulk moduli increase with increasing osmium content and show a deviation from linearity. Bulk modulus of hcp-Ir{sub 0.20}Os{sub 0.80} is identical to that of pure Os (411 GPa) within experimental errors. Peculiarities on fcc-Ir{sub 0.80}Os{sub 0.20} compressibility curve indicate possible changes of its electronic properties at ∼20 GPa.

  7. High precision Hugoniot measurements of D2 near maximum compression

    Science.gov (United States)

    Benage, John; Knudson, Marcus; Desjarlais, Michael

    2015-11-01

    The Hugoniot response of liquid deuterium has been widely studied due to its general importance and to the significant discrepancy in the inferred shock response obtained from early experiments. With improvements in dynamic compression platforms and experimental standards these results have converged and show general agreement with several equation of state (EOS) models, including quantum molecular dynamics (QMD) calculations within the Generalized Gradient Approximation (GGA). This approach to modeling the EOS has also proven quite successful for other materials and is rapidly becoming a standard approach. However, small differences remain among predictions obtained using different local and semi-local density functionals; these small differences show up in the deuterium Hugoniot at ~ 30-40 GPa near the region of maximum compression. Here we present experimental results focusing on that region of the Hugoniot and take advantage of advancements in the platform and standards, resulting in data with significantly higher precision than that obtained in previous studies. These new data may prove to distinguish between the subtle differences predicted by the various density functionals. Results of these experiments will be presented along with comparison to various QMD calculations. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Fatigue Characteristics and Compressive Residual Stress of Shot Preened Alloy 600 Under High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Cheon; Cheong, Seong Kyun [Seoul Nat' l Univ. of Science and Technology, Seoul (Korea, Republic of); Cho, Hong Seok [KEPCO Plant Service and Engineering co., Ltd., Seongnam (Korea, Republic of)

    2013-03-15

    The compressive residual stress and fatigue behavior of shot preened alloy 600 under a high-temperature environment is investigated in this study. Alloy 600 is used in the main parts of nuclear power plants, and the compressive residual stress induced by the shot peening process is considered to prevent Succ (stress corrosion cracking). To obtain practical results, the fatigue characteristics and compressive residual stress are evaluated under the actual operating temperature of a domestic nuclear power plant, as well as a high-temperature environment. The experimental results show that the peening effects are valid at a high temperature lower than approximately 538 .deg. C,, which is the threshold temperature. The fatigue life was maintained at temperatures lower than 538 .deg. C, and the compressive residual stress at 538 .deg. C was 68.2% of that at room temperature. The present results are expected to be used to obtain basic safety and reliability data.

  9. Ion trapping in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Hinterberger, Frank [Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik

    2011-10-15

    The problem of ion trapping in the high-energy storage ring HESR is studied in the present report. Positive ions are trapped in the negative potential well of the antiproton beam. The ions are produced by the interaction between the antiproton beam and the residual gas. The adverse effects of ion trapping like tune shifts, tune spreads and coherent instabilities are reviewed. The ion production rate by ionization of the residual gas molecules is estimated. The negative potential well and the corresponding electric fields of the antiproton beam are evaluated in order to study the transverse and longitudinal motion of the ions and the accumulation in trapping pockets. The removal of ions can be achieved using clearing electrodes and under certain conditions resonant transverse beam shaking. Diagnostic tools and measurements of trapped ion effects are sketched. (orig.)

  10. Multi-energy ion implantation from high-intensity laser

    Directory of Open Access Journals (Sweden)

    Cutroneo Mariapompea

    2016-06-01

    Full Text Available The laser-matter interaction using nominal laser intensity above 1015 W/cm2 generates in vacuum non-equilibrium plasmas accelerating ions at energies from tens keV up to hundreds MeV. From thin targets, using the TNSA regime, plasma is generated in the forward direction accelerating ions above 1 MeV per charge state and inducing high-ionization states. Generally, the ion energies follow a Boltzmann-like distribution characterized by a cutoff at high energy and by a Coulomb-shift towards high energy increasing the ion charge state. The accelerated ions are emitted with the high directivity, depending on the ion charge state and ion mass, along the normal to the target surface. The ion fluencies depend on the ablated mass by laser, indeed it is low for thin targets. Ions accelerated from plasma can be implanted on different substrates such as Si crystals, glassy-carbon and polymers at different fluences. The ion dose increment of implanted substrates is obtainable with repetitive laser shots and with repetitive plasma emissions. Ion beam analytical methods (IBA, such as Rutherford backscattering spectroscopy (RBS, elastic recoil detection analysis (ERDA and proton-induced X-ray emission (PIXE can be employed to analyse the implanted species in the substrates. Such analyses represent ‘off-line’ methods to extrapolate and to character the plasma ion stream emission as well as to investigate the chemical and physical modifications of the implanted surface. The multi-energy and species ion implantation from plasma, at high fluency, changes the physical and chemical properties of the implanted substrates, in fact, many parameters, such as morphology, hardness, optical and mechanical properties, wetting ability and nanostructure generation may be modified through the thermal-assisted implantation by multi-energy ions from laser-generated plasma.

  11. Highly Compressible Integrated Supercapacitor-Piezoresistance-Sensor System with CNT-PDMS Sponge for Health Monitoring.

    Science.gov (United States)

    Song, Yu; Chen, Haotian; Su, Zongming; Chen, Xuexian; Miao, Liming; Zhang, Jinxin; Cheng, Xiaoliang; Zhang, Haixia

    2017-10-01

    Rapid improvement of wearable electronics stimulates the demands for the matched functional devices and energy storage devices. Meanwhile, wearable microsystem requires every parts possessing high compressibility to accommodate large-scale mechanical deformations and complex conditions. In this work, a general carbon nanotube-polydimethylsiloxane (CNT-PDMS) sponge electrode is fabricated as the elementary component of the compressible system. CNT-PDMS sponge performs high sensitivity as a piezoresistance sensor, which is capable of detecting stress repeatedly and owns great electrochemical performance as a compressible supercapacitor which maintains stably under compressive strains, respectively. Assembled with the piezoresistance sensor and the compressible supercapacitor, such highly compressible integrated system can power and modulate the low-power electronic devices reliably. More importantly, attached to the epidermal skin or clothes, it can detect human motions, ranging from speech recognition to breathing record, thus showing feasibility in real-time health monitor and human-machine interfaces. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Increased component isotropy and plasma magnetic compression at sub-ion Larmor scale turbulence in the solar wind as seen by Cluster

    Science.gov (United States)

    Kiyani, K.; Sahraoui, F.; Hnat, B.; Chapman, S. C.; Fauvarque, O.; Khotyaintsev, Y. V.

    2012-12-01

    The anisotropic nature of solar wind magnetic turbulence fluctuations is investigated scale-by-scale using high cadence in-situ magnetic field measurements from the Cluster and ACE spacecraft missions. The data span five decades in scales from the inertial range to the electron Larmor radius. In contrast to the inertial range, there is a successive increase towards isotropy between parallel and transverse power at scales below the ion Larmor radius, with isotropy being achieved at the electron Larmor radius. In the context of wave-mediated theories of turbulence, we show that this enhancement in magnetic fluctuations parallel to the local mean background field is qualitatively consistent with the magnetic compressibility signature of kinetic Alfvén wave solutions of the linearized Vlasov equation. More generally, we discuss how these results may arise naturally due to the prominent role of the Hall term at sub-ion Larmor scales. Furthermore, computing higher-order statistics, we show that the full statistical signature of the fluctuations at scales below the ion Larmor radius is that of a single isotropic globally scale-invariant process distinct from the anisotropic statistics of the inertial range.(Upper panel) PSD (from Cluster) of the transverse and parallel components spanning the inertial and dissipation ranges. (Lower panel) Ratio of parallel over transverse PSD. Horizontal dot-dashed line indicates a ratio of 1/3 where isotropy in power occurs. Vertical dashed and dashed-dotted lines indicate the ion and electron gyro-radii respectively, Doppler-shifted to spacecraft frequency using the Taylor hypothesis.

  13. Novel Lithium Ion High Energy Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under this SBIR project a new chemistry for Li-ion cells will be developed that will enable a major advance in secondary battery gravimetric and volumetric energy...

  14. Fragmentation of very high energy heavy ions

    CERN Document Server

    Giorgini, M

    2001-01-01

    A stack of CR39 (C12H18O7)n nuclear track detectors with a Cu target was exposed to a 158 A GeV lead ion beam at the CERN-SPS, in order to study the fragmentation properties of lead nuclei. Measurements of the total, break-up and pick-up charge-changing cross sections of ultrarelativistic Pb ions on Cu and CR39 targets are presented and discussed.

  15. Compressible Reynolds equation for high-pressure gases

    Science.gov (United States)

    Chien, S. Y.; Cramer, M. S.; Untaroiu, A.

    2017-11-01

    We derive the Reynolds equation corresponding to steady, laminar, two-dimensional, compressible flows of single-phase Navier-Stokes fluids in a thin gap between a stationary surface and one translating with constant speed. The thermodynamic state of the fluid is taken to be in the dense and supercritical gas regimes. The equation of state is a well-known cubic equation, and the shear viscosity and thermal conductivity are taken to depend on density and temperature. Thermal boundary conditions are taken to include those for constant-temperature and adiabatic walls. The flow is seen to be governed by both the speed number and a single thermodynamic parameter referred to as the effective bulk modulus. Numerical solutions to the Reynolds equation are compared to those of the full Navier-Stokes equations. It is shown that the Reynolds equation breaks down in the vicinity of the thermodynamic critical point. Furthermore, we show that energy convection is negligible whenever the Reynolds equation is valid which enables us to present new explicit solutions for the temperature distributions.

  16. Highly charged ion injector in the terminal of tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M; Asozu, T; Nakanoya, T; Kutsukake, K; Hanashima, S; Takeuchi, S, E-mail: matsuda.makoto@jaea.go.j [Japan Atomic Energy Agency, Tokai Research and Development Center, Nuclear Science Research Institute, Tandem Accelerator Section 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki, 319-1195 (Japan)

    2009-04-01

    A highly charged heavy ion injector using an all permanent magnet type electron cyclotron resonance ion source (ECRIS) has been constructed in the high voltage terminal of the vertical and folded type 20UR Pelletron tandem accelerator at Japan Atomic Energy Agency at Tokai. The new in-terminal injector made it possible to accelerate highly charged heavy ions which have not been obtained from the tandem accelerator. Beam energy and beam intensity have been remarkably increased and the noble gas ion beams have become available.

  17. Ion current detector for high pressure ion sources for monitoring separations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.D.; Wahl, J.H.; Hofstadler, S.A.

    1996-08-13

    The present invention relates generally to any application involving the monitoring of signal arising from ions produced by electrospray or other high pressure (>100 torr) ion sources. The present invention relates specifically to an apparatus and method for the detection of ions emitted from a capillary electrophoresis (CE) system, liquid chromatography, or other small-scale separation methods. And further, the invention provides a very simple diagnostic as to the quality of the separation and the operation of an electrospray source. 7 figs.

  18. Ion current detector for high pressure ion sources for monitoring separations

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Richard D. (Richland, WA); Wahl, Jon H. (Richland, WA); Hofstadler, Steven A. (Richland, WA)

    1996-01-01

    The present invention relates generally to any application involving the monitoring of signal arising from ions produced by electrospray or other high pressure (>100 torr) ion sources. The present invention relates specifically to an apparatus and method for the detection of ions emitted from a capillary electrophoresis (CE) system, liquid chromatography, or other small-scale separation methods. And further, the invention provides a very simple diagnostic as to the quality of the separation and the operation of an electrospray source.

  19. Design of High Compressive Strength Concrete Mix without Additives

    National Research Council Canada - National Science Library

    N, M, Akasha; Mohamed, Mansour Ahmed; Abdelrazig, Nasreen Maruiod

    2017-01-01

    .... The selected materials, with high specification using special production techniques, the properties ,the mix design procedure and mix proportion of the high strength concrete (HSC) were discussed...

  20. Cryogenic linear Paul trap for cold highly charged ion experiments

    DEFF Research Database (Denmark)

    Schwarz, Maria; Versolato, Oscar; Windberger, Alexander

    2012-01-01

    Storage and cooling of highly charged ions require ultra-high vacuum levels obtainable by means of cryogenic methods. We have developed a linear Paul trap operating at 4 K capable of very long ion storage times of about 30 h. A conservative upper bound of the H2 partial pressure of about 10−15 mbar...

  1. Physics with Highly-Charged Ions in an EBIT

    Energy Technology Data Exchange (ETDEWEB)

    Crespo Lopez-Urrutia, J. R.; Bapat, B.; Draganic, I.; Feuerstein, B.; Fischer, D.; Loerch, H.; Moshammer, R.; Ullrich, J. [Max-Planck-Insitut fuer Kernphysik (Germany); DuBois, R. D. [University of Missoury (United States); Zou, Y. [Fudan University (China)

    2003-03-15

    After the commissioning of the Freiburg electron beam ion trap, experiments on dielectronic recombination of the low-lying resonances in He-like Ar{sup 16+} have been carried out at high resolution. Forbidden transitions ('coronal lines') of highly charged argon ions in the optical range have been measured with an accuracy around 1 ppm. Ions extracted from FreEBIT have been used to perform collision experiments using the Cold Target Recoil-Ion Momentum Spectroscopy (COLTRIMS) technique.

  2. ECR ion source for high current linac

    CERN Document Server

    Cui Bao Qun; Jiang Wei; LiLiQiang; WangRongWen

    2002-01-01

    An intense ECR ion source for ADS (accelerator driven sub-critical system) is described. Two configurations of the source has been developed and tested. 100 mA hydrogen beam has been extracted from the ion source at 30 keV, the proton ratio is greater than 85%, estimated emittance is 0.11 pi mm centre dot mrad, the maximum extracted beam density is 340 mA/cm sup 2 . A 100 hours reliability test of the source is also described

  3. High Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries

    Science.gov (United States)

    2015-04-24

    Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries Siu on Tung, Krista L. Hawthorne, Yi Ding, James Mainero, and Levi T. Thompson...Automotive Research Development and Engineering Center, Warren, MI 48387, USA Keywords: nanostructured materials, lithium ion batteries , cathode...2014 to 00-00-2015 4. TITLE AND SUBTITLE High Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries 5a. CONTRACT NUMBER 5b. GRANT

  4. Analysis of high impedance transients and improved data compression using wavelet transform

    Directory of Open Access Journals (Sweden)

    Subramaniam N.P.

    2006-01-01

    Full Text Available High impedance transients are difficult to detect and classify by using conventional methods due to low transient current [1]. This paper proposes an alternative technique to detect and classify the high impedance transient by obtaining the energy curve from the wavelet co-efficient at each level. The scheme recognizes the distortion of the voltage and current waveforms caused by the arcs usually associated with high impedance fault. From the results obtained it can be inferred, that the energy level of each transient disturbance has unique deviation from pure sinusoidal waveform in particular energy level, which is adopted to provide reliable classification of the type of transient. Also, this paper proposes a novel technique for disturbance data compression which is called as Improved Disturbance Compression Method (IDCM. In this method, only the disturbance data is compressed not the whole waveform using sparse representation property of Wavelet Transform.

  5. High Definition Video Streaming Using H.264 Video Compression

    OpenAIRE

    Bechqito, Yassine

    2009-01-01

    This thesis presents high definition video streaming using H.264 codec implementation. The experiment carried out in this study was done for an offline streaming video but a model for live high definition streaming is introduced, as well. Prior to the actual experiment, this study describes digital media streaming. Also, the different technologies involved in video streaming are covered. These include streaming architecture and a brief overview on H.264 codec as well as high definition t...

  6. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd

  7. Electron capture by highly charged ions from surfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.

    2008-01-11

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar{sup 17+} and Ar{sup 18+} ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu{sup -1}, charge-selected and then decelerated down to 5 eVu{sup -1} for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar{sup 17+} and Ar{sup 18+} ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu{sup -1}, charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar{sup 16+} and Xe{sup 44+} and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  8. Ion aggregation in high salt solutions. VI. Spectral graph analysis of chaotropic ion aggregates

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-11-01

    Carrying out molecular dynamics simulations and graph theoretical analyses of high salt solutions, and comparing numerically calculated vibrational spectroscopic properties of water with femtosecond IR pump-probe experimental data, we have recently found that ions in high salt solutions can form two morphologically different ion aggregate structures. In the cases of NaCl solutions, Na+ and Cl- tend to form compact cluster-like ion aggregate in high NaCl solutions. In contrast, K+ and SCN- form spatially extended network-like ion aggregates that also exhibit a percolating network behavior. Interestingly, a variety of graph theoretical properties of ion network in high KSCN solutions were found to be very similar to those of water H-bonding network. It was shown that spatially extended ion networks in high KSCN solutions are completely intertwined with water H-bonding networks, which might be the key to understand the high solubility of thiocyanate salts in water. Here, we further consider two salts that have been extensively studied experimentally by using femtosecond IR pump-probe technique, which are NaClO4 and NaBF4. Note that ClO4 - and BF4 - are well-known chaotropic ions that have been believed to behave as water structure breaker. To understand how such chaotropic ions affect water H-bonding structure, we carried out spectral graph analyses of molecular dynamics simulation data of these aqueous solutions. Graph spectra and degree distribution of ion aggregates formed in high NaBF4 and NaClO4 solutions show that these chaotropic anions also have a strong propensity to form ion networks. The fact that salts containing chaotropic ions like SCN-, BF4 - , and ClO4 - have very high solubility limits in water could then be related to our observation that these chaotropic anions with counter cations in high salt solutions are capable of forming intricate ion networks intertwined with water H-bonding networks. We anticipate that the present graph theoretical analysis

  9. Lowering the cost of large-scale energy storage: High temperature adiabatic compressed air energy storage

    Directory of Open Access Journals (Sweden)

    B. Cárdenas

    2017-06-01

    Full Text Available Compressed air energy storage is an energy storage technology with strong potential to play a significant role in balancing energy on transmission networks, owing to its use of mature technologies and low cost per unit of storage capacity. Adiabatic compressed air energy storage (A-CAES systems typically compress air from ambient temperature in the charge phase and expand the air back to ambient temperature in the discharge phase. This papers explores the use of an innovative operating scheme for an A-CAES system aimed at lowering the total cost of the system for a given exergy storage capacity. The configuration proposed considers preheating of the air before compression which increases the fraction of the total exergy that is stored in the form of high-grade heat in comparison to existing designs in which the main exergy storage medium is the compressed air itself. Storing a high fraction of the total exergy as heat allows reducing the capacity of costly pressure stores in the system and replacing it with cheaper thermal energy stores. Additionally, a configuration that integrates a system based on the aforementioned concept with solar thermal power or low-medium grade waste heat is introduced and thoroughly discussed.

  10. Computational Analysis of Compressibility Effects on a High-Lift Wing

    Science.gov (United States)

    Baker, M. David; Nixon, David (Technical Monitor)

    1999-01-01

    The objective of this study was to investigate compressibility effects on a high-lift flowfield by simulating the flow about a three-dimensional multi-element wing. The computations were performed by solving both the incompressible and compressible Navier-Stokes equations (using the INS3D and OVERFLOW codes) on structured, overset grids. Turbulence was modeled via the one-equation, fully turbulent Spalart-Allmaras model. The computational results were validated with surface pressure measurements acquired at the NASA Ames 7- by 10-Foot Wind Tunnel. The geometry used for all computations consisted of an unswept wing in a landing configuration with a half-span flap and a three-quarter-span slat mounted inside a rectangular duct approximating the wind tunnel walls. The solutions were carefully examined to account for effects due to differences in algorithms. Compressibility effects were demonstrated by comparing surface particle traces, sectional pressure coefficient and boundary layer profile plots. It was found that small regions of compressibility near the slat and main-element leading edge can largely impact the flow. Even small compressibility regions can have significant global effects on the circulation and separation of each of the high-lift elements.

  11. SAFT Li-ion Technology for High Rate Applications

    National Research Council Canada - National Science Library

    Nechev, Kamen; Deveney, Bridget; Guseynov, Teymur; Erbacher, John; Vukson, Stephen

    2006-01-01

    SAFT will present an update of its state-of-the art Very High Power (VHP) Lithium-ion (Li-ion) technology. The VHP cells are currently being qualified for use in military aircraft applications as well as in future military hybrid vehicles...

  12. High-discharge-rate lithium ion battery

    Science.gov (United States)

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  13. Fabrication of high gradient insulators by stack compression

    Science.gov (United States)

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  14. Fabrication of high gradient insulators by stack compression

    Energy Technology Data Exchange (ETDEWEB)

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  15. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    H. W. Zhao

    2017-09-01

    Full Text Available The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24–28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of ^{40}Ar^{12+} and ^{129}Xe^{26+} have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL, China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24+18  GHz heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  16. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  17. High Energy Ion Acceleration by Extreme Laser Radiation Pressure

    Science.gov (United States)

    2017-03-14

    AFRL-AFOSR-UK-TR-2017-0015 High energy ion acceleration by extreme laser radiation pressure Paul McKenna UNIVERSITY OF STRATHCLYDE VIZ ROYAL COLLEGE...MM-YYYY)   14-03-2017 2. REPORT TYPE  Final 3. DATES COVERED (From - To)  01 May 2013 to 31 Dec 2016 4. TITLE AND SUBTITLE High energy ion acceleration...Prescribed by ANSI Std. Z39.18 Page 1 of 1FORM SF 298 3/15/2017https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll 1 HIGH ENERGY ION ACCELERATION BY

  18. Proton and Ion Sources for High Intensity Accelerators

    CERN Multimedia

    Scrivens, R

    2004-01-01

    Future high intensity ion accelerators, including the Spallation Neutron Source (SNS), the European Spallation Source (ESS), the Superconducting Proton Linac (SPL) etc, will require high current and high duty factor sources for protons and negative hydrogen ions. In order to achieve these goals, a comparison of the Electron Cyclotron Resonance, radio-frequency and Penning ion sources, among others, will be made. For each of these source types, the present operational sources will be compared to the state-of-the-art research devices with special attention given to reliability and availability. Finally, the future research and development aims will be discussed.

  19. Multi-energy ion implantation from high-intensity laser

    OpenAIRE

    Cutroneo Mariapompea; Torrisi Lorenzo; Ullschmied Jiri; Dudzak Roman

    2016-01-01

    The laser-matter interaction using nominal laser intensity above 1015 W/cm2 generates in vacuum non-equilibrium plasmas accelerating ions at energies from tens keV up to hundreds MeV. From thin targets, using the TNSA regime, plasma is generated in the forward direction accelerating ions above 1 MeV per charge state and inducing high-ionization states. Generally, the ion energies follow a Boltzmann-like distribution characterized by a cutoff at high energy and by a Coulomb-shift towards high ...

  20. Atomic physics with highly charged ions. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  1. High-Fidelity Numerical Modeling of Compressible Flow

    Science.gov (United States)

    2015-11-01

    source of much of the aero-thermo- acoustic load that a high-speed vehicle must resist. In recent work, we have addressed several aspects of the...region is tiled with boxes of size r, and the number of boxes N that contain the boundary is counted. For a self-similar fractal, this number is N(r...resolution outside the boundary layer to accommodate acoustic disturbances as they travelled through the inviscid core flow and where reflected back into

  2. High-resolution excitation of ions in a low-pressure linear ion trap.

    Science.gov (United States)

    Collings, B A

    2011-01-15

    An exploration of the parameters necessary to obtain high-resolution excitation, using dipolar excitation, of an ion in a linear ion trap has been undertaken in this study. These parameters included ion trap pressure, excitation amplitude, excitation period, drive frequency of the ion trap, Mathieu q value and the mass of the ion of interest. An understanding of how these parameters play a role in high-resolution excitation is necessary to the development of a method for the targeted tandem mass spectrometric (MS/MS) analysis of ions with the same nominal mass. Resonance excitation profiles with full width half maxima as narrow as 0.015 m/z units could be obtained, under the right conditions, for an ion from a homogenously substituted triazatriphosphorine at m/z 322.049, which translates into a mass resolution of >21 500. In this particular case the requirement for high resolution was a low trap pressure (3.8 × 10(-5) Torr), low excitation amplitude (3 mV), long excitation period (100 ms) and a high Mathieu q value(0.8) when using a drive frequency of 1.228 MHz. Similar conditions were used to demonstrate the isolation of individual [M + H](+) component ions from mixtures of bromazepam (m/z 316.008)/chlorprothixene (m/z 316.0921)/fendiline (m/z 316.206) and chlorprothixene (m/z 316.0921)/oxycodone (m/z 316.1543)/fendiline (m/z 316.206) prior to obtaining product ion spectra with excitation at q = 0.236. In the former mixture the individual components were isolated with near 100% efficiency while in the latter mixture the isolation efficiency dropped to near 50% for the oxycodone component and to 80% for the other components. Copyright © 2010 John Wiley & Sons, Ltd.

  3. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    Science.gov (United States)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  4. High-Voltage, High-Impedance Ion Beam Production

    Science.gov (United States)

    2009-06-01

    collaboration with Tim Renk and Victor Harper- Slaboszewicz of Sandia National Laboratories. Joint experiments on Mercury are planned for the future...Young, "Pinched-Beam Ion Diode Scaling on the Aurora Pulser," J. Appl. Phys. 53, 8543 (1982). [8] T. J. Renk , et al., "Generation of Ion Beams in

  5. Ion aggregation in high salt solutions. II. Spectral graph analysis of water hydrogen-bonding network and ion aggregate structures

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2014-10-01

    Graph theory in mathematics and computer science is the study of graphs that are structures with pairwise connections between any objects. Here, the spectral graph theory and molecular dynamics simulation method are used to describe both morphological variation of ion aggregates in high salt solutions and ion effects on water hydrogen-bonding network structure. From the characteristic value analysis of the adjacency matrices that are graph theoretical representations of ion clusters, ion networks, and water H-bond structures, we obtained the ensemble average eigenvalue spectra revealing intricate connectivity and topology of ion aggregate structure that can be classified as either ion cluster or ion network. We further show that there is an isospectral relationship between the eigenvalue spectra of ion networks in high KSCN solutions and those of water H-bonding networks. This reveals the isomorphic relationship between water H-bond structure and ion-ion network structure in KSCN solution. On the other hand, the ion clusters formed in high NaCl solutions are shown to be graph-theoretically and morphologically different from the ion network structures in KSCN solutions. These observations support the bifurcation hypothesis on large ion aggregate growth mechanism via either ion cluster or ion network formation. We thus anticipate that the present spectral graph analyses of ion aggregate structures and their effects on water H-bonding network structures in high salt solutions can provide important information on the specific ion effects on water structures and possibly protein stability resulting from protein-water interactions.

  6. Ion aggregation in high salt solutions. II. Spectral graph analysis of water hydrogen-bonding network and ion aggregate structures.

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2014-10-21

    Graph theory in mathematics and computer science is the study of graphs that are structures with pairwise connections between any objects. Here, the spectral graph theory and molecular dynamics simulation method are used to describe both morphological variation of ion aggregates in high salt solutions and ion effects on water hydrogen-bonding network structure. From the characteristic value analysis of the adjacency matrices that are graph theoretical representations of ion clusters, ion networks, and water H-bond structures, we obtained the ensemble average eigenvalue spectra revealing intricate connectivity and topology of ion aggregate structure that can be classified as either ion cluster or ion network. We further show that there is an isospectral relationship between the eigenvalue spectra of ion networks in high KSCN solutions and those of water H-bonding networks. This reveals the isomorphic relationship between water H-bond structure and ion-ion network structure in KSCN solution. On the other hand, the ion clusters formed in high NaCl solutions are shown to be graph-theoretically and morphologically different from the ion network structures in KSCN solutions. These observations support the bifurcation hypothesis on large ion aggregate growth mechanism via either ion cluster or ion network formation. We thus anticipate that the present spectral graph analyses of ion aggregate structures and their effects on water H-bonding network structures in high salt solutions can provide important information on the specific ion effects on water structures and possibly protein stability resulting from protein-water interactions.

  7. Sample pre-heating in magnetic ramp compression experiments on the GEPI high pulsed power driver

    Science.gov (United States)

    D'Almeida, Thierry; Chanal, Pierre-Yves; Zinszner, Jean-Luc; Daulhac, Gaetan

    2017-10-01

    GEPI is a 3 MA, 500 ns, high pulsed power driver operated by the CEA and mainly used for dynamically compressing materials in a quasi-isentropic regime at stress levels up to 100 GPa. Usually, materials are loaded starting from ambient temperature conditions, thus, following a single thermodynamic path near an isentrope. Dynamically loading samples from non-ambient initial conditions, either in pressure or temperature, can significantly improve our ability to obtain direct measurements over specific thermodynamic paths of interest. For instance, ramp-compressing multiphase metallic materials from various initial temperatures can help constrain their Equation of State. We have recently equipped the GEPI facility with a preheating device capable of pre-heating metallic samples up to 1100 K prior to their loading. We present results from preliminary experiments on copper and iron ramp compressed starting from temperatures ranging from 300 K to 900 K.

  8. A high capacity text steganography scheme based on LZW compression and color coding

    Directory of Open Access Journals (Sweden)

    Aruna Malik

    2017-02-01

    Full Text Available In this paper, capacity and security issues of text steganography have been considered by employing LZW compression technique and color coding based approach. The proposed technique uses the forward mail platform to hide the secret data. This algorithm first compresses secret data and then hides the compressed secret data into the email addresses and also in the cover message of the email. The secret data bits are embedded in the message (or cover text by making it colored using a color coding table. Experimental results show that the proposed method not only produces a high embedding capacity but also reduces computational complexity. Moreover, the security of the proposed method is significantly improved by employing stego keys. The superiority of the proposed method has been experimentally verified by comparing with recently developed existing techniques.

  9. Edge Polynomial Fractal Compression Algorithm for High Quality Video Transmission. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Freddie

    1999-06-01

    In this final report, Physical Optics Corporation (POC) provides a review of its Edge Polynomial Autonomous Compression (EPAC) technology. This project was undertaken to meet the need for low bandwidth transmission of full-motion video images. In addition, this report offers a synopsis of the logical data representation study that was performed to compress still images and video. The mapping singularities and polynomial representation of 3-D surfaces were found to be ideal for very high image compression. Our efforts were then directed to extending the EPAC algorithm for the motion of singularities by tracking the 3-D coordinates of characteristic points and the development of system components. Finally, we describe the integration of the software with the hardware components. This process consists of acquiring and processing each separate camera view, combining the information from different cameras to calculate the location of an object in three dimensions, and tracking the information history and the behavior of the objects.

  10. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure...

  11. Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction

    NARCIS (Netherlands)

    Motaal, Abdallah G.; Coolen, Bram F.; Abdurrachim, Desiree; Castro, Rui M.; Prompers, Jeanine J.; Florack, Luc M. J.; Nicolay, Klaas; Strijkers, Gustav J.

    2013-01-01

    We introduce a new protocol to obtain very high-frame-rate cinematographic (Cine) MRI movies of the beating mouse heart within a reasonable measurement time. The method is based on a self-gated accelerated fast low-angle shot (FLASH) acquisition and compressed sensi ng reconstruction. Key to our

  12. Dynamic Increase Factors for High Performance Concrete in Compression using Split Hopkinson Pressure Bar

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin; Ngo, Tuan; Mendis, Priyan

    2007-01-01

    This paper provides dynamic increase factors (DIF) in compression for two different High Performance Concretes (HPC), 100 MPa and 160 MPa, respectively. In the experimental investigation 2 different Split Hopkinson Pressure Bars are used in order to test over a wide range of strain rates, 100 sec1...

  13. Anomalous compressive behavior in CeO2 nanocubes under high pressure

    DEFF Research Database (Denmark)

    Ge, M. Y.; Fang, Y. Z.; Wang, H.

    2008-01-01

    High-pressure angle-dispersive x-ray diffraction measurements have been performed on bulk and nanocrystalline cubic CeO2 with mean sizes of 4.7 and 5.6 nm. It is found that the compressibility of the nanocrystals is lower than the bulk when a threshold pressure is reached. This critical pressure ...

  14. Development of a laser ion source for production of high-intensity heavy-ion beams

    Science.gov (United States)

    Kashiwagi, H.; Yamada, K.; Kurashima, S.

    2017-09-01

    A laser ion source has been developed as a high-intensity source for the ion implanter and the single pulsed beam of the azimuthally varying field cyclotron at TIARA. Highly charged beams of C5+ and C6+ ions and low-charged beams of heavy ions such as C, Al, Ti, Cu, Au, and Pt are required for the single-pulse acceleration in the cyclotron and for the ion implanter, respectively. In the vacuum chamber of the ion source, a target holder on a three-dimensional linear-motion stage provides a fresh surface for each laser shot. A large-sized target with a maximum size of 300 mm × 135 mm is mounted on the holder for long-term operation. The ion current (ion charge flux) in the laser-produced plasma is measured by a Faraday cup and time-of-flight spectra of each charge state are measured using a 90° cylindrical electrostatic analyzer just behind the Faraday cup. Carbon-plasma-generation experiments indicate that the source produces intense high- and low-charged pulsed ion beams. At a laser energy of 483 mJ (2.3 × 1013 W/cm2), average C6+ current of 13 mA and average C5+ current of 23 mA were obtained over the required time duration for single-pulse acceleration in the cyclotron (49 ns for C6+ and 80 ns for C5+). Furthermore, at 45 mJ (2.1 × 1012 W/cm2), an average C2+ current of 1.6 mA over 0.88 μs is obtained.

  15. Ion beams in SEM : An experiment towards a high brightness low energy spread electron impact gas ion source

    NARCIS (Netherlands)

    Jun, D.S.; Kutchoukov, V.G.; Kruit, P.

    2011-01-01

    A next generation ion source suitable for both high resolution focused ion beam milling and imaging applications is currently being developed. The new ion source relies on a method of which positively charged ions are extracted from a miniaturized gas chamber where neutral gas atoms become ionized

  16. Ion source and injection line for high intensity medical cyclotron.

    Science.gov (United States)

    Jia, XianLu; Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-01

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H- ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H- ion source (CIAE-CH-I type) and a short injection line, which the H- ion source of 3 mA/25 keV H- beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  17. High Resolution Observations of Escaping Ions in the Martian Magnetotail

    Science.gov (United States)

    Halekas, J. S.; Raman, C.; Brain, D.; DiBraccio, G. A.; Harada, Y.; McFadden, J. P.; Mitchell, D. L.; Connerney, J. E. P.; Jakosky, B. M.

    2016-12-01

    Ions escape from the Martian upper atmosphere via a number of channels, including the central plasmasheet of the magnetotail. Mars Express observations show that the heavy ions O+ and O2+ escaping through the central tail often have approximately the same energy, suggesting acceleration in a quasi-static electric field, which has been interpreted as a Hall electric field. The Solar Wind Ion Analyzer (SWIA) on MAVEN was designed to measure the upstream solar wind. However, during orbit segments with appropriate spacecraft attitude, SWIA can also make high resolution measurements of escaping ions in the tail. During the prime mission, these observations were only returned sporadically, during periods of intense escaping fluxes that fortuitously triggered a mode switch. Now, in the extended mission, we return high resolution observations from SWIA routinely. Some of these high resolution measurements reveal slight differences in both the direction and energy of escaping O+ and O2+ ions, which may help determine the acceleration process(es). We investigate the location and solar wind conditions for which the escaping ions separate in energy and angle and the systematics of their energies and flow vectors, and discuss the implications for ion acceleration and the overall picture of Martian atmospheric escape.

  18. First test of BNL electron beam ion source with high current density electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard [CERN, CH-1211 Geneva 23 (Switzerland)

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  19. Type-I cascaded quadratic soliton compression in lithium niobate: Compressing femtosecond pulses from high-power fiber lasers

    DEFF Research Database (Denmark)

    Bache, Morten; Wise, Frank W.

    2010-01-01

    using second-harmonic generation in a type-I phase-matching configuration. We find that because of competing cubic material nonlinearities, compression can only occur in the nonstationary regime, where group-velocity-mismatch–induced Raman-like nonlocal effects prevent compression to less than 100 fs......, and in particular the latter could become an issue when compressing such long crystals (around 10 cm long). We finally show that the second harmonic contains a short pulse locked to the pump and a long multi-picosecond red-shifted detrimental component. The latter is caused by the nonlocal effects...... in the nonstationary regime, but because it is strongly red-shifted to a position that can be predicted, we show that it can be removed using a bandpass filter, leaving a visible component of less than 100 fs at λ=515 nm with excellent pulse quality....

  20. Context-dependent JPEG backward-compatible high-dynamic range image compression

    Science.gov (United States)

    Korshunov, Pavel; Ebrahimi, Touradj

    2013-10-01

    High-dynamic range (HDR) imaging is expected, together with ultrahigh definition and high-frame rate video, to become a technology that may change photo, TV, and film industries. Many cameras and displays capable of capturing and rendering both HDR images and video are already available in the market. The popularity and full-public adoption of HDR content is, however, hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of low-dynamic range (LDR) displays that are unable to render HDR. To facilitate the wide spread of HDR usage, the backward compatibility of HDR with commonly used legacy technologies for storage, rendering, and compression of video and images are necessary. Although many tone-mapping algorithms are developed for generating viewable LDR content from HDR, there is no consensus of which algorithm to use and under which conditions. We, via a series of subjective evaluations, demonstrate the dependency of the perceptual quality of the tone-mapped LDR images on the context: environmental factors, display parameters, and image content itself. Based on the results of subjective tests, it proposes to extend JPEG file format, the most popular image format, in a backward compatible manner to deal with HDR images also. An architecture to achieve such backward compatibility with JPEG is proposed. A simple implementation of lossy compression demonstrates the efficiency of the proposed architecture compared with the state-of-the-art HDR image compression.

  1. High dose compressive loads attenuate bone mineral loss in humans with spinal cord injury

    Science.gov (United States)

    Dudley-Javoroski, S.; Saha, P. K.; Liang, G.; Li, C.; Gao, Z.

    2012-01-01

    Summary People with spinal cord injury (SCI) lose bone and muscle integrity after their injury. Early doses of stress, applied through electrically induced muscle contractions, preserved bone density at high-risk sites. Appropriately prescribed stress early after the injury may be an important consideration to prevent bone loss after SCI. Introduction Skeletal muscle force can deliver high compressive loads to bones of people with spinal cord injury (SCI). The effective osteogenic dose of load for the distal femur, a chief site of fracture, is unknown. The purpose of this study is to compare three doses of bone compressive loads at the distal femur in individuals with complete SCI who receive a novel stand training intervention. Methods Seven participants performed unilateral quadriceps stimulation in supported stance [150% body weight (BW) compressive load—“High Dose” while opposite leg received 40% BW—“Low Dose”]. Five participants stood passively without applying quadriceps electrical stimulation to either leg (40% BW load—“Low Dose”). Fifteen participants performed no standing (0% BW load—“Untrained”) and 14 individuals without SCI provided normative data. Participants underwent bone mineral density (BMD) assessment between one and six times over a 3-year training protocol. Results BMD for the High Dose group significantly exceeded BMD for both the Low Dose and the Untrained groups (p0.05), indicating that BMD for participants performing passive stance did not differ from individuals who performed no standing. High-resolution CT imaging of one High Dose participant revealed 86% higher BMD and 67% higher trabecular width in the High Dose limb. Conclusion Over 3 years of training, 150% BW compressive load in upright stance significantly attenuated BMD decline when compared to passive standing or to no standing. High-resolution CT indicated that trabecular architecture was preserved by the 150% BW dose of load. PMID:22187008

  2. Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression

    Science.gov (United States)

    Laun, Matthew C. (Inventor)

    2016-01-01

    Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.

  3. Pulse Compression of Phase-matched High Harmonic Pulses from a Time-Delay Compensated Monochromator

    Directory of Open Access Journals (Sweden)

    Ito Motohiko

    2013-03-01

    Full Text Available Pulse compression of single 32.6-eV high harmonic pulses from a time-delay compensated monochromator was demonstrated down to 11±3 fs by compensating the pulse front tilt. The photon flux was intensified up to 5.7×109 photons/s on target by implementing high harmonic generation under a phase matching condition in a hollow fiber used for increasing the interaction length.

  4. High mass-resolution electron-ion-ion coincidence measurements on core-excited organic molecules

    CERN Document Server

    Tokushima, T; Senba, Y; Yoshida, H; Hiraya, A

    2001-01-01

    Total electron-ion-ion coincidence measurements on core excited organic molecules have been carried out with high mass resolution by using multimode (reflectron/linear) time-of-flight mass analyzer. From the ion correlation spectra of core excited CH sub 3 OH and CD sub 3 OH, the reaction pathway to form H sub 3 sup + (D sub 3 sup +) is identified as the elimination of three H (D) atoms from the methyl group, not as the inter-group (-CH sub 3 and -OH) interactions. In a PEPIPICO spectrum of acetylacetone (CH sub 3 COCH sub 2 COCH sub 3) measured by using a reflectron TOF, correlations between ions up to mass number 70 with one-mass resolution was recorded.

  5. Effects of high-frequency emphasis and compression time constants on speech intelligibility in noise.

    Science.gov (United States)

    van Toor, Thijs; Verschuure, Hans

    2002-10-01

    The objectives of the study were to evaluate the effect of different settings with regard to speech intelligibility in noise both objectively and subjectively and thus determine a favoured setting of compression time parameters, pre-set program (high-frequency emphasis) or combination for each individual user in a prospective study. Another objective was to evaluate the relationship between patient characteristics (e.g. slope of hearing loss) and favoured settings. In total, 38 subjects divided over five audiological centres were fitted with the Philips Spaceline D71-40 BTE digital hearing aid. Subjects were asked to compare three predefined compression algorithms with different time constants, slow (indicated by the manufacturer as AVC), intermediate (NORMAL) and fast (SYLLABIC) over two 4-week periods using the intermediate setting in both comparisons and randomizing over the fast and slow conditions. A randomization determined whether a subject started with the comfort-oriented pre-set program (AUTO) or the speech intelligibility-oriented setting with high-frequency emphasis (SPIN). In a third 4-week period, the pre-sets AUTO and SPIN were compared using the setting of the compression time constants that gave the best results during the first two periods. Comparisons were made using a standard speech-in-noise test with three types of noise: continuous speaker noise, modulated ICRA-4 noise, and car noise. The patients were also asked to fill in a Dutch translation and adaptation of the APHAB questionnaire to indicate their impression of performance. The results indicate that no compression algorithm, pre-set or combination is favoured overall. The largest improvement in speech-in-noise scores was found with syllabic compression. The advantageous effect of high-frequency emphasis after optimization of compression timing is small. The APHAB showed that users tend to prefer the SPIN setting. We found no relationship between favoured compression or pre-set and the

  6. Formation of high intensity ion beams with ballistic focusing

    Science.gov (United States)

    Koval, T. V.; Ryabchikov, A. I.; Shevelev, A. E.; Kim, An Tran My; Tarakanov, V. P.

    2017-11-01

    This investigation presents the results of experimental investigation and theoretical simulations of the influence of plasma and negative bias parameters on formation, transportation and focusing of high intensity ion beams of titanium and nitrogen (with an ion current density up to 1 A/cm2 and pulsed power density up to 2.6 kW/cm2). It was shown that the conditions of space charge neutralization of the focusing beam have a significant influence on the distribution and magnitude of the ion current at the collector.

  7. Compression of fiber supercontinuum pulses to the Fourier-limit in a high-numerical-aperture focus

    OpenAIRE

    Tu, Haohua; Liu, Yuan; Turchinovich, Dmitry; Boppart, Stephen A.

    2011-01-01

    A multiphoton intrapulse interference phase scan (MIIPS) adaptively and automatically compensates the combined phase distortion from a fiber supercontinuum source, a spatial light modulator pulse shaper, and a high-NA microscope objective, allowing Fourier-transform-limited compression of the supercontinuum pulses at the focus of the objective. A second-harmonic-generation-based method is employed to independently validate the transform-limited compression. The compressed pulses at the focus ...

  8. Advanced approaches to high intensity laser-driven ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Henig, Andreas

    2010-04-26

    Since the pioneering work that was carried out 10 years ago, the generation of highly energetic ion beams from laser-plasma interactions has been investigated in much detail in the regime of target normal sheath acceleration (TNSA). Creation of ion beams with small longitudinal and transverse emittance and energies extending up to tens of MeV fueled visions of compact, laser-driven ion sources for applications such as ion beam therapy of tumors or fast ignition inertial con finement fusion. However, new pathways are of crucial importance to push the current limits of laser-generated ion beams further towards parameters necessary for those applications. The presented PhD work was intended to develop and explore advanced approaches to high intensity laser-driven ion acceleration that reach beyond TNSA. In this spirit, ion acceleration from two novel target systems was investigated, namely mass-limited microspheres and nm-thin, free-standing diamond-like carbon (DLC) foils. Using such ultrathin foils, a new regime of ion acceleration was found where the laser transfers energy to all electrons located within the focal volume. While for TNSA the accelerating electric field is stationary and ion acceleration is spatially separated from laser absorption into electrons, now a localized longitudinal field enhancement is present that co-propagates with the ions as the accompanying laser pulse pushes the electrons forward. Unprecedented maximum ion energies were obtained, reaching beyond 0.5 GeV for carbon C{sup 6+} and thus exceeding previous TNSA results by about one order of magnitude. When changing the laser polarization to circular, electron heating and expansion were shown to be efficiently suppressed, resulting for the first time in a phase-stable acceleration that is dominated by the laser radiation pressure which led to the observation of a peaked C{sup 6+} spectrum. Compared to quasi-monoenergetic ion beam generation within the TNSA regime, a more than 40 times

  9. High-energy synchrotron X-ray radiography of shock-compressed materials

    Science.gov (United States)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  10. Formation of compressed flat electron beams with high transverse-emittance ratios

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J. [Fermilab; Institute of Fluid Physics, CAEP, China; Piot, P. [Northern Illinois University; Fermilab; Mihalcea, D. [Northern Illinois University; Prokop, C. R. [Northern Illinois University

    2014-08-01

    Flat beams—beams with asymmetric transverse emittances—have important applications in novel light-source concepts and advanced-acceleration schemes and could possibly alleviate the need for damping rings in lepton colliders. Over the last decade, a flat beam generation technique based on the conversion of an angular-momentum-dominated beam was proposed and experimentally tested. In this paper we explore the production of compressed flat beams. We especially investigate and optimize the flat beam transformation for beams with substantial fractional energy spread. We use as a simulation example the photoinjector of Fermilab’s Advanced Superconducting Test Accelerator. The optimizations of the flat beam generation and compression at Advanced Superconducting Test Accelerator were done via start-to-end numerical simulations for bunch charges of 3.2 nC, 1.0 nC, and 20 pC at ~37 MeV. The optimized emittances of flat beams with different bunch charges were found to be 0.25 μm (emittance ratio is ~400), 0.13 μm, 15 nm before compression, and 0.41 μm, 0.20 μm, 16 nm after full compression, respectively, with peak currents as high as 5.5 kA for a 3.2-nC flat beam. These parameters are consistent with requirements needed to excite wakefields in asymmetric dielectric-lined waveguides or produce significant photon flux using small-gap micro-undulators.

  11. High dose-rate irradiation of materials with pulsed ion beams at NDCX-II

    Science.gov (United States)

    Seidl, Peter; Treffert, F.; Ji, Q.; Ludewigt, B.; Persaud, A.; Kong, X.; de Leon, S. J.; Dowling, E.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Stepanov, A.; Gilson, E. P.; Kaganovich, I. D.

    2017-10-01

    Charged particle radiation effects in materials is important for the design of fusion plasma facing components. Also, radiation effects in semiconductor devices are of interest for many applications such as detectors and space electronics. We present results from radiation effects studies with intense pulses of helium ions that impinged on thin samples at the induction linac at Berkeley Lab (Neutralized Drift Compression Experiment-II). Intense bunches of 1.2 MeV He+ ions with peak currents of 2 A, 1-mm beam spot radius and 2-30 ns FWHM duration create controlled high instantaneous dose rates enabling the exploration of collective damage effects. We use in-situ diagnostics to monitor transient effects due to rapid heating and the ionization and damage cascade dynamics. For tin, single pulses deposit sufficient energy in the foil to drive phase transitions. A new Thomson parabola to measures ion energy loss and charge state distributions following transmission of a few micron thick samples. In silicon, ion pulses induce free electron densities of order 1021 cm-3. Supported by the Office of Science of the US DOE under contracts DE-AC0205CH11231, DE-AC52-07NA27344 and DE-AC02-09CH11466 and by the China Scholarship Council.

  12. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  13. Ion Based High-Temperature Pressure Sensor

    National Research Council Canada - National Science Library

    Zdenek, Jeffrey S; Anthenien, Ralph A

    2004-01-01

    .... The environment encountered in such engines necessitates high temperature and durable (vibration resistant) devices. Traditional pressure sensors can be used, however thermal insulating materials must be used to protect the diaphragm...

  14. Physical and chemical transformations of highly compressed carbon dioxide at bond energies.

    Science.gov (United States)

    Yoo, Choong-Shik

    2013-06-07

    Carbon dioxide exhibits a richness of high-pressure polymorphs with a great diversity in intermolecular interaction, chemical bonding, and crystal structures. It ranges from typical molecular solids to fully extended covalent solids with crystal structures similar to those of SiO2. These extended solids of carbon dioxide are fundamentally new materials exhibiting interesting optical nonlinearity, low compressibility and high energy density. Furthermore, the large disparity in chemical bonding between the extended network and molecular structures results in a broad metastability domain for these phases to room temperature and almost to ambient pressure and thereby offers enhanced opportunities for novel materials developments. Broadly speaking, these molecular-to-non-molecular transitions occur due to electron delocalization manifested as a rapid increase in electron kinetic energy at high density. The detailed mechanisms, however, are more complex with phase metastabilities, path-dependent phases and phase boundaries, and large lattice strains and structural distortions - all of which are controlled by well beyond thermodynamic constraints to chemical kinetics associated with the governing phases and transitions. As a result, the equilibrium phase boundary is difficult to locate precisely (experimentally or theoretically) and is often obscured by the presence of metastable phases (ordered or disordered). This paper will review the pressure-induced transformations observed in highly compressed carbon dioxide and present chemistry perspectives on those molecular-to-non-molecular transformations that can be applied to other low-Z molecular solids at Mbar pressures where the compression energy rivals the chemical bond energies.

  15. Research on testing method of resin sand high temperature compressive strength

    Directory of Open Access Journals (Sweden)

    Peng Wan

    2016-09-01

    Full Text Available High temperature compressive strength is one of the most important performances of resin sand; its value directly concerns the quality of castings. In order to seek the best testing method of resin sand high temperature compressive strength, a self-developed instrument was used to carry out experiments, and the sample shape and size were designed and studied. The results show that a hollow cylinder sample can reflect the strength difference of different resin sands better than a solid cylinder sample, and its data is stable. The experiments selected フ20/5】30 mm as the size of the hollow cylinder samples. The high temperature compressive strengths of phenol-formaldehyde resin coated sand, furan resin self-setting sand, and TEA resin sand were each tested. For the resin sand used for cast steel and cast iron, 1,000 ìC was selected as the test temperature; for the resin sand used for cast non-ferrous alloy, 800 ìC was selected as the test temperature; and for all the resin sand samples, 1 min was selected as the holding time. This testing method can truthfully reflect the high temperature performance of three kinds of resin sand; it is reproducible, and the variation coefficients of test values are under 10%.

  16. Photorecombination studies of highly charged tungsten ions at Shanghai EBIT

    Science.gov (United States)

    Tu, B.; Xiao, J.; Yao, K.; Wang, X.; Shen, Y.; Yang, Y.; Lu, D.; Huang, L.; Zhen, C.; Fu, Y.; Wei, B.; Hutton, R.; Zou, Y.

    2017-11-01

    In this paper, we report studies on photorecombination (PR) processes for highly charged W ions. The experiment was performed at Shanghai electron beam ion trap by employing a fast electron beam-energy scanning technique. The KLL dielectronic recombination (DR) resonance strengths for He- up to O-like W ions were determined. The strong interference effect between DR and radiative recombination (RR) was observed and the Fano factor, which measures the interference degree, was determined for the main resonances of ground state He-, Be-, B-, C-, N-, and O-like W ions. In addition, we show experimentally that an autoionizing state can have both Fano and Lorentzian behavior naturally, depending on the processes involved. A fully relativistic configuration interaction method implemented in the flexible atomic code was employed to calculate DR, RR processes and also the inference effect.

  17. High intensity ion beams in rf undulator linac

    Directory of Open Access Journals (Sweden)

    E. S. Masunov

    2008-07-01

    Full Text Available The possibility of using a radio frequency undulator field to accelerate a high intensity ion beam in a linac is discussed. Such an accelerator can be realized using the periodical interdigital H-type resonator structure. The accelerating force is produced by an electric field which is a combination of two or more spatial harmonics, none of them being synchronous with the ion beam. The value of this force is proportional to the squared charge. The equations of motion in Hamiltonian form are derived by means of smooth approximation. The analysis of the 3D effective potential function allows finding the conditions of the beam focusing and acceleration. Two ways to increase ion beam intensity are considered: (i to enlarge beam cross section; (ii to neutralize the beam space charge by accelerating ions with opposite charge signs within the same bunch. The basic results are confirmed by a numerical simulation.

  18. Influence of Different Drying Conditions on High Strength Concrete Compressive Strength

    Directory of Open Access Journals (Sweden)

    M. Safan

    2001-01-01

    Full Text Available The influence of different drying conditions on the compressive strength and strength development rates of high strength concrete up to an age of 28 days was evaluated. Two HSC mixes with and without silica fume addition were used to cast cubes of 10 cm size. The cubes were stored in different drying conditions until the age of testing at 3, 7, 28 days.

  19. Cold highly charged ions in a cryogenic Paul trap

    DEFF Research Database (Denmark)

    Versolato, O.O.; Schwarz, M.; Windberger, A.

    2013-01-01

    Narrow optical transitions in highly charged ions (HCIs) are of particular interest for metrology and fundamental physics, exploiting the high sensitivity of HCIs to new physics. The highest sensitivity for a changing fine structure constant ever predicted for a stable atomic system is found in Ir...

  20. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  1. High-power multimode X-band rf pulse compression system for future linear colliders

    Directory of Open Access Journals (Sweden)

    Sami G. Tantawi

    2005-04-01

    Full Text Available We present a multimode X-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC. The NLC main linac operating frequency is 11.424 GHz. A single NLC rf unit is required to produce 400 ns pulses with 475 MW of peak power. Each rf unit should power approximately 5 m of accelerator structures. The rf unit design consists of two 75 MW klystrons and a dual-moded resonant-delay-line pulse compression system that produces a flat output pulse. The pulse compression system components are all overmoded, and most components are designed to operate with two modes. This approach allows high-power-handling capability while maintaining a compact, inexpensive system. We detail the design of this system and present experimental cold test results. We describe the design and performance of various components. The high-power testing of the system is verified using four 50 MW solenoid-focused klystrons run off a common 400 kV solid-state modulator. The system has produced 400 ns rf pulses of greater than 500 MW. We present the layout of our system, which includes a dual-moded transmission waveguide system and a dual-moded resonant line (SLED-II pulse compression system. We also present data on the processing and operation of this system, which has set high-power records in coherent and phase controlled pulsed rf.

  2. Highly compressible reduced graphene oxide/polypyrrole/MnO2 aerogel electrodes meeting the requirement of limiting space

    Science.gov (United States)

    Lv, Peng; Tang, Xun; Yuan, Jiajiao; Ji, Chenglong

    2017-11-01

    Highly compressible electrodes are in high demand in volume-restricted energy storage devices. Superelastic reduced graphene oxide (rGO) aerogel with attractive characteristics are proposed as the promising skeleton for compressible electrodes. Herein, a ternary aerogel was prepared by successively electrodepositing polypyrrole (PPy) and MnO2 into the superelastic rGO aerogel. In the rGO/PPy/MnO2 aerogel, rGO aerogel provides the continuously conductive network; MnO2 is mainly responsible for pseudo reactions; the middle PPy layer not only reduces the interface resistance between rGO and MnO2, but also further enhanced the mechanical strength of rGO backbone. The synergistic effect of the three components leads to excellent performances including high specific capacitance, reversible compressibility, and extreme durability. The gravimetric capacitance of the compressible rGO/PPy/MnO2 aerogel electrodes reaches 366 F g‑1 and can retain 95.3% even under 95% compressive strain. And a volumetric capacitance of 138 F cm‑3 is achieved, which is much higher than that of other rGO-based compressible electrodes. This volumetric capacitance value can be preserved by 85% after 3500 charge/discharge cycles with various compression conditions. This work will pave the way for advanced applications in the area of compressible energy-storage devices meeting the requirement of limiting space.

  3. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-01

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K+ and SCN- ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  4. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network.

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-28

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K(+) and SCN(-) ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  5. Highly Charged Ions in Rare Earth Permanent Magnet Penning Traps

    CERN Document Server

    Guise, Nicholas D; Tan, Joseph N

    2013-01-01

    A newly constructed apparatus at the National Institute of Standards and Technology (NIST) is designed for the isolation, manipulation, and study of highly charged ions. Highly charged ions are produced in the NIST electron-beam ion trap (EBIT), extracted through a beamline that selects a single mass/charge species, then captured in a compact Penning trap. The magnetic field of the trap is generated by cylindrical NdFeB permanent magnets integrated into its electrodes. In a room-temperature prototype trap with a single NdFeB magnet, species including Ne10+ and N7+ were confined with storage times of order 1 second, showing the potential of this setup for manipulation and spectroscopy of highly charged ions in a controlled environment. Ion capture has since been demonstrated with similar storage times in a more-elaborate Penning trap that integrates two coaxial NdFeB magnets for improved B-field homogeneity. Ongoing experiments utilize a second-generation apparatus that incorporates this two-magnet Penning tra...

  6. Improved design for high resolution electrospray ionization ion mobility spectrometry.

    Science.gov (United States)

    Jafari, M T

    2009-03-15

    An improved design for high resolution electrospray ionization ion mobility spectrometry (ESI-IMS) was developed by making some salient modifications to the IMS cell and its performance was investigated. To enhance desolvation of electrospray droplets at high sample flow rates in this new design, volume of the desolvation region was decreased by reducing its diameter and the entrance position of the desolvation gas was shifted to the end of the desolvation region (near the ion gate). In addition, the ESI source (both needle and counter electrode) was positioned outside of the heating oven of the IMS. This modification made it possible to use the instrument at higher temperatures, and preventing needle clogging in the electrospray process. The ion mobility spectra of different chemical compounds were obtained. The resolving power and resolution of the instrument were increased by about 15-30% relative to previous design. In this work, the baseline separation of the two adjacent ion peaks of morphine and those of codeine was achieved for the first time with resolutions of 1.5 and 1.3, respectively. These four ion peaks were well separated from each other using carbon dioxide (CO(2)) rather than nitrogen as the drift gas. Finally, the analytical parameters obtained for ethion, metalaxyl, and tributylamine indicated the high performance of the instrument for quantitative analysis.

  7. Effects of High Pressure on Membrane Ion Binding and Transport.

    Science.gov (United States)

    1980-12-31

    AD-AI16 015 CALIFORNIA UNIV BERKELEY DEPT OF PHYSIOLOGY- ANATOMY FIG 6/16 EFFECTS OF HIGH PRESSURE ON MEMBRANE ION BINDING AND TRANSPORT.(U) DEC 80 R...ION BIND.NG AID TPANSPOFT (N)014-7 1-C-0482) 1Fobert I. 1.. cey, Ph.D. a v] Da iel M. F zan, Ph.D. Department of Ph ,sioloy- Anatomy unriveorsity o...given to Tra"uble’s theory . C. Develonrment of a High Pressure Zton-Flow Realization of the goals outlined in this project lenends on the availa- bility

  8. Production technology for high efficiency ion implanted solar cells

    Science.gov (United States)

    Kirkpatrick, A. R.; Minnucci, J. A.; Greenwald, A. C.; Josephs, R. H.

    1978-01-01

    Ion implantation is being developed for high volume automated production of silicon solar cells. An implanter designed for solar cell processing and able to properly implant up to 300 4-inch wafers per hour is now operational. A machine to implant 180 sq m/hr of solar cell material has been designed. Implanted silicon solar cells with efficiencies exceeding 16% AM1 are now being produced and higher efficiencies are expected. Ion implantation and transient processing by pulsed electron beams are being integrated with electrostatic bonding to accomplish a simple method for large scale, low cost production of high efficiency solar cell arrays.

  9. Compressive Sensing in High-resolution 3D SAR Tomography of Urban Scenarios

    Directory of Open Access Journals (Sweden)

    Liao Ming-sheng

    2015-04-01

    Full Text Available In modern high resolution SAR data, due to the intrinsic side-looking geometry of SAR sensors, layover and foreshortening issues inevitably arise, especially in dense urban areas. SAR tomography provides a new way of overcoming these problems by exploiting the back-scattering property for each pixel. However, traditional non-parametric spectral estimators, e.g. Truncated Singular Value Decomposition (TSVD, are limited by their poor elevation resolution, which is not comparable to the azimuth and slant-range resolution. In this paper, the Compressive Sensing (CS approach using Basis Pursuit (BP and TWo-step Iterative Shrinkage/Thresholding (TWIST are introduced. Experimental studies with real spotlight-mode TerraSAR-X dataset are carried out using both BP and TWIST, to demonstrate the merits of compressive sensing approaches in terms of robustness, computational efficiency, and super-resolution capability.

  10. Efficient High-Dimensional Entanglement Imaging with a Compressive-Sensing Double-Pixel Camera

    Directory of Open Access Journals (Sweden)

    Gregory A. Howland

    2013-02-01

    Full Text Available We implement a double-pixel compressive-sensing camera to efficiently characterize, at high resolution, the spatially entangled fields that are produced by spontaneous parametric down-conversion. This technique leverages sparsity in spatial correlations between entangled photons to improve acquisition times over raster scanning by a scaling factor up to n^{2}/log⁡(n for n-dimensional images. We image at resolutions up to 1024 dimensions per detector and demonstrate a channel capacity of 8.4 bits per photon. By comparing the entangled photons’ classical mutual information in conjugate bases, we violate an entropic Einstein-Podolsky-Rosen separability criterion for all measured resolutions. More broadly, our result indicates that compressive sensing can be especially effective for higher-order measurements on correlated systems.

  11. Experimental Study of Confined Low-, Medium- and High-Strength Concrete Subjected to Concentric Compression

    Directory of Open Access Journals (Sweden)

    Antonius

    2012-11-01

    Full Text Available An experimental study of 23 low-, medium- and high-strength concrete columns is presented in this paper. Square-confined concrete columns without longitudinal reinforcement were designed, and tested under concentric axial compression. The columns were made of concrete with a compressive strength ranging between 30 MPa and 70 MPa. The test parameters in the study are concrete compressive strengths and confining steel properties, i.e. spacing, volumetric ratios and configurations. The effects of these parameters on the strength and ductility of square-confined concrete were evaluated. Of the specimens tested in this study, the columns made with higher-strength concrete produced less strength enhancement and ductility than those with lower-strength concrete. The steel configurations were found to have an important role in governing the strength and ductility of the confined high-strength concrete. Moreover, several models of strength enhancement for confined concrete available in the literature turned out to be quite accurate in predicting the experimental results.

  12. Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction.

    Science.gov (United States)

    Motaal, Abdallah G; Coolen, Bram F; Abdurrachim, Desiree; Castro, Rui M; Prompers, Jeanine J; Florack, Luc M J; Nicolay, Klaas; Strijkers, Gustav J

    2013-04-01

    We introduce a new protocol to obtain very high-frame-rate cinematographic (Cine) MRI movies of the beating mouse heart within a reasonable measurement time. The method is based on a self-gated accelerated fast low-angle shot (FLASH) acquisition and compressed sensing reconstruction. Key to our approach is that we exploit the stochastic nature of the retrospective triggering acquisition scheme to produce an undersampled and random k-t space filling that allows for compressed sensing reconstruction and acceleration. As a standard, a self-gated FLASH sequence with a total acquisition time of 10 min was used to produce single-slice Cine movies of seven mouse hearts with 90 frames per cardiac cycle. Two times (2×) and three times (3×) k-t space undersampled Cine movies were produced from 2.5- and 1.5-min data acquisitions, respectively. The accelerated 90-frame Cine movies of mouse hearts were successfully reconstructed with a compressed sensing algorithm. The movies had high image quality and the undersampling artifacts were effectively removed. Left ventricular functional parameters, i.e. end-systolic and end-diastolic lumen surface areas and early-to-late filling rate ratio as a parameter to evaluate diastolic function, derived from the standard and accelerated Cine movies, were nearly identical. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Soliton compression to few-cycle pulses with a high quality factor by engineering cascaded quadratic nonlinearities

    DEFF Research Database (Denmark)

    Zeng, Xianglong; Guo, Hairun; Zhou, Binbin

    2012-01-01

    We propose an efficient approach to improve few-cycle soliton compression with cascaded quadratic nonlinearities by using an engineered multi-section structure of the nonlinear crystal. By exploiting engineering of the cascaded quadratic nonlinearities, in each section soliton compression...... with a low effective order is realized, and high-quality few-cycle pulses with large compression factors are feasible. Each subsequent section is designed so that the compressed pulse exiting the previous section experiences an overall effective self-defocusing cubic nonlinearity corresponding to a modest...... soliton order, which is kept larger than unity to ensure further compression. This is done by increasing the cascaded quadratic nonlinearity in the new section with an engineered reduced residual phase mismatch. The low soliton orders in each section ensure excellent pulse quality and high efficiency...

  14. High Affinity Binding of Indium and Ruthenium Ions by Gastrins.

    Directory of Open Access Journals (Sweden)

    Graham S Baldwin

    Full Text Available The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd of 3.3 x 10-7 and 1.1 x 10-6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10-15 and 1.7 x 10-7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10-13 and 1.2 x 10-5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0-3.3 Å, the Ru complex clearly demonstrated a short range Ru-Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy.

  15. High Affinity Binding of Indium and Ruthenium Ions by Gastrins.

    Science.gov (United States)

    Baldwin, Graham S; George, Graham N; Pushie, M Jake

    2015-01-01

    The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd) of 3.3 x 10-7 and 1.1 x 10-6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10-15 and 1.7 x 10-7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10-13 and 1.2 x 10-5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0-3.3 Å, the Ru complex clearly demonstrated a short range Ru-Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy.

  16. Effects of bandwidth, compression speed, and gain at high frequencies on preferences for amplified music.

    Science.gov (United States)

    Moore, Brian C J

    2012-09-01

    This article reviews a series of studies on the factors influencing sound quality preferences, mostly for jazz and classical music stimuli. The data were obtained using ratings of individual stimuli or using the method of paired comparisons. For normal-hearing participants, the highest ratings of sound quality were obtained when the reproduction bandwidth was wide (55 to 16000 Hz) and ripples in the frequency response were small (less than ± 5 dB). For hearing-impaired participants listening via a simulated five-channel compression hearing aid with gains set using the CAM2 fitting method, preferences for upper cutoff frequency varied across participants: Some preferred a 7.5- or 10-kHz upper cutoff frequency over a 5-kHz cutoff frequency, and some showed the opposite preference. Preferences for a higher upper cutoff frequency were associated with a shallow high-frequency slope of the audiogram. A subsequent study comparing the CAM2 and NAL-NL2 fitting methods, with gains slightly reduced for participants who were not experienced hearing aid users, showed a consistent preference for CAM2. Since the two methods differ mainly in the gain applied for frequencies above 4 kHz (CAM2 recommending higher gain than NAL-NL2), these results suggest that extending the upper cutoff frequency is beneficial. A system for reducing "overshoot" effects produced by compression gave small but significant benefits for sound quality of a percussion instrument (xylophone). For a high-input level (80 dB SPL), slow compression was preferred over fast compression.

  17. Compressive and diametral tensile strength of glass ionomer cements Resistência à compressão e à tração diametral de cimentos de ionômero de vidro

    Directory of Open Access Journals (Sweden)

    Eduardo Bresciani

    2004-12-01

    Full Text Available The aim of this study was to compare, in different periods of time, the compressive and diametral tensile strength of a traditional high viscous glass ionomer cement: Fuji IX (GC Corporation, with two new Brazilian GIC's: Vitro-Molar (DFL and Bioglass R (Biodinamica, all indicated for the Atraumatic Restorative Treatment (ART technique. Fifteen disk specimens (6.0mm diameter x 3.0mm height for the diametral tensile strength (DTS test and fifteen cylindrical specimens (6.0mm diameter x 12.0mm height for the compressive strength (CS test were made of each GIC. Specimens were stored in deionized water at 37º C and 100% of humidity in a stove until testing. Five specimens of each GIC were submitted to CS and DTS test in each period, namely 1 hour, 24 hours and 7 days. The specimens were tested in a testing machine (Emic at a crosshead speed of 1.0mm/min for CS and 0.5mm/min for the DTS test until failure occurred. The data were submitted to two-way ANOVA and Tukey tests (alpha=0.05. The mean CS values ranged from 42.03 to 155.47MPa and means DTS from 5.54 to 13.72 MPa, with test periods from 1h to 7 days. The CS and DTS tests showed no statistically significant difference between Fuji IX and Vitro Molar, except for CS test at 1-hour period. Bioglass R had lowest mean value for CS of the cements tested. In DTS test Bioglass R presented no statistically significant differences when compared with all others tested GICs at 1-hour period and Bioglass R presented no difference at 24-hour and 7-day periods when compared to Vitro-Molar. Further studies to investigate other physical properties such as fracture toughness and wear resistance, as well as chemical composition and biocompatibility, are now needed to better understand the properties of these new Brazilian GIC's.Comparou-se a Resistência à Compressão (RC e à Tração Diametral (TD de um cimento de ionômero de vidro de alta viscosidade [Fuji IX (GC Corporation] e de dois novos cimentos

  18. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale

    OpenAIRE

    Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.

    2016-01-01

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels? performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a com...

  19. Generation of High Quality Laser Accelerated Ion Beams

    OpenAIRE

    Esirkepov, T. Zh.; Bulanov, S. V.; Nishihara, K.; Tajima, T.; Pegoraro, F.; Khoroshkov, V. S.; Mima, K.; Daido, H.; Kato, Y.; Kitagawa, Y.; Nagai, K.; Sakabe, S.

    2002-01-01

    In order to achieve a high quality, i. e. monoergetic, intense ion beam, we propose the use of a double layer target. The first layer, at the target front, consists of high-Z atoms, while the second (rear) layer is a thin coating of low-Z atoms. The high quality proton beams from the double layer target, irradiated by an ultra-intense laser pulse, are demonstrated with three dimensional Particle-in-Cell simulations.

  20. Influence of austenitic orientation on martensitic transformations in a compressed high manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.-Y. [School of Materials Science and Engineering, Xue Yuan Rd. 30, 100083, Beijing (China); Yang, P., E-mail: yangp@mater.ustb.edu.cn [School of Materials Science and Engineering, Xue Yuan Rd. 30, 100083, Beijing (China); Meng, L.; Lu, F.-Y. [School of Materials Science and Engineering, Xue Yuan Rd. 30, 100083, Beijing (China)

    2011-08-18

    Highlights: > Parent orientation affects product kinetics, variant, size and orientation. > Martensite, like austenite twinning, forms fastest in compressed <1 0 0> austenite. > The only one martensite variant formed in <1 0 0> austenite leads to grain coarsening. > Both transformation and deformation contribute to final <1 0 0> texture in martensite. - Abstract: High manganese TRIP/TWIP steels contain two types of martensite and the morphology, size, variant selection and texture of both types of martensite are influenced by the parent austenite grain orientation. In the present paper the TRIP effect was investigated in a compressed high manganese steel, focusing on the crystallographic behavior by means of X-ray diffraction and the electron back scatter diffraction (EBSD) technique. It is observed that {gamma} austenite oriented with <1 0 0> close to the compression axis (CA) transformed more easily into {alpha}'-martensite with only one variant, whereas the transformation in CA//<1 1 0> and <1 1 1>-oriented austenite was sluggish and often yielded several variants. This orientation dependency was ascribed to the ease of either deformation twinning or Shockley dislocation movement. Similarly, {epsilon}-M was also observed to transform smoothly into {alpha}'-M in nearly <1 0 0>-oriented austenite and more sluggishly in other austenite grains of other orientations. However, the number of {epsilon}-M variants detected by EBSD was higher than direct observation. In contrast to thermally induced martensitic transformations, the TRIP effect during compression failed to cause grain refinement in the transformed {alpha}'-M. The rapid formation of {alpha}'-M in <1 0 0>-oriented {gamma} promoted the formation of a <1 0 0> texture of the {alpha}'-M, whereas the <1 1 0> texture developed in the austenite at high level of compression led to a restricted transformation into martensite. The reasons for the occurrence of a <1 0 0> texture in the {alpha

  1. Quasi-Static and High Strain Rate Compressive Response of Injection-Molded Cenosphere/HDPE Syntactic Foam

    Science.gov (United States)

    Bharath Kumar, B. R.; Singh, Ashish Kumar; Doddamani, Mrityunjay; Luong, Dung D.; Gupta, Nikhil

    2016-07-01

    High strain rate compressive properties of high-density polyethylene (HDPE) matrix syntactic foams containing cenosphere filler are investigated. Thermoplastic matrix syntactic foams have not been studied extensively for high strain rate deformation response despite interest in them for lightweight underwater vehicle structures and consumer products. Quasi-static compression tests are conducted at 10-4 s-1, 10-3 s-1 and 10-2 s-1 strain rates. Further, a split-Hopkinson pressure bar is utilized for characterizing syntactic foams for high strain rate compression. The compressive strength of syntactic foams is higher than that of HDPE resin at the same strain rate. Yield strength shows an increasing trend with strain rate. The average yield strength values at high strain rates are almost twice the values obtained at 10-4 s-1 for HDPE resin and syntactic foams. Theoretical models are used to estimate the effectiveness of cenospheres in reinforcing syntactic foams.

  2. A high-resolution DNS study of compressible flow past an LPT blade in a cascade

    CERN Document Server

    Ranjan, Rajesh; Narasimha, Roddam

    2016-01-01

    Flow past a low pressure turbine blade in a cascade at $Re \\approx 52000$ and angle of incidence $\\alpha = 45.5^{0}$ is solved using a code developed in-house for solving 3D compressible Navier-Stokes equations. This code, named ANUROOP, has been developed in the finite volume framework using kinetic energy preserving second order central differencing scheme for calculating fluxes, and is compatible with hybrid grids. ANUROOP was verified and validated against several test cases with Mach numbers ranging from 0.1 (Taylor-Green vortex) to 1.5 (compressible turbulent channel flow). The code was found to be robust and stable, and the kinetic energy decay obeys the compressible Navier-Stokes equations. A hybrid grid, with a high resolution hexahedral orthogonal mesh in the boundary layer and unstructured (also hexahedral) elements in the rest of the domain, is used for the turbine blade simulation. Total grid size (160 million) is approximately an order of magnitude higher than in previous simulations for the sam...

  3. Fresh properties and compressive strength of high calcium alkali activated fly ash mortar

    Directory of Open Access Journals (Sweden)

    Eslam Gomaa

    2017-10-01

    Full Text Available This paper reports the fresh properties and compressive strength of high calcium alkali-activated fly ash (AAFA mortar. Two different sources of class C fly ash, with different chemical compositions were used to prepare alkali-activated mortar mixtures. Four different sodium silicate to sodium hydroxide (SS/SH ratios of 0.5, 1.0, 1.5, and 2.5 were used as alkaline activators with a constant sodium hydroxide concentration of 10 M. Two curing regimes were also applied, oven curing at 70 °C for 24 h, and ambient curing at 23 ± 2 °C. The rest time, i.e., the time between casting the mortar cubes and starting the oven curing was 2 h. The results revealed that the setting time, and workability of mortar decreased with increasing the alkali to fly ash ratio, and decreasing the water to fly ash ratio. The optimum sodium silicate to sodium hydroxide ratio was 1.0, which showed the highest compressive strength and setting time. An increase of sodium silicate to sodium hydroxide ratio to 2.5 led to a significant reduction in the setting time, and workability of mortar. The 7-day compressive strength of the mortar approached 20.80 MPa for ambient cured regime and 41.10 for oven cured regime.

  4. Influence of Random Inclusion of Coconut Fibres on the Short term Strength of Highly Compressible Clay

    Science.gov (United States)

    Ramani Sujatha, Evangelin; SaiSree, S.; Prabalini, C.; Aysha Farsana, Z.

    2017-07-01

    The choice of natural fibres for soil stabilization provides an economic, safe and eco-friendly alternative to improve the properties of soil. They are an important step forward toward sustainable development. An attempt was made to study the influence of the random addition of untreated coconut fibres on the short term strength of soil, its stress-strain behavior, compaction characteristics and index properties. The soil selected for the study is a highly compressible clay sample with a liquid limit of 52.5 % and plasticity index of 38 %. The soil has no organic content. The study reveals that the compaction curves tend to shift to the right side, indicating more plastic behavior with the addition of fibres. The addition of fibres also reorient the soil structure to a more dispersed fashion. A significant increase in the unconfined compressive strength is also observed. An increase of nearly 51 % in the unconfined compressive strength is observed at 0.75 % coir inclusion. The stress-strain behavior of the soil shows a shift toward more plastic behavior. The mode of failure of the soil specimen is by cracking and with fibre inclusion, length of the failure cracks is restrained as the fibre tends to hold the cracks together, resulting in shorter cracks, with significant bulging of the specimen at failure.

  5. Mechanical response of porcine skin under compression from low to high strain rates

    Science.gov (United States)

    Bo, Chiara; Butler, Ben; Williams, Alun; Brown, Katherine; Proud, William

    2013-06-01

    Uniaxial compression experiments were performed on fresh porcine skin samples at different strain rates to study the stress-strain response. Low strain rate experiments were performed with an Instron 5566, while high strain rates were achieved using a Split Hopkinson Pressure Bar system. Magnesium bars and semiconductor strain gauges were used respectively to maximize the signal transmission from porcine skin to the output bar and to allow the signal measurement. Skin samples were harvested from different area of the animal to investigate the heterogeneity of such material. The experimental results showed that the mechanical response of skin in compression is strongly dependent on the strain rate of loading and on the location from which the samples were collected. Specimens collected from the rump showed a stiffer response compared to samples harvested from the thigh. Finally, a histological analysis of the samples post compression was carried out to examine the extent of tissue damage as a function of strain rate. This work is supported by the Atomic Weapons Establishment, UK and The Royal British Legion Centre for Blast Injury Studies at Imperial College London, UK.

  6. Formation of compressed flat electron beams with high transverse-emittance ratios

    Directory of Open Access Journals (Sweden)

    J. Zhu

    2014-08-01

    Full Text Available Flat beams—beams with asymmetric transverse emittances—have important applications in novel light-source concepts and advanced-acceleration schemes and could possibly alleviate the need for damping rings in lepton colliders. Over the last decade, a flat beam generation technique based on the conversion of an angular-momentum-dominated beam was proposed and experimentally tested. In this paper we explore the production of compressed flat beams. We especially investigate and optimize the flat beam transformation for beams with substantial fractional energy spread. We use as a simulation example the photoinjector of Fermilab’s Advanced Superconducting Test Accelerator. The optimizations of the flat beam generation and compression at Advanced Superconducting Test Accelerator were done via start-to-end numerical simulations for bunch charges of 3.2 nC, 1.0 nC, and 20 pC at ∼37  MeV. The optimized emittances of flat beams with different bunch charges were found to be 0.25  μm (emittance ratio is ∼400, 0.13   μm, 15 nm before compression, and 0.41  μm, 0.20  μm, 16 nm after full compression, respectively, with peak currents as high as 5.5 kA for a 3.2-nC flat beam. These parameters are consistent with requirements needed to excite wakefields in asymmetric dielectric-lined waveguides or produce significant photon flux using small-gap micro-undulators.

  7. Analytical Solutions for the Nonlinear Longitudinal Drift Compression (Expansion) of Intense Charged Particle Beams

    OpenAIRE

    Startsev, Edward A.; Ronald C. Davidson

    2004-01-01

    To achieve high focal spot intensities in heavy ion fusion, the ion beam must be compressed longitudinally by factors of ten to one hundred before it is focused onto the target. The longitudinal compression is achieved by imposing an initial velocity profile tilt on the drifting beam. In this paper, the problem of longitudinal drift compression of intense charged particle beams is solved analytically for the two important cases corresponding to a cold beam, and a pressure-dominated beam, usin...

  8. Synthetic, structural, spectroscopic and theoretical study of a Mn(III)-Cu(II) dimer containing a Jahn-Teller compressed Mn ion

    DEFF Research Database (Denmark)

    Berg, Nelly; Hooper, Thomas N.; Liu, Junjie

    2013-01-01

    The heterobimetallic complex [Cu(II)Mn(III)(L)(2)(py)(4)](ClO(4))·EtOH (1) built using the pro-ligand 2,2'-biphenol (LH(2)), contains a rare example of a Jahn-Teller compressed Mn(III) centre. Dc magnetic susceptibility measurements on 1 reveal a strong antiferromagnetic exchange between the Cu...... anisotropy also correlates well with experiment. A larger cluster anisotropy for the S = 3/2 state compared to the single-ion anisotropy of Mn(III) is rationalised on the basis of orbital mixing and various contributions that arise due to the spin-orbit interaction....

  9. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    Science.gov (United States)

    Zhao, H. Y.; Zhang, J. J.; Jin, Q. Y.; Liu, W.; Wang, G. C.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 1013 W cm-2 in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  10. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    Science.gov (United States)

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  11. Numerical Simulation of High Specific Impulse Ion Thruster Grid System

    Science.gov (United States)

    Nakayama, Yoshinori

    A high specific impulse ion thruster (HiIsp-IT) operated at a voltage of over 10 kV has been studied and the problems of direct ion impingement on the accelerating grid and of production and impingement of charge-exchange ions have been considered. In order to investigate these problems and to facilitate the grid systems design, a three-dimensional particle simulation code that employs an energy compensation method, a simplified pre-sheath definition method, a region sharing method was developed. This code also simulates the production and subsequent motion of charge-exchange ions. Using this code, results obtained quickly using a personal computer are shown to be in good agreement with experimental data associated with: the crossover impingement under low-beam-current condition and the star-shaped pattern of ion beam cross section as it passes through the accelerating grid. It argued that this code is a useful tool for rapid preliminary analysis and design of HiIsp-IT grid systems.

  12. Two-photon processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Jahrsetz, Thorsten

    2015-03-05

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  13. Results of a compression pin alongwith trochanteric external fixation in management of high risk elderly intertrochanteric fractures

    Directory of Open Access Journals (Sweden)

    Aydin Arslan

    2016-01-01

    Conclusions: Treatment of very elderly, high risk patients' with intertrochanteric fractures with external fixation is effective. Compression pin maintained stability better than standard pins after weight bearing, especially for unstable intertrochanteric fractures.

  14. Development of intense high-energy noble gas ion beams from in-terminal ion injector of tandem accelerator using an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M., E-mail: matsuda.makoto@jaea.go.jp [Japan Atomic Energy Agency (JAEA), Tokai Research and Development Center, 2-4 Shirakata-shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Nakanoya, T.; Hanashima, S.; Takeuchi, S. [Japan Atomic Energy Agency (JAEA), Tokai Research and Development Center, 2-4 Shirakata-shirane, Tokai, Naka, Ibaraki 319-1195 (Japan)

    2011-10-21

    An ECRIS-based heavy ion injector was constructed in the high-voltage terminal of JAEA-Tokai Tandem Accelerator to develop new beam species of highly charged noble gas ions. This work was associated with a lot of development to operate the ion source on the 20UR Pelletron high voltage terminal in high pressure SF{sub 6} gas environment. Highly charged ions of N, O, Ne, Ar, Kr and Xe have been accelerated satisfactorily. Operating data integrated during many years long beam delivery service are summarized.

  15. Quality ratings of frequency-compressed speech by participants with extensive high-frequency dead regions in the cochlea.

    Science.gov (United States)

    Salorio-Corbetto, Marina; Baer, Thomas; Moore, Brian C J

    2017-02-01

    The objective was to assess the degradation of speech sound quality produced by frequency compression for listeners with extensive high-frequency dead regions (DRs). Quality ratings were obtained using values of the starting frequency (Sf) of the frequency compression both below and above the estimated edge frequency, fe, of each DR. Thus, the value of Sf often fell below the lowest value currently used in clinical practice. Several compression ratios were used for each value of Sf. Stimuli were sentences processed via a prototype hearing aid based on Phonak Exélia Art P. Five participants (eight ears) with extensive high-frequency DRs were tested. Reductions of sound-quality produced by frequency compression were small to moderate. Ratings decreased significantly with decreasing Sf and increasing CR. The mean ratings were lowest for the lowest Sf and highest CR. Ratings varied across participants, with one participant rating frequency compression lower than no frequency compression even when Sf was above fe. Frequency compression degraded sound quality somewhat for this small group of participants with extensive high-frequency DRs. The degradation was greater for lower values of Sf relative to fe, and for greater values of CR. Results varied across participants.

  16. Numerical study of high-strength concrete column confined with high-strength stirrups under axial compression

    Science.gov (United States)

    Liu, Qinwei; Wang, Nan; Niu, Xin; Cai, Zhe; Wang, Gang

    2018-01-01

    In order to study the deformation and stress distribution of confined concrete, the axial compression behavior of high-strength concrete column confined with high-strength stirrups is simulated through through nonlinear finite element program. The finite element model reflect the confining effect of high-strength stirrups in specimen. The calculated results shown that the deformation of stirrups is not equivalent in the cross section and the longitudinal section and the confined stress and axial stress of concrete is not uniform in the cross section.

  17. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    Science.gov (United States)

    Delle Side, D.; Nassisi, V.; Giuffreda, E.; Velardi, L.; Alifano, P.; Talà, A.; Tredici, S. M.

    2014-07-01

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  18. Structure of High Energy, Heavy Ions in Venus' Upper Ionosphere

    Science.gov (United States)

    Persson, Moa; Futaana, Yoshifumi; Nilsson, Hans; Stenberg Wieser, Gabriella; Hamrin, Maria; Fedorov, Andrei; Barabash, Stas

    2017-04-01

    The solar wind interacts with the atmosphere of Venus, and can reach directly down to the ionosphere. The interaction has previously been studied using the Pioneer Venus mission (PVO) and is now known to cause variations in the density in the ionosphere [Taylor et al., 1980], a transport of ions towards the night side [Knudsen et al., 1980], and an outflow of ions from the atmosphere [Barabash et al., 2007]. Measurements made by PVO showed that the main constituents of Venus ionosphere in the altitude range 150-400 km is the O+ and O2+ ions, where the former dominates from 180 km and higher, and the latter dominates from 180 km down to 150 km [Taylor et al., 1980]. New measurements, made by the Ion Mass Analyzer (IMA) onboard the Venus Express spacecraft, reveal the high-energy (10 eV to 15 keV) plasma characteristics in the ionosphere of Venus. Using the data collected during the low altitude (down to 130 km) pericentre passages during the aerobraking time period, we are able to extract the height profile of the total heavy ion content (O+ and O2+ ions) of Venus ionosphere. The results show two scale heights separated at 200 km; 10 km for 200 km. We interpret the results as two heavy ion components, namely, the O+ ions are dominant for >200 km, while the O2+ is dominant for methods of mass separation, to extract the two ion components of the scale height profiles, (O+ and O2+). First method is to use the moderate mass separation capabilities of the IMA instrument. The individual mass spectra are fitted by two Gaussian curves, representing O+ and O2+, derived from ground calibration information. The second method uses the energy spectrum, which sometimes has two discrete peaks. By assuming the same velocity for different components in the spacecraft reference frame (resulting in different energy for different masses), we can separate the composition. We will discuss the results of the obtained mass separated height profiles.

  19. Application of Orthopedic Dual Sliding Compression Plate (ODSCP) in High Medial Tibial Open Wedge Osteotomies.

    Science.gov (United States)

    Samani, Seyed Salman; Kachooei, Amir Reza; Ebrahimzadeh, Mohammad Hosein; Omidi Kashani, Farzad; Mahdavian Naghashzargar, Reza; Razi, Shiva

    2013-04-01

    Angular deformities about the knee are one of the common disorders. High Tibial osteotomy is a way of correcting the deformity. Although the general agreement is focused toward the open wedge technique, discussion about the type of device is a subject to debate. This current study has attempted to evaluate the results of Orthopedic Dual Sliding Compression Plate (ODSCP) in high medial open wedge osteotomies of the tibia. In this cross-sectional study, 16 patients with genuvarum undergone high medial tibial open wedge osteotomy and fixed by Orthopedic Dual Sliding Compression Plate. At the time of the last follow up visit, Lysholm score was gathered. The mean follow-up time was 9.33 ± 1.87 month. The average age was 45.13 ± 7.25 years. Three patients were male and 13 patients were female. The lysholm score showed a significant difference before and after surgery. The ODSCP has many advantages over the other type of plates. It can help the surgeon to operate with a relaxed mind and it is advisable for high tibial medial open wedge osteotomies.

  20. High intensity metallic ion beam from an ecr ion source using the Mivoc method

    Energy Technology Data Exchange (ETDEWEB)

    Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Leherissier, P.; Lemagnen, F. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Jaffres, P.A. [Institut des Sciences de la Matiere et du Rayonnement, SIMRa, 14 - Cean (France)

    2000-07-01

    The MIVOC method has been successfully used at GANIL to produce a high intensity nickel beam with the ECR4 ion source: 20 {mu}A {sup 58}Ni{sup 11+} at 24 kV extraction voltage. This beam has been maintained for 8 days and accelerated up to 74.5 MeV/u by our cyclotrons with a mean intensity of 0.13 p{mu}A on target. This high intensity, required for experiment, led to the discovery of the doubly magic {sup 48}Ni isotope. Experimental setup, handling and off-line preparation using a residual gas analyzer are described in this report. The ion source behavior, performances and limitations are presented in the case of nickel and iron. The ionization efficiencies have been measured and compared to the oven method usually used at GANIL. (author)

  1. High resolution EUV spectroscopy of xenon ions with a compact electron beam ion trap

    Science.gov (United States)

    Ali, Safdar; Nakamura, Nobuyuki

    2017-09-01

    We performed high resolution extreme ultraviolet (EUV) spectroscopy measurements of highly charged xenon ions with a compact electron beam ion trap. The spectra were recorded with a flat-field grazing incidence spectrometer while varying the electron beam energy between 200 and 890 eV. We measured the wavelengths for several lines of Rh-like Xe9+ - Cd-like Xe6+ and Cu-like Xe25+- Se-like Xe20+ in the range of 150-200 Å with an uncertainty of 0.05 Å. Previously, most of these lines have been reported from EBITs with a wavelength uncertainty of 0.2 Å. Additionally, based on the electron beam energy dependence of the observed spectra we tentatively identified three new lines, which were reported as unidentified lines in the previous studies.

  2. QCD phase diagram : heating or compressing ?

    CERN Multimedia

    Maire, Antonin

    2011-01-01

    The sketch tries to address the question of the difference between heating and compressing the baryonic matter in relativistic heavy-ion collisions, i.e. how one can reach in the laboratory "high" temperature at "low" net baryon density (baryon chemical potential) or "low" temperature at "high" net baryon density.

  3. High Resolution Pulse Compression Imaging Using Super Resolution FM-Chirp Correlation Method (SCM)

    Science.gov (United States)

    Fujiwara, M.; Okubo, K.; Tagawa, N.

    This study addresses the issue of the super-resolution pulse compression technique (PCT) for ultrasound imaging. Time resolution of multiple ultrasonic echoes using the FM-Chirp PCT is limited by the bandwidth of the sweep-frequency. That is, the resolution depends on the sharpness of auto-correlation function. We propose the Super resolution FM-Chirp correlation Method (SCM) and evaluate its performance. This method is based on the multiple signal classification (MUSIC) algorithm. Our simulations were made for the model assuming multiple signals reflected from some scatterers. We confirmed that SCM detects time delay of complicated reflected signals successfully with high resolution.

  4. Extremely high-pressure generation and compression with laser implosion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shigemori, K.; Hironaka, Y.; Nagatomo, H.; Fujioka, S.; Azechi, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Sunahara, A. [Institute for Laser Technology, 2-6 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Kadono, T. [University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555 (Japan); Shimizu, K. [Center for Quantum Science and Technology under Extreme Conditions, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka 560-0831 (Japan)

    2013-05-06

    We have tested a scheme for using laser implosion plasmas to generate pressures in the gigabar (100 TPa) regime. Cone-in-shell targets employed in fast ignition of inertial confinement fusion were irradiated to create a high-pressure source for compression of materials. The imploded plasmas pushed a foil embedded on the tip of a cone. The pressure was estimated from the shock velocity into the material; the shock velocity was obtained from an optical measurement. The measured shock velocity of the foil was above 100 km/s, corresponding to a pressure greater than 1 Gbar.

  5. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-01

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  6. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network.

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-14

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  7. Electron impact ionization of highly charged lithiumlike ions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K L

    1992-10-01

    Electron impact ionization cross sections can provide valuable information about the charge-state and power balance of highly charged ions in laboratory and astrophysical plasmas. In the present work, a novel technique based on x-ray measurements has been used to infer the ionization cross section of highly charged lithiumlike ions on the Livermore electron beam ion trap. In particular, a correspondence is established between an observed x ray and an ionization event. The measurements are made at one energy corresponding to approximately 2.3 times the threshold energy for ionization of lithiumlike ions. The technique is applied to the transition metals between Z=22 (titanium, Ti[sup 19+]) and Z=26 (iron, Fe[sup 23+]) and to Z=56 (barium, Ba[sup 53+]). The results for the transition metals, which have an estimated 17-33% uncertainty, are in good overall agreement with a relativistic distorted-wave calculation. However, less good agreement is found for barium, which has a larger uncertainty. Methods for properly accounting for the polarization in the x-ray intensities and for inferring the charge-state abundances from x-ray observations, which were developed for the ionization measurements, as well as an x-ray model that assists in the proper interpretation of the data are also presented.

  8. Compression limits in cascaded quadratic soliton compression

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw

    2008-01-01

    Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency.......Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency....

  9. Development of ultra-lightweight slurries with high compressive strength for use in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Suzart, J. Walter P. [Halliburton Company, Houston, TX (United States); Farias, A.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Ribeiro, Danilo; Fernandes, Thiago; Santos, Reened [Halliburton Energy Services Aberdeen, Scotland (United Kingdom)

    2008-07-01

    Formations with low fracture gradients or depleted reservoirs often lead to difficult oil well cementing operations. Commonly employed cement slurries (14.0 to 15.8 lb/gal), generate an equivalent circulating density (ECD) higher than the fracture gradient and ultimately lead to formation damage, lost circulation and a decreased top of cement. Given the high price of oil, companies are investing in those and other wells that are difficult to explore. Naturally, lightweight cement slurries are used to reduce the ECD (10.0 to 14.0 lb/gal), using additives to trap water and stabilize the slurry. However, when the density reaches 11.0 lb/gal, the increase in water content may cause a change in characteristics. The focus of this study is extreme cases where it is necessary to employ ultra-lightweight cement slurries (5.5 to 10.0 lb/gal). Foamed slurries have been widely used, and the objective is to set an alternative by developing cement slurries containing uncompressible microspheres, aiming for a density of 7.5 lb/gal as well as high compressive strength. Another benefit in contrast to preparing foamed cement slurries is that there is no requirement for special equipment in the field. Routine laboratory tests such as fluid-loss control, sedimentation, thickening time, free water, compressive strength, and rheology (at room and high temperatures) were performed. Thus, it was concluded that the proposed cement slurries can be used in oil wells. (author)

  10. Sweep and Compressibility Effects on Active Separation Control at High Reynolds Numbers

    Science.gov (United States)

    Seifert, Avi; Pack, LaTunia G.

    2000-01-01

    This paper explores the effects of compressibility, sweep and excitation location on active separation control at high Reynolds numbers. The model, which was tested in a cryogenic pressurized wind tunnel, simulates the upper surface of a 20% thick GlauertGoldschmied type airfoil at zero angle of attack. The flow is fully turbulent since the tunnel sidewall boundary layer flows over the model. Without control, the flow separates at the highly convex area and a large turbulent separation bubble is formed. Periodic excitation is applied to gradually eliminate the separation bubble. Two alternative blowing slot locations as well as the effect of compressibility, sweep and steady suction or blowing were studied. During the test the Reynolds numbers ranged from 2 to 40 million and Mach numbers ranged from 0.2 to 0.7. Sweep angles were 0 and 30 deg. It was found that excitation must be introduced slightly upstream of the separation region regardless of the sweep angle at low Mach number. Introduction of excitation upstream of the shock wave is more effective than at its foot. Compressibility reduces the ability of steady mass transfer and periodic excitation to control the separation bubble but excitation has an effect on the integral parameters, which is similar to that observed in low Mach numbers. The conventional swept flow scaling is valid for fully and even partially attached flow, but different scaling is required for the separated 3D flow. The effectiveness of the active control is not reduced by sweep. Detailed flow field dynamics are described in the accompanying paper.

  11. The creation of strongly coupled plasmas using an intense heavy ion beam: low-entropy compression of hydrogen and the problem of hydrogen metallization

    CERN Document Server

    Tahir, N A; Shutov, A; Varentsov, D; Udrea, S; Hoffmann, Dieter H H; Juranek, H; Redmer, R; Portugues, R F; Lomonosov, I V; Fortov, V E

    2003-01-01

    Intense heavy ion beams deposit energy very efficiently over extended volumes of solid density targets, thereby creating large samples of strongly coupled plasmas. Intense beams of energetic heavy ions are therefore an ideal tool to research this interesting field. It is also possible to design experiments using special beam-target geometries to achieve low-entropy compression of samples of matter. This type of experiments is of particular interest for studying the problem of hydrogen metallization. In this paper we present a design study of such a proposed experiment that will be carried out at the future heavy ion synchrotron facility SIS100, at the Gesellschaft fuer Schwerionenforschung, Darmstadt. This study has been done using a two-dimensional hydrodynamic computer code. The target consists of a solid hydrogen cylinder that is enclosed in a thick shell of lead whose one face is irradiated with an ion beam which has an annular (ring shaped) focal spot. The beam intensity and other parameters are consider...

  12. Letter: High-mass capabilities of positive-ion and negative-ion direct analysis in real time mass spectrometry.

    Science.gov (United States)

    Gross, Jürgen H

    2016-01-01

    Of the ionic liquid 1-butyl-3-methylimidazolium (C(+)) tricyanomethide (A(-)) high-mass cluster ions of both positive ([C(n)A(n-1)](+)) and negative ([C(n-1)A(n)](-)) charge were generated and detected by direct analysis in real time (DART) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS). After optimization of the settings of the DART ionization source and of the mass analyzer ions of m/z values unprecedented in DART-MS were detected. Thus, the upper m/z limits of positive-ion and negative-ion DART- MS were substantially expanded. Negative-ion DART-MS delivered cluster ions up to [C(15)A(16)](-), m/z 3527 (nominal mass of monoisotopic ion), while positive-ion DART-MS even yielded ions up to [C(30)A(29)](+), m/z 6784. The identification of the cluster ions is supported by their accurate mass and exact mass differences corresponding to CA between adjacent cluster ion peaks.

  13. New progress of high current gasdynamic ion source (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga@ipfran.ru; Sidorov, A.; Vodopyanov, A. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., 603950 Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Tarvainen, O.; Koivisto, H.; Kalvas, T. [Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), 40500 Jyvaskyla (Finland)

    2016-02-15

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10{sup 13} cm{sup −3}) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10{sup −4}–10{sup −3} mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.

  14. Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    El-Said, A.S., E-mail: elsaid@kfupm.edu.sa [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Wilhelm, R.A.; Heller, R.; Akhmadaliev, Sh.; Schumann, E. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Sorokin, M. [National Research Centre ’Kurchatov Institute’, Kurchatov Square 1, 123182 Moscow (Russian Federation); Facsko, S. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Trautmann, C. [GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64289 Darmstadt (Germany)

    2016-09-01

    GaP single crystals were irradiated with slow highly charged ions (HCI) using 114 keV {sup 129}Xe{sup (33–40)+} and with various swift heavy ions (SHI) of 30 MeV I{sup 9+} and 374 MeV–2.2 GeV {sup 197}Au{sup 25+}. The irradiated surfaces were investigated by scanning force microscopy (SFM). The irradiations with SHI lead to nanohillocks protruding from the GaP surfaces, whereas no changes of the surface topography were observed after the irradiation with HCI. This result indicates that a potential energy above 38.5 keV is required for surface nanostructuring of GaP. In addition, strong coloration of the GaP crystals was observed after irradiation with SHI. The effect was stronger for higher energies. This was confirmed by measuring an increased extinction coefficient in the visible light region.

  15. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  16. Single stock dynamics on high-frequency data: from a compressed coding perspective.

    Directory of Open Access Journals (Sweden)

    Hsieh Fushing

    Full Text Available High-frequency return, trading volume and transaction number are digitally coded via a nonparametric computing algorithm, called hierarchical factor segmentation (HFS, and then are coupled together to reveal a single stock dynamics without global state-space structural assumptions. The base-8 digital coding sequence, which is capable of revealing contrasting aggregation against sparsity of extreme events, is further compressed into a shortened sequence of state transitions. This compressed digital code sequence vividly demonstrates that the aggregation of large absolute returns is the primary driving force for stimulating both the aggregations of large trading volumes and transaction numbers. The state of system-wise synchrony is manifested with very frequent recurrence in the stock dynamics. And this data-driven dynamic mechanism is seen to correspondingly vary as the global market transiting in and out of contraction-expansion cycles. These results not only elaborate the stock dynamics of interest to a fuller extent, but also contradict some classical theories in finance. Overall this version of stock dynamics is potentially more coherent and realistic, especially when the current financial market is increasingly powered by high-frequency trading via computer algorithms, rather than by individual investors.

  17. Environmentally friendly drive for gas compression applications: enhanced design of high-speed induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Karina Velloso; Pradurat, Jean Francois; Mercier, Jean Charles [Institut National Polytechncique, Lorrain (France). Converteam Motors Div.; Truchot, Patrick [Nancy Universite (France). Equipe de Recherche sur les Processus Innovatifs (ERPI)

    2008-07-01

    Taking into account the key issues faced by gas compressors users, this paper aims to help optimize the choice of the drive equipment as well as the driven equipment, in function of the cost of the whole installation life cycle. The design of the enhanced high-speed induction motor (MGV-Moteuer a Grande Vitesse) represents a technological breakthrough for the industry, it allows the direct coupling to the compressor, without using a gearbox making the system more efficient and reliable. From both micro and macro-economic viewpoints, the high-speed electric driver becomes a more efficient use of natural gas energy resources. This new technology associated with the electric option offers challenging and rewarding work to those responsible for the operation and maintenance of the compressor station. The electric option is not only conceptually viable but has a proven track record that justifies serious consideration as an alternative for reliably powering. Once an operator becomes comfortable with the prospects of motor-driven compression, the analysis of machine options requires only a few new approaches to fairly evaluate the alternatives. The application of this reasoning in projects using compression units is especially opportune, in view of the great variations of operational conditions and environmental issues. (author)

  18. Advanced Electrodes for High Power Li-ion Batteries

    Directory of Open Access Journals (Sweden)

    Christian M. Julien

    2013-03-01

    Full Text Available While little success has been obtained over the past few years in attempts to increase the capacity of Li-ion batteries, significant improvement in the power density has been achieved, opening the route to new applications, from hybrid electric vehicles to high-power electronics and regulation of the intermittency problem of electric energy supply on smart grids. This success has been achieved not only by decreasing the size of the active particles of the electrodes to few tens of nanometers, but also by surface modification and the synthesis of new multi-composite particles. It is the aim of this work to review the different approaches that have been successful to obtain Li-ion batteries with improved high-rate performance and to discuss how these results prefigure further improvement in the near future.

  19. High-Order Ghost-Fluid Method for Compressible Flow in Complex Geometry

    Science.gov (United States)

    Al Marouf, Mohamad; Samtaney, Ravi

    2014-11-01

    We present a high-order embedded boundary method for numerical solutions of the Compressible Navier Stokes (CNS) equations in arbitrary domains. A high-order ghost fluid method based on the PDEs multidimensional extrapolation approach of Aslam (J. Comput. Phys. 2003) is utilized to extrapolate the solution across the fluid-solid interface to impose boundary conditions. A fourth order accurate numerical time integration for the CNS is achieved by fourth order Runge-Kutta scheme, and a fourth order conservative finite volume scheme by McCorquodale & Colella (Comm. in App. Math. & Comput. Sci. 2011) is used to evaluate the fluxes. Resolution at the embedded boundary and high gradient regions is accomplished by applying block-structured adaptive mesh refinement. A number of numerical examples with different Reynolds number for a low Mach number flow over an airfoil and circular cylinder will be presented. Supported by OCRF-CRG grant at KAUST.

  20. Deep Reactive Ion Etching for High Aspect Ratio Microelectromechanical Components

    DEFF Research Database (Denmark)

    Jensen, Søren; Yalcinkaya, Arda Deniz; Jacobsen, S.

    2004-01-01

    A deep reactive ion etch (DRIE) process for fabrication of high aspect ratio trenches has been developed. Trenches with aspect ratios exceeding 20 and vertical sidewalls with low roughness have been demonstrated. The process has successfully been used in the fabrication of silicon-on-insulator (SOI......) released comb drive based resonators and tunable capacitors for MEMS applications. Brief characterizations of the devices are presented....

  1. Progress in quantum electrodynamics theory of highly charged ions

    OpenAIRE

    Volotka, A. V.; Glazov, D. A.; Plunien, G.; Shabaev, V. M.

    2013-01-01

    Recent progress in quantum electrodynamics (QED) calculations of highly charged ions is reviewed. The theoretical predictions for the binding energies, the hyperfine splittings, and the g factors are presented and compared with available experimental data. Special attention is paid to tests of bound-state QED at strong field regime. Future prospects for tests of QED at the strongest electric and magnetic fields as well as for determination of the fine structure constant and the nuclear magnet...

  2. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash

    Science.gov (United States)

    Safiuddin, Md.; Raman, Sudharshan N.; Abdus Salam, Md.; Jumaat, Mohd. Zamin

    2016-01-01

    Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN. PMID:28773520

  3. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash

    Directory of Open Access Journals (Sweden)

    Md. Safiuddin

    2016-05-01

    Full Text Available Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC containing palm oil fuel ash (POFA. The present study has used artificial neural networks (ANN to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70% of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2 for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN.

  4. High bit depth infrared image compression via low bit depth codecs

    DEFF Research Database (Denmark)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    Future infrared remote sensing systems, such as monitoring of the Earth's environment by satellites, infrastructure inspection by unmanned airborne vehicles etc., will require 16 bit depth infrared images to be compressed and stored or transmitted for further analysis. Such systems are equipped...... with low power embedded platforms where image or video data is compressed by a hardware block called the video processing unit (VPU). However, in many cases using two 8-bit VPUs can provide advantages compared with using higher bit depth image compression directly. We propose to compress 16 bit depth...... by an image or video codec with 8 bits per pixel input format. We analyze how the compression parameters for both MSB and LSB images should be chosen to provide the maximum objective quality for a given compression ratio. Finally, we apply the proposed infrared image compression method utilizing JPEG and H...

  5. Strain-tolerant High Capacity Silicon Anodes via Directed Lithium Ion Transport for High Energy Density Lithium-ion Batteries

    Science.gov (United States)

    Goldman, Jason

    2012-02-01

    Energy storage is an essential component of modern technology, with applications including public infrastructure, transportation systems, and consumer electronics. Lithium-ion batteries are the preeminent form of energy storage when high energy / moderate power densities are required. Improvements to lithium-ion battery energy / power density through the adoption of silicon anodes—with approximately an order of magnitude greater gravimetric capacity than traditional carbon-based anodes--have been limited by ˜300% strains during electrochemical lithium insertion which result in short operational lifetimes. In two different systems we demonstrated improvements to silicon-based anode performance via directed lithium ion transport. The first system demonstrated a crystallographic-dependent anisotropic electrochemical lithium insertion in single-crystalline silicon anode microstructures. Exploiting this anisotropy, we highlight model silicon anode architectures that limit the maximum strain during electrochemical lithium insertion. This self-strain-limiting is a result of selecting a specific microstructure design such that during lithiation the anisotropic evolution of strain, above a given threshold, blocks further lithium intercalation. Exemplary design rules have achieved self-strain-limited charging capacities ranging from 677 mAhg-1 to 2833 mAhg-1. A second system with variably encapsulated silicon-based anodes demonstrated greater than 98% of their initial capacity after 130+ cycles. This anode also can operate stably at high energy/power densities. A lithium-ion battery with this anode was able to continuously (dis)charge in 10 minutes, corresponding to a power / energy density of ˜1460 W/kg and ˜243 Wh/kg--up to 780% greater power density and 220% higher energy density than conventional lithium-ion batteries. Anodes were also demonstrated with areal capacities of 12.7 mAh/cm^2, two orders of magnitude greater than traditional thin-film silicon anodes.[4pt

  6. Compressive strength of glass ionomer cements using different specimen dimensions Resistência à compressão de cimentos de ionômero de vidro utilizando-se diferentes tamanhos de corpos-de-prova

    Directory of Open Access Journals (Sweden)

    André Mallmann

    2007-09-01

    Full Text Available The purpose of this study was to evaluate the compressive strength of two glass ionomer cements, a conventional one (Vitro Fil® - DFL and a resin-modified material (Vitro Fil LC® - DFL, using two test specimen dimensions: One with 6 mm in height and 4 mm in diameter and the other with 12 mm in height and 6 mm in diameter, according to the ISO 7489:1986 specification and the ANSI/ADA Specification No. 66 for Dental Glass Ionomer Cement, respectively. Ten specimens were fabricated with each material and for each size, in a total of 40 specimens. They were stored in distilled water for 24 hours and then subjected to a compressive strength test in a universal testing machine (EMIC, at a crosshead speed of 0.5 mm/min. The data were statistically analyzed using the Kruskal-Wallis test (5%. Mean compressive strength values (MPa were: 54.00 ± 6.6 and 105.10 ± 17.3 for the 12 mm x 6 mm sample using Vitro Fil and Vitro Fil LC, respectively, and 46.00 ± 3.8 and 91.10 ± 8.2 for the 6 mm x 4 mm sample using Vitro Fil and Vitro Fil LC, respectively. The resin-modified glass ionomer cement obtained the best results, irrespective of specimen dimensions. For both glass ionomer materials, the 12 mm x 6 mm matrix led to higher compressive strength results than the 6 mm x 4 mm matrix. A higher variability in results was observed when the glass ionomer cements were used in the larger matrices.Este estudo teve como objetivo avaliar a resistência à compressão de dois cimentos de ionômero de vidro, um convencional (Vitro Fil® - DFL e outro modificado por resina (Vitro Fil LC® - DFL, utilizando-se dois tamanhos de amostras: uma com 6 mm de altura e 4 mm de diâmetro e outra com 12 mm de altura e 6 mm de diâmetro, seguindo-se a especificação 7489:1986 da ISO e a especificação n. 66 da ANSI/ADA para Cimento Dental de Ionômero de Vidro, respectivamente. Foram confeccionados 10 corpos-de-prova (CP de cada material para cada tamanho de amostra, totalizando

  7. Methods for compressible fluid simulation on GPUs using high-order finite differences

    Science.gov (United States)

    Pekkilä, Johannes; Väisälä, Miikka S.; Käpylä, Maarit J.; Käpylä, Petri J.; Anjum, Omer

    2017-08-01

    We focus on implementing and optimizing a sixth-order finite-difference solver for simulating compressible fluids on a GPU using third-order Runge-Kutta integration. Since graphics processing units perform well in data-parallel tasks, this makes them an attractive platform for fluid simulation. However, high-order stencil computation is memory-intensive with respect to both main memory and the caches of the GPU. We present two approaches for simulating compressible fluids using 55-point and 19-point stencils. We seek to reduce the requirements for memory bandwidth and cache size in our methods by using cache blocking and decomposing a latency-bound kernel into several bandwidth-bound kernels. Our fastest implementation is bandwidth-bound and integrates 343 million grid points per second on a Tesla K40t GPU, achieving a 3 . 6 × speedup over a comparable hydrodynamics solver benchmarked on two Intel Xeon E5-2690v3 processors. Our alternative GPU implementation is latency-bound and achieves the rate of 168 million updates per second.

  8. Dynamic failure of high energy materials under compression and periodic excitation

    Science.gov (United States)

    Koslowski, Marisol; Grilli, Nicolo; Tanasoiu, Bogdan; Duarte Cordon, Camilo

    2017-06-01

    Polymer bonded explosives consist of high energetic particles in a polymeric binder. When these composites are subjected to heat, impact, friction, shock, or other initiation stimulus, they undergo a rapid chemical change. The sensitivity to initiation depends not only on the amount of energy available in the system but also on the rate at which available energy is released. Therefore, it is of extreme importance to predict the dissipated energy and its rate due to mechanical insults from accurate predictions of the deformation fields including localization, fracture and plasticity. The focus of this work is to study energy dissipation due to fracture and plasticity in high energy particles embeded in a polymer binder using finite elements. Numerical simulations of crack propagation under compressive load and dynamic excitation are performed with a phase field damage model. A systematic study of the energy release rate and initial microstructure is performed to analyze their repercussion on the dissipated energy and initiation. MURI-ONR.

  9. Impact of compression on gas transport in non-woven gas diffusion layers of high temperature polymer electrolyte fuel cells

    Science.gov (United States)

    Froning, Dieter; Yu, Junliang; Gaiselmann, Gerd; Reimer, Uwe; Manke, Ingo; Schmidt, Volker; Lehnert, Werner

    2016-06-01

    Gas transport in non-woven gas diffusion layers of a high-temperature polymer electrolyte fuel cell was calculated with the Lattice Boltzmann method. The underlying micro structure was taken from two sources. A real micro structure was analyzed in the synchrotron under the impact of a compression mask mimicking the channel/rib structure of a flow field. Furthermore a stochastic geometry model based on synchrotron X-ray tomography studies was applied. The effect of compression is included in the stochastic model. Gas transport in these micro structures was simulated and the impact of compression was analyzed. Fiber bundles overlaying the micro structure were identified which affect the homogeneity of the gas flow. There are significant deviations between the impact of compression on effective material properties for this type of gas diffusion layers and the Kozeny-Carman equation.

  10. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale

    Science.gov (United States)

    Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.

    2016-10-01

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties.

  11. Coulomb crystals in a cryogenic Paul trap for sympathetic cooling of molecular ions and highly charged ions

    Science.gov (United States)

    Windberger, A.; Schwarz, M.; Versolato, O. O.; Baumann, T.; Bekker, H.; Schmöger, L.; Hansen, A. K.; Gingell, A. D.; Klosowski, L.; Kristensen, S.; Schmidt, P. O.; Ullrich, J.; Drewsen, M.; Crespo López-Urrutia, J. R.

    2013-03-01

    Electron beam ion traps used for spectroscopy of highly charged ions (HCI) produce a deep trapping potential leading to high temperatures of the stored ions, and thus limiting the achievable spectral resolution. A novel device at the Max-Planck-Institut für Kernphysik, the Cryogenic linear Paul Trap Experiment (CryPTEx), attached to an electron beam ion trap, provides a new experimental platform to overcome these limitations. The trap assembly operates at a temperature of 4 K and offers optical access for quantum manipulation and imaging of the trapped ions. Since forbidden optical transitions in HCI do not support direct laser cooling, sympathetic cooling with Coulomb crystals of singly charged ions such as Be+ or Mg+ will be applied in order to reach the natural linewidth of optical forbidden transitions in HCI of interest. With the added advantage of long ion trapping times resulting from residual gas pressures of H2 at 4 K below 10-15 mbar, CryPTEx has been commissioned in collaboration with the Ion Trap Group in Århus using rovibrationally cooled MgH+ ions. Strong suppression of the black body radiation at the trap center, ion storage times of about 28 hours, and largely enhanced population of the rovibrational ground state were achieved.

  12. Deterministic compressive sampling for high-quality image reconstruction of ultrasound tomography.

    Science.gov (United States)

    Huy, Tran Quang; Tue, Huynh Huu; Long, Ton That; Duc-Tan, Tran

    2017-05-25

    A well-known diagnostic imaging modality, termed ultrasound tomography, was quickly developed for the detection of very small tumors whose sizes are smaller than the wavelength of the incident pressure wave without ionizing radiation, compared to the current gold-standard X-ray mammography. Based on inverse scattering technique, ultrasound tomography uses some material properties such as sound contrast or attenuation to detect small targets. The Distorted Born Iterative Method (DBIM) based on first-order Born approximation is an efficient diffraction tomography approach. One of the challenges for a high quality reconstruction is to obtain many measurements from the number of transmitters and receivers. Given the fact that biomedical images are often sparse, the compressed sensing (CS) technique could be therefore effectively applied to ultrasound tomography by reducing the number of transmitters and receivers, while maintaining a high quality of image reconstruction. There are currently several work on CS that dispose randomly distributed locations for the measurement system. However, this random configuration is relatively difficult to implement in practice. Instead of it, we should adopt a methodology that helps determine the locations of measurement devices in a deterministic way. For this, we develop the novel DCS-DBIM algorithm that is highly applicable in practice. Inspired of the exploitation of the deterministic compressed sensing technique (DCS) introduced by the authors few years ago with the image reconstruction process implemented using l 1 regularization. Simulation results of the proposed approach have demonstrated its high performance, with the normalized error approximately 90% reduced, compared to the conventional approach, this new approach can save half of number of measurements and only uses two iterations. Universal image quality index is also evaluated in order to prove the efficiency of the proposed approach. Numerical simulation results

  13. A high resolution ion microscope for cold atoms

    Science.gov (United States)

    Stecker, Markus; Schefzyk, Hannah; Fortágh, József; Günther, Andreas

    2017-04-01

    We report on an ion-optical system that serves as a microscope for ultracold ground state and Rydberg atoms. The system is designed to achieve a magnification of up to 1000 and a spatial resolution in the 100 nm range, thereby surpassing many standard imaging techniques for cold atoms. The microscope consists of four electrostatic lenses and a microchannel plate in conjunction with a delay line detector in order to achieve single particle sensitivity with high temporal and spatial resolution. We describe the design process of the microscope including ion-optical simulations of the imaging system and characterize aberrations and the resolution limit. Furthermore, we present the experimental realization of the microscope in a cold atom setup and investigate its performance by patterned ionization with a structure size down to 2.7 μm. The microscope meets the requirements for studying various many-body effects, ranging from correlations in cold quantum gases up to Rydberg molecule formation.

  14. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  15. High capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  16. High throughput materials research and development for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Parker Liu

    2017-09-01

    Full Text Available Development of next generation batteries requires a breakthrough in materials. Traditional one-by-one method, which is suitable for synthesizing large number of sing-composition material, is time-consuming and costly. High throughput and combinatorial experimentation, is an effective method to synthesize and characterize huge amount of materials over a broader compositional region in a short time, which enables to greatly speed up the discovery and optimization of materials with lower cost. In this work, high throughput and combinatorial materials synthesis technologies for lithium ion battery research are discussed, and our efforts on developing such instrumentations are introduced.

  17. Highly sensitive vacuum ion pump current measurement system

    Science.gov (United States)

    Hansknecht, John Christopher [Williamsburg, VA

    2006-02-21

    A vacuum system comprising: 1) an ion pump; 2) power supply; 3) a high voltage DC--DC converter drawing power from the power supply and powering the vacuum pump; 4) a feedback network comprising an ammeter circuit including an operational amplifier and a series of relay controlled scaling resistors of different resistance for detecting circuit feedback; 5) an optional power block section intermediate the power supply and the high voltage DC--DC converter; and 6) a microprocessor receiving feedback information from the feedback network, controlling which of the scaling resistors should be in the circuit and manipulating data from the feedback network to provide accurate vacuum measurement to an operator.

  18. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    Science.gov (United States)

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  19. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-11

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  20. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Science.gov (United States)

    Zhang, X. H.; Yuan, Y. J.; Yin, X. J.; Qian, C.; Sun, L. T.; Du, H.; Li, Z. S.; Qiao, J.; Wang, K. D.; Zhao, H. W.; Xia, J. W.

    2017-06-01

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  1. Shock compression response of highly reactive Ni + Al multilayered thin foils

    Science.gov (United States)

    Kelly, Sean C.; Thadhani, Naresh N.

    2016-03-01

    The shock-compression response of Ni + Al multilayered thin foils is investigated using laser-accelerated thin-foil plate-impact experiments over the pressure range of 2 to 11 GPa. The foils contain alternating Ni and Al layers (parallel but not flat) of nominally 50 nm bilayer spacing. The goal is to determine the equation of state and shock-induced reactivity of these highly reactive fully dense thin-foil materials. The laser-accelerated thin-foil impact set-up involved combined use of photon-doppler-velocimetry to monitor the acceleration and impact velocity of an aluminum flyer, and VISAR interferometry was used to monitor the back free-surface velocity of the impacted Ni + Al multilayered target. The shock-compression response of the Ni + Al target foils was determined using experimentally measured parameters and impedance matching approach, with error bars identified considering systematic and experimental errors. Meso-scale CTH shock simulations were performed using real imported microstructures of the cross-sections of the multilayered Ni + Al foils to compute the Hugoniot response (assuming no reaction) for correlation with their experimentally determined equation of state. It was observed that at particle velocities below ˜150 m/s, the experimentally determined equation of state trend matches the CTH-predicted inert response and is consistent with the observed unreacted state of the recovered Ni + Al target foils from this velocity regime. At higher particle velocities, the experimentally determined equation of state deviates from the CTH-predicted inert response. A complete and self-sustained reaction is also seen in targets recovered from experiments performed at these higher particle velocities. The deviation in the measured equation of state, to higher shock speeds and expanded volumes, combined with the observation of complete reaction in the recovered multilayered foils, confirmed via microstructure characterization, is indicative of the occurrence

  2. Treating osteoporotic vertebral compression fractures with intraosseous vacuum phenomena using high-viscosity bone cement via bilateral percutaneous vertebroplasty.

    Science.gov (United States)

    Guo, Dan; Cai, Jun; Zhang, Shengfei; Zhang, Liang; Feng, Xinmin

    2017-04-01

    Osteoporotic vertebral compression fractures with intraosseous vacuum phenomena could cause persistent back pains in patients, even after receiving conservative treatment. The aim of this study was to evaluate the efficacy of using high-viscosity bone cement via bilateral percutaneous vertebroplasty in treating patients who have osteoporotic vertebral compression fractures with intraosseous vacuum phenomena.Twenty osteoporotic vertebral compression fracture patients with intraosseous vacuum phenomena, who received at least 2 months of conservative treatment, were further treated by injecting high-viscosity bone cement via bilateral percutaneous vertebroplasty due to failure of conservative treatment. Treatment efficacy was evaluated by determining the anterior vertebral compression rates, visual analog scale (VAS) scores, and Oswestry disability index (ODI) scores at 1 day before the operation, on the first day of postoperation, at 1-month postoperation, and at 1-year postoperation.Three of 20 patients had asymptomatic bone cement leakage when treated via percutaneous vertebroplasty; however, no serious complications related to these treatments were observed during the 1-year follow-up period. A statistically significant improvement on the anterior vertebral compression rates, VAS scores, and ODI scores were achieved after percutaneous vertebroplasty. However, differences in the anterior vertebral compression rate, VAS score, and ODI score in the different time points during the 1-year follow-up period was not statistically significant (P > 0.05).Within the limitations of this study, the injection of high-viscosity bone cement via bilateral percutaneous vertebroplasty for patients who have osteoporotic vertebral compression fractures with intraosseous vacuum phenomena significantly relieved their back pains and improved their daily life activities shortly after the operation, thereby improving their life quality. In this study, the use of high-viscosity bone

  3. Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features

    Science.gov (United States)

    Ahmed, H. O. A.; Wong, M. L. D.; Nandi, A. K.

    2018-01-01

    Condition classification of rolling element bearings in rotating machines is important to prevent the breakdown of industrial machinery. A considerable amount of literature has been published on bearing faults classification. These studies aim to determine automatically the current status of a roller element bearing. Of these studies, methods based on compressed sensing (CS) have received some attention recently due to their ability to allow one to sample below the Nyquist sampling rate. This technology has many possible uses in machine condition monitoring and has been investigated as a possible approach for fault detection and classification in the compressed domain, i.e., without reconstructing the original signal. However, previous CS based methods have been found to be too weak for highly compressed data. The present paper explores computationally, for the first time, the effects of sparse autoencoder based over-complete sparse representations on the classification performance of highly compressed measurements of bearing vibration signals. For this study, the CS method was used to produce highly compressed measurements of the original bearing dataset. Then, an effective deep neural network (DNN) with unsupervised feature learning algorithm based on sparse autoencoder is used for learning over-complete sparse representations of these compressed datasets. Finally, the fault classification is achieved using two stages, namely, pre-training classification based on stacked autoencoder and softmax regression layer form the deep net stage (the first stage), and re-training classification based on backpropagation (BP) algorithm forms the fine-tuning stage (the second stage). The experimental results show that the proposed method is able to achieve high levels of accuracy even with extremely compressed measurements compared with the existing techniques.

  4. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions.

    Science.gov (United States)

    Ma, T; Patel, P K; Izumi, N; Springer, P T; Key, M H; Atherton, L J; Benedetti, L R; Bradley, D K; Callahan, D A; Celliers, P M; Cerjan, C J; Clark, D S; Dewald, E L; Dixit, S N; Döppner, T; Edgell, D H; Epstein, R; Glenn, S; Grim, G; Haan, S W; Hammel, B A; Hicks, D; Hsing, W W; Jones, O S; Khan, S F; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Le Pape, S; MacGowan, B J; Mackinnon, A J; MacPhee, A G; Meezan, N B; Moody, J D; Pak, A; Parham, T; Park, H-S; Ralph, J E; Regan, S P; Remington, B A; Robey, H F; Ross, J S; Spears, B K; Smalyuk, V; Suter, L J; Tommasini, R; Town, R P; Weber, S V; Lindl, J D; Edwards, M J; Glenzer, S H; Moses, E I

    2013-08-23

    Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance.

  5. The high current transport experiment for heavy ion inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  6. High current transport experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    L. R. Prost

    2005-02-01

    Full Text Available The High Current Experiment at Lawrence Berkeley National Laboratory is part of the U.S. program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2  μC/m over long pulse durations (4  μs in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo, and electron and gas cloud effects. We present the results for a coasting 1 MeV K^{+} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius for which the transverse phase space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (≈80% is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  7. A High-Performance Lossless Compression Scheme for EEG Signals Using Wavelet Transform and Neural Network Predictors

    Directory of Open Access Journals (Sweden)

    N. Sriraam

    2012-01-01

    Full Text Available Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67% is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications.

  8. Analytical possibilities of highly focused ion beams in biomedical field

    Science.gov (United States)

    Ren, M. Q.; Ji, X.; Vajandar, S. K.; Mi, Z. H.; Hoi, A.; Walczyk, T.; van Kan, J. A.; Bettiol, A. A.; Watt, F.; Osipowicz, T.

    2017-09-01

    At the Centre for Ion Beam Applications (CIBA), a 3.5 MV HVEE Singletron™ accelerator serves to provide MeV ion beams (mostly protons or He+) to six state-of-the-art beam lines, four of which are equipped with Oxford triplet magnetic quadrupole lens systems. This facility is used for a wide range of research projects, many of which are in the field of biomedicine. Here we presented a discussion of currently ongoing biomedical work carried out using two beamlines: The Nuclear Microscopy (NM) beamline is mainly used for trace elemental quantitative mapping using a combination of Particle Induced X-ray Emission (PIXE), to measure the trace elemental concentration of inorganic elements, Rutherford Backscattering Spectrometry (RBS), to characterise the organic matrix, and Scanning Transmission Ion Microscopy (STIM) to provide information on the lateral areal density variations of the specimen. Typically, a 2.1 MeV proton beam, focused to 1-2 μm spot size with a current of 100 pA is used. The high resolution single cell imaging beamline is equipped with direct STIM to image the interior structure of single cells with proton and alpha particles of sub-50 nm beam spot sizes. Simultaneously, forward scattering transmission ion microscopy (FSTIM) is utilized to generate images with improved contrast of nanoparticles with higher atomic numbers, such as gold nanoparticles, and fluorescent nanoparticles can be imaged using Proton Induced Fluorescence (PIF). Lastly, in this facility, RBS has been included as an option if required to determine the depth distribution of nanoparticles in cells, albeit with reduced spatial resolution.

  9. Highly porous carbon with large electrochemical ion absorption capability for high-performance supercapacitors and ion capacitors

    Science.gov (United States)

    Wang, Shijie; Wang, Rutao; Zhang, Yabin; Zhang, Li

    2017-11-01

    Carbon-based supercapacitors have attracted extensive attention as the complement to batteries, owing to their durable lifespan and superiority in high-power-demand fields. However, their widespread use is limited by the low energy storage density; thus, a high-surface-area porous carbon is urgently needed. Herein, a highly porous carbon with a Brunauer-Emmett-Teller specific surface area up to 3643 m2 g-1 has been synthesized by chemical activation of papayas for the first time. This sp2-bonded porous carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form narrow mesopores of 2 ˜ 5 nm in width, which can be systematically tailored with varied activation levels. Two-electrode symmetric supercapacitors constructed by this porous carbon achieve energy density of 8.1 Wh kg-1 in aqueous electrolyte and 65.5 Wh kg-1 in ionic-liquid electrolyte. Furthermore, half-cells (versus Li or Na metal) using this porous carbon as ion sorption cathodes yield high specific capacity, e.g., 51.0 and 39.3 mAh g-1 in Li+ and Na+ based organic electrolyte. These results underline the possibility of obtaining the porous carbon for high-performance carbon-based supercapacitors and ion capacitors in a readily scalable and economical way.

  10. Compressed sensing cine imaging with high spatial or high temporal resolution for analysis of left ventricular function.

    Science.gov (United States)

    Goebel, Juliane; Nensa, Felix; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai

    2016-08-01

    To assess two compressed sensing cine magnetic resonance imaging (MRI) sequences with high spatial or high temporal resolution in comparison to a reference steady-state free precession cine (SSFP) sequence for reliable quantification of left ventricular (LV) volumes. LV short axis stacks of two compressed sensing breath-hold cine sequences with high spatial resolution (SPARSE-SENSE HS: temporal resolution: 40 msec, in-plane resolution: 1.0 × 1.0 mm(2) ) and high temporal resolution (SPARSE-SENSE HT: temporal resolution: 11 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) and of a reference cine SSFP sequence (standard SSFP: temporal resolution: 40 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) were acquired in 16 healthy volunteers on a 1.5T MR system. LV parameters were analyzed semiautomatically twice by one reader and once by a second reader. The volumetric agreement between sequences was analyzed using paired t-test, Bland-Altman plots, and Passing-Bablock regression. Small differences were observed between standard SSFP and SPARSE-SENSE HS for stroke volume (SV; -7 ± 11 ml; P = 0.024), ejection fraction (EF; -2 ± 3%; P = 0.019), and myocardial mass (9 ± 9 g; P = 0.001), but not for end-diastolic volume (EDV; P = 0.079) and end-systolic volume (ESV; P = 0.266). No significant differences were observed between standard SSFP and SPARSE-SENSE HT regarding EDV (P = 0.956), SV (P = 0.088), and EF (P = 0.103), but for ESV (3 ± 5 ml; P = 0.039) and myocardial mass (8 ± 10 ml; P = 0.007). Bland-Altman analysis showed good agreement between the sequences (maximum bias ≤ -8%). Two compressed sensing cine sequences, one with high spatial resolution and one with high temporal resolution, showed good agreement with standard SSFP for LV volume assessment. J. Magn. Reson. Imaging 2016;44:366-374. © 2016 Wiley Periodicals, Inc.

  11. High $p_{T}$ physics in the heavy ion era

    CERN Document Server

    Rak, Jan

    2013-01-01

    Aimed at graduate students and researchers in the field of high-energy nuclear physics, this book provides an overview of the basic concepts of large transverse momentum particle physics, with a focus on pQCD phenomena. It examines high $p_{T}$ probes of relativistic heavy-ion collisions and will serve as a handbook for those working on RHIC and LHC data analyses. Starting with an introduction and review of the field, the authors look at basic observables and experimental techniques, concentrating on relativistic particle kinematics, before moving onto a discussion about the origins of high $p_{T}$ physics. The main features of high $p_{T}$ physics are placed within a historical context and the authors adopt an experimental outlook, highlighting the most important discoveries leading up to the foundation of modern QCD theory. Advanced methods are described in detail, making this book especially useful for newcomers to the field.

  12. O+ and H+ ion heat fluxes at high altitudes and high latitudes

    Directory of Open Access Journals (Sweden)

    I. A. Barghouthi

    2014-08-01

    Full Text Available Higher order moments, e.g., perpendicular and parallel heat fluxes, are related to non-Maxwellian plasma distributions. Such distributions are common when the plasma environment is not collision dominated. In the polar wind and auroral regions, the ion outflow is collisionless at altitudes above about 1.2 RE geocentric. In these regions wave–particle interaction is the primary acceleration mechanism of outflowing ionospheric origin ions. We present the altitude profiles of actual and "thermalized" heat fluxes for major ion species in the collisionless region by using the Barghouthi model. By comparing the actual and "thermalized" heat fluxes, we can see whether the heat flux corresponds to a small perturbation of an approximately bi-Maxwellian distribution (actual heat flux is small compared to "thermalized" heat flux, or whether it represents a significant deviation (actual heat flux equal or larger than "thermalized" heat flux. The model takes into account ion heating due to wave–particle interactions as well as the effects of gravity, ambipolar electric field, and divergence of geomagnetic field lines. In the discussion of the ion heat fluxes, we find that (1 the role of the ions located in the energetic tail of the ion velocity distribution function is very significant and has to be taken into consideration when modeling the ion heat flux at high altitudes and high latitudes; (2 at times the parallel and perpendicular heat fluxes have different signs at the same altitude. This indicates that the parallel and perpendicular parts of the ion energy are being transported in opposite directions. This behavior is the result of many competing processes; (3 we identify altitude regions where the actual heat flux is small as compared to the "thermalized" heat flux. In such regions we expect transport equation solutions based on perturbations of bi-Maxwellian distributions to be applicable. This is true for large altitude intervals for protons

  13. Ion energy characteristics downstream of a high power helicon

    Energy Technology Data Exchange (ETDEWEB)

    Prager, James; Winglee, Robert; Ziemba, Tim; Roberson, B Race; Quetin, Gregory [University of Washington, Johnson Hall 070, Box 351310, 4000 15th Avenue NE, Seattle, WA 98195-1310 (United States)], E-mail: jprager@u.washington.edu

    2008-05-01

    The High Power Helicon eXperiment operates at higher powers (37 kW) and lower background neutral pressure than other helicon experiments. The ion velocity distribution function (IVDF) has been measured at multiple locations downstream of the helicon source and a mach 3-6 flowing plasma was observed. The helicon antenna has a direct effect in accelerating the plasma downstream of the source. Also, the IVDF is affected by the cloud of neutrals from the initial gas puff, which keeps the plasma speed low at early times near the source.

  14. Preferred low- and high-frequency compression ratios among hearing aid users with moderately severe to profound hearing loss.

    Science.gov (United States)

    Keidser, Gitte; Dillon, Harvey; Dyrlund, Ole; Carter, Lyndal; Hartley, David

    2007-01-01

    This study aimed to determine the low- and high-frequency compression ratios of a fast-acting device that were preferred by people with moderately severe to profound hearing loss. Three compression ratios (1:1, 1.8:1, and 3:1) were combined in the low and high frequencies to produce nine schemes that were evaluated pair-wise for three weeks in the field using an adaptive procedure. The evaluation was performed by 21 experienced hearing aid users with a moderately severe to profound hearing loss. Diaries and an exit interview were used to monitor preferences. Generally, the subjects preferred lower compression ratios than are typically prescribed, especially in the low frequencies. Specifically, 11 subjects preferred linear amplification in the low frequencies, and 14 subjects preferred more compression in the high than in the low frequencies. Preferences could not be predicted from audiometric data, onset of loss, or past experience with amplification. The data suggest that clients with moderately severe to profound hearing loss should be fitted with low-frequency compression ratios in the range 1:1 to 2:1 and that fine-tuning is essential.

  15. Precision, high dose radiotherapy: helium ion treatment of uveal melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, W.M.; Char, D.H.; Quivey, J.M.; Castro, J.R.; Chen, G.T.Y.; Collier, J.M.; Cartigny, A.; Blakely, E.A.; Lyman, J.T.; Zink, S.R.

    1985-02-01

    The authors report on 75 patients with uveal melanoma who were treated by placing the Bragg peak of a helium ion beam over the tumor volume. The technique localizes the high dose region very tightly around the tumor volume. This allows critical structures, such as the optic disc and the macula, to be excluded from the high dose region as long as they are 3 to 4 mm away from the edge of the tumor. Careful attention to tumor localization, treatment planning, patient immobilization and treatment verification is required. With a mean follow-up of 22 months (3 to 60 months) the authors have had only five patients with a local recurrence, all of whom were salvaged with another treatment. Pretreatment visual acuity has generally been preserved as long as the tumor edge is at least 4 mm away from the macula and optic disc. The only serious complication to date has been an 18% incidence of neovascular glaucoma in the patients treated at our highest dose level. Clinical results and details of the technique are presented to illustrate potential clinical precision in administering high dose radiotherapy with charged particles such as helium ions or protons.

  16. An exact and consistent adjoint method for high-fidelity discretization of the compressible flow equations

    Science.gov (United States)

    Subramanian, Ramanathan Vishnampet Ganapathi

    Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvement. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs. Such methods have enabled sensitivity analysis and active control of turbulence at engineering flow conditions by providing gradient information at computational cost comparable to that of simulating the flow. They accelerate convergence of numerical design optimization algorithms, though this is predicated on the availability of an accurate gradient of the discretized flow equations. This is challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. We analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space--time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge--Kutta-like scheme

  17. H- Ion Sources for High Intensity Proton Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dudnikov, Vadim [Muons, Inc., Batavia, IL (United States)

    2015-02-20

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency, reliability and availability for pulsed operation as used in the ORNL Spallation Neutron Source . At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power 1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with 4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the aluminum nitride (AlN) discharge chamber for 32 days at high discharge power in an RF SPS with an external antenna. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. While this project demonstrated the advantages of the pulsed version of the SA RF SPS as an upgrade to the ORNL Spallation Neutron Source, it led to a possibility for upgrades to CW machines like the many cyclotrons used for commercial applications. Four appendices contain important details of the work carried out under this grant.

  18. High-fidelity simulation of compressible flows for hypersonic propulsion applications

    Science.gov (United States)

    Otis, Collin C.

    In the first part of this dissertation, the scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. The SFMDF is a sub-grid scale closure and is simulated via a Lagrangian Monte Carlo solver. US3D is an Eulerian finite volume code and has proven very effective for compressible flow simulations. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) of compressible turbulent flows on unstructured meshes. Simulations are conducted of subsonic and supersonic flows. The consistency and accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. In the second part of this dissertation, a new methodology is developed for accurate capturing of discontinuities in multi-block finite difference simulations of hyperbolic partial differential equations. The fourth-order energy-stable weighted essentially non-oscillatory (ESWENO) scheme on closed domains is combined with simultaneous approximation term (SAT) weak interface and boundary conditions. The capability of the methodology is demonstrated for accurate simulations in the presence of significant and abrupt changes in grid resolution between neighboring subdomains. Results are presented for the solutions of linear scalar hyperbolic wave equations and the Euler equations in one and two dimensions. Strong discontinuities are passed across subdomain interfaces without significant distortions. It is demonstrated that the methodology provides stable and accurate solutions even when large differences in the grid-spacing exist, whereas strong imposition of the interface conditions causes noticeable oscillations. Keywords: Large eddy simulation, filtered density function, turbulent reacting flows, multi-block finite difference schemes, high-order numerical methods, WENO shock-capturing, computational fluid dynamics.

  19. High Resolution Helium Ion Scanning Microscopy of the Rat Kidney

    Science.gov (United States)

    Rice, William L.; Van Hoek, Alfred N.; Păunescu, Teodor G.; Huynh, Chuong; Goetze, Bernhard; Singh, Bipin; Scipioni, Larry; Stern, Lewis A.; Brown, Dennis

    2013-01-01

    Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details and provide

  20. High resolution helium ion scanning microscopy of the rat kidney.

    Science.gov (United States)

    Rice, William L; Van Hoek, Alfred N; Păunescu, Teodor G; Huynh, Chuong; Goetze, Bernhard; Singh, Bipin; Scipioni, Larry; Stern, Lewis A; Brown, Dennis

    2013-01-01

    Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details and provide

  1. High resolution helium ion scanning microscopy of the rat kidney.

    Directory of Open Access Journals (Sweden)

    William L Rice

    Full Text Available Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details

  2. Fatigue of concrete under compression : Database and proposal for high strength concrete

    NARCIS (Netherlands)

    Lantsoght, E.O.L.

    2014-01-01

    The compressive strength of concrete decreases as an element is subjected to cycles of loading. In a typical fatigue test for the concrete compressive strength, a concrete specimen (typically a cylinder) is loaded between a lower and upper stress limit. These limits are expressed as a fraction of

  3. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan [Stanford Univ., CA (United States)

    2008-12-01

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  4. Achieving High Resolution Ion Mobility Separations Using Traveling Waves in Compact Multiturn Structures for Lossless Ion Manipulations

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Ahmed M.; Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Deng, Liulin; Zheng, Xueyun; Webb, Ian K.; Anderson, Gordon A.; Prost, Spencer A.; Norheim, Randolph V.; Tolmachev, Aleksey V.; Baker, Erin S.; Smith, Richard D.

    2016-09-20

    We report on ion mobility separations (IMS) achievable using traveling waves in a Structures for Lossless Ion Manipulations (TW-SLIM) module having a 44-cm path length and sixteen 90º turns. The performance of the TW-SLIM module was evaluated for ion transmission, and ion mobility separations with different RF, TW parameters and SLIM surface gaps in conjunction with mass spectrometry. In this work TWs were created by the transient and dynamic application of DC potentials. The TW-SLIM module demonstrated highly robust performance and the ion mobility resolution achieved even with sixteen close spaced turns was comparable to a similar straight path TW-SLIM module. We found an ion mobility peak capacity of ~ 31 and peak generation rate of 780 s-1 for TW speeds of <210 m/s using the current multi-turn TW-SLIM module. The separations achieved for isomers of peptides and tetrasaccharides were found to be comparable to those from a ~ 0.9-m drift tube-based IMS-MS platform operated at the same pressure (4 torr). The combined attributes of flexible design, low voltage requirements and lossless ion transmission through multiple turns for the present TW-SLIM module provides a basis for SLIM devices capable of achieving much greater ion mobility resolutions via greatly extended ion path lengths and compact serpentine designs that do not significantly impact the instrumentation profile, a direction described in a companion manuscript.

  5. High Strain Rate Compressive Behavior of Polyurethane Resin and Polyurethane/Al2O3 Hollow Sphere Syntactic Foams

    Directory of Open Access Journals (Sweden)

    Dung D. Luong

    2014-01-01

    Full Text Available Polyurethane resins and foams are finding extensive applications. Seat cushions and covers in automobiles are examples of these materials. In the present work, hollow alumina particles are used as fillers in polyurethane resin to develop closed-cell syntactic foams. The fabricated syntactic foams are tested for compressive properties at quasistatic and high strain rates. Strain rate sensitivity is an important concern for automotive applications due to the possibility of crash at high speeds. Both the polyurethane resin and the syntactic foam show strain rate sensitivity in compressive strength. It is observed that the compressive strength increases with strain rate. The energy absorbed up to 10% strain in the quasistatic regime is 400% higher for the syntactic foam in comparison to that of neat resin at the same strain rate.

  6. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    Science.gov (United States)

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.; Wink, C. W.

    2016-11-01

    A time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum is presented. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording. Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.

  7. Development of High Speed Imaging and Analysis Techniques Compressible Dynamics Stall

    Science.gov (United States)

    Chandrasekhara, M. S.; Carr, L. W.; Wilder, M. C.; Davis, Sanford S. (Technical Monitor)

    1996-01-01

    Dynamic stall has limited the flight envelope of helicopters for many years. The problem has been studied in the laboratory as well as in flight, but most research, even in the laboratory, has been restricted to surface measurement techniques such as pressure transducers or skin friction gauges, except at low speed. From this research, it became apparent that flow visualization tests performed at Mach numbers representing actual flight conditions were needed if the complex physics associated with dynamic stall was to be properly understood. However, visualization of the flow field during compressible conditions required carefully aligned and meticulously reconstructed holographic interferometry. As part of a long-range effort focused on exposing of the physics of compressible dynamic stall, a research wind tunnel was developed at NASA Ames Research Center which permits visual access to the full flow field surrounding an oscillating airfoil during compressible dynamic stall. Initially, a stroboscopic schlieren technique was used for visualization of the stall process, but the primary research tool has been point diffraction interferometry(PDI), a technique carefully optimized for use in th is project. A review of the process of development of PDI will be presented in the full paper. One of the most valuable aspects of PDI is the fact that interferograms are produced in real time on a continuous basis. The use of a rapidly-pulsed laser makes this practical; a discussion of this approach will be presented in the full paper. This rapid pulsing(up to 40,000 pulses/sec) produces interferograms of the rapidly developing dynamic stall field in sufficient resolution(both in space and time) that the fluid physics of the compressible dynamic stall flowfield can be quantitatively determined, including the gradients of pressure in space and time. This permits analysis of the influence of the effect of pitch rate, Mach number, Reynolds number, amplitude of oscillation, and other

  8. Functionalized graphene for high performance lithium ion capacitors.

    Science.gov (United States)

    Lee, Ji Hoon; Shin, Weon Ho; Ryou, Myung-Hyun; Jin, Jae Kyu; Kim, Junhyung; Choi, Jang Wook

    2012-12-01

    Lithium ion capacitors (LICs) have recently drawn considerable attention because they utilize the advantages of supercapacitors (high power) and lithium ion batteries (high energy). However, the energy densities of conventional LICs, which consist of a pair of graphite and activated carbon electrodes, are limited by the small capacities of the activated carbon cathodes. To overcome this limitation, we have engaged urea-reduced graphene oxide. The amide functional groups generated during the urea reduction facilitate the enolization processes for reversible Li binding, which improves the specific capacity by 37 % compared to those of conventional systems such as activated carbon and hydrazine-reduced graphene oxide. Utilizing the increased Li binding capability, when evaluated based on the mass of the active materials on both sides, the LICs based on urea-reduced graphene oxide deliver a specific energy density of approximately 106 Wh kg(total) (-1) and a specific power density of approximately 4200 W kg(total) (-1) with perfect capacity retention up to 1000 cycles. These values are far superior to those of previously reported LICs and supercapacitors, which suggests that appropriately treated graphene can be a promising electrode material for LICs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Investigations on transport and storage of high ion beam intensities

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ninad Shrikrishna

    2009-08-25

    In the framework of this thesis the intense low energy ion beam transport was investigated. Especially, the beam transport in toroidal magnetic field configurations was discussed, as it may allow the accumulation of high intensive beams in the future. One of the specific tasks is to design an injection system that can be used for the proposed low energy accumulator ring. A simulation code (TBT) was written to describe the particle motion in curved segments. Particle in Cell techniques were utilized to simulate a multi particle dynamics. A possibility of reading an external data file was made available so that a measured distribution can be used to compare simulation results with measured ones. A second order cloud in cell method was used to calculate charge density and in turn to solve Poisson's equation. Further simulations were performed to study the self field effects on beam transport. Experiments were performed to compare the simulation results and gain practical experience. The preparatory experiments consisted of building and characterization of the ion source in a first step. Along with the momentum spectrometer and emittance scanner the beam properties were studied. Low mass ion beams He{sup +} and mixed p, H{sup 2+}, H{sup 3+} beams were analyzed. In the second stage, beams were transported through a solenoid and the phase space distribution was measured as a function of the magnetic field for different beam energies. The phase-space as distributions measured in a first stage were simulated backward and then again forward transported through the solenoid. The simulated results were then compared with the measured distribution. The LINTRA transport program was used. The phase-space distribution was further simulated for transport experiments in a toroidal magnetic field. The transport program that was used to simulate the beam in the toroid was also used to design the injection system. The injection system with its special field configurations was

  10. Verification of high efficient broad beam cold cathode ion source

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Reheem, A. M., E-mail: amreheem2009@yahoo.com [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P.N.13759, Cairo (Egypt); Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo (Egypt); Ahmed, M. M. [Physics Department, Faculty of Science, Helwan University, Cairo (Egypt); Abdelhamid, M. M.; Ashour, A. H. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo (Egypt)

    2016-08-15

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.

  11. Highly charged ions in exotic atoms research at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Anagnostopoulos, D.F.; Biri, S.; Boisbourdain, V.; Demeter, M.; Borchert, G.; Egger, J.P.; Fuhrmann, H.; Gotta, D.; Gruber, A.; Hennebach, M.; Indelicato, P.; Liu, Y.W.; Manil, B.; Markushin, V.E.; Marton, H.; Nelms, N.; Rusi El Hassani, A.J.; Simons, L.M. E-mail: leopold.simons@psi.ch; Stingelin, L.; Wasser, A.; Wells, A.; Zmeskal, J

    2003-05-01

    During their de-excitation, exotic atoms formed in low pressure gases reach a state of high or even complete ionization. X-rays emitted from higher n-states of electron-free atoms have well defined energies with the error originating only from the error in the mass values of the constituent particles. They served as a basis for a new determination of the pion mass as well as for a high precision measurement of the pionic hydrogen ground state shift. The response function of the Bragg spectrometer has been determined with X-rays from completely ionized pionic carbon and with a dedicated electron cyclotron resonance ion trap (ECRIT). A further extension of the ECRIT method implemented in the experiment allows a direct calibration of exotic atom transitions as well as a precise determination of the energy of fluorescence lines.

  12. Study of a High Voltage Ion Engine Power Supply

    Science.gov (United States)

    Stuart, Thomas A.; King, Roger J.; Mayer, Eric

    1996-01-01

    A complete laboratory breadboard version of a ion engine power converter was built and tested. This prototype operated on a line voltage of 80-120 Vdc, and provided output ratings of 1100 V at 1.8 kW, and 250 V at 20 mA. The high-voltage (HV) output voltage rating was revised from the original value of 1350 V at the beginning of the project. The LV output was designed to hold up during a 1-A surge current lasting up to 1 second. The prototype power converter included a internal housekeeping power supply which also operated from the line input. The power consumed in housekeeping was included in the overall energy budget presented for the ion engine converter. HV and LV output voltage setpoints were commanded through potentiometers. The HV converter itself reached its highest power efficiency of slightly over 93% at low line and maximum output. This would dip below 90% at high line. The no-load (rated output voltages, zero load current) power consumption of the entire system was less than 13 W. A careful loss breakdown shows that converter losses are predominately Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) conduction losses and HV rectifier snubbing losses, with the rectifier snubbing losses becoming predominant at high line. This suggests that further improvements in power efficiency could best be obtained by either developing a rectifier that was adequately protected against voltage overshoot with less snubbing, or by developing a pre-regulator to reduced the range of line voltage on the converter. The transient testing showed the converter to be fully protected against load faults, including a direct short-circuit from the HV output to the LV output terminals. Two currents sensors were used: one to directly detect any core ratcheting on the output transformer and re-initiate a soft start, and the other to directly detect a load fault and quickly shut down the converter for load protection. The finished converter has been extensively fault tested

  13. High bit depth infrared image compression via low bit depth codecs

    Science.gov (United States)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    2017-08-01

    Future infrared remote sensing systems, such as monitoring of the Earth's environment by satellites, infrastructure inspection by unmanned airborne vehicles etc., will require 16 bit depth infrared images to be compressed and stored or transmitted for further analysis. Such systems are equipped with low power embedded platforms where image or video data is compressed by a hardware block called the video processing unit (VPU). However, in many cases using two 8-bit VPUs can provide advantages compared with using higher bit depth image compression directly. We propose to compress 16 bit depth images via 8 bit depth codecs in the following way. First, an input 16 bit depth image is mapped into 8 bit depth images, e.g., the first image contains only the most significant bytes (MSB image) and the second one contains only the least significant bytes (LSB image). Then each image is compressed by an image or video codec with 8 bits per pixel input format. We analyze how the compression parameters for both MSB and LSB images should be chosen to provide the maximum objective quality for a given compression ratio. Finally, we apply the proposed infrared image compression method utilizing JPEG and H.264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can achieve similar result as 16 bit HEVC codec.

  14. Nano-Composite Cathodes for High Performance Lithium Ion Microbatteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TPL Inc. proposes to develop a novel, high performance, nanostructured cathode material for lithium ion (Li-ion) batteries. The proposed approach will modify lithium...

  15. High temperature electron beam ion source for the production of single charge ions of most elements of the Periodic Table

    CERN Document Server

    Panteleev, V N; Barzakh, A E; Fedorov, D V; Ivanov, V S; Moroz, F V; Orlov, S Y; Seliverstov, D M; Stroe, L; Tecchio, L B; Volkov, Y M

    2003-01-01

    A new type of a high temperature electron beam ion source (HTEBIS) with a working temperature up to 2500 deg. C was developed for production of single charge ions of practically all elements. Off-line tests and on-line experiments making use of the developed ion source coupled with uranium carbide targets of different density, have been carried out. The ionization efficiency measured for stable atoms of many elements varied in the interval of 1-6%. Using the HTEBIS, the yields and on-line production efficiency of neutron rich isotopes of Mn, Fe, Co, Cu, Rh, Pd, Ag, Cd, In, Sn and isotopes of heavy elements Pb, Bi, Po and some others have been determined. The revealed confinement effect of the ions produced in the narrow electron beam inside a hot ion source cavity has been discussed.

  16. Relating speech production to tongue muscle compressions using tagged and high-resolution magnetic resonance imaging

    Science.gov (United States)

    Xing, Fangxu; Ye, Chuyang; Woo, Jonghye; Stone, Maureen; Prince, Jerry

    2015-03-01

    The human tongue is composed of multiple internal muscles that work collaboratively during the production of speech. Assessment of muscle mechanics can help understand the creation of tongue motion, interpret clinical observations, and predict surgical outcomes. Although various methods have been proposed for computing the tongue's motion, associating motion with muscle activity in an interdigitated fiber framework has not been studied. In this work, we aim to develop a method that reveals different tongue muscles' activities in different time phases during speech. We use fourdimensional tagged magnetic resonance (MR) images and static high-resolution MR images to obtain tongue motion and muscle anatomy, respectively. Then we compute strain tensors and local tissue compression along the muscle fiber directions in order to reveal their shortening pattern. This process relies on the support from multiple image analysis methods, including super-resolution volume reconstruction from MR image slices, segmentation of internal muscles, tracking the incompressible motion of tissue points using tagged images, propagation of muscle fiber directions over time, and calculation of strain in the line of action, etc. We evaluated the method on a control subject and two postglossectomy patients in a controlled speech task. The normal subject's tongue muscle activity shows high correspondence with the production of speech in different time instants, while both patients' muscle activities show different patterns from the control due to their resected tongues. This method shows potential for relating overall tongue motion to particular muscle activity, which may provide novel information for future clinical and scientific studies.

  17. Modelling and design of high compression electron guns for EBIS/T charge breeders

    CERN Document Server

    AUTHOR|(CDS)2087190; Zschornack, G.; Lettry, J.; Wenander, F.

    In this thesis the optimization of the REXEBIS charge breeder at the ISOLDE facility is presented. REXEBIS in its current state provides a current density of 200A/cm² inside the trapping region at 2 T and will be optimized to the physical limit of its design. To overcome this limit a new electron gun, the HEC² gun, was designed in collaboration with the BNL and is in commission at TestEBIS. This electron gun promises a current density of >10 kA/cm², which decreases the charge breeding time significantly. This thesis presents novel simulation techniques supporting the commissioning phase by explaining the sources of occurring loss current and, in addition, evaluate the currently installed collector for compatibility with the HEC2 gun operating at its design limit. The experience gained from the commission of the HEC² gun and the established numerical techniques lead to the development of a smaller high-compression electron gun for medical purposes, the MEDeGUN. This electron gun should provide a high-quali...

  18. Critical current measurements of High-Jc Nb3Sn Rutherford cables under Transverse Compression

    CERN Document Server

    Bordini, B; Ballarino, A; Bottura, L; Oberli, L

    2013-01-01

    For the LHC upgrade, CERN has launched a large program to develop next generation accelerator magnets based on high-Jc Nb3Sn Rutherford cables. These magnets are characterized by a magnetic field and/or an aperture significantly larger than that of current Nb-Ti LHC magnets. The increased field/aperture will require coil pre-stresses much larger than 100 MPa. Since Nb3Sn cables are extremely sensitive to strain, critical current measurements under traverse compression are essential to estimate the transport current properties of the conductor within the magnet. To this purpose CERN has developed a sample holder (to be used in the FRESCA test station) that allows testing Rutherford cables under a transverse force of up to 2 MN/m. The new holder can house cable samples up to 1.8 m long and 20 mm wide. The large transverse force is only applied over the sample high field region, which is 70 cm long and over which the FRESCA dipole magnet generates a homogeneous fields of up to 10 T. Recently the critical current...

  19. High-throughput Biological Cell Classification Featuring Real-time Optical Data Compression

    CERN Document Server

    Jalali, Bahram; Chen, Claire L

    2015-01-01

    High throughput real-time instruments are needed to acquire large data sets for detection and classification of rare events. Enabled by the photonic time stretch digitizer, a new class of instruments with record throughputs have led to the discovery of optical rogue waves [1], detection of rare cancer cells [2], and the highest analog-to-digital conversion performance ever achieved [3]. Featuring continuous operation at 100 million frames per second and shutter speed of less than a nanosecond, the time stretch camera is ideally suited for screening of blood and other biological samples. It has enabled detection of breast cancer cells in blood with record, one-in-a-million, sensitivity [2]. Owing to their high real-time throughput, instruments produce a torrent of data - equivalent to several 4K movies per second - that overwhelm data acquisition, storage, and processing operations. This predicament calls for technologies that compress images in optical domain and in real-time. An example of this, based on war...

  20. Study of Various Techniques for Improving Weak and Compressible Clay Soil under a High Earth Embankment

    Directory of Open Access Journals (Sweden)

    Zein A.K. M.

    2014-04-01

    Full Text Available This paper investigates the suitability of three soil improvement techniques for the construction of a high earth embankment on thick weak and highly compressible clay soil. The eastern approach embankment of Alhalfaya Bridge on the River Nile linking Khartoum North and Omdurman cities was chosen as a case study and a comprehensive site investigation program was carried out to determine the properties the subsurface soils. The study results showed that unless the subsurface soils have been improved they may fail or undergo excessively large settlements due to the embankment construction. Three ground improvement techniques based on the principles of the “staged construction method, SCM”, “vertical sand drain, VSD” and “sand compaction piles, SCP” of embankment foundation soil treatment are discussed and evaluated. Embankment design options based on applications of the above methods have been proposed for foundation treatment to adequately support embankment loads. A method performance evaluation based on the improvement of soil properties achieved; the time required for construction and compared estimated costs criteria was made to assess the effectiveness and expected overall performance. Adoption of any of the soil improvement techniques considered depends mainly on the most critical and decisive factor governing the embankment design. Based on the overall performance for the embankment case studied, the sand drains is considered as the most appropriate improvement method followed by the sand compaction piles technique whereas the staged construction method showed the poorest overall performance.

  1. Acceleration of high angular and spatial resolution diffusion imaging using compressed sensing with multichannel spiral data.

    Science.gov (United States)

    Mani, Merry; Jacob, Mathews; Guidon, Arnaud; Magnotta, Vincent; Zhong, Jianhui

    2015-01-01

    To accelerate the acquisition of simultaneously high spatial and angular resolution diffusion imaging. Accelerated imaging is achieved by recovering the diffusion signal at all voxels simultaneously from under-sampled k-q space data using a compressed sensing algorithm. The diffusion signal at each voxel is modeled as a sparse complex Gaussian mixture model. The joint recovery scheme enables incoherent under-sampling of the 5-D k-q space, obtained by randomly skipping interleaves of a multishot variable density spiral trajectory. This sampling and reconstruction strategy is observed to provide considerably improved reconstructions than classical k-q under-sampling and reconstruction schemes. The complex model enables to account for the noise statistics without compromising the computational efficiency and theoretical convergence guarantees. The reconstruction framework also incorporates compensation of motion induced phase errors that result from the multishot acquisition. Reconstructions of the diffusion signal from under-sampled data using the proposed method yields accurate results with errors less that 5% for different accelerations and b-values. The proposed method is also shown to perform better than standard k-q acceleration schemes. The proposed scheme can significantly accelerate the acquisition of high spatial and angular resolution diffusion imaging by accurately reconstructing crossing fiber architectures from under-sampled data. © 2014 Wiley Periodicals, Inc.

  2. High-Performance Motion Estimation for Image Sensors with Video Compression

    OpenAIRE

    Weizhi Xu; Shouyi Yin; Leibo Liu; Zhiyong Liu; Shaojun Wei

    2015-01-01

    It is important to reduce the time cost of video compression for image sensors in video sensor network. Motion estimation (ME) is the most time-consuming part in video compression. Previous work on ME exploited intra-frame data reuse in a reference frame to improve the time efficiency but neglected inter-frame data reuse. We propose a novel inter-frame data reuse scheme which can exploit both intra-frame and inter-frame data reuse for ME in video compression (VC-ME). Pixels of reconstructed...

  3. The Compressive Strength of High-Performance Concrete and Ultrahigh-Performance

    Directory of Open Access Journals (Sweden)

    E. H. Kadri

    2012-01-01

    Full Text Available The compressive strength of silica fume concretes was investigated at low water-cementitious materials ratios with a naphthalene sulphonate superplasticizer. The results show that partial cement replacement up to 20% produce, higher compressive strengths than control concretes, nevertheless the strength gain is less than 15%. In this paper we propose a model to evaluate the compressive strength of silica fume concrete at any time. The model is related to the water-cementitious materials and silica-cement ratios. Taking into account the author's and other researchers’ experimental data, the accuracy of the proposed model is better than 5%.

  4. A comparative study of several compressibility corrections to turbulence models applied to high-speed shear layers

    Science.gov (United States)

    Viegas, John R.; Rubesin, Morris W.

    1991-01-01

    Several recently published compressibility corrections to the standard k-epsilon turbulence model are used with the Navier-Stokes equations to compute the mixing region of a large variety of high speed flows. These corrections, specifically developed to address the weakness of higher order turbulence models to accurately predict the spread rate of compressible free shear flows, are applied to two stream flows of the same gas mixing under a large variety of free stream conditions. Results are presented for two types of flows: unconfined streams with either (1) matched total temperatures and static pressures, or (2) matched static temperatures and pressures, and a confined stream.

  5. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers.

    Science.gov (United States)

    Tang, Changyu; Hackenberg, Ken; Fu, Qiang; Ajayan, Pulickel M; Ardebili, Haleh

    2012-03-14

    There is a growing shift from liquid electrolytes toward solid polymer electrolytes, in energy storage devices, due to the many advantages of the latter such as enhanced safety, flexibility, and manufacturability. The main issue with polymer electrolytes is their lower ionic conductivity compared to that of liquid electrolytes. Nanoscale fillers such as silica and alumina nanoparticles are known to enhance the ionic conductivity of polymer electrolytes. Although carbon nanotubes have been used as fillers for polymers in various applications, they have not yet been used in polymer electrolytes as they are conductive and can pose the risk of electrical shorting. In this study, we show that nanotubes can be packaged within insulating clay layers to form effective 3D nanofillers. We show that such hybrid nanofillers increase the lithium ion conductivity of PEO electrolyte by almost 2 orders of magnitude. Furthermore, significant improvement in mechanical properties were observed where only 5 wt % addition of the filler led to 160% increase in the tensile strength of the polymer. This new approach of embedding conducting-insulating hybrid nanofillers could lead to the development of a new generation of polymer nanocomposite electrolytes with high ion conductivity and improved mechanical properties. © 2012 American Chemical Society

  6. Calcium signaling of in situ chondrocytes in articular cartilage under compressive loading: Roles of calcium sources and cell membrane ion channels.

    Science.gov (United States)

    Lv, Mengxi; Zhou, Yilu; Chen, Xingyu; Han, Lin; Wang, Liyun; Lu, X Lucas

    2017-10-05

    Mechanical loading on articular cartilage can induce many physical and chemical stimuli on chondrocytes residing in the extracellular matrix (ECM). Intracellular calcium ([Ca2+ ]i ) signaling is among the earliest responses of chondrocytes to physical stimuli, but the [Ca2+ ]i signaling of in situ chondrocytes in loaded cartilage is not fully understood due to the technical challenges in [Ca2+ ]i imaging of chondrocytes in a deforming ECM. This study developed a novel bi-directional microscopy loading device that enables the record of transient [Ca2+ ]i responses of in situ chondrocytes in loaded cartilage. It was found that compressive loading significantly promoted [Ca2+ ]i signaling in chondrocytes with faster [Ca2+ ]i oscillations in comparison to the non-loaded cartilage. Seven [Ca2+ ]i signaling pathways were further investigated by treating the cartilage with antagonists prior to and/or during the loading. Removal of extracellular Ca2+ ions completely abolished the [Ca2+ ]i responses of in situ chondrocytes, suggesting the indispensable role of extracellular Ca2+ sources in initiating the [Ca2+ ]i signaling in chondrocytes. Depletion of intracellular Ca2+ stores, inhibition of PLC-IP3 pathway, and block of purinergic receptors on plasma membrane led to significant reduction in the responsive rate of cells. Three types of ion channels that are regulated by different physical signals, TRPV4 (osmotic and mechanical stress), T-type VGCCs (electrical potential), and mechanical sensitive ion channels (mechanical loading) all demonstrated critical roles in controlling the [Ca2+ ]i responses of in situ chondrocyte in the loaded cartilage. This study provided new knowledge about the [Ca2+ ]i signaling and mechanobiology of chondrocytes in its natural residing environment. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. High-resolution coded-aperture design for compressive X-ray tomography using low resolution detectors

    Science.gov (United States)

    Mojica, Edson; Pertuz, Said; Arguello, Henry

    2017-12-01

    One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.

  8. Impact of High Temperature Creep on the Buckling of Axially Compressed Steel Members

    Science.gov (United States)

    Włóka, Agata; Pawłowski, Kamil; Świerzko, Robert

    2017-10-01

    The paper presents results of the laboratory tests of the impact of creep on the buckling of axially compressed steel members at elevated temperatures. Tests were conducted on samples prepared of normal strength steel (S235JR) and high strength steel (S355J2). Samples were made in the form of a prismatic bar of a rectangular cross section 12 x 30 mm and a length of 500 mm. Support type of the specimens during tests was hinged on both ends. The tests were done at 600, 700 and 800°C. Experiments were carried out at static loads corresponding to values 0,8Ncr,T, 0,9Ncr,T, 1,0Ngr,T, where Ncr,T was theoretical value of Euler’s critical load at given temperature. Short-term creep analyses were performed in the universal testing machine Instron/Satec KN 600 equipped with a furnace for high-temperature testing type SF-16 2230, that enables testing at temperatures up to 1200°C. Temperature of the sample placed inside the furnace was verified and recorded with use of the compactRIO cRIO-9076 controller, equipped with a module for the connection of NI 9211 and K-type thermocouples. The system for the measurement and recording of the temperature of the analysed samples operated in the LabVIEW software environment. To measure lateral and longitudinal displacements LVTD Solatron ACR 100 displacement transducer was used. During the tests, the samples were heated to the given temperature (600, 700 or 800°C) and then subjected to a constant compressive load. During each test, for each sample following data was registered: the temperature on the surface of samples, longitudinal and lateral displacements in the middle of the sample. Basing on the conducted tests it was noted, for both analysed steel types, at the temperature of 800°C, growth of lateral displacements due to creep was very rapid, and tested elements were losing bearing capacity over the period of tens to hundreds of seconds, depending on stress level and the grade of the steel. At a temperature of 700°C growth

  9. Low-latency video transmission over high-speed WPANs based on low-power video compression

    DEFF Research Database (Denmark)

    Belyaev, Evgeny; Turlikov, Andrey; Ukhanova, Ann

    2010-01-01

    This paper presents latency-constrained video transmission over high-speed wireless personal area networks (WPANs). Low-power video compression is proposed as an alternative to uncompressed video transmission. A video source rate control based on MINMAX quality criteria is introduced. Practical...... results for video encoder based on H.264/AVC standard are also given....

  10. Low-latency video transmission over high-speed WPANs based on low-power video compression

    OpenAIRE

    Belyaev, Evgeny; Turlikov, Andrey; Ukhanova, Ann

    2010-01-01

    This paper presents latency-constrained video transmission over high-speed wireless personal area networks (WPANs). Low-power video compression is proposed as an alternative to uncompressed video transmission. A video source rate control based on MINMAX quality criteria is introduced. Practical results for video encoder based on H.264/AVC standard are also given.

  11. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers.

    Science.gov (United States)

    Alessi, David A; Rosso, Paul A; Nguyen, Hoang T; Aasen, Michael D; Britten, Jerald A; Haefner, Constantin

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. Combining this technique with low absorption multilayer dielectric gratings developed in our group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.

  12. High intensity production of high and medium charge state uraniumand other heavy ion beams with VENUS

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Daniela; Galloway, Michelle L.; Loew, Timothy J.; Lyneis, Claude M.; Rodriguez, Ingrid Castro; Todd, Damon S.

    2007-11-15

    The next generation, superconducting ECR ion source VENUS(Versatile ECR ion source for NUclear Science) started operation with 28GHzmicrowave heating in 2004. Since then it has produced world recordion beam intensities. For example, 2850 e mu A of O6+, 200 e mu A of U33+or U34+, and in respect to high charge state ions, 1 e mu A of Ar18+, 270e mu A of Ar16+, 28 e mu A of Xe35+ and 4.9 e mu A of U47+ have beenproduced. A brief overview of the latest developments leading to theserecord intensities is given and the production of high intensity uraniumbeams is discussed in more detail.

  13. Uncharted Frontiers in the Spectroscopy of Highly Charged Ions

    CERN Document Server

    Beiersdorfer, P; Crespo, J; Kim, S H; Neill, P; Utter, S; Widmann, K

    2000-01-01

    The development of novel techniques is critical for maintaining a state-of-the-art core competency in atomic physics and readiness for evolving programmatic needs. We have carried out a three-year effort to develop novel spectroscopic instrumentation that added new dimensions to our capabilities for measuring energy levels, radiative transition probabilities, and electron-ion excitation processes. The new capabilities created were in areas that heretofore had been inaccessible to scientific scrutiny and included high-resolution spectroscopy of hard x rays, femtosecond lifetime measurements, measurements of transition probabilities of long-lived metastable levels, polarization spectroscopy, ultra-precise determinations of energy levels, and the establishment of absolute wavelength standards in x-ray spectroscopy. Instrumentation developed during the period included a transmission-type crystal spectrometer, a flat-field EUV spectrometer, and the development and deployment of absolutely calibrated monolithic cry...

  14. High-Energy Ion Linacs Based on Spoke Cavities

    CERN Document Server

    Shephard, K W; Ostromov, P N

    2003-01-01

    The applicability of superconducting TEM-class spoke cavities to high-energy ion linacs is discussed, and detailed designs for two TEM-class, triple-spoke-loaded superconducting niobium resonant cavities are presented. The 345 MHz cavities have a velocity range of 0.4

  15. Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light

    Science.gov (United States)

    Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander

    2018-02-01

    A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.

  16. Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries.

    Science.gov (United States)

    Zhang, Xiaoming; Hu, Junping; Cheng, Yingchun; Yang, Hui Ying; Yao, Yugui; Yang, Shengyuan A

    2016-08-18

    "Two-dimensional (2D) materials as electrodes" is believed to be the trend for future Li-ion and Na-ion battery technologies. Here, by using first-principles methods, we predict that the recently reported borophene (2D boron sheets) can serve as an ideal electrode material with high electrochemical performance for both Li-ion and Na-ion batteries. The calculations are performed on two experimentally stable borophene structures, namely β12 and χ3 structures. The optimized Li and Na adsorption sites are identified, and the host materials are found to maintain good electric conductivity before and after adsorption. Besides advantages including small diffusion barriers and low average open-circuit voltages, most remarkably, the storage capacity can be as high as 1984 mA h g(-1) in β12 borophene and 1240 mA h g(-1) in χ3 borophene for both Li and Na, which are several times higher than the commercial graphite electrode and are the highest among all the 2D materials discovered to date. Our results highly support that borophenes can be appealing anode materials for both Li-ion and Na-ion batteries with extremely high power density.

  17. Effect of Curing Temperature Histories on the Compressive Strength Development of High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2015-01-01

    Full Text Available This study examined the relative strength-maturity relationship of high-strength concrete (HSC specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1 isothermal curing conditions of 5°C, 20°C, and 40°C and (2 terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.

  18. A high reliability detection algorithm for wireless ECG systems based on compressed sensing theory.

    Science.gov (United States)

    Balouchestani, Mohammadreza; Raahemifar, Kaainran; Krishnan, Sridhar

    2013-01-01

    Wireless Body Area Networks (WBANs) consist of small intelligent biomedical wireless sensors attached on or implanted in the body to collect vital biomedical data from the human body providing Continuous Health Monitoring Systems (CHMS). The WBANs promise to be a key element in wireless electrocardiogram (ECG) systems for next-generation. ECG signals are widely used in health care systems as a noninvasive technique for diagnosis of heart conditions. However, the use of conventional ECG system is restricted by patient's mobility, transmission capacity, and physical size. Aforementioned highlights the need and advantage of wireless ECG systems with low sampling-rate and low power consumption. With this in mind, Compressed Sensing (CS) procedure as a new sampling approach and the collaboration from Shannon Energy Transformation (SET) and Peak Finding Schemes (PFS) is used to provide a robust low-complexity detection algorithm in gateways and access points in the hospitals and medical centers with high probability and enough accuracy. Advanced wireless ECG systems based on our approach will be able to deliver healthcare not only to patients in hospitals and medical centers; but also at their homes and workplaces thus offering cost saving, and improving the quality of life. Our simulation results show an increment of 0.1 % for sensitivity as well as 1.5% for the prediction level and detection accuracy.

  19. HIGH TEMPERATURE STRESS-STRAIN BEHAVIOR OF MgO IN COMPRESSION

    Energy Technology Data Exchange (ETDEWEB)

    Dokko, P.C; Pask, J.A.

    1979-01-01

    Compressive stress-strain curves for several types of polycrystalline MgO specimens were correlated with those for single crystals and analyzed as a function of grain size and grain-boundary character at 1200 and 1400 C for several strain rates. The results for fully dense specimens were explained in terms of grain-boundary sliding and intergranular separation in addition to slip. The modification of grain-boundary nature concurrent with heat treatment for grain growth, caused by residual LUF, was associated with enhanced grain-boundary sliding and intergranular separation. For grain sizes <30 {micro}m, it was concluded that the von Miss criteria for ductility could be relaxed by the Occurrence of dislocation climb and, to a limited extent, by intergranular separation. Yield drop corresponding to dislocation multiplication occurred when grain-boundary sliding was initially promoted. Specimens with a liquid phase of adequate viscosity also indicated plasticity accompanied by high strength. Specimens with clean grain boundaries exhibited ductility and normal strain hardening with no intergranular separation.

  20. Compression Behavior of Confined Columns with High-Volume Fly Ash Concrete

    Directory of Open Access Journals (Sweden)

    Sung-Won Yoo

    2017-01-01

    Full Text Available The use of fly ash in ordinary concrete provides practical benefits to concrete structures, such as a gain in long-term strength, reduced hydration heat, improved resistance to chloride, and enhanced workability. However, few studies with high-volume fly ash (HVFA concrete have been conducted that focus on the structural applications such as a column. Thus, there is a need to promote field applications of HVFA concrete as a sustainable construction material. To this end, this study investigated the compressive behavior of reinforced concrete columns that contain HVFA with a 50 percent replacement rate. Six columns were fabricated for this study. The study variables were the HVFA replacement rate, tied steel ratio, and tie steel spacing. The computed ultimate strength by the American Concrete Institute (ACI code conservatively predicted the measured values, and, thus, the existing equation in the ACI code is feasible for confined RC columns that contain HVFA. In addition, an analysis model was calibrated based on the experimental results and is recommended for predicting the stress-strain relationship of confined reinforced concrete columns that contain HVFA.

  1. Designing sparse sensing matrix for compressive sensing to reconstruct high resolution medical images

    Directory of Open Access Journals (Sweden)

    Vibha Tiwari

    2015-12-01

    Full Text Available Compressive sensing theory enables faithful reconstruction of signals, sparse in domain $ \\Psi $, at sampling rate lesser than Nyquist criterion, while using sampling or sensing matrix $ \\Phi $ which satisfies restricted isometric property. The role played by sensing matrix $ \\Phi $ and sparsity matrix $ \\Psi $ is vital in faithful reconstruction. If the sensing matrix is dense then it takes large storage space and leads to high computational cost. In this paper, effort is made to design sparse sensing matrix with least incurred computational cost while maintaining quality of reconstructed image. The design approach followed is based on sparse block circulant matrix (SBCM with few modifications. The other used sparse sensing matrix consists of 15 ones in each column. The medical images used are acquired from US, MRI and CT modalities. The image quality measurement parameters are used to compare the performance of reconstructed medical images using various sensing matrices. It is observed that, since Gram matrix of dictionary matrix ($ \\Phi \\Psi \\mathrm{} $ is closed to identity matrix in case of proposed modified SBCM, therefore, it helps to reconstruct the medical images of very good quality.

  2. ScalaTrace: Scalable Compression and Replay of Communication Traces for High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Noeth, M; Ratn, P; Mueller, F; Schulz, M; de Supinski, B R

    2008-05-16

    Characterizing the communication behavior of large-scale applications is a difficult and costly task due to code/system complexity and long execution times. While many tools to study this behavior have been developed, these approaches either aggregate information in a lossy way through high-level statistics or produce huge trace files that are hard to handle. We contribute an approach that provides orders of magnitude smaller, if not near-constant size, communication traces regardless of the number of nodes while preserving structural information. We introduce intra- and inter-node compression techniques of MPI events that are capable of extracting an application's communication structure. We further present a replay mechanism for the traces generated by our approach and discuss results of our implementation for BlueGene/L. Given this novel capability, we discuss its impact on communication tuning and beyond. To the best of our knowledge, such a concise representation of MPI traces in a scalable manner combined with deterministic MPI call replay are without any precedent.

  3. Influence of high deformation rate, brain region, transverse compression, and specimen size on rat brain shear stress morphology and magnitude.

    Science.gov (United States)

    Haslach, Henry W; Gipple, Jenna M; Leahy, Lauren N

    2017-04-01

    An external mechanical insult to the brain, such as a blast, may create internal stress and deformation waves, which have shear and longitudinal components that can induce combined shear and compression of the brain tissue. To isolate the consequences of such interactions for the shear stress and to investigate the role of the extracellular fluid in the mechanical response, translational shear stretch at 10/s, 60/s, and 100/s translational shear rates under either 0% or 33% fixed transverse compression is applied without preconditioning to rat brain specimens. The specimens from the cerebrum, the cerebellum grey matter, and the brainstem white matter are nearly the full length of their respective regions. The translational shear stress response to translational shear deformation is characterized by the effect that each of four factors, high deformation rate, brain region, transverse compression, and specimen size, have on the shear stress magnitude averaged over ten specimens for each combination of factors. Increasing the deformation rate increases the magnitude of the shear stress at a given translational shear stretch, and as tested by ANOVAs so does applying transverse fixed compression of 33% of the thickness. The stress magnitude differs by the region that is the specimen source: cerebrum, cerebellum or brainstem. The magnitude of the shear stress response at a given deformation rate and stretch depends on the specimen length, called a specimen size effect. Surprisingly, under no compression a shorter length specimen requires more shear stress, but under 33% compression a shorter length specimen requires less shear stress, to meet a required shear deformation rate. The shear specimen size effect calls into question the applicability of the classical shear stress definition to hydrated soft biological tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. High energy ion hit technique to local area using microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Ryuichi; Kamiya, Tomihiro; Suda, Tamotsu; Sakai, Takuro; Hirao, Toshio; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Single energetic ion hit technique has been developed as an application of ion microbeam technique, in order to study the effect of local damage or injury to materials and living organisms. The overall performance is basically defined by those of separate techniques: microbeam formation, microbeam positioning, single ion detection, detection signal processing, hit timing control, and hit verification. Recent progress on the developments of these techniques at JAERI-TIARA facility are reviewed. (author)

  5. Hydrogenated carbon clusters produced by highly charged ion impact on solid C-84

    NARCIS (Netherlands)

    Schlatholter, T; Newman, MW; Niedermayr, TR; Machicoane, GA; McDonald, JW; Schenkel, T; Hoekstra, R; Hamza, AV

    2000-01-01

    The emission of small (hydrogenated) carbon cluster ions: CnHm+ (n = 2-22) upon highly charged Xeq+ (q = 20- 14) impact on C-84 surfaces is studied by means of time-of-flight secundary ion mass spectrometry. The respective stage of hydrogenation/protonation of a certain carbon cluster ion C-n(+) is

  6. Techniques and mechanisms applied in electron cyclotron resonance sources for highly charged ions

    NARCIS (Netherlands)

    Drentje, AG

    Electron cyclotron resonance ion sources are delivering beams of highly charged ions for a wide range of applications in many laboratories. For more than two decades, the development of these ion sources has been to a large extent an intuitive and experimental enterprise. Much effort has been spent

  7. High throughput electrophysiology: new perspectives for ion channel drug discovery

    DEFF Research Database (Denmark)

    Willumsen, Niels J; Bech, Morten; Olesen, Søren-Peter

    2003-01-01

    Proper function of ion channels is crucial for all living cells. Ion channel dysfunction may lead to a number of diseases, so-called channelopathies, and a number of common diseases, including epilepsy, arrhythmia, and type II diabetes, are primarily treated by drugs that modulate ion channels...... channel targets accessible for drug screening. Specifically, genuine HTS parallel processing techniques based on arrays of planar silicon chips are being developed, but also lower throughput sequential techniques may be of value in compound screening, lead optimization, and safety screening....... The introduction of new powerful HTS electrophysiological techniques is predicted to cause a revolution in ion channel drug discovery....

  8. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers.

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-04-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25-1 effective depth of the section column. Furthermore, the axial load-strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load-strain curves were carried out.

  9. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  10. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Directory of Open Access Journals (Sweden)

    Wisena Perceka

    2016-04-01

    Full Text Available Addition of steel fibers to high strength concrete (HSC improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out.

  11. Analysis of high-altitude planetary ion velocity space distributions detected by the Ion Mass Analyzer aboard Mars Express

    Science.gov (United States)

    Johnson, B. C.; Liemohn, M. W.; Fraenz, M.; Curry, S.; Mitchell, D. L.

    2012-12-01

    We present observations of planetary ion velocity space distributions from the Ion Mass Analyzer (IMA) onboard Mars Express (MEX). The magnetometer data from Mars Global Surveyor is used to obtain a rough estimate of the interplanetary magnetic field (IMF) orientation. Characteristic features of the velocity space distributions will be examined and discussed for orbits aligned with the convective electric field and those in the Mars terminator plane. This study will focus on the high (keV) energy ions, as well as the relative importance of a high-altitude magnetosheath source of escaping planetary ions. Furthermore, this paper will examine various methods for converting the IMA detector counts to species-specific fluxes. After mimicking the methods previously used by researchers, we apply each of these methods of species extraction to data collected during the same time intervals. We discuss the implications for planetary ion motion around Mars, using the details of the velocity space observations to better understand the solar wind interaction with Mars. Comparisons to virtual detections using a test particle simulation will also provide insight into ion origins and trajectories.

  12. Ion-ion coincidence imaging at high event rate using an in-vacuum pixel detector

    Science.gov (United States)

    Long, Jingming; Furch, Federico J.; Durá, Judith; Tremsin, Anton S.; Vallerga, John; Schulz, Claus Peter; Rouzée, Arnaud; Vrakking, Marc J. J.

    2017-07-01

    A new ion-ion coincidence imaging spectrometer based on a pixelated complementary metal-oxide-semiconductor detector has been developed for the investigation of molecular ionization and fragmentation processes in strong laser fields. Used as a part of a velocity map imaging spectrometer, the detection system is comprised of a set of microchannel plates and a Timepix detector. A fast time-to-digital converter (TDC) is used to enhance the ion time-of-flight resolution by correlating timestamps registered separately by the Timepix detector and the TDC. In addition, sub-pixel spatial resolution (principle experiment on strong field dissociative double ionization of carbon dioxide molecules (CO2), using a 400 kHz repetition rate laser system. The experimental results demonstrate that the spectrometer can detect multiple ions in coincidence, making it a valuable tool for studying the fragmentation dynamics of molecules in strong laser fields.

  13. An exploding foil shockwave technique for magnetic flux compression and high voltage pulse generation

    CERN Document Server

    Goh, S E

    2002-01-01

    This thesis describes a novel electromagnetic shockwave technique for use in compressing magnetic flux and to serve as the basis for a new approach to producing fast-rising voltage pulses with amplitudes of several hundred kV. The shockwave is produced by an exploding foil driven electric gun that accelerates a Mylar flyer to impact with a sample of aluminium powder. Both Japanese and Russian researchers have previously published experimental results for shockwave magnetic flux compression using an explosive driver. The present research considers replacing the explosive energy of this driver by the electrostatic energy stored in a capacitor bank, thereby enabling experiments to be performed in a laboratory environment. Differences in performance that arise from the use of explosive and electrical driver are examined. A conventional electric gun system in planar geometry is developed to study the insulator-to-metallic transition in shock-compressed aluminium powder. This provides data on the conducting shock f...

  14. Ion implantation of highly corrosive electrolyte battery components

    Science.gov (United States)

    Muller, Rolf H.; Zhang, Shengtao

    1997-01-01

    A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, end sodium sulfur.

  15. Photoconductivity studies of the ferrocyanide ion under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Finston, M. I.

    1979-01-01

    The photoaquation of the ferrocyanide ion was studied using a high-pressure photoconductivity apparatus and a steady-state high-pressure mercury lamp. The first-order photocurrent rise-time could be related to the relative quantum efficiency of the photoaquation process, while the dark decay of the photocurrent yielded a relative value of the bimolecular rate-constant for the reverse reaction. Kinetic measurements were carried out on dilute solutions of potassium ferrocyanide in pure water, and in 20% ethanol. The photocurrent yield in aqueous solution was dependent upon secondary chemical equilibria which were sensitive to pressure in a predictable way. In ethanolic solution, the dependence of photocurrent yield on pressure followed the variation of the reciprocal solvent vicosity. In both aqueous and alcoholic solution, the photoaquation quantum efficiency decreased exponentially with pressure, as did the biomolecular rate-constant for the dark reaction in aqueous solution. The pressure dependence of the bimolecular rate-constant in the alcoholic solution indicated a diffusion-limited process. The pressure dependence of the photoaquation quantum yield, and of the bimolecular rate-constant in aqueous solution, was interpreted in terms of an activation volume model. The photoaquation data for both the aqueous and the alcoholic solutions agreed with a hypothetical mechanism whereby ligand-to-metal bond-breaking, and solvent-to-metal bond-formation, are effectively simultaneous. The results for the aqueous dark reaction strongly indicated breaking of the solvent-to-metal bond as the rate-limiting step.

  16. Fifth high-energy heavy-ion study

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    This was the fifth of a continuing series of summer studies held at LBL to discuss high energy heavy ion collisions. Recently, a similar meeting has been held on alternate years at GSI (Darmstadt); and, in 1979, we held a meeting at LBL exclusively devoted to ultra-relativistic nuclear collisions. Two new features distinguish this study from earlier meetings in the series. First, the energy range for discussion was broadened by including collisions from about 20 MeV/nucleon to the highest available in the cosmic radiation. The lower range, particularly below 100 MeV/nucleon, will be under intense study in the near future with machines such as the upgraded Bevalac, Michigan State University Superconducting Cyclotron, GANIL in France, and the SC at CERN. Recently, the high energy collision regime has been expanded by the successful operation of the CERN ISR with alpha particles. Second, in addition to an extensive program of invited talks, we decided for the first time to actively solicit contributions. Forty-seven individual items from the conference were prepared separately for the data base. (GHT)

  17. PACEM: a new concept for high avalanche-ion blocking

    Science.gov (United States)

    Veloso, J. F. C. A.; Amaro, F. D.; Azevedo, C. D. R.; dos Santos, J. M. F.; Breskin, A.; Lyashenko, A.; Chechik, R.

    2007-10-01

    We present the Photon-Assisted Cascaded Electron Multiplier (PACEM) as a potential alternative for ion back-flow suppression in gaseous cascade electron multipliers. Using a Micro Hole and Strip Plate-Gas Electron Multiplier (MHSP-GEM) configuration, the number of ions flowing back to the scintillation region is about 1.5 ions per primary electron at an optical gain of 6.5 and a drift field of 0.1 kV/cm, and about 10 ions per primary electron at an optical gain of 10 and a drift field of 0.5 kV/cm. These allow reaching ion back-flow values close to 10 -4 and 10 -5 at typical operation conditions of TPCs and GPMs, respectively.

  18. PACEM: a new concept for high avalanche-ion blocking

    Energy Technology Data Exchange (ETDEWEB)

    Veloso, J.F.C.A. [Departmento de Fisica, Universidade de Aveiro, P-3810-193 Aveiro (Portugal)], E-mail: joao.veloso@ua.pt; Amaro, F.D. [Departmento de Fisica, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Azevedo, C.D.R. [Departmento de Fisica, Universidade de Aveiro, P-3810-193 Aveiro (Portugal); Santos, J.M.F. dos [Departmento de Fisica, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Breskin, A.; Lyashenko, A.; Chechik, R. [Department of Particle Physics, The Weizmann Institute of Science, 76100 Rehovot (Israel)

    2007-10-21

    We present the Photon-Assisted Cascaded Electron Multiplier (PACEM) as a potential alternative for ion back-flow suppression in gaseous cascade electron multipliers. Using a Micro Hole and Strip Plate-Gas Electron Multiplier (MHSP-GEM) configuration, the number of ions flowing back to the scintillation region is about 1.5 ions per primary electron at an optical gain of 6.5 and a drift field of 0.1 kV/cm, and about 10 ions per primary electron at an optical gain of 10 and a drift field of 0.5 kV/cm. These allow reaching ion back-flow values close to 10{sup -4} and 10{sup -5} at typical operation conditions of TPCs and GPMs, respectively.

  19. 3D Printing Hierarchical Silver Nanowire Aerogel with Highly Compressive Resilience and Tensile Elongation through Tunable Poisson's Ratio.

    Science.gov (United States)

    Yan, Pengli; Brown, Emery; Su, Qing; Li, Jun; Wang, Jian; Xu, Changxue; Zhou, Chi; Lin, Dong

    2017-10-01

    Metallic aerogels have attracted intense attention due to their superior properties, such as high electrical conductivity, ultralow densities, and large specific surface area. The preparation of metal aerogels with high efficiency and controllability remains challenge. A 3D freeze assembling printing technique integrated with drop-on-demand inkjet printing and freeze casting are proposed for metallic aerogels preparation. This technique enables tailoring both the macrostructure and microstructure of silver nanowire aerogels (SNWAs) by integrating programmable 3D printing and freeze casting, respectively. The density of the printed SNWAs is controllable, which can be down to 1.3 mg cm(-3) . The ultralight SNWAs reach high electrical conductivity of 1.3 S cm(-1) and exhibit excellent compressive resilience under 50% compressive strain. Remarkably, the printing methodology also enables tuning aerogel architectures with designed Poisson's ratio (from negative to positive). Moreover, these aerogel architechtures with tunable Poisson's ratio present highly electromechanical stability under high compressive and tensile strain (both strain up to 20% with fully recovery). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Preparation of cold Mg{sup +}ion clouds for sympathetic cooling of highly charged ions at SPECTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Cazan, Radu Mircea

    2012-02-15

    The bound electrons in hydrogen-like or lithium-like heavy ions experience extremely strong electric and magnetic fields in the surrounding of the nucleus. Laser spectroscopy of the ground-state hyperfine splitting in the lead region provides a sensitive tool to test strong-field quantum electro dynamics (QED), especially in the magnetic sector. Previous measurements on hydrogen-like systems performed in an electron-beam ion trap (EBIT) or at the experimental storage ring (ESR) were experimentally limited in accuracy due to statistics, the large Doppler broadening and the ion energy. The full potential of the QED test can only be exploited if measurements for hydrogen- and lithium-like ions are performed with accuracy improved by 2-3 orders of magnitude. Therefore, the new Penning trap setup SPECTRAP - dedicated for laser spectroscopy on trapped and cooled highly charged ions - is currently commissioned at GSI Darmstadt. Heavy highly charged ions will be delivered to this trap by the HITRAP facility in the future. SPECTRAP is a cylindrical Penning trap with axial access for external ion injection and radial optical access mounted inside a cold-bore superconducting Helmholtz-type split-coil magnet. To reach the targeted accuracy in laser spectroscopy, an efficient and fast cooling process for the highly charged ions must be employed. This can be realized by sympathetic cooling with a cloud of laser-cooled light ions. Within this thesis work, a laser system and an ion source for the production of such a {sup 24}Mg{sup +} ion cloud was developed and commissioned at SPECTRAP. An all-solid-state laser system for the generation of 279.6 nm light was designed and built. It consists of a fiber laser at 1118.5 nm followed by frequency quadrupling using two successive second-harmonic generation stages with actively stabilized ring resonators and nonlinear crystals. The laser system can deliver more than 15 mW of UV laser power under optimal conditions and requires little

  1. Experimental characterization of the Hitrap Cooler trap with highly charged ions.

    OpenAIRE

    Fedotova, Svetlana

    2013-01-01

    The HITRAP (Highly charged Ions TRAP)facility is being set up and commissioned at GSI, Darmstadt. It will provide heavy, highly charged ions at low velocities to high-precision atomic physics experiments. Within this work the Cooler trap- the key element of the HITRAP facility was tested. The Cooler trap was assembled, aligned, and commissioned in trapping experiments with ions from off-line sources.The work performed within the scope of this thesis provided the baseline for further operation...

  2. Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate.

    Science.gov (United States)

    Sim, Jongsung; Park, Cheolwoo

    2011-11-01

    Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Achieving High Resolution Ion Mobility Separations Using Traveling Waves in Compact Multiturn Structures for Lossless Ion Manipulations.

    Science.gov (United States)

    Hamid, Ahmed M; Garimella, Sandilya V B; Ibrahim, Yehia M; Deng, Liulin; Zheng, Xueyun; Webb, Ian K; Anderson, Gordon A; Prost, Spencer A; Norheim, Randolph V; Tolmachev, Aleksey V; Baker, Erin S; Smith, Richard D

    2016-09-20

    We report on ion mobility (IM) separations achievable using traveling waves (TW) in a Structures for Lossless Ion Manipulations (SLIM) module having a 44 cm path length and 16 90° turns. The performance of the TW-SLIM module was evaluated for ion transmission and IM separations with different RF, TW parameters, and SLIM surface gaps in conjunction with mass spectrometry. In this work, TWs were created by the transient and dynamic application of DC potentials. The module demonstrated highly robust performance and, even with 16 closely spaced turns, achieving IM resolution performance and ion transmission comparable to a similar straight path module. We found an IM peak capacity of ∼31 and peak generation rate of 780 s(-1) for TW speeds of ∼80 m/s using the current multi-turn TW-SLIM module. The separations achieved for isomers of peptides and tetrasaccharides were found to be comparable to those from a ∼0.9-m drift tube-based IM-MS platform operated at the same pressure (4 Torr). The combined attributes of flexible design, low voltage requirements and lossless ion transmission through multiple turns for the present TW-SLIM module provides a basis for SLIM devices capable of achieving much greater IM resolution via greatly extended ion path lengths and using compact serpentine designs.

  4. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleksandr

    2015-06-24

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U{sup 90+} beam at the existing storage ring ESR, GSI.

  5. Experimental high temperature coefficients of compressibility and expansivity of liquid sodium and other related properties

    Energy Technology Data Exchange (ETDEWEB)

    Das Gupta, S.

    1977-01-01

    The subcooled compressibility of liquid sodium was directly measured up to 200 atm between 900 K and 1867 K, utilizing a new multi-property apparatus which was previously tested with water. The experimental data were correlated by a 6-term equation with a standard deviation of 9.2 percent. The equation can be used to estimate the subcooled compressibilities and densities of liquid sodium up to 2300 K and 500 ata. The thermal expansion of liquid sodium was also measured along the isobars 1 ata, 28.9 ata and 69 ata. Densities within 1 percent of those obtained from the compressibilities were obtained. The above compressibility data were used to calculate the thermal pressure coefficient of saturated liquid sodium. Also, Bhise and Bonilla's correlations for the vapor pressure and the saturated liquid density of sodium were improved by including more data in the analysis. The critical temperature and density were thus reestimated as 2508.7 K and 0.2141 g/cc. Furthermore, a new correlation was developed to determine the heat of vaporization of sodium up to the critical point, which was then used to estimate the internal energy and the entropy of vaporization and the saturated vapor density of sodium up to the critical point.

  6. Compressive and flexural strength of expanded perlite aggregate mortar subjected to high temperatures

    Science.gov (United States)

    Zulkifeli, Muhamad Faqrul Hisham bin Mohd; Saman@Hj Mohamed, Hamidah binti Mohd

    2017-08-01

    Work on thermal resistant of outer structures of buildings is one of the solution to reduce death, damages and properties loss in fire cases. Structures protected with thermal resistant materials can delay or avoid failure and collapse during fire. Hence, establishment of skin cladding with advance materials to protect the structure of buildings is a necessary action. Expanded perlite is a good insulation material which can be used as aggregate replacement in mortar. This study is to study on mortar mechanical properties of flexural and compressive strength subjected to elevated temperatures using expanded perlite aggregate (EPA). This study involved experimental work which was developing mortar with sand replacement by volume of 0%, 10%, 20%, 30% and 40% of EPA and cured for 56 days. The mortars then exposed to 200°C, 400 °C, 700 °C and 1000 °C. Flexural and compressive strength of the mortar were tested. The tests showed that there were increased of flexural and compressive strength at 200°C, and constantly decreased when subjected to 400°C, 700°C and 1000 °C. There were also variation of strengths at different percentages of EPA replacement. Highest compressive strength and flexural strength recorded were both at 200 °C with 65.52 MPa and 21.34 MPa respectively. The study conclude that by using EPA as aggregate replacement was ineffective below elevated temperatures but increased the performance of the mortar at elevated temperatures.

  7. Compression of fiber supercontinuum pulses to the Fourier-limit in a high-numerical-aperture focus

    DEFF Research Database (Denmark)

    Tu, Haohua; Liu, Yuan; Turchinovich, Dmitry

    2011-01-01

    A multiphoton intrapulse interference phase scan (MIIPS) adaptively and automatically compensates the combined phase distortion from a fiber supercontinuum source, a spatial light modulator pulse shaper, and a high-NA microscope objective, allowing Fourier-transform-limited compression...... power of 18–70mW, and a repetition rate of 76MHz, permitting the application of this source to nonlinear optical microscopy and coherently controlled microspectroscopy....

  8. A System For High Flexibility Entangling Gates With Trapped Ions

    Science.gov (United States)

    Milne, Alistair; Edmunds, Claire; Mavadia, Sandeep; Green, Todd; Biercuk, Michael

    Trapped ion qubits may be entangled via coupling to shared modes of motion using spin-dependent forces generated by optical fields. Residual qubit-motional coupling at the conclusion of the entangling operation is the dominant source of infidelity in this type of gate. For synchronously entangling increasing numbers of ions, longer gate times are required to minimise this residual coupling. We present a scheme that enables the state of each qubit to be simultaneously decoupled from all motional modes in an arbitrarily chosen gate time, increasing the gate fidelity and scalability. This is achieved by implementing discrete phase shifts in the optical field moderating the entangling operation. We describe an experimental system based on trapped ytterbium ions and demonstrate this scheme for two-qubit entangling gates on ytterbium ion pairs.

  9. High Capacity Anodes for Advanced Lithium Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion batteries are slowly being introduced into satellite power systems, but their life still presents concerns for longer duration missions. Future NASA...

  10. THE EFFECT OF HIGH TEMPERATURE ON THE POROSITY AND COMPRESSiVE STRENGTH ON THE CARBON FIBER REINFORCED LIGHTWEIGHT CONCRETE

    Directory of Open Access Journals (Sweden)

    Bahar DEMİREL

    2008-02-01

    Full Text Available In this study, the effect of high temperature on the mechanical properties of the carbon fiber reinforced lightweight concrete with silica fume was investigated. With this aim, lightweight concrete samples were produced by using basaltic pumice (scoria obtained from Elazig region. In addition, the samples produced with and without silica fume and carbon fiber. Silica fume was replaced 10 % by weight of cement and carbon fiber was added 0.5 % by weight of cement. Four different series of samples were prepared in order to observe the effect of high temperature on the physical and mechanical properties of both the lightweight concrete with and without silica fume and the lightweight concrete with and without carbon fiber. The specimens completed the 365 days curing period were exposed to 250, 500, 750 and 1000 °C for 1 hour. Porosity and compressive strength were determined and recorded after the specimens were cooled at the room temperature. In conclusion, it is determined that the losing of compressive strength in the specimens with silica fume is higher than the others. Relation of compressive strength-porosity is high out of 500-750 °C.

  11. Influence of High-Current-Density Impulses on the Compression Behavior: Experiments with Iron and a Nickel-Based Alloy

    Science.gov (United States)

    Demler, E.; Gerstein, G.; Dalinger, A.; Epishin, A.; Rodman, D.; Nürnberger, F.

    2017-01-01

    Difficulties of processing of high strength and/or brittle materials by plastic deformation, e.g., by forging, require to develop new industrial technologies. In particular, the feasible deformation rates are limited for low-ductile metallic materials. For this reason, processes were investigated to improve the deformability in which electrical impulses are to be applied to lower the yield strength. However, owing to the impulse duration and low current densities, concomitant effects always occur, e.g., as a result of Joule heating. Current developments in power electronics allow now to transmit high currents as short pulses. By reducing the impulse duration and increasing the current density, the plasticity of metallic materials can be correspondingly increased. Using the examples of polycrystalline iron and a single-crystal, nickel-based alloy (PWA 1480), current advances in the development of methods for forming materials by means of high-current-density impulses are demonstrated. For this purpose, appropriate specimens were loaded in compression and, using novel testing equipment, subjected to a current strength of 10 kA with an impulse duration of 2 ms. For a pre-defined strain, the test results show a significant decrease in the compressive stress during the compression test and a significant change in the dislocation distribution following the current impulse treatment.

  12. Quantification of hepatic blood flow using a high-resolution phase-contrast MRI sequence with compressed sensing acceleration.

    Science.gov (United States)

    Dyvorne, Hadrien A; Knight-Greenfield, Ashley; Besa, Cecilia; Cooper, Nancy; Garcia-Flores, Julio; Schiano, Thomas D; Markl, Michael; Taouli, Bachir

    2015-03-01

    OBJECTIVE. The objective of our study was to evaluate the performance of a high-spatial-resolution 2D phase-contrast (PC) MRI technique accelerated with compressed sensing for portal vein (PV) and hepatic artery (HA) flow quantification in comparison with a standard PC MRI sequence. SUBJECTS AND METHODS. In this prospective study, two PC MRI sequences were compared, one with parallel imaging acceleration and low spatial resolution (generalized autocalibrating partial parallel acquisition [GRAPPA]) and one with compressed sensing acceleration and high spatial resolution (sparse). Seventy-six patients were assessed, including 37 patients with cirrhosis. Two observers evaluated PC image quality. Quantitative analyses yielded a mean velocity, flow, and vessel area for the PV and HA and an arterial fraction. The PC techniques were compared using the paired Wilcoxon test and Bland-Altman statistics. The sensitivity of the flow parameters to the severity of cirrhosis was also assessed. RESULTS. Vessel delineation was significantly improved using the PC sparse sequence (p spatial-resolution highly accelerated compressed sensing technique (PC sparse) allows total hepatic blood flow measurements obtained in 1 breath-hold, provides improved delineation of the hepatic vessels compared with a standard PC MRI sequence (GRAPPA), and can potentially be used for the noninvasive assessment of liver cirrhosis.

  13. Heavy-ion physics at high baryon densities

    Directory of Open Access Journals (Sweden)

    Friese Volker

    2015-01-01

    Full Text Available Currently, several experimental programmes, both at existing and at future accelerator facilities, aim at investigating strongly interacting matter with nuclear collisions at energies below top SPS energy. These activities complement the heavy-ion experiments conducted at the highest available energies at the RHIC and LHC accelerators. In this report, we discuss the motivation for and prospects of the low-energy heavy-ion programmes.

  14. Hierarchically porous carbon with high-speed ion transport channels for high performance supercapacitors

    Science.gov (United States)

    Lu, Haoyuan; Li, Qingwei; Guo, Jianhui; Song, Aixin; Gong, Chunhong; Zhang, Jiwei; Zhang, Jingwei

    2018-01-01

    Hierarchically porous carbons (HPC) are considered as promising electrode materials for supercapacitors, due to their outstanding charge/discharge cycling stabilities and high power densities. However, HPC possess a relatively low ion diffusion rate inside the materials, which challenges their application for high performance supercapacitor. Thus tunnel-shaped carbon pores with a size of tens of nanometers were constructed by inducing the self-assembly of lithocholic acid with ammonium chloride, thereby providing high-speed channels for internal ion diffusion. The as-formed one-dimensional pores are beneficial to the activation process by KOH, providing a large specific surface area, and then facilitate rapid transport of electrolyte ions from macropores to the microporous surfaces. Therefore, the HPC achieve an outstanding gravimetric capacitance of 284 F g-1 at a current density of 0.1 A g-1 and a remarkable capacity retention of 64.8% when the current density increases by 1000 times to 100 A g-1.

  15. The Effect of PFSA Membrane Compression on the Predicted Performance of a High Pressure PEM Electrolysis Cell

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    2015-01-01

    In this work, a non-equilibrium formulation of a compression dependent water uptake model has been implemented in a two-dimensional, two-phase, multi-component and non-isothermal high pressure PEM electrolysis model. The non-equilibrium formulation of the water uptake model was chosen in order...... to account for interfacial transport kinetics between each fluid phase and the perfluorinated sulfonic acid membrane. Besides modeling water uptake, the devised membrane model accounts for water transport through diffusion and electro-osmotic drag in the electrolyte phase, and hydraulic permeation...... in the liquid phase. Charge transport and electrochemistry are likewise included. The obtained model is validated against experimental measurements. In order to investigate the effect of membrane compression, a parametric study is carried. Results underline that the predicted water uptake and cell voltage...

  16. Effects of compressibility and free-stream turbulence on boundary layer transition in high-subsonic and transonic flows

    Science.gov (United States)

    Murthy, S. V.; Steinle, F. W.

    1986-01-01

    Based on the existing boundary layer transition data, the effects of compressibility, pressure fluctuations, and free-stream turbulence have been reexamined for subsonic and transonic flow speeds. It is confirmed that the compressibility effects may be adequately expressed in terms of a simple correlation with free-stream Mach number. Pressure fluctuations, especially at low levels, do not seem to significantly affect the transition phenomenon. Effects of free-stream turbulence in high-subsonic and transonic flows are similar to the trends observed for low-speed flows and the transition process is hastened. The trends, as seen from slender cone flow data, seem to suggest power law correlations between transition Reynolds number and free-stream turbulence.

  17. Effects of Friction and Anvil Design on Plastic Deformation during the Compression Stage of High-Pressure Torsion

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yuepeng; Chen, Miaomiao; Xu, Baoyan; Guo, Jing; Xu, Lingfeng; Wang, Zheng [Mechanical and Electronic Engineering College, Tai’an (China); Gao, Dongsheng [Shandong Provincial Key Laboratory of Horticultural Machineries and Equipments, Tai’an (China); Kim, Hyoung Seop [Department of Materials Science and Engineering, Pohang (Korea, Republic of)

    2016-11-15

    Herein, we report the results of our investigation on the effect of friction and anvil design on the heterogeneous plastic-deformation characteristics of copper during the compressive stage of high-pressure torsion (HPT), using the finite element method. The results indicate that the friction and anvil geometry play important roles in the homogeneity of the deformation. These variables affect the heterogeneous level of strain in the HPT compressed disks, as well as the flash in the disk edge region. The heterogeneous plastic deformation of the disks becomes more severe with the increasing depth of the cavity, as anvil angle and friction coefficient increase. However, the homogeneity increases with increases in the wall angle. The length of flash and the area of the dead metal zone increase with the depth of the cavity, while they decrease at a wall angle of 180°.

  18. Influence of Eco-Friendly Mineral Additives on Early Age Compressive Strength and Temperature Development of High-Performance Concrete

    Science.gov (United States)

    Kaszynska, Maria; Skibicki, Szymon

    2017-12-01

    High-performance concrete (HPC) which contains increased amount of both higher grade cement and pozzolanic additives generates more hydration heat than the ordinary concrete. Prolonged periods of elevated temperature influence the rate of hydration process in result affecting the development of early-age strength and subsequent mechanical properties. The purpose of the presented research is to determine the relationship between the kinetics of the heat generation process and the compressive strength of early-age high performance concrete. All mixes were based on the Portland Cement CEM I 52.5 with between 7.5% to 15% of the cement mass replaced by the silica fume or metakaolin. Two characteristic for HPC water/binder ratios of w/b = 0.2 and w/b = 0.3 were chosen. A superplasticizer was used to maintain a 20-50 mm slump. Compressive strength was determined at 8h, 24h, 3, 7 and 28 days on 10x10x10 cm specimens that were cured in a calorimeter in a constant temperature of T = 20°C. The temperature inside the concrete was monitored continuously for 7 days. The study determined that the early-age strength (tage compressive strength of concrete. Concretes with additives reached the maximum temperature later than the concretes without them.

  19. Effect of adding acid solution on setting time and compressive strength of high calcium fly ash based geopolymer

    Science.gov (United States)

    Antoni, Herianto, Jason Ghorman; Anastasia, Evelin; Hardjito, Djwantoro

    2017-09-01

    Fly ash with high calcium oxide content when used as the base material in geopolymer concrete could cause flash setting or rapid hardening. However, it might increase the compressive strength of geopolymer concrete. This rapid hardening could cause problems if the geopolymer concrete is used on a large scale casting that requires a long setting time. CaO content can be indicated by pH values of the fly ash, while higher pH is correlated with the rapid setting time of fly ash-based geopolymer. This study investigates the addition of acid solution to reduce the initial pH of the fly ash and to prolong the setting time of the mixture. The acids used in this study are hydrochloric acid (HCl), sulfuric acid (H2 SO4), nitric acid (HNO3) and acetic acid (CH3 COOH). It was found that the addition of acid solution in fly ash was able to decrease the initial pH of fly ash, however, the initial setting time of geopolymer was not reduced. It was even faster than that of the control mixture. The acid type causes various influence, depending on the fly ash properties. In addition, the use of acid solution in fly ash reduces the compressive strength of geopolymer mortar. It is concluded that the addition of acid solution cannot prolong the rapid hardening of high calcium fly ash geopolymer, and it causes adverse effect on the compressive strength.

  20. High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression.

    Science.gov (United States)

    Canova, Frederico; Clady, Raphael; Chambaret, Jean-Paul; Flury, Manuel; Tonchev, Svtelen; Fechner, Renate; Parriaux, Olivier

    2007-11-12

    High efficiency, broad-band TE-polarization diffraction over a wavelength range centered at 800 nm is obtained by high index gratings placed on a non-corrugated mirror. More than 96% efficiency wide band top-hat diffraction efficiency spectra, as well as more than 1 J/cm(2) damage threshold under 50 fs pulses are demonstrated experimentally. This opens the way to high-efficiency Chirped Pulse Amplification for high average power laser machining by means of all-dielectric structures as well as for ultra-short high energy pulses by means of metal-dielectric structures.

  1. Effect of High-Temperature Curing Methods on the Compressive Strength Development of Concrete Containing High Volumes of Ground Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Wonsuk Jung

    2017-01-01

    Full Text Available This paper investigates the effect of the high-temperature curing methods on the compressive strength of concrete containing high volumes of ground granulated blast-furnace slag (GGBS. GGBS was used to replace Portland cement at a replacement ratio of 60% by binder mass. The high-temperature curing parameters used in this study were the delay period, temperature rise, peak temperature (PT, peak period, and temperature down. Test results demonstrate that the compressive strength of the samples with PTs of 65°C and 75°C was about 88% higher than that of the samples with a PT of 55°C after 1 day. According to this investigation, there might be optimum high-temperature curing conditions for preparing a concrete containing high volumes of GGBS, and incorporating GGBS into precast concrete mixes can be a very effective tool in increasing the applicability of this by-product.

  2. Anomalous compression behavior in a C15 Laves compound CeAl2 under high pressure

    Science.gov (United States)

    Tateno, Shota; Kishii, Nobuya; Ohashi, Masashi; Miyagawa, Hidenori; Oomi, Gendo; Satoh, Isamu; Miyajima, Nobuyoshi; Yagi, Takehiko

    2017-10-01

    Although there have been quite a number of discrepancies in the compression curves of CeAl2, such results come from the lattice compression at non-hydrostatic condition by solidification of pressure transmitting medium. We have carried out the powder X-ray diffraction measurement of CeAl2 under hydrostatic pressure with helium gas as pressure-transmitting medium which achieves the best hydrostatic conditions. Although no splitting of the peak is observed in the present diffraction pattern, it is found that a full width at half maximum is enhanced above 20 GPa for several Bragg reflections. Such behaviors suggest the existence of a new pressure-induced structural phase transition which is not observed in the previous reports under non-hydrostatic pressure.

  3. High compressive resistance drainage geo composites; Geocompuestos de drenaje de alta resistencia a compresion

    Energy Technology Data Exchange (ETDEWEB)

    Castelo Nolla, J.; Gutierrez Cuevas, J.

    2014-02-01

    There are several typologies of drainage geo composites available in the market which can be classified according to their structures as: cus pated, mono filaments, geo nets and those products formed by the combination of a draining blanket with a series of mini-pipes. Each one of them has its own range of compressive resistances. There are applications, such as are the new cells of landfills or mines and roads or railways over large embankments, where the pressure exerted on the geo composite exceeds the compressive resistance of the majority of these typologies. For all this applications, besides providing and adequate flow capacity, it must be ensured that the chosen typology is able to withstand the required loading without collapsing and guaranteeing an adequate factor of safety. This article will expose that, currently, the only typology of drainage geo composites that can bear these loadings while maintaining its drainage properties is the tri-planar geo net. (Author)

  4. Observation of a New High-Pressure Solid Phase in Dynamically Compressed Aluminum

    Science.gov (United States)

    Polsin, D. N.

    2017-10-01

    Aluminum is ideal for testing theoretical first-principles calculations because of the relative simplicity of its atomic structure. Density functional theory (DFT) calculations predict that Al transforms from an ambient-pressure, face-centered-cubic (fcc) crystal to the hexagonal close-packed (hcp) and body-centered-cubic (bcc) structures as it is compressed. Laser-driven experiments performed at the University of Rochester's Laboratory for Laser Energetics and the National Ignition Facility (NIF) ramp compressed Al samples to pressures up to 540 GPa without melting. Nanosecond in-situ x-ray diffraction was used to directly measure the crystal structure at pressures where the solid-solid phase transformations of Al are predicted to occur. Laser velocimetry provided the pressure in the Al. Our results show clear evidence of the fcc-hcp and hpc-bcc transformations at 216 +/- 9 GPa and 321 +/- 12 GPa, respectively. This is the first experimental in-situ observation of the bcc phase in compressed Al and a confirmation of the fcc-hcp transition previously observed under static compression at 217 GPa. The observations indicate these solid-solid phase transitions occur on the order of tens of nanoseconds time scales. In the fcc-hcp transition we find the original texture of the sample is preserved; however, the hcp-bcc transition diminishes that texture producing a structure that is more polycrystalline. The importance of this dynamic is discussed. The NIF results are the first demonstration of x-ray diffraction measurements at two different pressures in a single laser shot. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  5. Using an artificial neural network to predict carbon dioxide compressibility factor at high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mohagheghian, Erfan [Memorial University of Newfoundland, St. John' s (Canada); Zafarian-Rigaki, Habiballah; Motamedi-Ghahfarrokhi, Yaser; Hemmati-Sarapardeh, Abdolhossein [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-10-15

    Carbon dioxide injection, which is widely used as an enhanced oil recovery (EOR) method, has the potential of being coupled with CO{sub 2} sequestration and reducing the emission of greenhouse gas. Hence, knowing the compressibility factor of carbon dioxide is of a vital significance. Compressibility factor (Z-factor) is traditionally measured through time consuming, expensive and cumbersome experiments. Hence, developing a fast, robust and accurate model for its estimation is necessary. In this study, a new reliable model on the basis of feed forward artificial neural networks is presented to predict CO{sub 2} compressibility factor. Reduced temperature and pressure were selected as the input parameters of the proposed model. To evaluate and compare the results of the developed model with pre-existing models, both statistical and graphical error analyses were employed. The results indicated that the proposed model is more reliable and accurate compared to pre-existing models in a wide range of temperature (up to 1,273.15 K) and pressure (up to 140MPa). Furthermore, by employing the relevancy factor, the effect of pressure and temprature on the Z-factor of CO{sub 2} was compared for below and above the critical pressure of CO{sub 2}, and the physcially expected trends were observed. Finally, to identify the probable outliers and applicability domain of the proposed ANN model, both numerical and graphical techniques based on Leverage approach were performed. The results illustrated that only 1.75% of the experimental data points were located out of the applicability domain of the proposed model. As a result, the developed model is reliable for the prediction of CO{sub 2} compressibility factor.

  6. Influence of Temperature on Workability and Compressive Strength of Ordinary Concrete with High Calcium Fly Ash

    Directory of Open Access Journals (Sweden)

    Gołaszewski Jacek

    2017-06-01

    Full Text Available The rheological properties of fresh ordinary concrete are closely affected by temperature and time. The paper presents the study of consistency of fresh concrete mixtures made with Portland cement and cement with calcareous fly ash. Two types of admixtures were used. It was proven that the temperature has a clear effect on workability and compressive strength concrete. Influence on workability can be reduced by selecting the appropriate superplasticizer and cement.

  7. High-Performance Motion Estimation for Image Sensors with Video Compression

    Directory of Open Access Journals (Sweden)

    Weizhi Xu

    2015-08-01

    Full Text Available It is important to reduce the time cost of video compression for image sensors in video sensor network. Motion estimation (ME is the most time-consuming part in video compression. Previous work on ME exploited intra-frame data reuse in a reference frame to improve the time efficiency but neglected inter-frame data reuse. We propose a novel inter-frame data reuse scheme which can exploit both intra-frame and inter-frame data reuse for ME in video compression (VC-ME. Pixels of reconstructed frames are kept on-chip until they are used by the next current frame to avoid off-chip memory access. On-chip buffers with smart schedules of data access are designed to perform the new data reuse scheme. Three levels of the proposed inter-frame data reuse scheme are presented and analyzed. They give different choices with tradeoff between off-chip bandwidth requirement and on-chip memory size. All three levels have better data reuse efficiency than their intra-frame counterparts, so off-chip memory traffic is reduced effectively. Comparing the new inter-frame data reuse scheme with the traditional intra-frame data reuse scheme, the memory traffic can be reduced by 50% for VC-ME.

  8. High-Performance Motion Estimation for Image Sensors with Video Compression.

    Science.gov (United States)

    Xu, Weizhi; Yin, Shouyi; Liu, Leibo; Liu, Zhiyong; Wei, Shaojun

    2015-08-21

    It is important to reduce the time cost of video compression for image sensors in video sensor network. Motion estimation (ME) is the most time-consuming part in video compression. Previous work on ME exploited intra-frame data reuse in a reference frame to improve the time efficiency but neglected inter-frame data reuse. We propose a novel inter-frame data reuse scheme which can exploit both intra-frame and inter-frame data reuse for ME in video compression (VC-ME). Pixels of reconstructed frames are kept on-chip until they are used by the next current frame to avoid off-chip memory access. On-chip buffers with smart schedules of data access are designed to perform the new data reuse scheme. Three levels of the proposed inter-frame data reuse scheme are presented and analyzed. They give different choices with tradeoff between off-chip bandwidth requirement and on-chip memory size. All three levels have better data reuse efficiency than their intra-frame counterparts, so off-chip memory traffic is reduced effectively. Comparing the new inter-frame data reuse scheme with the traditional intra-frame data reuse scheme, the memory traffic can be reduced by 50% for VC-ME.

  9. High temperature annealing studies of strontium ion implanted glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Odutemowo, O.S., E-mail: u12052613@tuks.co.za [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Malherbe, J.B.; Prinsloo, L.; Langa, D.F. [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Wendler, E. [Institut für Festkörperphysik, Friedrich-Schiller University, Jena (Germany)

    2016-03-15

    Glassy carbon samples were implanted with 200 keV strontium ions to a fluence of 2 × 10{sup 16} ions/cm{sup 2} at room temperature. Analysis with Raman spectroscopy showed that ion bombardment amorphises the glassy carbon structure. Partial recovery of the glassy carbon structure was achieved after the implanted sample was vacuum annealed at 900 °C for 1 h. Annealing the strontium ion bombarded sample at 2000 °C for 5 h resulted in recovery of the glassy carbon substrate with the intensity of the D peak becoming lower than that of the pristine glassy carbon. Rutherford backscattering spectroscopy (RBS) showed that the implanted strontium diffused towards the surface of the glassy carbon after annealing the sample at 900 °C. This diffusion was also accompanied by loss of the implanted strontium. Comparison between the as-implanted and 900 °C depth profiles showed that less than 30% of the strontium was retained in the glassy carbon after heat treatment at 900 °C. The RBS profile after annealing at 2000 °C indicated that no strontium ions were retained after heat treatment at this temperature.

  10. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    Science.gov (United States)

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  11. Shot-to-shot reproducibility in the emission of fast highly charged metal ions from a laser ion source.

    Science.gov (United States)

    Krása, J; Velyhan, A; Margarone, D; Krouský, E; Krouský, L; Jungwirth, K; Rohlena, K; Ullschmied, J; Parys, P; Ryć, L; Wołowski, J

    2012-02-01

    The generation of fast highly charged metal ions with the use of the sub-nanosecond Prague Asterix Laser System, operated at a fundamental wavelength of 1315 nm, is reported. Particular attention is paid to shot-to-shot reproducibility in the ion emission. Au and Pd targets were exposed to intensities up to 5 × 10(16) W∕cm(2). Above the laser intensity threshold of ∼3 × 10(14) W∕cm(2) the plasma is generated in a form of irregular bursts. The maximum energy of protons constituting the leading edge of the fastest burst reaches a value up to 1 MeV. The fast ions in the following bursts have energy gradually decreasing with the increasing burst number, namely, from a value of about 0.5 MeV∕charge regardless of the atomic number and mass of the ionized species.

  12. LET effects of high energy ion beam irradiation on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shu; Kanzaki, Kenichi; Tagawa, Seiichi; Yoshida, Yoichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Kudoh, Hisaaki; Sugimoto, Masaki; Sasuga, Tsuneo; Seguchi, Tadao; Shibata, Hiromi

    1997-03-01

    Thin films of poly(di-n-hexylsilane) were irradiated with 2-20 MeV H{sup +} and He{sup +} ion beams. The beams caused heterogeneous reactions of crosslinking and main chain scission in the films. The relative efficiency of the crosslinking was drastically changed in comparison with that of main chain scission. The anomalous change in the molecular weight distribution was analyzed with increasing irradiation fluence, and the ion beam induced reaction radius; track radius was determined for the radiation sources by the function of molecular weight dispersion. Obtained values were 59{+-}15 A and 14{+-}6 A for 2 MeV He{sup +} and 20 MeV H{sup +} ion beams respectively. (author)

  13. Electron Impact Ionization of Stored Highly Charged Ions

    CERN Document Server

    Hahn, Michael

    2014-01-01

    Accurate cross section data for electron impact ionization (EII) are needed in order to interpret the spectra of collisionally ionized plasmas both in astrophysics and in the laboratory. Models and spectroscopic diagnostics of such plasmas rely on accurate ionization balance calculations, which depend, in turn, on the underlying rates for EII and electron-ion recombination. EII measurements have been carried out using the TSR storage ring located at the Max-Planck-Institut fuer Kernphysik in Heidelberg, Germany. Storage ring measurements are largely free of metastable contamination, resulting in unambiguous EII data, unlike what is encountered with other experimental geometries. As it is impractical to perform experiments for every ion, theory must provide the bulk of the necessary EII data. In order to guide theory, TSR experiments have focused on providing at least one measurement for every isoelectronic sequence. EII data have been measured for ions from 13 isoelectronic sequences: Li-like silicon and chlo...

  14. Heavy ion time-of-flight ERDA of high dose metal implanted germanium

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Evans, P.J.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics; Bunder, J. [New South Wales Univ., Wollongong, NSW (Australia). Wollongong Univ. Coll

    1996-12-31

    With the thick Ge substrates used in ion implantation, RBS can have difficulty in resolving the mass-depth ambiguities when analysing materials composed of mixtures of elements with nearly equal masses. Additional, and complimentary techniques are thus required. This paper reports the use of heavy ion time-of-flight elastic recoil detection analysis (ToF- ERDA), and conventional RBS in the analysis of Ge(100) implanted with high dose Ti and Cu ions from a MEWA ion source . Heavy ion ToF ERDA has been used to resolve, and profile the implanted transition metal species, and also to study any oxygen incorporation into the sample resulting from the implantation, or subsequential reactions with air or moisture. This work is part of a study on high dose metal ion implantation of medium atomic weight semiconductor materials. 13 refs., 6 figs.

  15. Plasma Emission Characteristics from a High Current Hollow Cathode in an Ion Thruster Discharge Chamber

    Science.gov (United States)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 5A) has been documented in the literature. In order to further elucidate these findings, an investigation of a high current cathode operating in an ion thruster discharge chamber has been undertaken. Using Langmuir probes, a low energy charged particle analyzer and emission spectroscopy, the behavior of the near-cathode plasma and the emitted ion energy distribution was characterized. The presence of energetic ions was confirmed. It was observed that these ions had energies in excess of the discharge voltage and thus cannot be simply explained by ions falling out of plasma through a potential difference of this order. Additionally, evidence provided by Langmuir probes suggests the existence of a double layer essentially separating the hollow cathode plasma column from the main discharge. The radial potential difference associated with this double layer was measured to be of order the ionization potential.

  16. Macroscopic Expressions of Molecular Adiabatic Compressibility of Methyl and Ethyl Caprate under High Pressure and High Temperature

    Directory of Open Access Journals (Sweden)

    Fuxi Shi

    2014-01-01

    Full Text Available The molecular compressibility, which is a macroscopic quantity to reveal the microcompressibility by additivity of molecular constitutions, is considered as a fixed value for specific organic liquids. In this study, we introduced two calculated expressions of molecular adiabatic compressibility to demonstrate its pressure and temperature dependency. The first one was developed from Wada’s constant expression based on experimental data of density and sound velocity. Secondly, by introducing the 2D fitting expressions and their partial derivative of pressure and temperature, molecular compressibility dependency was analyzed further, and a 3D fitting expression was obtained from the calculated data of the first one. The third was derived with introducing the pressure and temperature correction factors based on analogy to Lennard-Jones potential function and energy equipartition theorem. In wide range of temperatures (293compressibility was certified.

  17. High Precision Motion Control System for the Two-Stage Light Gas Gun at the Dynamic Compression Sector

    Science.gov (United States)

    Zdanowicz, E.; Guarino, V.; Konrad, C.; Williams, B.; Capatina, D.; D'Amico, K.; Arganbright, N.; Zimmerman, K.; Turneaure, S.; Gupta, Y. M.

    2017-06-01

    The Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS), located at Argonne National Laboratory (ANL), has a diverse set of dynamic compression drivers to obtain time resolved x-ray data in single event, dynamic compression experiments. Because the APS x-ray beam direction is fixed, each driver at DCS must have the capability to move through a large range of linear and angular motions with high precision to accommodate a wide variety of scientific needs. Particularly challenging was the design and implementation of the motion control system for the two-stage light gas gun, which rests on a 26' long structure and weighs over 2 tons. The target must be precisely positioned in the x-ray beam while remaining perpendicular to the gun barrel axis to ensure one-dimensional loading of samples. To accommodate these requirements, the entire structure can pivot through 60° of angular motion and move 10's of inches along four independent linear directions with 0.01° and 10 μm resolution, respectively. This presentation will provide details of how this system was constructed, how it is controlled, and provide examples of the wide range of x-ray/sample geometries that can be accommodated. Work supported by DOE/NNSA.

  18. Thermal Ion Upwelling in the High-Altitude Ionosphere

    Science.gov (United States)

    1990-01-01

    unpublished). In each of these cases, time dependencies in frictional heating rates are considered parametrically or with less formalism than is...altitudinal distributions of upward flowing energetic ions of ionospheric orgin, Geophys Res. Lett., 5, 59, 1978. Godunov, S. K., Raznostnyi metod

  19. Corrosion behaviour of low energy, high temperature nitrogen ion ...

    Indian Academy of Sciences (India)

    S FLEGE. Technische Universität Darmstadt, Materials Science, Petersenstr. 23, 64287 Darmstadt, Germany. E-mail: flege@ca.tu-darmstadt.de. Ghoranneviss et al [1] have reported on nitrogen implantation into stainless steel and presented a secondary ion mass spectrometry (SIMS) measurement of the N and the CrN.

  20. High Energy Density Solid State Li-ion Battery with Enhanced Safety Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop an all solid state Li-ion battery which is capable of delivering high energy density, combined with high safety over a wide operating...

  1. Nanomaterials Enabled High Energy and Power Density Li-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a need for high energy (~ 200 Wh/kg) and high power (> 500 W/kg) density rechargeable Li-ion batteries that are safe and reliable for several space and...

  2. Energetic Ion Mitigation Methodology for High Power Plasma Thruster Cathodes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The presence of energetic ions, that appear under high cathode current operation, stand as a showstopper to the realization of high power electric propulsion....

  3. Ultra-light and flexible pencil-trace anode for high performance potassium-ion and lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Zhixin Tai

    2017-07-01

    Full Text Available Engineering design of battery configurations and new battery system development are alternative approaches to achieve high performance batteries. A novel flexible and ultra-light graphite anode is fabricated by simple friction drawing on filter paper with a commercial 8B pencil. Compared with the traditional anode using copper foil as current collector, this innovative current-collector-free design presents capacity improvement of over 200% by reducing the inert weight of the electrode. The as-prepared pencil-trace electrode exhibits excellent rate performance in potassium-ion batteries (KIBs, significantly better than in lithium-ion batteries (LIBs, with capacity retention of 66% for the KIB vs. 28% for the LIB from 0.1 to 0.5 A g−1. It also shows a high reversible capacity of ∼230 mAh g−1 at 0.2 A g−1, 75% capacity retention over 350 cycles at 0.4 A g−1and the highest rate performance (based on the total electrode weight among graphite electrodes for K+ storage reported so far. Keywords: Current-collector-free, Flexible pencil-trace electrode, Potassium-ion battery, Lithium-ion battery, Layer-by-layer interconnected architecture

  4. Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries.

    Science.gov (United States)

    Kalluri, Sujith; Yoon, Moonsu; Jo, Minki; Liu, Hua Kun; Dou, Shi Xue; Cho, Jaephil; Guo, Zaiping

    2017-12-01

    Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm-2 ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Low-complexity Compression of High Dynamic Range Infrared Images with JPEG compatibility

    DEFF Research Database (Denmark)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    2017-01-01

    data size, then we include the raw residual image instead. If the residual image contains only zero values or the quality factor for it is 0 then we do not include the residual image into the header. Experimental results show that compared with JPEG-XT Part 6 with ’global Reinhard’ tone-mapping....... Then we compress each image by a JPEG baseline encoder and include the residual image bit stream into the application part of JPEG header of the base image. As a result, the base image can be reconstructed by JPEG baseline decoder. If the JPEG bit stream size of the residual image is higher than the raw...

  6. Characterization of Atmospheric Ions at the High Altitude Station Jungfraujoch (Switzerland)

    Science.gov (United States)

    Frege, Carla; Bianchi, Federico; Junninen, Heikki; Tröstl, Jasmin; Molteni, Ugo; Herrmann, Erik; Sipilä, Mikko; Dommen, Josef; Kulmala, Markku; Baltensperger, Urs

    2015-04-01

    Understanding ion composition in the atmosphere is of high interest since ions control the electrical properties of the atmospheric medium, participate in ion-catalysed and ion-molecule reactions and contribute to physico-chemical interactions, including ion-induced nucleation (Arnold, 2008). In the last decade, the interest in atmospheric ions has increased because of the potential impact of the ion-aerosol-cloud interaction on climate (Hirsikko et al., 2011). Therefore, several laboratory and field measurements have been performed trying to understand the precise role of ions in new particle formation. The free troposphere represents an interesting region with no immediate contribution from biogenic or anthropogenic sources, low pollution and low temperatures, where new particle formation can make an important contribution to the total particle number concentration. Thus, the characterization of ions in this region of the atmosphere is an important step to understand new particle nucleation. In August 2013 we started measurements at the Jungfraujoch (JFJ, 3580 m asl; 46.55°N, 7.98°E) in the Swiss Alps to investigate the composition of atmospheric ions in the lower free troposphere for around 9 months. The instrument employed was an Atmospheric Pressure Interface Time-of-Flight Mass Spectrometer (TOFWERK AG, Thun Switzerland) for ion characterization in positive and negative mode (alternately). We will present an overview of the major positively and negatively charged inorganic, organic and halogenated ions. We will also present back trajectories calculated with two different models: HYSPLIT for air transport and dispersion, and FLEXPART for surface residence time, along with correlations with the abundance of specific ions. As measurements were conducted continuously over a long period we were able to compare ion compositions under different conditions of solar radiation, presence or absence of clouds and wind direction/ air mass origin and to evaluate

  7. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    National Research Council Canada - National Science Library

    Mochamad Solikin; Budi Setiawan

    2017-01-01

    ...) and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly Ash Concrete...

  8. Electron cooling of highly charged ions in penning traps; Elektronenkuehlung hochgeladener Ionen in Penningfallen

    Energy Technology Data Exchange (ETDEWEB)

    Moellers, B.

    2007-02-08

    For many high precision experiments with highly charged ions in ion traps it is necessary to work with low energy ions. One possibility to slow ions down to a very low energy in a trap is electron cooling, a method, which is already successfully used in storage rings to produce ion beams with high phase space density. Fast ions and a cold electron plasma are inserted into a Penning trap. The ions lose their energy due to Coulomb interaction with the electrons while they cross the plasma, the electrons are heated. The cooling time is the time, which is needed to cool an ion from a given initial energy to a low final energy. To calculate cooling times it is necessary to solve coupled differential equations for the ion energy and electron temperature. In a Penning trap the strong external magnetic field constitutes a theoretical challenge, as it influences the energy loss of the ions in an electron plasma, which can no longer be calculated analytically. In former estimates of cooling times this influence is neglected. But simulations show a dramatic decrease of the energy loss in the presence of a strong magnetic field, so it is necessary to investigate the effect of the magnetic field on the cooling times. This work presents a model to calculate cooling times, which includes both the magnetic field and the trap geometry. In a first step a simplified model without the external trap potential is developed. The energy loss of the ions in the magnetized electron plasma is calculated by an analytic approximation, which requires a numerical solution of integrals. With this model the dependence of the cooling time on different parameters like electron and ion density, magnetic field and the angle between ion velocity and magnetic field is studied for fully ionized uranium. In addition the influence of the electron heating is discussed. Another important topic in this context is the recombination between ions and electrons. The simplified model for cooling times allows to

  9. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    OpenAIRE

    Solikin Mochamad; Setiawan Budi

    2017-01-01

    High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC) and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly ...

  10. High-dynamic range compressive spectral imaging by grayscale coded aperture adaptive filtering

    Directory of Open Access Journals (Sweden)

    Nelson Eduardo Diaz

    2015-12-01

    Full Text Available The coded aperture snapshot spectral imaging system (CASSI is an imaging architecture which senses the three dimensional informa-tion of a scene with two dimensional (2D focal plane array (FPA coded projection measurements. A reconstruction algorithm takes advantage of the compressive measurements sparsity to recover the underlying 3D data cube. Traditionally, CASSI uses block-un-block coded apertures (BCA to spatially modulate the light. In CASSI the quality of the reconstructed images depends on the design of these coded apertures and the FPA dynamic range. This work presents a new CASSI architecture based on grayscaled coded apertu-res (GCA which reduce the FPA saturation and increase the dynamic range of the reconstructed images. The set of GCA is calculated in a real-time adaptive manner exploiting the information from the FPA compressive measurements. Extensive simulations show the attained improvement in the quality of the reconstructed images when GCA are employed.  In addition, a comparison between traditional coded apertures and GCA is realized with respect to noise tolerance.

  11. Compressive Sensing Based Bayesian Sparse Channel Estimation for OFDM Communication Systems: High Performance and Low Complexity

    Science.gov (United States)

    Xu, Li; Shan, Lin; Adachi, Fumiyuki

    2014-01-01

    In orthogonal frequency division modulation (OFDM) communication systems, channel state information (CSI) is required at receiver due to the fact that frequency-selective fading channel leads to disgusting intersymbol interference (ISI) over data transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by compressive sensing based sparse channel estimation (SCE) methods, for example, orthogonal matching pursuit algorithm, which can take the advantage of sparse structure effectively in the channel as for prior information. However, these developed methods are vulnerable to both noise interference and column coherence of training signal matrix. In other words, the primary objective of these conventional methods is to catch the dominant channel taps without a report of posterior channel uncertainty. To improve the estimation performance, we proposed a compressive sensing based Bayesian sparse channel estimation (BSCE) method which cannot only exploit the channel sparsity but also mitigate the unexpected channel uncertainty without scarifying any computational complexity. The proposed method can reveal potential ambiguity among multiple channel estimators that are ambiguous due to observation noise or correlation interference among columns in the training matrix. Computer simulations show that proposed method can improve the estimation performance when comparing with conventional SCE methods. PMID:24983012

  12. Compressive Sensing Based Bayesian Sparse Channel Estimation for OFDM Communication Systems: High Performance and Low Complexity

    Directory of Open Access Journals (Sweden)

    Guan Gui

    2014-01-01

    Full Text Available In orthogonal frequency division modulation (OFDM communication systems, channel state information (CSI is required at receiver due to the fact that frequency-selective fading channel leads to disgusting intersymbol interference (ISI over data transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by compressive sensing based sparse channel estimation (SCE methods, for example, orthogonal matching pursuit algorithm, which can take the advantage of sparse structure effectively in the channel as for prior information. However, these developed methods are vulnerable to both noise interference and column coherence of training signal matrix. In other words, the primary objective of these conventional methods is to catch the dominant channel taps without a report of posterior channel uncertainty. To improve the estimation performance, we proposed a compressive sensing based Bayesian sparse channel estimation (BSCE method which cannot only exploit the channel sparsity but also mitigate the unexpected channel uncertainty without scarifying any computational complexity. The proposed method can reveal potential ambiguity among multiple channel estimators that are ambiguous due to observation noise or correlation interference among columns in the training matrix. Computer simulations show that proposed method can improve the estimation performance when comparing with conventional SCE methods.

  13. Compressive sensing based Bayesian sparse channel estimation for OFDM communication systems: high performance and low complexity.

    Science.gov (United States)

    Gui, Guan; Xu, Li; Shan, Lin; Adachi, Fumiyuki

    2014-01-01

    In orthogonal frequency division modulation (OFDM) communication systems, channel state information (CSI) is required at receiver due to the fact that frequency-selective fading channel leads to disgusting intersymbol interference (ISI) over data transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by compressive sensing based sparse channel estimation (SCE) methods, for example, orthogonal matching pursuit algorithm, which can take the advantage of sparse structure effectively in the channel as for prior information. However, these developed methods are vulnerable to both noise interference and column coherence of training signal matrix. In other words, the primary objective of these conventional methods is to catch the dominant channel taps without a report of posterior channel uncertainty. To improve the estimation performance, we proposed a compressive sensing based Bayesian sparse channel estimation (BSCE) method which cannot only exploit the channel sparsity but also mitigate the unexpected channel uncertainty without scarifying any computational complexity. The proposed method can reveal potential ambiguity among multiple channel estimators that are ambiguous due to observation noise or correlation interference among columns in the training matrix. Computer simulations show that proposed method can improve the estimation performance when comparing with conventional SCE methods.

  14. Wavelet image compression

    CERN Document Server

    Pearlman, William A

    2013-01-01

    This book explains the stages necessary to create a wavelet compression system for images and describes state-of-the-art systems used in image compression standards and current research. It starts with a high level discussion of the properties of the wavelet transform, especially the decomposition into multi-resolution subbands. It continues with an exposition of the null-zone, uniform quantization used in most subband coding systems and the optimal allocation of bitrate to the different subbands. Then the image compression systems of the FBI Fingerprint Compression Standard and the JPEG2000 S

  15. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  16. High efficiency direct detection of ions from resonance ionization of sputtered atoms

    Science.gov (United States)

    Gruen, Dieter M.; Pellin, Michael J.; Young, Charles E.

    1986-01-01

    A method and apparatus are provided for trace and other quantitative analysis with high efficiency of a component in a sample, with the analysis involving the removal by ion or other bombardment of a small quantity of ion and neutral atom groups from the sample, the conversion of selected neutral atom groups to photoions by laser initiated resonance ionization spectroscopy, the selective deflection of the photoions for separation from original ion group emanating from the sample, and the detection of the photoions as a measure of the quantity of the component. In some embodiments, the original ion group is accelerated prior to the RIS step for separation purposes. Noise and other interference are reduced by shielding the detector from primary and secondary ions and deflecting the photoions sufficiently to avoid the primary and secondary ions.

  17. Fabrication of Pt nanoparticle incorporated polymer nanowires by high energy ion and electron beam irradiation

    Science.gov (United States)

    Tsukuda, Satoshi; Takahasi, Ryouta; Seki, Shu; Sugimoto, Masaki; Idesaki, Akira; Yoshikawa, Masahito; Tanaka, Shun-Ichiro

    2016-01-01

    Polyvinylpyrrolidone (PVP)-Pt nanoparticles (NPs) hybrid nanowires were fabricated by high energy ion beam irradiation to PVP thin films including H2PtCl6. Single ion hitting caused crosslinking reactions of PVP and reduction of Pt ions within local cylindrical area along an ion trajectory (ion track); therefore, the PVP nanowires including Pt NPs were formed and isolated on Si substrate after wet-development procedure. The number of Pt NPs was easily controlled by the mixed ratio of PVP and H2PtCl6. However, increasing the amount of H2PtCl6 led to decreasing the radial size and separation of the hybrid nanowires during the wet-development. Additional electron beam irradiation after ion beam improved separation of the nanowires and controlled radial sizes due to an increase in the density of crosslinking points inner the nanowires.

  18. High-Fidelity Preservation of Quantum Information During Trapped-Ion Transport

    Science.gov (United States)

    Kaufmann, Peter; Gloger, Timm F.; Kaufmann, Delia; Johanning, Michael; Wunderlich, Christof

    2018-01-01

    A promising scheme for building scalable quantum simulators and computers is the synthesis of a scalable system using interconnected subsystems. A prerequisite for this approach is the ability to faithfully transfer quantum information between subsystems. With trapped atomic ions, this can be realized by transporting ions with quantum information encoded into their internal states. Here, we measure with high precision the fidelity of quantum information encoded into hyperfine states of a Yb171 + ion during ion transport in a microstructured Paul trap. Ramsey spectroscopy of the ion's internal state is interleaved with up to 4000 transport operations over a distance of 280 μ m each taking 12.8 μ s . We obtain a state fidelity of 99.9994 (-7+6) % per ion transport.

  19. Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme

    CERN Document Server

    Sakakibara, Kazuhiko; Hayashizaki, Noriyosu; Ito, Taku; Kashiwagi, Hirotsugu; Okamura, Masahiro

    2005-01-01

    To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).

  20. Experimental Investigation and Prediction of Compressive Strength of Ultra-High Performance Concrete Containing Supplementary Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Jisong Zhang

    2017-01-01

    Full Text Available Ultra-high performance concrete (UHPC has superior mechanical properties and durability to normal strength concrete. However, the high amount of cement, high environmental impact, and initial cost are regarded as disadvantages, restricting its wider application. Incorporation of supplementary cementitious materials (SCMs in UHPC is an effective way to reduce the amount of cement needed while contributing to the sustainability and cost. This paper investigates the mechanical properties and microstructure of UHPC containing fly ash (FA and silica fume (SF with the aim of contributing to this issue. The results indicate that, on the basis of 30% FA replacement, the incorporation of 10% and 20% SF showed equivalent or higher mechanical properties compared to the reference samples. The microstructure and pore volume of the UHPCs were also examined. Furthermore, to minimise the experimental workload of future studies, a prediction model is developed to predict the compressive strength of the UHPC using artificial neural networks (ANNs. The results indicate that the developed ANN model has high accuracy and can be used for the prediction of the compressive strength of UHPC with these SCMs.

  1. Spark ignition engine performance and emissions in a high compression engine using biogas and methane mixtures without knock occurrence

    Directory of Open Access Journals (Sweden)

    Gómez Montoya Juan Pablo

    2015-01-01

    Full Text Available With the purpose to use biogas in an internal combustion engine with high compression ratio and in order to get a high output thermal efficiency, this investigation used a diesel engine with a maximum output power 8.5 kW, which was converted to spark ignition mode to use it with gaseous fuels. Three fuels were used: Simulated biogas, biogas enriched with 25% and 50% methane by volume. After conversion, the output power of the engine decreased by 17.64% when using only biogas, where 7 kW was the new maximum output power of the engine. The compression ratio was kept at 15.5:1, and knocking did not occur during engine operation. Output thermal efficiency operating the engine in SI mode with biogas enriched with 50% methane was almost the same compared with the engine running in diesel-biogas dual mode at full load and was greater at part loads. The dependence of the diesel pilot was eliminated when biogas was used in the engine converted in SI mode. The optimum condition of experiment for the engine without knocking was using biogas enriched with 50% methane, with 12 degrees of spark timing advance and equivalence ratio of 0.95, larger output powers and higher values of methane concentration lead the engine to knock operation. The presence of CO2 allows operating engines at high compression ratios with normal combustion conditions. Emissions of nitrogen oxides, carbon monoxide and unburnt methane all in g/kWh decreased when the biogas was enriched with 50% methane.

  2. Momentum transfer using variable gaseous plasma ion beams and creation of high aspect ratio microstructures

    Science.gov (United States)

    Maurya, Sanjeev Kumar; Paul, Samit; Shah, Jay Kumar; Chatterjee, Sanghamitro; Bhattacharjee, Sudeep

    2017-03-01

    Intense gaseous ion beams are created from compact microwave plasmas confined in a multicusp magnetic field. The wave frequency (ω) is comparable to the electron plasma frequency (ωpe) and ≫ the ion plasma frequency (ωpi); therefore, the heavier plasma (ions) are least disturbed by the high frequency electromagnetic waves. By changing the experimental gas, ion beams of different species are obtained, which expands the applicability of the ion beams. For the same applied accelerating potential, the controllability of the beam current owing to different velocities for different ionic species adds to the enhanced functionality. The ion beams are utilized to create a variety of microstructures by direct writing on metallic substrates, and microstructures of a high aspect ratio (ar = line width/depth) in the range of 100-1000 are created by varying the ion species and writing speed. For fixed species (Ga) and low current (1 pA) focused ion beam systems, typically ar ˜ 2.0 to 9.3 may be realized in a single beam scan. A parameter called current normalized force, defined as the momentum transfer per unit time, normalized with the beam current helps in understanding the different momentum transferred to the target sample upon impact by the ion beams of variable species. A mathematical formulation is developed to demonstrate this aspect.

  3. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... The recent results on direct photons and dileptons in high-energy heavy-ion collisions, obtained particularly at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the ...

  4. Highly-charged ions in a penning trap: mass measurements, etc.

    Science.gov (United States)

    Jertz, R.; Bollen, G.; Kluge, H.-J.; Schweikhard, L.; Stolzenberg, H.; Bergström, I.; Carlberg, C.; Schuch, R.

    1991-03-01

    The use of a Penning trap will start a new generation of precision experiments on highly charged ions. The long storage time of the ions in combination with a controlled confinement in a very small volume will enable accuracies in mass determination better than δ m/ m=10-8.

  5. Prospects for parity-nonconservation experiments with highly charged heavy ions

    OpenAIRE

    Maul, Martin; Schäfer, Andreas; Greiner, Walter; Indelicato, Paul

    2006-01-01

    We discuss the prospects for parity-nonconservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with 2–5 electrons are calculated. We investigate two-photon transitions and the possibility of observing interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  6. Prospects for Parity Non-conservation Experiments with Highly Charged Heavy Ions

    OpenAIRE

    Maul, M.; Schäfer, A.; Greiner, W.; Indelicato, P.

    1996-01-01

    We discuss the prospects for parity non-conservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with two to five electrons are calculated. We investigate two-photon-transitions and the possibility to observe interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  7. High resolution magnetic force microscopy using focused ion beam modified tips

    NARCIS (Netherlands)

    Phillips, G.N.; Siekman, Martin Herman; Abelmann, Leon; Lodder, J.C.

    2002-01-01

    Atomic force microscope tips coated by the thermal evaporation of a magnetic 30 nm thick Co film have been modified by focused ion beam milling with Ga+ ions to produce tips suitable for magnetic force microscopy. Such tips possess a planar magnetic element with high magnetic shape anisotropy, an

  8. High-throughput ion beam analysis at imec

    Science.gov (United States)

    Meersschaut, J.; Vandervorst, W.

    2017-09-01

    We describe the ion beam analysis activities at imec. Rutherford backscattering spectrometry and time of flight-energy (TOF-E) elastic recoil detection analysis are pursued to support the nano-electronics research and development. We outline the experimental set-up and we introduce a new data acquisition software platform. Finally, we illustrate the use of Rutherford backscattering spectrometry to map the thickness of a metallic thin film on a 300 mm Si wafer.

  9. COLLISIONAL-RADIATIVE MODEL FOR HIGHLY STRIPPED IONS

    OpenAIRE

    E. Berthier; Delpech, J.-F.; Vuillemin, M.

    1986-01-01

    Collisional -Radiative numerical models are commonly used to design or interpret experiments in atomic physics of laser-created plasmas, including X-Ray laser studies. We describe our new code containing several options : average ion, more or less detailed configurations. It consists of an atomic data base coupled to subroutines evaluating ionic populations and emission and absorption coefficients. Numerical results are given to illustrate the capabilities of the code and to compare different...

  10. Ion Trapping in the SLAC B-factory High Energy Ring

    Energy Technology Data Exchange (ETDEWEB)

    Villevald, D.; Heifets, S.; /SLAC

    2006-09-07

    The presence of trapped ions in electron storage rings has caused significant degradation in machine performance. The best known way to prevent the ion trapping is to leave a gap in the electron bunch train. The topic of this paper is the dynamics of ions in the field of the bunch train with uneven bunch filling. We consider High Energy Ring (HER) of the PEP-II B-factory. In the first section we summarize mechanisms of the ion production. Then the transverse and longitudinal dynamics are analyzed for a beam with and without gap. After that, the effect of the ions is considered separating all ions in the ring in several groups depending on their transverse and longitudinal stability. The main effects of the ions are the tune shift and the tune spread of the betatron oscillations of the electrons. The tune spread is produced by bunch to bunch variation of the electric field of ions and by nonlinearity of the field. It is shown that the main contribution to the shift and spread of the betatron tune of the beam is caused by two groups of ions: one-turn ions and trapped ions. One-turn ions are the ions generated during the last passage of the bunch train. Trapped ions are the ions with stable transverse and longitudinal motion. In the last section we discuss shortly related problems of parameters of the clearing electrodes, injection scenario, and collective effects. Clearing electrodes should be located at the defocusing in x-plane quadrupole magnets. An electric DC field of value 1.0 kv/cm will be enough to prevent the ion trapping process. During the injection, it is recommended to fill the bucket with the design number of the particles per bunch N{sub B} before going to the next bucket. In addition, it is recommended to have the sequential filling of the ring, i.e. the filling from one bucket to the next sequentially. It was shown that ions will not be trapped at the location of the interaction point. The reason for this is that the current of the positron beam is

  11. High-precision force sensing using a single trapped ion

    Science.gov (United States)

    Ivanov, Peter A.; Vitanov, Nikolay V.; Singer, Kilian

    2016-06-01

    We introduce quantum sensing schemes for measuring very weak forces with a single trapped ion. They use the spin-motional coupling induced by the laser-ion interaction to transfer the relevant force information to the spin-degree of freedom. Therefore, the force estimation is carried out simply by observing the Ramsey-type oscillations of the ion spin states. Three quantum probes are considered, which are represented by systems obeying the Jaynes-Cummings, quantum Rabi (in 1D) and Jahn-Teller (in 2D) models. By using dynamical decoupling schemes in the Jaynes-Cummings and Jahn-Teller models, our force sensing protocols can be made robust to the spin dephasing caused by the thermal and magnetic field fluctuations. In the quantum-Rabi probe, the residual spin-phonon coupling vanishes, which makes this sensing protocol naturally robust to thermally-induced spin dephasing. We show that the proposed techniques can be used to sense the axial and transverse components of the force with a sensitivity beyond the range, i.e. in the (xennonewton, 10-27). The Jahn-Teller protocol, in particular, can be used to implement a two-channel vector spectrum analyzer for measuring ultra-low voltages.

  12. Origins of ion energy distribution function (IEDF) in high power impulse magnetron sputtering (HIPIMS) plasma discharge

    Science.gov (United States)

    Hecimovic, A.; Burcalova, K.; Ehiasarian, A. P.

    2008-05-01

    The ion energy distribution function (IEDF) in high power impulse magnetron sputtering (HIPIMS) discharges was studied by plasma sampling energy-resolved mass spectroscopy. HIPIMS of chromium (Cr), titanium (Ti) and carbon (C) targets in argon (Ar) atmosphere was analysed. Singly and doubly charged ions of both the target and the gas were detected. Time-averaged IEDFs were measured for all detected ions at the substrate position at a distance of 150 mm from the target. The effects of target current and discharge pressure on the IEDF were investigated. Measurements were done at two pressures and for three peak discharge currents. The IEDF of both the target and the gas ions was found to comprise two Maxwellian distributions. Quantitative analysis of target IEDFs at a low pressure showed that the main peak had a lower average energy with an approximate value of EAV = 1 eV which is attributed to collisions with thermalized gas atoms and ions. The higher energy distribution has a tail extending up to 70 eV, which is assumed to originate from a Thompson distribution of sputtered metal atoms which, due to collisions, are thermalized and appear as a Maxwell distribution. The proportion of high energy IEDFs for metal ions increases monotonically as a function of Id. The effective ion temperature kBT, extracted from the main low energy peak, showed a weak dependence on peak current. The effective ion temperature extracted from the high energy tail showed a strong correlation with the change in Id. The IEDF at high pressure shows that a proportion of high energy IEDFs was very low and dominated by a low energy main peak. The gas IEDF at high pressure was completely thermalized. The metal-ion-to-gas-ion ratio was found to increase with Id and with the sputtering yield of the target material.

  13. High-definition velocity-space tomography of fast-ion dynamics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Jacobsen, A.S.

    2016-01-01

    Velocity-space tomography of the fast-ion distribution function in a fusion plasma is usually a photon-starved tomography method due to limited optical access and signal-to-noise ratio of fast-ion Dα (FIDA) spectroscopy as well as the strive for high-resolution images. In high-definition tomography...... information to reconstruct where in velocity space the measurements and the simulation disagree. This alternative approach is demonstrated for four-view as well as for two-view FIDA measurements. The high-definition tomography tools allow us to study fast ions in sawtoothing plasmas and the formation of NBI...

  14. Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jong-Kil; Yoon, Jun-Kyu [Gachon Univ., Sungnam (Korea, Republic of); Kim, Kwang-Chu [KEPCO-E& C, Kimchun (Korea, Republic of)

    2017-10-15

    A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general . In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.

  15. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations

    Energy Technology Data Exchange (ETDEWEB)

    Bassi, F. [Universita degli Studi di Ancona (Italy); Rebay, S. [Universita degli Studi di Brescia (Italy)

    1997-03-01

    This paper deals with a high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. We extend a discontinuous finite element discretization originally considered for hyperbolic systems such as the Euler equations to the case of the Navier-Stokes equations by treating the viscous terms with a mixed formulation. The method combines two key ideas which are at the basis of the finite volume and of the finite element method, the physics of wave propagation being accounted for by means of Riemann problems and accuracy being obtained by means of high-order polynomial approximations within elements. As a consequence the method is ideally suited to compute high-order accurate solution of the Navier-Stokes equations on unstructured grids. The performance of the proposed method is illustrated by computing the compressible viscous flow on a flat plate and around a NACA0012 airfoil for several flow regimes using constant, linear, quadratic, and cubic elements. 23 refs., 24 figs., 3 tabs.

  16. Deterministic Compressive Sampling for High-Quality Image Reconstruction of Ultrasound Tomography

    CERN Document Server

    Quang-Huy, Tran; Tue, Huynh Huu; Linh-Trung, Nguyen

    2015-01-01

    A well-known diagnostic imaging modality, termed ultrasound tomography, was quickly developed for the detection of very small tumors whose sizes are smaller than the wavelength of the incident pressure wave without ionizing radiation, compared to the current gold-standard X-ray mammography. Based on inverse scattering technique, ultrasound tomography uses some material properties such as sound contrast or attenuation to detect small targets. The Distorted Born Iterative Method (DBIM) based on first-order Born approximation is an efficient diffraction tomography approach. Compressed Sensing (CS) technique was applied to the detection geometry configuration of ultrasound tomography as a powerful tool for improved image reconstruction quality. However, this configuration is very difficult to implement in practice. Inspired of easier hardware implementation of deterministic CS, in this paper, we propose the chaos measurements in the detection geometry configuration and the image reconstruction process is implemen...

  17. DCS - A High Flux Beamline for Time Resolved Dynamic Compression Science – Design Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Capatina, D.; D' Amico, Kevin L.; Nudell, J.; Collins, J.; Schmidt, Oliver

    2016-07-27

    The Dynamic Compression Sector (DCS) beamline, a national user facility for time resolved dynamic compression science supported by the National Nuclear Security Administration (NNSA) of the Department of Energy (DOE), has recently completed construction and is being commissioned at Sector 35 of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The beamline consists of a First Optics Enclosure (FOE) and four experimental enclosures. A Kirkpatrick–Baez focusing mirror system with 2.2 mrad incident angles in the FOE delivers pink beam to the experimental stations. A refocusing Kirkpatrick–Baez mirror system is situated in each of the two most downstream enclosures. Experiments can be conducted in either white, monochromatic, pink or monochromatic-reflected beam mode in any of the experimental stations by changing the position of two interlocked components in the FOE. The beamline Radiation Safety System (RSS) components have been designed to handle the continuous beam provided by two in-line revolver undulators with periods of 27 and 30 mm, at closed gap, 150 mA beam current, and passing through a power limiting aperture of 1.5 x 1.0 mm2. A novel pink beam end station stop [1] is used to stop the continuous and focused pink beam which can achieve a peak heat flux of 105 kW/mm2. A new millisecond shutter design [2] is used to deliver a quick pulse of beam to the sample, synchronized with the dynamic event, the microsecond shutter, and the storage ring clock.

  18. DCS - A high flux beamline for time resolved dynamic compression science – Design highlights

    Energy Technology Data Exchange (ETDEWEB)

    Capatina, D., E-mail: capatina@aps.anl.gov; D’Amico, K., E-mail: kdamico@aps.anl.gov; Nudell, J., E-mail: jnudell@aps.anl.gov; Collins, J., E-mail: collins@aps.anl.gov; Schmidt, O., E-mail: oschmidt@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439 (United States)

    2016-07-27

    The Dynamic Compression Sector (DCS) beamline, a national user facility for time resolved dynamic compression science supported by the National Nuclear Security Administration (NNSA) of the Department of Energy (DOE), has recently completed construction and is being commissioned at Sector 35 of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The beamline consists of a First Optics Enclosure (FOE) and four experimental enclosures. A Kirkpatrick–Baez focusing mirror system with 2.2 mrad incident angles in the FOE delivers pink beam to the experimental stations. A refocusing Kirkpatrick–Baez mirror system is situated in each of the two most downstream enclosures. Experiments can be conducted in either white, monochromatic, pink or monochromatic-reflected beam mode in any of the experimental stations by changing the position of two interlocked components in the FOE. The beamline Radiation Safety System (RSS) components have been designed to handle the continuous beam provided by two in-line revolver undulators with periods of 27 and 30 mm, at closed gap, 150 mA beam current, and passing through a power limiting aperture of 1.5 x 1.0 mm{sup 2}. A novel pink beam end station stop [1] is used to stop the continuous and focused pink beam which can achieve a peak heat flux of 105 kW/mm{sup 2}. A new millisecond shutter design [2] is used to deliver a quick pulse of beam to the sample, synchronized with the dynamic event, the microsecond shutter, and the storage ring clock.

  19. New methods for high current fast ion beam production by laser-driven acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Laska, L.; Jungwirth, K.; Mocek, T.; Korn, G.; Rus, B. [Institute of Physics, ASCR, v.v.i., PALS Centre, Prague (Czech Republic); Torrisi, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F. [INFN-Laboratori Nazionali del Sud, Catania, Messina University (Italy); Picciotto, A.; Serra, E. [Fondazione Bruno Kessler - IRST, Trento (Italy); Giuffrida, L. [CELIA, Centre Lasers Intenses et Applications (France); Mangione, A. [ITA - Istituto Tecnologie Avanzate, Trapani (Italy); Rosinski, M.; Parys, P. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); and others

    2012-02-15

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10{sup 16}-10{sup 19} W/cm{sup 2}. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  20. New methods for high current fast ion beam production by laser-driven acceleration.

    Science.gov (United States)

    Margarone, D; Krasa, J; Prokupek, J; Velyhan, A; Torrisi, L; Picciotto, A; Giuffrida, L; Gammino, S; Cirrone, P; Cutroneo, M; Romano, F; Serra, E; Mangione, A; Rosinski, M; Parys, P; Ryc, L; Limpouch, J; Laska, L; Jungwirth, K; Ullschmied, J; Mocek, T; Korn, G; Rus, B

    2012-02-01

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10(16)-10(19) W∕cm(2). The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  1. New methods for high current fast ion beam production by laser-driven accelerationa)

    Science.gov (United States)

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Torrisi, L.; Picciotto, A.; Giuffrida, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F.; Serra, E.; Mangione, A.; Rosinski, M.; Parys, P.; Ryc, L.; Limpouch, J.; Laska, L.; Jungwirth, K.; Ullschmied, J.; Mocek, T.; Korn, G.; Rus, B.

    2012-02-01

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 1016-1019 W/cm2. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  2. Secondary electron emission characteristics of ion-textured copper and high-purity isotropic graphite surfaces

    Science.gov (United States)

    Curren, A. N.; Jensen, K. A.

    1984-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion textured oxygen free high conductivity copper and untreated and ion textured high purity isotropic graphite surfaces are presented for a range of primary electron beam energies and beam impingement angles. This investigation was conducted to provide information that would improve the efficiency of multistage depressed collectors (MDC's) for microwave amplifier traveling wave tubes in space communications and aircraft applications. For high efficiency, MDC electrode surfaces must have low secondary electron emission characteristics. Although copper is a commonly used material for MDC electrodes, it exhibits relatively high levels of secondary electron emission if its surface is not treated for emission control. Recent studies demonstrated that high purity isotropic graphite is a promising material for MDC electrodes, particularly with ion textured surfaces. The materials were tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the ion textured surfaces were compared with each other and with those of untreated surfaces of the same materials. Both the untreated and ion textured graphite surfaces and the ion treated copper surface exhibited sharply reduced secondary electron emission characteristics relative to those of untreated copper. The ion treated graphite surface yielded the lowest emission levels.

  3. Compression embedding

    Science.gov (United States)

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-07-07

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

  4. Electrolyte materials containing highly dissociated metal ion salts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  5. Electrolyte materials containing highly dissociated metal ion salts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hung-Sui (East Setauket, NY); Geng, Lin (Coram, NY); Skotheim, Terje A. (Shoreham, NY)

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

  6. Topology and slowing down of high energy ion orbits

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, L.G. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Porcelli, F. [Politecnico di Torino, Turin (Italy); Berk, H.L. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1994-07-01

    An analysis of nonstandard guiding centre orbits is presented, which is relevant to MeV ions in a Tokamak. The orbit equation has been simplified from the start, allowing to present an analytic classification of the possible orbits. The topological transitions of the orbits during collisional slowing down are described. In particular, the characteristic equations reveal the existence of a single fixed point in the relevant phase plane, and the presence of a bifurcation curve corresponding to the locus of the pinch orbits. A significant particle inward pinch has been discovered. (authors). 7 figs.

  7. The Effects of Radiation and Thermal Stability of Sm-Co High Temperature Magnets For High Power Ion Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Since high temperature Sm-Co based magnets were developed, a number of new applications have been introduced. NASA?s Xe+ ion propulsion engine used in Deep Space I...

  8. Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries.

    Science.gov (United States)

    Ying, Hangjun; Han, Wei-Qiang

    2017-11-01

    With the fast-growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn-based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium-ion batteries (LIBs) (994 mA h g-1) and sodium-ion batteries (847 mA h g-1). Though Sony has used Sn-Co-C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn-based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn-based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in-depth understanding of the theoretical works and practical developments of metallic Sn-based anode materials.

  9. Separation of seven arsenic species by ion-pair and ion-exchange high performance liquid chromatography

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, Sven Hedegaard

    1992-01-01

    Arsenite, arsenate, monomethylarsonate, dimethylarsinate, arsenobetaine, arsenocholine and the tetramethylarsonium ion were subjected to ion-exchange and ion-pair reversed phase HPLC. The ion exchange method was superior in selectivity and time of analysis for the arsenic anions. The ammonium ions...... used for the ion-pair method only resulted in separation of some of the anionic arsenic compounds. Flame atomic absorption spectrometry was used for on-line arsenic-specific detection....

  10. Thermomechanical process optimization of U-10 wt% Mo – Part 1: high-temperature compressive properties and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V., E-mail: vineet.joshi@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Nyberg, Eric A.; Lavender, Curt A.; Paxton, Dean [Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Garmestani, Hamid [Georgia Institute of Technology, Atlanta, GA 30332 (United States); Burkes, Douglas E. [Pacific Northwest National Laboratory, Richland, WA 99354 (United States)

    2015-10-15

    Nuclear power research facilities require alternatives to existing highly enriched uranium alloy fuel. One option for a high density metal fuel is uranium alloyed with 10 wt% molybdenum (U–10Mo). Fuel fabrication process development requires specific mechanical property data that, to date has been unavailable. In this work, as-cast samples were compression tested at three strain rates over a temperature range of 400–800 °C to provide data for hot rolling and extrusion modeling. The results indicate that with increasing test temperature the U–10Mo flow stress decreases and becomes more sensitive to strain rate. In addition, above the eutectoid transformation temperature, the drop in material flow stress is prominent and shows a strain-softening behavior, especially at lower strain rates. Room temperature X-ray diffraction and scanning electron microscopy combined with energy dispersive spectroscopy analysis of the as-cast and compression tested samples were conducted. The analysis revealed that the as-cast samples and the samples tested below the eutectoid transformation temperature were predominantly γ phase with varying concentration of molybdenum, whereas the ones tested above the eutectoid transformation temperature underwent significant homogenization.

  11. Influence of grid control on beam quality in laser ion source generating high-current low-charged copper ions

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, J.; Yoshida, M.; Ogawa, M.; Oguri, Y.; Nakajima, M.; Horioka, K.; Kwan, J.

    2003-08-01

    We examined grid-controlled extraction for a laser ion source using a KrF laser. By using grid-controlled extraction in the over-dense regime, we found that the ion beam current waveforms were stabilized more significantly as the grid bias raised from -90 V to -280 V. The normalized emittance of 0.08 {pi}mm-mrad measured without the grid control was improved to 0.06 {pi}mm-mrad with the grid control. In contrast to this observation, the grid bias disturbed the pattern of the beam extracted in the source-limited regime. Fast extraction was carried out using a high-voltage pulse with a rise time of {approx} 100 ns. The grid control suppressed successfully the beam pedestal originating from the plasma pre-filled in the extraction gap.

  12. A simple and rapid method for high-resolution visualization of single-ion tracks

    Energy Technology Data Exchange (ETDEWEB)

    Omichi, Masaaki [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871 (Japan); Center for Collaborative Research, Anan National College of Technology, Anan, Tokushima 774-0017 (Japan); Choi, Wookjin; Sakamaki, Daisuke; Seki, Shu, E-mail: seki@chem.eng.osaka-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871 (Japan); Tsukuda, Satoshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Sugimoto, Masaki [Japan Atomic Energy Agency, Takasaki Advanced Radiation Research Institute, Gunma, Gunma 370-1292 (Japan)

    2014-11-15

    Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA)-N, N’-methylene bisacrylamide (MBAAm) blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic force microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.

  13. A simple and rapid method for high-resolution visualization of single-ion tracks

    Directory of Open Access Journals (Sweden)

    Masaaki Omichi

    2014-11-01

    Full Text Available Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA-N, N’-methylene bisacrylamide (MBAAm blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic force microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.

  14. Studies at the border between nuclear and atomic physics: Weak decays of highly charged ions

    Science.gov (United States)

    Atanasov, D.; Blaum, K.; Bosch, F.; Brandau, C.; Bühler, P.; Cakirli, R. B.; Chen, X. C.; Dillmann, I.; Faestermann, T.; Gao, B. S.; Geissel, H.; Gernhäuser, R.; Glorius, J.; Grisenti, R.; Gumberidze, A.; Hagmann, S.; Hillenbrand, P.-M.; Kienle, P.; Kozhuharov, C.; Lane, G.; Langer, C.; Lederer-Woods, C.; Lestinsky, M.; Litvinov, S. A.; Litvinov, Yu A.; Ma, X. W.; Najafi, M. A.; Nolden, F.; Ohtsubo, T.; Ozawa, A.; Ozturk, F. C.; Patyk, Z.; Pavicevic, M. K.; Petridis, N.; Reifarth, R.; Sanchez, R.; Sanjari, M. S.; Schneider, D.; Shevelko, V.; Spillmann, U.; Steck, M.; Stöhlker, T.; Sun, B. H.; Suzaki, F.; Suzuki, T.; Torilov, S. Yu; Trageser, C.; Trassinelli, M.; Tu, X. L.; Uesaka, T.; Walker, P. M.; Wang, M.; Weick, H.; Winckler, N.; Woods, P. J.; Xu, H. S.; Yamaguchi, T.; Yamaguchi, Y.; Yan, X. L.; Zhang, Y. H.; Zhou, X. H.; ">ILIMA, highly charged ions is presented. The paper closely follows the progress-report presentation given at the conference. Due to the limited space an emphasis is given to an exhaustive bibliography.

  15. Lithium-Ion Electrolytes with Improved Safety Tolerance to High Voltage Systems

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick C. (Inventor)

    2015-01-01

    The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts).

  16. Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries.

    Science.gov (United States)

    Malliakas, Christos D; Leung, Kevin; Pupek, Krzysztof Z; Shkrob, Ilya A; Abraham, Daniel P

    2016-04-28

    Fluorinated carbonates are pursued as liquid electrolyte solvents for high-voltage Li-ion batteries. Here we report aggregation of [Li(+)(FEC)3]n polymer species in fluoroethylene carbonate containing electrolytes and scrutinize the causes for this behavior.

  17. Advanced Nanostructured Cathode for Ultra High Specific Energy Lithium Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate advanced nanotechnology with energy storage technology to develop advanced cathode materials for use in Li-ion batteries while maintaining a high level of...

  18. Capture and isolation of highly-charged ions in a unitary Penning trap

    OpenAIRE

    Brewer, Samuel M.; Guise, Nicholas D; Tan, Joseph N.

    2013-01-01

    We recently used a compact Penning trap to capture and isolate highly-charged ions extracted from an electron beam ion trap (EBIT) at the National Institute of Standards and Technology (NIST). Isolated charge states of highly-stripped argon and neon ions with total charge $Q \\geq 10$, extracted at energies of up to $4\\times 10^3\\,Q$ eV, are captured in a trap with well depths of $\\,\\approx (4\\, {\\rm to}\\, 12)\\,Q$ eV. Here we discuss in detail the process to optimize velocity-tuning, capture, ...

  19. Influence of high frequency electric field on the dispersion of ion-acoustic waves in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Turky, A.; Cercek, M.; Tavzes, R.

    1981-01-01

    The modification of the ion-acoustic wave dispersion under the action of a high frequency electric field was studied experimentally, the wave propagating along and against the plasma stream. The frequency of the field amounted to approximately half the electron plasma frequency. It was found that the phase velocity of the ion wave and the plasma drift velocity decrease as the effective high frequency field power increases.

  20. High precision electric gate for time-of-flight ion mass spectrometers

    Science.gov (United States)

    Sittler, Edward C. (Inventor)

    2011-01-01

    A time-of-flight mass spectrometer having a chamber with electrodes to generate an electric field in the chamber and electric gating for allowing ions with a predetermined mass and velocity into the electric field. The design uses a row of very thin parallel aligned wires that are pulsed in sequence so the ion can pass through the gap of two parallel plates, which are biased to prevent passage of the ion. This design by itself can provide a high mass resolution capability and a very precise start pulse for an ion mass spectrometer. Furthermore, the ion will only pass through the chamber if it is within a wire diameter of the first wire when it is pulsed and has the right speed so it is near all other wires when they are pulsed.

  1. Electronic excitation effects in ion-irradiated high- Tc superconductors

    Science.gov (United States)

    Ishikawa, N.; Chimi, Y.; Iwase, A.; Maeta, H.; Tsuru, K.; Michikami, O.; Kambara, T.; Mitamura, T.; Awaya, Y.; Terasawa, M.

    1998-02-01

    We have measured the fluence dependence of the c-axis lattice parameter in EuBa 2Cu 3O y (EBCO) irradiated with various ions from He to Au over the wide energy range from 0.85 MeV to 3.80 GeV. We have observed a linear increase of the c-axis lattice parameter with increasing fluence for all irradiations. The slope of c-axis lattice parameter against fluence, which corresponds to the defect production rate, is separated into two contributions; the effect via elastic displacement and the effect via electronic excitation. The former contribution exhibits a linear increase against the nuclear stopping power, Sn. The latter contribution is scaled by the primary ionization rate, d J/d x, rather than by the electronic stopping power, Se, and is nearly proportional to (d J/d x) 4.

  2. Highly sensitive urea sensing with ion-irradiated polymer foils

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Dietmar, E-mail: fink@daad-alumni.de [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico, D.F. (Mexico); Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Rez (Czech Republic); Munoz Hernandez, Gerardo [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico, D.F. (Mexico); Division de Ciencias Naturales e Ingenieria, Universidad Autonoma Metropolitana-Cuajimalpa, Pedro Antonio de los Santos 84, Col. Sn. Miguel Chapultepec, C.P. 11850, Mexico, D.F. (Mexico); Alfonta, Lital, E-mail: alfontal@bgu.ac.il [Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2012-02-15

    Recently we prepared urea-sensors by attaching urease to the inner walls of etched ion tracks within thin polymer foil. Here, alternative track-based sensor configurations are examined where the enzyme remained in solution. The conductivities of systems consisting of two parallel irradiated polymer foils and confining different urea/urease mixtures in between were examined. The correlations between conductivity and urea concentration differed strongly for foils with unetched and etched tracks, which points at different sensing mechanisms - tentatively attributed to the adsorption of enzymatic reaction products on the latent track entrances and to the enhanced conductivity of reaction product-filled etched tracks, respectively. All examined systems enable in principle, urea sensing. They point at the possibility of sensor cascade construction for more sensitive or selective sensor systems.

  3. Capture and isolation of highly-charged ions in a unitary Penning trap

    CERN Document Server

    Brewer, Samuel M; Tan, Joseph N

    2013-01-01

    We recently used a compact Penning trap to capture and isolate highly-charged ions extracted from an electron beam ion trap (EBIT) at the National Institute of Standards and Technology (NIST). Isolated charge states of highly-stripped argon and neon ions with total charge $Q \\geq 10$, extracted at energies of up to $4\\times 10^3\\,Q$ eV, are captured in a trap with well depths of $\\,\\approx (4\\, {\\rm to}\\, 12)\\,Q$ eV. Here we discuss in detail the process to optimize velocity-tuning, capture, and storage of highly-charged ions in a unitary Penning trap designed to provide easy radial access for atomic or laser beams in charge exchange or spectroscopic experiments, such as those of interest for proposed studies of one-electron ions in Rydberg states or optical transitions of metastable states in multiply-charged ions. Under near-optimal conditions, ions captured and isolated in such rare-earth Penning traps can be characterized by an initial energy distribution that is $\\approx$ 60 times narrower than typically...

  4. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume.

  5. Detecting single graphene layer by using fluorescence from high-speed Ar^7+ ion

    Science.gov (United States)

    Miyamoto, Yoshiyuki; Zhang, Hong

    2008-03-01

    A highly-charged-ion interacting with graphite causes structural change in nano-scales [1]. While when the ion's kinetic energy reaches few MeVs, the induced is not the structural change but electronic excitation. An experiment [2] showed fluorescence from Ar^7+ ions penetrating through carbon foil with kinetic energy of 2 MeV. Motivated by this experiment, we tested interaction between an Ar^7+ ion and a graphene sheet by the time-dependent density functional approach, and found that the electronic excitation in the Ar^ 7+ ion is also the case even when the incident kinetic energy is 500 KeV and the target thickness is only mono-atomic layer. This simulation suggests the possibility of detecting a suspended mono-atomic layer of graphene [3] by monitoring fluorescence from the penetrated Ar^7+ ions. We will discuss its importance for analyzing bombardment of solids by highly charged, high-speed ions and possible experiments according to the present result. References: [1] T. Meguro, et al., Appl. Phys. Lett 79, 3866 (2001). [2] S. Bashkin, H. Oona, E. Veje, Phys, Rev. A25, 417 (1982). [3] J. Mayer et al., Nature (London), 446, 60 (2007).

  6. Compressibility of the high-pressure rocksalt phase of ZnO

    DEFF Research Database (Denmark)

    Recio, J.M.; Blanco, M.A.; Luana, V.

    1998-01-01

    We report the results of a combined experimental and theoretical investigation on the stability and the volume behavior under hydrostatic pressure of the rocksalt (B1) phase of ZnO. Synchrotron-radiation x-ray powder-diffraction data are obtained from 0 to 30 GPa. Static simulations of the ZnO B1....... The metastability of this ZnO polymorph is confirmed through the theoretical evaluation of the Hessian eigenvalues of a nine-parameter potential energy surface. This allows us to treat the experimental and theoretical pressure-volume data on an equal basis. In both cases, we have obtained values of the bulk modulus...... in the range of 160-194 GPa. For its zero-pressure first derivative, the experimental and theoretical data yield a value of 4.4+/-1.0. Overall, our results show that the ZnO B1 phase is slightly more compressible than previously reported. [S0163-1829(98)07537-7]....

  7. Revisiting Turbulence Model Validation for High-Mach Number Axisymmetric Compression Corner Flows

    Science.gov (United States)

    Georgiadis, Nicholas J.; Rumsey, Christopher L.; Huang, George P.

    2015-01-01

    Two axisymmetric shock-wave/boundary-layer interaction (SWBLI) cases are used to benchmark one- and two-equation Reynolds-averaged Navier-Stokes (RANS) turbulence models. This validation exercise was executed in the philosophy of the NASA Turbulence Modeling Resource and the AIAA Turbulence Model Benchmarking Working Group. Both SWBLI cases are from the experiments of Kussoy and Horstman for axisymmetric compression corner geometries with SWBLI inducing flares of 20 and 30 degrees, respectively. The freestream Mach number was approximately 7. The RANS closures examined are the Spalart-Allmaras one-equation model and the Menter family of kappa - omega two equation models including the Baseline and Shear Stress Transport formulations. The Wind-US and CFL3D RANS solvers are employed to simulate the SWBLI cases. Comparisons of RANS solutions to experimental data are made for a boundary layer survey plane just upstream of the SWBLI region. In the SWBLI region, comparisons of surface pressure and heat transfer are made. The effects of inflow modeling strategy, grid resolution, grid orthogonality, turbulent Prandtl number, and code-to-code variations are also addressed.

  8. Fractal Characteristics of Rock Fracture Surface under Triaxial Compression after High Temperature

    Directory of Open Access Journals (Sweden)

    X. L. Xu

    2016-01-01

    Full Text Available Scanning Electron Microscopy (SEM test on 30 pieces of fractured granite has been researched by using S250MK III SEM under triaxial compression of different temperature (25~1000°C and confining pressure (0~40 MPa. Research results show that (1 the change of fractal dimension (FD of rock fracture with temperature is closely related to confining pressure, which can be divided into two categories. In the first category, when confining pressure is in 0~30 MPa, FD fits cubic polynomial fitting curve with temperature, reaching the maximum at 600°C. In the second category, when confining pressure is in 30~40 MPa, FD has volatility with temperature. (2 The FD of rock fracture varies with confining pressure and is also closely related to the temperature, which can be divided into three categories. In the first category, FD has volatility with confining pressure at 25°C, 400°C, and 800°C. In the second category, it increases exponentially at 200°C and 1000°C. In the third category, it decreases exponentially at 600°C. (3 It is found that 600°C is the critical temperature and 30 MPa is the critical confining pressure of granite. The rock transfers from brittle to plastic phase transition when temperature exceeds 600°C and confining pressure exceeds 30 MPa.

  9. High Power High Thrust Ion Thruster (HPHTion): 50 CM Ion Thruster for Near-Earth Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in high power, photovoltaic technology has enabled the possibility of reasonably sized, high specific power, high power, solar arrays. At high specific...

  10. Modified Thomson spectrometer design for high energy, multi-species ion sources.

    Science.gov (United States)

    Gwynne, D; Kar, S; Doria, D; Ahmed, H; Cerchez, M; Fernandez, J; Gray, R J; Green, J S; Hanton, F; MacLellan, D A; McKenna, P; Najmudin, Z; Neely, D; Ruiz, J A; Schiavi, A; Streeter, M; Swantusch, M; Willi, O; Zepf, M; Borghesi, M

    2014-03-01

    A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection.

  11. Effect of High Temperature Hot Corrosion on the Compression Creep Behavior of 12Cr1MoV Alloys

    Science.gov (United States)

    He, Jianjun; Xiong, Weizhou

    2017-10-01

    This paper highlights the effect of 70 %NaCl-30 %KCl salt mixture on compression creep properties of 12Cr1MoV alloys at 100 MPa (948.15 K, 973.15 K and 998.15 K) in air using bare specimens and specimens in corrosive environment. The corrosive specimens were also tested at 923.15 K (150 MPa, 175 MPa and 200 MPa). Experimental results showed that the specimen in chloride mixture showed relatively high compression creep strain and steady-state creep rates compared with the bare specimen, and this effect accelerated with the increased temperature, especially when it was above 973.15 K. The creep mechanisms of the specimen in chloride mixture were inferred from gliding and climbing of dislocations of the stress exponent. Damage of hot corrosion in creep deformation was found to be associated with the layer fracture attributing to the initiation and propagation from the intergranular cracks and reduction of the bare area caused by the internal transgranular attack of chloride mixture.

  12. Reliable operation of the Brookhaven EBIS for highly charged ion production for RHIC and NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, E., E-mail: beebe@bnl.gov; Alessi, J., E-mail: beebe@bnl.gov; Binello, S., E-mail: beebe@bnl.gov; Kanesue, T., E-mail: beebe@bnl.gov; McCafferty, D., E-mail: beebe@bnl.gov; Morris, J., E-mail: beebe@bnl.gov; Okamura, M., E-mail: beebe@bnl.gov; Pikin, A., E-mail: beebe@bnl.gov; Ritter, J., E-mail: beebe@bnl.gov; Schoepfer, R., E-mail: beebe@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-01-09

    An Electron Beam Ion Source for the Relativistic Heavy Ion Collider (RHIC EBIS) was commissioned at Brookhaven in September 2010 and since then it routinely supplies ions for RHIC and NASA Space Radiation Laboratory (NSRL) as the main source of highly charged ions from Helium to Uranium. Using three external primary ion sources for 1+ injection into the EBIS and an electrostatic injection beam line, ion species at the EBIS exit can be switched in 0.2 s. A total of 16 different ion species have been produced to date. The length and the capacity of the ion trap have been increased by 20% by extending the trap by two more drift tubes, compared with the original design. The fraction of Au{sup 32+} in the EBIS Au spectrum is approximately 12% for 70-80% electron beam neutralization and 8 pulses operation in a 5 Hertz train and 4-5 s super cycle. For single pulse per super cycle operation and 25% electron beam neutralization, the EBIS achieves the theoretical Au{sup 32+} fractional output of 18%. Long term stability has been very good with availability of the beam from RHIC EBIS during 2012 and 2014 RHIC runs approximately 99.8%.

  13. Material-related issues at high-power and high-energy ion beam facilities

    CERN Document Server

    Bender, M.; Tomut, M.; Trautmann, C.

    2015-01-01

    When solids are exposed to energetic ions (MeV-GeV), their physical and chemical structure can be severely modified. The change is governed by ultrafast dynamical processes starting from the deposition of large energy densities, electronic excitation and ionization processes, and finally damage creation in the atomic lattice system. In many materials, each projectile creates a cylindrical track with a few nanometers in diameter and up to many μm in length. To study and monitor the creation of damage, the GSI irradiation facility dedicated to materials science provides different in-situ and on-line techniques such as high resolution microscopy, X-ray diffraction, optical absorption spectroscopy, thermal imaging and residual gas analysis. The irradiation experiments can be performed under various gas atmospheres and under cryogenic or elevated temperature.

  14. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zorin, V. G. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Sidorov, A. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Bokhanov, A. F. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Izotov, I. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Razin, S. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Skalyga, V. A. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics

    2013-06-02

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available, however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (~100 kW) microwave (37.5 GHz) radiation provides a dense plasma (~1013 cm-3) with a relatively low electron temperature (~50- 100 eV) and allows for the generation of high current (~1 A/cm2) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP

  15. Ion aggregation in high salt solutions. VII. The effect of cations on the structures of ion aggregates and water hydrogen-bonding network

    Science.gov (United States)

    Choi, Jun-Ho; Choi, Hyung Ran; Jeon, Jonggu; Cho, Minhaeng

    2017-10-01

    Ions in high salt solutions have a strong propensity to form polydisperse ion aggregates with broad size and shape distributions. In a series of previous comparative investigations using femtosecond IR pump-probe spectroscopy, molecular dynamics simulation, and graph theoretical analysis, we have shown that there exists a morphological difference in the structures of ion aggregates formed in various salt solutions. As salt concentration increases, the ions in high salt solutions form either cluster-like structures excluding water molecules or network-like structures entwined with water hydrogen-bonding networks. Interestingly, such morphological characteristics of the ion aggregates have been found to be in correlation with the solubility limits of salts. An important question that still remains unexplored is why certain salts with different cations have notably different solubility limits in water. Here, carrying out a series of molecular dynamics simulations of aqueous salt solutions and analyzing the distributions and connectivity patterns of ion aggregates with a spectral graph analysis method, we establish the relationship between the salt solubility and the ion aggregate morphology with a special emphasis on the cationic effects on water structures and ion aggregation. We anticipate that the understanding of large scale ion aggregate structures revealed in this study will be critical for elucidating the specific ion effects on the solubility and conformational stability of co-solute molecules such as proteins in water.

  16. Estimates of post-acceleration longitudinal bunch compression

    Energy Technology Data Exchange (ETDEWEB)

    Judd, D.L.

    1977-11-25

    A simple analytic method is developed, based on physical approximations, for treating transient implosive longitudinal compression of bunches of heavy ions in an accelerator system for ignition of inertial-confinement fusion pellet targets. Parametric dependences of attainable compressions and of beam path lengths and times during compression are indicated for ramped pulsed-gap lines, rf systems in storage and accumulator rings, and composite systems, including sections of free drift. It appears that for high-confidence pellets in a plant producing 1000 MW of electric power the needed pulse lengths cannot be obtained with rings alone unless an unreasonably large number of them are used, independent of choice of rf harmonic number. In contrast, pulsed-gap lines alone can meet this need. The effects of an initial inward compressive drift and of longitudinal emittance are included.

  17. Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs.

    Science.gov (United States)

    Chun, Kyoung-Yong; Son, Young Jun; Han, Chang-Soo

    2016-04-26

    Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).

  18. High Power High Thrust Ion Thruster (HPHTion): 50 CM Ion Thruster for Near-Earth Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in high power, photovoltaic technology has enabled the possibility of reasonably sized, high specific power, high power, solar arrays. New thin film solar...

  19. High current DC negative ion source for cyclotron.

    Science.gov (United States)

    Etoh, H; Onai, M; Aoki, Y; Mitsubori, H; Arakawa, Y; Sakuraba, J; Kato, T; Mitsumoto, T; Hiasa, T; Yajima, S; Shibata, T; Hatayama, A; Okumura, Y

    2016-02-01

    A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H(-) beam of 10 mA and D(-) beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H(-) beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H(-) current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H(-) production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H(-) current dependence on the arc power.

  20. Heavy Ion Fusion Accelerator Research (HIFAR)

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C{sub s}+ sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac.

  1. Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter.

    Science.gov (United States)

    Cayzac, W; Frank, A; Ortner, A; Bagnoud, V; Basko, M M; Bedacht, S; Bläser, C; Blažević, A; Busold, S; Deppert, O; Ding, J; Ehret, M; Fiala, P; Frydrych, S; Gericke, D O; Hallo, L; Helfrich, J; Jahn, D; Kjartansson, E; Knetsch, A; Kraus, D; Malka, G; Neumann, N W; Pépitone, K; Pepler, D; Sander, S; Schaumann, G; Schlegel, T; Schroeter, N; Schumacher, D; Seibert, M; Tauschwitz, An; Vorberger, J; Wagner, F; Weih, S; Zobus, Y; Roth, M

    2017-06-01

    The energy deposition of ions in dense plasmas is a key process in inertial confinement fusion that determines the α-particle heating expected to trigger a burn wave in the hydrogen pellet and resulting in high thermonuclear gain. However, measurements of ion stopping in plasmas are scarce and mostly restricted to high ion velocities where theory agrees with the data. Here, we report experimental data at low projectile velocities near the Bragg peak, where the stopping force reaches its maximum. This parameter range features the largest theoretical uncertainties and conclusive data are missing until today. The precision of our measurements, combined with a reliable knowledge of the plasma parameters, allows to disprove several standard models for the stopping power for beam velocities typically encountered in inertial fusion. On the other hand, our data support theories that include a detailed treatment of strong ion-electron collisions.

  2. Suppressed ion-scale turbulence in a hot high-β plasma.

    Science.gov (United States)

    Schmitz, L; Fulton, D P; Ruskov, E; Lau, C; Deng, B H; Tajima, T; Binderbauer, M W; Holod, I; Lin, Z; Gota, H; Tuszewski, M; Dettrick, S A; Steinhauer, L C

    2016-12-21

    An economic magnetic fusion reactor favours a high ratio of plasma kinetic pressure to magnetic pressure in a well-confined, hot plasma with low thermal losses across the confining magnetic field. Field-reversed configuration (FRC) plasmas are potentially attractive as a reactor concept, achieving high plasma pressure in a simple axisymmetric geometry. Here, we show that FRC plasmas have unique, beneficial microstability properties that differ from typical regimes in toroidal confinement devices. Ion-scale fluctuations are found to be absent or strongly suppressed in the plasma core, mainly due to the large FRC ion orbits, resulting in near-classical thermal ion confinement. In the surrounding boundary layer plasma, ion- and electron-scale turbulence is observed once a critical pressure gradient is exceeded. The critical gradient increases in the presence of sheared plasma flow induced via electrostatic biasing, opening the prospect of active boundary and transport control in view of reactor requirements.

  3. Radiation-induced disorder in compressed lanthanide zirconates.

    Science.gov (United States)

    Park, Sulgiye; Tracy, Cameron L; Zhang, Fuxiang; Park, Changyong; Trautmann, Christina; Tkachev, Sergey N; Lang, Maik; Mao, Wendy L; Ewing, Rodney C

    2018-02-28

    The effects of swift heavy ion irradiation-induced disordering on the behavior of lanthanide zirconate compounds (Ln 2 Zr 2 O 7 where Ln = Sm, Er, or Nd) at high pressures are investigated. After irradiation with 2.2 GeV 197 Au ions, the initial ordered pyrochlore structure (Fd3[combining macron]m) transformed to a defect-fluorite structure (Fm3[combining macron]m) in Sm 2 Zr 2 O 7 and Nd 2 Zr 2 O 7 . For irradiated Er 2 Zr 2 O 7 , which has a defect-fluorite structure, ion irradiation induces local disordering by introducing Frenkel defects despite retention of the initial structure. When subjected to high pressures (>29 GPa) in the absence of irradiation, all of these compounds transform to a cotunnite-like (Pnma) phase, followed by sluggish amorphization with further compression. However, if these compounds are irradiated prior to compression, the high pressure cotunnite-like phase is not formed. Rather, they transform directly from their post-irradiation defect-fluorite structure to an amorphous structure upon compression (>25 GPa). Defects and disordering induced by swift heavy ion irradiation alter the transformation pathways by raising the energetic barriers for the transformation to the high pressure cotunnite-like phase, rendering it inaccessible. As a result, the high pressure stability field of the amorphous phase is expanded to lower pressures when irradiation is coupled with compression. The responses of materials in the lanthanide zirconate system to irradiation and compression, both individually and in tandem, are strongly influenced by the specific lanthanide composition, which governs the defect energetics at extreme conditions.

  4. Robust, High Capacity, High Power Lithium Ion Batteries for Space Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium ion battery technology provides the highest energy density of all rechargeable battery technologies available today. However, the majority of the research...

  5. Superelastic Scattering Of Electrons From Highly Charged Ions With Inner Shell Vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Zavodszky, P. A.; Aliabadi, H.; Bhalla, C. P.; Richard, P.; Toth, G.; Tanis, J. A.

    2001-07-16

    We report the measurement of electrons scattered superelastically from highly charged ions having an initial K -shell vacancy. In this process, the scattered electron gains {approx}725 eV of energy from the deexcitation of an excited He-like F{sup 7+}( 1s2sS{sup 3}) metastable ion to its ground state. Theoretical calculations based on an R -matrix approach agree well in position, shape, and magnitude with the experimental data.

  6. RADIATIVE ELECTRON CAPTURE BY FAST HIGHLY STRIPPED HEAVY IONS CHANNELED IN A THIN CRYSTAL

    OpenAIRE

    Andriamonje, S; Chevallier, M; Cohen, C; Dural, J.; Gaillard, M; Genre, R.; Hage-ali, M.; Kirsch, R; L'hoir, A.; Mazuy, B.; Mory, J.; Moulin, J; Poizat, J.-C.; Remillieux, J; Schmaus, Didier

    1989-01-01

    Interaction of moving ions with single crystals is known to be very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. We have shown that channeling conditions strongly modify the slowing down and the charge exchange processes of high energy heavy ions. The reason is that channeled particles are prevented from approaching the target atoms, and then can interact only with loosely bound target electrons. This results not only in drastical...

  7. Ion implantation in compound semiconductors for high-performance electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.

    1996-05-01

    Advanced electronic devices based on compound semiconductors often make use of selective area ion implantation doping or isolation. The implantation processing becomes more complex as the device dimensions are reduced and more complex material systems are employed. The authors review several applications of ion implantation to high performance junction field effect transistors (JFETs) and heterostructure field effect transistors (HFETs) that are based on compound semiconductors, including: GaAs, AlGaAs, InGaP, and AlGaSb.

  8. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, Joel [Lund Univ. (Sweden)

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied in high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W55+ through Ne-like W64+, and intershell transitions in Zn-like W44+ through Co-like W47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W64+ through Li-like W71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W6+ could be useful for

  9. An ion trap time-of-flight mass spectrometer with high mass resolution for cold trapped ion experiments

    Science.gov (United States)

    Schmid, P. C.; Greenberg, J.; Miller, M. I.; Loeffler, K.; Lewandowski, H. J.

    2017-12-01

    Trapping molecular ions that have been sympathetically cooled with laser-cooled atomic ions is a useful platform for exploring cold ion chemistry. We designed and characterized a new experimental apparatus for probing chemical reaction dynamics between molecular cations and neutral radicals at temperatures below 1 K. The ions are trapped in a linear quadrupole radio-frequency trap and sympathetically cooled by co-trapped, laser-cooled, atomic ions. The ion trap is coupled to a time-of-flight mass spectrometer to readily identify product ion species and to accurately determine trapped ion numbers. We discuss, and present in detail, the design of this ion trap time-of-flight mass spectrometer and the electronics required for driving the trap and mass spectrometer. Furthermore, we measure the performance of this system, which yields mass resolutions of m/Δm ≥ 1100 over a wide mass range, and discuss its relevance for future measurements in chemical reaction kinetics and dynamics.

  10. Using X-ray Thomson Scattering to Characterize Highly Compressed, Near-Degenerate Plasmas at the NIF

    Science.gov (United States)

    Doeppner, Tilo; Kraus, D.; Neumayer, P.; Bachmann, B.; Divol, L.; Kritcher, A. L.; Landen, O. L.; Fletcher, L.; Glenzer, S. H.; Falcone, R. W.; MacDonald, M. J.; Saunders, A.; Witte, B.; Redmer, R.; Chapman, D.; Baggott, R.; Gericke, D. O.; Yi, S. A.

    2017-10-01

    We are developing x-ray Thomson scattering for implosion experiments at the National Ignition Facility to characterize plasma conditions in plastic and beryllium capsules near stagnation, reaching more than 20x compression and electron densities of 1025 cm-3, corresponding to a Fermi energy of 170 eV. Using a zinc He- α x-ray source at 9 keV, experiments at a large scattering angle of 120° measure non-collective scattering spectra with high sensitivity to K-shell ionization, and find higher charge states than predicted by widely used ionization models. Reducing the scattering angle to 30° probes the collective scattering regime with sensitivity to collisions and conductivity. We will discuss recent results and future plans. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. High-pressure phase diagram of the drug mitotane in compressed and/or supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Favareto, Rogerio [Department of Chemical Engineering, State University of Maringa (UEM), Av. Colombo, 5790, Bloco D-90, 87020-900 Maringa, PR (Brazil); Pereira, Jose R.D. [Department of Physique, State University of Maringa (UEM), Av. Colombo, 5790, Bloco G-56, 87020-900 Maringa, PR (Brazil); Santana, Cesar C. [College of Chemical Engineering, State University of Campinas (UNICAMP), Cx. Postal 6066, 13083-970 Campinas, SP (Brazil); Madureira, Ed H. [College of Veterinary Medicine and Zootechny, University of Sao Paulo (USP), Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP (Brazil); Cabral, Vladimir F. [Department of Chemical Engineering, State University of Maringa (UEM), Av. Colombo, 5790, Bloco D-90, 87020-900 Maringa, PR (Brazil); Tavares, Frederico W. [School of Chemical, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Ilha do Fundao, 21949-900 Rio de Janeiro, RJ (Brazil); Cardozo-Filho, Lucio, E-mail: cardozo@deq.uem.b [Department of Chemical Engineering, State University of Maringa (UEM), Av. Colombo, 5790, Bloco D-90, 87020-900 Maringa, PR (Brazil)

    2010-02-15

    This work provides experimental phase diagram of mitotane, a drug used in the chemotherapy treatment of adrenocortical carcinoma, in compressed and/or supercritical CO{sub 2}. The synthetic-static method in a high-pressure variable-volume view cell coupled with a transmitted-light intensity probe was used to measure the solid-fluid (SF) equilibrium data. The phase equilibrium experiments were determined in temperature ranging from (298.2 to 333.1) K and pressure up to 22 MPa. Peng-Robinson equation of state (PR-EoS) with classical mixing rule was used to correlate the experimental data. Excellent agreement was found between experimental and calculated values.

  12. Laser-Driven Ramp Compression to Investigate and Model Dynamic Response of Iron at High Strain Rates

    Directory of Open Access Journals (Sweden)

    Nourou Amadou

    2016-12-01

    Full Text Available Efficient laser shock processing of materials requires a good characterization of their dynamic response to pulsed compression, and predictive numerical models to simulate the thermomechanical processes governing this response. Due to the extremely high strain rates involved, the kinetics of these processes should be accounted for. In this paper, we present an experimental investigation of the dynamic behavior of iron under laser driven ramp loading, then we compare the results to the predictions of a constitutive model including viscoplasticity and a thermodynamically consistent description of the bcc to hcp phase transformation expected near 13 GPa. Both processes are shown to affect wave propagation and pressure decay, and the influence of the kinetics of the phase transformation on the velocity records is discussed in details.

  13. Helium ion microscopy for high-resolution visualization of the articular cartilage collagen network.

    Science.gov (United States)

    Vanden Berg-Foels, W S; Scipioni, L; Huynh, C; Wen, X

    2012-05-01

    The articular cartilage collagen network is an important research focus because network disruption results in cartilage degeneration and patient disability. The recently introduced helium ion microscope (HIM), with its smaller probe size, longer depth of field and charge neutralization, has the potential to overcome the inherent limitations of electron microscopy for visualization of collagen network features, particularly at the nanoscale. In this study, we evaluated the capabilities of the helium ion microscope for high-resolution visualization of the articular cartilage collagen network. Images of rabbit knee cartilage were acquired with a helium ion microscope; comparison images were acquired with a field emission scanning electron microscope (FE-SEM) and a transmission electron microscope (TEM). Sharpness of example high-resolution helium ion microscope and field emission scanning electron microscope images was quantified using the 25-75% rise distance metric. The helium ion microscope was able to acquire high-resolution images with unprecedented clarity, with greater sharpness and three-dimensional-like detail of nanoscale fibril morphologies and fibril connections, in samples without conductive coatings. These nanoscale features could not be resolved by field emission scanning electron microscopy, and three-dimensional network structure could not be visualized with transmission electron microscopy. The nanoscale three-dimensional-like visualization capabilities of the helium ion microscope will enable new avenues of investigation in cartilage collagen network research. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  14. High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Jill Wisnewski [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactions either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO+), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and then manipulated, this could potentially improve the figures of merit on all ICP-MS devices, not just the high resolution devices often utilized to study polyatomic interferences.

  15. Highly ordered three-dimensional macroporous carbon spheres for determination of heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuxiao; Zhang, Jianming [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Highly ordered three dimensional macroporous carbon spheres (MPCSs) were prepared. Black-Right-Pointing-Pointer MPCS was covalently modified by cysteine (MPCS-CO-Cys). Black-Right-Pointing-Pointer MPCS-CO-Cys was first time used in electrochemical detection of heavy metal ions. Black-Right-Pointing-Pointer Heavy metal ions such as Pb{sup 2+} and Cd{sup 2+} can be simultaneously determined. -- Abstract: An effective voltammetric method for detection of trace heavy metal ions using chemically modified highly ordered three dimensional macroporous carbon spheres electrode surfaces is described. The highly ordered three dimensional macroporous carbon spheres were prepared by carbonization of glucose in silica crystal bead template, followed by removal of the template. The highly ordered three dimensional macroporous carbon spheres were covalently modified by cysteine, an amino acid with high affinities towards some heavy metals. The materials were characterized by physical adsorption of nitrogen, scanning electron microscopy, and transmission electron microscopy techniques. While the Fourier-transform infrared spectroscopy was used to characterize the functional groups on the surface of carbon spheres. High sensitivity was exhibited when this material was used in electrochemical detection (square wave anodic stripping voltammetry) of heavy metal ions due to the porous structure. And the potential application for simultaneous detection of heavy metal ions was also investigated.

  16. High depth resolution SIMS analysis using metal cluster complex ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, M; Kinno, T; Koike, M; Tanaka, H; Takeno, S [Corporate Research and Development Center, Toshiba Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan); Fujiwara, Y; Kondou, K; Teranishi, Y; Nonaka, H; Fujimoto, T; Kurokawa, A; Ichimura, S [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba-shi, Ibaraki-ken 305-8568 (Japan)], E-mail: mitsuhiro.tomita@toshiba.co.jp

    2008-03-15

    SIMS depth profiles were measured using metal cluster complex ions of Ir{sub 4}(CO){sub 7}{sup +} as a primary ion beam in order to obtain high depth resolution. Depth resolution was evaluated as a function of primary ion species, energy and incident angle using a multiple boron delta-doped silicon sample. The depth resolution obtained using cluster ion bombardment was considerably better than that obtained by oxygen ion bombardment under the same bombardment condition due to reduction of atomic mixing in the depth. The best depth resolution was 0.9 nm under the bombardment condition of 5 keV, 45 deg. with oxygen flooding, which approaches the value measured with state of the art SIMS analyses. However, depth resolution was not improved by decreasing the cluster ion energy (less than 5 keV), even though the roughness of the sputtered surface was suppressed. The limit of depth resolution improvement may be caused by a carbon cover-layer that prevents the formation of surface oxide that buffers atomic mixing. To overcome this issue, it will be necessary to eliminate carbon from the cluster ion.

  17. High-resolution fast ion microscopy of single whole biological cells

    Science.gov (United States)

    Bettiol, Andrew A.; Mi, Zhaohong; Watt, Frank

    2016-12-01

    High-resolution microscopy techniques have become an essential tool in both biological and biomedical sciences, enabling the visualization of biological processes at cellular and subcellular levels. For many years, these imaging techniques utilized conventional optical microscopes including those with confocal facilities. However, the spatial resolutions achieved were largely limited to around 200 nm, as determined by the diffraction of light. To overcome this diffraction barrier, considerable scientific and technological effort has resulted in the development of super-resolution optical-based techniques, scanning probe microscopies, and also techniques utilizing charged particles (e.g., energetic electrons and ions) or high-energy photons (e.g., X-ray), which exhibit much shorter de Broglie wavelengths. Among the charged particle techniques, those utilizing mega-electron-volt (MeV) ion beams appear to have unique advantages primarily because MeV ions can penetrate through several microns of biological tissue (e.g., whole cells) with little deflection in their trajectories, and hence spatial resolutions are maintained while traversing the sample. Recently, we have witnessed the significant development of MeV ion beam focusing systems in reducing beam dimensions well below 100 nm, such that single whole cell imaging at 20 nm spatial resolutions is now possible. In this review, two super resolution imaging modalities that utilize MeV highly focused ion beams are discussed: Scanning Transmission Ion Microscopy (STIM), which images the areal density of cells and gives an insight into the cellular structure, and Proton/Helium-ion Induced Fluorescence Microcopy (P/HeIFM), which images the fluorescence emission of fluorescent markers and probes used as labels within the cells. This review hopes to demonstrate the potential of MeV ion microscopy, which is still in its infancy, and describe the simultaneous use of STIM and P/HeIFM as a new and powerful multifaceted

  18. EUV magnetic-dipole lines from highly-charged high-Z ions with an open 3d shell

    CERN Document Server

    Osin, D; Reader, J; Ralchenko, Yu

    2012-01-01

    The electron beam ion trap (EBIT) at the National Institute of Standards and Technology was used to produce highly-charged ions of hafnium, tantalum and gold with an open 3d shell. The extreme-ultraviolet (EUV) spectra from these ions were recorded with a flat-field grazing-incidence spectrometer in the wavelength range of 4.5 nm to 25 nm. A total of 133 new spectral lines, primarily due to magnetic-dipole transitions within the ground-state $3d^n$ configurations of the Co-like to K-like ions, were identified by comparing energy-dependent experimental spectra with a detailed collisional-radiative modeling of the EBIT plasma.

  19. Construction and test of a high power injector of hydrogen cluster ions

    CERN Document Server

    Becker, E W; Hagena, O F; Henkes, P R W; Klingelhofer, R; Moser, H O; Obert, W; Poth, I

    1979-01-01

    A high power injector of hydrogen cluster ions, rated for 1 MV and 100 kW, is described. The injector is split in three separate tanks connected by a 1 MV transfer line. The cluster ion beam source and all its auxiliary equipment is placed at high voltage, insulated by SF/sub 6/ gas at pressure of 4 bar. The main components of the injector are: The cluster ion beam source with integrated helium cryopumps, the CERN type acceleration tube with 750 mm ID, the beam dump designed to handle the mass and energy flux under DC conditions, a 1 MV high voltage terminal for the auxiliary equipment supplied by its 40 kVA power supply with power, and the 1 MV 120 kW DC high voltage generator. This injector is installed in Karlsruhe. Performance tests were carried out successfully. It is intended to use this injector for refuelling experiments at the ASDEX Tokamak. (12 refs).

  20. Recent progress of high-power negative ion beam development for fusion plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kazuhiro; Akino, Noboru; Aoyagi, Tetsuo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-03-01

    A negative-ion-based neutral beam injector (N-NBI) has been constructed for JT-60U. The N-NBI is designed to inject 500 keV, 10 MW neutral beams using two ion sources, each producing a 500 keV, 22 A D{sup -} ion beam. Beam acceleration test started in July, 1995 using one ion source. In the preliminary experiment, D{sup -} ion beam of 13.5 A has been successfully accelerated with an energy of 400 keV (5.4 MW) for 0.12 s at an operating pressure of 0.22 Pa. This is the highest D{sup -} beam current and power in the world. Co-extracted electron current was effectively suppressed to the ratio of Ie/I{sub D}- <1. The highest energy beam of 460 keV, 2.4 A, 0.44 s has also been obtained. Neutral beam injection starts in March, 1996 using two ion sources. To realize 1 MeV class NBI system for ITER (International Thermonuclear Experimental Reactor), demonstration of ampere class negative ion beam acceleration up to 1 MeV is an important mile stone. To achieve the mile stone, a high energy test facility called MeV Test Facility (MTF) was constructed. The system consists of a 1 MV, 1 A acceleration power supply and a 100 kW power supply system for negative ion production. Up to now, an H{sup -} ion beam was accelerated up to the energy of 805 keV with an acceleration drain current of 150 mA for 1 s in a five stage electrostatic multi-aperture accelerator. (author)

  1. A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes.

    Science.gov (United States)

    Li, Fu-Sheng; Wu, Yu-Shiang; Chou, Jackey; Winter, Martin; Wu, Nae-Lih

    2015-01-07

    A mechanically robust and ion-conductive polymeric coating containing two polymers, polyethylene glycol tert-octylphenyl ether and poly(allyl amine), with four tailored functional groups is developed for graphite and graphite-Si composite anodes. The coating, acting as an artificial solid electrolyte interphase, leads to remarkable enhancement in capacity reversibility and cycling stability, as well as a high-rate performance of the studied anodes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ion Behavior and Gas Mixing in electron cyclotron resonance plasmas as sources of highly charged ions (concept)

    CERN Document Server

    Melin, G; Girard, A; Hitz, D

    1999-01-01

    An ECR ion source is basically an ECR heated plasma confinement machine, with hot electrons and cold ions. The main parameters of the ion population have been analyzed, including temperature, losses, and confinement time. The "gas mixing" effect has been studied in this context. An expression is derived for determining the ion temperature from the values of all extracted ion currents. One aim is to study the ion temperature behavior in argon plasmas without and with mixing different gases into the plasma. For that purpose a series of experiments has been performed where systematically one or a few parameters where changed. One conclusion is that the ion temperature indeed is decreasing due to gas mixing. A second conclusion is that the decreasing ion temperature is not a sufficient requirement for the beneficial effect of gas mixing to the production of highest charge states of argon.

  3. Determination of metal ions by high-performance liquid chromatographic separation of their hydroxamic acid chelates

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, M.D.; Fritz, J.S.

    1987-09-15

    Metal ions are determined by adding N-methylfurohydroxamic acid to an aqueous sample and then separating the metal chelates by direct injection onto a liquid chromatographic column. Separations on a C/sub 8/ silica column and a polystyrene-divinylbenzene column are compared, with better separations seen on the polymeric column. The complexes formed at low pH values are cationic and are separated by an ion pairing mechanism. Retention times and selectivity of the metal complexes can be varied by changing the pH. Several metal ions can be separated and quantified; separation conditions, linear calibration curve ranges, and detection limits are presented for Zr(IV), Hf(IV), Fe(III), Nb(V), Al(III), and Sb(III). Interferences due to the presence of other ions in solution are investigated. Finally, an antiperspirant sample is analyzed for zirconium by high-performance liquid chromatography.

  4. In-operando high-speed tomography of lithium-ion batteries during thermal runaway

    Science.gov (United States)

    Finegan, Donal P.; Scheel, Mario; Robinson, James B.; Tjaden, Bernhard; Hunt, Ian; Mason, Thomas J.; Millichamp, Jason; Di Michiel, Marco; Offer, Gregory J.; Hinds, Gareth; Brett, Dan J.L.; Shearing, Paul R.

    2015-01-01

    Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation. It is envisaged that the use of these techniques will lead to major improvements in the design of Li-ion batteries and their safety features. PMID:25919582

  5. HITRAP - a facility for experiments on heavy highly charged ions and on antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Andjelkovic, Z; Barth, W; Brantjes, N P M; Braeuning-Demian, A; Dahl, L; Herfurth, F; Kester, O; Kluge, H J; Koszudowski, S; Kozhuharov, C; Maero, G; Noertershaeuser, W [GSI, Darmstadt (Germany); Birkl, G [Technische Universitaet Darmstadt (Germany); Blank, I; Goetz, S [Universitaet Freiburg (Germany); Blaum, K [Max-Planck Institut fuer Kernphysik, Heidelberg (Germany); Bodewits, E; Hoekstra, R [KVI Groningen (Netherlands); Church, D [Texas AM University, Texas (United States); Pfister, J, E-mail: w.quint@gsi.d [Universitaet Frankfurt (Germany)

    2009-11-01

    HITRAP is a facility for very slow highly-charged heavy ions at GSI. HITRAP uses the GSI relativistic ion beams, the Experimental Storage Ring ESR for electron cooling and deceleration to 4 MeV/u, and consists of a combination of an interdigital H-mode (IH) structure with a radiofrequency quadrupole structure for further deceleration to 6 keV/u, and a Penning trap for accumulation and cooling to low temperatures. Finally, ion beams with low emittance will be delivered to a large variety of atomic and nuclear physics experiments. Presently, HITRAP is in the commissioning phase. The deceleration of heavy-ion beam from the ESR storage ring to an energy of 500 keV/u with the IH structure has been demonstrated and studied in detail. The commissioning of the RFQ structure and the cooler trap is ongoing.

  6. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    Energy Technology Data Exchange (ETDEWEB)

    Lestinsky, M.

    2007-04-18

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc{sup 18+} yield a high-precision measurement of the 2s-2p{sub 3/2} transition energy in this system. Operation of the two-electron-beam setup at high collision energy ({approx}1000 eV) is established using resonances of hydrogenlike Mg{sup 11+}, while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F{sup 6+}. (orig.)

  7. Studies in High Energy Heavy Ion Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Gerald W. [Univ. of Texas, Austin, TX (United States); Markert, Christina [Univ. of Texas, Austin, TX (United States)

    2016-09-01

    This close-out report covers the period 1994 - 2015 for DOE grant DE-FG02-94ER40845 with the University of Texas at Austin. The research was concerned with studies of the strong nuclear force and properties of nuclear matter under extreme conditions of temperature and density which far exceed that in atomic nuclei. Such extreme conditions are briefly created (for about 10 trillionths of a trillionth of a second) during head-on collisions of large atomic nuclei (e.g. gold) colliding at speeds very close to the speed-of-light. The collisions produce thousands of subatomic particles, many of which are detected in our experiment called STAR at the Relativistic Heavy-Ion Collider at the Brookhaven National Lab in New York. The goal of our research is to learn how the strong nuclear force and its fundamental particles (quarks and gluons) behave in extreme conditions similar to that of the early Universe when it was about 1 micro-second old, and in the cores of very dense neutron stars. To learn anything new about the matter which exists for such a very short amount of time requires carefully designed probes. In our research we focused on two such probes, one being short-lived resonance particles and the other using correlations between pairs of the detected particles. Resonances are short-lived particles created in the collision, which interact with the surrounding matter, and which break apart, or "decay" into more stable particles which survive long enough to be seen in our detectors. The dependence of resonance properties on the conditions in the collision system permit tests of theoretical models and improve our understanding. Dynamical interactions in the matter also leave imprints on the final, outgoing particle distributions measured in the experiment. In particular, angular correlations between pairs of particles can be related to the fundamental strong force as it behaves in the hot, dense matter. Studying correlations as a function of experimentally controlled

  8. A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging.

    Science.gov (United States)

    Ning, Lipeng; Setsompop, Kawin; Michailovich, Oleg; Makris, Nikos; Shenton, Martha E; Westin, Carl-Fredrik; Rathi, Yogesh

    2016-01-15

    Diffusion MRI (dMRI) can provide invaluable information about the structure of different tissue types in the brain. Standard dMRI acquisitions facilitate a proper analysis (e.g. tracing) of medium-to-large white matter bundles. However, smaller fiber bundles connecting very small cortical or sub-cortical regions cannot be traced accurately in images with large voxel sizes. Yet, the ability to trace such fiber bundles is critical for several applications such as deep brain stimulation and neurosurgery. In this work, we propose a novel acquisition and reconstruction scheme for obtaining high spatial resolution dMRI images using multiple low resolution (LR) images, which is effective in reducing acquisition time while improving the signal-to-noise ratio (SNR). The proposed method called compressed-sensing super resolution reconstruction (CS-SRR), uses multiple overlapping thick-slice dMRI volumes that are under-sampled in q-space to reconstruct diffusion signal with complex orientations. The proposed method combines the twin concepts of compressed sensing and super-resolution to model the diffusion signal (at a given b-value) in a basis of spherical ridgelets with total-variation (TV) regularization to account for signal correlation in neighboring voxels. A computationally efficient algorithm based on the alternating direction method of multipliers (ADMM) is introduced for solving the CS-SRR problem. The performance of the proposed method is quantitatively evaluated on several in-vivo human data sets including a true SRR scenario. Our experimental results demonstrate that the proposed method can be used for reconstructing sub-millimeter super resolution dMRI data with very good data fidelity in clinically feasible acquisition time. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Measurement of charge exchange cross sections for highly charged xenon and thorium ions with molecular hydrogen in a Penning Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Weinberg, G.M.

    1995-12-01

    Highly charged xenon (35+ to 46+) and thorium (72+ to 79+) ions were produced in an Electron Beam Ion Trap (EBIT). The ions were extracted from EBIT in a short pulse. Ions of one charge state were selected using an electromagnet. The ions were recaptured at low energy in a cryogenic Penning trap (RETRAP). As the ions captured electrons from molecular hydrogen, populations of the various charge states were obtained by measuring the image currents induced by the ions on the electrodes of the trap. Data on the number of ions in each charge state vs. time were compared to theoretical rate equations in order to determine the average charge exchange rates. These rates were compared to charge exchange rates of an ion with a known charge exchange cross section (Ar{sup 11+}) measured in a similar manner in order to determine the average charge exchange cross sections for the highly charged ions. The energy of interaction between the highly charged ions and hydrogen was estimated to be 4 eV in the center of mass frame. The mean charge exchange cross sections were 9 {times} 10{sup {minus}14} cm{sup 2} for Xe{sup 43+} to Xe{sup 46+} and 2 {times} 10{sup {minus}13} cm{sup 2} for Th{sup 73+} to Th{sup 79+}. Double capture was approximately 20--25% of the total for both xenon and thorium. A fit indicated that the cross sections were approximately proportional to q. This is consistent with a linear dependence of cross section on q within the measurement uncertainties.

  10. Ion Behavior and Gas Mixing in electron cyclotron resonance plasmas as sources of highly charged ions (concept

    NARCIS (Netherlands)

    Melin, G.; Drentje, A. G.; Girard, A.; Hitz, D.

    1999-01-01

    Abstract: An ECR ion source is basically an ECR heated plasma confinement machine, with hot electrons and cold ions. The main parameters of the ion population have been analyzed, including temperature, losses, and confinement time. The "gas mixing" effect has been studied in this context. An

  11. Numerical Analysis of Joule Heating Behavior and Residual Compressive Stress around Crack Tip under High Electric Load

    Directory of Open Access Journals (Sweden)

    Thomas Jin-Chee Liu

    2017-01-01

    Full Text Available This paper discusses the Joule heating effect and residual compressive stress near the crack tip under the electro-thermo-structural coupling state. For the crack tip field, the compressive condition is important for retarding or stopping the crack growth.

  12. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions.

    Science.gov (United States)

    Lu, W; Li, J Y; Kang, L; Liu, H P; Li, H; Li, J D; Sun, L T; Ma, X W

    2014-02-01

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36,000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H(+), (40)Ar(8+), (129)Xe(30+), (209)Bi(33+), etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  13. EBIT spectroscopy of highly charged heavy ions relevant to hot plasmas

    Science.gov (United States)

    Nakamura, Nobuyuki

    2013-05-01

    An electron beam ion trap (EBIT) is a versatile device for studying highly charged ions. We have been using two types of EBITs for the spectroscopic studies of highly charged ions. One is a high-energy device called the Tokyo-EBIT, and another is a compact low-energy device called CoBIT. Complementary use of them enables us to obtain spectroscopic data for ions over a wide charge-state range interacting with electrons over a wide energy range. In this talk, we present EBIT spectra of highly charged ions for tungsten, iron, bismuth, etc., which are relevant to hot plasmas. Tungsten is considered to be the main impurity in the ITER (the next generation nuclear fusion reactor) plasma, and thus its emission lines are important for diagnosing and controlling the ITER plasma. We have observed many previously unreported lines to supply the lack of spectroscopic data of tungsten ions. Iron is one of the main components of the solar corona, and its spectra are used to diagnose temperature, density, etc. The diagnostics is usually done by comparing observed spectra with model calculations. An EBIT can provide spectra under a well-defined condition; they are thus useful to test the model calculations. Laser-produced bismuth plasma is one of the candidates for a soft x-ray source in the water window region. An EBIT has a narrow charge state distribution; it is thus useful to disentangle the spectra of laser-produced plasma containing ions with a wide charge-state range. Performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS09KOAJ003) and JSPS KAKENHI Number 23246165, and partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics.

  14. [High-resolution patch-clamp technique based on feedback control of scanning ion conductance microscopy].

    Science.gov (United States)

    Yang, Xi; Liu, Xiao; Zhang, Xiao-Fan; Lu, Hu-Jie; Zhang, Yan-Jun

    2010-06-25

    The ion channels located on the cell fine structures play an important role in the physiological functions of cell membrane. However, it is impossible to achieve precise positioning on the nanometer scale cellular microstructures by conventional patch-clamp technique, due to the 200 nm resolution limit of optical microscope. To solve this problem, we have established a high-resolution patch-clamp technique, which combined commercial scanning ion conductance microscopy (SICM) and patch-clamp recording through a nanopipette probe, based on SICM feedback control. MDCK cells were used as observation object to test the capability of the technique. Firstly, a feedback controlled SICM nanopipette (approximately 150 MOmega) non-contactly scanned over a selected area of living MDCK cells monolayer to obtain high-resolution topographic images of microvilli and tight-junction microstructures on the MDCK cells monolayer. Secondly, the same nanopipette was non-contactly moved and precisely positioned over the microvilli or tight-junction microstructure under SICM feedback control. Finally, the SICM feedback control was switched off, the nanopipette slowly contacted with the cell membrane to get a patch-clamp giga-ohm sealing in the cell-attached patch-clamp configuration, and then performed ion channel recording as a normal patch-clamp electrode. The ion channel recordings showed that ion channels of microvilli microstructure opened at pipette holding potential of -100, -60, -40, 0, +40, +60, +100 mV (n=11). However, the opening of ion channels of tight-junction microstructure was not detected at pipette holding potential of -100, -40, 0, +40, +100 mV (n=9). These results suggest that our high-resolution patch-clamp technique can achieve accurate nanopipette positioning and nanometer scale high-resolution patch-clamp recording, which may provide a powerful tool to study the spatial distribution and functions of ion channel in the nanometer scale microstructures of living

  15. STRUCTURAL ASPECTS OF PLASTICITY LOWERING OF HIGH-STRENGTH WIRE AT BIG CUMULATIVE COMPRESSIONS

    Directory of Open Access Journals (Sweden)

    V. P. Fetisov

    2012-01-01

    Full Text Available It is shown that decrease of plasticity of high-strength wire at big total cobbings is connected with reduction of mobility of dislocations in the substructure formed at loss of perlite lamellar structure.

  16. Collective Thomson scattering system for determination of ion properties in a high flux plasma beam

    NARCIS (Netherlands)

    van der Meiden, H. J.; Vernimmen, J. W. M.; Bystrov, K.; Jesko, K.; Kantor, M. Y.; De Temmerman, G.; Morgan, T. W.

    2016-01-01

    A collective Thomson scattering system has been developed for measuring ion temperature, plasma velocity and impurity concentration in the high density magnetized Magnum-PSI plasma beam, allowing for measurements at low temperature (<5 eV) and high electron density >4 × 1020 m−3, while

  17. High power electron and ion beam research and technology

    Energy Technology Data Exchange (ETDEWEB)

    Nation, J.A.; Sudan, R.N. (eds.)

    1977-01-01

    Topics covered in volume II include: collective accelerators; microwaves and unneutralized E-beams; technology of high-current E-beam accelerators and laser applications of charged-particle beams. Abstracts of twenty-nine papers from the conference were prepared for the data base in addition to six which appeared previously. (GHT)

  18. Radial convection of finite ion temperature, high amplitude plasma blobs

    DEFF Research Database (Denmark)

    Wiesenberger, M.; Madsen, Jens; Kendl, Alexander

    2014-01-01

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line...

  19. Compressive strength of resin-modified glass ionomer restorative material: effect of P/L ratio and storage time Resistência à compressão de ionômeros de vidro modificados por resina: efeito da relação P/L e tempos de armazenagem

    Directory of Open Access Journals (Sweden)

    Mônica Aratani

    2005-12-01

    Full Text Available The aim of this study was to evaluate the compressive strength of resin-modified glass ionomer cement Fuji II LC and Vitremer, in powder/liquid ratios of 1:1, 1:2 and 1:3, at three periods (24 hours, 7 and 28 days of storage in distilled water at 37ºC. For each material, P/L ratio and storage time, 5 cylindrical specimens were prepared, with 4mm diameter and 6mm height, in silicon moulds. Specimens were light-cured for 40 seconds at each extremity, removed from the moulds and laterally light-cured (perpendicular to long axis for 40 seconds, protected as recommended by the manufacturers and immersed for the time tested. The specimens were submitted to compressive strength testing in an Instron machine at a crosshead speed of 1.0mm/min until failure. Data were submitted to ANOVA and Tukey's test (5%, and showed that the compressive strength of resin-modified glass ionomer cement was reduced when P/L ratio was reduced and that the storage in water had little influence on compressive strength.O objetivo deste estudo foi avaliar a resistência à compressão dos cimentos de ionômero de vidro modificados por resina Vitremer e Fuji II LC, nas relações pó/líquido 1:1, 1:2 e 1:3, por três períodos de armazenagem (24 horas, 7 e 28 dias em água destilada a 37 ºC. Para cada material, relação pó/líquido e tempo de armazenagem, cinco corpos-de-prova cilíndricos foram preparados com 4 mm de diâmetro por 6 mm de altura, em moldes de silicone. Os corpos-de-prova foram fotoativados por 40 segundos, em cada extremidade, removidos dos moldes, fotoativado lateralmente (perpendicular ao longo eixo por 40 segundos, protegidos conforme as instruções dos fabricantes e imersos pelo tempo de teste. Os corpos-de-prova foram submetidos à compressão em uma Instron, à velocidade de 1,0 mm/min até a falha. Os dados foram submetidos à análise de variância e ao teste de Tukey (5%, e mostraram que a resistência à compressão do cimento de ionômero de

  20. Study of the degradation process of polyimide induced by high energetic ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Severin, Daniel

    2008-09-19

    The dissertation focuses on the radiation hardness of Kapton under extreme radiation environment conditions. To study ion-beam induced modifications, Kapton foils were irradiated at the GSI linear accelerator UNILAC using several projectiles (e.g. Ti, Mo, Au, and U) within a large fluence regime (1 x 10{sup 10}-5 x 10{sup 12} ions/cm{sup 2}). The irradiated Kapton foils were analysed by means of infrared and UV/Vis spectroscopy, tensile strength measurement, mass loss analysis, and dielectric relaxation spectroscopy. For testing the radiation stability of Kapton at the cryogenic operation temperature (5-10 K) of the superconducting magnets, additional irradiation experiments were performed at the Grand Accelerateur National d' Ions Lourds (GANIL, France) focusing on the online analysis of the outgassing process of small volatile degradation fragments. The investigations of the electrical properties analysed by dielectric relaxation spectroscopy exhibit a different trend: high fluence irradiations with light ions (e.g. Ti) lead to a slight increase of the conductivity, whereas heavy ions (e.g. Sm, Au) cause a drastic change already in the fluence regime of nonoverlapping tracks (5 x 10{sup 10} ions/cm{sup 2}). Online analysis of the outgassing process during irradiation at cryogenic temperatures shows the release of a variety of small gaseous molecules (e.g. CO, CO{sub 2}, and short hydro carbons). Also a small amount of large polymer fragments is identified. The results allow the following conclusions which are of special interest for the application of Kapton as insulating material in a high-energetic particle radiation environment. a) The material degradation measured with the optical spectroscopy and tensile strength tests are scalable with the dose deposited by the ions. The high correlation of the results allows the prediction of the mechanical degradation with the simple and non-destructive infrared spectroscopy. The degradation curve points to a